diff --git a/README.md b/README.md
index bd7ad395..dc04661b 100644
--- a/README.md
+++ b/README.md
@@ -33,7 +33,7 @@ Azure Cloud Advocates at Microsoft are pleased to offer a 10-week, 20-lesson cur
#### Supported via GitHub Action (Automated & Always Up-to-Date)
-[Arabic](./translations/ar/README.md) | [Bengali](./translations/bn/README.md) | [Bulgarian](./translations/bg/README.md) | [Burmese (Myanmar)](./translations/my/README.md) | [Chinese (Simplified)](./translations/zh/README.md) | [Chinese (Traditional, Hong Kong)](./translations/hk/README.md) | [Chinese (Traditional, Macau)](./translations/mo/README.md) | [Chinese (Traditional, Taiwan)](./translations/tw/README.md) | [Croatian](./translations/hr/README.md) | [Czech](./translations/cs/README.md) | [Danish](./translations/da/README.md) | [Dutch](./translations/nl/README.md) | [Estonian](./translations/et/README.md) | [Finnish](./translations/fi/README.md) | [French](./translations/fr/README.md) | [German](./translations/de/README.md) | [Greek](./translations/el/README.md) | [Hebrew](./translations/he/README.md) | [Hindi](./translations/hi/README.md) | [Hungarian](./translations/hu/README.md) | [Indonesian](./translations/id/README.md) | [Italian](./translations/it/README.md) | [Japanese](./translations/ja/README.md) | [Kannada](./translations/kn/README.md) | [Korean](./translations/ko/README.md) | [Lithuanian](./translations/lt/README.md) | [Malay](./translations/ms/README.md) | [Malayalam](./translations/ml/README.md) | [Marathi](./translations/mr/README.md) | [Nepali](./translations/ne/README.md) | [Nigerian Pidgin](./translations/pcm/README.md) | [Norwegian](./translations/no/README.md) | [Persian (Farsi)](./translations/fa/README.md) | [Polish](./translations/pl/README.md) | [Portuguese (Brazil)](./translations/br/README.md) | [Portuguese (Portugal)](./translations/pt/README.md) | [Punjabi (Gurmukhi)](./translations/pa/README.md) | [Romanian](./translations/ro/README.md) | [Russian](./translations/ru/README.md) | [Serbian (Cyrillic)](./translations/sr/README.md) | [Slovak](./translations/sk/README.md) | [Slovenian](./translations/sl/README.md) | [Spanish](./translations/es/README.md) | [Swahili](./translations/sw/README.md) | [Swedish](./translations/sv/README.md) | [Tagalog (Filipino)](./translations/tl/README.md) | [Tamil](./translations/ta/README.md) | [Telugu](./translations/te/README.md) | [Thai](./translations/th/README.md) | [Turkish](./translations/tr/README.md) | [Ukrainian](./translations/uk/README.md) | [Urdu](./translations/ur/README.md) | [Vietnamese](./translations/vi/README.md)
+[Arabic](./translations/ar/README.md) | [Bengali](./translations/bn/README.md) | [Bulgarian](./translations/bg/README.md) | [Burmese (Myanmar)](./translations/my/README.md) | [Chinese (Simplified)](./translations/zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](./translations/zh-HK/README.md) | [Chinese (Traditional, Macau)](./translations/zh-MO/README.md) | [Chinese (Traditional, Taiwan)](./translations/zh-TW/README.md) | [Croatian](./translations/hr/README.md) | [Czech](./translations/cs/README.md) | [Danish](./translations/da/README.md) | [Dutch](./translations/nl/README.md) | [Estonian](./translations/et/README.md) | [Finnish](./translations/fi/README.md) | [French](./translations/fr/README.md) | [German](./translations/de/README.md) | [Greek](./translations/el/README.md) | [Hebrew](./translations/he/README.md) | [Hindi](./translations/hi/README.md) | [Hungarian](./translations/hu/README.md) | [Indonesian](./translations/id/README.md) | [Italian](./translations/it/README.md) | [Japanese](./translations/ja/README.md) | [Kannada](./translations/kn/README.md) | [Korean](./translations/ko/README.md) | [Lithuanian](./translations/lt/README.md) | [Malay](./translations/ms/README.md) | [Malayalam](./translations/ml/README.md) | [Marathi](./translations/mr/README.md) | [Nepali](./translations/ne/README.md) | [Nigerian Pidgin](./translations/pcm/README.md) | [Norwegian](./translations/no/README.md) | [Persian (Farsi)](./translations/fa/README.md) | [Polish](./translations/pl/README.md) | [Portuguese (Brazil)](./translations/pt-BR/README.md) | [Portuguese (Portugal)](./translations/pt-PT/README.md) | [Punjabi (Gurmukhi)](./translations/pa/README.md) | [Romanian](./translations/ro/README.md) | [Russian](./translations/ru/README.md) | [Serbian (Cyrillic)](./translations/sr/README.md) | [Slovak](./translations/sk/README.md) | [Slovenian](./translations/sl/README.md) | [Spanish](./translations/es/README.md) | [Swahili](./translations/sw/README.md) | [Swedish](./translations/sv/README.md) | [Tagalog (Filipino)](./translations/tl/README.md) | [Tamil](./translations/ta/README.md) | [Telugu](./translations/te/README.md) | [Thai](./translations/th/README.md) | [Turkish](./translations/tr/README.md) | [Ukrainian](./translations/uk/README.md) | [Urdu](./translations/ur/README.md) | [Vietnamese](./translations/vi/README.md)
> **Prefer to Clone Locally?**
diff --git a/translated_images/kn/.co-op-translator.json b/translated_images/kn/.co-op-translator.json
index e4a9dcb5..c1863c97 100644
--- a/translated_images/kn/.co-op-translator.json
+++ b/translated_images/kn/.co-op-translator.json
@@ -1,98 +1,26 @@
{
- "ds-for-beginners.d01930c9193ef522.webp": {
- "original_hash": "b84eca5411f4bc0041e671becb05fe48",
- "translation_date": "2026-01-16T23:18:11+00:00",
- "source_file": "ds-for-beginners.png",
- "language_code": "kn"
- },
- "favicon.37b561214b36d454.webp": {
- "original_hash": "228faa6584f8ba1f7e9a75e3200112e9",
- "translation_date": "2026-01-16T23:18:12+00:00",
- "source_file": "images/favicon.png",
- "language_code": "kn"
- },
- "1.0b520df6a0d9d3c4.webp": {
- "original_hash": "54586a26505aae6cbcc8962a2852b277",
- "translation_date": "2026-01-16T23:18:21+00:00",
- "source_file": "images/1.png",
- "language_code": "kn"
- },
- "08-DataPreparation.e3b185c37958e964.webp": {
- "original_hash": "0201767bfac86b208c4c9de0fce95141",
- "translation_date": "2026-01-16T23:18:34+00:00",
- "source_file": "sketchnotes/08-DataPreparation.png",
- "language_code": "kn"
- },
- "10-Visualizing-Distributions.8097fd8abd7221a1.webp": {
- "original_hash": "885512a64dcab7202c5a53cbde907da2",
- "translation_date": "2026-01-16T23:18:53+00:00",
- "source_file": "sketchnotes/10-Visualizing-Distributions.png",
- "language_code": "kn"
- },
- "05-RelationalData.af50f5a3e50f7456.webp": {
- "original_hash": "e4e0576bddd38fe9a4bd941f73d6de3b",
- "translation_date": "2026-01-16T23:19:04+00:00",
- "source_file": "sketchnotes/05-RelationalData.png",
- "language_code": "kn"
- },
- "16-Communicating.f1d29cd7984442a4.webp": {
- "original_hash": "9a65542ddae4e103ab2a665fe65629ce",
- "translation_date": "2026-01-16T23:19:16+00:00",
- "source_file": "sketchnotes/16-Communicating.png",
- "language_code": "kn"
- },
"00-Roadmap.4905d6567dff4753.webp": {
"original_hash": "ecf8b739e8b862f9c4dac338bd614aa7",
"translation_date": "2026-01-16T23:22:35+00:00",
"source_file": "sketchnotes/00-Roadmap.png",
"language_code": "kn"
},
- "12-Visualizing-Relationships.4466f9bd260f03dd.webp": {
- "original_hash": "10d06245ecbdc48880e555f03a62f64c",
- "translation_date": "2026-01-16T23:22:48+00:00",
- "source_file": "sketchnotes/12-Visualizing-Relationships.png",
- "language_code": "kn"
- },
- "06-NoSQL.42a91ea0cd5769fe.webp": {
- "original_hash": "f5873c65a3a544e1b1a94417c5ee55c8",
- "translation_date": "2026-01-16T23:23:03+00:00",
- "source_file": "sketchnotes/06-NoSQL.png",
- "language_code": "kn"
- },
- "20-DataScience-RealWorld.976976229ee11342.webp": {
- "original_hash": "ff1861c005ea9fe7644777c4069008b9",
- "translation_date": "2026-01-16T23:23:25+00:00",
- "source_file": "sketchnotes/20-DataScience-RealWorld.png",
- "language_code": "kn"
- },
- "01-Definitions.1b14ddc9525dc0d9.webp": {
- "original_hash": "56648d71e5fb4865d3f621010f220582",
- "translation_date": "2026-01-16T23:23:31+00:00",
- "source_file": "sketchnotes/01-Definitions.png",
- "language_code": "kn"
- },
"00-Title.8af36cd35da1ac55.webp": {
"original_hash": "533863b4c050b07b1d90ecb948237ffc",
"translation_date": "2026-01-16T23:23:37+00:00",
"source_file": "sketchnotes/00-Title.png",
"language_code": "kn"
},
- "14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp": {
- "original_hash": "96cbd264a85530f5876c353b2e57956d",
- "translation_date": "2026-01-16T23:24:02+00:00",
- "source_file": "sketchnotes/14-DataScience-Lifecycle.png",
- "language_code": "kn"
- },
- "11-Visualizing-Proportions.3e82f24af94d206e.webp": {
- "original_hash": "e7f8f167d209a389c3100d3ac210b69d",
- "translation_date": "2026-01-16T23:24:21+00:00",
- "source_file": "sketchnotes/11-Visualizing-Proportions.png",
+ "01-Definitions.1b14ddc9525dc0d9.webp": {
+ "original_hash": "56648d71e5fb4865d3f621010f220582",
+ "translation_date": "2026-01-16T23:23:31+00:00",
+ "source_file": "sketchnotes/01-Definitions.png",
"language_code": "kn"
},
- "20-DataScience-Research.da434814c51b4ef8.webp": {
- "original_hash": "c1d7c67564ad6767200da0cab95eeb52",
- "translation_date": "2026-01-16T23:24:44+00:00",
- "source_file": "sketchnotes/20-DataScience-Research.png",
+ "02-Ethics.728d166895302ab0.webp": {
+ "original_hash": "005bd88e9721003310c7b2f17dd0e35a",
+ "translation_date": "2026-01-16T23:27:24+00:00",
+ "source_file": "sketchnotes/02-Ethics.png",
"language_code": "kn"
},
"03-DefiningData.f800817186949e07.webp": {
@@ -101,16 +29,22 @@
"source_file": "sketchnotes/03-DefiningData.png",
"language_code": "kn"
},
- "20-DataScience-Humanities.1d1a155f4d12a667.webp": {
- "original_hash": "1458acca113e1f3c64fb18d6a434fb5c",
- "translation_date": "2026-01-16T23:25:18+00:00",
- "source_file": "sketchnotes/20-DataScience-Humanities.png",
+ "04-Statistics-Probability.cfc569d84a9f1867.webp": {
+ "original_hash": "2ee100d33c054ce8a39267530f23377c",
+ "translation_date": "2026-01-16T23:27:36+00:00",
+ "source_file": "sketchnotes/04-Statistics-Probability.png",
"language_code": "kn"
},
- "20-DataScience-Sustainability.d4097bc684431da6.webp": {
- "original_hash": "966e2a6eea920d7cb30a343e0bf5c856",
- "translation_date": "2026-01-16T23:25:31+00:00",
- "source_file": "sketchnotes/20-DataScience-Sustainability.png",
+ "05-RelationalData.af50f5a3e50f7456.webp": {
+ "original_hash": "e4e0576bddd38fe9a4bd941f73d6de3b",
+ "translation_date": "2026-01-16T23:19:04+00:00",
+ "source_file": "sketchnotes/05-RelationalData.png",
+ "language_code": "kn"
+ },
+ "06-NoSQL.42a91ea0cd5769fe.webp": {
+ "original_hash": "f5873c65a3a544e1b1a94417c5ee55c8",
+ "translation_date": "2026-01-16T23:23:03+00:00",
+ "source_file": "sketchnotes/06-NoSQL.png",
"language_code": "kn"
},
"07-WorkWithPython.8bf4a5013718bef9.webp": {
@@ -119,16 +53,10 @@
"source_file": "sketchnotes/07-WorkWithPython.png",
"language_code": "kn"
},
- "19-DataScience-Cloud.177b38fb86301fc6.webp": {
- "original_hash": "78eb918c3512a018c0d99a217bc72038",
- "translation_date": "2026-01-16T23:26:02+00:00",
- "source_file": "sketchnotes/19-DataScience-Cloud.png",
- "language_code": "kn"
- },
- "18-DataScience-Cloud.3a7292e8182b74eb.webp": {
- "original_hash": "c1094124ae2e325016c6ddcb95599c7a",
- "translation_date": "2026-01-16T23:26:36+00:00",
- "source_file": "sketchnotes/18-DataScience-Cloud.png",
+ "08-DataPreparation.e3b185c37958e964.webp": {
+ "original_hash": "0201767bfac86b208c4c9de0fce95141",
+ "translation_date": "2026-01-16T23:18:34+00:00",
+ "source_file": "sketchnotes/08-DataPreparation.png",
"language_code": "kn"
},
"09-Visualizing-Quantities.5c846edd805a5238.webp": {
@@ -137,22 +65,28 @@
"source_file": "sketchnotes/09-Visualizing-Quantities.png",
"language_code": "kn"
},
- "17-DataScience-Cloud.0df76ac874805c14.webp": {
- "original_hash": "221a9e5d40e6f47fe793f175a8754ae0",
- "translation_date": "2026-01-16T23:27:15+00:00",
- "source_file": "sketchnotes/17-DataScience-Cloud.png",
+ "1.0b520df6a0d9d3c4.webp": {
+ "original_hash": "54586a26505aae6cbcc8962a2852b277",
+ "translation_date": "2026-01-16T23:18:21+00:00",
+ "source_file": "images/1.png",
"language_code": "kn"
},
- "02-Ethics.728d166895302ab0.webp": {
- "original_hash": "005bd88e9721003310c7b2f17dd0e35a",
- "translation_date": "2026-01-16T23:27:24+00:00",
- "source_file": "sketchnotes/02-Ethics.png",
+ "10-Visualizing-Distributions.8097fd8abd7221a1.webp": {
+ "original_hash": "885512a64dcab7202c5a53cbde907da2",
+ "translation_date": "2026-01-16T23:18:53+00:00",
+ "source_file": "sketchnotes/10-Visualizing-Distributions.png",
"language_code": "kn"
},
- "04-Statistics-Probability.cfc569d84a9f1867.webp": {
- "original_hash": "2ee100d33c054ce8a39267530f23377c",
- "translation_date": "2026-01-16T23:27:36+00:00",
- "source_file": "sketchnotes/04-Statistics-Probability.png",
+ "11-Visualizing-Proportions.3e82f24af94d206e.webp": {
+ "original_hash": "e7f8f167d209a389c3100d3ac210b69d",
+ "translation_date": "2026-01-16T23:24:21+00:00",
+ "source_file": "sketchnotes/11-Visualizing-Proportions.png",
+ "language_code": "kn"
+ },
+ "12-Visualizing-Relationships.4466f9bd260f03dd.webp": {
+ "original_hash": "10d06245ecbdc48880e555f03a62f64c",
+ "translation_date": "2026-01-16T23:22:48+00:00",
+ "source_file": "sketchnotes/12-Visualizing-Relationships.png",
"language_code": "kn"
},
"13-MeaningfulViz.4db6f1997e519908.webp": {
@@ -161,118 +95,130 @@
"source_file": "sketchnotes/13-MeaningfulViz.png",
"language_code": "kn"
},
+ "14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp": {
+ "original_hash": "96cbd264a85530f5876c353b2e57956d",
+ "translation_date": "2026-01-16T23:24:02+00:00",
+ "source_file": "sketchnotes/14-DataScience-Lifecycle.png",
+ "language_code": "kn"
+ },
"15-Analyzing.b501f3dbdc958f6f.webp": {
"original_hash": "973333ac82d2472591675e2b93afc87e",
"translation_date": "2026-01-16T23:29:31+00:00",
"source_file": "sketchnotes/15-Analyzing.png",
"language_code": "kn"
},
- "data.48e22bb7617d8d92.webp": {
- "original_hash": "1a84026266861a50791b9f952fbab540",
- "translation_date": "2026-01-16T23:29:37+00:00",
- "source_file": "1-Introduction/images/data.jpg",
+ "16-Communicating.f1d29cd7984442a4.webp": {
+ "original_hash": "9a65542ddae4e103ab2a665fe65629ce",
+ "translation_date": "2026-01-16T23:19:16+00:00",
+ "source_file": "sketchnotes/16-Communicating.png",
"language_code": "kn"
},
- "ds_wordcloud.664a7c07dca57de0.webp": {
- "original_hash": "df525e123083bea87f16bce2c07970c7",
- "translation_date": "2026-01-16T23:30:20+00:00",
- "source_file": "1-Introduction/01-defining-data-science/images/ds_wordcloud.png",
+ "17-DataScience-Cloud.0df76ac874805c14.webp": {
+ "original_hash": "221a9e5d40e6f47fe793f175a8754ae0",
+ "translation_date": "2026-01-16T23:27:15+00:00",
+ "source_file": "sketchnotes/17-DataScience-Cloud.png",
"language_code": "kn"
},
- "video-def-ds.6623ee2392ef1abf.webp": {
- "original_hash": "95650b7eed7f176ce8fdee16271a464b",
- "translation_date": "2026-01-16T23:30:38+00:00",
- "source_file": "1-Introduction/01-defining-data-science/images/video-def-ds.png",
+ "18-DataScience-Cloud.3a7292e8182b74eb.webp": {
+ "original_hash": "c1094124ae2e325016c6ddcb95599c7a",
+ "translation_date": "2026-01-16T23:26:36+00:00",
+ "source_file": "sketchnotes/18-DataScience-Cloud.png",
"language_code": "kn"
},
- "boxplot_explanation.4039b7de08780fd4.webp": {
- "original_hash": "18e16e4144706f7e9006fc2ff958e622",
- "translation_date": "2026-01-16T23:30:53+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/boxplot_explanation.png",
+ "19-DataScience-Cloud.177b38fb86301fc6.webp": {
+ "original_hash": "78eb918c3512a018c0d99a217bc72038",
+ "translation_date": "2026-01-16T23:26:02+00:00",
+ "source_file": "sketchnotes/19-DataScience-Cloud.png",
"language_code": "kn"
},
- "weight-boxplot.1dbab1c03af26f8a.webp": {
- "original_hash": "4e39b904d1a4313d66663aa3f7ab9602",
- "translation_date": "2026-01-16T23:30:56+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/weight-boxplot.png",
+ "20-DataScience-Humanities.1d1a155f4d12a667.webp": {
+ "original_hash": "1458acca113e1f3c64fb18d6a434fb5c",
+ "translation_date": "2026-01-16T23:25:18+00:00",
+ "source_file": "sketchnotes/20-DataScience-Humanities.png",
"language_code": "kn"
},
- "weight-histogram.bfd00caf7fc30b14.webp": {
- "original_hash": "bef55b4cd03923b2d8674e92bb1757c9",
- "translation_date": "2026-01-16T23:31:01+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/weight-histogram.png",
+ "20-DataScience-RealWorld.976976229ee11342.webp": {
+ "original_hash": "ff1861c005ea9fe7644777c4069008b9",
+ "translation_date": "2026-01-16T23:23:25+00:00",
+ "source_file": "sketchnotes/20-DataScience-RealWorld.png",
"language_code": "kn"
},
- "probability-density.a8aad29f17a14afb.webp": {
- "original_hash": "79ec3e39c1c20e570327ebd8a2737548",
- "translation_date": "2026-01-16T23:31:04+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/probability-density.png",
+ "20-DataScience-Research.da434814c51b4ef8.webp": {
+ "original_hash": "c1d7c67564ad6767200da0cab95eeb52",
+ "translation_date": "2026-01-16T23:24:44+00:00",
+ "source_file": "sketchnotes/20-DataScience-Research.png",
"language_code": "kn"
},
- "weight-height-relationship.3f06bde4ca2aba99.webp": {
- "original_hash": "2412d31f9c41004d2d0cb80179d6021f",
- "translation_date": "2026-01-16T23:31:09+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/weight-height-relationship.png",
+ "20-DataScience-Sustainability.d4097bc684431da6.webp": {
+ "original_hash": "966e2a6eea920d7cb30a343e0bf5c856",
+ "translation_date": "2026-01-16T23:25:31+00:00",
+ "source_file": "sketchnotes/20-DataScience-Sustainability.png",
"language_code": "kn"
},
- "height-boxplot.ccb66b2848b5f51c.webp": {
- "original_hash": "0f3d954cc0e0b9644f64f7bc1c8a5518",
- "translation_date": "2026-01-16T23:31:13+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/height-boxplot.png",
+ "2D-wb.ae22fdd33936507a.webp": {
+ "original_hash": "621c501b663b89b0739ff0a3d89324d4",
+ "translation_date": "2026-01-16T23:50:24+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/2D-wb.png",
"language_code": "kn"
},
- "video-prob-and-stats.e4282e5efa2f2543.webp": {
- "original_hash": "95894d8c6274697246b11c5ddf395c5f",
- "translation_date": "2026-01-16T23:31:20+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/video-prob-and-stats.png",
+ "2D.b3342157139dd804.webp": {
+ "original_hash": "43f6f9ba817c493c2f38383fb22df3ff",
+ "translation_date": "2026-01-16T23:50:28+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/2D.png",
"language_code": "kn"
},
- "normal-histogram.dfae0d67c202137d.webp": {
- "original_hash": "46ee775d2df1d79815c1aab51bd8d2fe",
- "translation_date": "2026-01-16T23:31:24+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/normal-histogram.png",
+ "2d-plot.c504786f439bd7eb.webp": {
+ "original_hash": "b5a6251e8480b8dbcf6ca9972efd2a94",
+ "translation_date": "2026-01-16T23:54:22+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/2d-plot.png",
"language_code": "kn"
},
- "boxplot_byrole.036b27a1c3f52d42.webp": {
- "original_hash": "1193ef907e122e99637e73ef9f83d2a5",
- "translation_date": "2026-01-16T23:31:32+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/boxplot_byrole.png",
+ "3d.0cec12bcc60f0ce7.webp": {
+ "original_hash": "24efe448af156c5520372b9b554a2c89",
+ "translation_date": "2026-01-16T23:53:57+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/3d.png",
"language_code": "kn"
},
- "cloud-picture.f5526de3c6c6387b.webp": {
- "original_hash": "112d96f85f2037814d2df8b88267a595",
- "translation_date": "2026-01-16T23:31:41+00:00",
- "source_file": "5-Data-Science-In-Cloud/images/cloud-picture.jpg",
+ "3d.db1734c151eee87d.webp": {
+ "original_hash": "24efe448af156c5520372b9b554a2c89",
+ "translation_date": "2026-01-16T23:59:15+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/3d.png",
"language_code": "kn"
},
- "compute-instance-1.dba347cb199ca499.webp": {
- "original_hash": "7af64073de557468a0b652e4bcecf2d1",
- "translation_date": "2026-01-16T23:31:59+00:00",
- "source_file": "5-Data-Science-In-Cloud/19-Azure/images/compute-instance-1.PNG",
+ "CRISP-DM.8bad2b4c66e62aa7.webp": {
+ "original_hash": "eac24034dc4554b1292c0c035a852548",
+ "translation_date": "2026-01-16T23:40:42+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/CRISP-DM.png",
"language_code": "kn"
},
- "notebook-1.12998af7b02c83f5.webp": {
- "original_hash": "08d559b911ecbed212b67e206ae6bcf1",
- "translation_date": "2026-01-16T23:32:17+00:00",
- "source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-1.PNG",
+ "MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp": {
+ "original_hash": "25abf3baadac4535fac2aa1c8794f537",
+ "translation_date": "2026-01-16T23:57:13+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot-improved.png",
"language_code": "kn"
},
- "notebook-2.9a657c037e34f1cf.webp": {
- "original_hash": "018309c1ca2ed8e31fd89c3674687979",
- "translation_date": "2026-01-16T23:32:23+00:00",
- "source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-2.PNG",
+ "MaxWingspan-lineplot.b12169f99d26fdd2.webp": {
+ "original_hash": "8a0744b5301a1c4dc64b580728b5771a",
+ "translation_date": "2026-01-16T23:56:35+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot.png",
"language_code": "kn"
},
- "project-schema.420e56d495624541.webp": {
- "original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
- "translation_date": "2026-01-16T23:32:53+00:00",
- "source_file": "5-Data-Science-In-Cloud/19-Azure/images/project-schema.PNG",
+ "MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp": {
+ "original_hash": "c5b4723c8624caa7463c66fd7278854e",
+ "translation_date": "2026-01-16T23:58:19+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot-improved.png",
"language_code": "kn"
},
- "aml-3.a7952e4295f38cc6.webp": {
- "original_hash": "33433e94fe719f0e4104ad809338f91d",
- "translation_date": "2026-01-16T23:33:14+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-3.PNG",
+ "MaxWingspan-scatterplot.60dc9e0e19d32700.webp": {
+ "original_hash": "58de03db6718a04f8e61e2405ea2b502",
+ "translation_date": "2026-01-16T23:56:40+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot.png",
+ "language_code": "kn"
+ },
+ "aml-1.67281a85d3a1e2f3.webp": {
+ "original_hash": "130c64f0112c117a400926da0bbaf090",
+ "translation_date": "2026-01-16T23:40:05+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-1.PNG",
"language_code": "kn"
},
"aml-2.c9fb9cffb39ccbbe.webp": {
@@ -281,34 +227,10 @@
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-2.PNG",
"language_code": "kn"
},
- "workspace-1.ac8694d60b073ed1.webp": {
- "original_hash": "5e9f3153bfd5af7d8b6adcb09c08cabd",
- "translation_date": "2026-01-16T23:33:41+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-1.PNG",
- "language_code": "kn"
- },
- "deploy-1.ddad725acadc84e3.webp": {
- "original_hash": "d91956f565f29332f32fc85095206456",
- "translation_date": "2026-01-16T23:34:01+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-1.PNG",
- "language_code": "kn"
- },
- "cluster-3.8a334bc070ec173a.webp": {
- "original_hash": "b440d88eb5ce449ebe780c1edbac221d",
- "translation_date": "2026-01-16T23:34:19+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-3.PNG",
- "language_code": "kn"
- },
- "workspace-4.bac87f6599c4df63.webp": {
- "original_hash": "099e0b18ce11f3966c0b7d954c2eb4fb",
- "translation_date": "2026-01-16T23:34:35+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-4.PNG",
- "language_code": "kn"
- },
- "datascienceinthecloud.59ffb059a670fb0a.webp": {
- "original_hash": "d66cf00bfc41a3d1bef7e1d54ac4e03f",
- "translation_date": "2026-01-16T23:34:37+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/datascienceinthecloud.jpg",
+ "aml-3.a7952e4295f38cc6.webp": {
+ "original_hash": "33433e94fe719f0e4104ad809338f91d",
+ "translation_date": "2026-01-16T23:33:14+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-3.PNG",
"language_code": "kn"
},
"aml-4.7a627e09cb6f16d0.webp": {
@@ -317,172 +239,148 @@
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-4.PNG",
"language_code": "kn"
},
- "cluster-2.ea30cdbc9f926bb9.webp": {
- "original_hash": "0486b9eb10e88dc53fc2927c9197cd27",
- "translation_date": "2026-01-16T23:35:38+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-2.PNG",
+ "bad-chart-1.596bc93425a8ac30.webp": {
+ "original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
+ "translation_date": "2026-01-16T23:58:28+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-1.png",
"language_code": "kn"
},
- "dataset-1.e86ab4e10907a6e9.webp": {
- "original_hash": "b742ef1724e601f68a1bdf3f1faa89c6",
- "translation_date": "2026-01-16T23:35:54+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-1.PNG",
+ "bad-chart-1.93130f495b748bed.webp": {
+ "original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
+ "translation_date": "2026-01-16T23:53:09+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-1.png",
"language_code": "kn"
},
- "cluster-1.b78cb630bb543729.webp": {
- "original_hash": "d938d671e7eabf7fbc012cf1987dc43f",
- "translation_date": "2026-01-16T23:36:37+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-1.PNG",
+ "bad-chart-2.62edf4d2f30f4e51.webp": {
+ "original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
+ "translation_date": "2026-01-16T23:59:08+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-2.jpg",
"language_code": "kn"
},
- "workspace-2.ae7c486db8796147.webp": {
- "original_hash": "9299f5ae459f0a153da6aaae9accc78d",
- "translation_date": "2026-01-16T23:36:50+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-2.PNG",
+ "bad-chart-2.c20e36dd4e6f617c.webp": {
+ "original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
+ "translation_date": "2026-01-16T23:53:49+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-2.jpg",
"language_code": "kn"
},
- "deploy-3.fecefef070e8ef3b.webp": {
- "original_hash": "487c6cd79b0232e10e40fdab2e6b929f",
- "translation_date": "2026-01-16T23:37:13+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-3.PNG",
+ "bad-chart-3.6865d0afac4108d7.webp": {
+ "original_hash": "80f955c8f50661e029730e9b06959c0b",
+ "translation_date": "2026-01-16T23:53:16+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-3.jpg",
"language_code": "kn"
},
- "project-schema.736f6e403f321eb4.webp": {
- "original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
- "translation_date": "2026-01-16T23:37:43+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/project-schema.PNG",
+ "bad-chart-3.e201e2e915a230bc.webp": {
+ "original_hash": "80f955c8f50661e029730e9b06959c0b",
+ "translation_date": "2026-01-16T23:58:35+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-3.jpg",
"language_code": "kn"
},
- "dataset-3.58db8c0eb783e892.webp": {
- "original_hash": "cc2177288c2ac7289b614ce41ee68d60",
- "translation_date": "2026-01-16T23:38:21+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-3.PNG",
+ "bad-chart-4.68cfdf4011b45447.webp": {
+ "original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
+ "translation_date": "2026-01-16T23:54:07+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-4.jpg",
"language_code": "kn"
},
- "dataset-2.f58de1c435d5bf9c.webp": {
- "original_hash": "328c65d45aa937db952093099bc408ce",
- "translation_date": "2026-01-16T23:38:29+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-2.PNG",
+ "bad-chart-4.8872b2b881ffa96c.webp": {
+ "original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
+ "translation_date": "2026-01-16T23:59:25+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-4.jpg",
"language_code": "kn"
},
- "workspace-6.8dd81fe841797ee1.webp": {
- "original_hash": "fd0194c1a558063ddb53e5c1ead0a2b0",
- "translation_date": "2026-01-16T23:38:54+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-6.PNG",
+ "bee.0aa1d91132b12e3a.webp": {
+ "original_hash": "107a59a0fdfa76d213eacf0f46df0292",
+ "translation_date": "2026-01-16T23:49:34+00:00",
+ "source_file": "3-Data-Visualization/images/bee.jpg",
"language_code": "kn"
},
- "consumption-1.700abd196452842a.webp": {
- "original_hash": "a5ecdcdff30f2d1059763b9ce5abe4eb",
- "translation_date": "2026-01-16T23:39:24+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/consumption-1.PNG",
+ "bodymass-per-order.9d2b065dd931b928.webp": {
+ "original_hash": "b009aeba10679cfeb880d3869e7d1db2",
+ "translation_date": "2026-01-16T23:54:56+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-per-order.png",
"language_code": "kn"
},
- "workspace-5.a6eb17e0a5e64200.webp": {
- "original_hash": "01b1c520e46b3fbd6fba0d54bb80bece",
- "translation_date": "2026-01-16T23:39:41+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-5.PNG",
+ "bodymass-smooth.d31ce526d82b0a1f.webp": {
+ "original_hash": "9e0c8215e2ce2cc7120491a79559a907",
+ "translation_date": "2026-01-16T23:54:35+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-smooth.png",
"language_code": "kn"
},
- "deploy-2.94dbb13f23908647.webp": {
- "original_hash": "cb622a2e6374ccfdb376d3528e2bb9c8",
- "translation_date": "2026-01-16T23:39:51+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-2.PNG",
+ "boxplot_byrole.036b27a1c3f52d42.webp": {
+ "original_hash": "1193ef907e122e99637e73ef9f83d2a5",
+ "translation_date": "2026-01-16T23:31:32+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/boxplot_byrole.png",
"language_code": "kn"
},
- "aml-1.67281a85d3a1e2f3.webp": {
- "original_hash": "130c64f0112c117a400926da0bbaf090",
- "translation_date": "2026-01-16T23:40:05+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-1.PNG",
+ "boxplot_explanation.4039b7de08780fd4.webp": {
+ "original_hash": "18e16e4144706f7e9006fc2ff958e622",
+ "translation_date": "2026-01-16T23:30:53+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/boxplot_explanation.png",
"language_code": "kn"
},
- "workspace-3.398ca4a5858132cc.webp": {
- "original_hash": "2ee0b036fbc5fd13a526f26ac9d60347",
- "translation_date": "2026-01-16T23:40:14+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-3.PNG",
+ "busing.7b9e3b41cd4b981c.webp": {
+ "original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
+ "translation_date": "2026-01-16T23:53:25+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/busing.png",
"language_code": "kn"
},
- "communication.06d8e2a88d30d168.webp": {
- "original_hash": "5736c0fd0f68676dbd5b27c5b04f4b48",
- "translation_date": "2026-01-16T23:40:35+00:00",
- "source_file": "4-Data-Science-Lifecycle/images/communication.jpg",
+ "busing.8157cf1bc89a3f65.webp": {
+ "original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
+ "translation_date": "2026-01-16T23:58:44+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/busing.png",
"language_code": "kn"
},
- "CRISP-DM.8bad2b4c66e62aa7.webp": {
- "original_hash": "eac24034dc4554b1292c0c035a852548",
- "translation_date": "2026-01-16T23:40:42+00:00",
- "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/CRISP-DM.png",
+ "category-counts-02.0b9a0a4de42275ae.webp": {
+ "original_hash": "d0ebdd74049aa407805cb1b28d9d5075",
+ "translation_date": "2026-01-17T00:00:50+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts-02.png",
"language_code": "kn"
},
- "data-science-lifecycle.a1e362637503c4fb.webp": {
- "original_hash": "594be62e68ef5e92f5447febe91c7794",
- "translation_date": "2026-01-16T23:40:57+00:00",
- "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/data-science-lifecycle.jpg",
+ "category-counts.abee8188c4c9b6f0.webp": {
+ "original_hash": "3b55836da9e8a6b487c6657b01156a99",
+ "translation_date": "2026-01-16T23:59:49+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts.png",
"language_code": "kn"
},
- "tdsp-lifecycle2.e19029d598e2e73d.webp": {
- "original_hash": "d1f838b6b0fd588b4ee6cd22cb578569",
- "translation_date": "2026-01-16T23:41:14+00:00",
- "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/tdsp-lifecycle2.png",
+ "category-length-02.7304bf519375c980.webp": {
+ "original_hash": "2638d345ceee48d8c40a54f6388c8caa",
+ "translation_date": "2026-01-17T00:00:16+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length-02.png",
"language_code": "kn"
},
- "data-love.a22ef29e6742c852.webp": {
- "original_hash": "e7fcf82d891c727f86c21960cb63efa6",
- "translation_date": "2026-01-16T23:41:52+00:00",
- "source_file": "2-Working-With-Data/images/data-love.jpg",
+ "category-length.7e34c296690e85d6.webp": {
+ "original_hash": "f5c753a1fe65d51b8cc15b8b46c6d4e6",
+ "translation_date": "2026-01-16T23:57:07+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/category-length.png",
"language_code": "kn"
},
- "video-ds-python.245247dc811db8e4.webp": {
- "original_hash": "030eca02a7388a1428cf20faa215f2b9",
- "translation_date": "2026-01-16T23:42:04+00:00",
- "source_file": "2-Working-With-Data/07-python/images/video-ds-python.png",
+ "category-length.b0d9a0208a7b3713.webp": {
+ "original_hash": "990ba20663dfb1d5bc21e39b9162f412",
+ "translation_date": "2026-01-16T23:59:46+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length.png",
"language_code": "kn"
},
- "dataframe-1.caf409f0c688e84c.webp": {
- "original_hash": "2ca632a405bd7b501a0e0df0fa55515a",
- "translation_date": "2026-01-16T23:42:11+00:00",
- "source_file": "2-Working-With-Data/07-python/images/dataframe-1.png",
+ "cloud-picture.f5526de3c6c6387b.webp": {
+ "original_hash": "112d96f85f2037814d2df8b88267a595",
+ "translation_date": "2026-01-16T23:31:41+00:00",
+ "source_file": "5-Data-Science-In-Cloud/images/cloud-picture.jpg",
"language_code": "kn"
},
- "covidtreat.b2ba59f57ca45fbc.webp": {
- "original_hash": "b2b1e40794073c65faa986c5995754c9",
- "translation_date": "2026-01-16T23:42:20+00:00",
- "source_file": "2-Working-With-Data/07-python/images/covidtreat.png",
- "language_code": "kn"
- },
- "timeseries-1.80de678ab1cf727e.webp": {
- "original_hash": "30236ed2474d8d115ab3d51545e0c19e",
- "translation_date": "2026-01-16T23:42:25+00:00",
- "source_file": "2-Working-With-Data/07-python/images/timeseries-1.png",
- "language_code": "kn"
- },
- "covidspread.f3d131c4f1d260ab.webp": {
- "original_hash": "461f7858f407e9f5b9eb9caf8ca21367",
- "translation_date": "2026-01-16T23:42:30+00:00",
- "source_file": "2-Working-With-Data/07-python/images/covidspread.png",
- "language_code": "kn"
- },
- "timeseries-2.aae51d575c55181c.webp": {
- "original_hash": "33bd33349330cb115d729ce80b570501",
- "translation_date": "2026-01-16T23:42:35+00:00",
- "source_file": "2-Working-With-Data/07-python/images/timeseries-2.png",
- "language_code": "kn"
- },
- "timeseries-3.f3147cbc8c624881.webp": {
- "original_hash": "aa4b14a21a73d400073a61f37033d465",
- "translation_date": "2026-01-16T23:42:41+00:00",
- "source_file": "2-Working-With-Data/07-python/images/timeseries-3.png",
+ "cluster-1.b78cb630bb543729.webp": {
+ "original_hash": "d938d671e7eabf7fbc012cf1987dc43f",
+ "translation_date": "2026-01-16T23:36:37+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-1.PNG",
"language_code": "kn"
},
- "cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp": {
- "original_hash": "4ab74b4d99e8e2a503433a1faf6921be",
- "translation_date": "2026-01-16T23:43:06+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons-query.png",
+ "cluster-2.ea30cdbc9f926bb9.webp": {
+ "original_hash": "0486b9eb10e88dc53fc2927c9197cd27",
+ "translation_date": "2026-01-16T23:35:38+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-2.PNG",
"language_code": "kn"
},
- "function-excel.be2ae4feddc10ca0.webp": {
- "original_hash": "72ab7b76f4fab0df5aa91fa839722a60",
- "translation_date": "2026-01-16T23:43:12+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/function-excel.png",
+ "cluster-3.8a334bc070ec173a.webp": {
+ "original_hash": "b440d88eb5ce449ebe780c1edbac221d",
+ "translation_date": "2026-01-16T23:34:19+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-3.PNG",
"language_code": "kn"
},
"columnar-db.ffcfe73c3e9063a8.webp": {
@@ -491,40 +389,40 @@
"source_file": "2-Working-With-Data/06-non-relational/images/columnar-db.png",
"language_code": "kn"
},
- "kv-db.e8f2b75686bbdfcb.webp": {
- "original_hash": "b11fd06948e523a4f05e4fc016b72151",
- "translation_date": "2026-01-16T23:43:27+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/kv-db.png",
+ "communication.06d8e2a88d30d168.webp": {
+ "original_hash": "5736c0fd0f68676dbd5b27c5b04f4b48",
+ "translation_date": "2026-01-16T23:40:35+00:00",
+ "source_file": "4-Data-Science-Lifecycle/images/communication.jpg",
"language_code": "kn"
},
- "cosmosdb-emulator-explorer.a1c80b1347206fe2.webp": {
- "original_hash": "cdd5affc23e1edf90e5a1d4d5d0f1f8d",
- "translation_date": "2026-01-16T23:48:09+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-explorer.png",
+ "comparingdata.f486a450d61c7ca5.webp": {
+ "original_hash": "c5f1049b89ea0d7015e420acc0728045",
+ "translation_date": "2026-01-16T23:57:43+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/comparingdata.png",
"language_code": "kn"
},
- "formula-excel.ad1068c220892f5e.webp": {
- "original_hash": "ffc48a46663588ed68f07739e1c6faec",
- "translation_date": "2026-01-16T23:48:24+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/formula-excel.png",
+ "compute-instance-1.dba347cb199ca499.webp": {
+ "original_hash": "7af64073de557468a0b652e4bcecf2d1",
+ "translation_date": "2026-01-16T23:31:59+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/images/compute-instance-1.PNG",
"language_code": "kn"
},
- "graph-db.d13629152f79a9da.webp": {
- "original_hash": "9642744eabff608b20e9241ba5931752",
- "translation_date": "2026-01-16T23:48:31+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/graph-db.png",
+ "consumption-1.700abd196452842a.webp": {
+ "original_hash": "a5ecdcdff30f2d1059763b9ce5abe4eb",
+ "translation_date": "2026-01-16T23:39:24+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/consumption-1.PNG",
"language_code": "kn"
},
- "document-db.ddeec48c6dc9e5fd.webp": {
- "original_hash": "8cee40487b4a8926c048c397be218e6e",
- "translation_date": "2026-01-16T23:48:43+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/document-db.png",
+ "cosmosdb-emulator-explorer.a1c80b1347206fe2.webp": {
+ "original_hash": "cdd5affc23e1edf90e5a1d4d5d0f1f8d",
+ "translation_date": "2026-01-16T23:48:09+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-explorer.png",
"language_code": "kn"
},
- "new-container.650e10c7a20a5f83.webp": {
- "original_hash": "ab63b5a8099095333eebe2afa69197e3",
- "translation_date": "2026-01-16T23:48:57+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/new-container.png",
+ "cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp": {
+ "original_hash": "4ab74b4d99e8e2a503433a1faf6921be",
+ "translation_date": "2026-01-16T23:43:06+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons-query.png",
"language_code": "kn"
},
"cosmosdb-emulator-persons.bf640586a7077c89.webp": {
@@ -533,82 +431,76 @@
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons.png",
"language_code": "kn"
},
- "parts-of-spreadsheet.120711c82aa18a45.webp": {
- "original_hash": "e744b94c055058c2862aaabe84625b90",
- "translation_date": "2026-01-16T23:49:33+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/parts-of-spreadsheet.png",
- "language_code": "kn"
- },
- "bee.0aa1d91132b12e3a.webp": {
- "original_hash": "107a59a0fdfa76d213eacf0f46df0292",
- "translation_date": "2026-01-16T23:49:34+00:00",
- "source_file": "3-Data-Visualization/images/bee.jpg",
+ "covidspread.f3d131c4f1d260ab.webp": {
+ "original_hash": "461f7858f407e9f5b9eb9caf8ca21367",
+ "translation_date": "2026-01-16T23:42:30+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/covidspread.png",
"language_code": "kn"
},
- "multi.56548caa9eae8d0f.webp": {
- "original_hash": "f75fa5419bb0d28a74c567876bc99455",
- "translation_date": "2026-01-16T23:49:39+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/multi.png",
+ "covidtreat.b2ba59f57ca45fbc.webp": {
+ "original_hash": "b2b1e40794073c65faa986c5995754c9",
+ "translation_date": "2026-01-16T23:42:20+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/covidtreat.png",
"language_code": "kn"
},
- "dist2.c398bfd5320401b9.webp": {
- "original_hash": "fc0ce2a2e3087e5754770998f75db398",
- "translation_date": "2026-01-16T23:49:41+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2.png",
+ "data-love.a22ef29e6742c852.webp": {
+ "original_hash": "e7fcf82d891c727f86c21960cb63efa6",
+ "translation_date": "2026-01-16T23:41:52+00:00",
+ "source_file": "2-Working-With-Data/images/data-love.jpg",
"language_code": "kn"
},
- "density3.84ae27da82f31e6b.webp": {
- "original_hash": "1c4b40707ab63224822854698a26f6ca",
- "translation_date": "2026-01-16T23:49:45+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/density3.png",
+ "data-science-applications.4e5019cd8790ebac.webp": {
+ "original_hash": "602217d731f1576c21ac91148222cfa1",
+ "translation_date": "2026-01-17T00:05:15+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/data-science-applications.png",
"language_code": "kn"
},
- "dist3-wb.64b88db7f9780200.webp": {
- "original_hash": "b3d78f1f00c6c3d087f161dd74318aff",
- "translation_date": "2026-01-16T23:49:49+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3-wb.png",
+ "data-science-lifecycle.a1e362637503c4fb.webp": {
+ "original_hash": "594be62e68ef5e92f5447febe91c7794",
+ "translation_date": "2026-01-16T23:40:57+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/data-science-lifecycle.jpg",
"language_code": "kn"
},
- "scatter-wb.9d98b0ed7f0388af.webp": {
- "original_hash": "20b0f7bb41756f35bdf985a8f5f3a342",
- "translation_date": "2026-01-16T23:50:02+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter-wb.png",
+ "data.48e22bb7617d8d92.webp": {
+ "original_hash": "1a84026266861a50791b9f952fbab540",
+ "translation_date": "2026-01-16T23:29:37+00:00",
+ "source_file": "1-Introduction/images/data.jpg",
"language_code": "kn"
},
- "histogram-conservation-wb.3c40450eb072c14d.webp": {
- "original_hash": "83ec1d81dea6fabb80c6386edf8eb241",
- "translation_date": "2026-01-16T23:50:07+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation-wb.png",
+ "dataframe-1.caf409f0c688e84c.webp": {
+ "original_hash": "2ca632a405bd7b501a0e0df0fa55515a",
+ "translation_date": "2026-01-16T23:42:11+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/dataframe-1.png",
"language_code": "kn"
},
- "dist1-wb.0d0cac82e2974fbb.webp": {
- "original_hash": "2f624fcf08f90cfedf12238e86730517",
- "translation_date": "2026-01-16T23:50:12+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1-wb.png",
+ "datascienceinthecloud.59ffb059a670fb0a.webp": {
+ "original_hash": "d66cf00bfc41a3d1bef7e1d54ac4e03f",
+ "translation_date": "2026-01-16T23:34:37+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/datascienceinthecloud.jpg",
"language_code": "kn"
},
- "histogram-conservation.13b3542e7784e415.webp": {
- "original_hash": "ec86b1d6a476f4cf80f9d2b346525c92",
- "translation_date": "2026-01-16T23:50:18+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation.png",
+ "dataset-1.e86ab4e10907a6e9.webp": {
+ "original_hash": "b742ef1724e601f68a1bdf3f1faa89c6",
+ "translation_date": "2026-01-16T23:35:54+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-1.PNG",
"language_code": "kn"
},
- "dist3.ad4d9658559690f5.webp": {
- "original_hash": "a4f7f50a3cc98d22d6a1321d1df7781b",
- "translation_date": "2026-01-16T23:50:20+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3.png",
+ "dataset-2.f58de1c435d5bf9c.webp": {
+ "original_hash": "328c65d45aa937db952093099bc408ce",
+ "translation_date": "2026-01-16T23:38:29+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-2.PNG",
"language_code": "kn"
},
- "2D-wb.ae22fdd33936507a.webp": {
- "original_hash": "621c501b663b89b0739ff0a3d89324d4",
- "translation_date": "2026-01-16T23:50:24+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/2D-wb.png",
+ "dataset-3.58db8c0eb783e892.webp": {
+ "original_hash": "cc2177288c2ac7289b614ce41ee68d60",
+ "translation_date": "2026-01-16T23:38:21+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-3.PNG",
"language_code": "kn"
},
- "2D.b3342157139dd804.webp": {
- "original_hash": "43f6f9ba817c493c2f38383fb22df3ff",
- "translation_date": "2026-01-16T23:50:28+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/2D.png",
+ "density-plot.675ccf865b76c690.webp": {
+ "original_hash": "269df7655a489ba893c9a930e54996b4",
+ "translation_date": "2026-01-16T23:55:00+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/density-plot.png",
"language_code": "kn"
},
"density1.8801043bd4af2567.webp": {
@@ -617,16 +509,46 @@
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density1.png",
"language_code": "kn"
},
+ "density2.8e7647257060ff54.webp": {
+ "original_hash": "ae4ee53e81dca21c2d475642c9acf970",
+ "translation_date": "2026-01-16T23:50:53+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/density2.png",
+ "language_code": "kn"
+ },
+ "density3.84ae27da82f31e6b.webp": {
+ "original_hash": "1c4b40707ab63224822854698a26f6ca",
+ "translation_date": "2026-01-16T23:49:45+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/density3.png",
+ "language_code": "kn"
+ },
"density4.e9d6c033f15c500f.webp": {
"original_hash": "e007401afeb86f57097c31b272c54f59",
"translation_date": "2026-01-16T23:50:42+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density4.png",
"language_code": "kn"
},
- "scatter.520a43eceb46dbcb.webp": {
- "original_hash": "0b08180e497b0df05b452d6e82139280",
- "translation_date": "2026-01-16T23:50:47+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter.png",
+ "deploy-1.ddad725acadc84e3.webp": {
+ "original_hash": "d91956f565f29332f32fc85095206456",
+ "translation_date": "2026-01-16T23:34:01+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-1.PNG",
+ "language_code": "kn"
+ },
+ "deploy-2.94dbb13f23908647.webp": {
+ "original_hash": "cb622a2e6374ccfdb376d3528e2bb9c8",
+ "translation_date": "2026-01-16T23:39:51+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-2.PNG",
+ "language_code": "kn"
+ },
+ "deploy-3.fecefef070e8ef3b.webp": {
+ "original_hash": "487c6cd79b0232e10e40fdab2e6b929f",
+ "translation_date": "2026-01-16T23:37:13+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-3.PNG",
+ "language_code": "kn"
+ },
+ "dist1-wb.0d0cac82e2974fbb.webp": {
+ "original_hash": "2f624fcf08f90cfedf12238e86730517",
+ "translation_date": "2026-01-16T23:50:12+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1-wb.png",
"language_code": "kn"
},
"dist1.0010100b00231819.webp": {
@@ -635,64 +557,52 @@
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1.png",
"language_code": "kn"
},
- "density2.8e7647257060ff54.webp": {
- "original_hash": "ae4ee53e81dca21c2d475642c9acf970",
- "translation_date": "2026-01-16T23:50:53+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/density2.png",
- "language_code": "kn"
- },
"dist2-wb.2c0a7a3499b2fbf5.webp": {
"original_hash": "f66e1b4cf106774c02ddc8111fb26ea8",
"translation_date": "2026-01-16T23:50:58+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2-wb.png",
"language_code": "kn"
},
- "facet.6a34851dcd540050.webp": {
- "original_hash": "b1972d34a64eaf50b7f64de8455601d6",
- "translation_date": "2026-01-16T23:51:17+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/facet.png",
+ "dist2.c398bfd5320401b9.webp": {
+ "original_hash": "fc0ce2a2e3087e5754770998f75db398",
+ "translation_date": "2026-01-16T23:49:41+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2.png",
"language_code": "kn"
},
- "dual-line.a4c28ce659603fab.webp": {
- "original_hash": "354c3a3b7493b3ec80eec454e7e1661f",
- "translation_date": "2026-01-16T23:51:26+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/dual-line.png",
+ "dist3-wb.64b88db7f9780200.webp": {
+ "original_hash": "b3d78f1f00c6c3d087f161dd74318aff",
+ "translation_date": "2026-01-16T23:49:49+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3-wb.png",
"language_code": "kn"
},
- "scatter3.3c160a3d1dcb36b3.webp": {
- "original_hash": "b6dae06624fdb034a906091c859840c8",
- "translation_date": "2026-01-16T23:51:41+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter3.png",
- "language_code": "kn"
- },
- "scatter2.c0041a58621ca702.webp": {
- "original_hash": "0daebd8565f87f5de940b38eb8af1b9d",
- "translation_date": "2026-01-16T23:51:56+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter2.png",
+ "dist3.ad4d9658559690f5.webp": {
+ "original_hash": "a4f7f50a3cc98d22d6a1321d1df7781b",
+ "translation_date": "2026-01-16T23:50:20+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3.png",
"language_code": "kn"
},
- "scatter1.5e1aa5fd6706c5d1.webp": {
- "original_hash": "c02fe2f5fa39f591b4a26308356ed684",
- "translation_date": "2026-01-16T23:52:12+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter1.png",
+ "distribution-30bins.6a3921ea7a421bf7.webp": {
+ "original_hash": "e06c4dfd27b06597b94a75072e9c4bc5",
+ "translation_date": "2026-01-16T23:54:31+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-30bins.png",
"language_code": "kn"
},
- "line1.f36eb465229a3b1f.webp": {
- "original_hash": "2254eee0864847a0dbbcf3514523b938",
- "translation_date": "2026-01-16T23:52:17+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/line1.png",
+ "distribution-over-the-entire-dataset.d22afd3fa96be854.webp": {
+ "original_hash": "338c78ae2ee25ed179e49ec1a4e7923b",
+ "translation_date": "2026-01-16T23:54:39+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-over-the-entire-dataset.png",
"language_code": "kn"
},
- "line2.a5b3493dc01058af.webp": {
- "original_hash": "352e8164b0d75c410198bb07822e43cb",
- "translation_date": "2026-01-16T23:52:21+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/line2.png",
+ "document-db.ddeec48c6dc9e5fd.webp": {
+ "original_hash": "8cee40487b4a8926c048c397be218e6e",
+ "translation_date": "2026-01-16T23:48:43+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/document-db.png",
"language_code": "kn"
},
- "pie1.8f6a8bfac96de60e.webp": {
- "original_hash": "dc91ddf7490acc8493ca0801370d8fa8",
- "translation_date": "2026-01-16T23:52:26+00:00",
- "source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1.png",
+ "donut-wb.34e6fb275da9d834.webp": {
+ "original_hash": "1fca738bcee99e03430409599cef33f3",
+ "translation_date": "2026-01-16T23:56:23+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/donut-wb.png",
"language_code": "kn"
},
"donut-wb.be3c12a22712302b.webp": {
@@ -701,76 +611,124 @@
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut-wb.png",
"language_code": "kn"
},
- "waffle.5455dbae4ccf17d5.webp": {
- "original_hash": "56634c9a9dc24921e012693843466dee",
- "translation_date": "2026-01-16T23:52:51+00:00",
- "source_file": "3-Data-Visualization/11-visualization-proportions/images/waffle.png",
- "language_code": "kn"
- },
"donut.f016d7be7f08c8f8.webp": {
"original_hash": "055fcaf0a6d93663278eb958137b460c",
"translation_date": "2026-01-16T23:52:57+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut.png",
"language_code": "kn"
},
- "pie1-wb.e201f2fcc3354131.webp": {
- "original_hash": "f2dbe68e0228fc6bb76e502dfa88a5c7",
- "translation_date": "2026-01-16T23:53:00+00:00",
- "source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1-wb.png",
+ "ds-for-beginners.d01930c9193ef522.webp": {
+ "original_hash": "b84eca5411f4bc0041e671becb05fe48",
+ "translation_date": "2026-01-16T23:18:11+00:00",
+ "source_file": "ds-for-beginners.png",
"language_code": "kn"
},
- "bad-chart-1.93130f495b748bed.webp": {
- "original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
- "translation_date": "2026-01-16T23:53:09+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-1.png",
+ "ds_wordcloud.664a7c07dca57de0.webp": {
+ "original_hash": "df525e123083bea87f16bce2c07970c7",
+ "translation_date": "2026-01-16T23:30:20+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/images/ds_wordcloud.png",
"language_code": "kn"
},
- "bad-chart-3.6865d0afac4108d7.webp": {
- "original_hash": "80f955c8f50661e029730e9b06959c0b",
- "translation_date": "2026-01-16T23:53:16+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-3.jpg",
+ "dual-line.a4c28ce659603fab.webp": {
+ "original_hash": "354c3a3b7493b3ec80eec454e7e1661f",
+ "translation_date": "2026-01-16T23:51:26+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/dual-line.png",
"language_code": "kn"
},
- "busing.7b9e3b41cd4b981c.webp": {
- "original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
- "translation_date": "2026-01-16T23:53:25+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/busing.png",
+ "dual-line.fc4665f360a54018.webp": {
+ "original_hash": "a80f6d08e4639389726abb5b1c3d5d9f",
+ "translation_date": "2026-01-16T23:55:37+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/dual-line.png",
"language_code": "kn"
},
- "tornado.9f42168791208f97.webp": {
- "original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
- "translation_date": "2026-01-16T23:53:36+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/tornado.png",
+ "facet.491ad90d61c2a7cc.webp": {
+ "original_hash": "2a0a7fea3ccea24ef9a0d37487f38ba3",
+ "translation_date": "2026-01-16T23:55:29+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/facet.png",
"language_code": "kn"
},
- "bad-chart-2.c20e36dd4e6f617c.webp": {
- "original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
- "translation_date": "2026-01-16T23:53:49+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-2.jpg",
+ "facet.6a34851dcd540050.webp": {
+ "original_hash": "b1972d34a64eaf50b7f64de8455601d6",
+ "translation_date": "2026-01-16T23:51:17+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/facet.png",
"language_code": "kn"
},
- "3d.0cec12bcc60f0ce7.webp": {
- "original_hash": "24efe448af156c5520372b9b554a2c89",
- "translation_date": "2026-01-16T23:53:57+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/3d.png",
+ "favicon.37b561214b36d454.webp": {
+ "original_hash": "228faa6584f8ba1f7e9a75e3200112e9",
+ "translation_date": "2026-01-16T23:18:12+00:00",
+ "source_file": "images/favicon.png",
"language_code": "kn"
},
- "bad-chart-4.68cfdf4011b45447.webp": {
- "original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
- "translation_date": "2026-01-16T23:54:07+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-4.jpg",
+ "filtered-histogram.6bf5d2bfd8253322.webp": {
+ "original_hash": "9beae93b6d3063f7afa19070ca9b21f2",
+ "translation_date": "2026-01-16T23:54:44+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/filtered-histogram.png",
"language_code": "kn"
},
- "liaisons.7b440b28f6d07ea4.webp": {
- "original_hash": "6d42370a9c4ee2cea0573912a6300e09",
- "translation_date": "2026-01-16T23:54:18+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/liaisons.png",
+ "formula-excel.ad1068c220892f5e.webp": {
+ "original_hash": "ffc48a46663588ed68f07739e1c6faec",
+ "translation_date": "2026-01-16T23:48:24+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/formula-excel.png",
"language_code": "kn"
},
- "2d-plot.c504786f439bd7eb.webp": {
- "original_hash": "b5a6251e8480b8dbcf6ca9972efd2a94",
- "translation_date": "2026-01-16T23:54:22+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/2d-plot.png",
+ "full-data-bar-02.aaa3fda71c63ed56.webp": {
+ "original_hash": "68ced4f3a959790addfa4c361f5abc0f",
+ "translation_date": "2026-01-17T00:01:22+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar-02.png",
+ "language_code": "kn"
+ },
+ "full-data-bar.a0b37da71a6cd236.webp": {
+ "original_hash": "bd639cfebb870669bcf5280302347b15",
+ "translation_date": "2026-01-17T00:01:38+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar.png",
+ "language_code": "kn"
+ },
+ "function-excel.be2ae4feddc10ca0.webp": {
+ "original_hash": "72ab7b76f4fab0df5aa91fa839722a60",
+ "translation_date": "2026-01-16T23:43:12+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/function-excel.png",
+ "language_code": "kn"
+ },
+ "graph-db.d13629152f79a9da.webp": {
+ "original_hash": "9642744eabff608b20e9241ba5931752",
+ "translation_date": "2026-01-16T23:48:31+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/graph-db.png",
+ "language_code": "kn"
+ },
+ "height-boxplot.ccb66b2848b5f51c.webp": {
+ "original_hash": "0f3d954cc0e0b9644f64f7bc1c8a5518",
+ "translation_date": "2026-01-16T23:31:13+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/height-boxplot.png",
+ "language_code": "kn"
+ },
+ "histogram-conservation-wb.3c40450eb072c14d.webp": {
+ "original_hash": "83ec1d81dea6fabb80c6386edf8eb241",
+ "translation_date": "2026-01-16T23:50:07+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation-wb.png",
+ "language_code": "kn"
+ },
+ "histogram-conservation.13b3542e7784e415.webp": {
+ "original_hash": "ec86b1d6a476f4cf80f9d2b346525c92",
+ "translation_date": "2026-01-16T23:50:18+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation.png",
+ "language_code": "kn"
+ },
+ "kv-db.e8f2b75686bbdfcb.webp": {
+ "original_hash": "b11fd06948e523a4f05e4fc016b72151",
+ "translation_date": "2026-01-16T23:43:27+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/kv-db.png",
+ "language_code": "kn"
+ },
+ "labeled-wingspan-02.6110e2d2401cd523.webp": {
+ "original_hash": "0f218473d2563c14c8caddecdea3a4c3",
+ "translation_date": "2026-01-17T00:01:29+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan-02.png",
+ "language_code": "kn"
+ },
+ "labeled-wingspan.900ffedd7e3ec6de.webp": {
+ "original_hash": "92a8853541cd37a14b9523a58d655f7f",
+ "translation_date": "2026-01-17T00:01:42+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan.png",
"language_code": "kn"
},
"less-smooth-bodymass.10f4db8b683cc17d.webp": {
@@ -779,46 +737,40 @@
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/less-smooth-bodymass.png",
"language_code": "kn"
},
- "distribution-30bins.6a3921ea7a421bf7.webp": {
- "original_hash": "e06c4dfd27b06597b94a75072e9c4bc5",
- "translation_date": "2026-01-16T23:54:31+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-30bins.png",
- "language_code": "kn"
- },
- "bodymass-smooth.d31ce526d82b0a1f.webp": {
- "original_hash": "9e0c8215e2ce2cc7120491a79559a907",
- "translation_date": "2026-01-16T23:54:35+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-smooth.png",
+ "liaisons.7b440b28f6d07ea4.webp": {
+ "original_hash": "6d42370a9c4ee2cea0573912a6300e09",
+ "translation_date": "2026-01-16T23:54:18+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/liaisons.png",
"language_code": "kn"
},
- "distribution-over-the-entire-dataset.d22afd3fa96be854.webp": {
- "original_hash": "338c78ae2ee25ed179e49ec1a4e7923b",
- "translation_date": "2026-01-16T23:54:39+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-over-the-entire-dataset.png",
+ "liaisons.90ce7360bcf84765.webp": {
+ "original_hash": "6d42370a9c4ee2cea0573912a6300e09",
+ "translation_date": "2026-01-16T23:59:34+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/liaisons.png",
"language_code": "kn"
},
- "filtered-histogram.6bf5d2bfd8253322.webp": {
- "original_hash": "9beae93b6d3063f7afa19070ca9b21f2",
- "translation_date": "2026-01-16T23:54:44+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/filtered-histogram.png",
+ "line1.299b576fbb2a59e6.webp": {
+ "original_hash": "580b92476ca343c0fce7d5713d0ca5cd",
+ "translation_date": "2026-01-16T23:56:12+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line1.png",
"language_code": "kn"
},
- "wingspan-conservation-collation.4024e9aa6910866a.webp": {
- "original_hash": "898d4cfbbc9bd4723c3ce92f5746a6f8",
- "translation_date": "2026-01-16T23:54:49+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/wingspan-conservation-collation.png",
+ "line1.f36eb465229a3b1f.webp": {
+ "original_hash": "2254eee0864847a0dbbcf3514523b938",
+ "translation_date": "2026-01-16T23:52:17+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/line1.png",
"language_code": "kn"
},
- "bodymass-per-order.9d2b065dd931b928.webp": {
- "original_hash": "b009aeba10679cfeb880d3869e7d1db2",
- "translation_date": "2026-01-16T23:54:56+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-per-order.png",
+ "line2.3b18fcda7176ceba.webp": {
+ "original_hash": "0900ae563b525221b628393ec05feaf8",
+ "translation_date": "2026-01-16T23:56:17+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line2.png",
"language_code": "kn"
},
- "density-plot.675ccf865b76c690.webp": {
- "original_hash": "269df7655a489ba893c9a930e54996b4",
- "translation_date": "2026-01-16T23:55:00+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/density-plot.png",
+ "line2.a5b3493dc01058af.webp": {
+ "original_hash": "352e8164b0d75c410198bb07822e43cb",
+ "translation_date": "2026-01-16T23:52:21+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/line2.png",
"language_code": "kn"
},
"max-length-per-order.e5b283d952c78c12.webp": {
@@ -827,94 +779,166 @@
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/max-length-per-order.png",
"language_code": "kn"
},
- "facet.491ad90d61c2a7cc.webp": {
- "original_hash": "2a0a7fea3ccea24ef9a0d37487f38ba3",
- "translation_date": "2026-01-16T23:55:29+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/facet.png",
+ "max-wingspan-02.e79fd847b2640b89.webp": {
+ "original_hash": "424b2d5e92fd7ad1f1651fd34c48a43b",
+ "translation_date": "2026-01-17T00:01:32+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-02.png",
"language_code": "kn"
},
- "dual-line.fc4665f360a54018.webp": {
- "original_hash": "a80f6d08e4639389726abb5b1c3d5d9f",
- "translation_date": "2026-01-16T23:55:37+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/dual-line.png",
+ "max-wingspan-labels-02.aa90e826ca49a9d1.webp": {
+ "original_hash": "b1f49941bbc193409678b7c94bd39822",
+ "translation_date": "2026-01-17T00:00:21+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels-02.png",
"language_code": "kn"
},
- "scatter3.722d21e6f20b3ea2.webp": {
- "original_hash": "e76960bfd5bd7187d9e021796f268d34",
- "translation_date": "2026-01-16T23:55:44+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter3.png",
+ "max-wingspan-labels.46f0cc3c48edd4e0.webp": {
+ "original_hash": "67ad5348aa4963aebb0ae7ec94a7fa26",
+ "translation_date": "2026-01-17T00:01:24+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels.png",
"language_code": "kn"
},
- "scatter2.4d1cbc693bad20e2.webp": {
- "original_hash": "770ca46665efad9996e32d596f105ea9",
- "translation_date": "2026-01-16T23:55:56+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter2.png",
+ "max-wingspan.0b8d0858436414aa.webp": {
+ "original_hash": "020b2994ef28037b86c2e215771a0bf5",
+ "translation_date": "2026-01-17T00:00:23+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan.png",
"language_code": "kn"
},
- "scatter1.86b8900674d88b26.webp": {
- "original_hash": "c987462f33600689809531fc3d265f96",
- "translation_date": "2026-01-16T23:56:08+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter1.png",
+ "multi.56548caa9eae8d0f.webp": {
+ "original_hash": "f75fa5419bb0d28a74c567876bc99455",
+ "translation_date": "2026-01-16T23:49:39+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/multi.png",
"language_code": "kn"
},
- "line1.299b576fbb2a59e6.webp": {
- "original_hash": "580b92476ca343c0fce7d5713d0ca5cd",
- "translation_date": "2026-01-16T23:56:12+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line1.png",
+ "new-container.650e10c7a20a5f83.webp": {
+ "original_hash": "ab63b5a8099095333eebe2afa69197e3",
+ "translation_date": "2026-01-16T23:48:57+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/new-container.png",
"language_code": "kn"
},
- "line2.3b18fcda7176ceba.webp": {
- "original_hash": "0900ae563b525221b628393ec05feaf8",
- "translation_date": "2026-01-16T23:56:17+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line2.png",
+ "normal-histogram.dfae0d67c202137d.webp": {
+ "original_hash": "46ee775d2df1d79815c1aab51bd8d2fe",
+ "translation_date": "2026-01-16T23:31:24+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/normal-histogram.png",
"language_code": "kn"
},
- "donut-wb.34e6fb275da9d834.webp": {
- "original_hash": "1fca738bcee99e03430409599cef33f3",
- "translation_date": "2026-01-16T23:56:23+00:00",
- "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/donut-wb.png",
+ "notebook-1.12998af7b02c83f5.webp": {
+ "original_hash": "08d559b911ecbed212b67e206ae6bcf1",
+ "translation_date": "2026-01-16T23:32:17+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-1.PNG",
"language_code": "kn"
},
- "waffle.aaa75c5337735a6e.webp": {
- "original_hash": "b84ca087d578965c31a20087b9215d88",
- "translation_date": "2026-01-16T23:56:27+00:00",
- "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/waffle.png",
+ "notebook-2.9a657c037e34f1cf.webp": {
+ "original_hash": "018309c1ca2ed8e31fd89c3674687979",
+ "translation_date": "2026-01-16T23:32:23+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-2.PNG",
+ "language_code": "kn"
+ },
+ "parts-of-spreadsheet.120711c82aa18a45.webp": {
+ "original_hash": "e744b94c055058c2862aaabe84625b90",
+ "translation_date": "2026-01-16T23:49:33+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/parts-of-spreadsheet.png",
+ "language_code": "kn"
+ },
+ "pie1-wb.685df063673751f4.webp": {
+ "original_hash": "2b353f34a1a1e444a1d7f2219b78cb83",
+ "translation_date": "2026-01-16T23:56:30+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/pie1-wb.png",
+ "language_code": "kn"
+ },
+ "pie1-wb.e201f2fcc3354131.webp": {
+ "original_hash": "f2dbe68e0228fc6bb76e502dfa88a5c7",
+ "translation_date": "2026-01-16T23:53:00+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1-wb.png",
+ "language_code": "kn"
+ },
+ "pie1.8f6a8bfac96de60e.webp": {
+ "original_hash": "dc91ddf7490acc8493ca0801370d8fa8",
+ "translation_date": "2026-01-16T23:52:26+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1.png",
+ "language_code": "kn"
+ },
+ "planetary-computer-explorer.c1e95a9b053167d6.webp": {
+ "original_hash": "1e3bcffe198a9432dfc6232e5f89e2a5",
+ "translation_date": "2026-01-17T00:05:28+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/planetary-computer-explorer.png",
+ "language_code": "kn"
+ },
+ "probability-density.a8aad29f17a14afb.webp": {
+ "original_hash": "79ec3e39c1c20e570327ebd8a2737548",
+ "translation_date": "2026-01-16T23:31:04+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/probability-density.png",
+ "language_code": "kn"
+ },
+ "project-schema.420e56d495624541.webp": {
+ "original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
+ "translation_date": "2026-01-16T23:32:53+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/images/project-schema.PNG",
+ "language_code": "kn"
+ },
+ "project-schema.736f6e403f321eb4.webp": {
+ "original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
+ "translation_date": "2026-01-16T23:37:43+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/project-schema.PNG",
+ "language_code": "kn"
+ },
+ "scatter-wb.9d98b0ed7f0388af.webp": {
+ "original_hash": "20b0f7bb41756f35bdf985a8f5f3a342",
+ "translation_date": "2026-01-16T23:50:02+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter-wb.png",
+ "language_code": "kn"
+ },
+ "scatter.520a43eceb46dbcb.webp": {
+ "original_hash": "0b08180e497b0df05b452d6e82139280",
+ "translation_date": "2026-01-16T23:50:47+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter.png",
+ "language_code": "kn"
+ },
+ "scatter1.5e1aa5fd6706c5d1.webp": {
+ "original_hash": "c02fe2f5fa39f591b4a26308356ed684",
+ "translation_date": "2026-01-16T23:52:12+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter1.png",
+ "language_code": "kn"
+ },
+ "scatter1.86b8900674d88b26.webp": {
+ "original_hash": "c987462f33600689809531fc3d265f96",
+ "translation_date": "2026-01-16T23:56:08+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter1.png",
"language_code": "kn"
},
- "pie1-wb.685df063673751f4.webp": {
- "original_hash": "2b353f34a1a1e444a1d7f2219b78cb83",
- "translation_date": "2026-01-16T23:56:30+00:00",
- "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/pie1-wb.png",
+ "scatter2.4d1cbc693bad20e2.webp": {
+ "original_hash": "770ca46665efad9996e32d596f105ea9",
+ "translation_date": "2026-01-16T23:55:56+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter2.png",
"language_code": "kn"
},
- "MaxWingspan-lineplot.b12169f99d26fdd2.webp": {
- "original_hash": "8a0744b5301a1c4dc64b580728b5771a",
- "translation_date": "2026-01-16T23:56:35+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot.png",
+ "scatter2.c0041a58621ca702.webp": {
+ "original_hash": "0daebd8565f87f5de940b38eb8af1b9d",
+ "translation_date": "2026-01-16T23:51:56+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter2.png",
"language_code": "kn"
},
- "MaxWingspan-scatterplot.60dc9e0e19d32700.webp": {
- "original_hash": "58de03db6718a04f8e61e2405ea2b502",
- "translation_date": "2026-01-16T23:56:40+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot.png",
+ "scatter3.3c160a3d1dcb36b3.webp": {
+ "original_hash": "b6dae06624fdb034a906091c859840c8",
+ "translation_date": "2026-01-16T23:51:41+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter3.png",
"language_code": "kn"
},
- "category-length.7e34c296690e85d6.webp": {
- "original_hash": "f5c753a1fe65d51b8cc15b8b46c6d4e6",
- "translation_date": "2026-01-16T23:57:07+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/category-length.png",
+ "scatter3.722d21e6f20b3ea2.webp": {
+ "original_hash": "e76960bfd5bd7187d9e021796f268d34",
+ "translation_date": "2026-01-16T23:55:44+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter3.png",
"language_code": "kn"
},
- "MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp": {
- "original_hash": "25abf3baadac4535fac2aa1c8794f537",
- "translation_date": "2026-01-16T23:57:13+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot-improved.png",
+ "scatterplot-wingspan-02.1c33790094ce36a7.webp": {
+ "original_hash": "074b877685ae02c92754fb416864f137",
+ "translation_date": "2026-01-16T23:59:39+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan-02.png",
"language_code": "kn"
},
- "comparingdata.f486a450d61c7ca5.webp": {
- "original_hash": "c5f1049b89ea0d7015e420acc0728045",
- "translation_date": "2026-01-16T23:57:43+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/comparingdata.png",
+ "scatterplot-wingspan.bdab448702939bb3.webp": {
+ "original_hash": "a6265af4af8b135ebb0b1160ac2a85e1",
+ "translation_date": "2026-01-16T23:59:43+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan.png",
"language_code": "kn"
},
"stacked-bar-chart.0c92264e89da7b39.webp": {
@@ -923,34 +947,46 @@
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/stacked-bar-chart.png",
"language_code": "kn"
},
+ "superimposed-02.f03058536baeb2ed.webp": {
+ "original_hash": "06591758ffda43a2ba7a885727209a57",
+ "translation_date": "2026-01-17T00:01:14+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed-02.png",
+ "language_code": "kn"
+ },
"superimposed-values.5363f0705a1da416.webp": {
"original_hash": "b41c56cb68dd92f60d7e18eefd963396",
"translation_date": "2026-01-16T23:58:13+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/superimposed-values.png",
"language_code": "kn"
},
- "MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp": {
- "original_hash": "c5b4723c8624caa7463c66fd7278854e",
- "translation_date": "2026-01-16T23:58:19+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot-improved.png",
+ "superimposed.8b5bd0e8825d9c5c.webp": {
+ "original_hash": "4af0c94d9d61f1d458023b01c02a247e",
+ "translation_date": "2026-01-16T23:59:42+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed.png",
"language_code": "kn"
},
- "bad-chart-1.596bc93425a8ac30.webp": {
- "original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
- "translation_date": "2026-01-16T23:58:28+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-1.png",
+ "tdsp-lifecycle2.e19029d598e2e73d.webp": {
+ "original_hash": "d1f838b6b0fd588b4ee6cd22cb578569",
+ "translation_date": "2026-01-16T23:41:14+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/tdsp-lifecycle2.png",
"language_code": "kn"
},
- "bad-chart-3.e201e2e915a230bc.webp": {
- "original_hash": "80f955c8f50661e029730e9b06959c0b",
- "translation_date": "2026-01-16T23:58:35+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-3.jpg",
+ "timeseries-1.80de678ab1cf727e.webp": {
+ "original_hash": "30236ed2474d8d115ab3d51545e0c19e",
+ "translation_date": "2026-01-16T23:42:25+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/timeseries-1.png",
"language_code": "kn"
},
- "busing.8157cf1bc89a3f65.webp": {
- "original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
- "translation_date": "2026-01-16T23:58:44+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/busing.png",
+ "timeseries-2.aae51d575c55181c.webp": {
+ "original_hash": "33bd33349330cb115d729ce80b570501",
+ "translation_date": "2026-01-16T23:42:35+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/timeseries-2.png",
+ "language_code": "kn"
+ },
+ "timeseries-3.f3147cbc8c624881.webp": {
+ "original_hash": "aa4b14a21a73d400073a61f37033d465",
+ "translation_date": "2026-01-16T23:42:41+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/timeseries-3.png",
"language_code": "kn"
},
"tornado.2880ffc7f135f82b.webp": {
@@ -959,136 +995,100 @@
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/tornado.png",
"language_code": "kn"
},
- "bad-chart-2.62edf4d2f30f4e51.webp": {
- "original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
- "translation_date": "2026-01-16T23:59:08+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-2.jpg",
- "language_code": "kn"
- },
- "3d.db1734c151eee87d.webp": {
- "original_hash": "24efe448af156c5520372b9b554a2c89",
- "translation_date": "2026-01-16T23:59:15+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/3d.png",
- "language_code": "kn"
- },
- "bad-chart-4.8872b2b881ffa96c.webp": {
- "original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
- "translation_date": "2026-01-16T23:59:25+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-4.jpg",
- "language_code": "kn"
- },
- "liaisons.90ce7360bcf84765.webp": {
- "original_hash": "6d42370a9c4ee2cea0573912a6300e09",
- "translation_date": "2026-01-16T23:59:34+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/liaisons.png",
- "language_code": "kn"
- },
- "scatterplot-wingspan-02.1c33790094ce36a7.webp": {
- "original_hash": "074b877685ae02c92754fb416864f137",
- "translation_date": "2026-01-16T23:59:39+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan-02.png",
- "language_code": "kn"
- },
- "superimposed.8b5bd0e8825d9c5c.webp": {
- "original_hash": "4af0c94d9d61f1d458023b01c02a247e",
- "translation_date": "2026-01-16T23:59:42+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed.png",
- "language_code": "kn"
- },
- "scatterplot-wingspan.bdab448702939bb3.webp": {
- "original_hash": "a6265af4af8b135ebb0b1160ac2a85e1",
- "translation_date": "2026-01-16T23:59:43+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan.png",
+ "tornado.9f42168791208f97.webp": {
+ "original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
+ "translation_date": "2026-01-16T23:53:36+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/tornado.png",
"language_code": "kn"
},
- "category-length.b0d9a0208a7b3713.webp": {
- "original_hash": "990ba20663dfb1d5bc21e39b9162f412",
- "translation_date": "2026-01-16T23:59:46+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length.png",
+ "video-def-ds.6623ee2392ef1abf.webp": {
+ "original_hash": "95650b7eed7f176ce8fdee16271a464b",
+ "translation_date": "2026-01-16T23:30:38+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/images/video-def-ds.png",
"language_code": "kn"
},
- "category-counts.abee8188c4c9b6f0.webp": {
- "original_hash": "3b55836da9e8a6b487c6657b01156a99",
- "translation_date": "2026-01-16T23:59:49+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts.png",
+ "video-ds-python.245247dc811db8e4.webp": {
+ "original_hash": "030eca02a7388a1428cf20faa215f2b9",
+ "translation_date": "2026-01-16T23:42:04+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/video-ds-python.png",
"language_code": "kn"
},
- "category-length-02.7304bf519375c980.webp": {
- "original_hash": "2638d345ceee48d8c40a54f6388c8caa",
- "translation_date": "2026-01-17T00:00:16+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length-02.png",
+ "video-prob-and-stats.e4282e5efa2f2543.webp": {
+ "original_hash": "95894d8c6274697246b11c5ddf395c5f",
+ "translation_date": "2026-01-16T23:31:20+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/video-prob-and-stats.png",
"language_code": "kn"
},
- "max-wingspan-labels-02.aa90e826ca49a9d1.webp": {
- "original_hash": "b1f49941bbc193409678b7c94bd39822",
- "translation_date": "2026-01-17T00:00:21+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels-02.png",
+ "waffle.5455dbae4ccf17d5.webp": {
+ "original_hash": "56634c9a9dc24921e012693843466dee",
+ "translation_date": "2026-01-16T23:52:51+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/images/waffle.png",
"language_code": "kn"
},
- "max-wingspan.0b8d0858436414aa.webp": {
- "original_hash": "020b2994ef28037b86c2e215771a0bf5",
- "translation_date": "2026-01-17T00:00:23+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan.png",
+ "waffle.aaa75c5337735a6e.webp": {
+ "original_hash": "b84ca087d578965c31a20087b9215d88",
+ "translation_date": "2026-01-16T23:56:27+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/waffle.png",
"language_code": "kn"
},
- "category-counts-02.0b9a0a4de42275ae.webp": {
- "original_hash": "d0ebdd74049aa407805cb1b28d9d5075",
- "translation_date": "2026-01-17T00:00:50+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts-02.png",
+ "weight-boxplot.1dbab1c03af26f8a.webp": {
+ "original_hash": "4e39b904d1a4313d66663aa3f7ab9602",
+ "translation_date": "2026-01-16T23:30:56+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/weight-boxplot.png",
"language_code": "kn"
},
- "superimposed-02.f03058536baeb2ed.webp": {
- "original_hash": "06591758ffda43a2ba7a885727209a57",
- "translation_date": "2026-01-17T00:01:14+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed-02.png",
+ "weight-height-relationship.3f06bde4ca2aba99.webp": {
+ "original_hash": "2412d31f9c41004d2d0cb80179d6021f",
+ "translation_date": "2026-01-16T23:31:09+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/weight-height-relationship.png",
"language_code": "kn"
},
- "full-data-bar-02.aaa3fda71c63ed56.webp": {
- "original_hash": "68ced4f3a959790addfa4c361f5abc0f",
- "translation_date": "2026-01-17T00:01:22+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar-02.png",
+ "weight-histogram.bfd00caf7fc30b14.webp": {
+ "original_hash": "bef55b4cd03923b2d8674e92bb1757c9",
+ "translation_date": "2026-01-16T23:31:01+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/weight-histogram.png",
"language_code": "kn"
},
- "max-wingspan-labels.46f0cc3c48edd4e0.webp": {
- "original_hash": "67ad5348aa4963aebb0ae7ec94a7fa26",
- "translation_date": "2026-01-17T00:01:24+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels.png",
+ "wingspan-conservation-collation.4024e9aa6910866a.webp": {
+ "original_hash": "898d4cfbbc9bd4723c3ce92f5746a6f8",
+ "translation_date": "2026-01-16T23:54:49+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/wingspan-conservation-collation.png",
"language_code": "kn"
},
- "labeled-wingspan-02.6110e2d2401cd523.webp": {
- "original_hash": "0f218473d2563c14c8caddecdea3a4c3",
- "translation_date": "2026-01-17T00:01:29+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan-02.png",
+ "workspace-1.ac8694d60b073ed1.webp": {
+ "original_hash": "5e9f3153bfd5af7d8b6adcb09c08cabd",
+ "translation_date": "2026-01-16T23:33:41+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-1.PNG",
"language_code": "kn"
},
- "max-wingspan-02.e79fd847b2640b89.webp": {
- "original_hash": "424b2d5e92fd7ad1f1651fd34c48a43b",
- "translation_date": "2026-01-17T00:01:32+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-02.png",
+ "workspace-2.ae7c486db8796147.webp": {
+ "original_hash": "9299f5ae459f0a153da6aaae9accc78d",
+ "translation_date": "2026-01-16T23:36:50+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-2.PNG",
"language_code": "kn"
},
- "full-data-bar.a0b37da71a6cd236.webp": {
- "original_hash": "bd639cfebb870669bcf5280302347b15",
- "translation_date": "2026-01-17T00:01:38+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar.png",
+ "workspace-3.398ca4a5858132cc.webp": {
+ "original_hash": "2ee0b036fbc5fd13a526f26ac9d60347",
+ "translation_date": "2026-01-16T23:40:14+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-3.PNG",
"language_code": "kn"
},
- "labeled-wingspan.900ffedd7e3ec6de.webp": {
- "original_hash": "92a8853541cd37a14b9523a58d655f7f",
- "translation_date": "2026-01-17T00:01:42+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan.png",
+ "workspace-4.bac87f6599c4df63.webp": {
+ "original_hash": "099e0b18ce11f3966c0b7d954c2eb4fb",
+ "translation_date": "2026-01-16T23:34:35+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-4.PNG",
"language_code": "kn"
},
- "data-science-applications.4e5019cd8790ebac.webp": {
- "original_hash": "602217d731f1576c21ac91148222cfa1",
- "translation_date": "2026-01-17T00:05:15+00:00",
- "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/data-science-applications.png",
+ "workspace-5.a6eb17e0a5e64200.webp": {
+ "original_hash": "01b1c520e46b3fbd6fba0d54bb80bece",
+ "translation_date": "2026-01-16T23:39:41+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-5.PNG",
"language_code": "kn"
},
- "planetary-computer-explorer.c1e95a9b053167d6.webp": {
- "original_hash": "1e3bcffe198a9432dfc6232e5f89e2a5",
- "translation_date": "2026-01-17T00:05:28+00:00",
- "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/planetary-computer-explorer.png",
+ "workspace-6.8dd81fe841797ee1.webp": {
+ "original_hash": "fd0194c1a558063ddb53e5c1ead0a2b0",
+ "translation_date": "2026-01-16T23:38:54+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-6.PNG",
"language_code": "kn"
}
}
\ No newline at end of file
diff --git a/translated_images/ml/.co-op-translator.json b/translated_images/ml/.co-op-translator.json
index c2c1de74..e9a29a93 100644
--- a/translated_images/ml/.co-op-translator.json
+++ b/translated_images/ml/.co-op-translator.json
@@ -1,98 +1,26 @@
{
- "ds-for-beginners.d01930c9193ef522.webp": {
- "original_hash": "b84eca5411f4bc0041e671becb05fe48",
- "translation_date": "2026-01-16T23:18:10+00:00",
- "source_file": "ds-for-beginners.png",
- "language_code": "ml"
- },
- "favicon.37b561214b36d454.webp": {
- "original_hash": "228faa6584f8ba1f7e9a75e3200112e9",
- "translation_date": "2026-01-16T23:18:12+00:00",
- "source_file": "images/favicon.png",
- "language_code": "ml"
- },
- "1.0b520df6a0d9d3c4.webp": {
- "original_hash": "54586a26505aae6cbcc8962a2852b277",
- "translation_date": "2026-01-16T23:18:18+00:00",
- "source_file": "images/1.png",
- "language_code": "ml"
- },
- "08-DataPreparation.e3b185c37958e964.webp": {
- "original_hash": "0201767bfac86b208c4c9de0fce95141",
- "translation_date": "2026-01-16T23:18:29+00:00",
- "source_file": "sketchnotes/08-DataPreparation.png",
- "language_code": "ml"
- },
- "10-Visualizing-Distributions.8097fd8abd7221a1.webp": {
- "original_hash": "885512a64dcab7202c5a53cbde907da2",
- "translation_date": "2026-01-16T23:18:46+00:00",
- "source_file": "sketchnotes/10-Visualizing-Distributions.png",
- "language_code": "ml"
- },
- "05-RelationalData.af50f5a3e50f7456.webp": {
- "original_hash": "e4e0576bddd38fe9a4bd941f73d6de3b",
- "translation_date": "2026-01-16T23:19:00+00:00",
- "source_file": "sketchnotes/05-RelationalData.png",
- "language_code": "ml"
- },
- "16-Communicating.f1d29cd7984442a4.webp": {
- "original_hash": "9a65542ddae4e103ab2a665fe65629ce",
- "translation_date": "2026-01-16T23:19:11+00:00",
- "source_file": "sketchnotes/16-Communicating.png",
- "language_code": "ml"
- },
"00-Roadmap.4905d6567dff4753.webp": {
"original_hash": "ecf8b739e8b862f9c4dac338bd614aa7",
"translation_date": "2026-01-16T23:21:28+00:00",
"source_file": "sketchnotes/00-Roadmap.png",
"language_code": "ml"
},
- "12-Visualizing-Relationships.4466f9bd260f03dd.webp": {
- "original_hash": "10d06245ecbdc48880e555f03a62f64c",
- "translation_date": "2026-01-16T23:22:43+00:00",
- "source_file": "sketchnotes/12-Visualizing-Relationships.png",
- "language_code": "ml"
- },
- "06-NoSQL.42a91ea0cd5769fe.webp": {
- "original_hash": "f5873c65a3a544e1b1a94417c5ee55c8",
- "translation_date": "2026-01-16T23:22:58+00:00",
- "source_file": "sketchnotes/06-NoSQL.png",
- "language_code": "ml"
- },
- "20-DataScience-RealWorld.976976229ee11342.webp": {
- "original_hash": "ff1861c005ea9fe7644777c4069008b9",
- "translation_date": "2026-01-16T23:23:17+00:00",
- "source_file": "sketchnotes/20-DataScience-RealWorld.png",
- "language_code": "ml"
- },
- "01-Definitions.1b14ddc9525dc0d9.webp": {
- "original_hash": "56648d71e5fb4865d3f621010f220582",
- "translation_date": "2026-01-16T23:23:29+00:00",
- "source_file": "sketchnotes/01-Definitions.png",
- "language_code": "ml"
- },
"00-Title.8af36cd35da1ac55.webp": {
"original_hash": "533863b4c050b07b1d90ecb948237ffc",
"translation_date": "2026-01-16T23:23:36+00:00",
"source_file": "sketchnotes/00-Title.png",
"language_code": "ml"
},
- "14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp": {
- "original_hash": "96cbd264a85530f5876c353b2e57956d",
- "translation_date": "2026-01-16T23:23:53+00:00",
- "source_file": "sketchnotes/14-DataScience-Lifecycle.png",
- "language_code": "ml"
- },
- "11-Visualizing-Proportions.3e82f24af94d206e.webp": {
- "original_hash": "e7f8f167d209a389c3100d3ac210b69d",
- "translation_date": "2026-01-16T23:24:14+00:00",
- "source_file": "sketchnotes/11-Visualizing-Proportions.png",
+ "01-Definitions.1b14ddc9525dc0d9.webp": {
+ "original_hash": "56648d71e5fb4865d3f621010f220582",
+ "translation_date": "2026-01-16T23:23:29+00:00",
+ "source_file": "sketchnotes/01-Definitions.png",
"language_code": "ml"
},
- "20-DataScience-Research.da434814c51b4ef8.webp": {
- "original_hash": "c1d7c67564ad6767200da0cab95eeb52",
- "translation_date": "2026-01-16T23:24:36+00:00",
- "source_file": "sketchnotes/20-DataScience-Research.png",
+ "02-Ethics.728d166895302ab0.webp": {
+ "original_hash": "005bd88e9721003310c7b2f17dd0e35a",
+ "translation_date": "2026-01-16T23:27:21+00:00",
+ "source_file": "sketchnotes/02-Ethics.png",
"language_code": "ml"
},
"03-DefiningData.f800817186949e07.webp": {
@@ -101,16 +29,22 @@
"source_file": "sketchnotes/03-DefiningData.png",
"language_code": "ml"
},
- "20-DataScience-Humanities.1d1a155f4d12a667.webp": {
- "original_hash": "1458acca113e1f3c64fb18d6a434fb5c",
- "translation_date": "2026-01-16T23:25:11+00:00",
- "source_file": "sketchnotes/20-DataScience-Humanities.png",
+ "04-Statistics-Probability.cfc569d84a9f1867.webp": {
+ "original_hash": "2ee100d33c054ce8a39267530f23377c",
+ "translation_date": "2026-01-16T23:27:32+00:00",
+ "source_file": "sketchnotes/04-Statistics-Probability.png",
"language_code": "ml"
},
- "20-DataScience-Sustainability.d4097bc684431da6.webp": {
- "original_hash": "966e2a6eea920d7cb30a343e0bf5c856",
- "translation_date": "2026-01-16T23:25:26+00:00",
- "source_file": "sketchnotes/20-DataScience-Sustainability.png",
+ "05-RelationalData.af50f5a3e50f7456.webp": {
+ "original_hash": "e4e0576bddd38fe9a4bd941f73d6de3b",
+ "translation_date": "2026-01-16T23:19:00+00:00",
+ "source_file": "sketchnotes/05-RelationalData.png",
+ "language_code": "ml"
+ },
+ "06-NoSQL.42a91ea0cd5769fe.webp": {
+ "original_hash": "f5873c65a3a544e1b1a94417c5ee55c8",
+ "translation_date": "2026-01-16T23:22:58+00:00",
+ "source_file": "sketchnotes/06-NoSQL.png",
"language_code": "ml"
},
"07-WorkWithPython.8bf4a5013718bef9.webp": {
@@ -119,16 +53,10 @@
"source_file": "sketchnotes/07-WorkWithPython.png",
"language_code": "ml"
},
- "19-DataScience-Cloud.177b38fb86301fc6.webp": {
- "original_hash": "78eb918c3512a018c0d99a217bc72038",
- "translation_date": "2026-01-16T23:25:56+00:00",
- "source_file": "sketchnotes/19-DataScience-Cloud.png",
- "language_code": "ml"
- },
- "18-DataScience-Cloud.3a7292e8182b74eb.webp": {
- "original_hash": "c1094124ae2e325016c6ddcb95599c7a",
- "translation_date": "2026-01-16T23:26:24+00:00",
- "source_file": "sketchnotes/18-DataScience-Cloud.png",
+ "08-DataPreparation.e3b185c37958e964.webp": {
+ "original_hash": "0201767bfac86b208c4c9de0fce95141",
+ "translation_date": "2026-01-16T23:18:29+00:00",
+ "source_file": "sketchnotes/08-DataPreparation.png",
"language_code": "ml"
},
"09-Visualizing-Quantities.5c846edd805a5238.webp": {
@@ -137,22 +65,28 @@
"source_file": "sketchnotes/09-Visualizing-Quantities.png",
"language_code": "ml"
},
- "17-DataScience-Cloud.0df76ac874805c14.webp": {
- "original_hash": "221a9e5d40e6f47fe793f175a8754ae0",
- "translation_date": "2026-01-16T23:27:08+00:00",
- "source_file": "sketchnotes/17-DataScience-Cloud.png",
+ "1.0b520df6a0d9d3c4.webp": {
+ "original_hash": "54586a26505aae6cbcc8962a2852b277",
+ "translation_date": "2026-01-16T23:18:18+00:00",
+ "source_file": "images/1.png",
"language_code": "ml"
},
- "02-Ethics.728d166895302ab0.webp": {
- "original_hash": "005bd88e9721003310c7b2f17dd0e35a",
- "translation_date": "2026-01-16T23:27:21+00:00",
- "source_file": "sketchnotes/02-Ethics.png",
+ "10-Visualizing-Distributions.8097fd8abd7221a1.webp": {
+ "original_hash": "885512a64dcab7202c5a53cbde907da2",
+ "translation_date": "2026-01-16T23:18:46+00:00",
+ "source_file": "sketchnotes/10-Visualizing-Distributions.png",
"language_code": "ml"
},
- "04-Statistics-Probability.cfc569d84a9f1867.webp": {
- "original_hash": "2ee100d33c054ce8a39267530f23377c",
- "translation_date": "2026-01-16T23:27:32+00:00",
- "source_file": "sketchnotes/04-Statistics-Probability.png",
+ "11-Visualizing-Proportions.3e82f24af94d206e.webp": {
+ "original_hash": "e7f8f167d209a389c3100d3ac210b69d",
+ "translation_date": "2026-01-16T23:24:14+00:00",
+ "source_file": "sketchnotes/11-Visualizing-Proportions.png",
+ "language_code": "ml"
+ },
+ "12-Visualizing-Relationships.4466f9bd260f03dd.webp": {
+ "original_hash": "10d06245ecbdc48880e555f03a62f64c",
+ "translation_date": "2026-01-16T23:22:43+00:00",
+ "source_file": "sketchnotes/12-Visualizing-Relationships.png",
"language_code": "ml"
},
"13-MeaningfulViz.4db6f1997e519908.webp": {
@@ -161,118 +95,130 @@
"source_file": "sketchnotes/13-MeaningfulViz.png",
"language_code": "ml"
},
+ "14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp": {
+ "original_hash": "96cbd264a85530f5876c353b2e57956d",
+ "translation_date": "2026-01-16T23:23:53+00:00",
+ "source_file": "sketchnotes/14-DataScience-Lifecycle.png",
+ "language_code": "ml"
+ },
"15-Analyzing.b501f3dbdc958f6f.webp": {
"original_hash": "973333ac82d2472591675e2b93afc87e",
"translation_date": "2026-01-16T23:29:25+00:00",
"source_file": "sketchnotes/15-Analyzing.png",
"language_code": "ml"
},
- "data.48e22bb7617d8d92.webp": {
- "original_hash": "1a84026266861a50791b9f952fbab540",
- "translation_date": "2026-01-16T23:29:35+00:00",
- "source_file": "1-Introduction/images/data.jpg",
+ "16-Communicating.f1d29cd7984442a4.webp": {
+ "original_hash": "9a65542ddae4e103ab2a665fe65629ce",
+ "translation_date": "2026-01-16T23:19:11+00:00",
+ "source_file": "sketchnotes/16-Communicating.png",
"language_code": "ml"
},
- "ds_wordcloud.664a7c07dca57de0.webp": {
- "original_hash": "df525e123083bea87f16bce2c07970c7",
- "translation_date": "2026-01-16T23:30:06+00:00",
- "source_file": "1-Introduction/01-defining-data-science/images/ds_wordcloud.png",
+ "17-DataScience-Cloud.0df76ac874805c14.webp": {
+ "original_hash": "221a9e5d40e6f47fe793f175a8754ae0",
+ "translation_date": "2026-01-16T23:27:08+00:00",
+ "source_file": "sketchnotes/17-DataScience-Cloud.png",
"language_code": "ml"
},
- "video-def-ds.6623ee2392ef1abf.webp": {
- "original_hash": "95650b7eed7f176ce8fdee16271a464b",
- "translation_date": "2026-01-16T23:30:32+00:00",
- "source_file": "1-Introduction/01-defining-data-science/images/video-def-ds.png",
+ "18-DataScience-Cloud.3a7292e8182b74eb.webp": {
+ "original_hash": "c1094124ae2e325016c6ddcb95599c7a",
+ "translation_date": "2026-01-16T23:26:24+00:00",
+ "source_file": "sketchnotes/18-DataScience-Cloud.png",
"language_code": "ml"
},
- "boxplot_explanation.4039b7de08780fd4.webp": {
- "original_hash": "18e16e4144706f7e9006fc2ff958e622",
- "translation_date": "2026-01-16T23:30:48+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/boxplot_explanation.png",
+ "19-DataScience-Cloud.177b38fb86301fc6.webp": {
+ "original_hash": "78eb918c3512a018c0d99a217bc72038",
+ "translation_date": "2026-01-16T23:25:56+00:00",
+ "source_file": "sketchnotes/19-DataScience-Cloud.png",
"language_code": "ml"
},
- "weight-boxplot.1dbab1c03af26f8a.webp": {
- "original_hash": "4e39b904d1a4313d66663aa3f7ab9602",
- "translation_date": "2026-01-16T23:30:55+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/weight-boxplot.png",
+ "20-DataScience-Humanities.1d1a155f4d12a667.webp": {
+ "original_hash": "1458acca113e1f3c64fb18d6a434fb5c",
+ "translation_date": "2026-01-16T23:25:11+00:00",
+ "source_file": "sketchnotes/20-DataScience-Humanities.png",
"language_code": "ml"
},
- "weight-histogram.bfd00caf7fc30b14.webp": {
- "original_hash": "bef55b4cd03923b2d8674e92bb1757c9",
- "translation_date": "2026-01-16T23:31:00+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/weight-histogram.png",
+ "20-DataScience-RealWorld.976976229ee11342.webp": {
+ "original_hash": "ff1861c005ea9fe7644777c4069008b9",
+ "translation_date": "2026-01-16T23:23:17+00:00",
+ "source_file": "sketchnotes/20-DataScience-RealWorld.png",
"language_code": "ml"
},
- "probability-density.a8aad29f17a14afb.webp": {
- "original_hash": "79ec3e39c1c20e570327ebd8a2737548",
- "translation_date": "2026-01-16T23:31:03+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/probability-density.png",
+ "20-DataScience-Research.da434814c51b4ef8.webp": {
+ "original_hash": "c1d7c67564ad6767200da0cab95eeb52",
+ "translation_date": "2026-01-16T23:24:36+00:00",
+ "source_file": "sketchnotes/20-DataScience-Research.png",
"language_code": "ml"
},
- "weight-height-relationship.3f06bde4ca2aba99.webp": {
- "original_hash": "2412d31f9c41004d2d0cb80179d6021f",
- "translation_date": "2026-01-16T23:31:08+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/weight-height-relationship.png",
+ "20-DataScience-Sustainability.d4097bc684431da6.webp": {
+ "original_hash": "966e2a6eea920d7cb30a343e0bf5c856",
+ "translation_date": "2026-01-16T23:25:26+00:00",
+ "source_file": "sketchnotes/20-DataScience-Sustainability.png",
"language_code": "ml"
},
- "height-boxplot.ccb66b2848b5f51c.webp": {
- "original_hash": "0f3d954cc0e0b9644f64f7bc1c8a5518",
- "translation_date": "2026-01-16T23:31:11+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/height-boxplot.png",
+ "2D-wb.ae22fdd33936507a.webp": {
+ "original_hash": "621c501b663b89b0739ff0a3d89324d4",
+ "translation_date": "2026-01-16T23:50:22+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/2D-wb.png",
"language_code": "ml"
},
- "video-prob-and-stats.e4282e5efa2f2543.webp": {
- "original_hash": "95894d8c6274697246b11c5ddf395c5f",
- "translation_date": "2026-01-16T23:31:17+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/video-prob-and-stats.png",
+ "2D.b3342157139dd804.webp": {
+ "original_hash": "43f6f9ba817c493c2f38383fb22df3ff",
+ "translation_date": "2026-01-16T23:50:26+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/2D.png",
"language_code": "ml"
},
- "normal-histogram.dfae0d67c202137d.webp": {
- "original_hash": "46ee775d2df1d79815c1aab51bd8d2fe",
- "translation_date": "2026-01-16T23:31:23+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/normal-histogram.png",
+ "2d-plot.c504786f439bd7eb.webp": {
+ "original_hash": "b5a6251e8480b8dbcf6ca9972efd2a94",
+ "translation_date": "2026-01-16T23:54:21+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/2d-plot.png",
"language_code": "ml"
},
- "boxplot_byrole.036b27a1c3f52d42.webp": {
- "original_hash": "1193ef907e122e99637e73ef9f83d2a5",
- "translation_date": "2026-01-16T23:31:29+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/boxplot_byrole.png",
+ "3d.0cec12bcc60f0ce7.webp": {
+ "original_hash": "24efe448af156c5520372b9b554a2c89",
+ "translation_date": "2026-01-16T23:53:54+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/3d.png",
"language_code": "ml"
},
- "cloud-picture.f5526de3c6c6387b.webp": {
- "original_hash": "112d96f85f2037814d2df8b88267a595",
- "translation_date": "2026-01-16T23:31:38+00:00",
- "source_file": "5-Data-Science-In-Cloud/images/cloud-picture.jpg",
+ "3d.db1734c151eee87d.webp": {
+ "original_hash": "24efe448af156c5520372b9b554a2c89",
+ "translation_date": "2026-01-16T23:59:12+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/3d.png",
"language_code": "ml"
},
- "compute-instance-1.dba347cb199ca499.webp": {
- "original_hash": "7af64073de557468a0b652e4bcecf2d1",
- "translation_date": "2026-01-16T23:31:54+00:00",
- "source_file": "5-Data-Science-In-Cloud/19-Azure/images/compute-instance-1.PNG",
+ "CRISP-DM.8bad2b4c66e62aa7.webp": {
+ "original_hash": "eac24034dc4554b1292c0c035a852548",
+ "translation_date": "2026-01-16T23:40:40+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/CRISP-DM.png",
"language_code": "ml"
},
- "notebook-1.12998af7b02c83f5.webp": {
- "original_hash": "08d559b911ecbed212b67e206ae6bcf1",
- "translation_date": "2026-01-16T23:32:09+00:00",
- "source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-1.PNG",
+ "MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp": {
+ "original_hash": "25abf3baadac4535fac2aa1c8794f537",
+ "translation_date": "2026-01-16T23:57:11+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot-improved.png",
"language_code": "ml"
},
- "notebook-2.9a657c037e34f1cf.webp": {
- "original_hash": "018309c1ca2ed8e31fd89c3674687979",
- "translation_date": "2026-01-16T23:32:21+00:00",
- "source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-2.PNG",
+ "MaxWingspan-lineplot.b12169f99d26fdd2.webp": {
+ "original_hash": "8a0744b5301a1c4dc64b580728b5771a",
+ "translation_date": "2026-01-16T23:56:33+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot.png",
"language_code": "ml"
},
- "project-schema.420e56d495624541.webp": {
- "original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
- "translation_date": "2026-01-16T23:32:43+00:00",
- "source_file": "5-Data-Science-In-Cloud/19-Azure/images/project-schema.PNG",
+ "MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp": {
+ "original_hash": "c5b4723c8624caa7463c66fd7278854e",
+ "translation_date": "2026-01-16T23:58:17+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot-improved.png",
"language_code": "ml"
},
- "aml-3.a7952e4295f38cc6.webp": {
- "original_hash": "33433e94fe719f0e4104ad809338f91d",
- "translation_date": "2026-01-16T23:33:07+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-3.PNG",
+ "MaxWingspan-scatterplot.60dc9e0e19d32700.webp": {
+ "original_hash": "58de03db6718a04f8e61e2405ea2b502",
+ "translation_date": "2026-01-16T23:56:38+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot.png",
+ "language_code": "ml"
+ },
+ "aml-1.67281a85d3a1e2f3.webp": {
+ "original_hash": "130c64f0112c117a400926da0bbaf090",
+ "translation_date": "2026-01-16T23:40:00+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-1.PNG",
"language_code": "ml"
},
"aml-2.c9fb9cffb39ccbbe.webp": {
@@ -281,34 +227,10 @@
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-2.PNG",
"language_code": "ml"
},
- "workspace-1.ac8694d60b073ed1.webp": {
- "original_hash": "5e9f3153bfd5af7d8b6adcb09c08cabd",
- "translation_date": "2026-01-16T23:33:38+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-1.PNG",
- "language_code": "ml"
- },
- "deploy-1.ddad725acadc84e3.webp": {
- "original_hash": "d91956f565f29332f32fc85095206456",
- "translation_date": "2026-01-16T23:33:55+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-1.PNG",
- "language_code": "ml"
- },
- "cluster-3.8a334bc070ec173a.webp": {
- "original_hash": "b440d88eb5ce449ebe780c1edbac221d",
- "translation_date": "2026-01-16T23:34:13+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-3.PNG",
- "language_code": "ml"
- },
- "workspace-4.bac87f6599c4df63.webp": {
- "original_hash": "099e0b18ce11f3966c0b7d954c2eb4fb",
- "translation_date": "2026-01-16T23:34:29+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-4.PNG",
- "language_code": "ml"
- },
- "datascienceinthecloud.59ffb059a670fb0a.webp": {
- "original_hash": "d66cf00bfc41a3d1bef7e1d54ac4e03f",
- "translation_date": "2026-01-16T23:34:36+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/datascienceinthecloud.jpg",
+ "aml-3.a7952e4295f38cc6.webp": {
+ "original_hash": "33433e94fe719f0e4104ad809338f91d",
+ "translation_date": "2026-01-16T23:33:07+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-3.PNG",
"language_code": "ml"
},
"aml-4.7a627e09cb6f16d0.webp": {
@@ -317,172 +239,148 @@
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-4.PNG",
"language_code": "ml"
},
- "cluster-2.ea30cdbc9f926bb9.webp": {
- "original_hash": "0486b9eb10e88dc53fc2927c9197cd27",
- "translation_date": "2026-01-16T23:35:29+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-2.PNG",
+ "bad-chart-1.596bc93425a8ac30.webp": {
+ "original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
+ "translation_date": "2026-01-16T23:58:25+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-1.png",
"language_code": "ml"
},
- "dataset-1.e86ab4e10907a6e9.webp": {
- "original_hash": "b742ef1724e601f68a1bdf3f1faa89c6",
- "translation_date": "2026-01-16T23:35:48+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-1.PNG",
+ "bad-chart-1.93130f495b748bed.webp": {
+ "original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
+ "translation_date": "2026-01-16T23:53:06+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-1.png",
"language_code": "ml"
},
- "cluster-1.b78cb630bb543729.webp": {
- "original_hash": "d938d671e7eabf7fbc012cf1987dc43f",
- "translation_date": "2026-01-16T23:36:27+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-1.PNG",
+ "bad-chart-2.62edf4d2f30f4e51.webp": {
+ "original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
+ "translation_date": "2026-01-16T23:59:03+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-2.jpg",
"language_code": "ml"
},
- "workspace-2.ae7c486db8796147.webp": {
- "original_hash": "9299f5ae459f0a153da6aaae9accc78d",
- "translation_date": "2026-01-16T23:36:46+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-2.PNG",
+ "bad-chart-2.c20e36dd4e6f617c.webp": {
+ "original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
+ "translation_date": "2026-01-16T23:53:44+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-2.jpg",
"language_code": "ml"
},
- "deploy-3.fecefef070e8ef3b.webp": {
- "original_hash": "487c6cd79b0232e10e40fdab2e6b929f",
- "translation_date": "2026-01-16T23:37:06+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-3.PNG",
+ "bad-chart-3.6865d0afac4108d7.webp": {
+ "original_hash": "80f955c8f50661e029730e9b06959c0b",
+ "translation_date": "2026-01-16T23:53:14+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-3.jpg",
"language_code": "ml"
},
- "project-schema.736f6e403f321eb4.webp": {
- "original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
- "translation_date": "2026-01-16T23:37:33+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/project-schema.PNG",
+ "bad-chart-3.e201e2e915a230bc.webp": {
+ "original_hash": "80f955c8f50661e029730e9b06959c0b",
+ "translation_date": "2026-01-16T23:58:33+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-3.jpg",
"language_code": "ml"
},
- "dataset-3.58db8c0eb783e892.webp": {
- "original_hash": "cc2177288c2ac7289b614ce41ee68d60",
- "translation_date": "2026-01-16T23:38:10+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-3.PNG",
+ "bad-chart-4.68cfdf4011b45447.webp": {
+ "original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
+ "translation_date": "2026-01-16T23:54:04+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-4.jpg",
"language_code": "ml"
},
- "dataset-2.f58de1c435d5bf9c.webp": {
- "original_hash": "328c65d45aa937db952093099bc408ce",
- "translation_date": "2026-01-16T23:38:26+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-2.PNG",
+ "bad-chart-4.8872b2b881ffa96c.webp": {
+ "original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
+ "translation_date": "2026-01-16T23:59:21+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-4.jpg",
"language_code": "ml"
},
- "workspace-6.8dd81fe841797ee1.webp": {
- "original_hash": "fd0194c1a558063ddb53e5c1ead0a2b0",
- "translation_date": "2026-01-16T23:38:45+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-6.PNG",
+ "bee.0aa1d91132b12e3a.webp": {
+ "original_hash": "107a59a0fdfa76d213eacf0f46df0292",
+ "translation_date": "2026-01-16T23:49:34+00:00",
+ "source_file": "3-Data-Visualization/images/bee.jpg",
"language_code": "ml"
},
- "consumption-1.700abd196452842a.webp": {
- "original_hash": "a5ecdcdff30f2d1059763b9ce5abe4eb",
- "translation_date": "2026-01-16T23:39:13+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/consumption-1.PNG",
+ "bodymass-per-order.9d2b065dd931b928.webp": {
+ "original_hash": "b009aeba10679cfeb880d3869e7d1db2",
+ "translation_date": "2026-01-16T23:54:53+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-per-order.png",
"language_code": "ml"
},
- "workspace-5.a6eb17e0a5e64200.webp": {
- "original_hash": "01b1c520e46b3fbd6fba0d54bb80bece",
- "translation_date": "2026-01-16T23:39:36+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-5.PNG",
+ "bodymass-smooth.d31ce526d82b0a1f.webp": {
+ "original_hash": "9e0c8215e2ce2cc7120491a79559a907",
+ "translation_date": "2026-01-16T23:54:33+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-smooth.png",
"language_code": "ml"
},
- "deploy-2.94dbb13f23908647.webp": {
- "original_hash": "cb622a2e6374ccfdb376d3528e2bb9c8",
- "translation_date": "2026-01-16T23:39:48+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-2.PNG",
+ "boxplot_byrole.036b27a1c3f52d42.webp": {
+ "original_hash": "1193ef907e122e99637e73ef9f83d2a5",
+ "translation_date": "2026-01-16T23:31:29+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/boxplot_byrole.png",
"language_code": "ml"
},
- "aml-1.67281a85d3a1e2f3.webp": {
- "original_hash": "130c64f0112c117a400926da0bbaf090",
- "translation_date": "2026-01-16T23:40:00+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-1.PNG",
+ "boxplot_explanation.4039b7de08780fd4.webp": {
+ "original_hash": "18e16e4144706f7e9006fc2ff958e622",
+ "translation_date": "2026-01-16T23:30:48+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/boxplot_explanation.png",
"language_code": "ml"
},
- "workspace-3.398ca4a5858132cc.webp": {
- "original_hash": "2ee0b036fbc5fd13a526f26ac9d60347",
- "translation_date": "2026-01-16T23:40:11+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-3.PNG",
+ "busing.7b9e3b41cd4b981c.webp": {
+ "original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
+ "translation_date": "2026-01-16T23:53:23+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/busing.png",
"language_code": "ml"
},
- "communication.06d8e2a88d30d168.webp": {
- "original_hash": "5736c0fd0f68676dbd5b27c5b04f4b48",
- "translation_date": "2026-01-16T23:40:28+00:00",
- "source_file": "4-Data-Science-Lifecycle/images/communication.jpg",
+ "busing.8157cf1bc89a3f65.webp": {
+ "original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
+ "translation_date": "2026-01-16T23:58:41+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/busing.png",
"language_code": "ml"
},
- "CRISP-DM.8bad2b4c66e62aa7.webp": {
- "original_hash": "eac24034dc4554b1292c0c035a852548",
- "translation_date": "2026-01-16T23:40:40+00:00",
- "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/CRISP-DM.png",
+ "category-counts-02.0b9a0a4de42275ae.webp": {
+ "original_hash": "d0ebdd74049aa407805cb1b28d9d5075",
+ "translation_date": "2026-01-17T00:00:40+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts-02.png",
"language_code": "ml"
},
- "data-science-lifecycle.a1e362637503c4fb.webp": {
- "original_hash": "594be62e68ef5e92f5447febe91c7794",
- "translation_date": "2026-01-16T23:40:50+00:00",
- "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/data-science-lifecycle.jpg",
+ "category-counts.abee8188c4c9b6f0.webp": {
+ "original_hash": "3b55836da9e8a6b487c6657b01156a99",
+ "translation_date": "2026-01-16T23:59:48+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts.png",
"language_code": "ml"
},
- "tdsp-lifecycle2.e19029d598e2e73d.webp": {
- "original_hash": "d1f838b6b0fd588b4ee6cd22cb578569",
- "translation_date": "2026-01-16T23:41:09+00:00",
- "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/tdsp-lifecycle2.png",
+ "category-length-02.7304bf519375c980.webp": {
+ "original_hash": "2638d345ceee48d8c40a54f6388c8caa",
+ "translation_date": "2026-01-17T00:00:07+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length-02.png",
"language_code": "ml"
},
- "data-love.a22ef29e6742c852.webp": {
- "original_hash": "e7fcf82d891c727f86c21960cb63efa6",
- "translation_date": "2026-01-16T23:41:39+00:00",
- "source_file": "2-Working-With-Data/images/data-love.jpg",
+ "category-length.7e34c296690e85d6.webp": {
+ "original_hash": "f5c753a1fe65d51b8cc15b8b46c6d4e6",
+ "translation_date": "2026-01-16T23:56:58+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/category-length.png",
"language_code": "ml"
},
- "video-ds-python.245247dc811db8e4.webp": {
- "original_hash": "030eca02a7388a1428cf20faa215f2b9",
- "translation_date": "2026-01-16T23:42:00+00:00",
- "source_file": "2-Working-With-Data/07-python/images/video-ds-python.png",
+ "category-length.b0d9a0208a7b3713.webp": {
+ "original_hash": "990ba20663dfb1d5bc21e39b9162f412",
+ "translation_date": "2026-01-16T23:59:45+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length.png",
"language_code": "ml"
},
- "dataframe-1.caf409f0c688e84c.webp": {
- "original_hash": "2ca632a405bd7b501a0e0df0fa55515a",
- "translation_date": "2026-01-16T23:42:08+00:00",
- "source_file": "2-Working-With-Data/07-python/images/dataframe-1.png",
+ "cloud-picture.f5526de3c6c6387b.webp": {
+ "original_hash": "112d96f85f2037814d2df8b88267a595",
+ "translation_date": "2026-01-16T23:31:38+00:00",
+ "source_file": "5-Data-Science-In-Cloud/images/cloud-picture.jpg",
"language_code": "ml"
},
- "covidtreat.b2ba59f57ca45fbc.webp": {
- "original_hash": "b2b1e40794073c65faa986c5995754c9",
- "translation_date": "2026-01-16T23:42:16+00:00",
- "source_file": "2-Working-With-Data/07-python/images/covidtreat.png",
- "language_code": "ml"
- },
- "timeseries-1.80de678ab1cf727e.webp": {
- "original_hash": "30236ed2474d8d115ab3d51545e0c19e",
- "translation_date": "2026-01-16T23:42:23+00:00",
- "source_file": "2-Working-With-Data/07-python/images/timeseries-1.png",
- "language_code": "ml"
- },
- "covidspread.f3d131c4f1d260ab.webp": {
- "original_hash": "461f7858f407e9f5b9eb9caf8ca21367",
- "translation_date": "2026-01-16T23:42:28+00:00",
- "source_file": "2-Working-With-Data/07-python/images/covidspread.png",
- "language_code": "ml"
- },
- "timeseries-2.aae51d575c55181c.webp": {
- "original_hash": "33bd33349330cb115d729ce80b570501",
- "translation_date": "2026-01-16T23:42:33+00:00",
- "source_file": "2-Working-With-Data/07-python/images/timeseries-2.png",
- "language_code": "ml"
- },
- "timeseries-3.f3147cbc8c624881.webp": {
- "original_hash": "aa4b14a21a73d400073a61f37033d465",
- "translation_date": "2026-01-16T23:42:39+00:00",
- "source_file": "2-Working-With-Data/07-python/images/timeseries-3.png",
+ "cluster-1.b78cb630bb543729.webp": {
+ "original_hash": "d938d671e7eabf7fbc012cf1987dc43f",
+ "translation_date": "2026-01-16T23:36:27+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-1.PNG",
"language_code": "ml"
},
- "cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp": {
- "original_hash": "4ab74b4d99e8e2a503433a1faf6921be",
- "translation_date": "2026-01-16T23:42:58+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons-query.png",
+ "cluster-2.ea30cdbc9f926bb9.webp": {
+ "original_hash": "0486b9eb10e88dc53fc2927c9197cd27",
+ "translation_date": "2026-01-16T23:35:29+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-2.PNG",
"language_code": "ml"
},
- "function-excel.be2ae4feddc10ca0.webp": {
- "original_hash": "72ab7b76f4fab0df5aa91fa839722a60",
- "translation_date": "2026-01-16T23:43:10+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/function-excel.png",
+ "cluster-3.8a334bc070ec173a.webp": {
+ "original_hash": "b440d88eb5ce449ebe780c1edbac221d",
+ "translation_date": "2026-01-16T23:34:13+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-3.PNG",
"language_code": "ml"
},
"columnar-db.ffcfe73c3e9063a8.webp": {
@@ -491,40 +389,40 @@
"source_file": "2-Working-With-Data/06-non-relational/images/columnar-db.png",
"language_code": "ml"
},
- "kv-db.e8f2b75686bbdfcb.webp": {
- "original_hash": "b11fd06948e523a4f05e4fc016b72151",
- "translation_date": "2026-01-16T23:43:25+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/kv-db.png",
+ "communication.06d8e2a88d30d168.webp": {
+ "original_hash": "5736c0fd0f68676dbd5b27c5b04f4b48",
+ "translation_date": "2026-01-16T23:40:28+00:00",
+ "source_file": "4-Data-Science-Lifecycle/images/communication.jpg",
"language_code": "ml"
},
- "cosmosdb-emulator-explorer.a1c80b1347206fe2.webp": {
- "original_hash": "cdd5affc23e1edf90e5a1d4d5d0f1f8d",
- "translation_date": "2026-01-16T23:48:03+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-explorer.png",
+ "comparingdata.f486a450d61c7ca5.webp": {
+ "original_hash": "c5f1049b89ea0d7015e420acc0728045",
+ "translation_date": "2026-01-16T23:57:31+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/comparingdata.png",
"language_code": "ml"
},
- "formula-excel.ad1068c220892f5e.webp": {
- "original_hash": "ffc48a46663588ed68f07739e1c6faec",
- "translation_date": "2026-01-16T23:48:18+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/formula-excel.png",
+ "compute-instance-1.dba347cb199ca499.webp": {
+ "original_hash": "7af64073de557468a0b652e4bcecf2d1",
+ "translation_date": "2026-01-16T23:31:54+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/images/compute-instance-1.PNG",
"language_code": "ml"
},
- "graph-db.d13629152f79a9da.webp": {
- "original_hash": "9642744eabff608b20e9241ba5931752",
- "translation_date": "2026-01-16T23:48:29+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/graph-db.png",
+ "consumption-1.700abd196452842a.webp": {
+ "original_hash": "a5ecdcdff30f2d1059763b9ce5abe4eb",
+ "translation_date": "2026-01-16T23:39:13+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/consumption-1.PNG",
"language_code": "ml"
},
- "document-db.ddeec48c6dc9e5fd.webp": {
- "original_hash": "8cee40487b4a8926c048c397be218e6e",
- "translation_date": "2026-01-16T23:48:39+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/document-db.png",
+ "cosmosdb-emulator-explorer.a1c80b1347206fe2.webp": {
+ "original_hash": "cdd5affc23e1edf90e5a1d4d5d0f1f8d",
+ "translation_date": "2026-01-16T23:48:03+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-explorer.png",
"language_code": "ml"
},
- "new-container.650e10c7a20a5f83.webp": {
- "original_hash": "ab63b5a8099095333eebe2afa69197e3",
- "translation_date": "2026-01-16T23:48:53+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/new-container.png",
+ "cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp": {
+ "original_hash": "4ab74b4d99e8e2a503433a1faf6921be",
+ "translation_date": "2026-01-16T23:42:58+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons-query.png",
"language_code": "ml"
},
"cosmosdb-emulator-persons.bf640586a7077c89.webp": {
@@ -533,82 +431,76 @@
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons.png",
"language_code": "ml"
},
- "parts-of-spreadsheet.120711c82aa18a45.webp": {
- "original_hash": "e744b94c055058c2862aaabe84625b90",
- "translation_date": "2026-01-16T23:49:30+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/parts-of-spreadsheet.png",
- "language_code": "ml"
- },
- "bee.0aa1d91132b12e3a.webp": {
- "original_hash": "107a59a0fdfa76d213eacf0f46df0292",
- "translation_date": "2026-01-16T23:49:34+00:00",
- "source_file": "3-Data-Visualization/images/bee.jpg",
+ "covidspread.f3d131c4f1d260ab.webp": {
+ "original_hash": "461f7858f407e9f5b9eb9caf8ca21367",
+ "translation_date": "2026-01-16T23:42:28+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/covidspread.png",
"language_code": "ml"
},
- "multi.56548caa9eae8d0f.webp": {
- "original_hash": "f75fa5419bb0d28a74c567876bc99455",
- "translation_date": "2026-01-16T23:49:37+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/multi.png",
+ "covidtreat.b2ba59f57ca45fbc.webp": {
+ "original_hash": "b2b1e40794073c65faa986c5995754c9",
+ "translation_date": "2026-01-16T23:42:16+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/covidtreat.png",
"language_code": "ml"
},
- "dist2.c398bfd5320401b9.webp": {
- "original_hash": "fc0ce2a2e3087e5754770998f75db398",
- "translation_date": "2026-01-16T23:49:40+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2.png",
+ "data-love.a22ef29e6742c852.webp": {
+ "original_hash": "e7fcf82d891c727f86c21960cb63efa6",
+ "translation_date": "2026-01-16T23:41:39+00:00",
+ "source_file": "2-Working-With-Data/images/data-love.jpg",
"language_code": "ml"
},
- "density3.84ae27da82f31e6b.webp": {
- "original_hash": "1c4b40707ab63224822854698a26f6ca",
- "translation_date": "2026-01-16T23:49:43+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/density3.png",
+ "data-science-applications.4e5019cd8790ebac.webp": {
+ "original_hash": "602217d731f1576c21ac91148222cfa1",
+ "translation_date": "2026-01-17T00:01:55+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/data-science-applications.png",
"language_code": "ml"
},
- "dist3-wb.64b88db7f9780200.webp": {
- "original_hash": "b3d78f1f00c6c3d087f161dd74318aff",
- "translation_date": "2026-01-16T23:49:47+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3-wb.png",
+ "data-science-lifecycle.a1e362637503c4fb.webp": {
+ "original_hash": "594be62e68ef5e92f5447febe91c7794",
+ "translation_date": "2026-01-16T23:40:50+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/data-science-lifecycle.jpg",
"language_code": "ml"
},
- "scatter-wb.9d98b0ed7f0388af.webp": {
- "original_hash": "20b0f7bb41756f35bdf985a8f5f3a342",
- "translation_date": "2026-01-16T23:49:58+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter-wb.png",
+ "data.48e22bb7617d8d92.webp": {
+ "original_hash": "1a84026266861a50791b9f952fbab540",
+ "translation_date": "2026-01-16T23:29:35+00:00",
+ "source_file": "1-Introduction/images/data.jpg",
"language_code": "ml"
},
- "histogram-conservation-wb.3c40450eb072c14d.webp": {
- "original_hash": "83ec1d81dea6fabb80c6386edf8eb241",
- "translation_date": "2026-01-16T23:50:06+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation-wb.png",
+ "dataframe-1.caf409f0c688e84c.webp": {
+ "original_hash": "2ca632a405bd7b501a0e0df0fa55515a",
+ "translation_date": "2026-01-16T23:42:08+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/dataframe-1.png",
"language_code": "ml"
},
- "dist1-wb.0d0cac82e2974fbb.webp": {
- "original_hash": "2f624fcf08f90cfedf12238e86730517",
- "translation_date": "2026-01-16T23:50:10+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1-wb.png",
+ "datascienceinthecloud.59ffb059a670fb0a.webp": {
+ "original_hash": "d66cf00bfc41a3d1bef7e1d54ac4e03f",
+ "translation_date": "2026-01-16T23:34:36+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/datascienceinthecloud.jpg",
"language_code": "ml"
},
- "histogram-conservation.13b3542e7784e415.webp": {
- "original_hash": "ec86b1d6a476f4cf80f9d2b346525c92",
- "translation_date": "2026-01-16T23:50:17+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation.png",
+ "dataset-1.e86ab4e10907a6e9.webp": {
+ "original_hash": "b742ef1724e601f68a1bdf3f1faa89c6",
+ "translation_date": "2026-01-16T23:35:48+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-1.PNG",
"language_code": "ml"
},
- "dist3.ad4d9658559690f5.webp": {
- "original_hash": "a4f7f50a3cc98d22d6a1321d1df7781b",
- "translation_date": "2026-01-16T23:50:20+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3.png",
+ "dataset-2.f58de1c435d5bf9c.webp": {
+ "original_hash": "328c65d45aa937db952093099bc408ce",
+ "translation_date": "2026-01-16T23:38:26+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-2.PNG",
"language_code": "ml"
},
- "2D-wb.ae22fdd33936507a.webp": {
- "original_hash": "621c501b663b89b0739ff0a3d89324d4",
- "translation_date": "2026-01-16T23:50:22+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/2D-wb.png",
+ "dataset-3.58db8c0eb783e892.webp": {
+ "original_hash": "cc2177288c2ac7289b614ce41ee68d60",
+ "translation_date": "2026-01-16T23:38:10+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-3.PNG",
"language_code": "ml"
},
- "2D.b3342157139dd804.webp": {
- "original_hash": "43f6f9ba817c493c2f38383fb22df3ff",
- "translation_date": "2026-01-16T23:50:26+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/2D.png",
+ "density-plot.675ccf865b76c690.webp": {
+ "original_hash": "269df7655a489ba893c9a930e54996b4",
+ "translation_date": "2026-01-16T23:54:58+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/density-plot.png",
"language_code": "ml"
},
"density1.8801043bd4af2567.webp": {
@@ -617,16 +509,46 @@
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density1.png",
"language_code": "ml"
},
+ "density2.8e7647257060ff54.webp": {
+ "original_hash": "ae4ee53e81dca21c2d475642c9acf970",
+ "translation_date": "2026-01-16T23:50:52+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/density2.png",
+ "language_code": "ml"
+ },
+ "density3.84ae27da82f31e6b.webp": {
+ "original_hash": "1c4b40707ab63224822854698a26f6ca",
+ "translation_date": "2026-01-16T23:49:43+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/density3.png",
+ "language_code": "ml"
+ },
"density4.e9d6c033f15c500f.webp": {
"original_hash": "e007401afeb86f57097c31b272c54f59",
"translation_date": "2026-01-16T23:50:37+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density4.png",
"language_code": "ml"
},
- "scatter.520a43eceb46dbcb.webp": {
- "original_hash": "0b08180e497b0df05b452d6e82139280",
- "translation_date": "2026-01-16T23:50:45+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter.png",
+ "deploy-1.ddad725acadc84e3.webp": {
+ "original_hash": "d91956f565f29332f32fc85095206456",
+ "translation_date": "2026-01-16T23:33:55+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-1.PNG",
+ "language_code": "ml"
+ },
+ "deploy-2.94dbb13f23908647.webp": {
+ "original_hash": "cb622a2e6374ccfdb376d3528e2bb9c8",
+ "translation_date": "2026-01-16T23:39:48+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-2.PNG",
+ "language_code": "ml"
+ },
+ "deploy-3.fecefef070e8ef3b.webp": {
+ "original_hash": "487c6cd79b0232e10e40fdab2e6b929f",
+ "translation_date": "2026-01-16T23:37:06+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-3.PNG",
+ "language_code": "ml"
+ },
+ "dist1-wb.0d0cac82e2974fbb.webp": {
+ "original_hash": "2f624fcf08f90cfedf12238e86730517",
+ "translation_date": "2026-01-16T23:50:10+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1-wb.png",
"language_code": "ml"
},
"dist1.0010100b00231819.webp": {
@@ -635,64 +557,52 @@
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1.png",
"language_code": "ml"
},
- "density2.8e7647257060ff54.webp": {
- "original_hash": "ae4ee53e81dca21c2d475642c9acf970",
- "translation_date": "2026-01-16T23:50:52+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/density2.png",
- "language_code": "ml"
- },
"dist2-wb.2c0a7a3499b2fbf5.webp": {
"original_hash": "f66e1b4cf106774c02ddc8111fb26ea8",
"translation_date": "2026-01-16T23:50:56+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2-wb.png",
"language_code": "ml"
},
- "facet.6a34851dcd540050.webp": {
- "original_hash": "b1972d34a64eaf50b7f64de8455601d6",
- "translation_date": "2026-01-16T23:51:10+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/facet.png",
+ "dist2.c398bfd5320401b9.webp": {
+ "original_hash": "fc0ce2a2e3087e5754770998f75db398",
+ "translation_date": "2026-01-16T23:49:40+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2.png",
"language_code": "ml"
},
- "dual-line.a4c28ce659603fab.webp": {
- "original_hash": "354c3a3b7493b3ec80eec454e7e1661f",
- "translation_date": "2026-01-16T23:51:23+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/dual-line.png",
+ "dist3-wb.64b88db7f9780200.webp": {
+ "original_hash": "b3d78f1f00c6c3d087f161dd74318aff",
+ "translation_date": "2026-01-16T23:49:47+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3-wb.png",
"language_code": "ml"
},
- "scatter3.3c160a3d1dcb36b3.webp": {
- "original_hash": "b6dae06624fdb034a906091c859840c8",
- "translation_date": "2026-01-16T23:51:35+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter3.png",
- "language_code": "ml"
- },
- "scatter2.c0041a58621ca702.webp": {
- "original_hash": "0daebd8565f87f5de940b38eb8af1b9d",
- "translation_date": "2026-01-16T23:51:51+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter2.png",
+ "dist3.ad4d9658559690f5.webp": {
+ "original_hash": "a4f7f50a3cc98d22d6a1321d1df7781b",
+ "translation_date": "2026-01-16T23:50:20+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3.png",
"language_code": "ml"
},
- "scatter1.5e1aa5fd6706c5d1.webp": {
- "original_hash": "c02fe2f5fa39f591b4a26308356ed684",
- "translation_date": "2026-01-16T23:52:06+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter1.png",
+ "distribution-30bins.6a3921ea7a421bf7.webp": {
+ "original_hash": "e06c4dfd27b06597b94a75072e9c4bc5",
+ "translation_date": "2026-01-16T23:54:29+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-30bins.png",
"language_code": "ml"
},
- "line1.f36eb465229a3b1f.webp": {
- "original_hash": "2254eee0864847a0dbbcf3514523b938",
- "translation_date": "2026-01-16T23:52:15+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/line1.png",
+ "distribution-over-the-entire-dataset.d22afd3fa96be854.webp": {
+ "original_hash": "338c78ae2ee25ed179e49ec1a4e7923b",
+ "translation_date": "2026-01-16T23:54:38+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-over-the-entire-dataset.png",
"language_code": "ml"
},
- "line2.a5b3493dc01058af.webp": {
- "original_hash": "352e8164b0d75c410198bb07822e43cb",
- "translation_date": "2026-01-16T23:52:20+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/line2.png",
+ "document-db.ddeec48c6dc9e5fd.webp": {
+ "original_hash": "8cee40487b4a8926c048c397be218e6e",
+ "translation_date": "2026-01-16T23:48:39+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/document-db.png",
"language_code": "ml"
},
- "pie1.8f6a8bfac96de60e.webp": {
- "original_hash": "dc91ddf7490acc8493ca0801370d8fa8",
- "translation_date": "2026-01-16T23:52:24+00:00",
- "source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1.png",
+ "donut-wb.34e6fb275da9d834.webp": {
+ "original_hash": "1fca738bcee99e03430409599cef33f3",
+ "translation_date": "2026-01-16T23:56:21+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/donut-wb.png",
"language_code": "ml"
},
"donut-wb.be3c12a22712302b.webp": {
@@ -701,76 +611,124 @@
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut-wb.png",
"language_code": "ml"
},
- "waffle.5455dbae4ccf17d5.webp": {
- "original_hash": "56634c9a9dc24921e012693843466dee",
- "translation_date": "2026-01-16T23:52:45+00:00",
- "source_file": "3-Data-Visualization/11-visualization-proportions/images/waffle.png",
- "language_code": "ml"
- },
"donut.f016d7be7f08c8f8.webp": {
"original_hash": "055fcaf0a6d93663278eb958137b460c",
"translation_date": "2026-01-16T23:52:54+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut.png",
"language_code": "ml"
},
- "pie1-wb.e201f2fcc3354131.webp": {
- "original_hash": "f2dbe68e0228fc6bb76e502dfa88a5c7",
- "translation_date": "2026-01-16T23:52:59+00:00",
- "source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1-wb.png",
+ "ds-for-beginners.d01930c9193ef522.webp": {
+ "original_hash": "b84eca5411f4bc0041e671becb05fe48",
+ "translation_date": "2026-01-16T23:18:10+00:00",
+ "source_file": "ds-for-beginners.png",
"language_code": "ml"
},
- "bad-chart-1.93130f495b748bed.webp": {
- "original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
- "translation_date": "2026-01-16T23:53:06+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-1.png",
+ "ds_wordcloud.664a7c07dca57de0.webp": {
+ "original_hash": "df525e123083bea87f16bce2c07970c7",
+ "translation_date": "2026-01-16T23:30:06+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/images/ds_wordcloud.png",
"language_code": "ml"
},
- "bad-chart-3.6865d0afac4108d7.webp": {
- "original_hash": "80f955c8f50661e029730e9b06959c0b",
- "translation_date": "2026-01-16T23:53:14+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-3.jpg",
+ "dual-line.a4c28ce659603fab.webp": {
+ "original_hash": "354c3a3b7493b3ec80eec454e7e1661f",
+ "translation_date": "2026-01-16T23:51:23+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/dual-line.png",
"language_code": "ml"
},
- "busing.7b9e3b41cd4b981c.webp": {
- "original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
- "translation_date": "2026-01-16T23:53:23+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/busing.png",
+ "dual-line.fc4665f360a54018.webp": {
+ "original_hash": "a80f6d08e4639389726abb5b1c3d5d9f",
+ "translation_date": "2026-01-16T23:55:34+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/dual-line.png",
"language_code": "ml"
},
- "tornado.9f42168791208f97.webp": {
- "original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
- "translation_date": "2026-01-16T23:53:33+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/tornado.png",
+ "facet.491ad90d61c2a7cc.webp": {
+ "original_hash": "2a0a7fea3ccea24ef9a0d37487f38ba3",
+ "translation_date": "2026-01-16T23:55:26+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/facet.png",
"language_code": "ml"
},
- "bad-chart-2.c20e36dd4e6f617c.webp": {
- "original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
- "translation_date": "2026-01-16T23:53:44+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-2.jpg",
+ "facet.6a34851dcd540050.webp": {
+ "original_hash": "b1972d34a64eaf50b7f64de8455601d6",
+ "translation_date": "2026-01-16T23:51:10+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/facet.png",
"language_code": "ml"
},
- "3d.0cec12bcc60f0ce7.webp": {
- "original_hash": "24efe448af156c5520372b9b554a2c89",
- "translation_date": "2026-01-16T23:53:54+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/3d.png",
+ "favicon.37b561214b36d454.webp": {
+ "original_hash": "228faa6584f8ba1f7e9a75e3200112e9",
+ "translation_date": "2026-01-16T23:18:12+00:00",
+ "source_file": "images/favicon.png",
"language_code": "ml"
},
- "bad-chart-4.68cfdf4011b45447.webp": {
- "original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
- "translation_date": "2026-01-16T23:54:04+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-4.jpg",
+ "filtered-histogram.6bf5d2bfd8253322.webp": {
+ "original_hash": "9beae93b6d3063f7afa19070ca9b21f2",
+ "translation_date": "2026-01-16T23:54:42+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/filtered-histogram.png",
"language_code": "ml"
},
- "liaisons.7b440b28f6d07ea4.webp": {
- "original_hash": "6d42370a9c4ee2cea0573912a6300e09",
- "translation_date": "2026-01-16T23:54:14+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/liaisons.png",
+ "formula-excel.ad1068c220892f5e.webp": {
+ "original_hash": "ffc48a46663588ed68f07739e1c6faec",
+ "translation_date": "2026-01-16T23:48:18+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/formula-excel.png",
"language_code": "ml"
},
- "2d-plot.c504786f439bd7eb.webp": {
- "original_hash": "b5a6251e8480b8dbcf6ca9972efd2a94",
- "translation_date": "2026-01-16T23:54:21+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/2d-plot.png",
+ "full-data-bar-02.aaa3fda71c63ed56.webp": {
+ "original_hash": "68ced4f3a959790addfa4c361f5abc0f",
+ "translation_date": "2026-01-17T00:01:20+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar-02.png",
+ "language_code": "ml"
+ },
+ "full-data-bar.a0b37da71a6cd236.webp": {
+ "original_hash": "bd639cfebb870669bcf5280302347b15",
+ "translation_date": "2026-01-17T00:01:36+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar.png",
+ "language_code": "ml"
+ },
+ "function-excel.be2ae4feddc10ca0.webp": {
+ "original_hash": "72ab7b76f4fab0df5aa91fa839722a60",
+ "translation_date": "2026-01-16T23:43:10+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/function-excel.png",
+ "language_code": "ml"
+ },
+ "graph-db.d13629152f79a9da.webp": {
+ "original_hash": "9642744eabff608b20e9241ba5931752",
+ "translation_date": "2026-01-16T23:48:29+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/graph-db.png",
+ "language_code": "ml"
+ },
+ "height-boxplot.ccb66b2848b5f51c.webp": {
+ "original_hash": "0f3d954cc0e0b9644f64f7bc1c8a5518",
+ "translation_date": "2026-01-16T23:31:11+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/height-boxplot.png",
+ "language_code": "ml"
+ },
+ "histogram-conservation-wb.3c40450eb072c14d.webp": {
+ "original_hash": "83ec1d81dea6fabb80c6386edf8eb241",
+ "translation_date": "2026-01-16T23:50:06+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation-wb.png",
+ "language_code": "ml"
+ },
+ "histogram-conservation.13b3542e7784e415.webp": {
+ "original_hash": "ec86b1d6a476f4cf80f9d2b346525c92",
+ "translation_date": "2026-01-16T23:50:17+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation.png",
+ "language_code": "ml"
+ },
+ "kv-db.e8f2b75686bbdfcb.webp": {
+ "original_hash": "b11fd06948e523a4f05e4fc016b72151",
+ "translation_date": "2026-01-16T23:43:25+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/kv-db.png",
+ "language_code": "ml"
+ },
+ "labeled-wingspan-02.6110e2d2401cd523.webp": {
+ "original_hash": "0f218473d2563c14c8caddecdea3a4c3",
+ "translation_date": "2026-01-17T00:01:27+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan-02.png",
+ "language_code": "ml"
+ },
+ "labeled-wingspan.900ffedd7e3ec6de.webp": {
+ "original_hash": "92a8853541cd37a14b9523a58d655f7f",
+ "translation_date": "2026-01-17T00:01:40+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan.png",
"language_code": "ml"
},
"less-smooth-bodymass.10f4db8b683cc17d.webp": {
@@ -779,46 +737,40 @@
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/less-smooth-bodymass.png",
"language_code": "ml"
},
- "distribution-30bins.6a3921ea7a421bf7.webp": {
- "original_hash": "e06c4dfd27b06597b94a75072e9c4bc5",
- "translation_date": "2026-01-16T23:54:29+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-30bins.png",
- "language_code": "ml"
- },
- "bodymass-smooth.d31ce526d82b0a1f.webp": {
- "original_hash": "9e0c8215e2ce2cc7120491a79559a907",
- "translation_date": "2026-01-16T23:54:33+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-smooth.png",
+ "liaisons.7b440b28f6d07ea4.webp": {
+ "original_hash": "6d42370a9c4ee2cea0573912a6300e09",
+ "translation_date": "2026-01-16T23:54:14+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/liaisons.png",
"language_code": "ml"
},
- "distribution-over-the-entire-dataset.d22afd3fa96be854.webp": {
- "original_hash": "338c78ae2ee25ed179e49ec1a4e7923b",
- "translation_date": "2026-01-16T23:54:38+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-over-the-entire-dataset.png",
+ "liaisons.90ce7360bcf84765.webp": {
+ "original_hash": "6d42370a9c4ee2cea0573912a6300e09",
+ "translation_date": "2026-01-16T23:59:31+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/liaisons.png",
"language_code": "ml"
},
- "filtered-histogram.6bf5d2bfd8253322.webp": {
- "original_hash": "9beae93b6d3063f7afa19070ca9b21f2",
- "translation_date": "2026-01-16T23:54:42+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/filtered-histogram.png",
+ "line1.299b576fbb2a59e6.webp": {
+ "original_hash": "580b92476ca343c0fce7d5713d0ca5cd",
+ "translation_date": "2026-01-16T23:56:11+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line1.png",
"language_code": "ml"
},
- "wingspan-conservation-collation.4024e9aa6910866a.webp": {
- "original_hash": "898d4cfbbc9bd4723c3ce92f5746a6f8",
- "translation_date": "2026-01-16T23:54:47+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/wingspan-conservation-collation.png",
+ "line1.f36eb465229a3b1f.webp": {
+ "original_hash": "2254eee0864847a0dbbcf3514523b938",
+ "translation_date": "2026-01-16T23:52:15+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/line1.png",
"language_code": "ml"
},
- "bodymass-per-order.9d2b065dd931b928.webp": {
- "original_hash": "b009aeba10679cfeb880d3869e7d1db2",
- "translation_date": "2026-01-16T23:54:53+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-per-order.png",
+ "line2.3b18fcda7176ceba.webp": {
+ "original_hash": "0900ae563b525221b628393ec05feaf8",
+ "translation_date": "2026-01-16T23:56:16+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line2.png",
"language_code": "ml"
},
- "density-plot.675ccf865b76c690.webp": {
- "original_hash": "269df7655a489ba893c9a930e54996b4",
- "translation_date": "2026-01-16T23:54:58+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/density-plot.png",
+ "line2.a5b3493dc01058af.webp": {
+ "original_hash": "352e8164b0d75c410198bb07822e43cb",
+ "translation_date": "2026-01-16T23:52:20+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/line2.png",
"language_code": "ml"
},
"max-length-per-order.e5b283d952c78c12.webp": {
@@ -827,94 +779,166 @@
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/max-length-per-order.png",
"language_code": "ml"
},
- "facet.491ad90d61c2a7cc.webp": {
- "original_hash": "2a0a7fea3ccea24ef9a0d37487f38ba3",
- "translation_date": "2026-01-16T23:55:26+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/facet.png",
+ "max-wingspan-02.e79fd847b2640b89.webp": {
+ "original_hash": "424b2d5e92fd7ad1f1651fd34c48a43b",
+ "translation_date": "2026-01-17T00:01:31+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-02.png",
"language_code": "ml"
},
- "dual-line.fc4665f360a54018.webp": {
- "original_hash": "a80f6d08e4639389726abb5b1c3d5d9f",
- "translation_date": "2026-01-16T23:55:34+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/dual-line.png",
+ "max-wingspan-labels-02.aa90e826ca49a9d1.webp": {
+ "original_hash": "b1f49941bbc193409678b7c94bd39822",
+ "translation_date": "2026-01-17T00:00:20+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels-02.png",
"language_code": "ml"
},
- "scatter3.722d21e6f20b3ea2.webp": {
- "original_hash": "e76960bfd5bd7187d9e021796f268d34",
- "translation_date": "2026-01-16T23:55:41+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter3.png",
+ "max-wingspan-labels.46f0cc3c48edd4e0.webp": {
+ "original_hash": "67ad5348aa4963aebb0ae7ec94a7fa26",
+ "translation_date": "2026-01-17T00:01:23+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels.png",
"language_code": "ml"
},
- "scatter2.4d1cbc693bad20e2.webp": {
- "original_hash": "770ca46665efad9996e32d596f105ea9",
- "translation_date": "2026-01-16T23:55:53+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter2.png",
+ "max-wingspan.0b8d0858436414aa.webp": {
+ "original_hash": "020b2994ef28037b86c2e215771a0bf5",
+ "translation_date": "2026-01-17T00:00:22+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan.png",
"language_code": "ml"
},
- "scatter1.86b8900674d88b26.webp": {
- "original_hash": "c987462f33600689809531fc3d265f96",
- "translation_date": "2026-01-16T23:56:05+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter1.png",
+ "multi.56548caa9eae8d0f.webp": {
+ "original_hash": "f75fa5419bb0d28a74c567876bc99455",
+ "translation_date": "2026-01-16T23:49:37+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/multi.png",
"language_code": "ml"
},
- "line1.299b576fbb2a59e6.webp": {
- "original_hash": "580b92476ca343c0fce7d5713d0ca5cd",
- "translation_date": "2026-01-16T23:56:11+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line1.png",
+ "new-container.650e10c7a20a5f83.webp": {
+ "original_hash": "ab63b5a8099095333eebe2afa69197e3",
+ "translation_date": "2026-01-16T23:48:53+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/new-container.png",
"language_code": "ml"
},
- "line2.3b18fcda7176ceba.webp": {
- "original_hash": "0900ae563b525221b628393ec05feaf8",
- "translation_date": "2026-01-16T23:56:16+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line2.png",
+ "normal-histogram.dfae0d67c202137d.webp": {
+ "original_hash": "46ee775d2df1d79815c1aab51bd8d2fe",
+ "translation_date": "2026-01-16T23:31:23+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/normal-histogram.png",
"language_code": "ml"
},
- "donut-wb.34e6fb275da9d834.webp": {
- "original_hash": "1fca738bcee99e03430409599cef33f3",
- "translation_date": "2026-01-16T23:56:21+00:00",
- "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/donut-wb.png",
+ "notebook-1.12998af7b02c83f5.webp": {
+ "original_hash": "08d559b911ecbed212b67e206ae6bcf1",
+ "translation_date": "2026-01-16T23:32:09+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-1.PNG",
"language_code": "ml"
},
- "waffle.aaa75c5337735a6e.webp": {
- "original_hash": "b84ca087d578965c31a20087b9215d88",
- "translation_date": "2026-01-16T23:56:26+00:00",
- "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/waffle.png",
+ "notebook-2.9a657c037e34f1cf.webp": {
+ "original_hash": "018309c1ca2ed8e31fd89c3674687979",
+ "translation_date": "2026-01-16T23:32:21+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-2.PNG",
+ "language_code": "ml"
+ },
+ "parts-of-spreadsheet.120711c82aa18a45.webp": {
+ "original_hash": "e744b94c055058c2862aaabe84625b90",
+ "translation_date": "2026-01-16T23:49:30+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/parts-of-spreadsheet.png",
+ "language_code": "ml"
+ },
+ "pie1-wb.685df063673751f4.webp": {
+ "original_hash": "2b353f34a1a1e444a1d7f2219b78cb83",
+ "translation_date": "2026-01-16T23:56:29+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/pie1-wb.png",
+ "language_code": "ml"
+ },
+ "pie1-wb.e201f2fcc3354131.webp": {
+ "original_hash": "f2dbe68e0228fc6bb76e502dfa88a5c7",
+ "translation_date": "2026-01-16T23:52:59+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1-wb.png",
+ "language_code": "ml"
+ },
+ "pie1.8f6a8bfac96de60e.webp": {
+ "original_hash": "dc91ddf7490acc8493ca0801370d8fa8",
+ "translation_date": "2026-01-16T23:52:24+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1.png",
+ "language_code": "ml"
+ },
+ "planetary-computer-explorer.c1e95a9b053167d6.webp": {
+ "original_hash": "1e3bcffe198a9432dfc6232e5f89e2a5",
+ "translation_date": "2026-01-17T00:05:24+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/planetary-computer-explorer.png",
+ "language_code": "ml"
+ },
+ "probability-density.a8aad29f17a14afb.webp": {
+ "original_hash": "79ec3e39c1c20e570327ebd8a2737548",
+ "translation_date": "2026-01-16T23:31:03+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/probability-density.png",
+ "language_code": "ml"
+ },
+ "project-schema.420e56d495624541.webp": {
+ "original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
+ "translation_date": "2026-01-16T23:32:43+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/images/project-schema.PNG",
+ "language_code": "ml"
+ },
+ "project-schema.736f6e403f321eb4.webp": {
+ "original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
+ "translation_date": "2026-01-16T23:37:33+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/project-schema.PNG",
+ "language_code": "ml"
+ },
+ "scatter-wb.9d98b0ed7f0388af.webp": {
+ "original_hash": "20b0f7bb41756f35bdf985a8f5f3a342",
+ "translation_date": "2026-01-16T23:49:58+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter-wb.png",
+ "language_code": "ml"
+ },
+ "scatter.520a43eceb46dbcb.webp": {
+ "original_hash": "0b08180e497b0df05b452d6e82139280",
+ "translation_date": "2026-01-16T23:50:45+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter.png",
+ "language_code": "ml"
+ },
+ "scatter1.5e1aa5fd6706c5d1.webp": {
+ "original_hash": "c02fe2f5fa39f591b4a26308356ed684",
+ "translation_date": "2026-01-16T23:52:06+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter1.png",
+ "language_code": "ml"
+ },
+ "scatter1.86b8900674d88b26.webp": {
+ "original_hash": "c987462f33600689809531fc3d265f96",
+ "translation_date": "2026-01-16T23:56:05+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter1.png",
"language_code": "ml"
},
- "pie1-wb.685df063673751f4.webp": {
- "original_hash": "2b353f34a1a1e444a1d7f2219b78cb83",
- "translation_date": "2026-01-16T23:56:29+00:00",
- "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/pie1-wb.png",
+ "scatter2.4d1cbc693bad20e2.webp": {
+ "original_hash": "770ca46665efad9996e32d596f105ea9",
+ "translation_date": "2026-01-16T23:55:53+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter2.png",
"language_code": "ml"
},
- "MaxWingspan-lineplot.b12169f99d26fdd2.webp": {
- "original_hash": "8a0744b5301a1c4dc64b580728b5771a",
- "translation_date": "2026-01-16T23:56:33+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot.png",
+ "scatter2.c0041a58621ca702.webp": {
+ "original_hash": "0daebd8565f87f5de940b38eb8af1b9d",
+ "translation_date": "2026-01-16T23:51:51+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter2.png",
"language_code": "ml"
},
- "MaxWingspan-scatterplot.60dc9e0e19d32700.webp": {
- "original_hash": "58de03db6718a04f8e61e2405ea2b502",
- "translation_date": "2026-01-16T23:56:38+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot.png",
+ "scatter3.3c160a3d1dcb36b3.webp": {
+ "original_hash": "b6dae06624fdb034a906091c859840c8",
+ "translation_date": "2026-01-16T23:51:35+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter3.png",
"language_code": "ml"
},
- "category-length.7e34c296690e85d6.webp": {
- "original_hash": "f5c753a1fe65d51b8cc15b8b46c6d4e6",
- "translation_date": "2026-01-16T23:56:58+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/category-length.png",
+ "scatter3.722d21e6f20b3ea2.webp": {
+ "original_hash": "e76960bfd5bd7187d9e021796f268d34",
+ "translation_date": "2026-01-16T23:55:41+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter3.png",
"language_code": "ml"
},
- "MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp": {
- "original_hash": "25abf3baadac4535fac2aa1c8794f537",
- "translation_date": "2026-01-16T23:57:11+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot-improved.png",
+ "scatterplot-wingspan-02.1c33790094ce36a7.webp": {
+ "original_hash": "074b877685ae02c92754fb416864f137",
+ "translation_date": "2026-01-16T23:59:37+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan-02.png",
"language_code": "ml"
},
- "comparingdata.f486a450d61c7ca5.webp": {
- "original_hash": "c5f1049b89ea0d7015e420acc0728045",
- "translation_date": "2026-01-16T23:57:31+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/comparingdata.png",
+ "scatterplot-wingspan.bdab448702939bb3.webp": {
+ "original_hash": "a6265af4af8b135ebb0b1160ac2a85e1",
+ "translation_date": "2026-01-16T23:59:43+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan.png",
"language_code": "ml"
},
"stacked-bar-chart.0c92264e89da7b39.webp": {
@@ -923,34 +947,46 @@
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/stacked-bar-chart.png",
"language_code": "ml"
},
+ "superimposed-02.f03058536baeb2ed.webp": {
+ "original_hash": "06591758ffda43a2ba7a885727209a57",
+ "translation_date": "2026-01-17T00:01:05+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed-02.png",
+ "language_code": "ml"
+ },
"superimposed-values.5363f0705a1da416.webp": {
"original_hash": "b41c56cb68dd92f60d7e18eefd963396",
"translation_date": "2026-01-16T23:58:04+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/superimposed-values.png",
"language_code": "ml"
},
- "MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp": {
- "original_hash": "c5b4723c8624caa7463c66fd7278854e",
- "translation_date": "2026-01-16T23:58:17+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot-improved.png",
+ "superimposed.8b5bd0e8825d9c5c.webp": {
+ "original_hash": "4af0c94d9d61f1d458023b01c02a247e",
+ "translation_date": "2026-01-16T23:59:41+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed.png",
"language_code": "ml"
},
- "bad-chart-1.596bc93425a8ac30.webp": {
- "original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
- "translation_date": "2026-01-16T23:58:25+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-1.png",
+ "tdsp-lifecycle2.e19029d598e2e73d.webp": {
+ "original_hash": "d1f838b6b0fd588b4ee6cd22cb578569",
+ "translation_date": "2026-01-16T23:41:09+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/tdsp-lifecycle2.png",
"language_code": "ml"
},
- "bad-chart-3.e201e2e915a230bc.webp": {
- "original_hash": "80f955c8f50661e029730e9b06959c0b",
- "translation_date": "2026-01-16T23:58:33+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-3.jpg",
+ "timeseries-1.80de678ab1cf727e.webp": {
+ "original_hash": "30236ed2474d8d115ab3d51545e0c19e",
+ "translation_date": "2026-01-16T23:42:23+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/timeseries-1.png",
"language_code": "ml"
},
- "busing.8157cf1bc89a3f65.webp": {
- "original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
- "translation_date": "2026-01-16T23:58:41+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/busing.png",
+ "timeseries-2.aae51d575c55181c.webp": {
+ "original_hash": "33bd33349330cb115d729ce80b570501",
+ "translation_date": "2026-01-16T23:42:33+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/timeseries-2.png",
+ "language_code": "ml"
+ },
+ "timeseries-3.f3147cbc8c624881.webp": {
+ "original_hash": "aa4b14a21a73d400073a61f37033d465",
+ "translation_date": "2026-01-16T23:42:39+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/timeseries-3.png",
"language_code": "ml"
},
"tornado.2880ffc7f135f82b.webp": {
@@ -959,136 +995,100 @@
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/tornado.png",
"language_code": "ml"
},
- "bad-chart-2.62edf4d2f30f4e51.webp": {
- "original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
- "translation_date": "2026-01-16T23:59:03+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-2.jpg",
- "language_code": "ml"
- },
- "3d.db1734c151eee87d.webp": {
- "original_hash": "24efe448af156c5520372b9b554a2c89",
- "translation_date": "2026-01-16T23:59:12+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/3d.png",
- "language_code": "ml"
- },
- "bad-chart-4.8872b2b881ffa96c.webp": {
- "original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
- "translation_date": "2026-01-16T23:59:21+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-4.jpg",
- "language_code": "ml"
- },
- "liaisons.90ce7360bcf84765.webp": {
- "original_hash": "6d42370a9c4ee2cea0573912a6300e09",
- "translation_date": "2026-01-16T23:59:31+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/liaisons.png",
- "language_code": "ml"
- },
- "scatterplot-wingspan-02.1c33790094ce36a7.webp": {
- "original_hash": "074b877685ae02c92754fb416864f137",
- "translation_date": "2026-01-16T23:59:37+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan-02.png",
- "language_code": "ml"
- },
- "superimposed.8b5bd0e8825d9c5c.webp": {
- "original_hash": "4af0c94d9d61f1d458023b01c02a247e",
- "translation_date": "2026-01-16T23:59:41+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed.png",
- "language_code": "ml"
- },
- "scatterplot-wingspan.bdab448702939bb3.webp": {
- "original_hash": "a6265af4af8b135ebb0b1160ac2a85e1",
- "translation_date": "2026-01-16T23:59:43+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan.png",
+ "tornado.9f42168791208f97.webp": {
+ "original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
+ "translation_date": "2026-01-16T23:53:33+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/tornado.png",
"language_code": "ml"
},
- "category-length.b0d9a0208a7b3713.webp": {
- "original_hash": "990ba20663dfb1d5bc21e39b9162f412",
- "translation_date": "2026-01-16T23:59:45+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length.png",
+ "video-def-ds.6623ee2392ef1abf.webp": {
+ "original_hash": "95650b7eed7f176ce8fdee16271a464b",
+ "translation_date": "2026-01-16T23:30:32+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/images/video-def-ds.png",
"language_code": "ml"
},
- "category-counts.abee8188c4c9b6f0.webp": {
- "original_hash": "3b55836da9e8a6b487c6657b01156a99",
- "translation_date": "2026-01-16T23:59:48+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts.png",
+ "video-ds-python.245247dc811db8e4.webp": {
+ "original_hash": "030eca02a7388a1428cf20faa215f2b9",
+ "translation_date": "2026-01-16T23:42:00+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/video-ds-python.png",
"language_code": "ml"
},
- "category-length-02.7304bf519375c980.webp": {
- "original_hash": "2638d345ceee48d8c40a54f6388c8caa",
- "translation_date": "2026-01-17T00:00:07+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length-02.png",
+ "video-prob-and-stats.e4282e5efa2f2543.webp": {
+ "original_hash": "95894d8c6274697246b11c5ddf395c5f",
+ "translation_date": "2026-01-16T23:31:17+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/video-prob-and-stats.png",
"language_code": "ml"
},
- "max-wingspan-labels-02.aa90e826ca49a9d1.webp": {
- "original_hash": "b1f49941bbc193409678b7c94bd39822",
- "translation_date": "2026-01-17T00:00:20+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels-02.png",
+ "waffle.5455dbae4ccf17d5.webp": {
+ "original_hash": "56634c9a9dc24921e012693843466dee",
+ "translation_date": "2026-01-16T23:52:45+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/images/waffle.png",
"language_code": "ml"
},
- "max-wingspan.0b8d0858436414aa.webp": {
- "original_hash": "020b2994ef28037b86c2e215771a0bf5",
- "translation_date": "2026-01-17T00:00:22+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan.png",
+ "waffle.aaa75c5337735a6e.webp": {
+ "original_hash": "b84ca087d578965c31a20087b9215d88",
+ "translation_date": "2026-01-16T23:56:26+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/waffle.png",
"language_code": "ml"
},
- "category-counts-02.0b9a0a4de42275ae.webp": {
- "original_hash": "d0ebdd74049aa407805cb1b28d9d5075",
- "translation_date": "2026-01-17T00:00:40+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts-02.png",
+ "weight-boxplot.1dbab1c03af26f8a.webp": {
+ "original_hash": "4e39b904d1a4313d66663aa3f7ab9602",
+ "translation_date": "2026-01-16T23:30:55+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/weight-boxplot.png",
"language_code": "ml"
},
- "superimposed-02.f03058536baeb2ed.webp": {
- "original_hash": "06591758ffda43a2ba7a885727209a57",
- "translation_date": "2026-01-17T00:01:05+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed-02.png",
+ "weight-height-relationship.3f06bde4ca2aba99.webp": {
+ "original_hash": "2412d31f9c41004d2d0cb80179d6021f",
+ "translation_date": "2026-01-16T23:31:08+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/weight-height-relationship.png",
"language_code": "ml"
},
- "full-data-bar-02.aaa3fda71c63ed56.webp": {
- "original_hash": "68ced4f3a959790addfa4c361f5abc0f",
- "translation_date": "2026-01-17T00:01:20+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar-02.png",
+ "weight-histogram.bfd00caf7fc30b14.webp": {
+ "original_hash": "bef55b4cd03923b2d8674e92bb1757c9",
+ "translation_date": "2026-01-16T23:31:00+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/weight-histogram.png",
"language_code": "ml"
},
- "max-wingspan-labels.46f0cc3c48edd4e0.webp": {
- "original_hash": "67ad5348aa4963aebb0ae7ec94a7fa26",
- "translation_date": "2026-01-17T00:01:23+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels.png",
+ "wingspan-conservation-collation.4024e9aa6910866a.webp": {
+ "original_hash": "898d4cfbbc9bd4723c3ce92f5746a6f8",
+ "translation_date": "2026-01-16T23:54:47+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/wingspan-conservation-collation.png",
"language_code": "ml"
},
- "labeled-wingspan-02.6110e2d2401cd523.webp": {
- "original_hash": "0f218473d2563c14c8caddecdea3a4c3",
- "translation_date": "2026-01-17T00:01:27+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan-02.png",
+ "workspace-1.ac8694d60b073ed1.webp": {
+ "original_hash": "5e9f3153bfd5af7d8b6adcb09c08cabd",
+ "translation_date": "2026-01-16T23:33:38+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-1.PNG",
"language_code": "ml"
},
- "max-wingspan-02.e79fd847b2640b89.webp": {
- "original_hash": "424b2d5e92fd7ad1f1651fd34c48a43b",
- "translation_date": "2026-01-17T00:01:31+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-02.png",
+ "workspace-2.ae7c486db8796147.webp": {
+ "original_hash": "9299f5ae459f0a153da6aaae9accc78d",
+ "translation_date": "2026-01-16T23:36:46+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-2.PNG",
"language_code": "ml"
},
- "full-data-bar.a0b37da71a6cd236.webp": {
- "original_hash": "bd639cfebb870669bcf5280302347b15",
- "translation_date": "2026-01-17T00:01:36+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar.png",
+ "workspace-3.398ca4a5858132cc.webp": {
+ "original_hash": "2ee0b036fbc5fd13a526f26ac9d60347",
+ "translation_date": "2026-01-16T23:40:11+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-3.PNG",
"language_code": "ml"
},
- "labeled-wingspan.900ffedd7e3ec6de.webp": {
- "original_hash": "92a8853541cd37a14b9523a58d655f7f",
- "translation_date": "2026-01-17T00:01:40+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan.png",
+ "workspace-4.bac87f6599c4df63.webp": {
+ "original_hash": "099e0b18ce11f3966c0b7d954c2eb4fb",
+ "translation_date": "2026-01-16T23:34:29+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-4.PNG",
"language_code": "ml"
},
- "data-science-applications.4e5019cd8790ebac.webp": {
- "original_hash": "602217d731f1576c21ac91148222cfa1",
- "translation_date": "2026-01-17T00:01:55+00:00",
- "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/data-science-applications.png",
+ "workspace-5.a6eb17e0a5e64200.webp": {
+ "original_hash": "01b1c520e46b3fbd6fba0d54bb80bece",
+ "translation_date": "2026-01-16T23:39:36+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-5.PNG",
"language_code": "ml"
},
- "planetary-computer-explorer.c1e95a9b053167d6.webp": {
- "original_hash": "1e3bcffe198a9432dfc6232e5f89e2a5",
- "translation_date": "2026-01-17T00:05:24+00:00",
- "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/planetary-computer-explorer.png",
+ "workspace-6.8dd81fe841797ee1.webp": {
+ "original_hash": "fd0194c1a558063ddb53e5c1ead0a2b0",
+ "translation_date": "2026-01-16T23:38:45+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-6.PNG",
"language_code": "ml"
}
}
\ No newline at end of file
diff --git a/translated_images/br/.co-op-translator.json b/translated_images/pt-BR/.co-op-translator.json
similarity index 89%
rename from translated_images/br/.co-op-translator.json
rename to translated_images/pt-BR/.co-op-translator.json
index abb2383b..bcb41b7a 100644
--- a/translated_images/br/.co-op-translator.json
+++ b/translated_images/pt-BR/.co-op-translator.json
@@ -3,1092 +3,1092 @@
"original_hash": "ecf8b739e8b862f9c4dac338bd614aa7",
"translation_date": "2026-01-16T13:01:19+00:00",
"source_file": "sketchnotes/00-Roadmap.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"00-Title.8af36cd35da1ac55.webp": {
"original_hash": "533863b4c050b07b1d90ecb948237ffc",
"translation_date": "2026-01-16T13:02:21+00:00",
"source_file": "sketchnotes/00-Title.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"01-Definitions.1b14ddc9525dc0d9.webp": {
"original_hash": "56648d71e5fb4865d3f621010f220582",
"translation_date": "2026-01-16T13:02:14+00:00",
"source_file": "sketchnotes/01-Definitions.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"02-Ethics.728d166895302ab0.webp": {
"original_hash": "005bd88e9721003310c7b2f17dd0e35a",
"translation_date": "2026-01-16T13:06:41+00:00",
"source_file": "sketchnotes/02-Ethics.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"03-DefiningData.f800817186949e07.webp": {
"original_hash": "8c60eda506de75c669370430aa8ecc00",
"translation_date": "2026-01-16T13:03:49+00:00",
"source_file": "sketchnotes/03-DefiningData.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"04-Statistics-Probability.cfc569d84a9f1867.webp": {
"original_hash": "2ee100d33c054ce8a39267530f23377c",
"translation_date": "2026-01-16T13:06:54+00:00",
"source_file": "sketchnotes/04-Statistics-Probability.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"05-RelationalData.af50f5a3e50f7456.webp": {
"original_hash": "e4e0576bddd38fe9a4bd941f73d6de3b",
"translation_date": "2026-01-16T12:57:16+00:00",
"source_file": "sketchnotes/05-RelationalData.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"06-NoSQL.42a91ea0cd5769fe.webp": {
"original_hash": "f5873c65a3a544e1b1a94417c5ee55c8",
"translation_date": "2026-01-16T13:01:46+00:00",
"source_file": "sketchnotes/06-NoSQL.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"07-WorkWithPython.8bf4a5013718bef9.webp": {
"original_hash": "5cbac0986c16de6e4347ed8e6ae6f9c3",
"translation_date": "2026-01-16T13:04:48+00:00",
"source_file": "sketchnotes/07-WorkWithPython.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"08-DataPreparation.e3b185c37958e964.webp": {
"original_hash": "0201767bfac86b208c4c9de0fce95141",
"translation_date": "2026-01-16T12:56:39+00:00",
"source_file": "sketchnotes/08-DataPreparation.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"09-Visualizing-Quantities.5c846edd805a5238.webp": {
"original_hash": "63def3198fdcbc1a6b9ef585745a82c8",
"translation_date": "2026-01-16T13:06:09+00:00",
"source_file": "sketchnotes/09-Visualizing-Quantities.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"1.0b520df6a0d9d3c4.webp": {
"original_hash": "54586a26505aae6cbcc8962a2852b277",
"translation_date": "2026-01-16T12:56:21+00:00",
"source_file": "images/1.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"10-Visualizing-Distributions.8097fd8abd7221a1.webp": {
"original_hash": "885512a64dcab7202c5a53cbde907da2",
"translation_date": "2026-01-16T12:57:02+00:00",
"source_file": "sketchnotes/10-Visualizing-Distributions.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"11-Visualizing-Proportions.3e82f24af94d206e.webp": {
"original_hash": "e7f8f167d209a389c3100d3ac210b69d",
"translation_date": "2026-01-16T13:03:13+00:00",
"source_file": "sketchnotes/11-Visualizing-Proportions.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"12-Visualizing-Relationships.4466f9bd260f03dd.webp": {
"original_hash": "10d06245ecbdc48880e555f03a62f64c",
"translation_date": "2026-01-16T13:01:33+00:00",
"source_file": "sketchnotes/12-Visualizing-Relationships.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"13-MeaningfulViz.4db6f1997e519908.webp": {
"original_hash": "6d0db913181bac3b1aebc649e843ddb3",
"translation_date": "2026-01-16T13:07:13+00:00",
"source_file": "sketchnotes/13-MeaningfulViz.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp": {
"original_hash": "96cbd264a85530f5876c353b2e57956d",
"translation_date": "2026-01-16T13:02:49+00:00",
"source_file": "sketchnotes/14-DataScience-Lifecycle.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"15-Analyzing.b501f3dbdc958f6f.webp": {
"original_hash": "973333ac82d2472591675e2b93afc87e",
"translation_date": "2026-01-16T13:07:32+00:00",
"source_file": "sketchnotes/15-Analyzing.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"16-Communicating.f1d29cd7984442a4.webp": {
"original_hash": "9a65542ddae4e103ab2a665fe65629ce",
"translation_date": "2026-01-16T12:57:29+00:00",
"source_file": "sketchnotes/16-Communicating.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"17-DataScience-Cloud.0df76ac874805c14.webp": {
"original_hash": "221a9e5d40e6f47fe793f175a8754ae0",
"translation_date": "2026-01-16T13:06:29+00:00",
"source_file": "sketchnotes/17-DataScience-Cloud.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"18-DataScience-Cloud.3a7292e8182b74eb.webp": {
"original_hash": "c1094124ae2e325016c6ddcb95599c7a",
"translation_date": "2026-01-16T13:05:47+00:00",
"source_file": "sketchnotes/18-DataScience-Cloud.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"19-DataScience-Cloud.177b38fb86301fc6.webp": {
"original_hash": "78eb918c3512a018c0d99a217bc72038",
"translation_date": "2026-01-16T13:05:09+00:00",
"source_file": "sketchnotes/19-DataScience-Cloud.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"20-DataScience-Humanities.1d1a155f4d12a667.webp": {
"original_hash": "1458acca113e1f3c64fb18d6a434fb5c",
"translation_date": "2026-01-16T13:04:13+00:00",
"source_file": "sketchnotes/20-DataScience-Humanities.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"20-DataScience-RealWorld.976976229ee11342.webp": {
"original_hash": "ff1861c005ea9fe7644777c4069008b9",
"translation_date": "2026-01-16T13:02:08+00:00",
"source_file": "sketchnotes/20-DataScience-RealWorld.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"20-DataScience-Research.da434814c51b4ef8.webp": {
"original_hash": "c1d7c67564ad6767200da0cab95eeb52",
"translation_date": "2026-01-16T13:03:35+00:00",
"source_file": "sketchnotes/20-DataScience-Research.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"20-DataScience-Sustainability.d4097bc684431da6.webp": {
"original_hash": "966e2a6eea920d7cb30a343e0bf5c856",
"translation_date": "2026-01-16T13:04:32+00:00",
"source_file": "sketchnotes/20-DataScience-Sustainability.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"2D-wb.ae22fdd33936507a.webp": {
"original_hash": "621c501b663b89b0739ff0a3d89324d4",
"translation_date": "2026-01-16T13:26:17+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/2D-wb.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"2D.b3342157139dd804.webp": {
"original_hash": "43f6f9ba817c493c2f38383fb22df3ff",
"translation_date": "2026-01-16T13:26:20+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/2D.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"2d-plot.c504786f439bd7eb.webp": {
"original_hash": "b5a6251e8480b8dbcf6ca9972efd2a94",
"translation_date": "2026-01-16T13:30:26+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/2d-plot.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"3d.0cec12bcc60f0ce7.webp": {
"original_hash": "24efe448af156c5520372b9b554a2c89",
"translation_date": "2026-01-16T13:29:59+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/3d.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"3d.db1734c151eee87d.webp": {
"original_hash": "24efe448af156c5520372b9b554a2c89",
"translation_date": "2026-01-16T13:40:18+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/3d.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"CRISP-DM.8bad2b4c66e62aa7.webp": {
"original_hash": "eac24034dc4554b1292c0c035a852548",
"translation_date": "2026-01-16T13:20:46+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/CRISP-DM.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp": {
"original_hash": "25abf3baadac4535fac2aa1c8794f537",
"translation_date": "2026-01-16T13:37:59+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot-improved.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"MaxWingspan-lineplot.b12169f99d26fdd2.webp": {
"original_hash": "8a0744b5301a1c4dc64b580728b5771a",
"translation_date": "2026-01-16T13:37:16+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp": {
"original_hash": "c5b4723c8624caa7463c66fd7278854e",
"translation_date": "2026-01-16T13:39:13+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot-improved.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"MaxWingspan-scatterplot.60dc9e0e19d32700.webp": {
"original_hash": "58de03db6718a04f8e61e2405ea2b502",
"translation_date": "2026-01-16T13:37:21+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"aml-1.67281a85d3a1e2f3.webp": {
"original_hash": "130c64f0112c117a400926da0bbaf090",
"translation_date": "2026-01-16T13:20:07+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-1.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"aml-2.c9fb9cffb39ccbbe.webp": {
"original_hash": "703a44252eca61e2b68c1365f4beb179",
"translation_date": "2026-01-16T13:12:27+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-2.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"aml-3.a7952e4295f38cc6.webp": {
"original_hash": "33433e94fe719f0e4104ad809338f91d",
"translation_date": "2026-01-16T13:11:10+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-3.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"aml-4.7a627e09cb6f16d0.webp": {
"original_hash": "983ad36543a02fffcb8f05fb94e09ef4",
"translation_date": "2026-01-16T13:14:05+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-4.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"bad-chart-1.596bc93425a8ac30.webp": {
"original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
"translation_date": "2026-01-16T13:39:24+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-1.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"bad-chart-1.93130f495b748bed.webp": {
"original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
"translation_date": "2026-01-16T13:29:03+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-1.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"bad-chart-2.62edf4d2f30f4e51.webp": {
"original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
"translation_date": "2026-01-16T13:40:11+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-2.jpg",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"bad-chart-2.c20e36dd4e6f617c.webp": {
"original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
"translation_date": "2026-01-16T13:29:51+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-2.jpg",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"bad-chart-3.6865d0afac4108d7.webp": {
"original_hash": "80f955c8f50661e029730e9b06959c0b",
"translation_date": "2026-01-16T13:29:12+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-3.jpg",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"bad-chart-3.e201e2e915a230bc.webp": {
"original_hash": "80f955c8f50661e029730e9b06959c0b",
"translation_date": "2026-01-16T13:39:32+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-3.jpg",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"bad-chart-4.68cfdf4011b45447.webp": {
"original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
"translation_date": "2026-01-16T13:30:12+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-4.jpg",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"bad-chart-4.8872b2b881ffa96c.webp": {
"original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
"translation_date": "2026-01-16T13:40:30+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-4.jpg",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"bee.0aa1d91132b12e3a.webp": {
"original_hash": "107a59a0fdfa76d213eacf0f46df0292",
"translation_date": "2026-01-16T13:25:23+00:00",
"source_file": "3-Data-Visualization/images/bee.jpg",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"bodymass-per-order.9d2b065dd931b928.webp": {
"original_hash": "b009aeba10679cfeb880d3869e7d1db2",
"translation_date": "2026-01-16T13:33:55+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-per-order.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"bodymass-smooth.d31ce526d82b0a1f.webp": {
"original_hash": "9e0c8215e2ce2cc7120491a79559a907",
"translation_date": "2026-01-16T13:33:34+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-smooth.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"boxplot_byrole.036b27a1c3f52d42.webp": {
"original_hash": "1193ef907e122e99637e73ef9f83d2a5",
"translation_date": "2026-01-16T13:09:33+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/boxplot_byrole.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"boxplot_explanation.4039b7de08780fd4.webp": {
"original_hash": "18e16e4144706f7e9006fc2ff958e622",
"translation_date": "2026-01-16T13:08:54+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/boxplot_explanation.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"busing.7b9e3b41cd4b981c.webp": {
"original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
"translation_date": "2026-01-16T13:29:23+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/busing.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"busing.8157cf1bc89a3f65.webp": {
"original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
"translation_date": "2026-01-16T13:39:41+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/busing.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"category-counts-02.0b9a0a4de42275ae.webp": {
"original_hash": "d0ebdd74049aa407805cb1b28d9d5075",
"translation_date": "2026-01-16T13:41:52+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts-02.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"category-counts.abee8188c4c9b6f0.webp": {
"original_hash": "3b55836da9e8a6b487c6657b01156a99",
"translation_date": "2026-01-16T13:40:55+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"category-length-02.7304bf519375c980.webp": {
"original_hash": "2638d345ceee48d8c40a54f6388c8caa",
"translation_date": "2026-01-16T13:41:19+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length-02.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"category-length.7e34c296690e85d6.webp": {
"original_hash": "f5c753a1fe65d51b8cc15b8b46c6d4e6",
"translation_date": "2026-01-16T13:37:53+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/category-length.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"category-length.b0d9a0208a7b3713.webp": {
"original_hash": "990ba20663dfb1d5bc21e39b9162f412",
"translation_date": "2026-01-16T13:40:52+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"cloud-picture.f5526de3c6c6387b.webp": {
"original_hash": "112d96f85f2037814d2df8b88267a595",
"translation_date": "2026-01-16T13:09:43+00:00",
"source_file": "5-Data-Science-In-Cloud/images/cloud-picture.jpg",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"cluster-1.b78cb630bb543729.webp": {
"original_hash": "d938d671e7eabf7fbc012cf1987dc43f",
"translation_date": "2026-01-16T13:15:01+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-1.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"cluster-2.ea30cdbc9f926bb9.webp": {
"original_hash": "0486b9eb10e88dc53fc2927c9197cd27",
"translation_date": "2026-01-16T13:14:30+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-2.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"cluster-3.8a334bc070ec173a.webp": {
"original_hash": "b440d88eb5ce449ebe780c1edbac221d",
"translation_date": "2026-01-16T13:13:12+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-3.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"columnar-db.ffcfe73c3e9063a8.webp": {
"original_hash": "be6caa9571dc877703116566bc1a59d4",
"translation_date": "2026-01-16T13:23:38+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/columnar-db.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"communication.06d8e2a88d30d168.webp": {
"original_hash": "5736c0fd0f68676dbd5b27c5b04f4b48",
"translation_date": "2026-01-16T13:20:39+00:00",
"source_file": "4-Data-Science-Lifecycle/images/communication.jpg",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"comparingdata.f486a450d61c7ca5.webp": {
"original_hash": "c5f1049b89ea0d7015e420acc0728045",
"translation_date": "2026-01-16T13:38:30+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/comparingdata.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"compute-instance-1.dba347cb199ca499.webp": {
"original_hash": "7af64073de557468a0b652e4bcecf2d1",
"translation_date": "2026-01-16T13:09:58+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/compute-instance-1.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"consumption-1.700abd196452842a.webp": {
"original_hash": "a5ecdcdff30f2d1059763b9ce5abe4eb",
"translation_date": "2026-01-16T13:19:24+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/consumption-1.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"cosmosdb-emulator-explorer.a1c80b1347206fe2.webp": {
"original_hash": "cdd5affc23e1edf90e5a1d4d5d0f1f8d",
"translation_date": "2026-01-16T13:23:59+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-explorer.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp": {
"original_hash": "4ab74b4d99e8e2a503433a1faf6921be",
"translation_date": "2026-01-16T13:23:19+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons-query.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"cosmosdb-emulator-persons.bf640586a7077c89.webp": {
"original_hash": "4cf764cdeb46013888dafcd430447f3a",
"translation_date": "2026-01-16T13:25:11+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"covidspread.f3d131c4f1d260ab.webp": {
"original_hash": "461f7858f407e9f5b9eb9caf8ca21367",
"translation_date": "2026-01-16T13:22:36+00:00",
"source_file": "2-Working-With-Data/07-python/images/covidspread.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"covidtreat.b2ba59f57ca45fbc.webp": {
"original_hash": "b2b1e40794073c65faa986c5995754c9",
"translation_date": "2026-01-16T13:22:27+00:00",
"source_file": "2-Working-With-Data/07-python/images/covidtreat.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"data-love.a22ef29e6742c852.webp": {
"original_hash": "e7fcf82d891c727f86c21960cb63efa6",
"translation_date": "2026-01-16T13:21:59+00:00",
"source_file": "2-Working-With-Data/images/data-love.jpg",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"data-science-applications.4e5019cd8790ebac.webp": {
"original_hash": "602217d731f1576c21ac91148222cfa1",
"translation_date": "2026-01-16T13:43:03+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/data-science-applications.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"data-science-lifecycle.a1e362637503c4fb.webp": {
"original_hash": "594be62e68ef5e92f5447febe91c7794",
"translation_date": "2026-01-16T13:20:59+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/data-science-lifecycle.jpg",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"data.48e22bb7617d8d92.webp": {
"original_hash": "1a84026266861a50791b9f952fbab540",
"translation_date": "2026-01-16T13:07:39+00:00",
"source_file": "1-Introduction/images/data.jpg",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"dataframe-1.caf409f0c688e84c.webp": {
"original_hash": "2ca632a405bd7b501a0e0df0fa55515a",
"translation_date": "2026-01-16T13:22:17+00:00",
"source_file": "2-Working-With-Data/07-python/images/dataframe-1.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"datascienceinthecloud.59ffb059a670fb0a.webp": {
"original_hash": "d66cf00bfc41a3d1bef7e1d54ac4e03f",
"translation_date": "2026-01-16T13:13:29+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/datascienceinthecloud.jpg",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"dataset-1.e86ab4e10907a6e9.webp": {
"original_hash": "b742ef1724e601f68a1bdf3f1faa89c6",
"translation_date": "2026-01-16T13:14:46+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-1.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"dataset-2.f58de1c435d5bf9c.webp": {
"original_hash": "328c65d45aa937db952093099bc408ce",
"translation_date": "2026-01-16T13:18:25+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-2.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"dataset-3.58db8c0eb783e892.webp": {
"original_hash": "cc2177288c2ac7289b614ce41ee68d60",
"translation_date": "2026-01-16T13:18:17+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-3.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"density-plot.675ccf865b76c690.webp": {
"original_hash": "269df7655a489ba893c9a930e54996b4",
"translation_date": "2026-01-16T13:33:59+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/density-plot.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"density1.8801043bd4af2567.webp": {
"original_hash": "159abed877f261a34aeefc1c2f7d9f14",
"translation_date": "2026-01-16T13:26:26+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density1.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"density2.8e7647257060ff54.webp": {
"original_hash": "ae4ee53e81dca21c2d475642c9acf970",
"translation_date": "2026-01-16T13:26:47+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density2.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"density3.84ae27da82f31e6b.webp": {
"original_hash": "1c4b40707ab63224822854698a26f6ca",
"translation_date": "2026-01-16T13:25:36+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density3.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"density4.e9d6c033f15c500f.webp": {
"original_hash": "e007401afeb86f57097c31b272c54f59",
"translation_date": "2026-01-16T13:26:36+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density4.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"deploy-1.ddad725acadc84e3.webp": {
"original_hash": "d91956f565f29332f32fc85095206456",
"translation_date": "2026-01-16T13:12:55+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-1.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"deploy-2.94dbb13f23908647.webp": {
"original_hash": "cb622a2e6374ccfdb376d3528e2bb9c8",
"translation_date": "2026-01-16T13:19:53+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-2.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"deploy-3.fecefef070e8ef3b.webp": {
"original_hash": "487c6cd79b0232e10e40fdab2e6b929f",
"translation_date": "2026-01-16T13:17:13+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-3.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"dist1-wb.0d0cac82e2974fbb.webp": {
"original_hash": "2f624fcf08f90cfedf12238e86730517",
"translation_date": "2026-01-16T13:26:07+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1-wb.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"dist1.0010100b00231819.webp": {
"original_hash": "637343564b5cc6aa01b966bb3f010c81",
"translation_date": "2026-01-16T13:26:42+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"dist2-wb.2c0a7a3499b2fbf5.webp": {
"original_hash": "f66e1b4cf106774c02ddc8111fb26ea8",
"translation_date": "2026-01-16T13:26:51+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2-wb.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"dist2.c398bfd5320401b9.webp": {
"original_hash": "fc0ce2a2e3087e5754770998f75db398",
"translation_date": "2026-01-16T13:25:30+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"dist3-wb.64b88db7f9780200.webp": {
"original_hash": "b3d78f1f00c6c3d087f161dd74318aff",
"translation_date": "2026-01-16T13:25:40+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3-wb.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"dist3.ad4d9658559690f5.webp": {
"original_hash": "a4f7f50a3cc98d22d6a1321d1df7781b",
"translation_date": "2026-01-16T13:26:13+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"distribution-30bins.6a3921ea7a421bf7.webp": {
"original_hash": "e06c4dfd27b06597b94a75072e9c4bc5",
"translation_date": "2026-01-16T13:30:35+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-30bins.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"distribution-over-the-entire-dataset.d22afd3fa96be854.webp": {
"original_hash": "338c78ae2ee25ed179e49ec1a4e7923b",
"translation_date": "2026-01-16T13:33:38+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-over-the-entire-dataset.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"document-db.ddeec48c6dc9e5fd.webp": {
"original_hash": "8cee40487b4a8926c048c397be218e6e",
"translation_date": "2026-01-16T13:24:32+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/document-db.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"donut-wb.34e6fb275da9d834.webp": {
"original_hash": "1fca738bcee99e03430409599cef33f3",
"translation_date": "2026-01-16T13:35:37+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/donut-wb.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"donut-wb.be3c12a22712302b.webp": {
"original_hash": "84f5657fc2c817fe6487993027aeb3e0",
"translation_date": "2026-01-16T13:28:29+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut-wb.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"donut.f016d7be7f08c8f8.webp": {
"original_hash": "055fcaf0a6d93663278eb958137b460c",
"translation_date": "2026-01-16T13:28:51+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"ds-for-beginners.d01930c9193ef522.webp": {
"original_hash": "b84eca5411f4bc0041e671becb05fe48",
"translation_date": "2026-01-16T12:56:11+00:00",
"source_file": "ds-for-beginners.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"ds_wordcloud.664a7c07dca57de0.webp": {
"original_hash": "df525e123083bea87f16bce2c07970c7",
"translation_date": "2026-01-16T13:08:18+00:00",
"source_file": "1-Introduction/01-defining-data-science/images/ds_wordcloud.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"dual-line.a4c28ce659603fab.webp": {
"original_hash": "354c3a3b7493b3ec80eec454e7e1661f",
"translation_date": "2026-01-16T13:27:19+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/dual-line.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"dual-line.fc4665f360a54018.webp": {
"original_hash": "a80f6d08e4639389726abb5b1c3d5d9f",
"translation_date": "2026-01-16T13:34:43+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/dual-line.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"facet.491ad90d61c2a7cc.webp": {
"original_hash": "2a0a7fea3ccea24ef9a0d37487f38ba3",
"translation_date": "2026-01-16T13:34:32+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/facet.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"facet.6a34851dcd540050.webp": {
"original_hash": "b1972d34a64eaf50b7f64de8455601d6",
"translation_date": "2026-01-16T13:27:11+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/facet.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"favicon.37b561214b36d454.webp": {
"original_hash": "228faa6584f8ba1f7e9a75e3200112e9",
"translation_date": "2026-01-16T12:56:12+00:00",
"source_file": "images/favicon.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"filtered-histogram.6bf5d2bfd8253322.webp": {
"original_hash": "9beae93b6d3063f7afa19070ca9b21f2",
"translation_date": "2026-01-16T13:33:42+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/filtered-histogram.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"formula-excel.ad1068c220892f5e.webp": {
"original_hash": "ffc48a46663588ed68f07739e1c6faec",
"translation_date": "2026-01-16T13:24:13+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/formula-excel.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"full-data-bar-02.aaa3fda71c63ed56.webp": {
"original_hash": "68ced4f3a959790addfa4c361f5abc0f",
"translation_date": "2026-01-16T13:42:25+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar-02.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"full-data-bar.a0b37da71a6cd236.webp": {
"original_hash": "bd639cfebb870669bcf5280302347b15",
"translation_date": "2026-01-16T13:42:42+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"function-excel.be2ae4feddc10ca0.webp": {
"original_hash": "72ab7b76f4fab0df5aa91fa839722a60",
"translation_date": "2026-01-16T13:23:28+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/function-excel.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"graph-db.d13629152f79a9da.webp": {
"original_hash": "9642744eabff608b20e9241ba5931752",
"translation_date": "2026-01-16T13:24:20+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/graph-db.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"height-boxplot.ccb66b2848b5f51c.webp": {
"original_hash": "0f3d954cc0e0b9644f64f7bc1c8a5518",
"translation_date": "2026-01-16T13:09:13+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/height-boxplot.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"histogram-conservation-wb.3c40450eb072c14d.webp": {
"original_hash": "83ec1d81dea6fabb80c6386edf8eb241",
"translation_date": "2026-01-16T13:26:01+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation-wb.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"histogram-conservation.13b3542e7784e415.webp": {
"original_hash": "ec86b1d6a476f4cf80f9d2b346525c92",
"translation_date": "2026-01-16T13:26:11+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"kv-db.e8f2b75686bbdfcb.webp": {
"original_hash": "b11fd06948e523a4f05e4fc016b72151",
"translation_date": "2026-01-16T13:23:43+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/kv-db.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"labeled-wingspan-02.6110e2d2401cd523.webp": {
"original_hash": "0f218473d2563c14c8caddecdea3a4c3",
"translation_date": "2026-01-16T13:42:33+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan-02.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"labeled-wingspan.900ffedd7e3ec6de.webp": {
"original_hash": "92a8853541cd37a14b9523a58d655f7f",
"translation_date": "2026-01-16T13:42:46+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"less-smooth-bodymass.10f4db8b683cc17d.webp": {
"original_hash": "407ad13c340ab84466724135c99aa8d6",
"translation_date": "2026-01-16T13:30:30+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/less-smooth-bodymass.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"liaisons.7b440b28f6d07ea4.webp": {
"original_hash": "6d42370a9c4ee2cea0573912a6300e09",
"translation_date": "2026-01-16T13:30:20+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/liaisons.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"liaisons.90ce7360bcf84765.webp": {
"original_hash": "6d42370a9c4ee2cea0573912a6300e09",
"translation_date": "2026-01-16T13:40:39+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/liaisons.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"line1.299b576fbb2a59e6.webp": {
"original_hash": "580b92476ca343c0fce7d5713d0ca5cd",
"translation_date": "2026-01-16T13:35:26+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line1.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"line1.f36eb465229a3b1f.webp": {
"original_hash": "2254eee0864847a0dbbcf3514523b938",
"translation_date": "2026-01-16T13:28:14+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/line1.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"line2.3b18fcda7176ceba.webp": {
"original_hash": "0900ae563b525221b628393ec05feaf8",
"translation_date": "2026-01-16T13:35:31+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line2.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"line2.a5b3493dc01058af.webp": {
"original_hash": "352e8164b0d75c410198bb07822e43cb",
"translation_date": "2026-01-16T13:28:19+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/line2.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"max-length-per-order.e5b283d952c78c12.webp": {
"original_hash": "3669afd28a61d41ee39429418ee938a0",
"translation_date": "2026-01-16T13:34:15+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/max-length-per-order.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"max-wingspan-02.e79fd847b2640b89.webp": {
"original_hash": "424b2d5e92fd7ad1f1651fd34c48a43b",
"translation_date": "2026-01-16T13:42:36+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-02.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"max-wingspan-labels-02.aa90e826ca49a9d1.webp": {
"original_hash": "b1f49941bbc193409678b7c94bd39822",
"translation_date": "2026-01-16T13:41:26+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels-02.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"max-wingspan-labels.46f0cc3c48edd4e0.webp": {
"original_hash": "67ad5348aa4963aebb0ae7ec94a7fa26",
"translation_date": "2026-01-16T13:42:27+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"max-wingspan.0b8d0858436414aa.webp": {
"original_hash": "020b2994ef28037b86c2e215771a0bf5",
"translation_date": "2026-01-16T13:41:27+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"multi.56548caa9eae8d0f.webp": {
"original_hash": "f75fa5419bb0d28a74c567876bc99455",
"translation_date": "2026-01-16T13:25:28+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/multi.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"new-container.650e10c7a20a5f83.webp": {
"original_hash": "ab63b5a8099095333eebe2afa69197e3",
"translation_date": "2026-01-16T13:24:48+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/new-container.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"normal-histogram.dfae0d67c202137d.webp": {
"original_hash": "46ee775d2df1d79815c1aab51bd8d2fe",
"translation_date": "2026-01-16T13:09:25+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/normal-histogram.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"notebook-1.12998af7b02c83f5.webp": {
"original_hash": "08d559b911ecbed212b67e206ae6bcf1",
"translation_date": "2026-01-16T13:10:15+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-1.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"notebook-2.9a657c037e34f1cf.webp": {
"original_hash": "018309c1ca2ed8e31fd89c3674687979",
"translation_date": "2026-01-16T13:10:20+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-2.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"parts-of-spreadsheet.120711c82aa18a45.webp": {
"original_hash": "e744b94c055058c2862aaabe84625b90",
"translation_date": "2026-01-16T13:25:22+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/parts-of-spreadsheet.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"pie1-wb.685df063673751f4.webp": {
"original_hash": "2b353f34a1a1e444a1d7f2219b78cb83",
"translation_date": "2026-01-16T13:37:11+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/pie1-wb.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"pie1-wb.e201f2fcc3354131.webp": {
"original_hash": "f2dbe68e0228fc6bb76e502dfa88a5c7",
"translation_date": "2026-01-16T13:28:54+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1-wb.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"pie1.8f6a8bfac96de60e.webp": {
"original_hash": "dc91ddf7490acc8493ca0801370d8fa8",
"translation_date": "2026-01-16T13:28:23+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"planetary-computer-explorer.c1e95a9b053167d6.webp": {
"original_hash": "1e3bcffe198a9432dfc6232e5f89e2a5",
"translation_date": "2026-01-16T13:43:16+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/planetary-computer-explorer.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"probability-density.a8aad29f17a14afb.webp": {
"original_hash": "79ec3e39c1c20e570327ebd8a2737548",
"translation_date": "2026-01-16T13:09:06+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/probability-density.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"project-schema.420e56d495624541.webp": {
"original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
"translation_date": "2026-01-16T13:10:51+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/project-schema.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"project-schema.736f6e403f321eb4.webp": {
"original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
"translation_date": "2026-01-16T13:17:42+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/project-schema.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"scatter-wb.9d98b0ed7f0388af.webp": {
"original_hash": "20b0f7bb41756f35bdf985a8f5f3a342",
"translation_date": "2026-01-16T13:25:55+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter-wb.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"scatter.520a43eceb46dbcb.webp": {
"original_hash": "0b08180e497b0df05b452d6e82139280",
"translation_date": "2026-01-16T13:26:40+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"scatter1.5e1aa5fd6706c5d1.webp": {
"original_hash": "c02fe2f5fa39f591b4a26308356ed684",
"translation_date": "2026-01-16T13:28:09+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter1.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"scatter1.86b8900674d88b26.webp": {
"original_hash": "c987462f33600689809531fc3d265f96",
"translation_date": "2026-01-16T13:35:22+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter1.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"scatter2.4d1cbc693bad20e2.webp": {
"original_hash": "770ca46665efad9996e32d596f105ea9",
"translation_date": "2026-01-16T13:35:05+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter2.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"scatter2.c0041a58621ca702.webp": {
"original_hash": "0daebd8565f87f5de940b38eb8af1b9d",
"translation_date": "2026-01-16T13:27:54+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter2.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"scatter3.3c160a3d1dcb36b3.webp": {
"original_hash": "b6dae06624fdb034a906091c859840c8",
"translation_date": "2026-01-16T13:27:38+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter3.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"scatter3.722d21e6f20b3ea2.webp": {
"original_hash": "e76960bfd5bd7187d9e021796f268d34",
"translation_date": "2026-01-16T13:34:53+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter3.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"scatterplot-wingspan-02.1c33790094ce36a7.webp": {
"original_hash": "074b877685ae02c92754fb416864f137",
"translation_date": "2026-01-16T13:40:43+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan-02.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"scatterplot-wingspan.bdab448702939bb3.webp": {
"original_hash": "a6265af4af8b135ebb0b1160ac2a85e1",
"translation_date": "2026-01-16T13:40:48+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"stacked-bar-chart.0c92264e89da7b39.webp": {
"original_hash": "150d1125735f6612e36c8d74d492c664",
"translation_date": "2026-01-16T13:38:37+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/stacked-bar-chart.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"superimposed-02.f03058536baeb2ed.webp": {
"original_hash": "06591758ffda43a2ba7a885727209a57",
"translation_date": "2026-01-16T13:42:18+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed-02.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"superimposed-values.5363f0705a1da416.webp": {
"original_hash": "b41c56cb68dd92f60d7e18eefd963396",
"translation_date": "2026-01-16T13:39:06+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/superimposed-values.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"superimposed.8b5bd0e8825d9c5c.webp": {
"original_hash": "4af0c94d9d61f1d458023b01c02a247e",
"translation_date": "2026-01-16T13:40:47+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"tdsp-lifecycle2.e19029d598e2e73d.webp": {
"original_hash": "d1f838b6b0fd588b4ee6cd22cb578569",
"translation_date": "2026-01-16T13:21:15+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/tdsp-lifecycle2.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"timeseries-1.80de678ab1cf727e.webp": {
"original_hash": "30236ed2474d8d115ab3d51545e0c19e",
"translation_date": "2026-01-16T13:22:32+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-1.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"timeseries-2.aae51d575c55181c.webp": {
"original_hash": "33bd33349330cb115d729ce80b570501",
"translation_date": "2026-01-16T13:22:41+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-2.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"timeseries-3.f3147cbc8c624881.webp": {
"original_hash": "aa4b14a21a73d400073a61f37033d465",
"translation_date": "2026-01-16T13:22:50+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-3.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"tornado.2880ffc7f135f82b.webp": {
"original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
"translation_date": "2026-01-16T13:39:59+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/tornado.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"tornado.9f42168791208f97.webp": {
"original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
"translation_date": "2026-01-16T13:29:37+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/tornado.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"video-def-ds.6623ee2392ef1abf.webp": {
"original_hash": "95650b7eed7f176ce8fdee16271a464b",
"translation_date": "2026-01-16T13:08:35+00:00",
"source_file": "1-Introduction/01-defining-data-science/images/video-def-ds.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"video-ds-python.245247dc811db8e4.webp": {
"original_hash": "030eca02a7388a1428cf20faa215f2b9",
"translation_date": "2026-01-16T13:22:12+00:00",
"source_file": "2-Working-With-Data/07-python/images/video-ds-python.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"video-prob-and-stats.e4282e5efa2f2543.webp": {
"original_hash": "95894d8c6274697246b11c5ddf395c5f",
"translation_date": "2026-01-16T13:09:22+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/video-prob-and-stats.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"waffle.5455dbae4ccf17d5.webp": {
"original_hash": "56634c9a9dc24921e012693843466dee",
"translation_date": "2026-01-16T13:28:47+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/waffle.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"waffle.aaa75c5337735a6e.webp": {
"original_hash": "b84ca087d578965c31a20087b9215d88",
"translation_date": "2026-01-16T13:37:08+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/waffle.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"weight-boxplot.1dbab1c03af26f8a.webp": {
"original_hash": "4e39b904d1a4313d66663aa3f7ab9602",
"translation_date": "2026-01-16T13:08:58+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-boxplot.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"weight-height-relationship.3f06bde4ca2aba99.webp": {
"original_hash": "2412d31f9c41004d2d0cb80179d6021f",
"translation_date": "2026-01-16T13:09:10+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-height-relationship.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"weight-histogram.bfd00caf7fc30b14.webp": {
"original_hash": "bef55b4cd03923b2d8674e92bb1757c9",
"translation_date": "2026-01-16T13:09:03+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-histogram.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"wingspan-conservation-collation.4024e9aa6910866a.webp": {
"original_hash": "898d4cfbbc9bd4723c3ce92f5746a6f8",
"translation_date": "2026-01-16T13:33:47+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/wingspan-conservation-collation.png",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"workspace-1.ac8694d60b073ed1.webp": {
"original_hash": "5e9f3153bfd5af7d8b6adcb09c08cabd",
"translation_date": "2026-01-16T13:12:37+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-1.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"workspace-2.ae7c486db8796147.webp": {
"original_hash": "9299f5ae459f0a153da6aaae9accc78d",
"translation_date": "2026-01-16T13:16:47+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-2.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"workspace-3.398ca4a5858132cc.webp": {
"original_hash": "2ee0b036fbc5fd13a526f26ac9d60347",
"translation_date": "2026-01-16T13:20:18+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-3.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"workspace-4.bac87f6599c4df63.webp": {
"original_hash": "099e0b18ce11f3966c0b7d954c2eb4fb",
"translation_date": "2026-01-16T13:13:27+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-4.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"workspace-5.a6eb17e0a5e64200.webp": {
"original_hash": "01b1c520e46b3fbd6fba0d54bb80bece",
"translation_date": "2026-01-16T13:19:40+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-5.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
},
"workspace-6.8dd81fe841797ee1.webp": {
"original_hash": "fd0194c1a558063ddb53e5c1ead0a2b0",
"translation_date": "2026-01-16T13:18:51+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-6.PNG",
- "language_code": "br"
+ "language_code": "pt-BR"
}
}
\ No newline at end of file
diff --git a/translated_images/br/00-Roadmap.4905d6567dff4753.webp b/translated_images/pt-BR/00-Roadmap.4905d6567dff4753.webp
similarity index 100%
rename from translated_images/br/00-Roadmap.4905d6567dff4753.webp
rename to translated_images/pt-BR/00-Roadmap.4905d6567dff4753.webp
diff --git a/translated_images/br/00-Title.8af36cd35da1ac55.webp b/translated_images/pt-BR/00-Title.8af36cd35da1ac55.webp
similarity index 100%
rename from translated_images/br/00-Title.8af36cd35da1ac55.webp
rename to translated_images/pt-BR/00-Title.8af36cd35da1ac55.webp
diff --git a/translated_images/br/01-Definitions.1b14ddc9525dc0d9.webp b/translated_images/pt-BR/01-Definitions.1b14ddc9525dc0d9.webp
similarity index 100%
rename from translated_images/br/01-Definitions.1b14ddc9525dc0d9.webp
rename to translated_images/pt-BR/01-Definitions.1b14ddc9525dc0d9.webp
diff --git a/translated_images/br/02-Ethics.728d166895302ab0.webp b/translated_images/pt-BR/02-Ethics.728d166895302ab0.webp
similarity index 100%
rename from translated_images/br/02-Ethics.728d166895302ab0.webp
rename to translated_images/pt-BR/02-Ethics.728d166895302ab0.webp
diff --git a/translated_images/br/03-DefiningData.f800817186949e07.webp b/translated_images/pt-BR/03-DefiningData.f800817186949e07.webp
similarity index 100%
rename from translated_images/br/03-DefiningData.f800817186949e07.webp
rename to translated_images/pt-BR/03-DefiningData.f800817186949e07.webp
diff --git a/translated_images/br/04-Statistics-Probability.cfc569d84a9f1867.webp b/translated_images/pt-BR/04-Statistics-Probability.cfc569d84a9f1867.webp
similarity index 100%
rename from translated_images/br/04-Statistics-Probability.cfc569d84a9f1867.webp
rename to translated_images/pt-BR/04-Statistics-Probability.cfc569d84a9f1867.webp
diff --git a/translated_images/br/05-RelationalData.af50f5a3e50f7456.webp b/translated_images/pt-BR/05-RelationalData.af50f5a3e50f7456.webp
similarity index 100%
rename from translated_images/br/05-RelationalData.af50f5a3e50f7456.webp
rename to translated_images/pt-BR/05-RelationalData.af50f5a3e50f7456.webp
diff --git a/translated_images/br/06-NoSQL.42a91ea0cd5769fe.webp b/translated_images/pt-BR/06-NoSQL.42a91ea0cd5769fe.webp
similarity index 100%
rename from translated_images/br/06-NoSQL.42a91ea0cd5769fe.webp
rename to translated_images/pt-BR/06-NoSQL.42a91ea0cd5769fe.webp
diff --git a/translated_images/br/07-WorkWithPython.8bf4a5013718bef9.webp b/translated_images/pt-BR/07-WorkWithPython.8bf4a5013718bef9.webp
similarity index 100%
rename from translated_images/br/07-WorkWithPython.8bf4a5013718bef9.webp
rename to translated_images/pt-BR/07-WorkWithPython.8bf4a5013718bef9.webp
diff --git a/translated_images/br/08-DataPreparation.e3b185c37958e964.webp b/translated_images/pt-BR/08-DataPreparation.e3b185c37958e964.webp
similarity index 100%
rename from translated_images/br/08-DataPreparation.e3b185c37958e964.webp
rename to translated_images/pt-BR/08-DataPreparation.e3b185c37958e964.webp
diff --git a/translated_images/br/09-Visualizing-Quantities.5c846edd805a5238.webp b/translated_images/pt-BR/09-Visualizing-Quantities.5c846edd805a5238.webp
similarity index 100%
rename from translated_images/br/09-Visualizing-Quantities.5c846edd805a5238.webp
rename to translated_images/pt-BR/09-Visualizing-Quantities.5c846edd805a5238.webp
diff --git a/translated_images/br/1.0b520df6a0d9d3c4.webp b/translated_images/pt-BR/1.0b520df6a0d9d3c4.webp
similarity index 100%
rename from translated_images/br/1.0b520df6a0d9d3c4.webp
rename to translated_images/pt-BR/1.0b520df6a0d9d3c4.webp
diff --git a/translated_images/br/10-Visualizing-Distributions.8097fd8abd7221a1.webp b/translated_images/pt-BR/10-Visualizing-Distributions.8097fd8abd7221a1.webp
similarity index 100%
rename from translated_images/br/10-Visualizing-Distributions.8097fd8abd7221a1.webp
rename to translated_images/pt-BR/10-Visualizing-Distributions.8097fd8abd7221a1.webp
diff --git a/translated_images/br/11-Visualizing-Proportions.3e82f24af94d206e.webp b/translated_images/pt-BR/11-Visualizing-Proportions.3e82f24af94d206e.webp
similarity index 100%
rename from translated_images/br/11-Visualizing-Proportions.3e82f24af94d206e.webp
rename to translated_images/pt-BR/11-Visualizing-Proportions.3e82f24af94d206e.webp
diff --git a/translated_images/br/12-Visualizing-Relationships.4466f9bd260f03dd.webp b/translated_images/pt-BR/12-Visualizing-Relationships.4466f9bd260f03dd.webp
similarity index 100%
rename from translated_images/br/12-Visualizing-Relationships.4466f9bd260f03dd.webp
rename to translated_images/pt-BR/12-Visualizing-Relationships.4466f9bd260f03dd.webp
diff --git a/translated_images/br/13-MeaningfulViz.4db6f1997e519908.webp b/translated_images/pt-BR/13-MeaningfulViz.4db6f1997e519908.webp
similarity index 100%
rename from translated_images/br/13-MeaningfulViz.4db6f1997e519908.webp
rename to translated_images/pt-BR/13-MeaningfulViz.4db6f1997e519908.webp
diff --git a/translated_images/br/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp b/translated_images/pt-BR/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
similarity index 100%
rename from translated_images/br/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
rename to translated_images/pt-BR/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
diff --git a/translated_images/br/15-Analyzing.b501f3dbdc958f6f.webp b/translated_images/pt-BR/15-Analyzing.b501f3dbdc958f6f.webp
similarity index 100%
rename from translated_images/br/15-Analyzing.b501f3dbdc958f6f.webp
rename to translated_images/pt-BR/15-Analyzing.b501f3dbdc958f6f.webp
diff --git a/translated_images/br/16-Communicating.f1d29cd7984442a4.webp b/translated_images/pt-BR/16-Communicating.f1d29cd7984442a4.webp
similarity index 100%
rename from translated_images/br/16-Communicating.f1d29cd7984442a4.webp
rename to translated_images/pt-BR/16-Communicating.f1d29cd7984442a4.webp
diff --git a/translated_images/br/17-DataScience-Cloud.0df76ac874805c14.webp b/translated_images/pt-BR/17-DataScience-Cloud.0df76ac874805c14.webp
similarity index 100%
rename from translated_images/br/17-DataScience-Cloud.0df76ac874805c14.webp
rename to translated_images/pt-BR/17-DataScience-Cloud.0df76ac874805c14.webp
diff --git a/translated_images/br/18-DataScience-Cloud.3a7292e8182b74eb.webp b/translated_images/pt-BR/18-DataScience-Cloud.3a7292e8182b74eb.webp
similarity index 100%
rename from translated_images/br/18-DataScience-Cloud.3a7292e8182b74eb.webp
rename to translated_images/pt-BR/18-DataScience-Cloud.3a7292e8182b74eb.webp
diff --git a/translated_images/br/19-DataScience-Cloud.177b38fb86301fc6.webp b/translated_images/pt-BR/19-DataScience-Cloud.177b38fb86301fc6.webp
similarity index 100%
rename from translated_images/br/19-DataScience-Cloud.177b38fb86301fc6.webp
rename to translated_images/pt-BR/19-DataScience-Cloud.177b38fb86301fc6.webp
diff --git a/translated_images/br/20-DataScience-Humanities.1d1a155f4d12a667.webp b/translated_images/pt-BR/20-DataScience-Humanities.1d1a155f4d12a667.webp
similarity index 100%
rename from translated_images/br/20-DataScience-Humanities.1d1a155f4d12a667.webp
rename to translated_images/pt-BR/20-DataScience-Humanities.1d1a155f4d12a667.webp
diff --git a/translated_images/br/20-DataScience-RealWorld.976976229ee11342.webp b/translated_images/pt-BR/20-DataScience-RealWorld.976976229ee11342.webp
similarity index 100%
rename from translated_images/br/20-DataScience-RealWorld.976976229ee11342.webp
rename to translated_images/pt-BR/20-DataScience-RealWorld.976976229ee11342.webp
diff --git a/translated_images/br/20-DataScience-Research.da434814c51b4ef8.webp b/translated_images/pt-BR/20-DataScience-Research.da434814c51b4ef8.webp
similarity index 100%
rename from translated_images/br/20-DataScience-Research.da434814c51b4ef8.webp
rename to translated_images/pt-BR/20-DataScience-Research.da434814c51b4ef8.webp
diff --git a/translated_images/br/20-DataScience-Sustainability.d4097bc684431da6.webp b/translated_images/pt-BR/20-DataScience-Sustainability.d4097bc684431da6.webp
similarity index 100%
rename from translated_images/br/20-DataScience-Sustainability.d4097bc684431da6.webp
rename to translated_images/pt-BR/20-DataScience-Sustainability.d4097bc684431da6.webp
diff --git a/translated_images/br/2D-wb.ae22fdd33936507a.webp b/translated_images/pt-BR/2D-wb.ae22fdd33936507a.webp
similarity index 100%
rename from translated_images/br/2D-wb.ae22fdd33936507a.webp
rename to translated_images/pt-BR/2D-wb.ae22fdd33936507a.webp
diff --git a/translated_images/br/2D.b3342157139dd804.webp b/translated_images/pt-BR/2D.b3342157139dd804.webp
similarity index 100%
rename from translated_images/br/2D.b3342157139dd804.webp
rename to translated_images/pt-BR/2D.b3342157139dd804.webp
diff --git a/translated_images/br/2d-plot.c504786f439bd7eb.webp b/translated_images/pt-BR/2d-plot.c504786f439bd7eb.webp
similarity index 100%
rename from translated_images/br/2d-plot.c504786f439bd7eb.webp
rename to translated_images/pt-BR/2d-plot.c504786f439bd7eb.webp
diff --git a/translated_images/br/3d.0cec12bcc60f0ce7.webp b/translated_images/pt-BR/3d.0cec12bcc60f0ce7.webp
similarity index 100%
rename from translated_images/br/3d.0cec12bcc60f0ce7.webp
rename to translated_images/pt-BR/3d.0cec12bcc60f0ce7.webp
diff --git a/translated_images/br/3d.db1734c151eee87d.webp b/translated_images/pt-BR/3d.db1734c151eee87d.webp
similarity index 100%
rename from translated_images/br/3d.db1734c151eee87d.webp
rename to translated_images/pt-BR/3d.db1734c151eee87d.webp
diff --git a/translated_images/br/CRISP-DM.8bad2b4c66e62aa7.webp b/translated_images/pt-BR/CRISP-DM.8bad2b4c66e62aa7.webp
similarity index 100%
rename from translated_images/br/CRISP-DM.8bad2b4c66e62aa7.webp
rename to translated_images/pt-BR/CRISP-DM.8bad2b4c66e62aa7.webp
diff --git a/translated_images/br/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp b/translated_images/pt-BR/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
similarity index 100%
rename from translated_images/br/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
rename to translated_images/pt-BR/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
diff --git a/translated_images/br/MaxWingspan-lineplot.b12169f99d26fdd2.webp b/translated_images/pt-BR/MaxWingspan-lineplot.b12169f99d26fdd2.webp
similarity index 100%
rename from translated_images/br/MaxWingspan-lineplot.b12169f99d26fdd2.webp
rename to translated_images/pt-BR/MaxWingspan-lineplot.b12169f99d26fdd2.webp
diff --git a/translated_images/br/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp b/translated_images/pt-BR/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
similarity index 100%
rename from translated_images/br/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
rename to translated_images/pt-BR/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
diff --git a/translated_images/br/MaxWingspan-scatterplot.60dc9e0e19d32700.webp b/translated_images/pt-BR/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
similarity index 100%
rename from translated_images/br/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
rename to translated_images/pt-BR/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
diff --git a/translated_images/br/aml-1.67281a85d3a1e2f3.webp b/translated_images/pt-BR/aml-1.67281a85d3a1e2f3.webp
similarity index 100%
rename from translated_images/br/aml-1.67281a85d3a1e2f3.webp
rename to translated_images/pt-BR/aml-1.67281a85d3a1e2f3.webp
diff --git a/translated_images/br/aml-2.c9fb9cffb39ccbbe.webp b/translated_images/pt-BR/aml-2.c9fb9cffb39ccbbe.webp
similarity index 100%
rename from translated_images/br/aml-2.c9fb9cffb39ccbbe.webp
rename to translated_images/pt-BR/aml-2.c9fb9cffb39ccbbe.webp
diff --git a/translated_images/br/aml-3.a7952e4295f38cc6.webp b/translated_images/pt-BR/aml-3.a7952e4295f38cc6.webp
similarity index 100%
rename from translated_images/br/aml-3.a7952e4295f38cc6.webp
rename to translated_images/pt-BR/aml-3.a7952e4295f38cc6.webp
diff --git a/translated_images/br/aml-4.7a627e09cb6f16d0.webp b/translated_images/pt-BR/aml-4.7a627e09cb6f16d0.webp
similarity index 100%
rename from translated_images/br/aml-4.7a627e09cb6f16d0.webp
rename to translated_images/pt-BR/aml-4.7a627e09cb6f16d0.webp
diff --git a/translated_images/br/bad-chart-1.596bc93425a8ac30.webp b/translated_images/pt-BR/bad-chart-1.596bc93425a8ac30.webp
similarity index 100%
rename from translated_images/br/bad-chart-1.596bc93425a8ac30.webp
rename to translated_images/pt-BR/bad-chart-1.596bc93425a8ac30.webp
diff --git a/translated_images/br/bad-chart-1.93130f495b748bed.webp b/translated_images/pt-BR/bad-chart-1.93130f495b748bed.webp
similarity index 100%
rename from translated_images/br/bad-chart-1.93130f495b748bed.webp
rename to translated_images/pt-BR/bad-chart-1.93130f495b748bed.webp
diff --git a/translated_images/br/bad-chart-2.62edf4d2f30f4e51.webp b/translated_images/pt-BR/bad-chart-2.62edf4d2f30f4e51.webp
similarity index 100%
rename from translated_images/br/bad-chart-2.62edf4d2f30f4e51.webp
rename to translated_images/pt-BR/bad-chart-2.62edf4d2f30f4e51.webp
diff --git a/translated_images/br/bad-chart-2.c20e36dd4e6f617c.webp b/translated_images/pt-BR/bad-chart-2.c20e36dd4e6f617c.webp
similarity index 100%
rename from translated_images/br/bad-chart-2.c20e36dd4e6f617c.webp
rename to translated_images/pt-BR/bad-chart-2.c20e36dd4e6f617c.webp
diff --git a/translated_images/br/bad-chart-3.6865d0afac4108d7.webp b/translated_images/pt-BR/bad-chart-3.6865d0afac4108d7.webp
similarity index 100%
rename from translated_images/br/bad-chart-3.6865d0afac4108d7.webp
rename to translated_images/pt-BR/bad-chart-3.6865d0afac4108d7.webp
diff --git a/translated_images/br/bad-chart-3.e201e2e915a230bc.webp b/translated_images/pt-BR/bad-chart-3.e201e2e915a230bc.webp
similarity index 100%
rename from translated_images/br/bad-chart-3.e201e2e915a230bc.webp
rename to translated_images/pt-BR/bad-chart-3.e201e2e915a230bc.webp
diff --git a/translated_images/br/bad-chart-4.68cfdf4011b45447.webp b/translated_images/pt-BR/bad-chart-4.68cfdf4011b45447.webp
similarity index 100%
rename from translated_images/br/bad-chart-4.68cfdf4011b45447.webp
rename to translated_images/pt-BR/bad-chart-4.68cfdf4011b45447.webp
diff --git a/translated_images/br/bad-chart-4.8872b2b881ffa96c.webp b/translated_images/pt-BR/bad-chart-4.8872b2b881ffa96c.webp
similarity index 100%
rename from translated_images/br/bad-chart-4.8872b2b881ffa96c.webp
rename to translated_images/pt-BR/bad-chart-4.8872b2b881ffa96c.webp
diff --git a/translated_images/br/bee.0aa1d91132b12e3a.webp b/translated_images/pt-BR/bee.0aa1d91132b12e3a.webp
similarity index 100%
rename from translated_images/br/bee.0aa1d91132b12e3a.webp
rename to translated_images/pt-BR/bee.0aa1d91132b12e3a.webp
diff --git a/translated_images/br/bodymass-per-order.9d2b065dd931b928.webp b/translated_images/pt-BR/bodymass-per-order.9d2b065dd931b928.webp
similarity index 100%
rename from translated_images/br/bodymass-per-order.9d2b065dd931b928.webp
rename to translated_images/pt-BR/bodymass-per-order.9d2b065dd931b928.webp
diff --git a/translated_images/br/bodymass-smooth.d31ce526d82b0a1f.webp b/translated_images/pt-BR/bodymass-smooth.d31ce526d82b0a1f.webp
similarity index 100%
rename from translated_images/br/bodymass-smooth.d31ce526d82b0a1f.webp
rename to translated_images/pt-BR/bodymass-smooth.d31ce526d82b0a1f.webp
diff --git a/translated_images/br/boxplot_byrole.036b27a1c3f52d42.webp b/translated_images/pt-BR/boxplot_byrole.036b27a1c3f52d42.webp
similarity index 100%
rename from translated_images/br/boxplot_byrole.036b27a1c3f52d42.webp
rename to translated_images/pt-BR/boxplot_byrole.036b27a1c3f52d42.webp
diff --git a/translated_images/br/boxplot_explanation.4039b7de08780fd4.webp b/translated_images/pt-BR/boxplot_explanation.4039b7de08780fd4.webp
similarity index 100%
rename from translated_images/br/boxplot_explanation.4039b7de08780fd4.webp
rename to translated_images/pt-BR/boxplot_explanation.4039b7de08780fd4.webp
diff --git a/translated_images/br/busing.7b9e3b41cd4b981c.webp b/translated_images/pt-BR/busing.7b9e3b41cd4b981c.webp
similarity index 100%
rename from translated_images/br/busing.7b9e3b41cd4b981c.webp
rename to translated_images/pt-BR/busing.7b9e3b41cd4b981c.webp
diff --git a/translated_images/br/busing.8157cf1bc89a3f65.webp b/translated_images/pt-BR/busing.8157cf1bc89a3f65.webp
similarity index 100%
rename from translated_images/br/busing.8157cf1bc89a3f65.webp
rename to translated_images/pt-BR/busing.8157cf1bc89a3f65.webp
diff --git a/translated_images/br/category-counts-02.0b9a0a4de42275ae.webp b/translated_images/pt-BR/category-counts-02.0b9a0a4de42275ae.webp
similarity index 100%
rename from translated_images/br/category-counts-02.0b9a0a4de42275ae.webp
rename to translated_images/pt-BR/category-counts-02.0b9a0a4de42275ae.webp
diff --git a/translated_images/br/category-counts.abee8188c4c9b6f0.webp b/translated_images/pt-BR/category-counts.abee8188c4c9b6f0.webp
similarity index 100%
rename from translated_images/br/category-counts.abee8188c4c9b6f0.webp
rename to translated_images/pt-BR/category-counts.abee8188c4c9b6f0.webp
diff --git a/translated_images/br/category-length-02.7304bf519375c980.webp b/translated_images/pt-BR/category-length-02.7304bf519375c980.webp
similarity index 100%
rename from translated_images/br/category-length-02.7304bf519375c980.webp
rename to translated_images/pt-BR/category-length-02.7304bf519375c980.webp
diff --git a/translated_images/br/category-length.7e34c296690e85d6.webp b/translated_images/pt-BR/category-length.7e34c296690e85d6.webp
similarity index 100%
rename from translated_images/br/category-length.7e34c296690e85d6.webp
rename to translated_images/pt-BR/category-length.7e34c296690e85d6.webp
diff --git a/translated_images/br/category-length.b0d9a0208a7b3713.webp b/translated_images/pt-BR/category-length.b0d9a0208a7b3713.webp
similarity index 100%
rename from translated_images/br/category-length.b0d9a0208a7b3713.webp
rename to translated_images/pt-BR/category-length.b0d9a0208a7b3713.webp
diff --git a/translated_images/br/cloud-picture.f5526de3c6c6387b.webp b/translated_images/pt-BR/cloud-picture.f5526de3c6c6387b.webp
similarity index 100%
rename from translated_images/br/cloud-picture.f5526de3c6c6387b.webp
rename to translated_images/pt-BR/cloud-picture.f5526de3c6c6387b.webp
diff --git a/translated_images/br/cluster-1.b78cb630bb543729.webp b/translated_images/pt-BR/cluster-1.b78cb630bb543729.webp
similarity index 100%
rename from translated_images/br/cluster-1.b78cb630bb543729.webp
rename to translated_images/pt-BR/cluster-1.b78cb630bb543729.webp
diff --git a/translated_images/br/cluster-2.ea30cdbc9f926bb9.webp b/translated_images/pt-BR/cluster-2.ea30cdbc9f926bb9.webp
similarity index 100%
rename from translated_images/br/cluster-2.ea30cdbc9f926bb9.webp
rename to translated_images/pt-BR/cluster-2.ea30cdbc9f926bb9.webp
diff --git a/translated_images/br/cluster-3.8a334bc070ec173a.webp b/translated_images/pt-BR/cluster-3.8a334bc070ec173a.webp
similarity index 100%
rename from translated_images/br/cluster-3.8a334bc070ec173a.webp
rename to translated_images/pt-BR/cluster-3.8a334bc070ec173a.webp
diff --git a/translated_images/br/columnar-db.ffcfe73c3e9063a8.webp b/translated_images/pt-BR/columnar-db.ffcfe73c3e9063a8.webp
similarity index 100%
rename from translated_images/br/columnar-db.ffcfe73c3e9063a8.webp
rename to translated_images/pt-BR/columnar-db.ffcfe73c3e9063a8.webp
diff --git a/translated_images/br/communication.06d8e2a88d30d168.webp b/translated_images/pt-BR/communication.06d8e2a88d30d168.webp
similarity index 100%
rename from translated_images/br/communication.06d8e2a88d30d168.webp
rename to translated_images/pt-BR/communication.06d8e2a88d30d168.webp
diff --git a/translated_images/br/comparingdata.f486a450d61c7ca5.webp b/translated_images/pt-BR/comparingdata.f486a450d61c7ca5.webp
similarity index 100%
rename from translated_images/br/comparingdata.f486a450d61c7ca5.webp
rename to translated_images/pt-BR/comparingdata.f486a450d61c7ca5.webp
diff --git a/translated_images/br/compute-instance-1.dba347cb199ca499.webp b/translated_images/pt-BR/compute-instance-1.dba347cb199ca499.webp
similarity index 100%
rename from translated_images/br/compute-instance-1.dba347cb199ca499.webp
rename to translated_images/pt-BR/compute-instance-1.dba347cb199ca499.webp
diff --git a/translated_images/br/consumption-1.700abd196452842a.webp b/translated_images/pt-BR/consumption-1.700abd196452842a.webp
similarity index 100%
rename from translated_images/br/consumption-1.700abd196452842a.webp
rename to translated_images/pt-BR/consumption-1.700abd196452842a.webp
diff --git a/translated_images/br/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp b/translated_images/pt-BR/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
similarity index 100%
rename from translated_images/br/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
rename to translated_images/pt-BR/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
diff --git a/translated_images/br/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp b/translated_images/pt-BR/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
similarity index 100%
rename from translated_images/br/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
rename to translated_images/pt-BR/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
diff --git a/translated_images/br/cosmosdb-emulator-persons.bf640586a7077c89.webp b/translated_images/pt-BR/cosmosdb-emulator-persons.bf640586a7077c89.webp
similarity index 100%
rename from translated_images/br/cosmosdb-emulator-persons.bf640586a7077c89.webp
rename to translated_images/pt-BR/cosmosdb-emulator-persons.bf640586a7077c89.webp
diff --git a/translated_images/br/covidspread.f3d131c4f1d260ab.webp b/translated_images/pt-BR/covidspread.f3d131c4f1d260ab.webp
similarity index 100%
rename from translated_images/br/covidspread.f3d131c4f1d260ab.webp
rename to translated_images/pt-BR/covidspread.f3d131c4f1d260ab.webp
diff --git a/translated_images/br/covidtreat.b2ba59f57ca45fbc.webp b/translated_images/pt-BR/covidtreat.b2ba59f57ca45fbc.webp
similarity index 100%
rename from translated_images/br/covidtreat.b2ba59f57ca45fbc.webp
rename to translated_images/pt-BR/covidtreat.b2ba59f57ca45fbc.webp
diff --git a/translated_images/br/data-love.a22ef29e6742c852.webp b/translated_images/pt-BR/data-love.a22ef29e6742c852.webp
similarity index 100%
rename from translated_images/br/data-love.a22ef29e6742c852.webp
rename to translated_images/pt-BR/data-love.a22ef29e6742c852.webp
diff --git a/translated_images/br/data-science-applications.4e5019cd8790ebac.webp b/translated_images/pt-BR/data-science-applications.4e5019cd8790ebac.webp
similarity index 100%
rename from translated_images/br/data-science-applications.4e5019cd8790ebac.webp
rename to translated_images/pt-BR/data-science-applications.4e5019cd8790ebac.webp
diff --git a/translated_images/br/data-science-lifecycle.a1e362637503c4fb.webp b/translated_images/pt-BR/data-science-lifecycle.a1e362637503c4fb.webp
similarity index 100%
rename from translated_images/br/data-science-lifecycle.a1e362637503c4fb.webp
rename to translated_images/pt-BR/data-science-lifecycle.a1e362637503c4fb.webp
diff --git a/translated_images/br/data.48e22bb7617d8d92.webp b/translated_images/pt-BR/data.48e22bb7617d8d92.webp
similarity index 100%
rename from translated_images/br/data.48e22bb7617d8d92.webp
rename to translated_images/pt-BR/data.48e22bb7617d8d92.webp
diff --git a/translated_images/br/dataframe-1.caf409f0c688e84c.webp b/translated_images/pt-BR/dataframe-1.caf409f0c688e84c.webp
similarity index 100%
rename from translated_images/br/dataframe-1.caf409f0c688e84c.webp
rename to translated_images/pt-BR/dataframe-1.caf409f0c688e84c.webp
diff --git a/translated_images/br/datascienceinthecloud.59ffb059a670fb0a.webp b/translated_images/pt-BR/datascienceinthecloud.59ffb059a670fb0a.webp
similarity index 100%
rename from translated_images/br/datascienceinthecloud.59ffb059a670fb0a.webp
rename to translated_images/pt-BR/datascienceinthecloud.59ffb059a670fb0a.webp
diff --git a/translated_images/br/dataset-1.e86ab4e10907a6e9.webp b/translated_images/pt-BR/dataset-1.e86ab4e10907a6e9.webp
similarity index 100%
rename from translated_images/br/dataset-1.e86ab4e10907a6e9.webp
rename to translated_images/pt-BR/dataset-1.e86ab4e10907a6e9.webp
diff --git a/translated_images/br/dataset-2.f58de1c435d5bf9c.webp b/translated_images/pt-BR/dataset-2.f58de1c435d5bf9c.webp
similarity index 100%
rename from translated_images/br/dataset-2.f58de1c435d5bf9c.webp
rename to translated_images/pt-BR/dataset-2.f58de1c435d5bf9c.webp
diff --git a/translated_images/br/dataset-3.58db8c0eb783e892.webp b/translated_images/pt-BR/dataset-3.58db8c0eb783e892.webp
similarity index 100%
rename from translated_images/br/dataset-3.58db8c0eb783e892.webp
rename to translated_images/pt-BR/dataset-3.58db8c0eb783e892.webp
diff --git a/translated_images/br/density-plot.675ccf865b76c690.webp b/translated_images/pt-BR/density-plot.675ccf865b76c690.webp
similarity index 100%
rename from translated_images/br/density-plot.675ccf865b76c690.webp
rename to translated_images/pt-BR/density-plot.675ccf865b76c690.webp
diff --git a/translated_images/br/density1.8801043bd4af2567.webp b/translated_images/pt-BR/density1.8801043bd4af2567.webp
similarity index 100%
rename from translated_images/br/density1.8801043bd4af2567.webp
rename to translated_images/pt-BR/density1.8801043bd4af2567.webp
diff --git a/translated_images/br/density2.8e7647257060ff54.webp b/translated_images/pt-BR/density2.8e7647257060ff54.webp
similarity index 100%
rename from translated_images/br/density2.8e7647257060ff54.webp
rename to translated_images/pt-BR/density2.8e7647257060ff54.webp
diff --git a/translated_images/br/density3.84ae27da82f31e6b.webp b/translated_images/pt-BR/density3.84ae27da82f31e6b.webp
similarity index 100%
rename from translated_images/br/density3.84ae27da82f31e6b.webp
rename to translated_images/pt-BR/density3.84ae27da82f31e6b.webp
diff --git a/translated_images/br/density4.e9d6c033f15c500f.webp b/translated_images/pt-BR/density4.e9d6c033f15c500f.webp
similarity index 100%
rename from translated_images/br/density4.e9d6c033f15c500f.webp
rename to translated_images/pt-BR/density4.e9d6c033f15c500f.webp
diff --git a/translated_images/br/deploy-1.ddad725acadc84e3.webp b/translated_images/pt-BR/deploy-1.ddad725acadc84e3.webp
similarity index 100%
rename from translated_images/br/deploy-1.ddad725acadc84e3.webp
rename to translated_images/pt-BR/deploy-1.ddad725acadc84e3.webp
diff --git a/translated_images/br/deploy-2.94dbb13f23908647.webp b/translated_images/pt-BR/deploy-2.94dbb13f23908647.webp
similarity index 100%
rename from translated_images/br/deploy-2.94dbb13f23908647.webp
rename to translated_images/pt-BR/deploy-2.94dbb13f23908647.webp
diff --git a/translated_images/br/deploy-3.fecefef070e8ef3b.webp b/translated_images/pt-BR/deploy-3.fecefef070e8ef3b.webp
similarity index 100%
rename from translated_images/br/deploy-3.fecefef070e8ef3b.webp
rename to translated_images/pt-BR/deploy-3.fecefef070e8ef3b.webp
diff --git a/translated_images/br/dist1-wb.0d0cac82e2974fbb.webp b/translated_images/pt-BR/dist1-wb.0d0cac82e2974fbb.webp
similarity index 100%
rename from translated_images/br/dist1-wb.0d0cac82e2974fbb.webp
rename to translated_images/pt-BR/dist1-wb.0d0cac82e2974fbb.webp
diff --git a/translated_images/br/dist1.0010100b00231819.webp b/translated_images/pt-BR/dist1.0010100b00231819.webp
similarity index 100%
rename from translated_images/br/dist1.0010100b00231819.webp
rename to translated_images/pt-BR/dist1.0010100b00231819.webp
diff --git a/translated_images/br/dist2-wb.2c0a7a3499b2fbf5.webp b/translated_images/pt-BR/dist2-wb.2c0a7a3499b2fbf5.webp
similarity index 100%
rename from translated_images/br/dist2-wb.2c0a7a3499b2fbf5.webp
rename to translated_images/pt-BR/dist2-wb.2c0a7a3499b2fbf5.webp
diff --git a/translated_images/br/dist2.c398bfd5320401b9.webp b/translated_images/pt-BR/dist2.c398bfd5320401b9.webp
similarity index 100%
rename from translated_images/br/dist2.c398bfd5320401b9.webp
rename to translated_images/pt-BR/dist2.c398bfd5320401b9.webp
diff --git a/translated_images/br/dist3-wb.64b88db7f9780200.webp b/translated_images/pt-BR/dist3-wb.64b88db7f9780200.webp
similarity index 100%
rename from translated_images/br/dist3-wb.64b88db7f9780200.webp
rename to translated_images/pt-BR/dist3-wb.64b88db7f9780200.webp
diff --git a/translated_images/br/dist3.ad4d9658559690f5.webp b/translated_images/pt-BR/dist3.ad4d9658559690f5.webp
similarity index 100%
rename from translated_images/br/dist3.ad4d9658559690f5.webp
rename to translated_images/pt-BR/dist3.ad4d9658559690f5.webp
diff --git a/translated_images/br/distribution-30bins.6a3921ea7a421bf7.webp b/translated_images/pt-BR/distribution-30bins.6a3921ea7a421bf7.webp
similarity index 100%
rename from translated_images/br/distribution-30bins.6a3921ea7a421bf7.webp
rename to translated_images/pt-BR/distribution-30bins.6a3921ea7a421bf7.webp
diff --git a/translated_images/br/distribution-over-the-entire-dataset.d22afd3fa96be854.webp b/translated_images/pt-BR/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
similarity index 100%
rename from translated_images/br/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
rename to translated_images/pt-BR/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
diff --git a/translated_images/br/document-db.ddeec48c6dc9e5fd.webp b/translated_images/pt-BR/document-db.ddeec48c6dc9e5fd.webp
similarity index 100%
rename from translated_images/br/document-db.ddeec48c6dc9e5fd.webp
rename to translated_images/pt-BR/document-db.ddeec48c6dc9e5fd.webp
diff --git a/translated_images/br/donut-wb.34e6fb275da9d834.webp b/translated_images/pt-BR/donut-wb.34e6fb275da9d834.webp
similarity index 100%
rename from translated_images/br/donut-wb.34e6fb275da9d834.webp
rename to translated_images/pt-BR/donut-wb.34e6fb275da9d834.webp
diff --git a/translated_images/br/donut-wb.be3c12a22712302b.webp b/translated_images/pt-BR/donut-wb.be3c12a22712302b.webp
similarity index 100%
rename from translated_images/br/donut-wb.be3c12a22712302b.webp
rename to translated_images/pt-BR/donut-wb.be3c12a22712302b.webp
diff --git a/translated_images/br/donut.f016d7be7f08c8f8.webp b/translated_images/pt-BR/donut.f016d7be7f08c8f8.webp
similarity index 100%
rename from translated_images/br/donut.f016d7be7f08c8f8.webp
rename to translated_images/pt-BR/donut.f016d7be7f08c8f8.webp
diff --git a/translated_images/br/ds-for-beginners.d01930c9193ef522.webp b/translated_images/pt-BR/ds-for-beginners.d01930c9193ef522.webp
similarity index 100%
rename from translated_images/br/ds-for-beginners.d01930c9193ef522.webp
rename to translated_images/pt-BR/ds-for-beginners.d01930c9193ef522.webp
diff --git a/translated_images/br/ds_wordcloud.664a7c07dca57de0.webp b/translated_images/pt-BR/ds_wordcloud.664a7c07dca57de0.webp
similarity index 100%
rename from translated_images/br/ds_wordcloud.664a7c07dca57de0.webp
rename to translated_images/pt-BR/ds_wordcloud.664a7c07dca57de0.webp
diff --git a/translated_images/br/dual-line.a4c28ce659603fab.webp b/translated_images/pt-BR/dual-line.a4c28ce659603fab.webp
similarity index 100%
rename from translated_images/br/dual-line.a4c28ce659603fab.webp
rename to translated_images/pt-BR/dual-line.a4c28ce659603fab.webp
diff --git a/translated_images/br/dual-line.fc4665f360a54018.webp b/translated_images/pt-BR/dual-line.fc4665f360a54018.webp
similarity index 100%
rename from translated_images/br/dual-line.fc4665f360a54018.webp
rename to translated_images/pt-BR/dual-line.fc4665f360a54018.webp
diff --git a/translated_images/br/facet.491ad90d61c2a7cc.webp b/translated_images/pt-BR/facet.491ad90d61c2a7cc.webp
similarity index 100%
rename from translated_images/br/facet.491ad90d61c2a7cc.webp
rename to translated_images/pt-BR/facet.491ad90d61c2a7cc.webp
diff --git a/translated_images/br/facet.6a34851dcd540050.webp b/translated_images/pt-BR/facet.6a34851dcd540050.webp
similarity index 100%
rename from translated_images/br/facet.6a34851dcd540050.webp
rename to translated_images/pt-BR/facet.6a34851dcd540050.webp
diff --git a/translated_images/br/favicon.37b561214b36d454.webp b/translated_images/pt-BR/favicon.37b561214b36d454.webp
similarity index 100%
rename from translated_images/br/favicon.37b561214b36d454.webp
rename to translated_images/pt-BR/favicon.37b561214b36d454.webp
diff --git a/translated_images/br/filtered-histogram.6bf5d2bfd8253322.webp b/translated_images/pt-BR/filtered-histogram.6bf5d2bfd8253322.webp
similarity index 100%
rename from translated_images/br/filtered-histogram.6bf5d2bfd8253322.webp
rename to translated_images/pt-BR/filtered-histogram.6bf5d2bfd8253322.webp
diff --git a/translated_images/br/formula-excel.ad1068c220892f5e.webp b/translated_images/pt-BR/formula-excel.ad1068c220892f5e.webp
similarity index 100%
rename from translated_images/br/formula-excel.ad1068c220892f5e.webp
rename to translated_images/pt-BR/formula-excel.ad1068c220892f5e.webp
diff --git a/translated_images/br/full-data-bar-02.aaa3fda71c63ed56.webp b/translated_images/pt-BR/full-data-bar-02.aaa3fda71c63ed56.webp
similarity index 100%
rename from translated_images/br/full-data-bar-02.aaa3fda71c63ed56.webp
rename to translated_images/pt-BR/full-data-bar-02.aaa3fda71c63ed56.webp
diff --git a/translated_images/br/full-data-bar.a0b37da71a6cd236.webp b/translated_images/pt-BR/full-data-bar.a0b37da71a6cd236.webp
similarity index 100%
rename from translated_images/br/full-data-bar.a0b37da71a6cd236.webp
rename to translated_images/pt-BR/full-data-bar.a0b37da71a6cd236.webp
diff --git a/translated_images/br/function-excel.be2ae4feddc10ca0.webp b/translated_images/pt-BR/function-excel.be2ae4feddc10ca0.webp
similarity index 100%
rename from translated_images/br/function-excel.be2ae4feddc10ca0.webp
rename to translated_images/pt-BR/function-excel.be2ae4feddc10ca0.webp
diff --git a/translated_images/br/graph-db.d13629152f79a9da.webp b/translated_images/pt-BR/graph-db.d13629152f79a9da.webp
similarity index 100%
rename from translated_images/br/graph-db.d13629152f79a9da.webp
rename to translated_images/pt-BR/graph-db.d13629152f79a9da.webp
diff --git a/translated_images/br/height-boxplot.ccb66b2848b5f51c.webp b/translated_images/pt-BR/height-boxplot.ccb66b2848b5f51c.webp
similarity index 100%
rename from translated_images/br/height-boxplot.ccb66b2848b5f51c.webp
rename to translated_images/pt-BR/height-boxplot.ccb66b2848b5f51c.webp
diff --git a/translated_images/br/histogram-conservation-wb.3c40450eb072c14d.webp b/translated_images/pt-BR/histogram-conservation-wb.3c40450eb072c14d.webp
similarity index 100%
rename from translated_images/br/histogram-conservation-wb.3c40450eb072c14d.webp
rename to translated_images/pt-BR/histogram-conservation-wb.3c40450eb072c14d.webp
diff --git a/translated_images/br/histogram-conservation.13b3542e7784e415.webp b/translated_images/pt-BR/histogram-conservation.13b3542e7784e415.webp
similarity index 100%
rename from translated_images/br/histogram-conservation.13b3542e7784e415.webp
rename to translated_images/pt-BR/histogram-conservation.13b3542e7784e415.webp
diff --git a/translated_images/br/kv-db.e8f2b75686bbdfcb.webp b/translated_images/pt-BR/kv-db.e8f2b75686bbdfcb.webp
similarity index 100%
rename from translated_images/br/kv-db.e8f2b75686bbdfcb.webp
rename to translated_images/pt-BR/kv-db.e8f2b75686bbdfcb.webp
diff --git a/translated_images/br/labeled-wingspan-02.6110e2d2401cd523.webp b/translated_images/pt-BR/labeled-wingspan-02.6110e2d2401cd523.webp
similarity index 100%
rename from translated_images/br/labeled-wingspan-02.6110e2d2401cd523.webp
rename to translated_images/pt-BR/labeled-wingspan-02.6110e2d2401cd523.webp
diff --git a/translated_images/br/labeled-wingspan.900ffedd7e3ec6de.webp b/translated_images/pt-BR/labeled-wingspan.900ffedd7e3ec6de.webp
similarity index 100%
rename from translated_images/br/labeled-wingspan.900ffedd7e3ec6de.webp
rename to translated_images/pt-BR/labeled-wingspan.900ffedd7e3ec6de.webp
diff --git a/translated_images/br/less-smooth-bodymass.10f4db8b683cc17d.webp b/translated_images/pt-BR/less-smooth-bodymass.10f4db8b683cc17d.webp
similarity index 100%
rename from translated_images/br/less-smooth-bodymass.10f4db8b683cc17d.webp
rename to translated_images/pt-BR/less-smooth-bodymass.10f4db8b683cc17d.webp
diff --git a/translated_images/br/liaisons.7b440b28f6d07ea4.webp b/translated_images/pt-BR/liaisons.7b440b28f6d07ea4.webp
similarity index 100%
rename from translated_images/br/liaisons.7b440b28f6d07ea4.webp
rename to translated_images/pt-BR/liaisons.7b440b28f6d07ea4.webp
diff --git a/translated_images/br/liaisons.90ce7360bcf84765.webp b/translated_images/pt-BR/liaisons.90ce7360bcf84765.webp
similarity index 100%
rename from translated_images/br/liaisons.90ce7360bcf84765.webp
rename to translated_images/pt-BR/liaisons.90ce7360bcf84765.webp
diff --git a/translated_images/br/line1.299b576fbb2a59e6.webp b/translated_images/pt-BR/line1.299b576fbb2a59e6.webp
similarity index 100%
rename from translated_images/br/line1.299b576fbb2a59e6.webp
rename to translated_images/pt-BR/line1.299b576fbb2a59e6.webp
diff --git a/translated_images/br/line1.f36eb465229a3b1f.webp b/translated_images/pt-BR/line1.f36eb465229a3b1f.webp
similarity index 100%
rename from translated_images/br/line1.f36eb465229a3b1f.webp
rename to translated_images/pt-BR/line1.f36eb465229a3b1f.webp
diff --git a/translated_images/br/line2.3b18fcda7176ceba.webp b/translated_images/pt-BR/line2.3b18fcda7176ceba.webp
similarity index 100%
rename from translated_images/br/line2.3b18fcda7176ceba.webp
rename to translated_images/pt-BR/line2.3b18fcda7176ceba.webp
diff --git a/translated_images/br/line2.a5b3493dc01058af.webp b/translated_images/pt-BR/line2.a5b3493dc01058af.webp
similarity index 100%
rename from translated_images/br/line2.a5b3493dc01058af.webp
rename to translated_images/pt-BR/line2.a5b3493dc01058af.webp
diff --git a/translated_images/br/max-length-per-order.e5b283d952c78c12.webp b/translated_images/pt-BR/max-length-per-order.e5b283d952c78c12.webp
similarity index 100%
rename from translated_images/br/max-length-per-order.e5b283d952c78c12.webp
rename to translated_images/pt-BR/max-length-per-order.e5b283d952c78c12.webp
diff --git a/translated_images/br/max-wingspan-02.e79fd847b2640b89.webp b/translated_images/pt-BR/max-wingspan-02.e79fd847b2640b89.webp
similarity index 100%
rename from translated_images/br/max-wingspan-02.e79fd847b2640b89.webp
rename to translated_images/pt-BR/max-wingspan-02.e79fd847b2640b89.webp
diff --git a/translated_images/br/max-wingspan-labels-02.aa90e826ca49a9d1.webp b/translated_images/pt-BR/max-wingspan-labels-02.aa90e826ca49a9d1.webp
similarity index 100%
rename from translated_images/br/max-wingspan-labels-02.aa90e826ca49a9d1.webp
rename to translated_images/pt-BR/max-wingspan-labels-02.aa90e826ca49a9d1.webp
diff --git a/translated_images/br/max-wingspan-labels.46f0cc3c48edd4e0.webp b/translated_images/pt-BR/max-wingspan-labels.46f0cc3c48edd4e0.webp
similarity index 100%
rename from translated_images/br/max-wingspan-labels.46f0cc3c48edd4e0.webp
rename to translated_images/pt-BR/max-wingspan-labels.46f0cc3c48edd4e0.webp
diff --git a/translated_images/br/max-wingspan.0b8d0858436414aa.webp b/translated_images/pt-BR/max-wingspan.0b8d0858436414aa.webp
similarity index 100%
rename from translated_images/br/max-wingspan.0b8d0858436414aa.webp
rename to translated_images/pt-BR/max-wingspan.0b8d0858436414aa.webp
diff --git a/translated_images/br/multi.56548caa9eae8d0f.webp b/translated_images/pt-BR/multi.56548caa9eae8d0f.webp
similarity index 100%
rename from translated_images/br/multi.56548caa9eae8d0f.webp
rename to translated_images/pt-BR/multi.56548caa9eae8d0f.webp
diff --git a/translated_images/br/new-container.650e10c7a20a5f83.webp b/translated_images/pt-BR/new-container.650e10c7a20a5f83.webp
similarity index 100%
rename from translated_images/br/new-container.650e10c7a20a5f83.webp
rename to translated_images/pt-BR/new-container.650e10c7a20a5f83.webp
diff --git a/translated_images/br/normal-histogram.dfae0d67c202137d.webp b/translated_images/pt-BR/normal-histogram.dfae0d67c202137d.webp
similarity index 100%
rename from translated_images/br/normal-histogram.dfae0d67c202137d.webp
rename to translated_images/pt-BR/normal-histogram.dfae0d67c202137d.webp
diff --git a/translated_images/br/notebook-1.12998af7b02c83f5.webp b/translated_images/pt-BR/notebook-1.12998af7b02c83f5.webp
similarity index 100%
rename from translated_images/br/notebook-1.12998af7b02c83f5.webp
rename to translated_images/pt-BR/notebook-1.12998af7b02c83f5.webp
diff --git a/translated_images/br/notebook-2.9a657c037e34f1cf.webp b/translated_images/pt-BR/notebook-2.9a657c037e34f1cf.webp
similarity index 100%
rename from translated_images/br/notebook-2.9a657c037e34f1cf.webp
rename to translated_images/pt-BR/notebook-2.9a657c037e34f1cf.webp
diff --git a/translated_images/br/parts-of-spreadsheet.120711c82aa18a45.webp b/translated_images/pt-BR/parts-of-spreadsheet.120711c82aa18a45.webp
similarity index 100%
rename from translated_images/br/parts-of-spreadsheet.120711c82aa18a45.webp
rename to translated_images/pt-BR/parts-of-spreadsheet.120711c82aa18a45.webp
diff --git a/translated_images/br/pie1-wb.685df063673751f4.webp b/translated_images/pt-BR/pie1-wb.685df063673751f4.webp
similarity index 100%
rename from translated_images/br/pie1-wb.685df063673751f4.webp
rename to translated_images/pt-BR/pie1-wb.685df063673751f4.webp
diff --git a/translated_images/br/pie1-wb.e201f2fcc3354131.webp b/translated_images/pt-BR/pie1-wb.e201f2fcc3354131.webp
similarity index 100%
rename from translated_images/br/pie1-wb.e201f2fcc3354131.webp
rename to translated_images/pt-BR/pie1-wb.e201f2fcc3354131.webp
diff --git a/translated_images/br/pie1.8f6a8bfac96de60e.webp b/translated_images/pt-BR/pie1.8f6a8bfac96de60e.webp
similarity index 100%
rename from translated_images/br/pie1.8f6a8bfac96de60e.webp
rename to translated_images/pt-BR/pie1.8f6a8bfac96de60e.webp
diff --git a/translated_images/br/planetary-computer-explorer.c1e95a9b053167d6.webp b/translated_images/pt-BR/planetary-computer-explorer.c1e95a9b053167d6.webp
similarity index 100%
rename from translated_images/br/planetary-computer-explorer.c1e95a9b053167d6.webp
rename to translated_images/pt-BR/planetary-computer-explorer.c1e95a9b053167d6.webp
diff --git a/translated_images/br/probability-density.a8aad29f17a14afb.webp b/translated_images/pt-BR/probability-density.a8aad29f17a14afb.webp
similarity index 100%
rename from translated_images/br/probability-density.a8aad29f17a14afb.webp
rename to translated_images/pt-BR/probability-density.a8aad29f17a14afb.webp
diff --git a/translated_images/br/project-schema.420e56d495624541.webp b/translated_images/pt-BR/project-schema.420e56d495624541.webp
similarity index 100%
rename from translated_images/br/project-schema.420e56d495624541.webp
rename to translated_images/pt-BR/project-schema.420e56d495624541.webp
diff --git a/translated_images/br/project-schema.736f6e403f321eb4.webp b/translated_images/pt-BR/project-schema.736f6e403f321eb4.webp
similarity index 100%
rename from translated_images/br/project-schema.736f6e403f321eb4.webp
rename to translated_images/pt-BR/project-schema.736f6e403f321eb4.webp
diff --git a/translated_images/br/scatter-wb.9d98b0ed7f0388af.webp b/translated_images/pt-BR/scatter-wb.9d98b0ed7f0388af.webp
similarity index 100%
rename from translated_images/br/scatter-wb.9d98b0ed7f0388af.webp
rename to translated_images/pt-BR/scatter-wb.9d98b0ed7f0388af.webp
diff --git a/translated_images/br/scatter.520a43eceb46dbcb.webp b/translated_images/pt-BR/scatter.520a43eceb46dbcb.webp
similarity index 100%
rename from translated_images/br/scatter.520a43eceb46dbcb.webp
rename to translated_images/pt-BR/scatter.520a43eceb46dbcb.webp
diff --git a/translated_images/br/scatter1.5e1aa5fd6706c5d1.webp b/translated_images/pt-BR/scatter1.5e1aa5fd6706c5d1.webp
similarity index 100%
rename from translated_images/br/scatter1.5e1aa5fd6706c5d1.webp
rename to translated_images/pt-BR/scatter1.5e1aa5fd6706c5d1.webp
diff --git a/translated_images/br/scatter1.86b8900674d88b26.webp b/translated_images/pt-BR/scatter1.86b8900674d88b26.webp
similarity index 100%
rename from translated_images/br/scatter1.86b8900674d88b26.webp
rename to translated_images/pt-BR/scatter1.86b8900674d88b26.webp
diff --git a/translated_images/br/scatter2.4d1cbc693bad20e2.webp b/translated_images/pt-BR/scatter2.4d1cbc693bad20e2.webp
similarity index 100%
rename from translated_images/br/scatter2.4d1cbc693bad20e2.webp
rename to translated_images/pt-BR/scatter2.4d1cbc693bad20e2.webp
diff --git a/translated_images/br/scatter2.c0041a58621ca702.webp b/translated_images/pt-BR/scatter2.c0041a58621ca702.webp
similarity index 100%
rename from translated_images/br/scatter2.c0041a58621ca702.webp
rename to translated_images/pt-BR/scatter2.c0041a58621ca702.webp
diff --git a/translated_images/br/scatter3.3c160a3d1dcb36b3.webp b/translated_images/pt-BR/scatter3.3c160a3d1dcb36b3.webp
similarity index 100%
rename from translated_images/br/scatter3.3c160a3d1dcb36b3.webp
rename to translated_images/pt-BR/scatter3.3c160a3d1dcb36b3.webp
diff --git a/translated_images/br/scatter3.722d21e6f20b3ea2.webp b/translated_images/pt-BR/scatter3.722d21e6f20b3ea2.webp
similarity index 100%
rename from translated_images/br/scatter3.722d21e6f20b3ea2.webp
rename to translated_images/pt-BR/scatter3.722d21e6f20b3ea2.webp
diff --git a/translated_images/br/scatterplot-wingspan-02.1c33790094ce36a7.webp b/translated_images/pt-BR/scatterplot-wingspan-02.1c33790094ce36a7.webp
similarity index 100%
rename from translated_images/br/scatterplot-wingspan-02.1c33790094ce36a7.webp
rename to translated_images/pt-BR/scatterplot-wingspan-02.1c33790094ce36a7.webp
diff --git a/translated_images/br/scatterplot-wingspan.bdab448702939bb3.webp b/translated_images/pt-BR/scatterplot-wingspan.bdab448702939bb3.webp
similarity index 100%
rename from translated_images/br/scatterplot-wingspan.bdab448702939bb3.webp
rename to translated_images/pt-BR/scatterplot-wingspan.bdab448702939bb3.webp
diff --git a/translated_images/br/stacked-bar-chart.0c92264e89da7b39.webp b/translated_images/pt-BR/stacked-bar-chart.0c92264e89da7b39.webp
similarity index 100%
rename from translated_images/br/stacked-bar-chart.0c92264e89da7b39.webp
rename to translated_images/pt-BR/stacked-bar-chart.0c92264e89da7b39.webp
diff --git a/translated_images/br/superimposed-02.f03058536baeb2ed.webp b/translated_images/pt-BR/superimposed-02.f03058536baeb2ed.webp
similarity index 100%
rename from translated_images/br/superimposed-02.f03058536baeb2ed.webp
rename to translated_images/pt-BR/superimposed-02.f03058536baeb2ed.webp
diff --git a/translated_images/br/superimposed-values.5363f0705a1da416.webp b/translated_images/pt-BR/superimposed-values.5363f0705a1da416.webp
similarity index 100%
rename from translated_images/br/superimposed-values.5363f0705a1da416.webp
rename to translated_images/pt-BR/superimposed-values.5363f0705a1da416.webp
diff --git a/translated_images/br/superimposed.8b5bd0e8825d9c5c.webp b/translated_images/pt-BR/superimposed.8b5bd0e8825d9c5c.webp
similarity index 100%
rename from translated_images/br/superimposed.8b5bd0e8825d9c5c.webp
rename to translated_images/pt-BR/superimposed.8b5bd0e8825d9c5c.webp
diff --git a/translated_images/br/tdsp-lifecycle2.e19029d598e2e73d.webp b/translated_images/pt-BR/tdsp-lifecycle2.e19029d598e2e73d.webp
similarity index 100%
rename from translated_images/br/tdsp-lifecycle2.e19029d598e2e73d.webp
rename to translated_images/pt-BR/tdsp-lifecycle2.e19029d598e2e73d.webp
diff --git a/translated_images/br/timeseries-1.80de678ab1cf727e.webp b/translated_images/pt-BR/timeseries-1.80de678ab1cf727e.webp
similarity index 100%
rename from translated_images/br/timeseries-1.80de678ab1cf727e.webp
rename to translated_images/pt-BR/timeseries-1.80de678ab1cf727e.webp
diff --git a/translated_images/br/timeseries-2.aae51d575c55181c.webp b/translated_images/pt-BR/timeseries-2.aae51d575c55181c.webp
similarity index 100%
rename from translated_images/br/timeseries-2.aae51d575c55181c.webp
rename to translated_images/pt-BR/timeseries-2.aae51d575c55181c.webp
diff --git a/translated_images/br/timeseries-3.f3147cbc8c624881.webp b/translated_images/pt-BR/timeseries-3.f3147cbc8c624881.webp
similarity index 100%
rename from translated_images/br/timeseries-3.f3147cbc8c624881.webp
rename to translated_images/pt-BR/timeseries-3.f3147cbc8c624881.webp
diff --git a/translated_images/br/tornado.2880ffc7f135f82b.webp b/translated_images/pt-BR/tornado.2880ffc7f135f82b.webp
similarity index 100%
rename from translated_images/br/tornado.2880ffc7f135f82b.webp
rename to translated_images/pt-BR/tornado.2880ffc7f135f82b.webp
diff --git a/translated_images/br/tornado.9f42168791208f97.webp b/translated_images/pt-BR/tornado.9f42168791208f97.webp
similarity index 100%
rename from translated_images/br/tornado.9f42168791208f97.webp
rename to translated_images/pt-BR/tornado.9f42168791208f97.webp
diff --git a/translated_images/br/video-def-ds.6623ee2392ef1abf.webp b/translated_images/pt-BR/video-def-ds.6623ee2392ef1abf.webp
similarity index 100%
rename from translated_images/br/video-def-ds.6623ee2392ef1abf.webp
rename to translated_images/pt-BR/video-def-ds.6623ee2392ef1abf.webp
diff --git a/translated_images/br/video-ds-python.245247dc811db8e4.webp b/translated_images/pt-BR/video-ds-python.245247dc811db8e4.webp
similarity index 100%
rename from translated_images/br/video-ds-python.245247dc811db8e4.webp
rename to translated_images/pt-BR/video-ds-python.245247dc811db8e4.webp
diff --git a/translated_images/br/video-prob-and-stats.e4282e5efa2f2543.webp b/translated_images/pt-BR/video-prob-and-stats.e4282e5efa2f2543.webp
similarity index 100%
rename from translated_images/br/video-prob-and-stats.e4282e5efa2f2543.webp
rename to translated_images/pt-BR/video-prob-and-stats.e4282e5efa2f2543.webp
diff --git a/translated_images/br/waffle.5455dbae4ccf17d5.webp b/translated_images/pt-BR/waffle.5455dbae4ccf17d5.webp
similarity index 100%
rename from translated_images/br/waffle.5455dbae4ccf17d5.webp
rename to translated_images/pt-BR/waffle.5455dbae4ccf17d5.webp
diff --git a/translated_images/br/waffle.aaa75c5337735a6e.webp b/translated_images/pt-BR/waffle.aaa75c5337735a6e.webp
similarity index 100%
rename from translated_images/br/waffle.aaa75c5337735a6e.webp
rename to translated_images/pt-BR/waffle.aaa75c5337735a6e.webp
diff --git a/translated_images/br/weight-boxplot.1dbab1c03af26f8a.webp b/translated_images/pt-BR/weight-boxplot.1dbab1c03af26f8a.webp
similarity index 100%
rename from translated_images/br/weight-boxplot.1dbab1c03af26f8a.webp
rename to translated_images/pt-BR/weight-boxplot.1dbab1c03af26f8a.webp
diff --git a/translated_images/br/weight-height-relationship.3f06bde4ca2aba99.webp b/translated_images/pt-BR/weight-height-relationship.3f06bde4ca2aba99.webp
similarity index 100%
rename from translated_images/br/weight-height-relationship.3f06bde4ca2aba99.webp
rename to translated_images/pt-BR/weight-height-relationship.3f06bde4ca2aba99.webp
diff --git a/translated_images/br/weight-histogram.bfd00caf7fc30b14.webp b/translated_images/pt-BR/weight-histogram.bfd00caf7fc30b14.webp
similarity index 100%
rename from translated_images/br/weight-histogram.bfd00caf7fc30b14.webp
rename to translated_images/pt-BR/weight-histogram.bfd00caf7fc30b14.webp
diff --git a/translated_images/br/wingspan-conservation-collation.4024e9aa6910866a.webp b/translated_images/pt-BR/wingspan-conservation-collation.4024e9aa6910866a.webp
similarity index 100%
rename from translated_images/br/wingspan-conservation-collation.4024e9aa6910866a.webp
rename to translated_images/pt-BR/wingspan-conservation-collation.4024e9aa6910866a.webp
diff --git a/translated_images/br/workspace-1.ac8694d60b073ed1.webp b/translated_images/pt-BR/workspace-1.ac8694d60b073ed1.webp
similarity index 100%
rename from translated_images/br/workspace-1.ac8694d60b073ed1.webp
rename to translated_images/pt-BR/workspace-1.ac8694d60b073ed1.webp
diff --git a/translated_images/br/workspace-2.ae7c486db8796147.webp b/translated_images/pt-BR/workspace-2.ae7c486db8796147.webp
similarity index 100%
rename from translated_images/br/workspace-2.ae7c486db8796147.webp
rename to translated_images/pt-BR/workspace-2.ae7c486db8796147.webp
diff --git a/translated_images/br/workspace-3.398ca4a5858132cc.webp b/translated_images/pt-BR/workspace-3.398ca4a5858132cc.webp
similarity index 100%
rename from translated_images/br/workspace-3.398ca4a5858132cc.webp
rename to translated_images/pt-BR/workspace-3.398ca4a5858132cc.webp
diff --git a/translated_images/br/workspace-4.bac87f6599c4df63.webp b/translated_images/pt-BR/workspace-4.bac87f6599c4df63.webp
similarity index 100%
rename from translated_images/br/workspace-4.bac87f6599c4df63.webp
rename to translated_images/pt-BR/workspace-4.bac87f6599c4df63.webp
diff --git a/translated_images/br/workspace-5.a6eb17e0a5e64200.webp b/translated_images/pt-BR/workspace-5.a6eb17e0a5e64200.webp
similarity index 100%
rename from translated_images/br/workspace-5.a6eb17e0a5e64200.webp
rename to translated_images/pt-BR/workspace-5.a6eb17e0a5e64200.webp
diff --git a/translated_images/br/workspace-6.8dd81fe841797ee1.webp b/translated_images/pt-BR/workspace-6.8dd81fe841797ee1.webp
similarity index 100%
rename from translated_images/br/workspace-6.8dd81fe841797ee1.webp
rename to translated_images/pt-BR/workspace-6.8dd81fe841797ee1.webp
diff --git a/translated_images/pt/.co-op-translator.json b/translated_images/pt-PT/.co-op-translator.json
similarity index 89%
rename from translated_images/pt/.co-op-translator.json
rename to translated_images/pt-PT/.co-op-translator.json
index cb18cc93..e81700c8 100644
--- a/translated_images/pt/.co-op-translator.json
+++ b/translated_images/pt-PT/.co-op-translator.json
@@ -3,1092 +3,1092 @@
"original_hash": "ecf8b739e8b862f9c4dac338bd614aa7",
"translation_date": "2026-01-16T13:00:07+00:00",
"source_file": "sketchnotes/00-Roadmap.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"00-Title.8af36cd35da1ac55.webp": {
"original_hash": "533863b4c050b07b1d90ecb948237ffc",
"translation_date": "2026-01-16T13:02:19+00:00",
"source_file": "sketchnotes/00-Title.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"01-Definitions.1b14ddc9525dc0d9.webp": {
"original_hash": "56648d71e5fb4865d3f621010f220582",
"translation_date": "2026-01-16T13:02:12+00:00",
"source_file": "sketchnotes/01-Definitions.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"02-Ethics.728d166895302ab0.webp": {
"original_hash": "005bd88e9721003310c7b2f17dd0e35a",
"translation_date": "2026-01-16T13:06:37+00:00",
"source_file": "sketchnotes/02-Ethics.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"03-DefiningData.f800817186949e07.webp": {
"original_hash": "8c60eda506de75c669370430aa8ecc00",
"translation_date": "2026-01-16T13:03:45+00:00",
"source_file": "sketchnotes/03-DefiningData.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"04-Statistics-Probability.cfc569d84a9f1867.webp": {
"original_hash": "2ee100d33c054ce8a39267530f23377c",
"translation_date": "2026-01-16T13:06:49+00:00",
"source_file": "sketchnotes/04-Statistics-Probability.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"05-RelationalData.af50f5a3e50f7456.webp": {
"original_hash": "e4e0576bddd38fe9a4bd941f73d6de3b",
"translation_date": "2026-01-16T12:57:11+00:00",
"source_file": "sketchnotes/05-RelationalData.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"06-NoSQL.42a91ea0cd5769fe.webp": {
"original_hash": "f5873c65a3a544e1b1a94417c5ee55c8",
"translation_date": "2026-01-16T13:01:42+00:00",
"source_file": "sketchnotes/06-NoSQL.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"07-WorkWithPython.8bf4a5013718bef9.webp": {
"original_hash": "5cbac0986c16de6e4347ed8e6ae6f9c3",
"translation_date": "2026-01-16T13:04:44+00:00",
"source_file": "sketchnotes/07-WorkWithPython.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"08-DataPreparation.e3b185c37958e964.webp": {
"original_hash": "0201767bfac86b208c4c9de0fce95141",
"translation_date": "2026-01-16T12:56:34+00:00",
"source_file": "sketchnotes/08-DataPreparation.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"09-Visualizing-Quantities.5c846edd805a5238.webp": {
"original_hash": "63def3198fdcbc1a6b9ef585745a82c8",
"translation_date": "2026-01-16T13:06:01+00:00",
"source_file": "sketchnotes/09-Visualizing-Quantities.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"1.0b520df6a0d9d3c4.webp": {
"original_hash": "54586a26505aae6cbcc8962a2852b277",
"translation_date": "2026-01-16T12:56:18+00:00",
"source_file": "images/1.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"10-Visualizing-Distributions.8097fd8abd7221a1.webp": {
"original_hash": "885512a64dcab7202c5a53cbde907da2",
"translation_date": "2026-01-16T12:56:54+00:00",
"source_file": "sketchnotes/10-Visualizing-Distributions.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"11-Visualizing-Proportions.3e82f24af94d206e.webp": {
"original_hash": "e7f8f167d209a389c3100d3ac210b69d",
"translation_date": "2026-01-16T13:03:06+00:00",
"source_file": "sketchnotes/11-Visualizing-Proportions.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"12-Visualizing-Relationships.4466f9bd260f03dd.webp": {
"original_hash": "10d06245ecbdc48880e555f03a62f64c",
"translation_date": "2026-01-16T13:01:28+00:00",
"source_file": "sketchnotes/12-Visualizing-Relationships.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"13-MeaningfulViz.4db6f1997e519908.webp": {
"original_hash": "6d0db913181bac3b1aebc649e843ddb3",
"translation_date": "2026-01-16T13:07:07+00:00",
"source_file": "sketchnotes/13-MeaningfulViz.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp": {
"original_hash": "96cbd264a85530f5876c353b2e57956d",
"translation_date": "2026-01-16T13:02:40+00:00",
"source_file": "sketchnotes/14-DataScience-Lifecycle.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"15-Analyzing.b501f3dbdc958f6f.webp": {
"original_hash": "973333ac82d2472591675e2b93afc87e",
"translation_date": "2026-01-16T13:07:26+00:00",
"source_file": "sketchnotes/15-Analyzing.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"16-Communicating.f1d29cd7984442a4.webp": {
"original_hash": "9a65542ddae4e103ab2a665fe65629ce",
"translation_date": "2026-01-16T12:57:26+00:00",
"source_file": "sketchnotes/16-Communicating.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"17-DataScience-Cloud.0df76ac874805c14.webp": {
"original_hash": "221a9e5d40e6f47fe793f175a8754ae0",
"translation_date": "2026-01-16T13:06:23+00:00",
"source_file": "sketchnotes/17-DataScience-Cloud.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"18-DataScience-Cloud.3a7292e8182b74eb.webp": {
"original_hash": "c1094124ae2e325016c6ddcb95599c7a",
"translation_date": "2026-01-16T13:05:34+00:00",
"source_file": "sketchnotes/18-DataScience-Cloud.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"19-DataScience-Cloud.177b38fb86301fc6.webp": {
"original_hash": "78eb918c3512a018c0d99a217bc72038",
"translation_date": "2026-01-16T13:05:02+00:00",
"source_file": "sketchnotes/19-DataScience-Cloud.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"20-DataScience-Humanities.1d1a155f4d12a667.webp": {
"original_hash": "1458acca113e1f3c64fb18d6a434fb5c",
"translation_date": "2026-01-16T13:04:07+00:00",
"source_file": "sketchnotes/20-DataScience-Humanities.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"20-DataScience-RealWorld.976976229ee11342.webp": {
"original_hash": "ff1861c005ea9fe7644777c4069008b9",
"translation_date": "2026-01-16T13:02:02+00:00",
"source_file": "sketchnotes/20-DataScience-RealWorld.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"20-DataScience-Research.da434814c51b4ef8.webp": {
"original_hash": "c1d7c67564ad6767200da0cab95eeb52",
"translation_date": "2026-01-16T13:03:28+00:00",
"source_file": "sketchnotes/20-DataScience-Research.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"20-DataScience-Sustainability.d4097bc684431da6.webp": {
"original_hash": "966e2a6eea920d7cb30a343e0bf5c856",
"translation_date": "2026-01-16T13:04:28+00:00",
"source_file": "sketchnotes/20-DataScience-Sustainability.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"2D-wb.ae22fdd33936507a.webp": {
"original_hash": "621c501b663b89b0739ff0a3d89324d4",
"translation_date": "2026-01-16T13:26:16+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/2D-wb.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"2D.b3342157139dd804.webp": {
"original_hash": "43f6f9ba817c493c2f38383fb22df3ff",
"translation_date": "2026-01-16T13:26:19+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/2D.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"2d-plot.c504786f439bd7eb.webp": {
"original_hash": "b5a6251e8480b8dbcf6ca9972efd2a94",
"translation_date": "2026-01-16T13:30:24+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/2d-plot.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"3d.0cec12bcc60f0ce7.webp": {
"original_hash": "24efe448af156c5520372b9b554a2c89",
"translation_date": "2026-01-16T13:29:57+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/3d.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"3d.db1734c151eee87d.webp": {
"original_hash": "24efe448af156c5520372b9b554a2c89",
"translation_date": "2026-01-16T13:40:16+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/3d.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"CRISP-DM.8bad2b4c66e62aa7.webp": {
"original_hash": "eac24034dc4554b1292c0c035a852548",
"translation_date": "2026-01-16T13:20:44+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/CRISP-DM.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp": {
"original_hash": "25abf3baadac4535fac2aa1c8794f537",
"translation_date": "2026-01-16T13:37:57+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot-improved.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"MaxWingspan-lineplot.b12169f99d26fdd2.webp": {
"original_hash": "8a0744b5301a1c4dc64b580728b5771a",
"translation_date": "2026-01-16T13:37:14+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp": {
"original_hash": "c5b4723c8624caa7463c66fd7278854e",
"translation_date": "2026-01-16T13:39:11+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot-improved.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"MaxWingspan-scatterplot.60dc9e0e19d32700.webp": {
"original_hash": "58de03db6718a04f8e61e2405ea2b502",
"translation_date": "2026-01-16T13:37:19+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"aml-1.67281a85d3a1e2f3.webp": {
"original_hash": "130c64f0112c117a400926da0bbaf090",
"translation_date": "2026-01-16T13:20:03+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-1.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"aml-2.c9fb9cffb39ccbbe.webp": {
"original_hash": "703a44252eca61e2b68c1365f4beb179",
"translation_date": "2026-01-16T13:12:22+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-2.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"aml-3.a7952e4295f38cc6.webp": {
"original_hash": "33433e94fe719f0e4104ad809338f91d",
"translation_date": "2026-01-16T13:11:05+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-3.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"aml-4.7a627e09cb6f16d0.webp": {
"original_hash": "983ad36543a02fffcb8f05fb94e09ef4",
"translation_date": "2026-01-16T13:13:55+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-4.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"bad-chart-1.596bc93425a8ac30.webp": {
"original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
"translation_date": "2026-01-16T13:39:20+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-1.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"bad-chart-1.93130f495b748bed.webp": {
"original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
"translation_date": "2026-01-16T13:29:01+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-1.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"bad-chart-2.62edf4d2f30f4e51.webp": {
"original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
"translation_date": "2026-01-16T13:40:07+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-2.jpg",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"bad-chart-2.c20e36dd4e6f617c.webp": {
"original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
"translation_date": "2026-01-16T13:29:47+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-2.jpg",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"bad-chart-3.6865d0afac4108d7.webp": {
"original_hash": "80f955c8f50661e029730e9b06959c0b",
"translation_date": "2026-01-16T13:29:09+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-3.jpg",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"bad-chart-3.e201e2e915a230bc.webp": {
"original_hash": "80f955c8f50661e029730e9b06959c0b",
"translation_date": "2026-01-16T13:39:29+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-3.jpg",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"bad-chart-4.68cfdf4011b45447.webp": {
"original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
"translation_date": "2026-01-16T13:30:08+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-4.jpg",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"bad-chart-4.8872b2b881ffa96c.webp": {
"original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
"translation_date": "2026-01-16T13:40:27+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-4.jpg",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"bee.0aa1d91132b12e3a.webp": {
"original_hash": "107a59a0fdfa76d213eacf0f46df0292",
"translation_date": "2026-01-16T13:25:23+00:00",
"source_file": "3-Data-Visualization/images/bee.jpg",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"bodymass-per-order.9d2b065dd931b928.webp": {
"original_hash": "b009aeba10679cfeb880d3869e7d1db2",
"translation_date": "2026-01-16T13:33:52+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-per-order.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"bodymass-smooth.d31ce526d82b0a1f.webp": {
"original_hash": "9e0c8215e2ce2cc7120491a79559a907",
"translation_date": "2026-01-16T13:33:32+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-smooth.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"boxplot_byrole.036b27a1c3f52d42.webp": {
"original_hash": "1193ef907e122e99637e73ef9f83d2a5",
"translation_date": "2026-01-16T13:09:31+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/boxplot_byrole.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"boxplot_explanation.4039b7de08780fd4.webp": {
"original_hash": "18e16e4144706f7e9006fc2ff958e622",
"translation_date": "2026-01-16T13:08:45+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/boxplot_explanation.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"busing.7b9e3b41cd4b981c.webp": {
"original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
"translation_date": "2026-01-16T13:29:20+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/busing.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"busing.8157cf1bc89a3f65.webp": {
"original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
"translation_date": "2026-01-16T13:39:38+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/busing.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"category-counts-02.0b9a0a4de42275ae.webp": {
"original_hash": "d0ebdd74049aa407805cb1b28d9d5075",
"translation_date": "2026-01-16T13:41:44+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts-02.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"category-counts.abee8188c4c9b6f0.webp": {
"original_hash": "3b55836da9e8a6b487c6657b01156a99",
"translation_date": "2026-01-16T13:40:54+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"category-length-02.7304bf519375c980.webp": {
"original_hash": "2638d345ceee48d8c40a54f6388c8caa",
"translation_date": "2026-01-16T13:41:12+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length-02.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"category-length.7e34c296690e85d6.webp": {
"original_hash": "f5c753a1fe65d51b8cc15b8b46c6d4e6",
"translation_date": "2026-01-16T13:37:45+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/category-length.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"category-length.b0d9a0208a7b3713.webp": {
"original_hash": "990ba20663dfb1d5bc21e39b9162f412",
"translation_date": "2026-01-16T13:40:50+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"cloud-picture.f5526de3c6c6387b.webp": {
"original_hash": "112d96f85f2037814d2df8b88267a595",
"translation_date": "2026-01-16T13:09:40+00:00",
"source_file": "5-Data-Science-In-Cloud/images/cloud-picture.jpg",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"cluster-1.b78cb630bb543729.webp": {
"original_hash": "d938d671e7eabf7fbc012cf1987dc43f",
"translation_date": "2026-01-16T13:14:57+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-1.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"cluster-2.ea30cdbc9f926bb9.webp": {
"original_hash": "0486b9eb10e88dc53fc2927c9197cd27",
"translation_date": "2026-01-16T13:14:23+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-2.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"cluster-3.8a334bc070ec173a.webp": {
"original_hash": "b440d88eb5ce449ebe780c1edbac221d",
"translation_date": "2026-01-16T13:13:08+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-3.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"columnar-db.ffcfe73c3e9063a8.webp": {
"original_hash": "be6caa9571dc877703116566bc1a59d4",
"translation_date": "2026-01-16T13:23:34+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/columnar-db.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"communication.06d8e2a88d30d168.webp": {
"original_hash": "5736c0fd0f68676dbd5b27c5b04f4b48",
"translation_date": "2026-01-16T13:20:32+00:00",
"source_file": "4-Data-Science-Lifecycle/images/communication.jpg",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"comparingdata.f486a450d61c7ca5.webp": {
"original_hash": "c5f1049b89ea0d7015e420acc0728045",
"translation_date": "2026-01-16T13:38:22+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/comparingdata.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"compute-instance-1.dba347cb199ca499.webp": {
"original_hash": "7af64073de557468a0b652e4bcecf2d1",
"translation_date": "2026-01-16T13:09:53+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/compute-instance-1.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"consumption-1.700abd196452842a.webp": {
"original_hash": "a5ecdcdff30f2d1059763b9ce5abe4eb",
"translation_date": "2026-01-16T13:19:13+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/consumption-1.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"cosmosdb-emulator-explorer.a1c80b1347206fe2.webp": {
"original_hash": "cdd5affc23e1edf90e5a1d4d5d0f1f8d",
"translation_date": "2026-01-16T13:23:55+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-explorer.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp": {
"original_hash": "4ab74b4d99e8e2a503433a1faf6921be",
"translation_date": "2026-01-16T13:23:10+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons-query.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"cosmosdb-emulator-persons.bf640586a7077c89.webp": {
"original_hash": "4cf764cdeb46013888dafcd430447f3a",
"translation_date": "2026-01-16T13:25:04+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"covidspread.f3d131c4f1d260ab.webp": {
"original_hash": "461f7858f407e9f5b9eb9caf8ca21367",
"translation_date": "2026-01-16T13:22:35+00:00",
"source_file": "2-Working-With-Data/07-python/images/covidspread.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"covidtreat.b2ba59f57ca45fbc.webp": {
"original_hash": "b2b1e40794073c65faa986c5995754c9",
"translation_date": "2026-01-16T13:22:24+00:00",
"source_file": "2-Working-With-Data/07-python/images/covidtreat.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"data-love.a22ef29e6742c852.webp": {
"original_hash": "e7fcf82d891c727f86c21960cb63efa6",
"translation_date": "2026-01-16T13:21:45+00:00",
"source_file": "2-Working-With-Data/images/data-love.jpg",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"data-science-applications.4e5019cd8790ebac.webp": {
"original_hash": "602217d731f1576c21ac91148222cfa1",
"translation_date": "2026-01-16T13:42:58+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/data-science-applications.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"data-science-lifecycle.a1e362637503c4fb.webp": {
"original_hash": "594be62e68ef5e92f5447febe91c7794",
"translation_date": "2026-01-16T13:20:56+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/data-science-lifecycle.jpg",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"data.48e22bb7617d8d92.webp": {
"original_hash": "1a84026266861a50791b9f952fbab540",
"translation_date": "2026-01-16T13:07:36+00:00",
"source_file": "1-Introduction/images/data.jpg",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"dataframe-1.caf409f0c688e84c.webp": {
"original_hash": "2ca632a405bd7b501a0e0df0fa55515a",
"translation_date": "2026-01-16T13:22:15+00:00",
"source_file": "2-Working-With-Data/07-python/images/dataframe-1.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"datascienceinthecloud.59ffb059a670fb0a.webp": {
"original_hash": "d66cf00bfc41a3d1bef7e1d54ac4e03f",
"translation_date": "2026-01-16T13:13:28+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/datascienceinthecloud.jpg",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"dataset-1.e86ab4e10907a6e9.webp": {
"original_hash": "b742ef1724e601f68a1bdf3f1faa89c6",
"translation_date": "2026-01-16T13:14:42+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-1.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"dataset-2.f58de1c435d5bf9c.webp": {
"original_hash": "328c65d45aa937db952093099bc408ce",
"translation_date": "2026-01-16T13:18:23+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-2.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"dataset-3.58db8c0eb783e892.webp": {
"original_hash": "cc2177288c2ac7289b614ce41ee68d60",
"translation_date": "2026-01-16T13:18:07+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-3.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"density-plot.675ccf865b76c690.webp": {
"original_hash": "269df7655a489ba893c9a930e54996b4",
"translation_date": "2026-01-16T13:33:58+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/density-plot.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"density1.8801043bd4af2567.webp": {
"original_hash": "159abed877f261a34aeefc1c2f7d9f14",
"translation_date": "2026-01-16T13:26:25+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density1.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"density2.8e7647257060ff54.webp": {
"original_hash": "ae4ee53e81dca21c2d475642c9acf970",
"translation_date": "2026-01-16T13:26:45+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density2.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"density3.84ae27da82f31e6b.webp": {
"original_hash": "1c4b40707ab63224822854698a26f6ca",
"translation_date": "2026-01-16T13:25:34+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density3.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"density4.e9d6c033f15c500f.webp": {
"original_hash": "e007401afeb86f57097c31b272c54f59",
"translation_date": "2026-01-16T13:26:33+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density4.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"deploy-1.ddad725acadc84e3.webp": {
"original_hash": "d91956f565f29332f32fc85095206456",
"translation_date": "2026-01-16T13:12:50+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-1.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"deploy-2.94dbb13f23908647.webp": {
"original_hash": "cb622a2e6374ccfdb376d3528e2bb9c8",
"translation_date": "2026-01-16T13:19:50+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-2.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"deploy-3.fecefef070e8ef3b.webp": {
"original_hash": "487c6cd79b0232e10e40fdab2e6b929f",
"translation_date": "2026-01-16T13:17:05+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-3.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"dist1-wb.0d0cac82e2974fbb.webp": {
"original_hash": "2f624fcf08f90cfedf12238e86730517",
"translation_date": "2026-01-16T13:26:05+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1-wb.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"dist1.0010100b00231819.webp": {
"original_hash": "637343564b5cc6aa01b966bb3f010c81",
"translation_date": "2026-01-16T13:26:41+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"dist2-wb.2c0a7a3499b2fbf5.webp": {
"original_hash": "f66e1b4cf106774c02ddc8111fb26ea8",
"translation_date": "2026-01-16T13:26:50+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2-wb.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"dist2.c398bfd5320401b9.webp": {
"original_hash": "fc0ce2a2e3087e5754770998f75db398",
"translation_date": "2026-01-16T13:25:30+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"dist3-wb.64b88db7f9780200.webp": {
"original_hash": "b3d78f1f00c6c3d087f161dd74318aff",
"translation_date": "2026-01-16T13:25:39+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3-wb.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"dist3.ad4d9658559690f5.webp": {
"original_hash": "a4f7f50a3cc98d22d6a1321d1df7781b",
"translation_date": "2026-01-16T13:26:13+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"distribution-30bins.6a3921ea7a421bf7.webp": {
"original_hash": "e06c4dfd27b06597b94a75072e9c4bc5",
"translation_date": "2026-01-16T13:30:34+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-30bins.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"distribution-over-the-entire-dataset.d22afd3fa96be854.webp": {
"original_hash": "338c78ae2ee25ed179e49ec1a4e7923b",
"translation_date": "2026-01-16T13:33:36+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-over-the-entire-dataset.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"document-db.ddeec48c6dc9e5fd.webp": {
"original_hash": "8cee40487b4a8926c048c397be218e6e",
"translation_date": "2026-01-16T13:24:28+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/document-db.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"donut-wb.34e6fb275da9d834.webp": {
"original_hash": "1fca738bcee99e03430409599cef33f3",
"translation_date": "2026-01-16T13:35:35+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/donut-wb.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"donut-wb.be3c12a22712302b.webp": {
"original_hash": "84f5657fc2c817fe6487993027aeb3e0",
"translation_date": "2026-01-16T13:28:27+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut-wb.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"donut.f016d7be7f08c8f8.webp": {
"original_hash": "055fcaf0a6d93663278eb958137b460c",
"translation_date": "2026-01-16T13:28:50+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"ds-for-beginners.d01930c9193ef522.webp": {
"original_hash": "b84eca5411f4bc0041e671becb05fe48",
"translation_date": "2026-01-16T12:56:10+00:00",
"source_file": "ds-for-beginners.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"ds_wordcloud.664a7c07dca57de0.webp": {
"original_hash": "df525e123083bea87f16bce2c07970c7",
"translation_date": "2026-01-16T13:08:08+00:00",
"source_file": "1-Introduction/01-defining-data-science/images/ds_wordcloud.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"dual-line.a4c28ce659603fab.webp": {
"original_hash": "354c3a3b7493b3ec80eec454e7e1661f",
"translation_date": "2026-01-16T13:27:16+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/dual-line.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"dual-line.fc4665f360a54018.webp": {
"original_hash": "a80f6d08e4639389726abb5b1c3d5d9f",
"translation_date": "2026-01-16T13:34:37+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/dual-line.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"facet.491ad90d61c2a7cc.webp": {
"original_hash": "2a0a7fea3ccea24ef9a0d37487f38ba3",
"translation_date": "2026-01-16T13:34:26+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/facet.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"facet.6a34851dcd540050.webp": {
"original_hash": "b1972d34a64eaf50b7f64de8455601d6",
"translation_date": "2026-01-16T13:27:05+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/facet.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"favicon.37b561214b36d454.webp": {
"original_hash": "228faa6584f8ba1f7e9a75e3200112e9",
"translation_date": "2026-01-16T12:56:12+00:00",
"source_file": "images/favicon.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"filtered-histogram.6bf5d2bfd8253322.webp": {
"original_hash": "9beae93b6d3063f7afa19070ca9b21f2",
"translation_date": "2026-01-16T13:33:40+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/filtered-histogram.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"formula-excel.ad1068c220892f5e.webp": {
"original_hash": "ffc48a46663588ed68f07739e1c6faec",
"translation_date": "2026-01-16T13:24:08+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/formula-excel.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"full-data-bar-02.aaa3fda71c63ed56.webp": {
"original_hash": "68ced4f3a959790addfa4c361f5abc0f",
"translation_date": "2026-01-16T13:42:23+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar-02.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"full-data-bar.a0b37da71a6cd236.webp": {
"original_hash": "bd639cfebb870669bcf5280302347b15",
"translation_date": "2026-01-16T13:42:40+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"function-excel.be2ae4feddc10ca0.webp": {
"original_hash": "72ab7b76f4fab0df5aa91fa839722a60",
"translation_date": "2026-01-16T13:23:26+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/function-excel.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"graph-db.d13629152f79a9da.webp": {
"original_hash": "9642744eabff608b20e9241ba5931752",
"translation_date": "2026-01-16T13:24:18+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/graph-db.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"height-boxplot.ccb66b2848b5f51c.webp": {
"original_hash": "0f3d954cc0e0b9644f64f7bc1c8a5518",
"translation_date": "2026-01-16T13:09:12+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/height-boxplot.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"histogram-conservation-wb.3c40450eb072c14d.webp": {
"original_hash": "83ec1d81dea6fabb80c6386edf8eb241",
"translation_date": "2026-01-16T13:25:59+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation-wb.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"histogram-conservation.13b3542e7784e415.webp": {
"original_hash": "ec86b1d6a476f4cf80f9d2b346525c92",
"translation_date": "2026-01-16T13:26:10+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"kv-db.e8f2b75686bbdfcb.webp": {
"original_hash": "b11fd06948e523a4f05e4fc016b72151",
"translation_date": "2026-01-16T13:23:42+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/kv-db.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"labeled-wingspan-02.6110e2d2401cd523.webp": {
"original_hash": "0f218473d2563c14c8caddecdea3a4c3",
"translation_date": "2026-01-16T13:42:32+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan-02.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"labeled-wingspan.900ffedd7e3ec6de.webp": {
"original_hash": "92a8853541cd37a14b9523a58d655f7f",
"translation_date": "2026-01-16T13:42:44+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"less-smooth-bodymass.10f4db8b683cc17d.webp": {
"original_hash": "407ad13c340ab84466724135c99aa8d6",
"translation_date": "2026-01-16T13:30:29+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/less-smooth-bodymass.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"liaisons.7b440b28f6d07ea4.webp": {
"original_hash": "6d42370a9c4ee2cea0573912a6300e09",
"translation_date": "2026-01-16T13:30:18+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/liaisons.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"liaisons.90ce7360bcf84765.webp": {
"original_hash": "6d42370a9c4ee2cea0573912a6300e09",
"translation_date": "2026-01-16T13:40:36+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/liaisons.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"line1.299b576fbb2a59e6.webp": {
"original_hash": "580b92476ca343c0fce7d5713d0ca5cd",
"translation_date": "2026-01-16T13:35:25+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line1.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"line1.f36eb465229a3b1f.webp": {
"original_hash": "2254eee0864847a0dbbcf3514523b938",
"translation_date": "2026-01-16T13:28:12+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/line1.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"line2.3b18fcda7176ceba.webp": {
"original_hash": "0900ae563b525221b628393ec05feaf8",
"translation_date": "2026-01-16T13:35:30+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line2.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"line2.a5b3493dc01058af.webp": {
"original_hash": "352e8164b0d75c410198bb07822e43cb",
"translation_date": "2026-01-16T13:28:17+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/line2.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"max-length-per-order.e5b283d952c78c12.webp": {
"original_hash": "3669afd28a61d41ee39429418ee938a0",
"translation_date": "2026-01-16T13:34:10+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/max-length-per-order.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"max-wingspan-02.e79fd847b2640b89.webp": {
"original_hash": "424b2d5e92fd7ad1f1651fd34c48a43b",
"translation_date": "2026-01-16T13:42:35+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-02.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"max-wingspan-labels-02.aa90e826ca49a9d1.webp": {
"original_hash": "b1f49941bbc193409678b7c94bd39822",
"translation_date": "2026-01-16T13:41:24+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels-02.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"max-wingspan-labels.46f0cc3c48edd4e0.webp": {
"original_hash": "67ad5348aa4963aebb0ae7ec94a7fa26",
"translation_date": "2026-01-16T13:42:26+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"max-wingspan.0b8d0858436414aa.webp": {
"original_hash": "020b2994ef28037b86c2e215771a0bf5",
"translation_date": "2026-01-16T13:41:26+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"multi.56548caa9eae8d0f.webp": {
"original_hash": "f75fa5419bb0d28a74c567876bc99455",
"translation_date": "2026-01-16T13:25:26+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/multi.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"new-container.650e10c7a20a5f83.webp": {
"original_hash": "ab63b5a8099095333eebe2afa69197e3",
"translation_date": "2026-01-16T13:24:44+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/new-container.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"normal-histogram.dfae0d67c202137d.webp": {
"original_hash": "46ee775d2df1d79815c1aab51bd8d2fe",
"translation_date": "2026-01-16T13:09:24+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/normal-histogram.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"notebook-1.12998af7b02c83f5.webp": {
"original_hash": "08d559b911ecbed212b67e206ae6bcf1",
"translation_date": "2026-01-16T13:10:10+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-1.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"notebook-2.9a657c037e34f1cf.webp": {
"original_hash": "018309c1ca2ed8e31fd89c3674687979",
"translation_date": "2026-01-16T13:10:19+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-2.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"parts-of-spreadsheet.120711c82aa18a45.webp": {
"original_hash": "e744b94c055058c2862aaabe84625b90",
"translation_date": "2026-01-16T13:25:18+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/parts-of-spreadsheet.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"pie1-wb.685df063673751f4.webp": {
"original_hash": "2b353f34a1a1e444a1d7f2219b78cb83",
"translation_date": "2026-01-16T13:37:10+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/pie1-wb.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"pie1-wb.e201f2fcc3354131.webp": {
"original_hash": "f2dbe68e0228fc6bb76e502dfa88a5c7",
"translation_date": "2026-01-16T13:28:53+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1-wb.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"pie1.8f6a8bfac96de60e.webp": {
"original_hash": "dc91ddf7490acc8493ca0801370d8fa8",
"translation_date": "2026-01-16T13:28:22+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"planetary-computer-explorer.c1e95a9b053167d6.webp": {
"original_hash": "1e3bcffe198a9432dfc6232e5f89e2a5",
"translation_date": "2026-01-16T13:43:12+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/planetary-computer-explorer.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"probability-density.a8aad29f17a14afb.webp": {
"original_hash": "79ec3e39c1c20e570327ebd8a2737548",
"translation_date": "2026-01-16T13:09:05+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/probability-density.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"project-schema.420e56d495624541.webp": {
"original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
"translation_date": "2026-01-16T13:10:41+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/project-schema.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"project-schema.736f6e403f321eb4.webp": {
"original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
"translation_date": "2026-01-16T13:17:33+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/project-schema.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"scatter-wb.9d98b0ed7f0388af.webp": {
"original_hash": "20b0f7bb41756f35bdf985a8f5f3a342",
"translation_date": "2026-01-16T13:25:52+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter-wb.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"scatter.520a43eceb46dbcb.webp": {
"original_hash": "0b08180e497b0df05b452d6e82139280",
"translation_date": "2026-01-16T13:26:38+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"scatter1.5e1aa5fd6706c5d1.webp": {
"original_hash": "c02fe2f5fa39f591b4a26308356ed684",
"translation_date": "2026-01-16T13:28:04+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter1.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"scatter1.86b8900674d88b26.webp": {
"original_hash": "c987462f33600689809531fc3d265f96",
"translation_date": "2026-01-16T13:35:16+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter1.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"scatter2.4d1cbc693bad20e2.webp": {
"original_hash": "770ca46665efad9996e32d596f105ea9",
"translation_date": "2026-01-16T13:35:02+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter2.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"scatter2.c0041a58621ca702.webp": {
"original_hash": "0daebd8565f87f5de940b38eb8af1b9d",
"translation_date": "2026-01-16T13:27:49+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter2.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"scatter3.3c160a3d1dcb36b3.webp": {
"original_hash": "b6dae06624fdb034a906091c859840c8",
"translation_date": "2026-01-16T13:27:32+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter3.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"scatter3.722d21e6f20b3ea2.webp": {
"original_hash": "e76960bfd5bd7187d9e021796f268d34",
"translation_date": "2026-01-16T13:34:50+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter3.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"scatterplot-wingspan-02.1c33790094ce36a7.webp": {
"original_hash": "074b877685ae02c92754fb416864f137",
"translation_date": "2026-01-16T13:40:42+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan-02.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"scatterplot-wingspan.bdab448702939bb3.webp": {
"original_hash": "a6265af4af8b135ebb0b1160ac2a85e1",
"translation_date": "2026-01-16T13:40:48+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"stacked-bar-chart.0c92264e89da7b39.webp": {
"original_hash": "150d1125735f6612e36c8d74d492c664",
"translation_date": "2026-01-16T13:38:35+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/stacked-bar-chart.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"superimposed-02.f03058536baeb2ed.webp": {
"original_hash": "06591758ffda43a2ba7a885727209a57",
"translation_date": "2026-01-16T13:42:10+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed-02.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"superimposed-values.5363f0705a1da416.webp": {
"original_hash": "b41c56cb68dd92f60d7e18eefd963396",
"translation_date": "2026-01-16T13:38:57+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/superimposed-values.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"superimposed.8b5bd0e8825d9c5c.webp": {
"original_hash": "4af0c94d9d61f1d458023b01c02a247e",
"translation_date": "2026-01-16T13:40:46+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"tdsp-lifecycle2.e19029d598e2e73d.webp": {
"original_hash": "d1f838b6b0fd588b4ee6cd22cb578569",
"translation_date": "2026-01-16T13:21:11+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/tdsp-lifecycle2.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"timeseries-1.80de678ab1cf727e.webp": {
"original_hash": "30236ed2474d8d115ab3d51545e0c19e",
"translation_date": "2026-01-16T13:22:30+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-1.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"timeseries-2.aae51d575c55181c.webp": {
"original_hash": "33bd33349330cb115d729ce80b570501",
"translation_date": "2026-01-16T13:22:39+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-2.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"timeseries-3.f3147cbc8c624881.webp": {
"original_hash": "aa4b14a21a73d400073a61f37033d465",
"translation_date": "2026-01-16T13:22:47+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-3.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"tornado.2880ffc7f135f82b.webp": {
"original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
"translation_date": "2026-01-16T13:39:56+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/tornado.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"tornado.9f42168791208f97.webp": {
"original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
"translation_date": "2026-01-16T13:29:34+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/tornado.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"video-def-ds.6623ee2392ef1abf.webp": {
"original_hash": "95650b7eed7f176ce8fdee16271a464b",
"translation_date": "2026-01-16T13:08:30+00:00",
"source_file": "1-Introduction/01-defining-data-science/images/video-def-ds.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"video-ds-python.245247dc811db8e4.webp": {
"original_hash": "030eca02a7388a1428cf20faa215f2b9",
"translation_date": "2026-01-16T13:22:08+00:00",
"source_file": "2-Working-With-Data/07-python/images/video-ds-python.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"video-prob-and-stats.e4282e5efa2f2543.webp": {
"original_hash": "95894d8c6274697246b11c5ddf395c5f",
"translation_date": "2026-01-16T13:09:19+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/video-prob-and-stats.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"waffle.5455dbae4ccf17d5.webp": {
"original_hash": "56634c9a9dc24921e012693843466dee",
"translation_date": "2026-01-16T13:28:41+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/waffle.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"waffle.aaa75c5337735a6e.webp": {
"original_hash": "b84ca087d578965c31a20087b9215d88",
"translation_date": "2026-01-16T13:35:40+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/waffle.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"weight-boxplot.1dbab1c03af26f8a.webp": {
"original_hash": "4e39b904d1a4313d66663aa3f7ab9602",
"translation_date": "2026-01-16T13:08:57+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-boxplot.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"weight-height-relationship.3f06bde4ca2aba99.webp": {
"original_hash": "2412d31f9c41004d2d0cb80179d6021f",
"translation_date": "2026-01-16T13:09:09+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-height-relationship.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"weight-histogram.bfd00caf7fc30b14.webp": {
"original_hash": "bef55b4cd03923b2d8674e92bb1757c9",
"translation_date": "2026-01-16T13:09:02+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-histogram.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"wingspan-conservation-collation.4024e9aa6910866a.webp": {
"original_hash": "898d4cfbbc9bd4723c3ce92f5746a6f8",
"translation_date": "2026-01-16T13:33:45+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/wingspan-conservation-collation.png",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"workspace-1.ac8694d60b073ed1.webp": {
"original_hash": "5e9f3153bfd5af7d8b6adcb09c08cabd",
"translation_date": "2026-01-16T13:12:34+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-1.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"workspace-2.ae7c486db8796147.webp": {
"original_hash": "9299f5ae459f0a153da6aaae9accc78d",
"translation_date": "2026-01-16T13:15:12+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-2.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"workspace-3.398ca4a5858132cc.webp": {
"original_hash": "2ee0b036fbc5fd13a526f26ac9d60347",
"translation_date": "2026-01-16T13:20:15+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-3.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"workspace-4.bac87f6599c4df63.webp": {
"original_hash": "099e0b18ce11f3966c0b7d954c2eb4fb",
"translation_date": "2026-01-16T13:13:23+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-4.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"workspace-5.a6eb17e0a5e64200.webp": {
"original_hash": "01b1c520e46b3fbd6fba0d54bb80bece",
"translation_date": "2026-01-16T13:19:35+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-5.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
},
"workspace-6.8dd81fe841797ee1.webp": {
"original_hash": "fd0194c1a558063ddb53e5c1ead0a2b0",
"translation_date": "2026-01-16T13:18:44+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-6.PNG",
- "language_code": "pt"
+ "language_code": "pt-PT"
}
}
\ No newline at end of file
diff --git a/translated_images/pt/00-Roadmap.4905d6567dff4753.webp b/translated_images/pt-PT/00-Roadmap.4905d6567dff4753.webp
similarity index 100%
rename from translated_images/pt/00-Roadmap.4905d6567dff4753.webp
rename to translated_images/pt-PT/00-Roadmap.4905d6567dff4753.webp
diff --git a/translated_images/pt/00-Title.8af36cd35da1ac55.webp b/translated_images/pt-PT/00-Title.8af36cd35da1ac55.webp
similarity index 100%
rename from translated_images/pt/00-Title.8af36cd35da1ac55.webp
rename to translated_images/pt-PT/00-Title.8af36cd35da1ac55.webp
diff --git a/translated_images/pt/01-Definitions.1b14ddc9525dc0d9.webp b/translated_images/pt-PT/01-Definitions.1b14ddc9525dc0d9.webp
similarity index 100%
rename from translated_images/pt/01-Definitions.1b14ddc9525dc0d9.webp
rename to translated_images/pt-PT/01-Definitions.1b14ddc9525dc0d9.webp
diff --git a/translated_images/pt/02-Ethics.728d166895302ab0.webp b/translated_images/pt-PT/02-Ethics.728d166895302ab0.webp
similarity index 100%
rename from translated_images/pt/02-Ethics.728d166895302ab0.webp
rename to translated_images/pt-PT/02-Ethics.728d166895302ab0.webp
diff --git a/translated_images/pt/03-DefiningData.f800817186949e07.webp b/translated_images/pt-PT/03-DefiningData.f800817186949e07.webp
similarity index 100%
rename from translated_images/pt/03-DefiningData.f800817186949e07.webp
rename to translated_images/pt-PT/03-DefiningData.f800817186949e07.webp
diff --git a/translated_images/pt/04-Statistics-Probability.cfc569d84a9f1867.webp b/translated_images/pt-PT/04-Statistics-Probability.cfc569d84a9f1867.webp
similarity index 100%
rename from translated_images/pt/04-Statistics-Probability.cfc569d84a9f1867.webp
rename to translated_images/pt-PT/04-Statistics-Probability.cfc569d84a9f1867.webp
diff --git a/translated_images/pt/05-RelationalData.af50f5a3e50f7456.webp b/translated_images/pt-PT/05-RelationalData.af50f5a3e50f7456.webp
similarity index 100%
rename from translated_images/pt/05-RelationalData.af50f5a3e50f7456.webp
rename to translated_images/pt-PT/05-RelationalData.af50f5a3e50f7456.webp
diff --git a/translated_images/pt/06-NoSQL.42a91ea0cd5769fe.webp b/translated_images/pt-PT/06-NoSQL.42a91ea0cd5769fe.webp
similarity index 100%
rename from translated_images/pt/06-NoSQL.42a91ea0cd5769fe.webp
rename to translated_images/pt-PT/06-NoSQL.42a91ea0cd5769fe.webp
diff --git a/translated_images/pt/07-WorkWithPython.8bf4a5013718bef9.webp b/translated_images/pt-PT/07-WorkWithPython.8bf4a5013718bef9.webp
similarity index 100%
rename from translated_images/pt/07-WorkWithPython.8bf4a5013718bef9.webp
rename to translated_images/pt-PT/07-WorkWithPython.8bf4a5013718bef9.webp
diff --git a/translated_images/pt/08-DataPreparation.e3b185c37958e964.webp b/translated_images/pt-PT/08-DataPreparation.e3b185c37958e964.webp
similarity index 100%
rename from translated_images/pt/08-DataPreparation.e3b185c37958e964.webp
rename to translated_images/pt-PT/08-DataPreparation.e3b185c37958e964.webp
diff --git a/translated_images/pt/09-Visualizing-Quantities.5c846edd805a5238.webp b/translated_images/pt-PT/09-Visualizing-Quantities.5c846edd805a5238.webp
similarity index 100%
rename from translated_images/pt/09-Visualizing-Quantities.5c846edd805a5238.webp
rename to translated_images/pt-PT/09-Visualizing-Quantities.5c846edd805a5238.webp
diff --git a/translated_images/pt/1.0b520df6a0d9d3c4.webp b/translated_images/pt-PT/1.0b520df6a0d9d3c4.webp
similarity index 100%
rename from translated_images/pt/1.0b520df6a0d9d3c4.webp
rename to translated_images/pt-PT/1.0b520df6a0d9d3c4.webp
diff --git a/translated_images/pt/10-Visualizing-Distributions.8097fd8abd7221a1.webp b/translated_images/pt-PT/10-Visualizing-Distributions.8097fd8abd7221a1.webp
similarity index 100%
rename from translated_images/pt/10-Visualizing-Distributions.8097fd8abd7221a1.webp
rename to translated_images/pt-PT/10-Visualizing-Distributions.8097fd8abd7221a1.webp
diff --git a/translated_images/pt/11-Visualizing-Proportions.3e82f24af94d206e.webp b/translated_images/pt-PT/11-Visualizing-Proportions.3e82f24af94d206e.webp
similarity index 100%
rename from translated_images/pt/11-Visualizing-Proportions.3e82f24af94d206e.webp
rename to translated_images/pt-PT/11-Visualizing-Proportions.3e82f24af94d206e.webp
diff --git a/translated_images/pt/12-Visualizing-Relationships.4466f9bd260f03dd.webp b/translated_images/pt-PT/12-Visualizing-Relationships.4466f9bd260f03dd.webp
similarity index 100%
rename from translated_images/pt/12-Visualizing-Relationships.4466f9bd260f03dd.webp
rename to translated_images/pt-PT/12-Visualizing-Relationships.4466f9bd260f03dd.webp
diff --git a/translated_images/pt/13-MeaningfulViz.4db6f1997e519908.webp b/translated_images/pt-PT/13-MeaningfulViz.4db6f1997e519908.webp
similarity index 100%
rename from translated_images/pt/13-MeaningfulViz.4db6f1997e519908.webp
rename to translated_images/pt-PT/13-MeaningfulViz.4db6f1997e519908.webp
diff --git a/translated_images/pt/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp b/translated_images/pt-PT/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
similarity index 100%
rename from translated_images/pt/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
rename to translated_images/pt-PT/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
diff --git a/translated_images/pt/15-Analyzing.b501f3dbdc958f6f.webp b/translated_images/pt-PT/15-Analyzing.b501f3dbdc958f6f.webp
similarity index 100%
rename from translated_images/pt/15-Analyzing.b501f3dbdc958f6f.webp
rename to translated_images/pt-PT/15-Analyzing.b501f3dbdc958f6f.webp
diff --git a/translated_images/pt/16-Communicating.f1d29cd7984442a4.webp b/translated_images/pt-PT/16-Communicating.f1d29cd7984442a4.webp
similarity index 100%
rename from translated_images/pt/16-Communicating.f1d29cd7984442a4.webp
rename to translated_images/pt-PT/16-Communicating.f1d29cd7984442a4.webp
diff --git a/translated_images/pt/17-DataScience-Cloud.0df76ac874805c14.webp b/translated_images/pt-PT/17-DataScience-Cloud.0df76ac874805c14.webp
similarity index 100%
rename from translated_images/pt/17-DataScience-Cloud.0df76ac874805c14.webp
rename to translated_images/pt-PT/17-DataScience-Cloud.0df76ac874805c14.webp
diff --git a/translated_images/pt/18-DataScience-Cloud.3a7292e8182b74eb.webp b/translated_images/pt-PT/18-DataScience-Cloud.3a7292e8182b74eb.webp
similarity index 100%
rename from translated_images/pt/18-DataScience-Cloud.3a7292e8182b74eb.webp
rename to translated_images/pt-PT/18-DataScience-Cloud.3a7292e8182b74eb.webp
diff --git a/translated_images/pt/19-DataScience-Cloud.177b38fb86301fc6.webp b/translated_images/pt-PT/19-DataScience-Cloud.177b38fb86301fc6.webp
similarity index 100%
rename from translated_images/pt/19-DataScience-Cloud.177b38fb86301fc6.webp
rename to translated_images/pt-PT/19-DataScience-Cloud.177b38fb86301fc6.webp
diff --git a/translated_images/pt/20-DataScience-Humanities.1d1a155f4d12a667.webp b/translated_images/pt-PT/20-DataScience-Humanities.1d1a155f4d12a667.webp
similarity index 100%
rename from translated_images/pt/20-DataScience-Humanities.1d1a155f4d12a667.webp
rename to translated_images/pt-PT/20-DataScience-Humanities.1d1a155f4d12a667.webp
diff --git a/translated_images/pt/20-DataScience-RealWorld.976976229ee11342.webp b/translated_images/pt-PT/20-DataScience-RealWorld.976976229ee11342.webp
similarity index 100%
rename from translated_images/pt/20-DataScience-RealWorld.976976229ee11342.webp
rename to translated_images/pt-PT/20-DataScience-RealWorld.976976229ee11342.webp
diff --git a/translated_images/pt/20-DataScience-Research.da434814c51b4ef8.webp b/translated_images/pt-PT/20-DataScience-Research.da434814c51b4ef8.webp
similarity index 100%
rename from translated_images/pt/20-DataScience-Research.da434814c51b4ef8.webp
rename to translated_images/pt-PT/20-DataScience-Research.da434814c51b4ef8.webp
diff --git a/translated_images/pt/20-DataScience-Sustainability.d4097bc684431da6.webp b/translated_images/pt-PT/20-DataScience-Sustainability.d4097bc684431da6.webp
similarity index 100%
rename from translated_images/pt/20-DataScience-Sustainability.d4097bc684431da6.webp
rename to translated_images/pt-PT/20-DataScience-Sustainability.d4097bc684431da6.webp
diff --git a/translated_images/hk/2D-wb.ae22fdd33936507a.webp b/translated_images/pt-PT/2D-wb.ae22fdd33936507a.webp
similarity index 100%
rename from translated_images/hk/2D-wb.ae22fdd33936507a.webp
rename to translated_images/pt-PT/2D-wb.ae22fdd33936507a.webp
diff --git a/translated_images/hk/2D.b3342157139dd804.webp b/translated_images/pt-PT/2D.b3342157139dd804.webp
similarity index 100%
rename from translated_images/hk/2D.b3342157139dd804.webp
rename to translated_images/pt-PT/2D.b3342157139dd804.webp
diff --git a/translated_images/pt/2d-plot.c504786f439bd7eb.webp b/translated_images/pt-PT/2d-plot.c504786f439bd7eb.webp
similarity index 100%
rename from translated_images/pt/2d-plot.c504786f439bd7eb.webp
rename to translated_images/pt-PT/2d-plot.c504786f439bd7eb.webp
diff --git a/translated_images/hk/3d.0cec12bcc60f0ce7.webp b/translated_images/pt-PT/3d.0cec12bcc60f0ce7.webp
similarity index 100%
rename from translated_images/hk/3d.0cec12bcc60f0ce7.webp
rename to translated_images/pt-PT/3d.0cec12bcc60f0ce7.webp
diff --git a/translated_images/hk/3d.db1734c151eee87d.webp b/translated_images/pt-PT/3d.db1734c151eee87d.webp
similarity index 100%
rename from translated_images/hk/3d.db1734c151eee87d.webp
rename to translated_images/pt-PT/3d.db1734c151eee87d.webp
diff --git a/translated_images/pt/CRISP-DM.8bad2b4c66e62aa7.webp b/translated_images/pt-PT/CRISP-DM.8bad2b4c66e62aa7.webp
similarity index 100%
rename from translated_images/pt/CRISP-DM.8bad2b4c66e62aa7.webp
rename to translated_images/pt-PT/CRISP-DM.8bad2b4c66e62aa7.webp
diff --git a/translated_images/pt/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp b/translated_images/pt-PT/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
similarity index 100%
rename from translated_images/pt/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
rename to translated_images/pt-PT/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
diff --git a/translated_images/pt/MaxWingspan-lineplot.b12169f99d26fdd2.webp b/translated_images/pt-PT/MaxWingspan-lineplot.b12169f99d26fdd2.webp
similarity index 100%
rename from translated_images/pt/MaxWingspan-lineplot.b12169f99d26fdd2.webp
rename to translated_images/pt-PT/MaxWingspan-lineplot.b12169f99d26fdd2.webp
diff --git a/translated_images/pt/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp b/translated_images/pt-PT/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
similarity index 100%
rename from translated_images/pt/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
rename to translated_images/pt-PT/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
diff --git a/translated_images/pt/MaxWingspan-scatterplot.60dc9e0e19d32700.webp b/translated_images/pt-PT/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
similarity index 100%
rename from translated_images/pt/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
rename to translated_images/pt-PT/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
diff --git a/translated_images/pt/aml-1.67281a85d3a1e2f3.webp b/translated_images/pt-PT/aml-1.67281a85d3a1e2f3.webp
similarity index 100%
rename from translated_images/pt/aml-1.67281a85d3a1e2f3.webp
rename to translated_images/pt-PT/aml-1.67281a85d3a1e2f3.webp
diff --git a/translated_images/pt/aml-2.c9fb9cffb39ccbbe.webp b/translated_images/pt-PT/aml-2.c9fb9cffb39ccbbe.webp
similarity index 100%
rename from translated_images/pt/aml-2.c9fb9cffb39ccbbe.webp
rename to translated_images/pt-PT/aml-2.c9fb9cffb39ccbbe.webp
diff --git a/translated_images/pt/aml-3.a7952e4295f38cc6.webp b/translated_images/pt-PT/aml-3.a7952e4295f38cc6.webp
similarity index 100%
rename from translated_images/pt/aml-3.a7952e4295f38cc6.webp
rename to translated_images/pt-PT/aml-3.a7952e4295f38cc6.webp
diff --git a/translated_images/pt/aml-4.7a627e09cb6f16d0.webp b/translated_images/pt-PT/aml-4.7a627e09cb6f16d0.webp
similarity index 100%
rename from translated_images/pt/aml-4.7a627e09cb6f16d0.webp
rename to translated_images/pt-PT/aml-4.7a627e09cb6f16d0.webp
diff --git a/translated_images/pt/bad-chart-1.596bc93425a8ac30.webp b/translated_images/pt-PT/bad-chart-1.596bc93425a8ac30.webp
similarity index 100%
rename from translated_images/pt/bad-chart-1.596bc93425a8ac30.webp
rename to translated_images/pt-PT/bad-chart-1.596bc93425a8ac30.webp
diff --git a/translated_images/pt/bad-chart-1.93130f495b748bed.webp b/translated_images/pt-PT/bad-chart-1.93130f495b748bed.webp
similarity index 100%
rename from translated_images/pt/bad-chart-1.93130f495b748bed.webp
rename to translated_images/pt-PT/bad-chart-1.93130f495b748bed.webp
diff --git a/translated_images/pt/bad-chart-2.62edf4d2f30f4e51.webp b/translated_images/pt-PT/bad-chart-2.62edf4d2f30f4e51.webp
similarity index 100%
rename from translated_images/pt/bad-chart-2.62edf4d2f30f4e51.webp
rename to translated_images/pt-PT/bad-chart-2.62edf4d2f30f4e51.webp
diff --git a/translated_images/pt/bad-chart-2.c20e36dd4e6f617c.webp b/translated_images/pt-PT/bad-chart-2.c20e36dd4e6f617c.webp
similarity index 100%
rename from translated_images/pt/bad-chart-2.c20e36dd4e6f617c.webp
rename to translated_images/pt-PT/bad-chart-2.c20e36dd4e6f617c.webp
diff --git a/translated_images/pt/bad-chart-3.6865d0afac4108d7.webp b/translated_images/pt-PT/bad-chart-3.6865d0afac4108d7.webp
similarity index 100%
rename from translated_images/pt/bad-chart-3.6865d0afac4108d7.webp
rename to translated_images/pt-PT/bad-chart-3.6865d0afac4108d7.webp
diff --git a/translated_images/pt/bad-chart-3.e201e2e915a230bc.webp b/translated_images/pt-PT/bad-chart-3.e201e2e915a230bc.webp
similarity index 100%
rename from translated_images/pt/bad-chart-3.e201e2e915a230bc.webp
rename to translated_images/pt-PT/bad-chart-3.e201e2e915a230bc.webp
diff --git a/translated_images/pt/bad-chart-4.68cfdf4011b45447.webp b/translated_images/pt-PT/bad-chart-4.68cfdf4011b45447.webp
similarity index 100%
rename from translated_images/pt/bad-chart-4.68cfdf4011b45447.webp
rename to translated_images/pt-PT/bad-chart-4.68cfdf4011b45447.webp
diff --git a/translated_images/pt/bad-chart-4.8872b2b881ffa96c.webp b/translated_images/pt-PT/bad-chart-4.8872b2b881ffa96c.webp
similarity index 100%
rename from translated_images/pt/bad-chart-4.8872b2b881ffa96c.webp
rename to translated_images/pt-PT/bad-chart-4.8872b2b881ffa96c.webp
diff --git a/translated_images/hk/bee.0aa1d91132b12e3a.webp b/translated_images/pt-PT/bee.0aa1d91132b12e3a.webp
similarity index 100%
rename from translated_images/hk/bee.0aa1d91132b12e3a.webp
rename to translated_images/pt-PT/bee.0aa1d91132b12e3a.webp
diff --git a/translated_images/pt/bodymass-per-order.9d2b065dd931b928.webp b/translated_images/pt-PT/bodymass-per-order.9d2b065dd931b928.webp
similarity index 100%
rename from translated_images/pt/bodymass-per-order.9d2b065dd931b928.webp
rename to translated_images/pt-PT/bodymass-per-order.9d2b065dd931b928.webp
diff --git a/translated_images/pt/bodymass-smooth.d31ce526d82b0a1f.webp b/translated_images/pt-PT/bodymass-smooth.d31ce526d82b0a1f.webp
similarity index 100%
rename from translated_images/pt/bodymass-smooth.d31ce526d82b0a1f.webp
rename to translated_images/pt-PT/bodymass-smooth.d31ce526d82b0a1f.webp
diff --git a/translated_images/pt/boxplot_byrole.036b27a1c3f52d42.webp b/translated_images/pt-PT/boxplot_byrole.036b27a1c3f52d42.webp
similarity index 100%
rename from translated_images/pt/boxplot_byrole.036b27a1c3f52d42.webp
rename to translated_images/pt-PT/boxplot_byrole.036b27a1c3f52d42.webp
diff --git a/translated_images/pt/boxplot_explanation.4039b7de08780fd4.webp b/translated_images/pt-PT/boxplot_explanation.4039b7de08780fd4.webp
similarity index 100%
rename from translated_images/pt/boxplot_explanation.4039b7de08780fd4.webp
rename to translated_images/pt-PT/boxplot_explanation.4039b7de08780fd4.webp
diff --git a/translated_images/pt/busing.7b9e3b41cd4b981c.webp b/translated_images/pt-PT/busing.7b9e3b41cd4b981c.webp
similarity index 100%
rename from translated_images/pt/busing.7b9e3b41cd4b981c.webp
rename to translated_images/pt-PT/busing.7b9e3b41cd4b981c.webp
diff --git a/translated_images/pt/busing.8157cf1bc89a3f65.webp b/translated_images/pt-PT/busing.8157cf1bc89a3f65.webp
similarity index 100%
rename from translated_images/pt/busing.8157cf1bc89a3f65.webp
rename to translated_images/pt-PT/busing.8157cf1bc89a3f65.webp
diff --git a/translated_images/pt/category-counts-02.0b9a0a4de42275ae.webp b/translated_images/pt-PT/category-counts-02.0b9a0a4de42275ae.webp
similarity index 100%
rename from translated_images/pt/category-counts-02.0b9a0a4de42275ae.webp
rename to translated_images/pt-PT/category-counts-02.0b9a0a4de42275ae.webp
diff --git a/translated_images/hk/category-counts.abee8188c4c9b6f0.webp b/translated_images/pt-PT/category-counts.abee8188c4c9b6f0.webp
similarity index 100%
rename from translated_images/hk/category-counts.abee8188c4c9b6f0.webp
rename to translated_images/pt-PT/category-counts.abee8188c4c9b6f0.webp
diff --git a/translated_images/pt/category-length-02.7304bf519375c980.webp b/translated_images/pt-PT/category-length-02.7304bf519375c980.webp
similarity index 100%
rename from translated_images/pt/category-length-02.7304bf519375c980.webp
rename to translated_images/pt-PT/category-length-02.7304bf519375c980.webp
diff --git a/translated_images/pt/category-length.7e34c296690e85d6.webp b/translated_images/pt-PT/category-length.7e34c296690e85d6.webp
similarity index 100%
rename from translated_images/pt/category-length.7e34c296690e85d6.webp
rename to translated_images/pt-PT/category-length.7e34c296690e85d6.webp
diff --git a/translated_images/hk/category-length.b0d9a0208a7b3713.webp b/translated_images/pt-PT/category-length.b0d9a0208a7b3713.webp
similarity index 100%
rename from translated_images/hk/category-length.b0d9a0208a7b3713.webp
rename to translated_images/pt-PT/category-length.b0d9a0208a7b3713.webp
diff --git a/translated_images/hk/cloud-picture.f5526de3c6c6387b.webp b/translated_images/pt-PT/cloud-picture.f5526de3c6c6387b.webp
similarity index 100%
rename from translated_images/hk/cloud-picture.f5526de3c6c6387b.webp
rename to translated_images/pt-PT/cloud-picture.f5526de3c6c6387b.webp
diff --git a/translated_images/pt/cluster-1.b78cb630bb543729.webp b/translated_images/pt-PT/cluster-1.b78cb630bb543729.webp
similarity index 100%
rename from translated_images/pt/cluster-1.b78cb630bb543729.webp
rename to translated_images/pt-PT/cluster-1.b78cb630bb543729.webp
diff --git a/translated_images/pt/cluster-2.ea30cdbc9f926bb9.webp b/translated_images/pt-PT/cluster-2.ea30cdbc9f926bb9.webp
similarity index 100%
rename from translated_images/pt/cluster-2.ea30cdbc9f926bb9.webp
rename to translated_images/pt-PT/cluster-2.ea30cdbc9f926bb9.webp
diff --git a/translated_images/pt/cluster-3.8a334bc070ec173a.webp b/translated_images/pt-PT/cluster-3.8a334bc070ec173a.webp
similarity index 100%
rename from translated_images/pt/cluster-3.8a334bc070ec173a.webp
rename to translated_images/pt-PT/cluster-3.8a334bc070ec173a.webp
diff --git a/translated_images/pt/columnar-db.ffcfe73c3e9063a8.webp b/translated_images/pt-PT/columnar-db.ffcfe73c3e9063a8.webp
similarity index 100%
rename from translated_images/pt/columnar-db.ffcfe73c3e9063a8.webp
rename to translated_images/pt-PT/columnar-db.ffcfe73c3e9063a8.webp
diff --git a/translated_images/hk/communication.06d8e2a88d30d168.webp b/translated_images/pt-PT/communication.06d8e2a88d30d168.webp
similarity index 100%
rename from translated_images/hk/communication.06d8e2a88d30d168.webp
rename to translated_images/pt-PT/communication.06d8e2a88d30d168.webp
diff --git a/translated_images/pt/comparingdata.f486a450d61c7ca5.webp b/translated_images/pt-PT/comparingdata.f486a450d61c7ca5.webp
similarity index 100%
rename from translated_images/pt/comparingdata.f486a450d61c7ca5.webp
rename to translated_images/pt-PT/comparingdata.f486a450d61c7ca5.webp
diff --git a/translated_images/pt/compute-instance-1.dba347cb199ca499.webp b/translated_images/pt-PT/compute-instance-1.dba347cb199ca499.webp
similarity index 100%
rename from translated_images/pt/compute-instance-1.dba347cb199ca499.webp
rename to translated_images/pt-PT/compute-instance-1.dba347cb199ca499.webp
diff --git a/translated_images/pt/consumption-1.700abd196452842a.webp b/translated_images/pt-PT/consumption-1.700abd196452842a.webp
similarity index 100%
rename from translated_images/pt/consumption-1.700abd196452842a.webp
rename to translated_images/pt-PT/consumption-1.700abd196452842a.webp
diff --git a/translated_images/pt/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp b/translated_images/pt-PT/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
similarity index 100%
rename from translated_images/pt/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
rename to translated_images/pt-PT/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
diff --git a/translated_images/pt/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp b/translated_images/pt-PT/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
similarity index 100%
rename from translated_images/pt/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
rename to translated_images/pt-PT/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
diff --git a/translated_images/pt/cosmosdb-emulator-persons.bf640586a7077c89.webp b/translated_images/pt-PT/cosmosdb-emulator-persons.bf640586a7077c89.webp
similarity index 100%
rename from translated_images/pt/cosmosdb-emulator-persons.bf640586a7077c89.webp
rename to translated_images/pt-PT/cosmosdb-emulator-persons.bf640586a7077c89.webp
diff --git a/translated_images/pt/covidspread.f3d131c4f1d260ab.webp b/translated_images/pt-PT/covidspread.f3d131c4f1d260ab.webp
similarity index 100%
rename from translated_images/pt/covidspread.f3d131c4f1d260ab.webp
rename to translated_images/pt-PT/covidspread.f3d131c4f1d260ab.webp
diff --git a/translated_images/pt/covidtreat.b2ba59f57ca45fbc.webp b/translated_images/pt-PT/covidtreat.b2ba59f57ca45fbc.webp
similarity index 100%
rename from translated_images/pt/covidtreat.b2ba59f57ca45fbc.webp
rename to translated_images/pt-PT/covidtreat.b2ba59f57ca45fbc.webp
diff --git a/translated_images/pt/data-love.a22ef29e6742c852.webp b/translated_images/pt-PT/data-love.a22ef29e6742c852.webp
similarity index 100%
rename from translated_images/pt/data-love.a22ef29e6742c852.webp
rename to translated_images/pt-PT/data-love.a22ef29e6742c852.webp
diff --git a/translated_images/pt/data-science-applications.4e5019cd8790ebac.webp b/translated_images/pt-PT/data-science-applications.4e5019cd8790ebac.webp
similarity index 100%
rename from translated_images/pt/data-science-applications.4e5019cd8790ebac.webp
rename to translated_images/pt-PT/data-science-applications.4e5019cd8790ebac.webp
diff --git a/translated_images/pt/data-science-lifecycle.a1e362637503c4fb.webp b/translated_images/pt-PT/data-science-lifecycle.a1e362637503c4fb.webp
similarity index 100%
rename from translated_images/pt/data-science-lifecycle.a1e362637503c4fb.webp
rename to translated_images/pt-PT/data-science-lifecycle.a1e362637503c4fb.webp
diff --git a/translated_images/pt/data.48e22bb7617d8d92.webp b/translated_images/pt-PT/data.48e22bb7617d8d92.webp
similarity index 100%
rename from translated_images/pt/data.48e22bb7617d8d92.webp
rename to translated_images/pt-PT/data.48e22bb7617d8d92.webp
diff --git a/translated_images/pt/dataframe-1.caf409f0c688e84c.webp b/translated_images/pt-PT/dataframe-1.caf409f0c688e84c.webp
similarity index 100%
rename from translated_images/pt/dataframe-1.caf409f0c688e84c.webp
rename to translated_images/pt-PT/dataframe-1.caf409f0c688e84c.webp
diff --git a/translated_images/pt/datascienceinthecloud.59ffb059a670fb0a.webp b/translated_images/pt-PT/datascienceinthecloud.59ffb059a670fb0a.webp
similarity index 100%
rename from translated_images/pt/datascienceinthecloud.59ffb059a670fb0a.webp
rename to translated_images/pt-PT/datascienceinthecloud.59ffb059a670fb0a.webp
diff --git a/translated_images/pt/dataset-1.e86ab4e10907a6e9.webp b/translated_images/pt-PT/dataset-1.e86ab4e10907a6e9.webp
similarity index 100%
rename from translated_images/pt/dataset-1.e86ab4e10907a6e9.webp
rename to translated_images/pt-PT/dataset-1.e86ab4e10907a6e9.webp
diff --git a/translated_images/pt/dataset-2.f58de1c435d5bf9c.webp b/translated_images/pt-PT/dataset-2.f58de1c435d5bf9c.webp
similarity index 100%
rename from translated_images/pt/dataset-2.f58de1c435d5bf9c.webp
rename to translated_images/pt-PT/dataset-2.f58de1c435d5bf9c.webp
diff --git a/translated_images/pt/dataset-3.58db8c0eb783e892.webp b/translated_images/pt-PT/dataset-3.58db8c0eb783e892.webp
similarity index 100%
rename from translated_images/pt/dataset-3.58db8c0eb783e892.webp
rename to translated_images/pt-PT/dataset-3.58db8c0eb783e892.webp
diff --git a/translated_images/pt/density-plot.675ccf865b76c690.webp b/translated_images/pt-PT/density-plot.675ccf865b76c690.webp
similarity index 100%
rename from translated_images/pt/density-plot.675ccf865b76c690.webp
rename to translated_images/pt-PT/density-plot.675ccf865b76c690.webp
diff --git a/translated_images/pt/density1.8801043bd4af2567.webp b/translated_images/pt-PT/density1.8801043bd4af2567.webp
similarity index 100%
rename from translated_images/pt/density1.8801043bd4af2567.webp
rename to translated_images/pt-PT/density1.8801043bd4af2567.webp
diff --git a/translated_images/pt/density2.8e7647257060ff54.webp b/translated_images/pt-PT/density2.8e7647257060ff54.webp
similarity index 100%
rename from translated_images/pt/density2.8e7647257060ff54.webp
rename to translated_images/pt-PT/density2.8e7647257060ff54.webp
diff --git a/translated_images/pt/density3.84ae27da82f31e6b.webp b/translated_images/pt-PT/density3.84ae27da82f31e6b.webp
similarity index 100%
rename from translated_images/pt/density3.84ae27da82f31e6b.webp
rename to translated_images/pt-PT/density3.84ae27da82f31e6b.webp
diff --git a/translated_images/pt/density4.e9d6c033f15c500f.webp b/translated_images/pt-PT/density4.e9d6c033f15c500f.webp
similarity index 100%
rename from translated_images/pt/density4.e9d6c033f15c500f.webp
rename to translated_images/pt-PT/density4.e9d6c033f15c500f.webp
diff --git a/translated_images/pt/deploy-1.ddad725acadc84e3.webp b/translated_images/pt-PT/deploy-1.ddad725acadc84e3.webp
similarity index 100%
rename from translated_images/pt/deploy-1.ddad725acadc84e3.webp
rename to translated_images/pt-PT/deploy-1.ddad725acadc84e3.webp
diff --git a/translated_images/pt/deploy-2.94dbb13f23908647.webp b/translated_images/pt-PT/deploy-2.94dbb13f23908647.webp
similarity index 100%
rename from translated_images/pt/deploy-2.94dbb13f23908647.webp
rename to translated_images/pt-PT/deploy-2.94dbb13f23908647.webp
diff --git a/translated_images/pt/deploy-3.fecefef070e8ef3b.webp b/translated_images/pt-PT/deploy-3.fecefef070e8ef3b.webp
similarity index 100%
rename from translated_images/pt/deploy-3.fecefef070e8ef3b.webp
rename to translated_images/pt-PT/deploy-3.fecefef070e8ef3b.webp
diff --git a/translated_images/pt/dist1-wb.0d0cac82e2974fbb.webp b/translated_images/pt-PT/dist1-wb.0d0cac82e2974fbb.webp
similarity index 100%
rename from translated_images/pt/dist1-wb.0d0cac82e2974fbb.webp
rename to translated_images/pt-PT/dist1-wb.0d0cac82e2974fbb.webp
diff --git a/translated_images/hk/dist1.0010100b00231819.webp b/translated_images/pt-PT/dist1.0010100b00231819.webp
similarity index 100%
rename from translated_images/hk/dist1.0010100b00231819.webp
rename to translated_images/pt-PT/dist1.0010100b00231819.webp
diff --git a/translated_images/pt/dist2-wb.2c0a7a3499b2fbf5.webp b/translated_images/pt-PT/dist2-wb.2c0a7a3499b2fbf5.webp
similarity index 100%
rename from translated_images/pt/dist2-wb.2c0a7a3499b2fbf5.webp
rename to translated_images/pt-PT/dist2-wb.2c0a7a3499b2fbf5.webp
diff --git a/translated_images/hk/dist2.c398bfd5320401b9.webp b/translated_images/pt-PT/dist2.c398bfd5320401b9.webp
similarity index 100%
rename from translated_images/hk/dist2.c398bfd5320401b9.webp
rename to translated_images/pt-PT/dist2.c398bfd5320401b9.webp
diff --git a/translated_images/pt/dist3-wb.64b88db7f9780200.webp b/translated_images/pt-PT/dist3-wb.64b88db7f9780200.webp
similarity index 100%
rename from translated_images/pt/dist3-wb.64b88db7f9780200.webp
rename to translated_images/pt-PT/dist3-wb.64b88db7f9780200.webp
diff --git a/translated_images/hk/dist3.ad4d9658559690f5.webp b/translated_images/pt-PT/dist3.ad4d9658559690f5.webp
similarity index 100%
rename from translated_images/hk/dist3.ad4d9658559690f5.webp
rename to translated_images/pt-PT/dist3.ad4d9658559690f5.webp
diff --git a/translated_images/pt/distribution-30bins.6a3921ea7a421bf7.webp b/translated_images/pt-PT/distribution-30bins.6a3921ea7a421bf7.webp
similarity index 100%
rename from translated_images/pt/distribution-30bins.6a3921ea7a421bf7.webp
rename to translated_images/pt-PT/distribution-30bins.6a3921ea7a421bf7.webp
diff --git a/translated_images/pt/distribution-over-the-entire-dataset.d22afd3fa96be854.webp b/translated_images/pt-PT/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
similarity index 100%
rename from translated_images/pt/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
rename to translated_images/pt-PT/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
diff --git a/translated_images/pt/document-db.ddeec48c6dc9e5fd.webp b/translated_images/pt-PT/document-db.ddeec48c6dc9e5fd.webp
similarity index 100%
rename from translated_images/pt/document-db.ddeec48c6dc9e5fd.webp
rename to translated_images/pt-PT/document-db.ddeec48c6dc9e5fd.webp
diff --git a/translated_images/pt/donut-wb.34e6fb275da9d834.webp b/translated_images/pt-PT/donut-wb.34e6fb275da9d834.webp
similarity index 100%
rename from translated_images/pt/donut-wb.34e6fb275da9d834.webp
rename to translated_images/pt-PT/donut-wb.34e6fb275da9d834.webp
diff --git a/translated_images/pt/donut-wb.be3c12a22712302b.webp b/translated_images/pt-PT/donut-wb.be3c12a22712302b.webp
similarity index 100%
rename from translated_images/pt/donut-wb.be3c12a22712302b.webp
rename to translated_images/pt-PT/donut-wb.be3c12a22712302b.webp
diff --git a/translated_images/hk/donut.f016d7be7f08c8f8.webp b/translated_images/pt-PT/donut.f016d7be7f08c8f8.webp
similarity index 100%
rename from translated_images/hk/donut.f016d7be7f08c8f8.webp
rename to translated_images/pt-PT/donut.f016d7be7f08c8f8.webp
diff --git a/translated_images/pt/ds-for-beginners.d01930c9193ef522.webp b/translated_images/pt-PT/ds-for-beginners.d01930c9193ef522.webp
similarity index 100%
rename from translated_images/pt/ds-for-beginners.d01930c9193ef522.webp
rename to translated_images/pt-PT/ds-for-beginners.d01930c9193ef522.webp
diff --git a/translated_images/pt/ds_wordcloud.664a7c07dca57de0.webp b/translated_images/pt-PT/ds_wordcloud.664a7c07dca57de0.webp
similarity index 100%
rename from translated_images/pt/ds_wordcloud.664a7c07dca57de0.webp
rename to translated_images/pt-PT/ds_wordcloud.664a7c07dca57de0.webp
diff --git a/translated_images/pt/dual-line.a4c28ce659603fab.webp b/translated_images/pt-PT/dual-line.a4c28ce659603fab.webp
similarity index 100%
rename from translated_images/pt/dual-line.a4c28ce659603fab.webp
rename to translated_images/pt-PT/dual-line.a4c28ce659603fab.webp
diff --git a/translated_images/pt/dual-line.fc4665f360a54018.webp b/translated_images/pt-PT/dual-line.fc4665f360a54018.webp
similarity index 100%
rename from translated_images/pt/dual-line.fc4665f360a54018.webp
rename to translated_images/pt-PT/dual-line.fc4665f360a54018.webp
diff --git a/translated_images/pt/facet.491ad90d61c2a7cc.webp b/translated_images/pt-PT/facet.491ad90d61c2a7cc.webp
similarity index 100%
rename from translated_images/pt/facet.491ad90d61c2a7cc.webp
rename to translated_images/pt-PT/facet.491ad90d61c2a7cc.webp
diff --git a/translated_images/pt/facet.6a34851dcd540050.webp b/translated_images/pt-PT/facet.6a34851dcd540050.webp
similarity index 100%
rename from translated_images/pt/facet.6a34851dcd540050.webp
rename to translated_images/pt-PT/facet.6a34851dcd540050.webp
diff --git a/translated_images/hk/favicon.37b561214b36d454.webp b/translated_images/pt-PT/favicon.37b561214b36d454.webp
similarity index 100%
rename from translated_images/hk/favicon.37b561214b36d454.webp
rename to translated_images/pt-PT/favicon.37b561214b36d454.webp
diff --git a/translated_images/pt/filtered-histogram.6bf5d2bfd8253322.webp b/translated_images/pt-PT/filtered-histogram.6bf5d2bfd8253322.webp
similarity index 100%
rename from translated_images/pt/filtered-histogram.6bf5d2bfd8253322.webp
rename to translated_images/pt-PT/filtered-histogram.6bf5d2bfd8253322.webp
diff --git a/translated_images/pt/formula-excel.ad1068c220892f5e.webp b/translated_images/pt-PT/formula-excel.ad1068c220892f5e.webp
similarity index 100%
rename from translated_images/pt/formula-excel.ad1068c220892f5e.webp
rename to translated_images/pt-PT/formula-excel.ad1068c220892f5e.webp
diff --git a/translated_images/pt/full-data-bar-02.aaa3fda71c63ed56.webp b/translated_images/pt-PT/full-data-bar-02.aaa3fda71c63ed56.webp
similarity index 100%
rename from translated_images/pt/full-data-bar-02.aaa3fda71c63ed56.webp
rename to translated_images/pt-PT/full-data-bar-02.aaa3fda71c63ed56.webp
diff --git a/translated_images/pt/full-data-bar.a0b37da71a6cd236.webp b/translated_images/pt-PT/full-data-bar.a0b37da71a6cd236.webp
similarity index 100%
rename from translated_images/pt/full-data-bar.a0b37da71a6cd236.webp
rename to translated_images/pt-PT/full-data-bar.a0b37da71a6cd236.webp
diff --git a/translated_images/pt/function-excel.be2ae4feddc10ca0.webp b/translated_images/pt-PT/function-excel.be2ae4feddc10ca0.webp
similarity index 100%
rename from translated_images/pt/function-excel.be2ae4feddc10ca0.webp
rename to translated_images/pt-PT/function-excel.be2ae4feddc10ca0.webp
diff --git a/translated_images/pt/graph-db.d13629152f79a9da.webp b/translated_images/pt-PT/graph-db.d13629152f79a9da.webp
similarity index 100%
rename from translated_images/pt/graph-db.d13629152f79a9da.webp
rename to translated_images/pt-PT/graph-db.d13629152f79a9da.webp
diff --git a/translated_images/hk/height-boxplot.ccb66b2848b5f51c.webp b/translated_images/pt-PT/height-boxplot.ccb66b2848b5f51c.webp
similarity index 100%
rename from translated_images/hk/height-boxplot.ccb66b2848b5f51c.webp
rename to translated_images/pt-PT/height-boxplot.ccb66b2848b5f51c.webp
diff --git a/translated_images/pt/histogram-conservation-wb.3c40450eb072c14d.webp b/translated_images/pt-PT/histogram-conservation-wb.3c40450eb072c14d.webp
similarity index 100%
rename from translated_images/pt/histogram-conservation-wb.3c40450eb072c14d.webp
rename to translated_images/pt-PT/histogram-conservation-wb.3c40450eb072c14d.webp
diff --git a/translated_images/pt/histogram-conservation.13b3542e7784e415.webp b/translated_images/pt-PT/histogram-conservation.13b3542e7784e415.webp
similarity index 100%
rename from translated_images/pt/histogram-conservation.13b3542e7784e415.webp
rename to translated_images/pt-PT/histogram-conservation.13b3542e7784e415.webp
diff --git a/translated_images/pt/kv-db.e8f2b75686bbdfcb.webp b/translated_images/pt-PT/kv-db.e8f2b75686bbdfcb.webp
similarity index 100%
rename from translated_images/pt/kv-db.e8f2b75686bbdfcb.webp
rename to translated_images/pt-PT/kv-db.e8f2b75686bbdfcb.webp
diff --git a/translated_images/pt/labeled-wingspan-02.6110e2d2401cd523.webp b/translated_images/pt-PT/labeled-wingspan-02.6110e2d2401cd523.webp
similarity index 100%
rename from translated_images/pt/labeled-wingspan-02.6110e2d2401cd523.webp
rename to translated_images/pt-PT/labeled-wingspan-02.6110e2d2401cd523.webp
diff --git a/translated_images/pt/labeled-wingspan.900ffedd7e3ec6de.webp b/translated_images/pt-PT/labeled-wingspan.900ffedd7e3ec6de.webp
similarity index 100%
rename from translated_images/pt/labeled-wingspan.900ffedd7e3ec6de.webp
rename to translated_images/pt-PT/labeled-wingspan.900ffedd7e3ec6de.webp
diff --git a/translated_images/pt/less-smooth-bodymass.10f4db8b683cc17d.webp b/translated_images/pt-PT/less-smooth-bodymass.10f4db8b683cc17d.webp
similarity index 100%
rename from translated_images/pt/less-smooth-bodymass.10f4db8b683cc17d.webp
rename to translated_images/pt-PT/less-smooth-bodymass.10f4db8b683cc17d.webp
diff --git a/translated_images/pt/liaisons.7b440b28f6d07ea4.webp b/translated_images/pt-PT/liaisons.7b440b28f6d07ea4.webp
similarity index 100%
rename from translated_images/pt/liaisons.7b440b28f6d07ea4.webp
rename to translated_images/pt-PT/liaisons.7b440b28f6d07ea4.webp
diff --git a/translated_images/pt/liaisons.90ce7360bcf84765.webp b/translated_images/pt-PT/liaisons.90ce7360bcf84765.webp
similarity index 100%
rename from translated_images/pt/liaisons.90ce7360bcf84765.webp
rename to translated_images/pt-PT/liaisons.90ce7360bcf84765.webp
diff --git a/translated_images/pt/line1.299b576fbb2a59e6.webp b/translated_images/pt-PT/line1.299b576fbb2a59e6.webp
similarity index 100%
rename from translated_images/pt/line1.299b576fbb2a59e6.webp
rename to translated_images/pt-PT/line1.299b576fbb2a59e6.webp
diff --git a/translated_images/pt/line1.f36eb465229a3b1f.webp b/translated_images/pt-PT/line1.f36eb465229a3b1f.webp
similarity index 100%
rename from translated_images/pt/line1.f36eb465229a3b1f.webp
rename to translated_images/pt-PT/line1.f36eb465229a3b1f.webp
diff --git a/translated_images/pt/line2.3b18fcda7176ceba.webp b/translated_images/pt-PT/line2.3b18fcda7176ceba.webp
similarity index 100%
rename from translated_images/pt/line2.3b18fcda7176ceba.webp
rename to translated_images/pt-PT/line2.3b18fcda7176ceba.webp
diff --git a/translated_images/pt/line2.a5b3493dc01058af.webp b/translated_images/pt-PT/line2.a5b3493dc01058af.webp
similarity index 100%
rename from translated_images/pt/line2.a5b3493dc01058af.webp
rename to translated_images/pt-PT/line2.a5b3493dc01058af.webp
diff --git a/translated_images/pt/max-length-per-order.e5b283d952c78c12.webp b/translated_images/pt-PT/max-length-per-order.e5b283d952c78c12.webp
similarity index 100%
rename from translated_images/pt/max-length-per-order.e5b283d952c78c12.webp
rename to translated_images/pt-PT/max-length-per-order.e5b283d952c78c12.webp
diff --git a/translated_images/hk/max-wingspan-02.e79fd847b2640b89.webp b/translated_images/pt-PT/max-wingspan-02.e79fd847b2640b89.webp
similarity index 100%
rename from translated_images/hk/max-wingspan-02.e79fd847b2640b89.webp
rename to translated_images/pt-PT/max-wingspan-02.e79fd847b2640b89.webp
diff --git a/translated_images/pt/max-wingspan-labels-02.aa90e826ca49a9d1.webp b/translated_images/pt-PT/max-wingspan-labels-02.aa90e826ca49a9d1.webp
similarity index 100%
rename from translated_images/pt/max-wingspan-labels-02.aa90e826ca49a9d1.webp
rename to translated_images/pt-PT/max-wingspan-labels-02.aa90e826ca49a9d1.webp
diff --git a/translated_images/hk/max-wingspan-labels.46f0cc3c48edd4e0.webp b/translated_images/pt-PT/max-wingspan-labels.46f0cc3c48edd4e0.webp
similarity index 100%
rename from translated_images/hk/max-wingspan-labels.46f0cc3c48edd4e0.webp
rename to translated_images/pt-PT/max-wingspan-labels.46f0cc3c48edd4e0.webp
diff --git a/translated_images/hk/max-wingspan.0b8d0858436414aa.webp b/translated_images/pt-PT/max-wingspan.0b8d0858436414aa.webp
similarity index 100%
rename from translated_images/hk/max-wingspan.0b8d0858436414aa.webp
rename to translated_images/pt-PT/max-wingspan.0b8d0858436414aa.webp
diff --git a/translated_images/pt/multi.56548caa9eae8d0f.webp b/translated_images/pt-PT/multi.56548caa9eae8d0f.webp
similarity index 100%
rename from translated_images/pt/multi.56548caa9eae8d0f.webp
rename to translated_images/pt-PT/multi.56548caa9eae8d0f.webp
diff --git a/translated_images/pt/new-container.650e10c7a20a5f83.webp b/translated_images/pt-PT/new-container.650e10c7a20a5f83.webp
similarity index 100%
rename from translated_images/pt/new-container.650e10c7a20a5f83.webp
rename to translated_images/pt-PT/new-container.650e10c7a20a5f83.webp
diff --git a/translated_images/hk/normal-histogram.dfae0d67c202137d.webp b/translated_images/pt-PT/normal-histogram.dfae0d67c202137d.webp
similarity index 100%
rename from translated_images/hk/normal-histogram.dfae0d67c202137d.webp
rename to translated_images/pt-PT/normal-histogram.dfae0d67c202137d.webp
diff --git a/translated_images/pt/notebook-1.12998af7b02c83f5.webp b/translated_images/pt-PT/notebook-1.12998af7b02c83f5.webp
similarity index 100%
rename from translated_images/pt/notebook-1.12998af7b02c83f5.webp
rename to translated_images/pt-PT/notebook-1.12998af7b02c83f5.webp
diff --git a/translated_images/pt/notebook-2.9a657c037e34f1cf.webp b/translated_images/pt-PT/notebook-2.9a657c037e34f1cf.webp
similarity index 100%
rename from translated_images/pt/notebook-2.9a657c037e34f1cf.webp
rename to translated_images/pt-PT/notebook-2.9a657c037e34f1cf.webp
diff --git a/translated_images/pt/parts-of-spreadsheet.120711c82aa18a45.webp b/translated_images/pt-PT/parts-of-spreadsheet.120711c82aa18a45.webp
similarity index 100%
rename from translated_images/pt/parts-of-spreadsheet.120711c82aa18a45.webp
rename to translated_images/pt-PT/parts-of-spreadsheet.120711c82aa18a45.webp
diff --git a/translated_images/pt/pie1-wb.685df063673751f4.webp b/translated_images/pt-PT/pie1-wb.685df063673751f4.webp
similarity index 100%
rename from translated_images/pt/pie1-wb.685df063673751f4.webp
rename to translated_images/pt-PT/pie1-wb.685df063673751f4.webp
diff --git a/translated_images/pt/pie1-wb.e201f2fcc3354131.webp b/translated_images/pt-PT/pie1-wb.e201f2fcc3354131.webp
similarity index 100%
rename from translated_images/pt/pie1-wb.e201f2fcc3354131.webp
rename to translated_images/pt-PT/pie1-wb.e201f2fcc3354131.webp
diff --git a/translated_images/pt/pie1.8f6a8bfac96de60e.webp b/translated_images/pt-PT/pie1.8f6a8bfac96de60e.webp
similarity index 100%
rename from translated_images/pt/pie1.8f6a8bfac96de60e.webp
rename to translated_images/pt-PT/pie1.8f6a8bfac96de60e.webp
diff --git a/translated_images/pt/planetary-computer-explorer.c1e95a9b053167d6.webp b/translated_images/pt-PT/planetary-computer-explorer.c1e95a9b053167d6.webp
similarity index 100%
rename from translated_images/pt/planetary-computer-explorer.c1e95a9b053167d6.webp
rename to translated_images/pt-PT/planetary-computer-explorer.c1e95a9b053167d6.webp
diff --git a/translated_images/pt/probability-density.a8aad29f17a14afb.webp b/translated_images/pt-PT/probability-density.a8aad29f17a14afb.webp
similarity index 100%
rename from translated_images/pt/probability-density.a8aad29f17a14afb.webp
rename to translated_images/pt-PT/probability-density.a8aad29f17a14afb.webp
diff --git a/translated_images/pt/project-schema.420e56d495624541.webp b/translated_images/pt-PT/project-schema.420e56d495624541.webp
similarity index 100%
rename from translated_images/pt/project-schema.420e56d495624541.webp
rename to translated_images/pt-PT/project-schema.420e56d495624541.webp
diff --git a/translated_images/pt/project-schema.736f6e403f321eb4.webp b/translated_images/pt-PT/project-schema.736f6e403f321eb4.webp
similarity index 100%
rename from translated_images/pt/project-schema.736f6e403f321eb4.webp
rename to translated_images/pt-PT/project-schema.736f6e403f321eb4.webp
diff --git a/translated_images/pt/scatter-wb.9d98b0ed7f0388af.webp b/translated_images/pt-PT/scatter-wb.9d98b0ed7f0388af.webp
similarity index 100%
rename from translated_images/pt/scatter-wb.9d98b0ed7f0388af.webp
rename to translated_images/pt-PT/scatter-wb.9d98b0ed7f0388af.webp
diff --git a/translated_images/hk/scatter.520a43eceb46dbcb.webp b/translated_images/pt-PT/scatter.520a43eceb46dbcb.webp
similarity index 100%
rename from translated_images/hk/scatter.520a43eceb46dbcb.webp
rename to translated_images/pt-PT/scatter.520a43eceb46dbcb.webp
diff --git a/translated_images/pt/scatter1.5e1aa5fd6706c5d1.webp b/translated_images/pt-PT/scatter1.5e1aa5fd6706c5d1.webp
similarity index 100%
rename from translated_images/pt/scatter1.5e1aa5fd6706c5d1.webp
rename to translated_images/pt-PT/scatter1.5e1aa5fd6706c5d1.webp
diff --git a/translated_images/pt/scatter1.86b8900674d88b26.webp b/translated_images/pt-PT/scatter1.86b8900674d88b26.webp
similarity index 100%
rename from translated_images/pt/scatter1.86b8900674d88b26.webp
rename to translated_images/pt-PT/scatter1.86b8900674d88b26.webp
diff --git a/translated_images/pt/scatter2.4d1cbc693bad20e2.webp b/translated_images/pt-PT/scatter2.4d1cbc693bad20e2.webp
similarity index 100%
rename from translated_images/pt/scatter2.4d1cbc693bad20e2.webp
rename to translated_images/pt-PT/scatter2.4d1cbc693bad20e2.webp
diff --git a/translated_images/pt/scatter2.c0041a58621ca702.webp b/translated_images/pt-PT/scatter2.c0041a58621ca702.webp
similarity index 100%
rename from translated_images/pt/scatter2.c0041a58621ca702.webp
rename to translated_images/pt-PT/scatter2.c0041a58621ca702.webp
diff --git a/translated_images/pt/scatter3.3c160a3d1dcb36b3.webp b/translated_images/pt-PT/scatter3.3c160a3d1dcb36b3.webp
similarity index 100%
rename from translated_images/pt/scatter3.3c160a3d1dcb36b3.webp
rename to translated_images/pt-PT/scatter3.3c160a3d1dcb36b3.webp
diff --git a/translated_images/pt/scatter3.722d21e6f20b3ea2.webp b/translated_images/pt-PT/scatter3.722d21e6f20b3ea2.webp
similarity index 100%
rename from translated_images/pt/scatter3.722d21e6f20b3ea2.webp
rename to translated_images/pt-PT/scatter3.722d21e6f20b3ea2.webp
diff --git a/translated_images/pt/scatterplot-wingspan-02.1c33790094ce36a7.webp b/translated_images/pt-PT/scatterplot-wingspan-02.1c33790094ce36a7.webp
similarity index 100%
rename from translated_images/pt/scatterplot-wingspan-02.1c33790094ce36a7.webp
rename to translated_images/pt-PT/scatterplot-wingspan-02.1c33790094ce36a7.webp
diff --git a/translated_images/hk/scatterplot-wingspan.bdab448702939bb3.webp b/translated_images/pt-PT/scatterplot-wingspan.bdab448702939bb3.webp
similarity index 100%
rename from translated_images/hk/scatterplot-wingspan.bdab448702939bb3.webp
rename to translated_images/pt-PT/scatterplot-wingspan.bdab448702939bb3.webp
diff --git a/translated_images/pt/stacked-bar-chart.0c92264e89da7b39.webp b/translated_images/pt-PT/stacked-bar-chart.0c92264e89da7b39.webp
similarity index 100%
rename from translated_images/pt/stacked-bar-chart.0c92264e89da7b39.webp
rename to translated_images/pt-PT/stacked-bar-chart.0c92264e89da7b39.webp
diff --git a/translated_images/pt/superimposed-02.f03058536baeb2ed.webp b/translated_images/pt-PT/superimposed-02.f03058536baeb2ed.webp
similarity index 100%
rename from translated_images/pt/superimposed-02.f03058536baeb2ed.webp
rename to translated_images/pt-PT/superimposed-02.f03058536baeb2ed.webp
diff --git a/translated_images/pt/superimposed-values.5363f0705a1da416.webp b/translated_images/pt-PT/superimposed-values.5363f0705a1da416.webp
similarity index 100%
rename from translated_images/pt/superimposed-values.5363f0705a1da416.webp
rename to translated_images/pt-PT/superimposed-values.5363f0705a1da416.webp
diff --git a/translated_images/hk/superimposed.8b5bd0e8825d9c5c.webp b/translated_images/pt-PT/superimposed.8b5bd0e8825d9c5c.webp
similarity index 100%
rename from translated_images/hk/superimposed.8b5bd0e8825d9c5c.webp
rename to translated_images/pt-PT/superimposed.8b5bd0e8825d9c5c.webp
diff --git a/translated_images/pt/tdsp-lifecycle2.e19029d598e2e73d.webp b/translated_images/pt-PT/tdsp-lifecycle2.e19029d598e2e73d.webp
similarity index 100%
rename from translated_images/pt/tdsp-lifecycle2.e19029d598e2e73d.webp
rename to translated_images/pt-PT/tdsp-lifecycle2.e19029d598e2e73d.webp
diff --git a/translated_images/pt/timeseries-1.80de678ab1cf727e.webp b/translated_images/pt-PT/timeseries-1.80de678ab1cf727e.webp
similarity index 100%
rename from translated_images/pt/timeseries-1.80de678ab1cf727e.webp
rename to translated_images/pt-PT/timeseries-1.80de678ab1cf727e.webp
diff --git a/translated_images/pt/timeseries-2.aae51d575c55181c.webp b/translated_images/pt-PT/timeseries-2.aae51d575c55181c.webp
similarity index 100%
rename from translated_images/pt/timeseries-2.aae51d575c55181c.webp
rename to translated_images/pt-PT/timeseries-2.aae51d575c55181c.webp
diff --git a/translated_images/pt/timeseries-3.f3147cbc8c624881.webp b/translated_images/pt-PT/timeseries-3.f3147cbc8c624881.webp
similarity index 100%
rename from translated_images/pt/timeseries-3.f3147cbc8c624881.webp
rename to translated_images/pt-PT/timeseries-3.f3147cbc8c624881.webp
diff --git a/translated_images/pt/tornado.2880ffc7f135f82b.webp b/translated_images/pt-PT/tornado.2880ffc7f135f82b.webp
similarity index 100%
rename from translated_images/pt/tornado.2880ffc7f135f82b.webp
rename to translated_images/pt-PT/tornado.2880ffc7f135f82b.webp
diff --git a/translated_images/pt/tornado.9f42168791208f97.webp b/translated_images/pt-PT/tornado.9f42168791208f97.webp
similarity index 100%
rename from translated_images/pt/tornado.9f42168791208f97.webp
rename to translated_images/pt-PT/tornado.9f42168791208f97.webp
diff --git a/translated_images/pt/video-def-ds.6623ee2392ef1abf.webp b/translated_images/pt-PT/video-def-ds.6623ee2392ef1abf.webp
similarity index 100%
rename from translated_images/pt/video-def-ds.6623ee2392ef1abf.webp
rename to translated_images/pt-PT/video-def-ds.6623ee2392ef1abf.webp
diff --git a/translated_images/pt/video-ds-python.245247dc811db8e4.webp b/translated_images/pt-PT/video-ds-python.245247dc811db8e4.webp
similarity index 100%
rename from translated_images/pt/video-ds-python.245247dc811db8e4.webp
rename to translated_images/pt-PT/video-ds-python.245247dc811db8e4.webp
diff --git a/translated_images/pt/video-prob-and-stats.e4282e5efa2f2543.webp b/translated_images/pt-PT/video-prob-and-stats.e4282e5efa2f2543.webp
similarity index 100%
rename from translated_images/pt/video-prob-and-stats.e4282e5efa2f2543.webp
rename to translated_images/pt-PT/video-prob-and-stats.e4282e5efa2f2543.webp
diff --git a/translated_images/pt/waffle.5455dbae4ccf17d5.webp b/translated_images/pt-PT/waffle.5455dbae4ccf17d5.webp
similarity index 100%
rename from translated_images/pt/waffle.5455dbae4ccf17d5.webp
rename to translated_images/pt-PT/waffle.5455dbae4ccf17d5.webp
diff --git a/translated_images/pt/waffle.aaa75c5337735a6e.webp b/translated_images/pt-PT/waffle.aaa75c5337735a6e.webp
similarity index 100%
rename from translated_images/pt/waffle.aaa75c5337735a6e.webp
rename to translated_images/pt-PT/waffle.aaa75c5337735a6e.webp
diff --git a/translated_images/hk/weight-boxplot.1dbab1c03af26f8a.webp b/translated_images/pt-PT/weight-boxplot.1dbab1c03af26f8a.webp
similarity index 100%
rename from translated_images/hk/weight-boxplot.1dbab1c03af26f8a.webp
rename to translated_images/pt-PT/weight-boxplot.1dbab1c03af26f8a.webp
diff --git a/translated_images/pt/weight-height-relationship.3f06bde4ca2aba99.webp b/translated_images/pt-PT/weight-height-relationship.3f06bde4ca2aba99.webp
similarity index 100%
rename from translated_images/pt/weight-height-relationship.3f06bde4ca2aba99.webp
rename to translated_images/pt-PT/weight-height-relationship.3f06bde4ca2aba99.webp
diff --git a/translated_images/pt/weight-histogram.bfd00caf7fc30b14.webp b/translated_images/pt-PT/weight-histogram.bfd00caf7fc30b14.webp
similarity index 100%
rename from translated_images/pt/weight-histogram.bfd00caf7fc30b14.webp
rename to translated_images/pt-PT/weight-histogram.bfd00caf7fc30b14.webp
diff --git a/translated_images/pt/wingspan-conservation-collation.4024e9aa6910866a.webp b/translated_images/pt-PT/wingspan-conservation-collation.4024e9aa6910866a.webp
similarity index 100%
rename from translated_images/pt/wingspan-conservation-collation.4024e9aa6910866a.webp
rename to translated_images/pt-PT/wingspan-conservation-collation.4024e9aa6910866a.webp
diff --git a/translated_images/pt/workspace-1.ac8694d60b073ed1.webp b/translated_images/pt-PT/workspace-1.ac8694d60b073ed1.webp
similarity index 100%
rename from translated_images/pt/workspace-1.ac8694d60b073ed1.webp
rename to translated_images/pt-PT/workspace-1.ac8694d60b073ed1.webp
diff --git a/translated_images/pt/workspace-2.ae7c486db8796147.webp b/translated_images/pt-PT/workspace-2.ae7c486db8796147.webp
similarity index 100%
rename from translated_images/pt/workspace-2.ae7c486db8796147.webp
rename to translated_images/pt-PT/workspace-2.ae7c486db8796147.webp
diff --git a/translated_images/pt/workspace-3.398ca4a5858132cc.webp b/translated_images/pt-PT/workspace-3.398ca4a5858132cc.webp
similarity index 100%
rename from translated_images/pt/workspace-3.398ca4a5858132cc.webp
rename to translated_images/pt-PT/workspace-3.398ca4a5858132cc.webp
diff --git a/translated_images/pt/workspace-4.bac87f6599c4df63.webp b/translated_images/pt-PT/workspace-4.bac87f6599c4df63.webp
similarity index 100%
rename from translated_images/pt/workspace-4.bac87f6599c4df63.webp
rename to translated_images/pt-PT/workspace-4.bac87f6599c4df63.webp
diff --git a/translated_images/pt/workspace-5.a6eb17e0a5e64200.webp b/translated_images/pt-PT/workspace-5.a6eb17e0a5e64200.webp
similarity index 100%
rename from translated_images/pt/workspace-5.a6eb17e0a5e64200.webp
rename to translated_images/pt-PT/workspace-5.a6eb17e0a5e64200.webp
diff --git a/translated_images/pt/workspace-6.8dd81fe841797ee1.webp b/translated_images/pt-PT/workspace-6.8dd81fe841797ee1.webp
similarity index 100%
rename from translated_images/pt/workspace-6.8dd81fe841797ee1.webp
rename to translated_images/pt-PT/workspace-6.8dd81fe841797ee1.webp
diff --git a/translated_images/te/.co-op-translator.json b/translated_images/te/.co-op-translator.json
index f6092958..0889679b 100644
--- a/translated_images/te/.co-op-translator.json
+++ b/translated_images/te/.co-op-translator.json
@@ -1,98 +1,26 @@
{
- "ds-for-beginners.d01930c9193ef522.webp": {
- "original_hash": "b84eca5411f4bc0041e671becb05fe48",
- "translation_date": "2026-01-16T23:18:09+00:00",
- "source_file": "ds-for-beginners.png",
- "language_code": "te"
- },
- "favicon.37b561214b36d454.webp": {
- "original_hash": "228faa6584f8ba1f7e9a75e3200112e9",
- "translation_date": "2026-01-16T23:18:12+00:00",
- "source_file": "images/favicon.png",
- "language_code": "te"
- },
- "1.0b520df6a0d9d3c4.webp": {
- "original_hash": "54586a26505aae6cbcc8962a2852b277",
- "translation_date": "2026-01-16T23:18:15+00:00",
- "source_file": "images/1.png",
- "language_code": "te"
- },
- "08-DataPreparation.e3b185c37958e964.webp": {
- "original_hash": "0201767bfac86b208c4c9de0fce95141",
- "translation_date": "2026-01-16T23:18:25+00:00",
- "source_file": "sketchnotes/08-DataPreparation.png",
- "language_code": "te"
- },
- "10-Visualizing-Distributions.8097fd8abd7221a1.webp": {
- "original_hash": "885512a64dcab7202c5a53cbde907da2",
- "translation_date": "2026-01-16T23:18:41+00:00",
- "source_file": "sketchnotes/10-Visualizing-Distributions.png",
- "language_code": "te"
- },
- "05-RelationalData.af50f5a3e50f7456.webp": {
- "original_hash": "e4e0576bddd38fe9a4bd941f73d6de3b",
- "translation_date": "2026-01-16T23:18:56+00:00",
- "source_file": "sketchnotes/05-RelationalData.png",
- "language_code": "te"
- },
- "16-Communicating.f1d29cd7984442a4.webp": {
- "original_hash": "9a65542ddae4e103ab2a665fe65629ce",
- "translation_date": "2026-01-16T23:19:08+00:00",
- "source_file": "sketchnotes/16-Communicating.png",
- "language_code": "te"
- },
"00-Roadmap.4905d6567dff4753.webp": {
"original_hash": "ecf8b739e8b862f9c4dac338bd614aa7",
"translation_date": "2026-01-16T23:20:27+00:00",
"source_file": "sketchnotes/00-Roadmap.png",
"language_code": "te"
},
- "12-Visualizing-Relationships.4466f9bd260f03dd.webp": {
- "original_hash": "10d06245ecbdc48880e555f03a62f64c",
- "translation_date": "2026-01-16T23:22:39+00:00",
- "source_file": "sketchnotes/12-Visualizing-Relationships.png",
- "language_code": "te"
- },
- "06-NoSQL.42a91ea0cd5769fe.webp": {
- "original_hash": "f5873c65a3a544e1b1a94417c5ee55c8",
- "translation_date": "2026-01-16T23:22:52+00:00",
- "source_file": "sketchnotes/06-NoSQL.png",
- "language_code": "te"
- },
- "20-DataScience-RealWorld.976976229ee11342.webp": {
- "original_hash": "ff1861c005ea9fe7644777c4069008b9",
- "translation_date": "2026-01-16T23:23:10+00:00",
- "source_file": "sketchnotes/20-DataScience-RealWorld.png",
- "language_code": "te"
- },
- "01-Definitions.1b14ddc9525dc0d9.webp": {
- "original_hash": "56648d71e5fb4865d3f621010f220582",
- "translation_date": "2026-01-16T23:23:27+00:00",
- "source_file": "sketchnotes/01-Definitions.png",
- "language_code": "te"
- },
"00-Title.8af36cd35da1ac55.webp": {
"original_hash": "533863b4c050b07b1d90ecb948237ffc",
"translation_date": "2026-01-16T23:23:33+00:00",
"source_file": "sketchnotes/00-Title.png",
"language_code": "te"
},
- "14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp": {
- "original_hash": "96cbd264a85530f5876c353b2e57956d",
- "translation_date": "2026-01-16T23:23:46+00:00",
- "source_file": "sketchnotes/14-DataScience-Lifecycle.png",
- "language_code": "te"
- },
- "11-Visualizing-Proportions.3e82f24af94d206e.webp": {
- "original_hash": "e7f8f167d209a389c3100d3ac210b69d",
- "translation_date": "2026-01-16T23:24:08+00:00",
- "source_file": "sketchnotes/11-Visualizing-Proportions.png",
+ "01-Definitions.1b14ddc9525dc0d9.webp": {
+ "original_hash": "56648d71e5fb4865d3f621010f220582",
+ "translation_date": "2026-01-16T23:23:27+00:00",
+ "source_file": "sketchnotes/01-Definitions.png",
"language_code": "te"
},
- "20-DataScience-Research.da434814c51b4ef8.webp": {
- "original_hash": "c1d7c67564ad6767200da0cab95eeb52",
- "translation_date": "2026-01-16T23:24:28+00:00",
- "source_file": "sketchnotes/20-DataScience-Research.png",
+ "02-Ethics.728d166895302ab0.webp": {
+ "original_hash": "005bd88e9721003310c7b2f17dd0e35a",
+ "translation_date": "2026-01-16T23:27:18+00:00",
+ "source_file": "sketchnotes/02-Ethics.png",
"language_code": "te"
},
"03-DefiningData.f800817186949e07.webp": {
@@ -101,16 +29,22 @@
"source_file": "sketchnotes/03-DefiningData.png",
"language_code": "te"
},
- "20-DataScience-Humanities.1d1a155f4d12a667.webp": {
- "original_hash": "1458acca113e1f3c64fb18d6a434fb5c",
- "translation_date": "2026-01-16T23:25:03+00:00",
- "source_file": "sketchnotes/20-DataScience-Humanities.png",
+ "04-Statistics-Probability.cfc569d84a9f1867.webp": {
+ "original_hash": "2ee100d33c054ce8a39267530f23377c",
+ "translation_date": "2026-01-16T23:27:29+00:00",
+ "source_file": "sketchnotes/04-Statistics-Probability.png",
"language_code": "te"
},
- "20-DataScience-Sustainability.d4097bc684431da6.webp": {
- "original_hash": "966e2a6eea920d7cb30a343e0bf5c856",
- "translation_date": "2026-01-16T23:25:22+00:00",
- "source_file": "sketchnotes/20-DataScience-Sustainability.png",
+ "05-RelationalData.af50f5a3e50f7456.webp": {
+ "original_hash": "e4e0576bddd38fe9a4bd941f73d6de3b",
+ "translation_date": "2026-01-16T23:18:56+00:00",
+ "source_file": "sketchnotes/05-RelationalData.png",
+ "language_code": "te"
+ },
+ "06-NoSQL.42a91ea0cd5769fe.webp": {
+ "original_hash": "f5873c65a3a544e1b1a94417c5ee55c8",
+ "translation_date": "2026-01-16T23:22:52+00:00",
+ "source_file": "sketchnotes/06-NoSQL.png",
"language_code": "te"
},
"07-WorkWithPython.8bf4a5013718bef9.webp": {
@@ -119,16 +53,10 @@
"source_file": "sketchnotes/07-WorkWithPython.png",
"language_code": "te"
},
- "19-DataScience-Cloud.177b38fb86301fc6.webp": {
- "original_hash": "78eb918c3512a018c0d99a217bc72038",
- "translation_date": "2026-01-16T23:25:50+00:00",
- "source_file": "sketchnotes/19-DataScience-Cloud.png",
- "language_code": "te"
- },
- "18-DataScience-Cloud.3a7292e8182b74eb.webp": {
- "original_hash": "c1094124ae2e325016c6ddcb95599c7a",
- "translation_date": "2026-01-16T23:26:13+00:00",
- "source_file": "sketchnotes/18-DataScience-Cloud.png",
+ "08-DataPreparation.e3b185c37958e964.webp": {
+ "original_hash": "0201767bfac86b208c4c9de0fce95141",
+ "translation_date": "2026-01-16T23:18:25+00:00",
+ "source_file": "sketchnotes/08-DataPreparation.png",
"language_code": "te"
},
"09-Visualizing-Quantities.5c846edd805a5238.webp": {
@@ -137,22 +65,28 @@
"source_file": "sketchnotes/09-Visualizing-Quantities.png",
"language_code": "te"
},
- "17-DataScience-Cloud.0df76ac874805c14.webp": {
- "original_hash": "221a9e5d40e6f47fe793f175a8754ae0",
- "translation_date": "2026-01-16T23:27:01+00:00",
- "source_file": "sketchnotes/17-DataScience-Cloud.png",
+ "1.0b520df6a0d9d3c4.webp": {
+ "original_hash": "54586a26505aae6cbcc8962a2852b277",
+ "translation_date": "2026-01-16T23:18:15+00:00",
+ "source_file": "images/1.png",
"language_code": "te"
},
- "02-Ethics.728d166895302ab0.webp": {
- "original_hash": "005bd88e9721003310c7b2f17dd0e35a",
- "translation_date": "2026-01-16T23:27:18+00:00",
- "source_file": "sketchnotes/02-Ethics.png",
+ "10-Visualizing-Distributions.8097fd8abd7221a1.webp": {
+ "original_hash": "885512a64dcab7202c5a53cbde907da2",
+ "translation_date": "2026-01-16T23:18:41+00:00",
+ "source_file": "sketchnotes/10-Visualizing-Distributions.png",
"language_code": "te"
},
- "04-Statistics-Probability.cfc569d84a9f1867.webp": {
- "original_hash": "2ee100d33c054ce8a39267530f23377c",
- "translation_date": "2026-01-16T23:27:29+00:00",
- "source_file": "sketchnotes/04-Statistics-Probability.png",
+ "11-Visualizing-Proportions.3e82f24af94d206e.webp": {
+ "original_hash": "e7f8f167d209a389c3100d3ac210b69d",
+ "translation_date": "2026-01-16T23:24:08+00:00",
+ "source_file": "sketchnotes/11-Visualizing-Proportions.png",
+ "language_code": "te"
+ },
+ "12-Visualizing-Relationships.4466f9bd260f03dd.webp": {
+ "original_hash": "10d06245ecbdc48880e555f03a62f64c",
+ "translation_date": "2026-01-16T23:22:39+00:00",
+ "source_file": "sketchnotes/12-Visualizing-Relationships.png",
"language_code": "te"
},
"13-MeaningfulViz.4db6f1997e519908.webp": {
@@ -161,118 +95,130 @@
"source_file": "sketchnotes/13-MeaningfulViz.png",
"language_code": "te"
},
+ "14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp": {
+ "original_hash": "96cbd264a85530f5876c353b2e57956d",
+ "translation_date": "2026-01-16T23:23:46+00:00",
+ "source_file": "sketchnotes/14-DataScience-Lifecycle.png",
+ "language_code": "te"
+ },
"15-Analyzing.b501f3dbdc958f6f.webp": {
"original_hash": "973333ac82d2472591675e2b93afc87e",
"translation_date": "2026-01-16T23:29:19+00:00",
"source_file": "sketchnotes/15-Analyzing.png",
"language_code": "te"
},
- "data.48e22bb7617d8d92.webp": {
- "original_hash": "1a84026266861a50791b9f952fbab540",
- "translation_date": "2026-01-16T23:29:33+00:00",
- "source_file": "1-Introduction/images/data.jpg",
+ "16-Communicating.f1d29cd7984442a4.webp": {
+ "original_hash": "9a65542ddae4e103ab2a665fe65629ce",
+ "translation_date": "2026-01-16T23:19:08+00:00",
+ "source_file": "sketchnotes/16-Communicating.png",
"language_code": "te"
},
- "ds_wordcloud.664a7c07dca57de0.webp": {
- "original_hash": "df525e123083bea87f16bce2c07970c7",
- "translation_date": "2026-01-16T23:29:52+00:00",
- "source_file": "1-Introduction/01-defining-data-science/images/ds_wordcloud.png",
+ "17-DataScience-Cloud.0df76ac874805c14.webp": {
+ "original_hash": "221a9e5d40e6f47fe793f175a8754ae0",
+ "translation_date": "2026-01-16T23:27:01+00:00",
+ "source_file": "sketchnotes/17-DataScience-Cloud.png",
"language_code": "te"
},
- "video-def-ds.6623ee2392ef1abf.webp": {
- "original_hash": "95650b7eed7f176ce8fdee16271a464b",
- "translation_date": "2026-01-16T23:30:26+00:00",
- "source_file": "1-Introduction/01-defining-data-science/images/video-def-ds.png",
+ "18-DataScience-Cloud.3a7292e8182b74eb.webp": {
+ "original_hash": "c1094124ae2e325016c6ddcb95599c7a",
+ "translation_date": "2026-01-16T23:26:13+00:00",
+ "source_file": "sketchnotes/18-DataScience-Cloud.png",
"language_code": "te"
},
- "boxplot_explanation.4039b7de08780fd4.webp": {
- "original_hash": "18e16e4144706f7e9006fc2ff958e622",
- "translation_date": "2026-01-16T23:30:43+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/boxplot_explanation.png",
+ "19-DataScience-Cloud.177b38fb86301fc6.webp": {
+ "original_hash": "78eb918c3512a018c0d99a217bc72038",
+ "translation_date": "2026-01-16T23:25:50+00:00",
+ "source_file": "sketchnotes/19-DataScience-Cloud.png",
"language_code": "te"
},
- "weight-boxplot.1dbab1c03af26f8a.webp": {
- "original_hash": "4e39b904d1a4313d66663aa3f7ab9602",
- "translation_date": "2026-01-16T23:30:54+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/weight-boxplot.png",
+ "20-DataScience-Humanities.1d1a155f4d12a667.webp": {
+ "original_hash": "1458acca113e1f3c64fb18d6a434fb5c",
+ "translation_date": "2026-01-16T23:25:03+00:00",
+ "source_file": "sketchnotes/20-DataScience-Humanities.png",
"language_code": "te"
},
- "weight-histogram.bfd00caf7fc30b14.webp": {
- "original_hash": "bef55b4cd03923b2d8674e92bb1757c9",
- "translation_date": "2026-01-16T23:30:58+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/weight-histogram.png",
+ "20-DataScience-RealWorld.976976229ee11342.webp": {
+ "original_hash": "ff1861c005ea9fe7644777c4069008b9",
+ "translation_date": "2026-01-16T23:23:10+00:00",
+ "source_file": "sketchnotes/20-DataScience-RealWorld.png",
"language_code": "te"
},
- "probability-density.a8aad29f17a14afb.webp": {
- "original_hash": "79ec3e39c1c20e570327ebd8a2737548",
- "translation_date": "2026-01-16T23:31:02+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/probability-density.png",
+ "20-DataScience-Research.da434814c51b4ef8.webp": {
+ "original_hash": "c1d7c67564ad6767200da0cab95eeb52",
+ "translation_date": "2026-01-16T23:24:28+00:00",
+ "source_file": "sketchnotes/20-DataScience-Research.png",
"language_code": "te"
},
- "weight-height-relationship.3f06bde4ca2aba99.webp": {
- "original_hash": "2412d31f9c41004d2d0cb80179d6021f",
- "translation_date": "2026-01-16T23:31:06+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/weight-height-relationship.png",
+ "20-DataScience-Sustainability.d4097bc684431da6.webp": {
+ "original_hash": "966e2a6eea920d7cb30a343e0bf5c856",
+ "translation_date": "2026-01-16T23:25:22+00:00",
+ "source_file": "sketchnotes/20-DataScience-Sustainability.png",
"language_code": "te"
},
- "height-boxplot.ccb66b2848b5f51c.webp": {
- "original_hash": "0f3d954cc0e0b9644f64f7bc1c8a5518",
- "translation_date": "2026-01-16T23:31:10+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/height-boxplot.png",
+ "2D-wb.ae22fdd33936507a.webp": {
+ "original_hash": "621c501b663b89b0739ff0a3d89324d4",
+ "translation_date": "2026-01-16T23:50:21+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/2D-wb.png",
"language_code": "te"
},
- "video-prob-and-stats.e4282e5efa2f2543.webp": {
- "original_hash": "95894d8c6274697246b11c5ddf395c5f",
- "translation_date": "2026-01-16T23:31:15+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/video-prob-and-stats.png",
+ "2D.b3342157139dd804.webp": {
+ "original_hash": "43f6f9ba817c493c2f38383fb22df3ff",
+ "translation_date": "2026-01-16T23:50:25+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/2D.png",
"language_code": "te"
},
- "normal-histogram.dfae0d67c202137d.webp": {
- "original_hash": "46ee775d2df1d79815c1aab51bd8d2fe",
- "translation_date": "2026-01-16T23:31:22+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/normal-histogram.png",
+ "2d-plot.c504786f439bd7eb.webp": {
+ "original_hash": "b5a6251e8480b8dbcf6ca9972efd2a94",
+ "translation_date": "2026-01-16T23:54:19+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/2d-plot.png",
"language_code": "te"
},
- "boxplot_byrole.036b27a1c3f52d42.webp": {
- "original_hash": "1193ef907e122e99637e73ef9f83d2a5",
- "translation_date": "2026-01-16T23:31:26+00:00",
- "source_file": "1-Introduction/04-stats-and-probability/images/boxplot_byrole.png",
+ "3d.0cec12bcc60f0ce7.webp": {
+ "original_hash": "24efe448af156c5520372b9b554a2c89",
+ "translation_date": "2026-01-16T23:53:52+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/3d.png",
"language_code": "te"
},
- "cloud-picture.f5526de3c6c6387b.webp": {
- "original_hash": "112d96f85f2037814d2df8b88267a595",
- "translation_date": "2026-01-16T23:31:35+00:00",
- "source_file": "5-Data-Science-In-Cloud/images/cloud-picture.jpg",
+ "3d.db1734c151eee87d.webp": {
+ "original_hash": "24efe448af156c5520372b9b554a2c89",
+ "translation_date": "2026-01-16T23:59:10+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/3d.png",
"language_code": "te"
},
- "compute-instance-1.dba347cb199ca499.webp": {
- "original_hash": "7af64073de557468a0b652e4bcecf2d1",
- "translation_date": "2026-01-16T23:31:49+00:00",
- "source_file": "5-Data-Science-In-Cloud/19-Azure/images/compute-instance-1.PNG",
+ "CRISP-DM.8bad2b4c66e62aa7.webp": {
+ "original_hash": "eac24034dc4554b1292c0c035a852548",
+ "translation_date": "2026-01-16T23:40:37+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/CRISP-DM.png",
"language_code": "te"
},
- "notebook-1.12998af7b02c83f5.webp": {
- "original_hash": "08d559b911ecbed212b67e206ae6bcf1",
- "translation_date": "2026-01-16T23:32:04+00:00",
- "source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-1.PNG",
+ "MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp": {
+ "original_hash": "25abf3baadac4535fac2aa1c8794f537",
+ "translation_date": "2026-01-16T23:57:10+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot-improved.png",
"language_code": "te"
},
- "notebook-2.9a657c037e34f1cf.webp": {
- "original_hash": "018309c1ca2ed8e31fd89c3674687979",
- "translation_date": "2026-01-16T23:32:19+00:00",
- "source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-2.PNG",
+ "MaxWingspan-lineplot.b12169f99d26fdd2.webp": {
+ "original_hash": "8a0744b5301a1c4dc64b580728b5771a",
+ "translation_date": "2026-01-16T23:56:32+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot.png",
"language_code": "te"
},
- "project-schema.420e56d495624541.webp": {
- "original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
- "translation_date": "2026-01-16T23:32:33+00:00",
- "source_file": "5-Data-Science-In-Cloud/19-Azure/images/project-schema.PNG",
+ "MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp": {
+ "original_hash": "c5b4723c8624caa7463c66fd7278854e",
+ "translation_date": "2026-01-16T23:58:15+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot-improved.png",
"language_code": "te"
},
- "aml-3.a7952e4295f38cc6.webp": {
- "original_hash": "33433e94fe719f0e4104ad809338f91d",
- "translation_date": "2026-01-16T23:33:00+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-3.PNG",
+ "MaxWingspan-scatterplot.60dc9e0e19d32700.webp": {
+ "original_hash": "58de03db6718a04f8e61e2405ea2b502",
+ "translation_date": "2026-01-16T23:56:37+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot.png",
+ "language_code": "te"
+ },
+ "aml-1.67281a85d3a1e2f3.webp": {
+ "original_hash": "130c64f0112c117a400926da0bbaf090",
+ "translation_date": "2026-01-16T23:39:56+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-1.PNG",
"language_code": "te"
},
"aml-2.c9fb9cffb39ccbbe.webp": {
@@ -281,34 +227,10 @@
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-2.PNG",
"language_code": "te"
},
- "workspace-1.ac8694d60b073ed1.webp": {
- "original_hash": "5e9f3153bfd5af7d8b6adcb09c08cabd",
- "translation_date": "2026-01-16T23:33:35+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-1.PNG",
- "language_code": "te"
- },
- "deploy-1.ddad725acadc84e3.webp": {
- "original_hash": "d91956f565f29332f32fc85095206456",
- "translation_date": "2026-01-16T23:33:48+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-1.PNG",
- "language_code": "te"
- },
- "cluster-3.8a334bc070ec173a.webp": {
- "original_hash": "b440d88eb5ce449ebe780c1edbac221d",
- "translation_date": "2026-01-16T23:34:06+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-3.PNG",
- "language_code": "te"
- },
- "workspace-4.bac87f6599c4df63.webp": {
- "original_hash": "099e0b18ce11f3966c0b7d954c2eb4fb",
- "translation_date": "2026-01-16T23:34:24+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-4.PNG",
- "language_code": "te"
- },
- "datascienceinthecloud.59ffb059a670fb0a.webp": {
- "original_hash": "d66cf00bfc41a3d1bef7e1d54ac4e03f",
- "translation_date": "2026-01-16T23:34:35+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/datascienceinthecloud.jpg",
+ "aml-3.a7952e4295f38cc6.webp": {
+ "original_hash": "33433e94fe719f0e4104ad809338f91d",
+ "translation_date": "2026-01-16T23:33:00+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-3.PNG",
"language_code": "te"
},
"aml-4.7a627e09cb6f16d0.webp": {
@@ -317,172 +239,148 @@
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-4.PNG",
"language_code": "te"
},
- "cluster-2.ea30cdbc9f926bb9.webp": {
- "original_hash": "0486b9eb10e88dc53fc2927c9197cd27",
- "translation_date": "2026-01-16T23:35:20+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-2.PNG",
+ "bad-chart-1.596bc93425a8ac30.webp": {
+ "original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
+ "translation_date": "2026-01-16T23:58:23+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-1.png",
"language_code": "te"
},
- "dataset-1.e86ab4e10907a6e9.webp": {
- "original_hash": "b742ef1724e601f68a1bdf3f1faa89c6",
- "translation_date": "2026-01-16T23:35:43+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-1.PNG",
+ "bad-chart-1.93130f495b748bed.webp": {
+ "original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
+ "translation_date": "2026-01-16T23:53:03+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-1.png",
"language_code": "te"
},
- "cluster-1.b78cb630bb543729.webp": {
- "original_hash": "d938d671e7eabf7fbc012cf1987dc43f",
- "translation_date": "2026-01-16T23:35:59+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-1.PNG",
+ "bad-chart-2.62edf4d2f30f4e51.webp": {
+ "original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
+ "translation_date": "2026-01-16T23:58:59+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-2.jpg",
"language_code": "te"
},
- "workspace-2.ae7c486db8796147.webp": {
- "original_hash": "9299f5ae459f0a153da6aaae9accc78d",
- "translation_date": "2026-01-16T23:36:41+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-2.PNG",
+ "bad-chart-2.c20e36dd4e6f617c.webp": {
+ "original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
+ "translation_date": "2026-01-16T23:53:40+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-2.jpg",
"language_code": "te"
},
- "deploy-3.fecefef070e8ef3b.webp": {
- "original_hash": "487c6cd79b0232e10e40fdab2e6b929f",
- "translation_date": "2026-01-16T23:36:58+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-3.PNG",
+ "bad-chart-3.6865d0afac4108d7.webp": {
+ "original_hash": "80f955c8f50661e029730e9b06959c0b",
+ "translation_date": "2026-01-16T23:53:11+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-3.jpg",
"language_code": "te"
},
- "project-schema.736f6e403f321eb4.webp": {
- "original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
- "translation_date": "2026-01-16T23:37:23+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/project-schema.PNG",
+ "bad-chart-3.e201e2e915a230bc.webp": {
+ "original_hash": "80f955c8f50661e029730e9b06959c0b",
+ "translation_date": "2026-01-16T23:58:31+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-3.jpg",
"language_code": "te"
},
- "dataset-3.58db8c0eb783e892.webp": {
- "original_hash": "cc2177288c2ac7289b614ce41ee68d60",
- "translation_date": "2026-01-16T23:37:56+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-3.PNG",
+ "bad-chart-4.68cfdf4011b45447.webp": {
+ "original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
+ "translation_date": "2026-01-16T23:54:00+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-4.jpg",
"language_code": "te"
},
- "dataset-2.f58de1c435d5bf9c.webp": {
- "original_hash": "328c65d45aa937db952093099bc408ce",
- "translation_date": "2026-01-16T23:38:24+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-2.PNG",
+ "bad-chart-4.8872b2b881ffa96c.webp": {
+ "original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
+ "translation_date": "2026-01-16T23:59:18+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-4.jpg",
"language_code": "te"
},
- "workspace-6.8dd81fe841797ee1.webp": {
- "original_hash": "fd0194c1a558063ddb53e5c1ead0a2b0",
- "translation_date": "2026-01-16T23:38:37+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-6.PNG",
+ "bee.0aa1d91132b12e3a.webp": {
+ "original_hash": "107a59a0fdfa76d213eacf0f46df0292",
+ "translation_date": "2026-01-16T23:49:33+00:00",
+ "source_file": "3-Data-Visualization/images/bee.jpg",
"language_code": "te"
},
- "consumption-1.700abd196452842a.webp": {
- "original_hash": "a5ecdcdff30f2d1059763b9ce5abe4eb",
- "translation_date": "2026-01-16T23:39:04+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/consumption-1.PNG",
+ "bodymass-per-order.9d2b065dd931b928.webp": {
+ "original_hash": "b009aeba10679cfeb880d3869e7d1db2",
+ "translation_date": "2026-01-16T23:54:51+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-per-order.png",
"language_code": "te"
},
- "workspace-5.a6eb17e0a5e64200.webp": {
- "original_hash": "01b1c520e46b3fbd6fba0d54bb80bece",
- "translation_date": "2026-01-16T23:39:31+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-5.PNG",
+ "bodymass-smooth.d31ce526d82b0a1f.webp": {
+ "original_hash": "9e0c8215e2ce2cc7120491a79559a907",
+ "translation_date": "2026-01-16T23:54:32+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-smooth.png",
"language_code": "te"
},
- "deploy-2.94dbb13f23908647.webp": {
- "original_hash": "cb622a2e6374ccfdb376d3528e2bb9c8",
- "translation_date": "2026-01-16T23:39:45+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-2.PNG",
+ "boxplot_byrole.036b27a1c3f52d42.webp": {
+ "original_hash": "1193ef907e122e99637e73ef9f83d2a5",
+ "translation_date": "2026-01-16T23:31:26+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/boxplot_byrole.png",
"language_code": "te"
},
- "aml-1.67281a85d3a1e2f3.webp": {
- "original_hash": "130c64f0112c117a400926da0bbaf090",
- "translation_date": "2026-01-16T23:39:56+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-1.PNG",
+ "boxplot_explanation.4039b7de08780fd4.webp": {
+ "original_hash": "18e16e4144706f7e9006fc2ff958e622",
+ "translation_date": "2026-01-16T23:30:43+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/boxplot_explanation.png",
"language_code": "te"
},
- "workspace-3.398ca4a5858132cc.webp": {
- "original_hash": "2ee0b036fbc5fd13a526f26ac9d60347",
- "translation_date": "2026-01-16T23:40:08+00:00",
- "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-3.PNG",
+ "busing.7b9e3b41cd4b981c.webp": {
+ "original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
+ "translation_date": "2026-01-16T23:53:20+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/busing.png",
"language_code": "te"
},
- "communication.06d8e2a88d30d168.webp": {
- "original_hash": "5736c0fd0f68676dbd5b27c5b04f4b48",
- "translation_date": "2026-01-16T23:40:21+00:00",
- "source_file": "4-Data-Science-Lifecycle/images/communication.jpg",
+ "busing.8157cf1bc89a3f65.webp": {
+ "original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
+ "translation_date": "2026-01-16T23:58:38+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/busing.png",
"language_code": "te"
},
- "CRISP-DM.8bad2b4c66e62aa7.webp": {
- "original_hash": "eac24034dc4554b1292c0c035a852548",
- "translation_date": "2026-01-16T23:40:37+00:00",
- "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/CRISP-DM.png",
+ "category-counts-02.0b9a0a4de42275ae.webp": {
+ "original_hash": "d0ebdd74049aa407805cb1b28d9d5075",
+ "translation_date": "2026-01-17T00:00:31+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts-02.png",
"language_code": "te"
},
- "data-science-lifecycle.a1e362637503c4fb.webp": {
- "original_hash": "594be62e68ef5e92f5447febe91c7794",
- "translation_date": "2026-01-16T23:40:47+00:00",
- "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/data-science-lifecycle.jpg",
+ "category-counts.abee8188c4c9b6f0.webp": {
+ "original_hash": "3b55836da9e8a6b487c6657b01156a99",
+ "translation_date": "2026-01-16T23:59:47+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts.png",
"language_code": "te"
},
- "tdsp-lifecycle2.e19029d598e2e73d.webp": {
- "original_hash": "d1f838b6b0fd588b4ee6cd22cb578569",
- "translation_date": "2026-01-16T23:41:03+00:00",
- "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/tdsp-lifecycle2.png",
+ "category-length-02.7304bf519375c980.webp": {
+ "original_hash": "2638d345ceee48d8c40a54f6388c8caa",
+ "translation_date": "2026-01-16T23:59:58+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length-02.png",
"language_code": "te"
},
- "data-love.a22ef29e6742c852.webp": {
- "original_hash": "e7fcf82d891c727f86c21960cb63efa6",
- "translation_date": "2026-01-16T23:41:26+00:00",
- "source_file": "2-Working-With-Data/images/data-love.jpg",
+ "category-length.7e34c296690e85d6.webp": {
+ "original_hash": "f5c753a1fe65d51b8cc15b8b46c6d4e6",
+ "translation_date": "2026-01-16T23:56:49+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/category-length.png",
"language_code": "te"
},
- "video-ds-python.245247dc811db8e4.webp": {
- "original_hash": "030eca02a7388a1428cf20faa215f2b9",
- "translation_date": "2026-01-16T23:41:56+00:00",
- "source_file": "2-Working-With-Data/07-python/images/video-ds-python.png",
+ "category-length.b0d9a0208a7b3713.webp": {
+ "original_hash": "990ba20663dfb1d5bc21e39b9162f412",
+ "translation_date": "2026-01-16T23:59:44+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length.png",
"language_code": "te"
},
- "dataframe-1.caf409f0c688e84c.webp": {
- "original_hash": "2ca632a405bd7b501a0e0df0fa55515a",
- "translation_date": "2026-01-16T23:42:07+00:00",
- "source_file": "2-Working-With-Data/07-python/images/dataframe-1.png",
+ "cloud-picture.f5526de3c6c6387b.webp": {
+ "original_hash": "112d96f85f2037814d2df8b88267a595",
+ "translation_date": "2026-01-16T23:31:35+00:00",
+ "source_file": "5-Data-Science-In-Cloud/images/cloud-picture.jpg",
"language_code": "te"
},
- "covidtreat.b2ba59f57ca45fbc.webp": {
- "original_hash": "b2b1e40794073c65faa986c5995754c9",
- "translation_date": "2026-01-16T23:42:13+00:00",
- "source_file": "2-Working-With-Data/07-python/images/covidtreat.png",
- "language_code": "te"
- },
- "timeseries-1.80de678ab1cf727e.webp": {
- "original_hash": "30236ed2474d8d115ab3d51545e0c19e",
- "translation_date": "2026-01-16T23:42:22+00:00",
- "source_file": "2-Working-With-Data/07-python/images/timeseries-1.png",
- "language_code": "te"
- },
- "covidspread.f3d131c4f1d260ab.webp": {
- "original_hash": "461f7858f407e9f5b9eb9caf8ca21367",
- "translation_date": "2026-01-16T23:42:26+00:00",
- "source_file": "2-Working-With-Data/07-python/images/covidspread.png",
- "language_code": "te"
- },
- "timeseries-2.aae51d575c55181c.webp": {
- "original_hash": "33bd33349330cb115d729ce80b570501",
- "translation_date": "2026-01-16T23:42:31+00:00",
- "source_file": "2-Working-With-Data/07-python/images/timeseries-2.png",
- "language_code": "te"
- },
- "timeseries-3.f3147cbc8c624881.webp": {
- "original_hash": "aa4b14a21a73d400073a61f37033d465",
- "translation_date": "2026-01-16T23:42:36+00:00",
- "source_file": "2-Working-With-Data/07-python/images/timeseries-3.png",
+ "cluster-1.b78cb630bb543729.webp": {
+ "original_hash": "d938d671e7eabf7fbc012cf1987dc43f",
+ "translation_date": "2026-01-16T23:35:59+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-1.PNG",
"language_code": "te"
},
- "cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp": {
- "original_hash": "4ab74b4d99e8e2a503433a1faf6921be",
- "translation_date": "2026-01-16T23:42:50+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons-query.png",
+ "cluster-2.ea30cdbc9f926bb9.webp": {
+ "original_hash": "0486b9eb10e88dc53fc2927c9197cd27",
+ "translation_date": "2026-01-16T23:35:20+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-2.PNG",
"language_code": "te"
},
- "function-excel.be2ae4feddc10ca0.webp": {
- "original_hash": "72ab7b76f4fab0df5aa91fa839722a60",
- "translation_date": "2026-01-16T23:43:08+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/function-excel.png",
+ "cluster-3.8a334bc070ec173a.webp": {
+ "original_hash": "b440d88eb5ce449ebe780c1edbac221d",
+ "translation_date": "2026-01-16T23:34:06+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-3.PNG",
"language_code": "te"
},
"columnar-db.ffcfe73c3e9063a8.webp": {
@@ -491,40 +389,40 @@
"source_file": "2-Working-With-Data/06-non-relational/images/columnar-db.png",
"language_code": "te"
},
- "kv-db.e8f2b75686bbdfcb.webp": {
- "original_hash": "b11fd06948e523a4f05e4fc016b72151",
- "translation_date": "2026-01-16T23:43:23+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/kv-db.png",
+ "communication.06d8e2a88d30d168.webp": {
+ "original_hash": "5736c0fd0f68676dbd5b27c5b04f4b48",
+ "translation_date": "2026-01-16T23:40:21+00:00",
+ "source_file": "4-Data-Science-Lifecycle/images/communication.jpg",
"language_code": "te"
},
- "cosmosdb-emulator-explorer.a1c80b1347206fe2.webp": {
- "original_hash": "cdd5affc23e1edf90e5a1d4d5d0f1f8d",
- "translation_date": "2026-01-16T23:43:33+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-explorer.png",
+ "comparingdata.f486a450d61c7ca5.webp": {
+ "original_hash": "c5f1049b89ea0d7015e420acc0728045",
+ "translation_date": "2026-01-16T23:57:22+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/comparingdata.png",
"language_code": "te"
},
- "formula-excel.ad1068c220892f5e.webp": {
- "original_hash": "ffc48a46663588ed68f07739e1c6faec",
- "translation_date": "2026-01-16T23:48:14+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/formula-excel.png",
+ "compute-instance-1.dba347cb199ca499.webp": {
+ "original_hash": "7af64073de557468a0b652e4bcecf2d1",
+ "translation_date": "2026-01-16T23:31:49+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/images/compute-instance-1.PNG",
"language_code": "te"
},
- "graph-db.d13629152f79a9da.webp": {
- "original_hash": "9642744eabff608b20e9241ba5931752",
- "translation_date": "2026-01-16T23:48:26+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/graph-db.png",
+ "consumption-1.700abd196452842a.webp": {
+ "original_hash": "a5ecdcdff30f2d1059763b9ce5abe4eb",
+ "translation_date": "2026-01-16T23:39:04+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/consumption-1.PNG",
"language_code": "te"
},
- "document-db.ddeec48c6dc9e5fd.webp": {
- "original_hash": "8cee40487b4a8926c048c397be218e6e",
- "translation_date": "2026-01-16T23:48:35+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/document-db.png",
+ "cosmosdb-emulator-explorer.a1c80b1347206fe2.webp": {
+ "original_hash": "cdd5affc23e1edf90e5a1d4d5d0f1f8d",
+ "translation_date": "2026-01-16T23:43:33+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-explorer.png",
"language_code": "te"
},
- "new-container.650e10c7a20a5f83.webp": {
- "original_hash": "ab63b5a8099095333eebe2afa69197e3",
- "translation_date": "2026-01-16T23:48:47+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/new-container.png",
+ "cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp": {
+ "original_hash": "4ab74b4d99e8e2a503433a1faf6921be",
+ "translation_date": "2026-01-16T23:42:50+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons-query.png",
"language_code": "te"
},
"cosmosdb-emulator-persons.bf640586a7077c89.webp": {
@@ -533,82 +431,76 @@
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons.png",
"language_code": "te"
},
- "parts-of-spreadsheet.120711c82aa18a45.webp": {
- "original_hash": "e744b94c055058c2862aaabe84625b90",
- "translation_date": "2026-01-16T23:49:26+00:00",
- "source_file": "2-Working-With-Data/06-non-relational/images/parts-of-spreadsheet.png",
- "language_code": "te"
- },
- "bee.0aa1d91132b12e3a.webp": {
- "original_hash": "107a59a0fdfa76d213eacf0f46df0292",
- "translation_date": "2026-01-16T23:49:33+00:00",
- "source_file": "3-Data-Visualization/images/bee.jpg",
+ "covidspread.f3d131c4f1d260ab.webp": {
+ "original_hash": "461f7858f407e9f5b9eb9caf8ca21367",
+ "translation_date": "2026-01-16T23:42:26+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/covidspread.png",
"language_code": "te"
},
- "multi.56548caa9eae8d0f.webp": {
- "original_hash": "f75fa5419bb0d28a74c567876bc99455",
- "translation_date": "2026-01-16T23:49:35+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/multi.png",
+ "covidtreat.b2ba59f57ca45fbc.webp": {
+ "original_hash": "b2b1e40794073c65faa986c5995754c9",
+ "translation_date": "2026-01-16T23:42:13+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/covidtreat.png",
"language_code": "te"
},
- "dist2.c398bfd5320401b9.webp": {
- "original_hash": "fc0ce2a2e3087e5754770998f75db398",
- "translation_date": "2026-01-16T23:49:39+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2.png",
+ "data-love.a22ef29e6742c852.webp": {
+ "original_hash": "e7fcf82d891c727f86c21960cb63efa6",
+ "translation_date": "2026-01-16T23:41:26+00:00",
+ "source_file": "2-Working-With-Data/images/data-love.jpg",
"language_code": "te"
},
- "density3.84ae27da82f31e6b.webp": {
- "original_hash": "1c4b40707ab63224822854698a26f6ca",
- "translation_date": "2026-01-16T23:49:42+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/density3.png",
+ "data-science-applications.4e5019cd8790ebac.webp": {
+ "original_hash": "602217d731f1576c21ac91148222cfa1",
+ "translation_date": "2026-01-17T00:01:47+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/data-science-applications.png",
"language_code": "te"
},
- "dist3-wb.64b88db7f9780200.webp": {
- "original_hash": "b3d78f1f00c6c3d087f161dd74318aff",
- "translation_date": "2026-01-16T23:49:46+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3-wb.png",
+ "data-science-lifecycle.a1e362637503c4fb.webp": {
+ "original_hash": "594be62e68ef5e92f5447febe91c7794",
+ "translation_date": "2026-01-16T23:40:47+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/data-science-lifecycle.jpg",
"language_code": "te"
},
- "scatter-wb.9d98b0ed7f0388af.webp": {
- "original_hash": "20b0f7bb41756f35bdf985a8f5f3a342",
- "translation_date": "2026-01-16T23:49:53+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter-wb.png",
+ "data.48e22bb7617d8d92.webp": {
+ "original_hash": "1a84026266861a50791b9f952fbab540",
+ "translation_date": "2026-01-16T23:29:33+00:00",
+ "source_file": "1-Introduction/images/data.jpg",
"language_code": "te"
},
- "histogram-conservation-wb.3c40450eb072c14d.webp": {
- "original_hash": "83ec1d81dea6fabb80c6386edf8eb241",
- "translation_date": "2026-01-16T23:50:04+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation-wb.png",
+ "dataframe-1.caf409f0c688e84c.webp": {
+ "original_hash": "2ca632a405bd7b501a0e0df0fa55515a",
+ "translation_date": "2026-01-16T23:42:07+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/dataframe-1.png",
"language_code": "te"
},
- "dist1-wb.0d0cac82e2974fbb.webp": {
- "original_hash": "2f624fcf08f90cfedf12238e86730517",
- "translation_date": "2026-01-16T23:50:09+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1-wb.png",
+ "datascienceinthecloud.59ffb059a670fb0a.webp": {
+ "original_hash": "d66cf00bfc41a3d1bef7e1d54ac4e03f",
+ "translation_date": "2026-01-16T23:34:35+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/datascienceinthecloud.jpg",
"language_code": "te"
},
- "histogram-conservation.13b3542e7784e415.webp": {
- "original_hash": "ec86b1d6a476f4cf80f9d2b346525c92",
- "translation_date": "2026-01-16T23:50:15+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation.png",
+ "dataset-1.e86ab4e10907a6e9.webp": {
+ "original_hash": "b742ef1724e601f68a1bdf3f1faa89c6",
+ "translation_date": "2026-01-16T23:35:43+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-1.PNG",
"language_code": "te"
},
- "dist3.ad4d9658559690f5.webp": {
- "original_hash": "a4f7f50a3cc98d22d6a1321d1df7781b",
- "translation_date": "2026-01-16T23:50:19+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3.png",
+ "dataset-2.f58de1c435d5bf9c.webp": {
+ "original_hash": "328c65d45aa937db952093099bc408ce",
+ "translation_date": "2026-01-16T23:38:24+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-2.PNG",
"language_code": "te"
},
- "2D-wb.ae22fdd33936507a.webp": {
- "original_hash": "621c501b663b89b0739ff0a3d89324d4",
- "translation_date": "2026-01-16T23:50:21+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/2D-wb.png",
+ "dataset-3.58db8c0eb783e892.webp": {
+ "original_hash": "cc2177288c2ac7289b614ce41ee68d60",
+ "translation_date": "2026-01-16T23:37:56+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-3.PNG",
"language_code": "te"
},
- "2D.b3342157139dd804.webp": {
- "original_hash": "43f6f9ba817c493c2f38383fb22df3ff",
- "translation_date": "2026-01-16T23:50:25+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/2D.png",
+ "density-plot.675ccf865b76c690.webp": {
+ "original_hash": "269df7655a489ba893c9a930e54996b4",
+ "translation_date": "2026-01-16T23:54:57+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/density-plot.png",
"language_code": "te"
},
"density1.8801043bd4af2567.webp": {
@@ -617,16 +509,46 @@
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density1.png",
"language_code": "te"
},
+ "density2.8e7647257060ff54.webp": {
+ "original_hash": "ae4ee53e81dca21c2d475642c9acf970",
+ "translation_date": "2026-01-16T23:50:50+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/density2.png",
+ "language_code": "te"
+ },
+ "density3.84ae27da82f31e6b.webp": {
+ "original_hash": "1c4b40707ab63224822854698a26f6ca",
+ "translation_date": "2026-01-16T23:49:42+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/density3.png",
+ "language_code": "te"
+ },
"density4.e9d6c033f15c500f.webp": {
"original_hash": "e007401afeb86f57097c31b272c54f59",
"translation_date": "2026-01-16T23:50:35+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density4.png",
"language_code": "te"
},
- "scatter.520a43eceb46dbcb.webp": {
- "original_hash": "0b08180e497b0df05b452d6e82139280",
- "translation_date": "2026-01-16T23:50:44+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter.png",
+ "deploy-1.ddad725acadc84e3.webp": {
+ "original_hash": "d91956f565f29332f32fc85095206456",
+ "translation_date": "2026-01-16T23:33:48+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-1.PNG",
+ "language_code": "te"
+ },
+ "deploy-2.94dbb13f23908647.webp": {
+ "original_hash": "cb622a2e6374ccfdb376d3528e2bb9c8",
+ "translation_date": "2026-01-16T23:39:45+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-2.PNG",
+ "language_code": "te"
+ },
+ "deploy-3.fecefef070e8ef3b.webp": {
+ "original_hash": "487c6cd79b0232e10e40fdab2e6b929f",
+ "translation_date": "2026-01-16T23:36:58+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-3.PNG",
+ "language_code": "te"
+ },
+ "dist1-wb.0d0cac82e2974fbb.webp": {
+ "original_hash": "2f624fcf08f90cfedf12238e86730517",
+ "translation_date": "2026-01-16T23:50:09+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1-wb.png",
"language_code": "te"
},
"dist1.0010100b00231819.webp": {
@@ -635,64 +557,52 @@
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1.png",
"language_code": "te"
},
- "density2.8e7647257060ff54.webp": {
- "original_hash": "ae4ee53e81dca21c2d475642c9acf970",
- "translation_date": "2026-01-16T23:50:50+00:00",
- "source_file": "3-Data-Visualization/10-visualization-distributions/images/density2.png",
- "language_code": "te"
- },
"dist2-wb.2c0a7a3499b2fbf5.webp": {
"original_hash": "f66e1b4cf106774c02ddc8111fb26ea8",
"translation_date": "2026-01-16T23:50:55+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2-wb.png",
"language_code": "te"
},
- "facet.6a34851dcd540050.webp": {
- "original_hash": "b1972d34a64eaf50b7f64de8455601d6",
- "translation_date": "2026-01-16T23:51:04+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/facet.png",
+ "dist2.c398bfd5320401b9.webp": {
+ "original_hash": "fc0ce2a2e3087e5754770998f75db398",
+ "translation_date": "2026-01-16T23:49:39+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2.png",
"language_code": "te"
},
- "dual-line.a4c28ce659603fab.webp": {
- "original_hash": "354c3a3b7493b3ec80eec454e7e1661f",
- "translation_date": "2026-01-16T23:51:20+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/dual-line.png",
+ "dist3-wb.64b88db7f9780200.webp": {
+ "original_hash": "b3d78f1f00c6c3d087f161dd74318aff",
+ "translation_date": "2026-01-16T23:49:46+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3-wb.png",
"language_code": "te"
},
- "scatter3.3c160a3d1dcb36b3.webp": {
- "original_hash": "b6dae06624fdb034a906091c859840c8",
- "translation_date": "2026-01-16T23:51:30+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter3.png",
- "language_code": "te"
- },
- "scatter2.c0041a58621ca702.webp": {
- "original_hash": "0daebd8565f87f5de940b38eb8af1b9d",
- "translation_date": "2026-01-16T23:51:46+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter2.png",
+ "dist3.ad4d9658559690f5.webp": {
+ "original_hash": "a4f7f50a3cc98d22d6a1321d1df7781b",
+ "translation_date": "2026-01-16T23:50:19+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3.png",
"language_code": "te"
},
- "scatter1.5e1aa5fd6706c5d1.webp": {
- "original_hash": "c02fe2f5fa39f591b4a26308356ed684",
- "translation_date": "2026-01-16T23:52:00+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter1.png",
+ "distribution-30bins.6a3921ea7a421bf7.webp": {
+ "original_hash": "e06c4dfd27b06597b94a75072e9c4bc5",
+ "translation_date": "2026-01-16T23:54:28+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-30bins.png",
"language_code": "te"
},
- "line1.f36eb465229a3b1f.webp": {
- "original_hash": "2254eee0864847a0dbbcf3514523b938",
- "translation_date": "2026-01-16T23:52:13+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/line1.png",
+ "distribution-over-the-entire-dataset.d22afd3fa96be854.webp": {
+ "original_hash": "338c78ae2ee25ed179e49ec1a4e7923b",
+ "translation_date": "2026-01-16T23:54:36+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-over-the-entire-dataset.png",
"language_code": "te"
},
- "line2.a5b3493dc01058af.webp": {
- "original_hash": "352e8164b0d75c410198bb07822e43cb",
- "translation_date": "2026-01-16T23:52:18+00:00",
- "source_file": "3-Data-Visualization/12-visualization-relationships/images/line2.png",
+ "document-db.ddeec48c6dc9e5fd.webp": {
+ "original_hash": "8cee40487b4a8926c048c397be218e6e",
+ "translation_date": "2026-01-16T23:48:35+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/document-db.png",
"language_code": "te"
},
- "pie1.8f6a8bfac96de60e.webp": {
- "original_hash": "dc91ddf7490acc8493ca0801370d8fa8",
- "translation_date": "2026-01-16T23:52:23+00:00",
- "source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1.png",
+ "donut-wb.34e6fb275da9d834.webp": {
+ "original_hash": "1fca738bcee99e03430409599cef33f3",
+ "translation_date": "2026-01-16T23:56:19+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/donut-wb.png",
"language_code": "te"
},
"donut-wb.be3c12a22712302b.webp": {
@@ -701,76 +611,124 @@
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut-wb.png",
"language_code": "te"
},
- "waffle.5455dbae4ccf17d5.webp": {
- "original_hash": "56634c9a9dc24921e012693843466dee",
- "translation_date": "2026-01-16T23:52:39+00:00",
- "source_file": "3-Data-Visualization/11-visualization-proportions/images/waffle.png",
- "language_code": "te"
- },
"donut.f016d7be7f08c8f8.webp": {
"original_hash": "055fcaf0a6d93663278eb958137b460c",
"translation_date": "2026-01-16T23:52:53+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut.png",
"language_code": "te"
},
- "pie1-wb.e201f2fcc3354131.webp": {
- "original_hash": "f2dbe68e0228fc6bb76e502dfa88a5c7",
- "translation_date": "2026-01-16T23:52:58+00:00",
- "source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1-wb.png",
+ "ds-for-beginners.d01930c9193ef522.webp": {
+ "original_hash": "b84eca5411f4bc0041e671becb05fe48",
+ "translation_date": "2026-01-16T23:18:09+00:00",
+ "source_file": "ds-for-beginners.png",
"language_code": "te"
},
- "bad-chart-1.93130f495b748bed.webp": {
- "original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
- "translation_date": "2026-01-16T23:53:03+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-1.png",
+ "ds_wordcloud.664a7c07dca57de0.webp": {
+ "original_hash": "df525e123083bea87f16bce2c07970c7",
+ "translation_date": "2026-01-16T23:29:52+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/images/ds_wordcloud.png",
"language_code": "te"
},
- "bad-chart-3.6865d0afac4108d7.webp": {
- "original_hash": "80f955c8f50661e029730e9b06959c0b",
- "translation_date": "2026-01-16T23:53:11+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-3.jpg",
+ "dual-line.a4c28ce659603fab.webp": {
+ "original_hash": "354c3a3b7493b3ec80eec454e7e1661f",
+ "translation_date": "2026-01-16T23:51:20+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/dual-line.png",
"language_code": "te"
},
- "busing.7b9e3b41cd4b981c.webp": {
- "original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
- "translation_date": "2026-01-16T23:53:20+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/busing.png",
+ "dual-line.fc4665f360a54018.webp": {
+ "original_hash": "a80f6d08e4639389726abb5b1c3d5d9f",
+ "translation_date": "2026-01-16T23:55:32+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/dual-line.png",
"language_code": "te"
},
- "tornado.9f42168791208f97.webp": {
- "original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
- "translation_date": "2026-01-16T23:53:29+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/tornado.png",
+ "facet.491ad90d61c2a7cc.webp": {
+ "original_hash": "2a0a7fea3ccea24ef9a0d37487f38ba3",
+ "translation_date": "2026-01-16T23:55:21+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/facet.png",
"language_code": "te"
},
- "bad-chart-2.c20e36dd4e6f617c.webp": {
- "original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
- "translation_date": "2026-01-16T23:53:40+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-2.jpg",
+ "facet.6a34851dcd540050.webp": {
+ "original_hash": "b1972d34a64eaf50b7f64de8455601d6",
+ "translation_date": "2026-01-16T23:51:04+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/facet.png",
"language_code": "te"
},
- "3d.0cec12bcc60f0ce7.webp": {
- "original_hash": "24efe448af156c5520372b9b554a2c89",
- "translation_date": "2026-01-16T23:53:52+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/3d.png",
+ "favicon.37b561214b36d454.webp": {
+ "original_hash": "228faa6584f8ba1f7e9a75e3200112e9",
+ "translation_date": "2026-01-16T23:18:12+00:00",
+ "source_file": "images/favicon.png",
"language_code": "te"
},
- "bad-chart-4.68cfdf4011b45447.webp": {
- "original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
- "translation_date": "2026-01-16T23:54:00+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-4.jpg",
+ "filtered-histogram.6bf5d2bfd8253322.webp": {
+ "original_hash": "9beae93b6d3063f7afa19070ca9b21f2",
+ "translation_date": "2026-01-16T23:54:41+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/filtered-histogram.png",
"language_code": "te"
},
- "liaisons.7b440b28f6d07ea4.webp": {
- "original_hash": "6d42370a9c4ee2cea0573912a6300e09",
- "translation_date": "2026-01-16T23:54:11+00:00",
- "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/liaisons.png",
+ "formula-excel.ad1068c220892f5e.webp": {
+ "original_hash": "ffc48a46663588ed68f07739e1c6faec",
+ "translation_date": "2026-01-16T23:48:14+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/formula-excel.png",
"language_code": "te"
},
- "2d-plot.c504786f439bd7eb.webp": {
- "original_hash": "b5a6251e8480b8dbcf6ca9972efd2a94",
- "translation_date": "2026-01-16T23:54:19+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/2d-plot.png",
+ "full-data-bar-02.aaa3fda71c63ed56.webp": {
+ "original_hash": "68ced4f3a959790addfa4c361f5abc0f",
+ "translation_date": "2026-01-17T00:01:17+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar-02.png",
+ "language_code": "te"
+ },
+ "full-data-bar.a0b37da71a6cd236.webp": {
+ "original_hash": "bd639cfebb870669bcf5280302347b15",
+ "translation_date": "2026-01-17T00:01:34+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar.png",
+ "language_code": "te"
+ },
+ "function-excel.be2ae4feddc10ca0.webp": {
+ "original_hash": "72ab7b76f4fab0df5aa91fa839722a60",
+ "translation_date": "2026-01-16T23:43:08+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/function-excel.png",
+ "language_code": "te"
+ },
+ "graph-db.d13629152f79a9da.webp": {
+ "original_hash": "9642744eabff608b20e9241ba5931752",
+ "translation_date": "2026-01-16T23:48:26+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/graph-db.png",
+ "language_code": "te"
+ },
+ "height-boxplot.ccb66b2848b5f51c.webp": {
+ "original_hash": "0f3d954cc0e0b9644f64f7bc1c8a5518",
+ "translation_date": "2026-01-16T23:31:10+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/height-boxplot.png",
+ "language_code": "te"
+ },
+ "histogram-conservation-wb.3c40450eb072c14d.webp": {
+ "original_hash": "83ec1d81dea6fabb80c6386edf8eb241",
+ "translation_date": "2026-01-16T23:50:04+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation-wb.png",
+ "language_code": "te"
+ },
+ "histogram-conservation.13b3542e7784e415.webp": {
+ "original_hash": "ec86b1d6a476f4cf80f9d2b346525c92",
+ "translation_date": "2026-01-16T23:50:15+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation.png",
+ "language_code": "te"
+ },
+ "kv-db.e8f2b75686bbdfcb.webp": {
+ "original_hash": "b11fd06948e523a4f05e4fc016b72151",
+ "translation_date": "2026-01-16T23:43:23+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/kv-db.png",
+ "language_code": "te"
+ },
+ "labeled-wingspan-02.6110e2d2401cd523.webp": {
+ "original_hash": "0f218473d2563c14c8caddecdea3a4c3",
+ "translation_date": "2026-01-17T00:01:26+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan-02.png",
+ "language_code": "te"
+ },
+ "labeled-wingspan.900ffedd7e3ec6de.webp": {
+ "original_hash": "92a8853541cd37a14b9523a58d655f7f",
+ "translation_date": "2026-01-17T00:01:39+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan.png",
"language_code": "te"
},
"less-smooth-bodymass.10f4db8b683cc17d.webp": {
@@ -779,46 +737,40 @@
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/less-smooth-bodymass.png",
"language_code": "te"
},
- "distribution-30bins.6a3921ea7a421bf7.webp": {
- "original_hash": "e06c4dfd27b06597b94a75072e9c4bc5",
- "translation_date": "2026-01-16T23:54:28+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-30bins.png",
- "language_code": "te"
- },
- "bodymass-smooth.d31ce526d82b0a1f.webp": {
- "original_hash": "9e0c8215e2ce2cc7120491a79559a907",
- "translation_date": "2026-01-16T23:54:32+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-smooth.png",
+ "liaisons.7b440b28f6d07ea4.webp": {
+ "original_hash": "6d42370a9c4ee2cea0573912a6300e09",
+ "translation_date": "2026-01-16T23:54:11+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/liaisons.png",
"language_code": "te"
},
- "distribution-over-the-entire-dataset.d22afd3fa96be854.webp": {
- "original_hash": "338c78ae2ee25ed179e49ec1a4e7923b",
- "translation_date": "2026-01-16T23:54:36+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-over-the-entire-dataset.png",
+ "liaisons.90ce7360bcf84765.webp": {
+ "original_hash": "6d42370a9c4ee2cea0573912a6300e09",
+ "translation_date": "2026-01-16T23:59:28+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/liaisons.png",
"language_code": "te"
},
- "filtered-histogram.6bf5d2bfd8253322.webp": {
- "original_hash": "9beae93b6d3063f7afa19070ca9b21f2",
- "translation_date": "2026-01-16T23:54:41+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/filtered-histogram.png",
+ "line1.299b576fbb2a59e6.webp": {
+ "original_hash": "580b92476ca343c0fce7d5713d0ca5cd",
+ "translation_date": "2026-01-16T23:56:10+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line1.png",
"language_code": "te"
},
- "wingspan-conservation-collation.4024e9aa6910866a.webp": {
- "original_hash": "898d4cfbbc9bd4723c3ce92f5746a6f8",
- "translation_date": "2026-01-16T23:54:45+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/wingspan-conservation-collation.png",
+ "line1.f36eb465229a3b1f.webp": {
+ "original_hash": "2254eee0864847a0dbbcf3514523b938",
+ "translation_date": "2026-01-16T23:52:13+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/line1.png",
"language_code": "te"
},
- "bodymass-per-order.9d2b065dd931b928.webp": {
- "original_hash": "b009aeba10679cfeb880d3869e7d1db2",
- "translation_date": "2026-01-16T23:54:51+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-per-order.png",
+ "line2.3b18fcda7176ceba.webp": {
+ "original_hash": "0900ae563b525221b628393ec05feaf8",
+ "translation_date": "2026-01-16T23:56:14+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line2.png",
"language_code": "te"
},
- "density-plot.675ccf865b76c690.webp": {
- "original_hash": "269df7655a489ba893c9a930e54996b4",
- "translation_date": "2026-01-16T23:54:57+00:00",
- "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/density-plot.png",
+ "line2.a5b3493dc01058af.webp": {
+ "original_hash": "352e8164b0d75c410198bb07822e43cb",
+ "translation_date": "2026-01-16T23:52:18+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/line2.png",
"language_code": "te"
},
"max-length-per-order.e5b283d952c78c12.webp": {
@@ -827,94 +779,166 @@
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/max-length-per-order.png",
"language_code": "te"
},
- "facet.491ad90d61c2a7cc.webp": {
- "original_hash": "2a0a7fea3ccea24ef9a0d37487f38ba3",
- "translation_date": "2026-01-16T23:55:21+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/facet.png",
+ "max-wingspan-02.e79fd847b2640b89.webp": {
+ "original_hash": "424b2d5e92fd7ad1f1651fd34c48a43b",
+ "translation_date": "2026-01-17T00:01:30+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-02.png",
"language_code": "te"
},
- "dual-line.fc4665f360a54018.webp": {
- "original_hash": "a80f6d08e4639389726abb5b1c3d5d9f",
- "translation_date": "2026-01-16T23:55:32+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/dual-line.png",
+ "max-wingspan-labels-02.aa90e826ca49a9d1.webp": {
+ "original_hash": "b1f49941bbc193409678b7c94bd39822",
+ "translation_date": "2026-01-17T00:00:18+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels-02.png",
"language_code": "te"
},
- "scatter3.722d21e6f20b3ea2.webp": {
- "original_hash": "e76960bfd5bd7187d9e021796f268d34",
- "translation_date": "2026-01-16T23:55:39+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter3.png",
+ "max-wingspan-labels.46f0cc3c48edd4e0.webp": {
+ "original_hash": "67ad5348aa4963aebb0ae7ec94a7fa26",
+ "translation_date": "2026-01-17T00:01:23+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels.png",
"language_code": "te"
},
- "scatter2.4d1cbc693bad20e2.webp": {
- "original_hash": "770ca46665efad9996e32d596f105ea9",
- "translation_date": "2026-01-16T23:55:50+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter2.png",
+ "max-wingspan.0b8d0858436414aa.webp": {
+ "original_hash": "020b2994ef28037b86c2e215771a0bf5",
+ "translation_date": "2026-01-17T00:00:22+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan.png",
"language_code": "te"
},
- "scatter1.86b8900674d88b26.webp": {
- "original_hash": "c987462f33600689809531fc3d265f96",
- "translation_date": "2026-01-16T23:56:00+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter1.png",
+ "multi.56548caa9eae8d0f.webp": {
+ "original_hash": "f75fa5419bb0d28a74c567876bc99455",
+ "translation_date": "2026-01-16T23:49:35+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/multi.png",
"language_code": "te"
},
- "line1.299b576fbb2a59e6.webp": {
- "original_hash": "580b92476ca343c0fce7d5713d0ca5cd",
- "translation_date": "2026-01-16T23:56:10+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line1.png",
+ "new-container.650e10c7a20a5f83.webp": {
+ "original_hash": "ab63b5a8099095333eebe2afa69197e3",
+ "translation_date": "2026-01-16T23:48:47+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/new-container.png",
"language_code": "te"
},
- "line2.3b18fcda7176ceba.webp": {
- "original_hash": "0900ae563b525221b628393ec05feaf8",
- "translation_date": "2026-01-16T23:56:14+00:00",
- "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line2.png",
+ "normal-histogram.dfae0d67c202137d.webp": {
+ "original_hash": "46ee775d2df1d79815c1aab51bd8d2fe",
+ "translation_date": "2026-01-16T23:31:22+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/normal-histogram.png",
"language_code": "te"
},
- "donut-wb.34e6fb275da9d834.webp": {
- "original_hash": "1fca738bcee99e03430409599cef33f3",
- "translation_date": "2026-01-16T23:56:19+00:00",
- "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/donut-wb.png",
+ "notebook-1.12998af7b02c83f5.webp": {
+ "original_hash": "08d559b911ecbed212b67e206ae6bcf1",
+ "translation_date": "2026-01-16T23:32:04+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-1.PNG",
"language_code": "te"
},
- "waffle.aaa75c5337735a6e.webp": {
- "original_hash": "b84ca087d578965c31a20087b9215d88",
- "translation_date": "2026-01-16T23:56:24+00:00",
- "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/waffle.png",
+ "notebook-2.9a657c037e34f1cf.webp": {
+ "original_hash": "018309c1ca2ed8e31fd89c3674687979",
+ "translation_date": "2026-01-16T23:32:19+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-2.PNG",
+ "language_code": "te"
+ },
+ "parts-of-spreadsheet.120711c82aa18a45.webp": {
+ "original_hash": "e744b94c055058c2862aaabe84625b90",
+ "translation_date": "2026-01-16T23:49:26+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/images/parts-of-spreadsheet.png",
+ "language_code": "te"
+ },
+ "pie1-wb.685df063673751f4.webp": {
+ "original_hash": "2b353f34a1a1e444a1d7f2219b78cb83",
+ "translation_date": "2026-01-16T23:56:28+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/pie1-wb.png",
+ "language_code": "te"
+ },
+ "pie1-wb.e201f2fcc3354131.webp": {
+ "original_hash": "f2dbe68e0228fc6bb76e502dfa88a5c7",
+ "translation_date": "2026-01-16T23:52:58+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1-wb.png",
+ "language_code": "te"
+ },
+ "pie1.8f6a8bfac96de60e.webp": {
+ "original_hash": "dc91ddf7490acc8493ca0801370d8fa8",
+ "translation_date": "2026-01-16T23:52:23+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1.png",
+ "language_code": "te"
+ },
+ "planetary-computer-explorer.c1e95a9b053167d6.webp": {
+ "original_hash": "1e3bcffe198a9432dfc6232e5f89e2a5",
+ "translation_date": "2026-01-17T00:05:20+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/planetary-computer-explorer.png",
+ "language_code": "te"
+ },
+ "probability-density.a8aad29f17a14afb.webp": {
+ "original_hash": "79ec3e39c1c20e570327ebd8a2737548",
+ "translation_date": "2026-01-16T23:31:02+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/probability-density.png",
+ "language_code": "te"
+ },
+ "project-schema.420e56d495624541.webp": {
+ "original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
+ "translation_date": "2026-01-16T23:32:33+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/images/project-schema.PNG",
+ "language_code": "te"
+ },
+ "project-schema.736f6e403f321eb4.webp": {
+ "original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
+ "translation_date": "2026-01-16T23:37:23+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/project-schema.PNG",
+ "language_code": "te"
+ },
+ "scatter-wb.9d98b0ed7f0388af.webp": {
+ "original_hash": "20b0f7bb41756f35bdf985a8f5f3a342",
+ "translation_date": "2026-01-16T23:49:53+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter-wb.png",
+ "language_code": "te"
+ },
+ "scatter.520a43eceb46dbcb.webp": {
+ "original_hash": "0b08180e497b0df05b452d6e82139280",
+ "translation_date": "2026-01-16T23:50:44+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter.png",
+ "language_code": "te"
+ },
+ "scatter1.5e1aa5fd6706c5d1.webp": {
+ "original_hash": "c02fe2f5fa39f591b4a26308356ed684",
+ "translation_date": "2026-01-16T23:52:00+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter1.png",
+ "language_code": "te"
+ },
+ "scatter1.86b8900674d88b26.webp": {
+ "original_hash": "c987462f33600689809531fc3d265f96",
+ "translation_date": "2026-01-16T23:56:00+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter1.png",
"language_code": "te"
},
- "pie1-wb.685df063673751f4.webp": {
- "original_hash": "2b353f34a1a1e444a1d7f2219b78cb83",
- "translation_date": "2026-01-16T23:56:28+00:00",
- "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/pie1-wb.png",
+ "scatter2.4d1cbc693bad20e2.webp": {
+ "original_hash": "770ca46665efad9996e32d596f105ea9",
+ "translation_date": "2026-01-16T23:55:50+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter2.png",
"language_code": "te"
},
- "MaxWingspan-lineplot.b12169f99d26fdd2.webp": {
- "original_hash": "8a0744b5301a1c4dc64b580728b5771a",
- "translation_date": "2026-01-16T23:56:32+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot.png",
+ "scatter2.c0041a58621ca702.webp": {
+ "original_hash": "0daebd8565f87f5de940b38eb8af1b9d",
+ "translation_date": "2026-01-16T23:51:46+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter2.png",
"language_code": "te"
},
- "MaxWingspan-scatterplot.60dc9e0e19d32700.webp": {
- "original_hash": "58de03db6718a04f8e61e2405ea2b502",
- "translation_date": "2026-01-16T23:56:37+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot.png",
+ "scatter3.3c160a3d1dcb36b3.webp": {
+ "original_hash": "b6dae06624fdb034a906091c859840c8",
+ "translation_date": "2026-01-16T23:51:30+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter3.png",
"language_code": "te"
},
- "category-length.7e34c296690e85d6.webp": {
- "original_hash": "f5c753a1fe65d51b8cc15b8b46c6d4e6",
- "translation_date": "2026-01-16T23:56:49+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/category-length.png",
+ "scatter3.722d21e6f20b3ea2.webp": {
+ "original_hash": "e76960bfd5bd7187d9e021796f268d34",
+ "translation_date": "2026-01-16T23:55:39+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter3.png",
"language_code": "te"
},
- "MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp": {
- "original_hash": "25abf3baadac4535fac2aa1c8794f537",
- "translation_date": "2026-01-16T23:57:10+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot-improved.png",
+ "scatterplot-wingspan-02.1c33790094ce36a7.webp": {
+ "original_hash": "074b877685ae02c92754fb416864f137",
+ "translation_date": "2026-01-16T23:59:36+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan-02.png",
"language_code": "te"
},
- "comparingdata.f486a450d61c7ca5.webp": {
- "original_hash": "c5f1049b89ea0d7015e420acc0728045",
- "translation_date": "2026-01-16T23:57:22+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/comparingdata.png",
+ "scatterplot-wingspan.bdab448702939bb3.webp": {
+ "original_hash": "a6265af4af8b135ebb0b1160ac2a85e1",
+ "translation_date": "2026-01-16T23:59:42+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan.png",
"language_code": "te"
},
"stacked-bar-chart.0c92264e89da7b39.webp": {
@@ -923,34 +947,46 @@
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/stacked-bar-chart.png",
"language_code": "te"
},
+ "superimposed-02.f03058536baeb2ed.webp": {
+ "original_hash": "06591758ffda43a2ba7a885727209a57",
+ "translation_date": "2026-01-17T00:00:57+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed-02.png",
+ "language_code": "te"
+ },
"superimposed-values.5363f0705a1da416.webp": {
"original_hash": "b41c56cb68dd92f60d7e18eefd963396",
"translation_date": "2026-01-16T23:57:56+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/superimposed-values.png",
"language_code": "te"
},
- "MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp": {
- "original_hash": "c5b4723c8624caa7463c66fd7278854e",
- "translation_date": "2026-01-16T23:58:15+00:00",
- "source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot-improved.png",
+ "superimposed.8b5bd0e8825d9c5c.webp": {
+ "original_hash": "4af0c94d9d61f1d458023b01c02a247e",
+ "translation_date": "2026-01-16T23:59:40+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed.png",
"language_code": "te"
},
- "bad-chart-1.596bc93425a8ac30.webp": {
- "original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
- "translation_date": "2026-01-16T23:58:23+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-1.png",
+ "tdsp-lifecycle2.e19029d598e2e73d.webp": {
+ "original_hash": "d1f838b6b0fd588b4ee6cd22cb578569",
+ "translation_date": "2026-01-16T23:41:03+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/images/tdsp-lifecycle2.png",
"language_code": "te"
},
- "bad-chart-3.e201e2e915a230bc.webp": {
- "original_hash": "80f955c8f50661e029730e9b06959c0b",
- "translation_date": "2026-01-16T23:58:31+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-3.jpg",
+ "timeseries-1.80de678ab1cf727e.webp": {
+ "original_hash": "30236ed2474d8d115ab3d51545e0c19e",
+ "translation_date": "2026-01-16T23:42:22+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/timeseries-1.png",
"language_code": "te"
},
- "busing.8157cf1bc89a3f65.webp": {
- "original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
- "translation_date": "2026-01-16T23:58:38+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/busing.png",
+ "timeseries-2.aae51d575c55181c.webp": {
+ "original_hash": "33bd33349330cb115d729ce80b570501",
+ "translation_date": "2026-01-16T23:42:31+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/timeseries-2.png",
+ "language_code": "te"
+ },
+ "timeseries-3.f3147cbc8c624881.webp": {
+ "original_hash": "aa4b14a21a73d400073a61f37033d465",
+ "translation_date": "2026-01-16T23:42:36+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/timeseries-3.png",
"language_code": "te"
},
"tornado.2880ffc7f135f82b.webp": {
@@ -959,136 +995,100 @@
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/tornado.png",
"language_code": "te"
},
- "bad-chart-2.62edf4d2f30f4e51.webp": {
- "original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
- "translation_date": "2026-01-16T23:58:59+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-2.jpg",
- "language_code": "te"
- },
- "3d.db1734c151eee87d.webp": {
- "original_hash": "24efe448af156c5520372b9b554a2c89",
- "translation_date": "2026-01-16T23:59:10+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/3d.png",
- "language_code": "te"
- },
- "bad-chart-4.8872b2b881ffa96c.webp": {
- "original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
- "translation_date": "2026-01-16T23:59:18+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-4.jpg",
- "language_code": "te"
- },
- "liaisons.90ce7360bcf84765.webp": {
- "original_hash": "6d42370a9c4ee2cea0573912a6300e09",
- "translation_date": "2026-01-16T23:59:28+00:00",
- "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/liaisons.png",
- "language_code": "te"
- },
- "scatterplot-wingspan-02.1c33790094ce36a7.webp": {
- "original_hash": "074b877685ae02c92754fb416864f137",
- "translation_date": "2026-01-16T23:59:36+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan-02.png",
- "language_code": "te"
- },
- "superimposed.8b5bd0e8825d9c5c.webp": {
- "original_hash": "4af0c94d9d61f1d458023b01c02a247e",
- "translation_date": "2026-01-16T23:59:40+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed.png",
- "language_code": "te"
- },
- "scatterplot-wingspan.bdab448702939bb3.webp": {
- "original_hash": "a6265af4af8b135ebb0b1160ac2a85e1",
- "translation_date": "2026-01-16T23:59:42+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan.png",
+ "tornado.9f42168791208f97.webp": {
+ "original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
+ "translation_date": "2026-01-16T23:53:29+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/images/tornado.png",
"language_code": "te"
},
- "category-length.b0d9a0208a7b3713.webp": {
- "original_hash": "990ba20663dfb1d5bc21e39b9162f412",
- "translation_date": "2026-01-16T23:59:44+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length.png",
+ "video-def-ds.6623ee2392ef1abf.webp": {
+ "original_hash": "95650b7eed7f176ce8fdee16271a464b",
+ "translation_date": "2026-01-16T23:30:26+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/images/video-def-ds.png",
"language_code": "te"
},
- "category-counts.abee8188c4c9b6f0.webp": {
- "original_hash": "3b55836da9e8a6b487c6657b01156a99",
- "translation_date": "2026-01-16T23:59:47+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts.png",
+ "video-ds-python.245247dc811db8e4.webp": {
+ "original_hash": "030eca02a7388a1428cf20faa215f2b9",
+ "translation_date": "2026-01-16T23:41:56+00:00",
+ "source_file": "2-Working-With-Data/07-python/images/video-ds-python.png",
"language_code": "te"
},
- "category-length-02.7304bf519375c980.webp": {
- "original_hash": "2638d345ceee48d8c40a54f6388c8caa",
- "translation_date": "2026-01-16T23:59:58+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length-02.png",
+ "video-prob-and-stats.e4282e5efa2f2543.webp": {
+ "original_hash": "95894d8c6274697246b11c5ddf395c5f",
+ "translation_date": "2026-01-16T23:31:15+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/video-prob-and-stats.png",
"language_code": "te"
},
- "max-wingspan-labels-02.aa90e826ca49a9d1.webp": {
- "original_hash": "b1f49941bbc193409678b7c94bd39822",
- "translation_date": "2026-01-17T00:00:18+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels-02.png",
+ "waffle.5455dbae4ccf17d5.webp": {
+ "original_hash": "56634c9a9dc24921e012693843466dee",
+ "translation_date": "2026-01-16T23:52:39+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/images/waffle.png",
"language_code": "te"
},
- "max-wingspan.0b8d0858436414aa.webp": {
- "original_hash": "020b2994ef28037b86c2e215771a0bf5",
- "translation_date": "2026-01-17T00:00:22+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan.png",
+ "waffle.aaa75c5337735a6e.webp": {
+ "original_hash": "b84ca087d578965c31a20087b9215d88",
+ "translation_date": "2026-01-16T23:56:24+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/images/waffle.png",
"language_code": "te"
},
- "category-counts-02.0b9a0a4de42275ae.webp": {
- "original_hash": "d0ebdd74049aa407805cb1b28d9d5075",
- "translation_date": "2026-01-17T00:00:31+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts-02.png",
+ "weight-boxplot.1dbab1c03af26f8a.webp": {
+ "original_hash": "4e39b904d1a4313d66663aa3f7ab9602",
+ "translation_date": "2026-01-16T23:30:54+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/weight-boxplot.png",
"language_code": "te"
},
- "superimposed-02.f03058536baeb2ed.webp": {
- "original_hash": "06591758ffda43a2ba7a885727209a57",
- "translation_date": "2026-01-17T00:00:57+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed-02.png",
+ "weight-height-relationship.3f06bde4ca2aba99.webp": {
+ "original_hash": "2412d31f9c41004d2d0cb80179d6021f",
+ "translation_date": "2026-01-16T23:31:06+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/weight-height-relationship.png",
"language_code": "te"
},
- "full-data-bar-02.aaa3fda71c63ed56.webp": {
- "original_hash": "68ced4f3a959790addfa4c361f5abc0f",
- "translation_date": "2026-01-17T00:01:17+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar-02.png",
+ "weight-histogram.bfd00caf7fc30b14.webp": {
+ "original_hash": "bef55b4cd03923b2d8674e92bb1757c9",
+ "translation_date": "2026-01-16T23:30:58+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/images/weight-histogram.png",
"language_code": "te"
},
- "max-wingspan-labels.46f0cc3c48edd4e0.webp": {
- "original_hash": "67ad5348aa4963aebb0ae7ec94a7fa26",
- "translation_date": "2026-01-17T00:01:23+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels.png",
+ "wingspan-conservation-collation.4024e9aa6910866a.webp": {
+ "original_hash": "898d4cfbbc9bd4723c3ce92f5746a6f8",
+ "translation_date": "2026-01-16T23:54:45+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/images/wingspan-conservation-collation.png",
"language_code": "te"
},
- "labeled-wingspan-02.6110e2d2401cd523.webp": {
- "original_hash": "0f218473d2563c14c8caddecdea3a4c3",
- "translation_date": "2026-01-17T00:01:26+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan-02.png",
+ "workspace-1.ac8694d60b073ed1.webp": {
+ "original_hash": "5e9f3153bfd5af7d8b6adcb09c08cabd",
+ "translation_date": "2026-01-16T23:33:35+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-1.PNG",
"language_code": "te"
},
- "max-wingspan-02.e79fd847b2640b89.webp": {
- "original_hash": "424b2d5e92fd7ad1f1651fd34c48a43b",
- "translation_date": "2026-01-17T00:01:30+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-02.png",
+ "workspace-2.ae7c486db8796147.webp": {
+ "original_hash": "9299f5ae459f0a153da6aaae9accc78d",
+ "translation_date": "2026-01-16T23:36:41+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-2.PNG",
"language_code": "te"
},
- "full-data-bar.a0b37da71a6cd236.webp": {
- "original_hash": "bd639cfebb870669bcf5280302347b15",
- "translation_date": "2026-01-17T00:01:34+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar.png",
+ "workspace-3.398ca4a5858132cc.webp": {
+ "original_hash": "2ee0b036fbc5fd13a526f26ac9d60347",
+ "translation_date": "2026-01-16T23:40:08+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-3.PNG",
"language_code": "te"
},
- "labeled-wingspan.900ffedd7e3ec6de.webp": {
- "original_hash": "92a8853541cd37a14b9523a58d655f7f",
- "translation_date": "2026-01-17T00:01:39+00:00",
- "source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan.png",
+ "workspace-4.bac87f6599c4df63.webp": {
+ "original_hash": "099e0b18ce11f3966c0b7d954c2eb4fb",
+ "translation_date": "2026-01-16T23:34:24+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-4.PNG",
"language_code": "te"
},
- "data-science-applications.4e5019cd8790ebac.webp": {
- "original_hash": "602217d731f1576c21ac91148222cfa1",
- "translation_date": "2026-01-17T00:01:47+00:00",
- "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/data-science-applications.png",
+ "workspace-5.a6eb17e0a5e64200.webp": {
+ "original_hash": "01b1c520e46b3fbd6fba0d54bb80bece",
+ "translation_date": "2026-01-16T23:39:31+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-5.PNG",
"language_code": "te"
},
- "planetary-computer-explorer.c1e95a9b053167d6.webp": {
- "original_hash": "1e3bcffe198a9432dfc6232e5f89e2a5",
- "translation_date": "2026-01-17T00:05:20+00:00",
- "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/planetary-computer-explorer.png",
+ "workspace-6.8dd81fe841797ee1.webp": {
+ "original_hash": "fd0194c1a558063ddb53e5c1ead0a2b0",
+ "translation_date": "2026-01-16T23:38:37+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-6.PNG",
"language_code": "te"
}
}
\ No newline at end of file
diff --git a/translated_images/zh/.co-op-translator.json b/translated_images/zh-CN/.co-op-translator.json
similarity index 89%
rename from translated_images/zh/.co-op-translator.json
rename to translated_images/zh-CN/.co-op-translator.json
index 1ffc2ed2..e9a75f5d 100644
--- a/translated_images/zh/.co-op-translator.json
+++ b/translated_images/zh-CN/.co-op-translator.json
@@ -3,1092 +3,1092 @@
"original_hash": "ecf8b739e8b862f9c4dac338bd614aa7",
"translation_date": "2026-01-16T09:29:05+00:00",
"source_file": "sketchnotes/00-Roadmap.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"00-Title.8af36cd35da1ac55.webp": {
"original_hash": "533863b4c050b07b1d90ecb948237ffc",
"translation_date": "2026-01-16T09:29:58+00:00",
"source_file": "sketchnotes/00-Title.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"01-Definitions.1b14ddc9525dc0d9.webp": {
"original_hash": "56648d71e5fb4865d3f621010f220582",
"translation_date": "2026-01-16T09:29:52+00:00",
"source_file": "sketchnotes/01-Definitions.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"02-Ethics.728d166895302ab0.webp": {
"original_hash": "005bd88e9721003310c7b2f17dd0e35a",
"translation_date": "2026-01-16T09:33:23+00:00",
"source_file": "sketchnotes/02-Ethics.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"03-DefiningData.f800817186949e07.webp": {
"original_hash": "8c60eda506de75c669370430aa8ecc00",
"translation_date": "2026-01-16T09:31:09+00:00",
"source_file": "sketchnotes/03-DefiningData.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"04-Statistics-Probability.cfc569d84a9f1867.webp": {
"original_hash": "2ee100d33c054ce8a39267530f23377c",
"translation_date": "2026-01-16T09:33:33+00:00",
"source_file": "sketchnotes/04-Statistics-Probability.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"05-RelationalData.af50f5a3e50f7456.webp": {
"original_hash": "e4e0576bddd38fe9a4bd941f73d6de3b",
"translation_date": "2026-01-16T09:25:36+00:00",
"source_file": "sketchnotes/05-RelationalData.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"06-NoSQL.42a91ea0cd5769fe.webp": {
"original_hash": "f5873c65a3a544e1b1a94417c5ee55c8",
"translation_date": "2026-01-16T09:29:25+00:00",
"source_file": "sketchnotes/06-NoSQL.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"07-WorkWithPython.8bf4a5013718bef9.webp": {
"original_hash": "5cbac0986c16de6e4347ed8e6ae6f9c3",
"translation_date": "2026-01-16T09:31:54+00:00",
"source_file": "sketchnotes/07-WorkWithPython.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"08-DataPreparation.e3b185c37958e964.webp": {
"original_hash": "0201767bfac86b208c4c9de0fce95141",
"translation_date": "2026-01-16T09:25:03+00:00",
"source_file": "sketchnotes/08-DataPreparation.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"09-Visualizing-Quantities.5c846edd805a5238.webp": {
"original_hash": "63def3198fdcbc1a6b9ef585745a82c8",
"translation_date": "2026-01-16T09:32:57+00:00",
"source_file": "sketchnotes/09-Visualizing-Quantities.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"1.0b520df6a0d9d3c4.webp": {
"original_hash": "54586a26505aae6cbcc8962a2852b277",
"translation_date": "2026-01-16T09:24:50+00:00",
"source_file": "images/1.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"10-Visualizing-Distributions.8097fd8abd7221a1.webp": {
"original_hash": "885512a64dcab7202c5a53cbde907da2",
"translation_date": "2026-01-16T09:25:22+00:00",
"source_file": "sketchnotes/10-Visualizing-Distributions.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"11-Visualizing-Proportions.3e82f24af94d206e.webp": {
"original_hash": "e7f8f167d209a389c3100d3ac210b69d",
"translation_date": "2026-01-16T09:30:38+00:00",
"source_file": "sketchnotes/11-Visualizing-Proportions.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"12-Visualizing-Relationships.4466f9bd260f03dd.webp": {
"original_hash": "10d06245ecbdc48880e555f03a62f64c",
"translation_date": "2026-01-16T09:29:15+00:00",
"source_file": "sketchnotes/12-Visualizing-Relationships.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"13-MeaningfulViz.4db6f1997e519908.webp": {
"original_hash": "6d0db913181bac3b1aebc649e843ddb3",
"translation_date": "2026-01-16T09:33:48+00:00",
"source_file": "sketchnotes/13-MeaningfulViz.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp": {
"original_hash": "96cbd264a85530f5876c353b2e57956d",
"translation_date": "2026-01-16T09:30:18+00:00",
"source_file": "sketchnotes/14-DataScience-Lifecycle.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"15-Analyzing.b501f3dbdc958f6f.webp": {
"original_hash": "973333ac82d2472591675e2b93afc87e",
"translation_date": "2026-01-16T09:34:05+00:00",
"source_file": "sketchnotes/15-Analyzing.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"16-Communicating.f1d29cd7984442a4.webp": {
"original_hash": "9a65542ddae4e103ab2a665fe65629ce",
"translation_date": "2026-01-16T09:25:48+00:00",
"source_file": "sketchnotes/16-Communicating.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"17-DataScience-Cloud.0df76ac874805c14.webp": {
"original_hash": "221a9e5d40e6f47fe793f175a8754ae0",
"translation_date": "2026-01-16T09:33:15+00:00",
"source_file": "sketchnotes/17-DataScience-Cloud.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"18-DataScience-Cloud.3a7292e8182b74eb.webp": {
"original_hash": "c1094124ae2e325016c6ddcb95599c7a",
"translation_date": "2026-01-16T09:32:41+00:00",
"source_file": "sketchnotes/18-DataScience-Cloud.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"19-DataScience-Cloud.177b38fb86301fc6.webp": {
"original_hash": "78eb918c3512a018c0d99a217bc72038",
"translation_date": "2026-01-16T09:32:08+00:00",
"source_file": "sketchnotes/19-DataScience-Cloud.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"20-DataScience-Humanities.1d1a155f4d12a667.webp": {
"original_hash": "1458acca113e1f3c64fb18d6a434fb5c",
"translation_date": "2026-01-16T09:31:28+00:00",
"source_file": "sketchnotes/20-DataScience-Humanities.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"20-DataScience-RealWorld.976976229ee11342.webp": {
"original_hash": "ff1861c005ea9fe7644777c4069008b9",
"translation_date": "2026-01-16T09:29:47+00:00",
"source_file": "sketchnotes/20-DataScience-RealWorld.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"20-DataScience-Research.da434814c51b4ef8.webp": {
"original_hash": "c1d7c67564ad6767200da0cab95eeb52",
"translation_date": "2026-01-16T09:30:57+00:00",
"source_file": "sketchnotes/20-DataScience-Research.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"20-DataScience-Sustainability.d4097bc684431da6.webp": {
"original_hash": "966e2a6eea920d7cb30a343e0bf5c856",
"translation_date": "2026-01-16T09:31:39+00:00",
"source_file": "sketchnotes/20-DataScience-Sustainability.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"2D-wb.ae22fdd33936507a.webp": {
"original_hash": "621c501b663b89b0739ff0a3d89324d4",
"translation_date": "2026-01-16T09:49:53+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/2D-wb.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"2D.b3342157139dd804.webp": {
"original_hash": "43f6f9ba817c493c2f38383fb22df3ff",
"translation_date": "2026-01-16T09:49:57+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/2D.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"2d-plot.c504786f439bd7eb.webp": {
"original_hash": "b5a6251e8480b8dbcf6ca9972efd2a94",
"translation_date": "2026-01-16T09:54:05+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/2d-plot.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"3d.0cec12bcc60f0ce7.webp": {
"original_hash": "24efe448af156c5520372b9b554a2c89",
"translation_date": "2026-01-16T09:53:35+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/3d.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"3d.db1734c151eee87d.webp": {
"original_hash": "24efe448af156c5520372b9b554a2c89",
"translation_date": "2026-01-16T09:59:11+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/3d.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"CRISP-DM.8bad2b4c66e62aa7.webp": {
"original_hash": "eac24034dc4554b1292c0c035a852548",
"translation_date": "2026-01-16T09:44:20+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/CRISP-DM.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp": {
"original_hash": "25abf3baadac4535fac2aa1c8794f537",
"translation_date": "2026-01-16T09:57:00+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot-improved.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"MaxWingspan-lineplot.b12169f99d26fdd2.webp": {
"original_hash": "8a0744b5301a1c4dc64b580728b5771a",
"translation_date": "2026-01-16T09:56:17+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp": {
"original_hash": "c5b4723c8624caa7463c66fd7278854e",
"translation_date": "2026-01-16T09:58:14+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot-improved.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"MaxWingspan-scatterplot.60dc9e0e19d32700.webp": {
"original_hash": "58de03db6718a04f8e61e2405ea2b502",
"translation_date": "2026-01-16T09:56:22+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"aml-1.67281a85d3a1e2f3.webp": {
"original_hash": "130c64f0112c117a400926da0bbaf090",
"translation_date": "2026-01-16T09:43:40+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-1.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"aml-2.c9fb9cffb39ccbbe.webp": {
"original_hash": "703a44252eca61e2b68c1365f4beb179",
"translation_date": "2026-01-16T09:37:41+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-2.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"aml-3.a7952e4295f38cc6.webp": {
"original_hash": "33433e94fe719f0e4104ad809338f91d",
"translation_date": "2026-01-16T09:37:24+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-3.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"aml-4.7a627e09cb6f16d0.webp": {
"original_hash": "983ad36543a02fffcb8f05fb94e09ef4",
"translation_date": "2026-01-16T09:39:12+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-4.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"bad-chart-1.596bc93425a8ac30.webp": {
"original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
"translation_date": "2026-01-16T09:58:22+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-1.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"bad-chart-1.93130f495b748bed.webp": {
"original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
"translation_date": "2026-01-16T09:52:45+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-1.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"bad-chart-2.62edf4d2f30f4e51.webp": {
"original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
"translation_date": "2026-01-16T09:59:03+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-2.jpg",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"bad-chart-2.c20e36dd4e6f617c.webp": {
"original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
"translation_date": "2026-01-16T09:53:27+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-2.jpg",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"bad-chart-3.6865d0afac4108d7.webp": {
"original_hash": "80f955c8f50661e029730e9b06959c0b",
"translation_date": "2026-01-16T09:52:54+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-3.jpg",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"bad-chart-3.e201e2e915a230bc.webp": {
"original_hash": "80f955c8f50661e029730e9b06959c0b",
"translation_date": "2026-01-16T09:58:29+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-3.jpg",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"bad-chart-4.68cfdf4011b45447.webp": {
"original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
"translation_date": "2026-01-16T09:53:50+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-4.jpg",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"bad-chart-4.8872b2b881ffa96c.webp": {
"original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
"translation_date": "2026-01-16T09:59:22+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-4.jpg",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"bee.0aa1d91132b12e3a.webp": {
"original_hash": "107a59a0fdfa76d213eacf0f46df0292",
"translation_date": "2026-01-16T09:48:57+00:00",
"source_file": "3-Data-Visualization/images/bee.jpg",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"bodymass-per-order.9d2b065dd931b928.webp": {
"original_hash": "b009aeba10679cfeb880d3869e7d1db2",
"translation_date": "2026-01-16T09:54:39+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-per-order.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"bodymass-smooth.d31ce526d82b0a1f.webp": {
"original_hash": "9e0c8215e2ce2cc7120491a79559a907",
"translation_date": "2026-01-16T09:54:18+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-smooth.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"boxplot_byrole.036b27a1c3f52d42.webp": {
"original_hash": "1193ef907e122e99637e73ef9f83d2a5",
"translation_date": "2026-01-16T09:35:52+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/boxplot_byrole.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"boxplot_explanation.4039b7de08780fd4.webp": {
"original_hash": "18e16e4144706f7e9006fc2ff958e622",
"translation_date": "2026-01-16T09:35:12+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/boxplot_explanation.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"busing.7b9e3b41cd4b981c.webp": {
"original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
"translation_date": "2026-01-16T09:53:03+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/busing.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"busing.8157cf1bc89a3f65.webp": {
"original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
"translation_date": "2026-01-16T09:58:39+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/busing.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"category-counts-02.0b9a0a4de42275ae.webp": {
"original_hash": "d0ebdd74049aa407805cb1b28d9d5075",
"translation_date": "2026-01-16T10:00:47+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts-02.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"category-counts.abee8188c4c9b6f0.webp": {
"original_hash": "3b55836da9e8a6b487c6657b01156a99",
"translation_date": "2026-01-16T09:59:45+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"category-length-02.7304bf519375c980.webp": {
"original_hash": "2638d345ceee48d8c40a54f6388c8caa",
"translation_date": "2026-01-16T10:00:10+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length-02.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"category-length.7e34c296690e85d6.webp": {
"original_hash": "f5c753a1fe65d51b8cc15b8b46c6d4e6",
"translation_date": "2026-01-16T09:56:53+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/category-length.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"category-length.b0d9a0208a7b3713.webp": {
"original_hash": "990ba20663dfb1d5bc21e39b9162f412",
"translation_date": "2026-01-16T09:59:42+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"cloud-picture.f5526de3c6c6387b.webp": {
"original_hash": "112d96f85f2037814d2df8b88267a595",
"translation_date": "2026-01-16T09:36:01+00:00",
"source_file": "5-Data-Science-In-Cloud/images/cloud-picture.jpg",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"cluster-1.b78cb630bb543729.webp": {
"original_hash": "d938d671e7eabf7fbc012cf1987dc43f",
"translation_date": "2026-01-16T09:40:09+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-1.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"cluster-2.ea30cdbc9f926bb9.webp": {
"original_hash": "0486b9eb10e88dc53fc2927c9197cd27",
"translation_date": "2026-01-16T09:39:38+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-2.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"cluster-3.8a334bc070ec173a.webp": {
"original_hash": "b440d88eb5ce449ebe780c1edbac221d",
"translation_date": "2026-01-16T09:38:23+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-3.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"columnar-db.ffcfe73c3e9063a8.webp": {
"original_hash": "be6caa9571dc877703116566bc1a59d4",
"translation_date": "2026-01-16T09:46:58+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/columnar-db.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"communication.06d8e2a88d30d168.webp": {
"original_hash": "5736c0fd0f68676dbd5b27c5b04f4b48",
"translation_date": "2026-01-16T09:44:12+00:00",
"source_file": "4-Data-Science-Lifecycle/images/communication.jpg",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"comparingdata.f486a450d61c7ca5.webp": {
"original_hash": "c5f1049b89ea0d7015e420acc0728045",
"translation_date": "2026-01-16T09:57:30+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/comparingdata.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"compute-instance-1.dba347cb199ca499.webp": {
"original_hash": "7af64073de557468a0b652e4bcecf2d1",
"translation_date": "2026-01-16T09:36:16+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/compute-instance-1.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"consumption-1.700abd196452842a.webp": {
"original_hash": "a5ecdcdff30f2d1059763b9ce5abe4eb",
"translation_date": "2026-01-16T09:43:03+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/consumption-1.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"cosmosdb-emulator-explorer.a1c80b1347206fe2.webp": {
"original_hash": "cdd5affc23e1edf90e5a1d4d5d0f1f8d",
"translation_date": "2026-01-16T09:47:24+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-explorer.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp": {
"original_hash": "4ab74b4d99e8e2a503433a1faf6921be",
"translation_date": "2026-01-16T09:46:42+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons-query.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"cosmosdb-emulator-persons.bf640586a7077c89.webp": {
"original_hash": "4cf764cdeb46013888dafcd430447f3a",
"translation_date": "2026-01-16T09:48:44+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"covidspread.f3d131c4f1d260ab.webp": {
"original_hash": "461f7858f407e9f5b9eb9caf8ca21367",
"translation_date": "2026-01-16T09:46:02+00:00",
"source_file": "2-Working-With-Data/07-python/images/covidspread.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"covidtreat.b2ba59f57ca45fbc.webp": {
"original_hash": "b2b1e40794073c65faa986c5995754c9",
"translation_date": "2026-01-16T09:45:52+00:00",
"source_file": "2-Working-With-Data/07-python/images/covidtreat.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"data-love.a22ef29e6742c852.webp": {
"original_hash": "e7fcf82d891c727f86c21960cb63efa6",
"translation_date": "2026-01-16T09:45:24+00:00",
"source_file": "2-Working-With-Data/images/data-love.jpg",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"data-science-applications.4e5019cd8790ebac.webp": {
"original_hash": "602217d731f1576c21ac91148222cfa1",
"translation_date": "2026-01-16T10:02:04+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/data-science-applications.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"data-science-lifecycle.a1e362637503c4fb.webp": {
"original_hash": "594be62e68ef5e92f5447febe91c7794",
"translation_date": "2026-01-16T09:44:30+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/data-science-lifecycle.jpg",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"data.48e22bb7617d8d92.webp": {
"original_hash": "1a84026266861a50791b9f952fbab540",
"translation_date": "2026-01-16T09:34:11+00:00",
"source_file": "1-Introduction/images/data.jpg",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"dataframe-1.caf409f0c688e84c.webp": {
"original_hash": "2ca632a405bd7b501a0e0df0fa55515a",
"translation_date": "2026-01-16T09:45:43+00:00",
"source_file": "2-Working-With-Data/07-python/images/dataframe-1.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"datascienceinthecloud.59ffb059a670fb0a.webp": {
"original_hash": "d66cf00bfc41a3d1bef7e1d54ac4e03f",
"translation_date": "2026-01-16T09:38:40+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/datascienceinthecloud.jpg",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"dataset-1.e86ab4e10907a6e9.webp": {
"original_hash": "b742ef1724e601f68a1bdf3f1faa89c6",
"translation_date": "2026-01-16T09:39:53+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-1.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"dataset-2.f58de1c435d5bf9c.webp": {
"original_hash": "328c65d45aa937db952093099bc408ce",
"translation_date": "2026-01-16T09:42:02+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-2.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"dataset-3.58db8c0eb783e892.webp": {
"original_hash": "cc2177288c2ac7289b614ce41ee68d60",
"translation_date": "2026-01-16T09:41:54+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-3.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"density-plot.675ccf865b76c690.webp": {
"original_hash": "269df7655a489ba893c9a930e54996b4",
"translation_date": "2026-01-16T09:54:43+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/density-plot.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"density1.8801043bd4af2567.webp": {
"original_hash": "159abed877f261a34aeefc1c2f7d9f14",
"translation_date": "2026-01-16T09:50:02+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density1.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"density2.8e7647257060ff54.webp": {
"original_hash": "ae4ee53e81dca21c2d475642c9acf970",
"translation_date": "2026-01-16T09:50:20+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density2.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"density3.84ae27da82f31e6b.webp": {
"original_hash": "1c4b40707ab63224822854698a26f6ca",
"translation_date": "2026-01-16T09:49:10+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density3.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"density4.e9d6c033f15c500f.webp": {
"original_hash": "e007401afeb86f57097c31b272c54f59",
"translation_date": "2026-01-16T09:50:10+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density4.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"deploy-1.ddad725acadc84e3.webp": {
"original_hash": "d91956f565f29332f32fc85095206456",
"translation_date": "2026-01-16T09:38:09+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-1.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"deploy-2.94dbb13f23908647.webp": {
"original_hash": "cb622a2e6374ccfdb376d3528e2bb9c8",
"translation_date": "2026-01-16T09:43:30+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-2.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"deploy-3.fecefef070e8ef3b.webp": {
"original_hash": "487c6cd79b0232e10e40fdab2e6b929f",
"translation_date": "2026-01-16T09:40:49+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-3.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"dist1-wb.0d0cac82e2974fbb.webp": {
"original_hash": "2f624fcf08f90cfedf12238e86730517",
"translation_date": "2026-01-16T09:49:44+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1-wb.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"dist1.0010100b00231819.webp": {
"original_hash": "637343564b5cc6aa01b966bb3f010c81",
"translation_date": "2026-01-16T09:50:16+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"dist2-wb.2c0a7a3499b2fbf5.webp": {
"original_hash": "f66e1b4cf106774c02ddc8111fb26ea8",
"translation_date": "2026-01-16T09:50:25+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2-wb.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"dist2.c398bfd5320401b9.webp": {
"original_hash": "fc0ce2a2e3087e5754770998f75db398",
"translation_date": "2026-01-16T09:49:05+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"dist3-wb.64b88db7f9780200.webp": {
"original_hash": "b3d78f1f00c6c3d087f161dd74318aff",
"translation_date": "2026-01-16T09:49:15+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3-wb.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"dist3.ad4d9658559690f5.webp": {
"original_hash": "a4f7f50a3cc98d22d6a1321d1df7781b",
"translation_date": "2026-01-16T09:49:50+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"distribution-30bins.6a3921ea7a421bf7.webp": {
"original_hash": "e06c4dfd27b06597b94a75072e9c4bc5",
"translation_date": "2026-01-16T09:54:14+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-30bins.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"distribution-over-the-entire-dataset.d22afd3fa96be854.webp": {
"original_hash": "338c78ae2ee25ed179e49ec1a4e7923b",
"translation_date": "2026-01-16T09:54:22+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-over-the-entire-dataset.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"document-db.ddeec48c6dc9e5fd.webp": {
"original_hash": "8cee40487b4a8926c048c397be218e6e",
"translation_date": "2026-01-16T09:48:01+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/document-db.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"donut-wb.34e6fb275da9d834.webp": {
"original_hash": "1fca738bcee99e03430409599cef33f3",
"translation_date": "2026-01-16T09:56:06+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/donut-wb.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"donut-wb.be3c12a22712302b.webp": {
"original_hash": "84f5657fc2c817fe6487993027aeb3e0",
"translation_date": "2026-01-16T09:52:08+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut-wb.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"donut.f016d7be7f08c8f8.webp": {
"original_hash": "055fcaf0a6d93663278eb958137b460c",
"translation_date": "2026-01-16T09:52:33+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"ds-for-beginners.d01930c9193ef522.webp": {
"original_hash": "b84eca5411f4bc0041e671becb05fe48",
"translation_date": "2026-01-16T09:24:40+00:00",
"source_file": "ds-for-beginners.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"ds_wordcloud.664a7c07dca57de0.webp": {
"original_hash": "df525e123083bea87f16bce2c07970c7",
"translation_date": "2026-01-16T09:34:43+00:00",
"source_file": "1-Introduction/01-defining-data-science/images/ds_wordcloud.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"dual-line.a4c28ce659603fab.webp": {
"original_hash": "354c3a3b7493b3ec80eec454e7e1661f",
"translation_date": "2026-01-16T09:51:01+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/dual-line.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"dual-line.fc4665f360a54018.webp": {
"original_hash": "a80f6d08e4639389726abb5b1c3d5d9f",
"translation_date": "2026-01-16T09:55:17+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/dual-line.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"facet.491ad90d61c2a7cc.webp": {
"original_hash": "2a0a7fea3ccea24ef9a0d37487f38ba3",
"translation_date": "2026-01-16T09:55:11+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/facet.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"facet.6a34851dcd540050.webp": {
"original_hash": "b1972d34a64eaf50b7f64de8455601d6",
"translation_date": "2026-01-16T09:50:47+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/facet.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"favicon.37b561214b36d454.webp": {
"original_hash": "228faa6584f8ba1f7e9a75e3200112e9",
"translation_date": "2026-01-16T09:24:41+00:00",
"source_file": "images/favicon.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"filtered-histogram.6bf5d2bfd8253322.webp": {
"original_hash": "9beae93b6d3063f7afa19070ca9b21f2",
"translation_date": "2026-01-16T09:54:26+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/filtered-histogram.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"formula-excel.ad1068c220892f5e.webp": {
"original_hash": "ffc48a46663588ed68f07739e1c6faec",
"translation_date": "2026-01-16T09:47:39+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/formula-excel.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"full-data-bar-02.aaa3fda71c63ed56.webp": {
"original_hash": "68ced4f3a959790addfa4c361f5abc0f",
"translation_date": "2026-01-16T10:01:25+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar-02.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"full-data-bar.a0b37da71a6cd236.webp": {
"original_hash": "bd639cfebb870669bcf5280302347b15",
"translation_date": "2026-01-16T10:01:45+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"function-excel.be2ae4feddc10ca0.webp": {
"original_hash": "72ab7b76f4fab0df5aa91fa839722a60",
"translation_date": "2026-01-16T09:46:49+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/function-excel.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"graph-db.d13629152f79a9da.webp": {
"original_hash": "9642744eabff608b20e9241ba5931752",
"translation_date": "2026-01-16T09:47:47+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/graph-db.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"height-boxplot.ccb66b2848b5f51c.webp": {
"original_hash": "0f3d954cc0e0b9644f64f7bc1c8a5518",
"translation_date": "2026-01-16T09:35:33+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/height-boxplot.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"histogram-conservation-wb.3c40450eb072c14d.webp": {
"original_hash": "83ec1d81dea6fabb80c6386edf8eb241",
"translation_date": "2026-01-16T09:49:38+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation-wb.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"histogram-conservation.13b3542e7784e415.webp": {
"original_hash": "ec86b1d6a476f4cf80f9d2b346525c92",
"translation_date": "2026-01-16T09:49:48+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"kv-db.e8f2b75686bbdfcb.webp": {
"original_hash": "b11fd06948e523a4f05e4fc016b72151",
"translation_date": "2026-01-16T09:47:04+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/kv-db.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"labeled-wingspan-02.6110e2d2401cd523.webp": {
"original_hash": "0f218473d2563c14c8caddecdea3a4c3",
"translation_date": "2026-01-16T10:01:35+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan-02.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"labeled-wingspan.900ffedd7e3ec6de.webp": {
"original_hash": "92a8853541cd37a14b9523a58d655f7f",
"translation_date": "2026-01-16T10:01:49+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"less-smooth-bodymass.10f4db8b683cc17d.webp": {
"original_hash": "407ad13c340ab84466724135c99aa8d6",
"translation_date": "2026-01-16T09:54:09+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/less-smooth-bodymass.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"liaisons.7b440b28f6d07ea4.webp": {
"original_hash": "6d42370a9c4ee2cea0573912a6300e09",
"translation_date": "2026-01-16T09:53:59+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/liaisons.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"liaisons.90ce7360bcf84765.webp": {
"original_hash": "6d42370a9c4ee2cea0573912a6300e09",
"translation_date": "2026-01-16T09:59:31+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/liaisons.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"line1.299b576fbb2a59e6.webp": {
"original_hash": "580b92476ca343c0fce7d5713d0ca5cd",
"translation_date": "2026-01-16T09:55:54+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line1.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"line1.f36eb465229a3b1f.webp": {
"original_hash": "2254eee0864847a0dbbcf3514523b938",
"translation_date": "2026-01-16T09:51:52+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/line1.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"line2.3b18fcda7176ceba.webp": {
"original_hash": "0900ae563b525221b628393ec05feaf8",
"translation_date": "2026-01-16T09:55:59+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line2.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"line2.a5b3493dc01058af.webp": {
"original_hash": "352e8164b0d75c410198bb07822e43cb",
"translation_date": "2026-01-16T09:51:57+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/line2.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"max-length-per-order.e5b283d952c78c12.webp": {
"original_hash": "3669afd28a61d41ee39429418ee938a0",
"translation_date": "2026-01-16T09:54:56+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/max-length-per-order.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"max-wingspan-02.e79fd847b2640b89.webp": {
"original_hash": "424b2d5e92fd7ad1f1651fd34c48a43b",
"translation_date": "2026-01-16T10:01:39+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-02.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"max-wingspan-labels-02.aa90e826ca49a9d1.webp": {
"original_hash": "b1f49941bbc193409678b7c94bd39822",
"translation_date": "2026-01-16T10:00:16+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels-02.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"max-wingspan-labels.46f0cc3c48edd4e0.webp": {
"original_hash": "67ad5348aa4963aebb0ae7ec94a7fa26",
"translation_date": "2026-01-16T10:01:28+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"max-wingspan.0b8d0858436414aa.webp": {
"original_hash": "020b2994ef28037b86c2e215771a0bf5",
"translation_date": "2026-01-16T10:00:17+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"multi.56548caa9eae8d0f.webp": {
"original_hash": "f75fa5419bb0d28a74c567876bc99455",
"translation_date": "2026-01-16T09:49:03+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/multi.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"new-container.650e10c7a20a5f83.webp": {
"original_hash": "ab63b5a8099095333eebe2afa69197e3",
"translation_date": "2026-01-16T09:48:15+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/new-container.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"normal-histogram.dfae0d67c202137d.webp": {
"original_hash": "46ee775d2df1d79815c1aab51bd8d2fe",
"translation_date": "2026-01-16T09:35:45+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/normal-histogram.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"notebook-1.12998af7b02c83f5.webp": {
"original_hash": "08d559b911ecbed212b67e206ae6bcf1",
"translation_date": "2026-01-16T09:36:31+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-1.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"notebook-2.9a657c037e34f1cf.webp": {
"original_hash": "018309c1ca2ed8e31fd89c3674687979",
"translation_date": "2026-01-16T09:36:36+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-2.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"parts-of-spreadsheet.120711c82aa18a45.webp": {
"original_hash": "e744b94c055058c2862aaabe84625b90",
"translation_date": "2026-01-16T09:48:56+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/parts-of-spreadsheet.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"pie1-wb.685df063673751f4.webp": {
"original_hash": "2b353f34a1a1e444a1d7f2219b78cb83",
"translation_date": "2026-01-16T09:56:12+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/pie1-wb.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"pie1-wb.e201f2fcc3354131.webp": {
"original_hash": "f2dbe68e0228fc6bb76e502dfa88a5c7",
"translation_date": "2026-01-16T09:52:36+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1-wb.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"pie1.8f6a8bfac96de60e.webp": {
"original_hash": "dc91ddf7490acc8493ca0801370d8fa8",
"translation_date": "2026-01-16T09:52:01+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"planetary-computer-explorer.c1e95a9b053167d6.webp": {
"original_hash": "1e3bcffe198a9432dfc6232e5f89e2a5",
"translation_date": "2026-01-16T10:02:17+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/planetary-computer-explorer.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"probability-density.a8aad29f17a14afb.webp": {
"original_hash": "79ec3e39c1c20e570327ebd8a2737548",
"translation_date": "2026-01-16T09:35:24+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/probability-density.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"project-schema.420e56d495624541.webp": {
"original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
"translation_date": "2026-01-16T09:37:04+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/project-schema.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"project-schema.736f6e403f321eb4.webp": {
"original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
"translation_date": "2026-01-16T09:41:18+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/project-schema.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"scatter-wb.9d98b0ed7f0388af.webp": {
"original_hash": "20b0f7bb41756f35bdf985a8f5f3a342",
"translation_date": "2026-01-16T09:49:31+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter-wb.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"scatter.520a43eceb46dbcb.webp": {
"original_hash": "0b08180e497b0df05b452d6e82139280",
"translation_date": "2026-01-16T09:50:14+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"scatter1.5e1aa5fd6706c5d1.webp": {
"original_hash": "c02fe2f5fa39f591b4a26308356ed684",
"translation_date": "2026-01-16T09:51:46+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter1.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"scatter1.86b8900674d88b26.webp": {
"original_hash": "c987462f33600689809531fc3d265f96",
"translation_date": "2026-01-16T09:55:50+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter1.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"scatter2.4d1cbc693bad20e2.webp": {
"original_hash": "770ca46665efad9996e32d596f105ea9",
"translation_date": "2026-01-16T09:55:35+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter2.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"scatter2.c0041a58621ca702.webp": {
"original_hash": "0daebd8565f87f5de940b38eb8af1b9d",
"translation_date": "2026-01-16T09:51:31+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter2.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"scatter3.3c160a3d1dcb36b3.webp": {
"original_hash": "b6dae06624fdb034a906091c859840c8",
"translation_date": "2026-01-16T09:51:14+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter3.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"scatter3.722d21e6f20b3ea2.webp": {
"original_hash": "e76960bfd5bd7187d9e021796f268d34",
"translation_date": "2026-01-16T09:55:26+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter3.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"scatterplot-wingspan-02.1c33790094ce36a7.webp": {
"original_hash": "074b877685ae02c92754fb416864f137",
"translation_date": "2026-01-16T09:59:35+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan-02.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"scatterplot-wingspan.bdab448702939bb3.webp": {
"original_hash": "a6265af4af8b135ebb0b1160ac2a85e1",
"translation_date": "2026-01-16T09:59:39+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"stacked-bar-chart.0c92264e89da7b39.webp": {
"original_hash": "150d1125735f6612e36c8d74d492c664",
"translation_date": "2026-01-16T09:57:38+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/stacked-bar-chart.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"superimposed-02.f03058536baeb2ed.webp": {
"original_hash": "06591758ffda43a2ba7a885727209a57",
"translation_date": "2026-01-16T10:01:18+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed-02.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"superimposed-values.5363f0705a1da416.webp": {
"original_hash": "b41c56cb68dd92f60d7e18eefd963396",
"translation_date": "2026-01-16T09:58:07+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/superimposed-values.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"superimposed.8b5bd0e8825d9c5c.webp": {
"original_hash": "4af0c94d9d61f1d458023b01c02a247e",
"translation_date": "2026-01-16T09:59:38+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"tdsp-lifecycle2.e19029d598e2e73d.webp": {
"original_hash": "d1f838b6b0fd588b4ee6cd22cb578569",
"translation_date": "2026-01-16T09:44:46+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/tdsp-lifecycle2.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"timeseries-1.80de678ab1cf727e.webp": {
"original_hash": "30236ed2474d8d115ab3d51545e0c19e",
"translation_date": "2026-01-16T09:45:58+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-1.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"timeseries-2.aae51d575c55181c.webp": {
"original_hash": "33bd33349330cb115d729ce80b570501",
"translation_date": "2026-01-16T09:46:08+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-2.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"timeseries-3.f3147cbc8c624881.webp": {
"original_hash": "aa4b14a21a73d400073a61f37033d465",
"translation_date": "2026-01-16T09:46:14+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-3.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"tornado.2880ffc7f135f82b.webp": {
"original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
"translation_date": "2026-01-16T09:58:51+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/tornado.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"tornado.9f42168791208f97.webp": {
"original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
"translation_date": "2026-01-16T09:53:14+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/tornado.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"video-def-ds.6623ee2392ef1abf.webp": {
"original_hash": "95650b7eed7f176ce8fdee16271a464b",
"translation_date": "2026-01-16T09:34:58+00:00",
"source_file": "1-Introduction/01-defining-data-science/images/video-def-ds.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"video-ds-python.245247dc811db8e4.webp": {
"original_hash": "030eca02a7388a1428cf20faa215f2b9",
"translation_date": "2026-01-16T09:45:37+00:00",
"source_file": "2-Working-With-Data/07-python/images/video-ds-python.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"video-prob-and-stats.e4282e5efa2f2543.webp": {
"original_hash": "95894d8c6274697246b11c5ddf395c5f",
"translation_date": "2026-01-16T09:35:41+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/video-prob-and-stats.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"waffle.5455dbae4ccf17d5.webp": {
"original_hash": "56634c9a9dc24921e012693843466dee",
"translation_date": "2026-01-16T09:52:28+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/waffle.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"waffle.aaa75c5337735a6e.webp": {
"original_hash": "b84ca087d578965c31a20087b9215d88",
"translation_date": "2026-01-16T09:56:10+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/waffle.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"weight-boxplot.1dbab1c03af26f8a.webp": {
"original_hash": "4e39b904d1a4313d66663aa3f7ab9602",
"translation_date": "2026-01-16T09:35:16+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-boxplot.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"weight-height-relationship.3f06bde4ca2aba99.webp": {
"original_hash": "2412d31f9c41004d2d0cb80179d6021f",
"translation_date": "2026-01-16T09:35:29+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-height-relationship.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"weight-histogram.bfd00caf7fc30b14.webp": {
"original_hash": "bef55b4cd03923b2d8674e92bb1757c9",
"translation_date": "2026-01-16T09:35:21+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-histogram.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"wingspan-conservation-collation.4024e9aa6910866a.webp": {
"original_hash": "898d4cfbbc9bd4723c3ce92f5746a6f8",
"translation_date": "2026-01-16T09:54:32+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/wingspan-conservation-collation.png",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"workspace-1.ac8694d60b073ed1.webp": {
"original_hash": "5e9f3153bfd5af7d8b6adcb09c08cabd",
"translation_date": "2026-01-16T09:37:51+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-1.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"workspace-2.ae7c486db8796147.webp": {
"original_hash": "9299f5ae459f0a153da6aaae9accc78d",
"translation_date": "2026-01-16T09:40:25+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-2.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"workspace-3.398ca4a5858132cc.webp": {
"original_hash": "2ee0b036fbc5fd13a526f26ac9d60347",
"translation_date": "2026-01-16T09:43:51+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-3.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"workspace-4.bac87f6599c4df63.webp": {
"original_hash": "099e0b18ce11f3966c0b7d954c2eb4fb",
"translation_date": "2026-01-16T09:38:38+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-4.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"workspace-5.a6eb17e0a5e64200.webp": {
"original_hash": "01b1c520e46b3fbd6fba0d54bb80bece",
"translation_date": "2026-01-16T09:43:19+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-5.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
},
"workspace-6.8dd81fe841797ee1.webp": {
"original_hash": "fd0194c1a558063ddb53e5c1ead0a2b0",
"translation_date": "2026-01-16T09:42:29+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-6.PNG",
- "language_code": "zh"
+ "language_code": "zh-CN"
}
}
\ No newline at end of file
diff --git a/translated_images/zh/00-Roadmap.4905d6567dff4753.webp b/translated_images/zh-CN/00-Roadmap.4905d6567dff4753.webp
similarity index 100%
rename from translated_images/zh/00-Roadmap.4905d6567dff4753.webp
rename to translated_images/zh-CN/00-Roadmap.4905d6567dff4753.webp
diff --git a/translated_images/zh/00-Title.8af36cd35da1ac55.webp b/translated_images/zh-CN/00-Title.8af36cd35da1ac55.webp
similarity index 100%
rename from translated_images/zh/00-Title.8af36cd35da1ac55.webp
rename to translated_images/zh-CN/00-Title.8af36cd35da1ac55.webp
diff --git a/translated_images/zh/01-Definitions.1b14ddc9525dc0d9.webp b/translated_images/zh-CN/01-Definitions.1b14ddc9525dc0d9.webp
similarity index 100%
rename from translated_images/zh/01-Definitions.1b14ddc9525dc0d9.webp
rename to translated_images/zh-CN/01-Definitions.1b14ddc9525dc0d9.webp
diff --git a/translated_images/zh/02-Ethics.728d166895302ab0.webp b/translated_images/zh-CN/02-Ethics.728d166895302ab0.webp
similarity index 100%
rename from translated_images/zh/02-Ethics.728d166895302ab0.webp
rename to translated_images/zh-CN/02-Ethics.728d166895302ab0.webp
diff --git a/translated_images/zh/03-DefiningData.f800817186949e07.webp b/translated_images/zh-CN/03-DefiningData.f800817186949e07.webp
similarity index 100%
rename from translated_images/zh/03-DefiningData.f800817186949e07.webp
rename to translated_images/zh-CN/03-DefiningData.f800817186949e07.webp
diff --git a/translated_images/zh/04-Statistics-Probability.cfc569d84a9f1867.webp b/translated_images/zh-CN/04-Statistics-Probability.cfc569d84a9f1867.webp
similarity index 100%
rename from translated_images/zh/04-Statistics-Probability.cfc569d84a9f1867.webp
rename to translated_images/zh-CN/04-Statistics-Probability.cfc569d84a9f1867.webp
diff --git a/translated_images/zh/05-RelationalData.af50f5a3e50f7456.webp b/translated_images/zh-CN/05-RelationalData.af50f5a3e50f7456.webp
similarity index 100%
rename from translated_images/zh/05-RelationalData.af50f5a3e50f7456.webp
rename to translated_images/zh-CN/05-RelationalData.af50f5a3e50f7456.webp
diff --git a/translated_images/zh/06-NoSQL.42a91ea0cd5769fe.webp b/translated_images/zh-CN/06-NoSQL.42a91ea0cd5769fe.webp
similarity index 100%
rename from translated_images/zh/06-NoSQL.42a91ea0cd5769fe.webp
rename to translated_images/zh-CN/06-NoSQL.42a91ea0cd5769fe.webp
diff --git a/translated_images/zh/07-WorkWithPython.8bf4a5013718bef9.webp b/translated_images/zh-CN/07-WorkWithPython.8bf4a5013718bef9.webp
similarity index 100%
rename from translated_images/zh/07-WorkWithPython.8bf4a5013718bef9.webp
rename to translated_images/zh-CN/07-WorkWithPython.8bf4a5013718bef9.webp
diff --git a/translated_images/zh/08-DataPreparation.e3b185c37958e964.webp b/translated_images/zh-CN/08-DataPreparation.e3b185c37958e964.webp
similarity index 100%
rename from translated_images/zh/08-DataPreparation.e3b185c37958e964.webp
rename to translated_images/zh-CN/08-DataPreparation.e3b185c37958e964.webp
diff --git a/translated_images/zh/09-Visualizing-Quantities.5c846edd805a5238.webp b/translated_images/zh-CN/09-Visualizing-Quantities.5c846edd805a5238.webp
similarity index 100%
rename from translated_images/zh/09-Visualizing-Quantities.5c846edd805a5238.webp
rename to translated_images/zh-CN/09-Visualizing-Quantities.5c846edd805a5238.webp
diff --git a/translated_images/zh/1.0b520df6a0d9d3c4.webp b/translated_images/zh-CN/1.0b520df6a0d9d3c4.webp
similarity index 100%
rename from translated_images/zh/1.0b520df6a0d9d3c4.webp
rename to translated_images/zh-CN/1.0b520df6a0d9d3c4.webp
diff --git a/translated_images/zh/10-Visualizing-Distributions.8097fd8abd7221a1.webp b/translated_images/zh-CN/10-Visualizing-Distributions.8097fd8abd7221a1.webp
similarity index 100%
rename from translated_images/zh/10-Visualizing-Distributions.8097fd8abd7221a1.webp
rename to translated_images/zh-CN/10-Visualizing-Distributions.8097fd8abd7221a1.webp
diff --git a/translated_images/zh/11-Visualizing-Proportions.3e82f24af94d206e.webp b/translated_images/zh-CN/11-Visualizing-Proportions.3e82f24af94d206e.webp
similarity index 100%
rename from translated_images/zh/11-Visualizing-Proportions.3e82f24af94d206e.webp
rename to translated_images/zh-CN/11-Visualizing-Proportions.3e82f24af94d206e.webp
diff --git a/translated_images/zh/12-Visualizing-Relationships.4466f9bd260f03dd.webp b/translated_images/zh-CN/12-Visualizing-Relationships.4466f9bd260f03dd.webp
similarity index 100%
rename from translated_images/zh/12-Visualizing-Relationships.4466f9bd260f03dd.webp
rename to translated_images/zh-CN/12-Visualizing-Relationships.4466f9bd260f03dd.webp
diff --git a/translated_images/zh/13-MeaningfulViz.4db6f1997e519908.webp b/translated_images/zh-CN/13-MeaningfulViz.4db6f1997e519908.webp
similarity index 100%
rename from translated_images/zh/13-MeaningfulViz.4db6f1997e519908.webp
rename to translated_images/zh-CN/13-MeaningfulViz.4db6f1997e519908.webp
diff --git a/translated_images/zh/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp b/translated_images/zh-CN/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
similarity index 100%
rename from translated_images/zh/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
rename to translated_images/zh-CN/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
diff --git a/translated_images/zh/15-Analyzing.b501f3dbdc958f6f.webp b/translated_images/zh-CN/15-Analyzing.b501f3dbdc958f6f.webp
similarity index 100%
rename from translated_images/zh/15-Analyzing.b501f3dbdc958f6f.webp
rename to translated_images/zh-CN/15-Analyzing.b501f3dbdc958f6f.webp
diff --git a/translated_images/zh/16-Communicating.f1d29cd7984442a4.webp b/translated_images/zh-CN/16-Communicating.f1d29cd7984442a4.webp
similarity index 100%
rename from translated_images/zh/16-Communicating.f1d29cd7984442a4.webp
rename to translated_images/zh-CN/16-Communicating.f1d29cd7984442a4.webp
diff --git a/translated_images/zh/17-DataScience-Cloud.0df76ac874805c14.webp b/translated_images/zh-CN/17-DataScience-Cloud.0df76ac874805c14.webp
similarity index 100%
rename from translated_images/zh/17-DataScience-Cloud.0df76ac874805c14.webp
rename to translated_images/zh-CN/17-DataScience-Cloud.0df76ac874805c14.webp
diff --git a/translated_images/zh/18-DataScience-Cloud.3a7292e8182b74eb.webp b/translated_images/zh-CN/18-DataScience-Cloud.3a7292e8182b74eb.webp
similarity index 100%
rename from translated_images/zh/18-DataScience-Cloud.3a7292e8182b74eb.webp
rename to translated_images/zh-CN/18-DataScience-Cloud.3a7292e8182b74eb.webp
diff --git a/translated_images/zh/19-DataScience-Cloud.177b38fb86301fc6.webp b/translated_images/zh-CN/19-DataScience-Cloud.177b38fb86301fc6.webp
similarity index 100%
rename from translated_images/zh/19-DataScience-Cloud.177b38fb86301fc6.webp
rename to translated_images/zh-CN/19-DataScience-Cloud.177b38fb86301fc6.webp
diff --git a/translated_images/zh/20-DataScience-Humanities.1d1a155f4d12a667.webp b/translated_images/zh-CN/20-DataScience-Humanities.1d1a155f4d12a667.webp
similarity index 100%
rename from translated_images/zh/20-DataScience-Humanities.1d1a155f4d12a667.webp
rename to translated_images/zh-CN/20-DataScience-Humanities.1d1a155f4d12a667.webp
diff --git a/translated_images/zh/20-DataScience-RealWorld.976976229ee11342.webp b/translated_images/zh-CN/20-DataScience-RealWorld.976976229ee11342.webp
similarity index 100%
rename from translated_images/zh/20-DataScience-RealWorld.976976229ee11342.webp
rename to translated_images/zh-CN/20-DataScience-RealWorld.976976229ee11342.webp
diff --git a/translated_images/zh/20-DataScience-Research.da434814c51b4ef8.webp b/translated_images/zh-CN/20-DataScience-Research.da434814c51b4ef8.webp
similarity index 100%
rename from translated_images/zh/20-DataScience-Research.da434814c51b4ef8.webp
rename to translated_images/zh-CN/20-DataScience-Research.da434814c51b4ef8.webp
diff --git a/translated_images/zh/20-DataScience-Sustainability.d4097bc684431da6.webp b/translated_images/zh-CN/20-DataScience-Sustainability.d4097bc684431da6.webp
similarity index 100%
rename from translated_images/zh/20-DataScience-Sustainability.d4097bc684431da6.webp
rename to translated_images/zh-CN/20-DataScience-Sustainability.d4097bc684431da6.webp
diff --git a/translated_images/mo/2D-wb.ae22fdd33936507a.webp b/translated_images/zh-CN/2D-wb.ae22fdd33936507a.webp
similarity index 100%
rename from translated_images/mo/2D-wb.ae22fdd33936507a.webp
rename to translated_images/zh-CN/2D-wb.ae22fdd33936507a.webp
diff --git a/translated_images/mo/2D.b3342157139dd804.webp b/translated_images/zh-CN/2D.b3342157139dd804.webp
similarity index 100%
rename from translated_images/mo/2D.b3342157139dd804.webp
rename to translated_images/zh-CN/2D.b3342157139dd804.webp
diff --git a/translated_images/zh/2d-plot.c504786f439bd7eb.webp b/translated_images/zh-CN/2d-plot.c504786f439bd7eb.webp
similarity index 100%
rename from translated_images/zh/2d-plot.c504786f439bd7eb.webp
rename to translated_images/zh-CN/2d-plot.c504786f439bd7eb.webp
diff --git a/translated_images/mo/3d.0cec12bcc60f0ce7.webp b/translated_images/zh-CN/3d.0cec12bcc60f0ce7.webp
similarity index 100%
rename from translated_images/mo/3d.0cec12bcc60f0ce7.webp
rename to translated_images/zh-CN/3d.0cec12bcc60f0ce7.webp
diff --git a/translated_images/mo/3d.db1734c151eee87d.webp b/translated_images/zh-CN/3d.db1734c151eee87d.webp
similarity index 100%
rename from translated_images/mo/3d.db1734c151eee87d.webp
rename to translated_images/zh-CN/3d.db1734c151eee87d.webp
diff --git a/translated_images/zh/CRISP-DM.8bad2b4c66e62aa7.webp b/translated_images/zh-CN/CRISP-DM.8bad2b4c66e62aa7.webp
similarity index 100%
rename from translated_images/zh/CRISP-DM.8bad2b4c66e62aa7.webp
rename to translated_images/zh-CN/CRISP-DM.8bad2b4c66e62aa7.webp
diff --git a/translated_images/zh/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp b/translated_images/zh-CN/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
similarity index 100%
rename from translated_images/zh/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
rename to translated_images/zh-CN/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
diff --git a/translated_images/zh/MaxWingspan-lineplot.b12169f99d26fdd2.webp b/translated_images/zh-CN/MaxWingspan-lineplot.b12169f99d26fdd2.webp
similarity index 100%
rename from translated_images/zh/MaxWingspan-lineplot.b12169f99d26fdd2.webp
rename to translated_images/zh-CN/MaxWingspan-lineplot.b12169f99d26fdd2.webp
diff --git a/translated_images/zh/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp b/translated_images/zh-CN/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
similarity index 100%
rename from translated_images/zh/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
rename to translated_images/zh-CN/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
diff --git a/translated_images/zh/MaxWingspan-scatterplot.60dc9e0e19d32700.webp b/translated_images/zh-CN/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
similarity index 100%
rename from translated_images/zh/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
rename to translated_images/zh-CN/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
diff --git a/translated_images/zh/aml-1.67281a85d3a1e2f3.webp b/translated_images/zh-CN/aml-1.67281a85d3a1e2f3.webp
similarity index 100%
rename from translated_images/zh/aml-1.67281a85d3a1e2f3.webp
rename to translated_images/zh-CN/aml-1.67281a85d3a1e2f3.webp
diff --git a/translated_images/zh/aml-2.c9fb9cffb39ccbbe.webp b/translated_images/zh-CN/aml-2.c9fb9cffb39ccbbe.webp
similarity index 100%
rename from translated_images/zh/aml-2.c9fb9cffb39ccbbe.webp
rename to translated_images/zh-CN/aml-2.c9fb9cffb39ccbbe.webp
diff --git a/translated_images/zh/aml-3.a7952e4295f38cc6.webp b/translated_images/zh-CN/aml-3.a7952e4295f38cc6.webp
similarity index 100%
rename from translated_images/zh/aml-3.a7952e4295f38cc6.webp
rename to translated_images/zh-CN/aml-3.a7952e4295f38cc6.webp
diff --git a/translated_images/zh/aml-4.7a627e09cb6f16d0.webp b/translated_images/zh-CN/aml-4.7a627e09cb6f16d0.webp
similarity index 100%
rename from translated_images/zh/aml-4.7a627e09cb6f16d0.webp
rename to translated_images/zh-CN/aml-4.7a627e09cb6f16d0.webp
diff --git a/translated_images/zh/bad-chart-1.596bc93425a8ac30.webp b/translated_images/zh-CN/bad-chart-1.596bc93425a8ac30.webp
similarity index 100%
rename from translated_images/zh/bad-chart-1.596bc93425a8ac30.webp
rename to translated_images/zh-CN/bad-chart-1.596bc93425a8ac30.webp
diff --git a/translated_images/zh/bad-chart-1.93130f495b748bed.webp b/translated_images/zh-CN/bad-chart-1.93130f495b748bed.webp
similarity index 100%
rename from translated_images/zh/bad-chart-1.93130f495b748bed.webp
rename to translated_images/zh-CN/bad-chart-1.93130f495b748bed.webp
diff --git a/translated_images/zh/bad-chart-2.62edf4d2f30f4e51.webp b/translated_images/zh-CN/bad-chart-2.62edf4d2f30f4e51.webp
similarity index 100%
rename from translated_images/zh/bad-chart-2.62edf4d2f30f4e51.webp
rename to translated_images/zh-CN/bad-chart-2.62edf4d2f30f4e51.webp
diff --git a/translated_images/zh/bad-chart-2.c20e36dd4e6f617c.webp b/translated_images/zh-CN/bad-chart-2.c20e36dd4e6f617c.webp
similarity index 100%
rename from translated_images/zh/bad-chart-2.c20e36dd4e6f617c.webp
rename to translated_images/zh-CN/bad-chart-2.c20e36dd4e6f617c.webp
diff --git a/translated_images/zh/bad-chart-3.6865d0afac4108d7.webp b/translated_images/zh-CN/bad-chart-3.6865d0afac4108d7.webp
similarity index 100%
rename from translated_images/zh/bad-chart-3.6865d0afac4108d7.webp
rename to translated_images/zh-CN/bad-chart-3.6865d0afac4108d7.webp
diff --git a/translated_images/zh/bad-chart-3.e201e2e915a230bc.webp b/translated_images/zh-CN/bad-chart-3.e201e2e915a230bc.webp
similarity index 100%
rename from translated_images/zh/bad-chart-3.e201e2e915a230bc.webp
rename to translated_images/zh-CN/bad-chart-3.e201e2e915a230bc.webp
diff --git a/translated_images/zh/bad-chart-4.68cfdf4011b45447.webp b/translated_images/zh-CN/bad-chart-4.68cfdf4011b45447.webp
similarity index 100%
rename from translated_images/zh/bad-chart-4.68cfdf4011b45447.webp
rename to translated_images/zh-CN/bad-chart-4.68cfdf4011b45447.webp
diff --git a/translated_images/zh/bad-chart-4.8872b2b881ffa96c.webp b/translated_images/zh-CN/bad-chart-4.8872b2b881ffa96c.webp
similarity index 100%
rename from translated_images/zh/bad-chart-4.8872b2b881ffa96c.webp
rename to translated_images/zh-CN/bad-chart-4.8872b2b881ffa96c.webp
diff --git a/translated_images/mo/bee.0aa1d91132b12e3a.webp b/translated_images/zh-CN/bee.0aa1d91132b12e3a.webp
similarity index 100%
rename from translated_images/mo/bee.0aa1d91132b12e3a.webp
rename to translated_images/zh-CN/bee.0aa1d91132b12e3a.webp
diff --git a/translated_images/zh/bodymass-per-order.9d2b065dd931b928.webp b/translated_images/zh-CN/bodymass-per-order.9d2b065dd931b928.webp
similarity index 100%
rename from translated_images/zh/bodymass-per-order.9d2b065dd931b928.webp
rename to translated_images/zh-CN/bodymass-per-order.9d2b065dd931b928.webp
diff --git a/translated_images/zh/bodymass-smooth.d31ce526d82b0a1f.webp b/translated_images/zh-CN/bodymass-smooth.d31ce526d82b0a1f.webp
similarity index 100%
rename from translated_images/zh/bodymass-smooth.d31ce526d82b0a1f.webp
rename to translated_images/zh-CN/bodymass-smooth.d31ce526d82b0a1f.webp
diff --git a/translated_images/zh/boxplot_byrole.036b27a1c3f52d42.webp b/translated_images/zh-CN/boxplot_byrole.036b27a1c3f52d42.webp
similarity index 100%
rename from translated_images/zh/boxplot_byrole.036b27a1c3f52d42.webp
rename to translated_images/zh-CN/boxplot_byrole.036b27a1c3f52d42.webp
diff --git a/translated_images/zh/boxplot_explanation.4039b7de08780fd4.webp b/translated_images/zh-CN/boxplot_explanation.4039b7de08780fd4.webp
similarity index 100%
rename from translated_images/zh/boxplot_explanation.4039b7de08780fd4.webp
rename to translated_images/zh-CN/boxplot_explanation.4039b7de08780fd4.webp
diff --git a/translated_images/zh/busing.7b9e3b41cd4b981c.webp b/translated_images/zh-CN/busing.7b9e3b41cd4b981c.webp
similarity index 100%
rename from translated_images/zh/busing.7b9e3b41cd4b981c.webp
rename to translated_images/zh-CN/busing.7b9e3b41cd4b981c.webp
diff --git a/translated_images/zh/busing.8157cf1bc89a3f65.webp b/translated_images/zh-CN/busing.8157cf1bc89a3f65.webp
similarity index 100%
rename from translated_images/zh/busing.8157cf1bc89a3f65.webp
rename to translated_images/zh-CN/busing.8157cf1bc89a3f65.webp
diff --git a/translated_images/zh/category-counts-02.0b9a0a4de42275ae.webp b/translated_images/zh-CN/category-counts-02.0b9a0a4de42275ae.webp
similarity index 100%
rename from translated_images/zh/category-counts-02.0b9a0a4de42275ae.webp
rename to translated_images/zh-CN/category-counts-02.0b9a0a4de42275ae.webp
diff --git a/translated_images/mo/category-counts.abee8188c4c9b6f0.webp b/translated_images/zh-CN/category-counts.abee8188c4c9b6f0.webp
similarity index 100%
rename from translated_images/mo/category-counts.abee8188c4c9b6f0.webp
rename to translated_images/zh-CN/category-counts.abee8188c4c9b6f0.webp
diff --git a/translated_images/zh/category-length-02.7304bf519375c980.webp b/translated_images/zh-CN/category-length-02.7304bf519375c980.webp
similarity index 100%
rename from translated_images/zh/category-length-02.7304bf519375c980.webp
rename to translated_images/zh-CN/category-length-02.7304bf519375c980.webp
diff --git a/translated_images/zh/category-length.7e34c296690e85d6.webp b/translated_images/zh-CN/category-length.7e34c296690e85d6.webp
similarity index 100%
rename from translated_images/zh/category-length.7e34c296690e85d6.webp
rename to translated_images/zh-CN/category-length.7e34c296690e85d6.webp
diff --git a/translated_images/mo/category-length.b0d9a0208a7b3713.webp b/translated_images/zh-CN/category-length.b0d9a0208a7b3713.webp
similarity index 100%
rename from translated_images/mo/category-length.b0d9a0208a7b3713.webp
rename to translated_images/zh-CN/category-length.b0d9a0208a7b3713.webp
diff --git a/translated_images/mo/cloud-picture.f5526de3c6c6387b.webp b/translated_images/zh-CN/cloud-picture.f5526de3c6c6387b.webp
similarity index 100%
rename from translated_images/mo/cloud-picture.f5526de3c6c6387b.webp
rename to translated_images/zh-CN/cloud-picture.f5526de3c6c6387b.webp
diff --git a/translated_images/zh/cluster-1.b78cb630bb543729.webp b/translated_images/zh-CN/cluster-1.b78cb630bb543729.webp
similarity index 100%
rename from translated_images/zh/cluster-1.b78cb630bb543729.webp
rename to translated_images/zh-CN/cluster-1.b78cb630bb543729.webp
diff --git a/translated_images/zh/cluster-2.ea30cdbc9f926bb9.webp b/translated_images/zh-CN/cluster-2.ea30cdbc9f926bb9.webp
similarity index 100%
rename from translated_images/zh/cluster-2.ea30cdbc9f926bb9.webp
rename to translated_images/zh-CN/cluster-2.ea30cdbc9f926bb9.webp
diff --git a/translated_images/zh/cluster-3.8a334bc070ec173a.webp b/translated_images/zh-CN/cluster-3.8a334bc070ec173a.webp
similarity index 100%
rename from translated_images/zh/cluster-3.8a334bc070ec173a.webp
rename to translated_images/zh-CN/cluster-3.8a334bc070ec173a.webp
diff --git a/translated_images/zh/columnar-db.ffcfe73c3e9063a8.webp b/translated_images/zh-CN/columnar-db.ffcfe73c3e9063a8.webp
similarity index 100%
rename from translated_images/zh/columnar-db.ffcfe73c3e9063a8.webp
rename to translated_images/zh-CN/columnar-db.ffcfe73c3e9063a8.webp
diff --git a/translated_images/mo/communication.06d8e2a88d30d168.webp b/translated_images/zh-CN/communication.06d8e2a88d30d168.webp
similarity index 100%
rename from translated_images/mo/communication.06d8e2a88d30d168.webp
rename to translated_images/zh-CN/communication.06d8e2a88d30d168.webp
diff --git a/translated_images/zh/comparingdata.f486a450d61c7ca5.webp b/translated_images/zh-CN/comparingdata.f486a450d61c7ca5.webp
similarity index 100%
rename from translated_images/zh/comparingdata.f486a450d61c7ca5.webp
rename to translated_images/zh-CN/comparingdata.f486a450d61c7ca5.webp
diff --git a/translated_images/zh/compute-instance-1.dba347cb199ca499.webp b/translated_images/zh-CN/compute-instance-1.dba347cb199ca499.webp
similarity index 100%
rename from translated_images/zh/compute-instance-1.dba347cb199ca499.webp
rename to translated_images/zh-CN/compute-instance-1.dba347cb199ca499.webp
diff --git a/translated_images/zh/consumption-1.700abd196452842a.webp b/translated_images/zh-CN/consumption-1.700abd196452842a.webp
similarity index 100%
rename from translated_images/zh/consumption-1.700abd196452842a.webp
rename to translated_images/zh-CN/consumption-1.700abd196452842a.webp
diff --git a/translated_images/zh/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp b/translated_images/zh-CN/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
similarity index 100%
rename from translated_images/zh/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
rename to translated_images/zh-CN/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
diff --git a/translated_images/zh/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp b/translated_images/zh-CN/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
similarity index 100%
rename from translated_images/zh/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
rename to translated_images/zh-CN/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
diff --git a/translated_images/zh/cosmosdb-emulator-persons.bf640586a7077c89.webp b/translated_images/zh-CN/cosmosdb-emulator-persons.bf640586a7077c89.webp
similarity index 100%
rename from translated_images/zh/cosmosdb-emulator-persons.bf640586a7077c89.webp
rename to translated_images/zh-CN/cosmosdb-emulator-persons.bf640586a7077c89.webp
diff --git a/translated_images/hk/covidspread.f3d131c4f1d260ab.webp b/translated_images/zh-CN/covidspread.f3d131c4f1d260ab.webp
similarity index 100%
rename from translated_images/hk/covidspread.f3d131c4f1d260ab.webp
rename to translated_images/zh-CN/covidspread.f3d131c4f1d260ab.webp
diff --git a/translated_images/zh/covidtreat.b2ba59f57ca45fbc.webp b/translated_images/zh-CN/covidtreat.b2ba59f57ca45fbc.webp
similarity index 100%
rename from translated_images/zh/covidtreat.b2ba59f57ca45fbc.webp
rename to translated_images/zh-CN/covidtreat.b2ba59f57ca45fbc.webp
diff --git a/translated_images/hk/data-love.a22ef29e6742c852.webp b/translated_images/zh-CN/data-love.a22ef29e6742c852.webp
similarity index 100%
rename from translated_images/hk/data-love.a22ef29e6742c852.webp
rename to translated_images/zh-CN/data-love.a22ef29e6742c852.webp
diff --git a/translated_images/zh/data-science-applications.4e5019cd8790ebac.webp b/translated_images/zh-CN/data-science-applications.4e5019cd8790ebac.webp
similarity index 100%
rename from translated_images/zh/data-science-applications.4e5019cd8790ebac.webp
rename to translated_images/zh-CN/data-science-applications.4e5019cd8790ebac.webp
diff --git a/translated_images/zh/data-science-lifecycle.a1e362637503c4fb.webp b/translated_images/zh-CN/data-science-lifecycle.a1e362637503c4fb.webp
similarity index 100%
rename from translated_images/zh/data-science-lifecycle.a1e362637503c4fb.webp
rename to translated_images/zh-CN/data-science-lifecycle.a1e362637503c4fb.webp
diff --git a/translated_images/zh/data.48e22bb7617d8d92.webp b/translated_images/zh-CN/data.48e22bb7617d8d92.webp
similarity index 100%
rename from translated_images/zh/data.48e22bb7617d8d92.webp
rename to translated_images/zh-CN/data.48e22bb7617d8d92.webp
diff --git a/translated_images/zh/dataframe-1.caf409f0c688e84c.webp b/translated_images/zh-CN/dataframe-1.caf409f0c688e84c.webp
similarity index 100%
rename from translated_images/zh/dataframe-1.caf409f0c688e84c.webp
rename to translated_images/zh-CN/dataframe-1.caf409f0c688e84c.webp
diff --git a/translated_images/zh/datascienceinthecloud.59ffb059a670fb0a.webp b/translated_images/zh-CN/datascienceinthecloud.59ffb059a670fb0a.webp
similarity index 100%
rename from translated_images/zh/datascienceinthecloud.59ffb059a670fb0a.webp
rename to translated_images/zh-CN/datascienceinthecloud.59ffb059a670fb0a.webp
diff --git a/translated_images/zh/dataset-1.e86ab4e10907a6e9.webp b/translated_images/zh-CN/dataset-1.e86ab4e10907a6e9.webp
similarity index 100%
rename from translated_images/zh/dataset-1.e86ab4e10907a6e9.webp
rename to translated_images/zh-CN/dataset-1.e86ab4e10907a6e9.webp
diff --git a/translated_images/zh/dataset-2.f58de1c435d5bf9c.webp b/translated_images/zh-CN/dataset-2.f58de1c435d5bf9c.webp
similarity index 100%
rename from translated_images/zh/dataset-2.f58de1c435d5bf9c.webp
rename to translated_images/zh-CN/dataset-2.f58de1c435d5bf9c.webp
diff --git a/translated_images/zh/dataset-3.58db8c0eb783e892.webp b/translated_images/zh-CN/dataset-3.58db8c0eb783e892.webp
similarity index 100%
rename from translated_images/zh/dataset-3.58db8c0eb783e892.webp
rename to translated_images/zh-CN/dataset-3.58db8c0eb783e892.webp
diff --git a/translated_images/hk/density-plot.675ccf865b76c690.webp b/translated_images/zh-CN/density-plot.675ccf865b76c690.webp
similarity index 100%
rename from translated_images/hk/density-plot.675ccf865b76c690.webp
rename to translated_images/zh-CN/density-plot.675ccf865b76c690.webp
diff --git a/translated_images/hk/density1.8801043bd4af2567.webp b/translated_images/zh-CN/density1.8801043bd4af2567.webp
similarity index 100%
rename from translated_images/hk/density1.8801043bd4af2567.webp
rename to translated_images/zh-CN/density1.8801043bd4af2567.webp
diff --git a/translated_images/zh/density2.8e7647257060ff54.webp b/translated_images/zh-CN/density2.8e7647257060ff54.webp
similarity index 100%
rename from translated_images/zh/density2.8e7647257060ff54.webp
rename to translated_images/zh-CN/density2.8e7647257060ff54.webp
diff --git a/translated_images/zh/density3.84ae27da82f31e6b.webp b/translated_images/zh-CN/density3.84ae27da82f31e6b.webp
similarity index 100%
rename from translated_images/zh/density3.84ae27da82f31e6b.webp
rename to translated_images/zh-CN/density3.84ae27da82f31e6b.webp
diff --git a/translated_images/zh/density4.e9d6c033f15c500f.webp b/translated_images/zh-CN/density4.e9d6c033f15c500f.webp
similarity index 100%
rename from translated_images/zh/density4.e9d6c033f15c500f.webp
rename to translated_images/zh-CN/density4.e9d6c033f15c500f.webp
diff --git a/translated_images/zh/deploy-1.ddad725acadc84e3.webp b/translated_images/zh-CN/deploy-1.ddad725acadc84e3.webp
similarity index 100%
rename from translated_images/zh/deploy-1.ddad725acadc84e3.webp
rename to translated_images/zh-CN/deploy-1.ddad725acadc84e3.webp
diff --git a/translated_images/zh/deploy-2.94dbb13f23908647.webp b/translated_images/zh-CN/deploy-2.94dbb13f23908647.webp
similarity index 100%
rename from translated_images/zh/deploy-2.94dbb13f23908647.webp
rename to translated_images/zh-CN/deploy-2.94dbb13f23908647.webp
diff --git a/translated_images/zh/deploy-3.fecefef070e8ef3b.webp b/translated_images/zh-CN/deploy-3.fecefef070e8ef3b.webp
similarity index 100%
rename from translated_images/zh/deploy-3.fecefef070e8ef3b.webp
rename to translated_images/zh-CN/deploy-3.fecefef070e8ef3b.webp
diff --git a/translated_images/zh/dist1-wb.0d0cac82e2974fbb.webp b/translated_images/zh-CN/dist1-wb.0d0cac82e2974fbb.webp
similarity index 100%
rename from translated_images/zh/dist1-wb.0d0cac82e2974fbb.webp
rename to translated_images/zh-CN/dist1-wb.0d0cac82e2974fbb.webp
diff --git a/translated_images/mo/dist1.0010100b00231819.webp b/translated_images/zh-CN/dist1.0010100b00231819.webp
similarity index 100%
rename from translated_images/mo/dist1.0010100b00231819.webp
rename to translated_images/zh-CN/dist1.0010100b00231819.webp
diff --git a/translated_images/zh/dist2-wb.2c0a7a3499b2fbf5.webp b/translated_images/zh-CN/dist2-wb.2c0a7a3499b2fbf5.webp
similarity index 100%
rename from translated_images/zh/dist2-wb.2c0a7a3499b2fbf5.webp
rename to translated_images/zh-CN/dist2-wb.2c0a7a3499b2fbf5.webp
diff --git a/translated_images/mo/dist2.c398bfd5320401b9.webp b/translated_images/zh-CN/dist2.c398bfd5320401b9.webp
similarity index 100%
rename from translated_images/mo/dist2.c398bfd5320401b9.webp
rename to translated_images/zh-CN/dist2.c398bfd5320401b9.webp
diff --git a/translated_images/zh/dist3-wb.64b88db7f9780200.webp b/translated_images/zh-CN/dist3-wb.64b88db7f9780200.webp
similarity index 100%
rename from translated_images/zh/dist3-wb.64b88db7f9780200.webp
rename to translated_images/zh-CN/dist3-wb.64b88db7f9780200.webp
diff --git a/translated_images/mo/dist3.ad4d9658559690f5.webp b/translated_images/zh-CN/dist3.ad4d9658559690f5.webp
similarity index 100%
rename from translated_images/mo/dist3.ad4d9658559690f5.webp
rename to translated_images/zh-CN/dist3.ad4d9658559690f5.webp
diff --git a/translated_images/zh/distribution-30bins.6a3921ea7a421bf7.webp b/translated_images/zh-CN/distribution-30bins.6a3921ea7a421bf7.webp
similarity index 100%
rename from translated_images/zh/distribution-30bins.6a3921ea7a421bf7.webp
rename to translated_images/zh-CN/distribution-30bins.6a3921ea7a421bf7.webp
diff --git a/translated_images/zh/distribution-over-the-entire-dataset.d22afd3fa96be854.webp b/translated_images/zh-CN/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
similarity index 100%
rename from translated_images/zh/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
rename to translated_images/zh-CN/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
diff --git a/translated_images/zh/document-db.ddeec48c6dc9e5fd.webp b/translated_images/zh-CN/document-db.ddeec48c6dc9e5fd.webp
similarity index 100%
rename from translated_images/zh/document-db.ddeec48c6dc9e5fd.webp
rename to translated_images/zh-CN/document-db.ddeec48c6dc9e5fd.webp
diff --git a/translated_images/zh/donut-wb.34e6fb275da9d834.webp b/translated_images/zh-CN/donut-wb.34e6fb275da9d834.webp
similarity index 100%
rename from translated_images/zh/donut-wb.34e6fb275da9d834.webp
rename to translated_images/zh-CN/donut-wb.34e6fb275da9d834.webp
diff --git a/translated_images/zh/donut-wb.be3c12a22712302b.webp b/translated_images/zh-CN/donut-wb.be3c12a22712302b.webp
similarity index 100%
rename from translated_images/zh/donut-wb.be3c12a22712302b.webp
rename to translated_images/zh-CN/donut-wb.be3c12a22712302b.webp
diff --git a/translated_images/mo/donut.f016d7be7f08c8f8.webp b/translated_images/zh-CN/donut.f016d7be7f08c8f8.webp
similarity index 100%
rename from translated_images/mo/donut.f016d7be7f08c8f8.webp
rename to translated_images/zh-CN/donut.f016d7be7f08c8f8.webp
diff --git a/translated_images/zh/ds-for-beginners.d01930c9193ef522.webp b/translated_images/zh-CN/ds-for-beginners.d01930c9193ef522.webp
similarity index 100%
rename from translated_images/zh/ds-for-beginners.d01930c9193ef522.webp
rename to translated_images/zh-CN/ds-for-beginners.d01930c9193ef522.webp
diff --git a/translated_images/zh/ds_wordcloud.664a7c07dca57de0.webp b/translated_images/zh-CN/ds_wordcloud.664a7c07dca57de0.webp
similarity index 100%
rename from translated_images/zh/ds_wordcloud.664a7c07dca57de0.webp
rename to translated_images/zh-CN/ds_wordcloud.664a7c07dca57de0.webp
diff --git a/translated_images/zh/dual-line.a4c28ce659603fab.webp b/translated_images/zh-CN/dual-line.a4c28ce659603fab.webp
similarity index 100%
rename from translated_images/zh/dual-line.a4c28ce659603fab.webp
rename to translated_images/zh-CN/dual-line.a4c28ce659603fab.webp
diff --git a/translated_images/zh/dual-line.fc4665f360a54018.webp b/translated_images/zh-CN/dual-line.fc4665f360a54018.webp
similarity index 100%
rename from translated_images/zh/dual-line.fc4665f360a54018.webp
rename to translated_images/zh-CN/dual-line.fc4665f360a54018.webp
diff --git a/translated_images/hk/facet.491ad90d61c2a7cc.webp b/translated_images/zh-CN/facet.491ad90d61c2a7cc.webp
similarity index 100%
rename from translated_images/hk/facet.491ad90d61c2a7cc.webp
rename to translated_images/zh-CN/facet.491ad90d61c2a7cc.webp
diff --git a/translated_images/zh/facet.6a34851dcd540050.webp b/translated_images/zh-CN/facet.6a34851dcd540050.webp
similarity index 100%
rename from translated_images/zh/facet.6a34851dcd540050.webp
rename to translated_images/zh-CN/facet.6a34851dcd540050.webp
diff --git a/translated_images/mo/favicon.37b561214b36d454.webp b/translated_images/zh-CN/favicon.37b561214b36d454.webp
similarity index 100%
rename from translated_images/mo/favicon.37b561214b36d454.webp
rename to translated_images/zh-CN/favicon.37b561214b36d454.webp
diff --git a/translated_images/zh/filtered-histogram.6bf5d2bfd8253322.webp b/translated_images/zh-CN/filtered-histogram.6bf5d2bfd8253322.webp
similarity index 100%
rename from translated_images/zh/filtered-histogram.6bf5d2bfd8253322.webp
rename to translated_images/zh-CN/filtered-histogram.6bf5d2bfd8253322.webp
diff --git a/translated_images/zh/formula-excel.ad1068c220892f5e.webp b/translated_images/zh-CN/formula-excel.ad1068c220892f5e.webp
similarity index 100%
rename from translated_images/zh/formula-excel.ad1068c220892f5e.webp
rename to translated_images/zh-CN/formula-excel.ad1068c220892f5e.webp
diff --git a/translated_images/zh/full-data-bar-02.aaa3fda71c63ed56.webp b/translated_images/zh-CN/full-data-bar-02.aaa3fda71c63ed56.webp
similarity index 100%
rename from translated_images/zh/full-data-bar-02.aaa3fda71c63ed56.webp
rename to translated_images/zh-CN/full-data-bar-02.aaa3fda71c63ed56.webp
diff --git a/translated_images/zh/full-data-bar.a0b37da71a6cd236.webp b/translated_images/zh-CN/full-data-bar.a0b37da71a6cd236.webp
similarity index 100%
rename from translated_images/zh/full-data-bar.a0b37da71a6cd236.webp
rename to translated_images/zh-CN/full-data-bar.a0b37da71a6cd236.webp
diff --git a/translated_images/zh/function-excel.be2ae4feddc10ca0.webp b/translated_images/zh-CN/function-excel.be2ae4feddc10ca0.webp
similarity index 100%
rename from translated_images/zh/function-excel.be2ae4feddc10ca0.webp
rename to translated_images/zh-CN/function-excel.be2ae4feddc10ca0.webp
diff --git a/translated_images/zh/graph-db.d13629152f79a9da.webp b/translated_images/zh-CN/graph-db.d13629152f79a9da.webp
similarity index 100%
rename from translated_images/zh/graph-db.d13629152f79a9da.webp
rename to translated_images/zh-CN/graph-db.d13629152f79a9da.webp
diff --git a/translated_images/mo/height-boxplot.ccb66b2848b5f51c.webp b/translated_images/zh-CN/height-boxplot.ccb66b2848b5f51c.webp
similarity index 100%
rename from translated_images/mo/height-boxplot.ccb66b2848b5f51c.webp
rename to translated_images/zh-CN/height-boxplot.ccb66b2848b5f51c.webp
diff --git a/translated_images/zh/histogram-conservation-wb.3c40450eb072c14d.webp b/translated_images/zh-CN/histogram-conservation-wb.3c40450eb072c14d.webp
similarity index 100%
rename from translated_images/zh/histogram-conservation-wb.3c40450eb072c14d.webp
rename to translated_images/zh-CN/histogram-conservation-wb.3c40450eb072c14d.webp
diff --git a/translated_images/zh/histogram-conservation.13b3542e7784e415.webp b/translated_images/zh-CN/histogram-conservation.13b3542e7784e415.webp
similarity index 100%
rename from translated_images/zh/histogram-conservation.13b3542e7784e415.webp
rename to translated_images/zh-CN/histogram-conservation.13b3542e7784e415.webp
diff --git a/translated_images/zh/kv-db.e8f2b75686bbdfcb.webp b/translated_images/zh-CN/kv-db.e8f2b75686bbdfcb.webp
similarity index 100%
rename from translated_images/zh/kv-db.e8f2b75686bbdfcb.webp
rename to translated_images/zh-CN/kv-db.e8f2b75686bbdfcb.webp
diff --git a/translated_images/zh/labeled-wingspan-02.6110e2d2401cd523.webp b/translated_images/zh-CN/labeled-wingspan-02.6110e2d2401cd523.webp
similarity index 100%
rename from translated_images/zh/labeled-wingspan-02.6110e2d2401cd523.webp
rename to translated_images/zh-CN/labeled-wingspan-02.6110e2d2401cd523.webp
diff --git a/translated_images/zh/labeled-wingspan.900ffedd7e3ec6de.webp b/translated_images/zh-CN/labeled-wingspan.900ffedd7e3ec6de.webp
similarity index 100%
rename from translated_images/zh/labeled-wingspan.900ffedd7e3ec6de.webp
rename to translated_images/zh-CN/labeled-wingspan.900ffedd7e3ec6de.webp
diff --git a/translated_images/zh/less-smooth-bodymass.10f4db8b683cc17d.webp b/translated_images/zh-CN/less-smooth-bodymass.10f4db8b683cc17d.webp
similarity index 100%
rename from translated_images/zh/less-smooth-bodymass.10f4db8b683cc17d.webp
rename to translated_images/zh-CN/less-smooth-bodymass.10f4db8b683cc17d.webp
diff --git a/translated_images/zh/liaisons.7b440b28f6d07ea4.webp b/translated_images/zh-CN/liaisons.7b440b28f6d07ea4.webp
similarity index 100%
rename from translated_images/zh/liaisons.7b440b28f6d07ea4.webp
rename to translated_images/zh-CN/liaisons.7b440b28f6d07ea4.webp
diff --git a/translated_images/zh/liaisons.90ce7360bcf84765.webp b/translated_images/zh-CN/liaisons.90ce7360bcf84765.webp
similarity index 100%
rename from translated_images/zh/liaisons.90ce7360bcf84765.webp
rename to translated_images/zh-CN/liaisons.90ce7360bcf84765.webp
diff --git a/translated_images/zh/line1.299b576fbb2a59e6.webp b/translated_images/zh-CN/line1.299b576fbb2a59e6.webp
similarity index 100%
rename from translated_images/zh/line1.299b576fbb2a59e6.webp
rename to translated_images/zh-CN/line1.299b576fbb2a59e6.webp
diff --git a/translated_images/zh/line1.f36eb465229a3b1f.webp b/translated_images/zh-CN/line1.f36eb465229a3b1f.webp
similarity index 100%
rename from translated_images/zh/line1.f36eb465229a3b1f.webp
rename to translated_images/zh-CN/line1.f36eb465229a3b1f.webp
diff --git a/translated_images/zh/line2.3b18fcda7176ceba.webp b/translated_images/zh-CN/line2.3b18fcda7176ceba.webp
similarity index 100%
rename from translated_images/zh/line2.3b18fcda7176ceba.webp
rename to translated_images/zh-CN/line2.3b18fcda7176ceba.webp
diff --git a/translated_images/zh/line2.a5b3493dc01058af.webp b/translated_images/zh-CN/line2.a5b3493dc01058af.webp
similarity index 100%
rename from translated_images/zh/line2.a5b3493dc01058af.webp
rename to translated_images/zh-CN/line2.a5b3493dc01058af.webp
diff --git a/translated_images/zh/max-length-per-order.e5b283d952c78c12.webp b/translated_images/zh-CN/max-length-per-order.e5b283d952c78c12.webp
similarity index 100%
rename from translated_images/zh/max-length-per-order.e5b283d952c78c12.webp
rename to translated_images/zh-CN/max-length-per-order.e5b283d952c78c12.webp
diff --git a/translated_images/mo/max-wingspan-02.e79fd847b2640b89.webp b/translated_images/zh-CN/max-wingspan-02.e79fd847b2640b89.webp
similarity index 100%
rename from translated_images/mo/max-wingspan-02.e79fd847b2640b89.webp
rename to translated_images/zh-CN/max-wingspan-02.e79fd847b2640b89.webp
diff --git a/translated_images/zh/max-wingspan-labels-02.aa90e826ca49a9d1.webp b/translated_images/zh-CN/max-wingspan-labels-02.aa90e826ca49a9d1.webp
similarity index 100%
rename from translated_images/zh/max-wingspan-labels-02.aa90e826ca49a9d1.webp
rename to translated_images/zh-CN/max-wingspan-labels-02.aa90e826ca49a9d1.webp
diff --git a/translated_images/mo/max-wingspan-labels.46f0cc3c48edd4e0.webp b/translated_images/zh-CN/max-wingspan-labels.46f0cc3c48edd4e0.webp
similarity index 100%
rename from translated_images/mo/max-wingspan-labels.46f0cc3c48edd4e0.webp
rename to translated_images/zh-CN/max-wingspan-labels.46f0cc3c48edd4e0.webp
diff --git a/translated_images/mo/max-wingspan.0b8d0858436414aa.webp b/translated_images/zh-CN/max-wingspan.0b8d0858436414aa.webp
similarity index 100%
rename from translated_images/mo/max-wingspan.0b8d0858436414aa.webp
rename to translated_images/zh-CN/max-wingspan.0b8d0858436414aa.webp
diff --git a/translated_images/zh/multi.56548caa9eae8d0f.webp b/translated_images/zh-CN/multi.56548caa9eae8d0f.webp
similarity index 100%
rename from translated_images/zh/multi.56548caa9eae8d0f.webp
rename to translated_images/zh-CN/multi.56548caa9eae8d0f.webp
diff --git a/translated_images/zh/new-container.650e10c7a20a5f83.webp b/translated_images/zh-CN/new-container.650e10c7a20a5f83.webp
similarity index 100%
rename from translated_images/zh/new-container.650e10c7a20a5f83.webp
rename to translated_images/zh-CN/new-container.650e10c7a20a5f83.webp
diff --git a/translated_images/mo/normal-histogram.dfae0d67c202137d.webp b/translated_images/zh-CN/normal-histogram.dfae0d67c202137d.webp
similarity index 100%
rename from translated_images/mo/normal-histogram.dfae0d67c202137d.webp
rename to translated_images/zh-CN/normal-histogram.dfae0d67c202137d.webp
diff --git a/translated_images/zh/notebook-1.12998af7b02c83f5.webp b/translated_images/zh-CN/notebook-1.12998af7b02c83f5.webp
similarity index 100%
rename from translated_images/zh/notebook-1.12998af7b02c83f5.webp
rename to translated_images/zh-CN/notebook-1.12998af7b02c83f5.webp
diff --git a/translated_images/zh/notebook-2.9a657c037e34f1cf.webp b/translated_images/zh-CN/notebook-2.9a657c037e34f1cf.webp
similarity index 100%
rename from translated_images/zh/notebook-2.9a657c037e34f1cf.webp
rename to translated_images/zh-CN/notebook-2.9a657c037e34f1cf.webp
diff --git a/translated_images/zh/parts-of-spreadsheet.120711c82aa18a45.webp b/translated_images/zh-CN/parts-of-spreadsheet.120711c82aa18a45.webp
similarity index 100%
rename from translated_images/zh/parts-of-spreadsheet.120711c82aa18a45.webp
rename to translated_images/zh-CN/parts-of-spreadsheet.120711c82aa18a45.webp
diff --git a/translated_images/hk/pie1-wb.685df063673751f4.webp b/translated_images/zh-CN/pie1-wb.685df063673751f4.webp
similarity index 100%
rename from translated_images/hk/pie1-wb.685df063673751f4.webp
rename to translated_images/zh-CN/pie1-wb.685df063673751f4.webp
diff --git a/translated_images/hk/pie1-wb.e201f2fcc3354131.webp b/translated_images/zh-CN/pie1-wb.e201f2fcc3354131.webp
similarity index 100%
rename from translated_images/hk/pie1-wb.e201f2fcc3354131.webp
rename to translated_images/zh-CN/pie1-wb.e201f2fcc3354131.webp
diff --git a/translated_images/hk/pie1.8f6a8bfac96de60e.webp b/translated_images/zh-CN/pie1.8f6a8bfac96de60e.webp
similarity index 100%
rename from translated_images/hk/pie1.8f6a8bfac96de60e.webp
rename to translated_images/zh-CN/pie1.8f6a8bfac96de60e.webp
diff --git a/translated_images/zh/planetary-computer-explorer.c1e95a9b053167d6.webp b/translated_images/zh-CN/planetary-computer-explorer.c1e95a9b053167d6.webp
similarity index 100%
rename from translated_images/zh/planetary-computer-explorer.c1e95a9b053167d6.webp
rename to translated_images/zh-CN/planetary-computer-explorer.c1e95a9b053167d6.webp
diff --git a/translated_images/hk/probability-density.a8aad29f17a14afb.webp b/translated_images/zh-CN/probability-density.a8aad29f17a14afb.webp
similarity index 100%
rename from translated_images/hk/probability-density.a8aad29f17a14afb.webp
rename to translated_images/zh-CN/probability-density.a8aad29f17a14afb.webp
diff --git a/translated_images/zh/project-schema.420e56d495624541.webp b/translated_images/zh-CN/project-schema.420e56d495624541.webp
similarity index 100%
rename from translated_images/zh/project-schema.420e56d495624541.webp
rename to translated_images/zh-CN/project-schema.420e56d495624541.webp
diff --git a/translated_images/zh/project-schema.736f6e403f321eb4.webp b/translated_images/zh-CN/project-schema.736f6e403f321eb4.webp
similarity index 100%
rename from translated_images/zh/project-schema.736f6e403f321eb4.webp
rename to translated_images/zh-CN/project-schema.736f6e403f321eb4.webp
diff --git a/translated_images/zh/scatter-wb.9d98b0ed7f0388af.webp b/translated_images/zh-CN/scatter-wb.9d98b0ed7f0388af.webp
similarity index 100%
rename from translated_images/zh/scatter-wb.9d98b0ed7f0388af.webp
rename to translated_images/zh-CN/scatter-wb.9d98b0ed7f0388af.webp
diff --git a/translated_images/mo/scatter.520a43eceb46dbcb.webp b/translated_images/zh-CN/scatter.520a43eceb46dbcb.webp
similarity index 100%
rename from translated_images/mo/scatter.520a43eceb46dbcb.webp
rename to translated_images/zh-CN/scatter.520a43eceb46dbcb.webp
diff --git a/translated_images/zh/scatter1.5e1aa5fd6706c5d1.webp b/translated_images/zh-CN/scatter1.5e1aa5fd6706c5d1.webp
similarity index 100%
rename from translated_images/zh/scatter1.5e1aa5fd6706c5d1.webp
rename to translated_images/zh-CN/scatter1.5e1aa5fd6706c5d1.webp
diff --git a/translated_images/zh/scatter1.86b8900674d88b26.webp b/translated_images/zh-CN/scatter1.86b8900674d88b26.webp
similarity index 100%
rename from translated_images/zh/scatter1.86b8900674d88b26.webp
rename to translated_images/zh-CN/scatter1.86b8900674d88b26.webp
diff --git a/translated_images/zh/scatter2.4d1cbc693bad20e2.webp b/translated_images/zh-CN/scatter2.4d1cbc693bad20e2.webp
similarity index 100%
rename from translated_images/zh/scatter2.4d1cbc693bad20e2.webp
rename to translated_images/zh-CN/scatter2.4d1cbc693bad20e2.webp
diff --git a/translated_images/zh/scatter2.c0041a58621ca702.webp b/translated_images/zh-CN/scatter2.c0041a58621ca702.webp
similarity index 100%
rename from translated_images/zh/scatter2.c0041a58621ca702.webp
rename to translated_images/zh-CN/scatter2.c0041a58621ca702.webp
diff --git a/translated_images/zh/scatter3.3c160a3d1dcb36b3.webp b/translated_images/zh-CN/scatter3.3c160a3d1dcb36b3.webp
similarity index 100%
rename from translated_images/zh/scatter3.3c160a3d1dcb36b3.webp
rename to translated_images/zh-CN/scatter3.3c160a3d1dcb36b3.webp
diff --git a/translated_images/zh/scatter3.722d21e6f20b3ea2.webp b/translated_images/zh-CN/scatter3.722d21e6f20b3ea2.webp
similarity index 100%
rename from translated_images/zh/scatter3.722d21e6f20b3ea2.webp
rename to translated_images/zh-CN/scatter3.722d21e6f20b3ea2.webp
diff --git a/translated_images/zh/scatterplot-wingspan-02.1c33790094ce36a7.webp b/translated_images/zh-CN/scatterplot-wingspan-02.1c33790094ce36a7.webp
similarity index 100%
rename from translated_images/zh/scatterplot-wingspan-02.1c33790094ce36a7.webp
rename to translated_images/zh-CN/scatterplot-wingspan-02.1c33790094ce36a7.webp
diff --git a/translated_images/mo/scatterplot-wingspan.bdab448702939bb3.webp b/translated_images/zh-CN/scatterplot-wingspan.bdab448702939bb3.webp
similarity index 100%
rename from translated_images/mo/scatterplot-wingspan.bdab448702939bb3.webp
rename to translated_images/zh-CN/scatterplot-wingspan.bdab448702939bb3.webp
diff --git a/translated_images/zh/stacked-bar-chart.0c92264e89da7b39.webp b/translated_images/zh-CN/stacked-bar-chart.0c92264e89da7b39.webp
similarity index 100%
rename from translated_images/zh/stacked-bar-chart.0c92264e89da7b39.webp
rename to translated_images/zh-CN/stacked-bar-chart.0c92264e89da7b39.webp
diff --git a/translated_images/zh/superimposed-02.f03058536baeb2ed.webp b/translated_images/zh-CN/superimposed-02.f03058536baeb2ed.webp
similarity index 100%
rename from translated_images/zh/superimposed-02.f03058536baeb2ed.webp
rename to translated_images/zh-CN/superimposed-02.f03058536baeb2ed.webp
diff --git a/translated_images/zh/superimposed-values.5363f0705a1da416.webp b/translated_images/zh-CN/superimposed-values.5363f0705a1da416.webp
similarity index 100%
rename from translated_images/zh/superimposed-values.5363f0705a1da416.webp
rename to translated_images/zh-CN/superimposed-values.5363f0705a1da416.webp
diff --git a/translated_images/mo/superimposed.8b5bd0e8825d9c5c.webp b/translated_images/zh-CN/superimposed.8b5bd0e8825d9c5c.webp
similarity index 100%
rename from translated_images/mo/superimposed.8b5bd0e8825d9c5c.webp
rename to translated_images/zh-CN/superimposed.8b5bd0e8825d9c5c.webp
diff --git a/translated_images/zh/tdsp-lifecycle2.e19029d598e2e73d.webp b/translated_images/zh-CN/tdsp-lifecycle2.e19029d598e2e73d.webp
similarity index 100%
rename from translated_images/zh/tdsp-lifecycle2.e19029d598e2e73d.webp
rename to translated_images/zh-CN/tdsp-lifecycle2.e19029d598e2e73d.webp
diff --git a/translated_images/zh/timeseries-1.80de678ab1cf727e.webp b/translated_images/zh-CN/timeseries-1.80de678ab1cf727e.webp
similarity index 100%
rename from translated_images/zh/timeseries-1.80de678ab1cf727e.webp
rename to translated_images/zh-CN/timeseries-1.80de678ab1cf727e.webp
diff --git a/translated_images/hk/timeseries-2.aae51d575c55181c.webp b/translated_images/zh-CN/timeseries-2.aae51d575c55181c.webp
similarity index 100%
rename from translated_images/hk/timeseries-2.aae51d575c55181c.webp
rename to translated_images/zh-CN/timeseries-2.aae51d575c55181c.webp
diff --git a/translated_images/hk/timeseries-3.f3147cbc8c624881.webp b/translated_images/zh-CN/timeseries-3.f3147cbc8c624881.webp
similarity index 100%
rename from translated_images/hk/timeseries-3.f3147cbc8c624881.webp
rename to translated_images/zh-CN/timeseries-3.f3147cbc8c624881.webp
diff --git a/translated_images/zh/tornado.2880ffc7f135f82b.webp b/translated_images/zh-CN/tornado.2880ffc7f135f82b.webp
similarity index 100%
rename from translated_images/zh/tornado.2880ffc7f135f82b.webp
rename to translated_images/zh-CN/tornado.2880ffc7f135f82b.webp
diff --git a/translated_images/zh/tornado.9f42168791208f97.webp b/translated_images/zh-CN/tornado.9f42168791208f97.webp
similarity index 100%
rename from translated_images/zh/tornado.9f42168791208f97.webp
rename to translated_images/zh-CN/tornado.9f42168791208f97.webp
diff --git a/translated_images/zh/video-def-ds.6623ee2392ef1abf.webp b/translated_images/zh-CN/video-def-ds.6623ee2392ef1abf.webp
similarity index 100%
rename from translated_images/zh/video-def-ds.6623ee2392ef1abf.webp
rename to translated_images/zh-CN/video-def-ds.6623ee2392ef1abf.webp
diff --git a/translated_images/zh/video-ds-python.245247dc811db8e4.webp b/translated_images/zh-CN/video-ds-python.245247dc811db8e4.webp
similarity index 100%
rename from translated_images/zh/video-ds-python.245247dc811db8e4.webp
rename to translated_images/zh-CN/video-ds-python.245247dc811db8e4.webp
diff --git a/translated_images/zh/video-prob-and-stats.e4282e5efa2f2543.webp b/translated_images/zh-CN/video-prob-and-stats.e4282e5efa2f2543.webp
similarity index 100%
rename from translated_images/zh/video-prob-and-stats.e4282e5efa2f2543.webp
rename to translated_images/zh-CN/video-prob-and-stats.e4282e5efa2f2543.webp
diff --git a/translated_images/zh/waffle.5455dbae4ccf17d5.webp b/translated_images/zh-CN/waffle.5455dbae4ccf17d5.webp
similarity index 100%
rename from translated_images/zh/waffle.5455dbae4ccf17d5.webp
rename to translated_images/zh-CN/waffle.5455dbae4ccf17d5.webp
diff --git a/translated_images/zh/waffle.aaa75c5337735a6e.webp b/translated_images/zh-CN/waffle.aaa75c5337735a6e.webp
similarity index 100%
rename from translated_images/zh/waffle.aaa75c5337735a6e.webp
rename to translated_images/zh-CN/waffle.aaa75c5337735a6e.webp
diff --git a/translated_images/mo/weight-boxplot.1dbab1c03af26f8a.webp b/translated_images/zh-CN/weight-boxplot.1dbab1c03af26f8a.webp
similarity index 100%
rename from translated_images/mo/weight-boxplot.1dbab1c03af26f8a.webp
rename to translated_images/zh-CN/weight-boxplot.1dbab1c03af26f8a.webp
diff --git a/translated_images/hk/weight-height-relationship.3f06bde4ca2aba99.webp b/translated_images/zh-CN/weight-height-relationship.3f06bde4ca2aba99.webp
similarity index 100%
rename from translated_images/hk/weight-height-relationship.3f06bde4ca2aba99.webp
rename to translated_images/zh-CN/weight-height-relationship.3f06bde4ca2aba99.webp
diff --git a/translated_images/zh/weight-histogram.bfd00caf7fc30b14.webp b/translated_images/zh-CN/weight-histogram.bfd00caf7fc30b14.webp
similarity index 100%
rename from translated_images/zh/weight-histogram.bfd00caf7fc30b14.webp
rename to translated_images/zh-CN/weight-histogram.bfd00caf7fc30b14.webp
diff --git a/translated_images/zh/wingspan-conservation-collation.4024e9aa6910866a.webp b/translated_images/zh-CN/wingspan-conservation-collation.4024e9aa6910866a.webp
similarity index 100%
rename from translated_images/zh/wingspan-conservation-collation.4024e9aa6910866a.webp
rename to translated_images/zh-CN/wingspan-conservation-collation.4024e9aa6910866a.webp
diff --git a/translated_images/zh/workspace-1.ac8694d60b073ed1.webp b/translated_images/zh-CN/workspace-1.ac8694d60b073ed1.webp
similarity index 100%
rename from translated_images/zh/workspace-1.ac8694d60b073ed1.webp
rename to translated_images/zh-CN/workspace-1.ac8694d60b073ed1.webp
diff --git a/translated_images/zh/workspace-2.ae7c486db8796147.webp b/translated_images/zh-CN/workspace-2.ae7c486db8796147.webp
similarity index 100%
rename from translated_images/zh/workspace-2.ae7c486db8796147.webp
rename to translated_images/zh-CN/workspace-2.ae7c486db8796147.webp
diff --git a/translated_images/zh/workspace-3.398ca4a5858132cc.webp b/translated_images/zh-CN/workspace-3.398ca4a5858132cc.webp
similarity index 100%
rename from translated_images/zh/workspace-3.398ca4a5858132cc.webp
rename to translated_images/zh-CN/workspace-3.398ca4a5858132cc.webp
diff --git a/translated_images/zh/workspace-4.bac87f6599c4df63.webp b/translated_images/zh-CN/workspace-4.bac87f6599c4df63.webp
similarity index 100%
rename from translated_images/zh/workspace-4.bac87f6599c4df63.webp
rename to translated_images/zh-CN/workspace-4.bac87f6599c4df63.webp
diff --git a/translated_images/zh/workspace-5.a6eb17e0a5e64200.webp b/translated_images/zh-CN/workspace-5.a6eb17e0a5e64200.webp
similarity index 100%
rename from translated_images/zh/workspace-5.a6eb17e0a5e64200.webp
rename to translated_images/zh-CN/workspace-5.a6eb17e0a5e64200.webp
diff --git a/translated_images/zh/workspace-6.8dd81fe841797ee1.webp b/translated_images/zh-CN/workspace-6.8dd81fe841797ee1.webp
similarity index 100%
rename from translated_images/zh/workspace-6.8dd81fe841797ee1.webp
rename to translated_images/zh-CN/workspace-6.8dd81fe841797ee1.webp
diff --git a/translated_images/hk/.co-op-translator.json b/translated_images/zh-HK/.co-op-translator.json
similarity index 89%
rename from translated_images/hk/.co-op-translator.json
rename to translated_images/zh-HK/.co-op-translator.json
index 79c64f79..05eeecb9 100644
--- a/translated_images/hk/.co-op-translator.json
+++ b/translated_images/zh-HK/.co-op-translator.json
@@ -3,1092 +3,1092 @@
"original_hash": "ecf8b739e8b862f9c4dac338bd614aa7",
"translation_date": "2026-01-16T10:19:50+00:00",
"source_file": "sketchnotes/00-Roadmap.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"00-Title.8af36cd35da1ac55.webp": {
"original_hash": "533863b4c050b07b1d90ecb948237ffc",
"translation_date": "2026-01-16T10:21:43+00:00",
"source_file": "sketchnotes/00-Title.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"01-Definitions.1b14ddc9525dc0d9.webp": {
"original_hash": "56648d71e5fb4865d3f621010f220582",
"translation_date": "2026-01-16T10:21:37+00:00",
"source_file": "sketchnotes/01-Definitions.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"02-Ethics.728d166895302ab0.webp": {
"original_hash": "005bd88e9721003310c7b2f17dd0e35a",
"translation_date": "2026-01-16T10:25:03+00:00",
"source_file": "sketchnotes/02-Ethics.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"03-DefiningData.f800817186949e07.webp": {
"original_hash": "8c60eda506de75c669370430aa8ecc00",
"translation_date": "2026-01-16T10:22:51+00:00",
"source_file": "sketchnotes/03-DefiningData.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"04-Statistics-Probability.cfc569d84a9f1867.webp": {
"original_hash": "2ee100d33c054ce8a39267530f23377c",
"translation_date": "2026-01-16T10:25:13+00:00",
"source_file": "sketchnotes/04-Statistics-Probability.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"05-RelationalData.af50f5a3e50f7456.webp": {
"original_hash": "e4e0576bddd38fe9a4bd941f73d6de3b",
"translation_date": "2026-01-16T10:17:24+00:00",
"source_file": "sketchnotes/05-RelationalData.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"06-NoSQL.42a91ea0cd5769fe.webp": {
"original_hash": "f5873c65a3a544e1b1a94417c5ee55c8",
"translation_date": "2026-01-16T10:21:12+00:00",
"source_file": "sketchnotes/06-NoSQL.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"07-WorkWithPython.8bf4a5013718bef9.webp": {
"original_hash": "5cbac0986c16de6e4347ed8e6ae6f9c3",
"translation_date": "2026-01-16T10:23:31+00:00",
"source_file": "sketchnotes/07-WorkWithPython.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"08-DataPreparation.e3b185c37958e964.webp": {
"original_hash": "0201767bfac86b208c4c9de0fce95141",
"translation_date": "2026-01-16T10:16:57+00:00",
"source_file": "sketchnotes/08-DataPreparation.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"09-Visualizing-Quantities.5c846edd805a5238.webp": {
"original_hash": "63def3198fdcbc1a6b9ef585745a82c8",
"translation_date": "2026-01-16T10:24:31+00:00",
"source_file": "sketchnotes/09-Visualizing-Quantities.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"1.0b520df6a0d9d3c4.webp": {
"original_hash": "54586a26505aae6cbcc8962a2852b277",
"translation_date": "2026-01-16T10:16:47+00:00",
"source_file": "images/1.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"10-Visualizing-Distributions.8097fd8abd7221a1.webp": {
"original_hash": "885512a64dcab7202c5a53cbde907da2",
"translation_date": "2026-01-16T10:17:11+00:00",
"source_file": "sketchnotes/10-Visualizing-Distributions.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"11-Visualizing-Proportions.3e82f24af94d206e.webp": {
"original_hash": "e7f8f167d209a389c3100d3ac210b69d",
"translation_date": "2026-01-16T10:22:19+00:00",
"source_file": "sketchnotes/11-Visualizing-Proportions.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"12-Visualizing-Relationships.4466f9bd260f03dd.webp": {
"original_hash": "10d06245ecbdc48880e555f03a62f64c",
"translation_date": "2026-01-16T10:20:59+00:00",
"source_file": "sketchnotes/12-Visualizing-Relationships.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"13-MeaningfulViz.4db6f1997e519908.webp": {
"original_hash": "6d0db913181bac3b1aebc649e843ddb3",
"translation_date": "2026-01-16T10:25:28+00:00",
"source_file": "sketchnotes/13-MeaningfulViz.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp": {
"original_hash": "96cbd264a85530f5876c353b2e57956d",
"translation_date": "2026-01-16T10:22:00+00:00",
"source_file": "sketchnotes/14-DataScience-Lifecycle.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"15-Analyzing.b501f3dbdc958f6f.webp": {
"original_hash": "973333ac82d2472591675e2b93afc87e",
"translation_date": "2026-01-16T10:25:48+00:00",
"source_file": "sketchnotes/15-Analyzing.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"16-Communicating.f1d29cd7984442a4.webp": {
"original_hash": "9a65542ddae4e103ab2a665fe65629ce",
"translation_date": "2026-01-16T10:17:35+00:00",
"source_file": "sketchnotes/16-Communicating.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"17-DataScience-Cloud.0df76ac874805c14.webp": {
"original_hash": "221a9e5d40e6f47fe793f175a8754ae0",
"translation_date": "2026-01-16T10:24:49+00:00",
"source_file": "sketchnotes/17-DataScience-Cloud.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"18-DataScience-Cloud.3a7292e8182b74eb.webp": {
"original_hash": "c1094124ae2e325016c6ddcb95599c7a",
"translation_date": "2026-01-16T10:24:10+00:00",
"source_file": "sketchnotes/18-DataScience-Cloud.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"19-DataScience-Cloud.177b38fb86301fc6.webp": {
"original_hash": "78eb918c3512a018c0d99a217bc72038",
"translation_date": "2026-01-16T10:23:44+00:00",
"source_file": "sketchnotes/19-DataScience-Cloud.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"20-DataScience-Humanities.1d1a155f4d12a667.webp": {
"original_hash": "1458acca113e1f3c64fb18d6a434fb5c",
"translation_date": "2026-01-16T10:23:06+00:00",
"source_file": "sketchnotes/20-DataScience-Humanities.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"20-DataScience-RealWorld.976976229ee11342.webp": {
"original_hash": "ff1861c005ea9fe7644777c4069008b9",
"translation_date": "2026-01-16T10:21:27+00:00",
"source_file": "sketchnotes/20-DataScience-RealWorld.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"20-DataScience-Research.da434814c51b4ef8.webp": {
"original_hash": "c1d7c67564ad6767200da0cab95eeb52",
"translation_date": "2026-01-16T10:22:37+00:00",
"source_file": "sketchnotes/20-DataScience-Research.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"20-DataScience-Sustainability.d4097bc684431da6.webp": {
"original_hash": "966e2a6eea920d7cb30a343e0bf5c856",
"translation_date": "2026-01-16T10:23:19+00:00",
"source_file": "sketchnotes/20-DataScience-Sustainability.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"2D-wb.ae22fdd33936507a.webp": {
"original_hash": "621c501b663b89b0739ff0a3d89324d4",
"translation_date": "2026-01-16T10:40:42+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/2D-wb.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"2D.b3342157139dd804.webp": {
"original_hash": "43f6f9ba817c493c2f38383fb22df3ff",
"translation_date": "2026-01-16T10:40:46+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/2D.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"2d-plot.c504786f439bd7eb.webp": {
"original_hash": "b5a6251e8480b8dbcf6ca9972efd2a94",
"translation_date": "2026-01-16T10:44:47+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/2d-plot.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"3d.0cec12bcc60f0ce7.webp": {
"original_hash": "24efe448af156c5520372b9b554a2c89",
"translation_date": "2026-01-16T10:44:21+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/3d.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"3d.db1734c151eee87d.webp": {
"original_hash": "24efe448af156c5520372b9b554a2c89",
"translation_date": "2026-01-16T10:50:03+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/3d.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"CRISP-DM.8bad2b4c66e62aa7.webp": {
"original_hash": "eac24034dc4554b1292c0c035a852548",
"translation_date": "2026-01-16T10:35:38+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/CRISP-DM.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp": {
"original_hash": "25abf3baadac4535fac2aa1c8794f537",
"translation_date": "2026-01-16T10:47:55+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot-improved.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"MaxWingspan-lineplot.b12169f99d26fdd2.webp": {
"original_hash": "8a0744b5301a1c4dc64b580728b5771a",
"translation_date": "2026-01-16T10:47:14+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp": {
"original_hash": "c5b4723c8624caa7463c66fd7278854e",
"translation_date": "2026-01-16T10:49:07+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot-improved.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"MaxWingspan-scatterplot.60dc9e0e19d32700.webp": {
"original_hash": "58de03db6718a04f8e61e2405ea2b502",
"translation_date": "2026-01-16T10:47:19+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"aml-1.67281a85d3a1e2f3.webp": {
"original_hash": "130c64f0112c117a400926da0bbaf090",
"translation_date": "2026-01-16T10:34:58+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-1.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"aml-2.c9fb9cffb39ccbbe.webp": {
"original_hash": "703a44252eca61e2b68c1365f4beb179",
"translation_date": "2026-01-16T10:29:30+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-2.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"aml-3.a7952e4295f38cc6.webp": {
"original_hash": "33433e94fe719f0e4104ad809338f91d",
"translation_date": "2026-01-16T10:29:14+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-3.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"aml-4.7a627e09cb6f16d0.webp": {
"original_hash": "983ad36543a02fffcb8f05fb94e09ef4",
"translation_date": "2026-01-16T10:30:51+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-4.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"bad-chart-1.596bc93425a8ac30.webp": {
"original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
"translation_date": "2026-01-16T10:49:15+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-1.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"bad-chart-1.93130f495b748bed.webp": {
"original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
"translation_date": "2026-01-16T10:43:30+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-1.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"bad-chart-2.62edf4d2f30f4e51.webp": {
"original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
"translation_date": "2026-01-16T10:49:54+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-2.jpg",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"bad-chart-2.c20e36dd4e6f617c.webp": {
"original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
"translation_date": "2026-01-16T10:44:12+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-2.jpg",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"bad-chart-3.6865d0afac4108d7.webp": {
"original_hash": "80f955c8f50661e029730e9b06959c0b",
"translation_date": "2026-01-16T10:43:39+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-3.jpg",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"bad-chart-3.e201e2e915a230bc.webp": {
"original_hash": "80f955c8f50661e029730e9b06959c0b",
"translation_date": "2026-01-16T10:49:24+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-3.jpg",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"bad-chart-4.68cfdf4011b45447.webp": {
"original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
"translation_date": "2026-01-16T10:44:31+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-4.jpg",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"bad-chart-4.8872b2b881ffa96c.webp": {
"original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
"translation_date": "2026-01-16T10:50:13+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-4.jpg",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"bee.0aa1d91132b12e3a.webp": {
"original_hash": "107a59a0fdfa76d213eacf0f46df0292",
"translation_date": "2026-01-16T10:39:54+00:00",
"source_file": "3-Data-Visualization/images/bee.jpg",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"bodymass-per-order.9d2b065dd931b928.webp": {
"original_hash": "b009aeba10679cfeb880d3869e7d1db2",
"translation_date": "2026-01-16T10:45:20+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-per-order.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"bodymass-smooth.d31ce526d82b0a1f.webp": {
"original_hash": "9e0c8215e2ce2cc7120491a79559a907",
"translation_date": "2026-01-16T10:44:59+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-smooth.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"boxplot_byrole.036b27a1c3f52d42.webp": {
"original_hash": "1193ef907e122e99637e73ef9f83d2a5",
"translation_date": "2026-01-16T10:27:47+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/boxplot_byrole.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"boxplot_explanation.4039b7de08780fd4.webp": {
"original_hash": "18e16e4144706f7e9006fc2ff958e622",
"translation_date": "2026-01-16T10:27:06+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/boxplot_explanation.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"busing.7b9e3b41cd4b981c.webp": {
"original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
"translation_date": "2026-01-16T10:43:47+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/busing.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"busing.8157cf1bc89a3f65.webp": {
"original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
"translation_date": "2026-01-16T10:49:32+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/busing.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"category-counts-02.0b9a0a4de42275ae.webp": {
"original_hash": "d0ebdd74049aa407805cb1b28d9d5075",
"translation_date": "2026-01-16T10:51:29+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts-02.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"category-counts.abee8188c4c9b6f0.webp": {
"original_hash": "3b55836da9e8a6b487c6657b01156a99",
"translation_date": "2026-01-16T10:50:39+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"category-length-02.7304bf519375c980.webp": {
"original_hash": "2638d345ceee48d8c40a54f6388c8caa",
"translation_date": "2026-01-16T10:50:57+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length-02.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"category-length.7e34c296690e85d6.webp": {
"original_hash": "f5c753a1fe65d51b8cc15b8b46c6d4e6",
"translation_date": "2026-01-16T10:47:41+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/category-length.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"category-length.b0d9a0208a7b3713.webp": {
"original_hash": "990ba20663dfb1d5bc21e39b9162f412",
"translation_date": "2026-01-16T10:50:36+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"cloud-picture.f5526de3c6c6387b.webp": {
"original_hash": "112d96f85f2037814d2df8b88267a595",
"translation_date": "2026-01-16T10:27:56+00:00",
"source_file": "5-Data-Science-In-Cloud/images/cloud-picture.jpg",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"cluster-1.b78cb630bb543729.webp": {
"original_hash": "d938d671e7eabf7fbc012cf1987dc43f",
"translation_date": "2026-01-16T10:31:51+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-1.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"cluster-2.ea30cdbc9f926bb9.webp": {
"original_hash": "0486b9eb10e88dc53fc2927c9197cd27",
"translation_date": "2026-01-16T10:31:19+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-2.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"cluster-3.8a334bc070ec173a.webp": {
"original_hash": "b440d88eb5ce449ebe780c1edbac221d",
"translation_date": "2026-01-16T10:30:08+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-3.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"columnar-db.ffcfe73c3e9063a8.webp": {
"original_hash": "be6caa9571dc877703116566bc1a59d4",
"translation_date": "2026-01-16T10:38:17+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/columnar-db.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"communication.06d8e2a88d30d168.webp": {
"original_hash": "5736c0fd0f68676dbd5b27c5b04f4b48",
"translation_date": "2026-01-16T10:35:27+00:00",
"source_file": "4-Data-Science-Lifecycle/images/communication.jpg",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"comparingdata.f486a450d61c7ca5.webp": {
"original_hash": "c5f1049b89ea0d7015e420acc0728045",
"translation_date": "2026-01-16T10:48:17+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/comparingdata.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"compute-instance-1.dba347cb199ca499.webp": {
"original_hash": "7af64073de557468a0b652e4bcecf2d1",
"translation_date": "2026-01-16T10:28:09+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/compute-instance-1.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"consumption-1.700abd196452842a.webp": {
"original_hash": "a5ecdcdff30f2d1059763b9ce5abe4eb",
"translation_date": "2026-01-16T10:34:17+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/consumption-1.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"cosmosdb-emulator-explorer.a1c80b1347206fe2.webp": {
"original_hash": "cdd5affc23e1edf90e5a1d4d5d0f1f8d",
"translation_date": "2026-01-16T10:38:34+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-explorer.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp": {
"original_hash": "4ab74b4d99e8e2a503433a1faf6921be",
"translation_date": "2026-01-16T10:37:56+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons-query.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"cosmosdb-emulator-persons.bf640586a7077c89.webp": {
"original_hash": "4cf764cdeb46013888dafcd430447f3a",
"translation_date": "2026-01-16T10:39:35+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"covidspread.f3d131c4f1d260ab.webp": {
"original_hash": "461f7858f407e9f5b9eb9caf8ca21367",
"translation_date": "2026-01-16T10:37:21+00:00",
"source_file": "2-Working-With-Data/07-python/images/covidspread.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"covidtreat.b2ba59f57ca45fbc.webp": {
"original_hash": "b2b1e40794073c65faa986c5995754c9",
"translation_date": "2026-01-16T10:37:09+00:00",
"source_file": "2-Working-With-Data/07-python/images/covidtreat.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"data-love.a22ef29e6742c852.webp": {
"original_hash": "e7fcf82d891c727f86c21960cb63efa6",
"translation_date": "2026-01-16T10:36:33+00:00",
"source_file": "2-Working-With-Data/images/data-love.jpg",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"data-science-applications.4e5019cd8790ebac.webp": {
"original_hash": "602217d731f1576c21ac91148222cfa1",
"translation_date": "2026-01-16T10:52:35+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/data-science-applications.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"data-science-lifecycle.a1e362637503c4fb.webp": {
"original_hash": "594be62e68ef5e92f5447febe91c7794",
"translation_date": "2026-01-16T10:35:47+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/data-science-lifecycle.jpg",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"data.48e22bb7617d8d92.webp": {
"original_hash": "1a84026266861a50791b9f952fbab540",
"translation_date": "2026-01-16T10:26:00+00:00",
"source_file": "1-Introduction/images/data.jpg",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"dataframe-1.caf409f0c688e84c.webp": {
"original_hash": "2ca632a405bd7b501a0e0df0fa55515a",
"translation_date": "2026-01-16T10:37:02+00:00",
"source_file": "2-Working-With-Data/07-python/images/dataframe-1.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"datascienceinthecloud.59ffb059a670fb0a.webp": {
"original_hash": "d66cf00bfc41a3d1bef7e1d54ac4e03f",
"translation_date": "2026-01-16T10:30:31+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/datascienceinthecloud.jpg",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"dataset-1.e86ab4e10907a6e9.webp": {
"original_hash": "b742ef1724e601f68a1bdf3f1faa89c6",
"translation_date": "2026-01-16T10:31:39+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-1.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"dataset-2.f58de1c435d5bf9c.webp": {
"original_hash": "328c65d45aa937db952093099bc408ce",
"translation_date": "2026-01-16T10:33:34+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-2.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"dataset-3.58db8c0eb783e892.webp": {
"original_hash": "cc2177288c2ac7289b614ce41ee68d60",
"translation_date": "2026-01-16T10:33:20+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-3.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"density-plot.675ccf865b76c690.webp": {
"original_hash": "269df7655a489ba893c9a930e54996b4",
"translation_date": "2026-01-16T10:45:25+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/density-plot.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"density1.8801043bd4af2567.webp": {
"original_hash": "159abed877f261a34aeefc1c2f7d9f14",
"translation_date": "2026-01-16T10:40:51+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density1.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"density2.8e7647257060ff54.webp": {
"original_hash": "ae4ee53e81dca21c2d475642c9acf970",
"translation_date": "2026-01-16T10:41:09+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density2.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"density3.84ae27da82f31e6b.webp": {
"original_hash": "1c4b40707ab63224822854698a26f6ca",
"translation_date": "2026-01-16T10:40:04+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density3.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"density4.e9d6c033f15c500f.webp": {
"original_hash": "e007401afeb86f57097c31b272c54f59",
"translation_date": "2026-01-16T10:40:58+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density4.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"deploy-1.ddad725acadc84e3.webp": {
"original_hash": "d91956f565f29332f32fc85095206456",
"translation_date": "2026-01-16T10:29:52+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-1.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"deploy-2.94dbb13f23908647.webp": {
"original_hash": "cb622a2e6374ccfdb376d3528e2bb9c8",
"translation_date": "2026-01-16T10:34:47+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-2.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"deploy-3.fecefef070e8ef3b.webp": {
"original_hash": "487c6cd79b0232e10e40fdab2e6b929f",
"translation_date": "2026-01-16T10:32:22+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-3.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"dist1-wb.0d0cac82e2974fbb.webp": {
"original_hash": "2f624fcf08f90cfedf12238e86730517",
"translation_date": "2026-01-16T10:40:32+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1-wb.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"dist1.0010100b00231819.webp": {
"original_hash": "637343564b5cc6aa01b966bb3f010c81",
"translation_date": "2026-01-16T10:41:06+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"dist2-wb.2c0a7a3499b2fbf5.webp": {
"original_hash": "f66e1b4cf106774c02ddc8111fb26ea8",
"translation_date": "2026-01-16T10:41:14+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2-wb.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"dist2.c398bfd5320401b9.webp": {
"original_hash": "fc0ce2a2e3087e5754770998f75db398",
"translation_date": "2026-01-16T10:40:00+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"dist3-wb.64b88db7f9780200.webp": {
"original_hash": "b3d78f1f00c6c3d087f161dd74318aff",
"translation_date": "2026-01-16T10:40:10+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3-wb.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"dist3.ad4d9658559690f5.webp": {
"original_hash": "a4f7f50a3cc98d22d6a1321d1df7781b",
"translation_date": "2026-01-16T10:40:39+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"distribution-30bins.6a3921ea7a421bf7.webp": {
"original_hash": "e06c4dfd27b06597b94a75072e9c4bc5",
"translation_date": "2026-01-16T10:44:55+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-30bins.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"distribution-over-the-entire-dataset.d22afd3fa96be854.webp": {
"original_hash": "338c78ae2ee25ed179e49ec1a4e7923b",
"translation_date": "2026-01-16T10:45:04+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-over-the-entire-dataset.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"document-db.ddeec48c6dc9e5fd.webp": {
"original_hash": "8cee40487b4a8926c048c397be218e6e",
"translation_date": "2026-01-16T10:39:05+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/document-db.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"donut-wb.34e6fb275da9d834.webp": {
"original_hash": "1fca738bcee99e03430409599cef33f3",
"translation_date": "2026-01-16T10:47:03+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/donut-wb.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"donut-wb.be3c12a22712302b.webp": {
"original_hash": "84f5657fc2c817fe6487993027aeb3e0",
"translation_date": "2026-01-16T10:42:57+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut-wb.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"donut.f016d7be7f08c8f8.webp": {
"original_hash": "055fcaf0a6d93663278eb958137b460c",
"translation_date": "2026-01-16T10:43:20+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"ds-for-beginners.d01930c9193ef522.webp": {
"original_hash": "b84eca5411f4bc0041e671becb05fe48",
"translation_date": "2026-01-16T10:16:39+00:00",
"source_file": "ds-for-beginners.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"ds_wordcloud.664a7c07dca57de0.webp": {
"original_hash": "df525e123083bea87f16bce2c07970c7",
"translation_date": "2026-01-16T10:26:27+00:00",
"source_file": "1-Introduction/01-defining-data-science/images/ds_wordcloud.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"dual-line.a4c28ce659603fab.webp": {
"original_hash": "354c3a3b7493b3ec80eec454e7e1661f",
"translation_date": "2026-01-16T10:41:42+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/dual-line.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"dual-line.fc4665f360a54018.webp": {
"original_hash": "a80f6d08e4639389726abb5b1c3d5d9f",
"translation_date": "2026-01-16T10:46:13+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/dual-line.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"facet.491ad90d61c2a7cc.webp": {
"original_hash": "2a0a7fea3ccea24ef9a0d37487f38ba3",
"translation_date": "2026-01-16T10:46:03+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/facet.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"facet.6a34851dcd540050.webp": {
"original_hash": "b1972d34a64eaf50b7f64de8455601d6",
"translation_date": "2026-01-16T10:41:30+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/facet.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"favicon.37b561214b36d454.webp": {
"original_hash": "228faa6584f8ba1f7e9a75e3200112e9",
"translation_date": "2026-01-16T10:16:40+00:00",
"source_file": "images/favicon.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"filtered-histogram.6bf5d2bfd8253322.webp": {
"original_hash": "9beae93b6d3063f7afa19070ca9b21f2",
"translation_date": "2026-01-16T10:45:08+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/filtered-histogram.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"formula-excel.ad1068c220892f5e.webp": {
"original_hash": "ffc48a46663588ed68f07739e1c6faec",
"translation_date": "2026-01-16T10:38:47+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/formula-excel.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"full-data-bar-02.aaa3fda71c63ed56.webp": {
"original_hash": "68ced4f3a959790addfa4c361f5abc0f",
"translation_date": "2026-01-16T10:52:07+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar-02.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"full-data-bar.a0b37da71a6cd236.webp": {
"original_hash": "bd639cfebb870669bcf5280302347b15",
"translation_date": "2026-01-16T10:52:21+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"function-excel.be2ae4feddc10ca0.webp": {
"original_hash": "72ab7b76f4fab0df5aa91fa839722a60",
"translation_date": "2026-01-16T10:38:09+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/function-excel.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"graph-db.d13629152f79a9da.webp": {
"original_hash": "9642744eabff608b20e9241ba5931752",
"translation_date": "2026-01-16T10:38:57+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/graph-db.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"height-boxplot.ccb66b2848b5f51c.webp": {
"original_hash": "0f3d954cc0e0b9644f64f7bc1c8a5518",
"translation_date": "2026-01-16T10:27:30+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/height-boxplot.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"histogram-conservation-wb.3c40450eb072c14d.webp": {
"original_hash": "83ec1d81dea6fabb80c6386edf8eb241",
"translation_date": "2026-01-16T10:40:26+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation-wb.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"histogram-conservation.13b3542e7784e415.webp": {
"original_hash": "ec86b1d6a476f4cf80f9d2b346525c92",
"translation_date": "2026-01-16T10:40:36+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"kv-db.e8f2b75686bbdfcb.webp": {
"original_hash": "b11fd06948e523a4f05e4fc016b72151",
"translation_date": "2026-01-16T10:38:24+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/kv-db.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"labeled-wingspan-02.6110e2d2401cd523.webp": {
"original_hash": "0f218473d2563c14c8caddecdea3a4c3",
"translation_date": "2026-01-16T10:52:13+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan-02.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"labeled-wingspan.900ffedd7e3ec6de.webp": {
"original_hash": "92a8853541cd37a14b9523a58d655f7f",
"translation_date": "2026-01-16T10:52:26+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"less-smooth-bodymass.10f4db8b683cc17d.webp": {
"original_hash": "407ad13c340ab84466724135c99aa8d6",
"translation_date": "2026-01-16T10:44:51+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/less-smooth-bodymass.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"liaisons.7b440b28f6d07ea4.webp": {
"original_hash": "6d42370a9c4ee2cea0573912a6300e09",
"translation_date": "2026-01-16T10:44:41+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/liaisons.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"liaisons.90ce7360bcf84765.webp": {
"original_hash": "6d42370a9c4ee2cea0573912a6300e09",
"translation_date": "2026-01-16T10:50:22+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/liaisons.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"line1.299b576fbb2a59e6.webp": {
"original_hash": "580b92476ca343c0fce7d5713d0ca5cd",
"translation_date": "2026-01-16T10:46:52+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line1.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"line1.f36eb465229a3b1f.webp": {
"original_hash": "2254eee0864847a0dbbcf3514523b938",
"translation_date": "2026-01-16T10:42:43+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/line1.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"line2.3b18fcda7176ceba.webp": {
"original_hash": "0900ae563b525221b628393ec05feaf8",
"translation_date": "2026-01-16T10:46:57+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line2.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"line2.a5b3493dc01058af.webp": {
"original_hash": "352e8164b0d75c410198bb07822e43cb",
"translation_date": "2026-01-16T10:42:48+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/line2.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"max-length-per-order.e5b283d952c78c12.webp": {
"original_hash": "3669afd28a61d41ee39429418ee938a0",
"translation_date": "2026-01-16T10:45:46+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/max-length-per-order.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"max-wingspan-02.e79fd847b2640b89.webp": {
"original_hash": "424b2d5e92fd7ad1f1651fd34c48a43b",
"translation_date": "2026-01-16T10:52:17+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-02.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"max-wingspan-labels-02.aa90e826ca49a9d1.webp": {
"original_hash": "b1f49941bbc193409678b7c94bd39822",
"translation_date": "2026-01-16T10:51:08+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels-02.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"max-wingspan-labels.46f0cc3c48edd4e0.webp": {
"original_hash": "67ad5348aa4963aebb0ae7ec94a7fa26",
"translation_date": "2026-01-16T10:52:10+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"max-wingspan.0b8d0858436414aa.webp": {
"original_hash": "020b2994ef28037b86c2e215771a0bf5",
"translation_date": "2026-01-16T10:51:11+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"multi.56548caa9eae8d0f.webp": {
"original_hash": "f75fa5419bb0d28a74c567876bc99455",
"translation_date": "2026-01-16T10:39:58+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/multi.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"new-container.650e10c7a20a5f83.webp": {
"original_hash": "ab63b5a8099095333eebe2afa69197e3",
"translation_date": "2026-01-16T10:39:16+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/new-container.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"normal-histogram.dfae0d67c202137d.webp": {
"original_hash": "46ee775d2df1d79815c1aab51bd8d2fe",
"translation_date": "2026-01-16T10:27:41+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/normal-histogram.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"notebook-1.12998af7b02c83f5.webp": {
"original_hash": "08d559b911ecbed212b67e206ae6bcf1",
"translation_date": "2026-01-16T10:28:23+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-1.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"notebook-2.9a657c037e34f1cf.webp": {
"original_hash": "018309c1ca2ed8e31fd89c3674687979",
"translation_date": "2026-01-16T10:28:31+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-2.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"parts-of-spreadsheet.120711c82aa18a45.webp": {
"original_hash": "e744b94c055058c2862aaabe84625b90",
"translation_date": "2026-01-16T10:39:50+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/parts-of-spreadsheet.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"pie1-wb.685df063673751f4.webp": {
"original_hash": "2b353f34a1a1e444a1d7f2219b78cb83",
"translation_date": "2026-01-16T10:47:11+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/pie1-wb.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"pie1-wb.e201f2fcc3354131.webp": {
"original_hash": "f2dbe68e0228fc6bb76e502dfa88a5c7",
"translation_date": "2026-01-16T10:43:23+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1-wb.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"pie1.8f6a8bfac96de60e.webp": {
"original_hash": "dc91ddf7490acc8493ca0801370d8fa8",
"translation_date": "2026-01-16T10:42:52+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"planetary-computer-explorer.c1e95a9b053167d6.webp": {
"original_hash": "1e3bcffe198a9432dfc6232e5f89e2a5",
"translation_date": "2026-01-16T10:52:47+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/planetary-computer-explorer.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"probability-density.a8aad29f17a14afb.webp": {
"original_hash": "79ec3e39c1c20e570327ebd8a2737548",
"translation_date": "2026-01-16T10:27:21+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/probability-density.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"project-schema.420e56d495624541.webp": {
"original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
"translation_date": "2026-01-16T10:28:52+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/project-schema.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"project-schema.736f6e403f321eb4.webp": {
"original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
"translation_date": "2026-01-16T10:32:48+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/project-schema.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"scatter-wb.9d98b0ed7f0388af.webp": {
"original_hash": "20b0f7bb41756f35bdf985a8f5f3a342",
"translation_date": "2026-01-16T10:40:19+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter-wb.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"scatter.520a43eceb46dbcb.webp": {
"original_hash": "0b08180e497b0df05b452d6e82139280",
"translation_date": "2026-01-16T10:41:03+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"scatter1.5e1aa5fd6706c5d1.webp": {
"original_hash": "c02fe2f5fa39f591b4a26308356ed684",
"translation_date": "2026-01-16T10:42:34+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter1.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"scatter1.86b8900674d88b26.webp": {
"original_hash": "c987462f33600689809531fc3d265f96",
"translation_date": "2026-01-16T10:46:45+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter1.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"scatter2.4d1cbc693bad20e2.webp": {
"original_hash": "770ca46665efad9996e32d596f105ea9",
"translation_date": "2026-01-16T10:46:31+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter2.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"scatter2.c0041a58621ca702.webp": {
"original_hash": "0daebd8565f87f5de940b38eb8af1b9d",
"translation_date": "2026-01-16T10:42:14+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter2.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"scatter3.3c160a3d1dcb36b3.webp": {
"original_hash": "b6dae06624fdb034a906091c859840c8",
"translation_date": "2026-01-16T10:41:58+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter3.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"scatter3.722d21e6f20b3ea2.webp": {
"original_hash": "e76960bfd5bd7187d9e021796f268d34",
"translation_date": "2026-01-16T10:46:21+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter3.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"scatterplot-wingspan-02.1c33790094ce36a7.webp": {
"original_hash": "074b877685ae02c92754fb416864f137",
"translation_date": "2026-01-16T10:50:28+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan-02.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"scatterplot-wingspan.bdab448702939bb3.webp": {
"original_hash": "a6265af4af8b135ebb0b1160ac2a85e1",
"translation_date": "2026-01-16T10:50:33+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"stacked-bar-chart.0c92264e89da7b39.webp": {
"original_hash": "150d1125735f6612e36c8d74d492c664",
"translation_date": "2026-01-16T10:48:31+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/stacked-bar-chart.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"superimposed-02.f03058536baeb2ed.webp": {
"original_hash": "06591758ffda43a2ba7a885727209a57",
"translation_date": "2026-01-16T10:51:54+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed-02.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"superimposed-values.5363f0705a1da416.webp": {
"original_hash": "b41c56cb68dd92f60d7e18eefd963396",
"translation_date": "2026-01-16T10:48:54+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/superimposed-values.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"superimposed.8b5bd0e8825d9c5c.webp": {
"original_hash": "4af0c94d9d61f1d458023b01c02a247e",
"translation_date": "2026-01-16T10:50:31+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"tdsp-lifecycle2.e19029d598e2e73d.webp": {
"original_hash": "d1f838b6b0fd588b4ee6cd22cb578569",
"translation_date": "2026-01-16T10:36:01+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/tdsp-lifecycle2.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"timeseries-1.80de678ab1cf727e.webp": {
"original_hash": "30236ed2474d8d115ab3d51545e0c19e",
"translation_date": "2026-01-16T10:37:16+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-1.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"timeseries-2.aae51d575c55181c.webp": {
"original_hash": "33bd33349330cb115d729ce80b570501",
"translation_date": "2026-01-16T10:37:27+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-2.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"timeseries-3.f3147cbc8c624881.webp": {
"original_hash": "aa4b14a21a73d400073a61f37033d465",
"translation_date": "2026-01-16T10:37:33+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-3.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"tornado.2880ffc7f135f82b.webp": {
"original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
"translation_date": "2026-01-16T10:49:43+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/tornado.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"tornado.9f42168791208f97.webp": {
"original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
"translation_date": "2026-01-16T10:44:00+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/tornado.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"video-def-ds.6623ee2392ef1abf.webp": {
"original_hash": "95650b7eed7f176ce8fdee16271a464b",
"translation_date": "2026-01-16T10:26:51+00:00",
"source_file": "1-Introduction/01-defining-data-science/images/video-def-ds.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"video-ds-python.245247dc811db8e4.webp": {
"original_hash": "030eca02a7388a1428cf20faa215f2b9",
"translation_date": "2026-01-16T10:36:56+00:00",
"source_file": "2-Working-With-Data/07-python/images/video-ds-python.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"video-prob-and-stats.e4282e5efa2f2543.webp": {
"original_hash": "95894d8c6274697246b11c5ddf395c5f",
"translation_date": "2026-01-16T10:27:37+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/video-prob-and-stats.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"waffle.5455dbae4ccf17d5.webp": {
"original_hash": "56634c9a9dc24921e012693843466dee",
"translation_date": "2026-01-16T10:43:11+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/waffle.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"waffle.aaa75c5337735a6e.webp": {
"original_hash": "b84ca087d578965c31a20087b9215d88",
"translation_date": "2026-01-16T10:47:07+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/waffle.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"weight-boxplot.1dbab1c03af26f8a.webp": {
"original_hash": "4e39b904d1a4313d66663aa3f7ab9602",
"translation_date": "2026-01-16T10:27:13+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-boxplot.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"weight-height-relationship.3f06bde4ca2aba99.webp": {
"original_hash": "2412d31f9c41004d2d0cb80179d6021f",
"translation_date": "2026-01-16T10:27:26+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-height-relationship.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"weight-histogram.bfd00caf7fc30b14.webp": {
"original_hash": "bef55b4cd03923b2d8674e92bb1757c9",
"translation_date": "2026-01-16T10:27:17+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-histogram.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"wingspan-conservation-collation.4024e9aa6910866a.webp": {
"original_hash": "898d4cfbbc9bd4723c3ce92f5746a6f8",
"translation_date": "2026-01-16T10:45:14+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/wingspan-conservation-collation.png",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"workspace-1.ac8694d60b073ed1.webp": {
"original_hash": "5e9f3153bfd5af7d8b6adcb09c08cabd",
"translation_date": "2026-01-16T10:29:39+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-1.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"workspace-2.ae7c486db8796147.webp": {
"original_hash": "9299f5ae459f0a153da6aaae9accc78d",
"translation_date": "2026-01-16T10:32:03+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-2.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"workspace-3.398ca4a5858132cc.webp": {
"original_hash": "2ee0b036fbc5fd13a526f26ac9d60347",
"translation_date": "2026-01-16T10:35:10+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-3.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"workspace-4.bac87f6599c4df63.webp": {
"original_hash": "099e0b18ce11f3966c0b7d954c2eb4fb",
"translation_date": "2026-01-16T10:30:25+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-4.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"workspace-5.a6eb17e0a5e64200.webp": {
"original_hash": "01b1c520e46b3fbd6fba0d54bb80bece",
"translation_date": "2026-01-16T10:34:37+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-5.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
},
"workspace-6.8dd81fe841797ee1.webp": {
"original_hash": "fd0194c1a558063ddb53e5c1ead0a2b0",
"translation_date": "2026-01-16T10:33:50+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-6.PNG",
- "language_code": "hk"
+ "language_code": "zh-HK"
}
}
\ No newline at end of file
diff --git a/translated_images/hk/00-Roadmap.4905d6567dff4753.webp b/translated_images/zh-HK/00-Roadmap.4905d6567dff4753.webp
similarity index 100%
rename from translated_images/hk/00-Roadmap.4905d6567dff4753.webp
rename to translated_images/zh-HK/00-Roadmap.4905d6567dff4753.webp
diff --git a/translated_images/hk/00-Title.8af36cd35da1ac55.webp b/translated_images/zh-HK/00-Title.8af36cd35da1ac55.webp
similarity index 100%
rename from translated_images/hk/00-Title.8af36cd35da1ac55.webp
rename to translated_images/zh-HK/00-Title.8af36cd35da1ac55.webp
diff --git a/translated_images/hk/01-Definitions.1b14ddc9525dc0d9.webp b/translated_images/zh-HK/01-Definitions.1b14ddc9525dc0d9.webp
similarity index 100%
rename from translated_images/hk/01-Definitions.1b14ddc9525dc0d9.webp
rename to translated_images/zh-HK/01-Definitions.1b14ddc9525dc0d9.webp
diff --git a/translated_images/hk/02-Ethics.728d166895302ab0.webp b/translated_images/zh-HK/02-Ethics.728d166895302ab0.webp
similarity index 100%
rename from translated_images/hk/02-Ethics.728d166895302ab0.webp
rename to translated_images/zh-HK/02-Ethics.728d166895302ab0.webp
diff --git a/translated_images/hk/03-DefiningData.f800817186949e07.webp b/translated_images/zh-HK/03-DefiningData.f800817186949e07.webp
similarity index 100%
rename from translated_images/hk/03-DefiningData.f800817186949e07.webp
rename to translated_images/zh-HK/03-DefiningData.f800817186949e07.webp
diff --git a/translated_images/hk/04-Statistics-Probability.cfc569d84a9f1867.webp b/translated_images/zh-HK/04-Statistics-Probability.cfc569d84a9f1867.webp
similarity index 100%
rename from translated_images/hk/04-Statistics-Probability.cfc569d84a9f1867.webp
rename to translated_images/zh-HK/04-Statistics-Probability.cfc569d84a9f1867.webp
diff --git a/translated_images/hk/05-RelationalData.af50f5a3e50f7456.webp b/translated_images/zh-HK/05-RelationalData.af50f5a3e50f7456.webp
similarity index 100%
rename from translated_images/hk/05-RelationalData.af50f5a3e50f7456.webp
rename to translated_images/zh-HK/05-RelationalData.af50f5a3e50f7456.webp
diff --git a/translated_images/hk/06-NoSQL.42a91ea0cd5769fe.webp b/translated_images/zh-HK/06-NoSQL.42a91ea0cd5769fe.webp
similarity index 100%
rename from translated_images/hk/06-NoSQL.42a91ea0cd5769fe.webp
rename to translated_images/zh-HK/06-NoSQL.42a91ea0cd5769fe.webp
diff --git a/translated_images/hk/07-WorkWithPython.8bf4a5013718bef9.webp b/translated_images/zh-HK/07-WorkWithPython.8bf4a5013718bef9.webp
similarity index 100%
rename from translated_images/hk/07-WorkWithPython.8bf4a5013718bef9.webp
rename to translated_images/zh-HK/07-WorkWithPython.8bf4a5013718bef9.webp
diff --git a/translated_images/hk/08-DataPreparation.e3b185c37958e964.webp b/translated_images/zh-HK/08-DataPreparation.e3b185c37958e964.webp
similarity index 100%
rename from translated_images/hk/08-DataPreparation.e3b185c37958e964.webp
rename to translated_images/zh-HK/08-DataPreparation.e3b185c37958e964.webp
diff --git a/translated_images/hk/09-Visualizing-Quantities.5c846edd805a5238.webp b/translated_images/zh-HK/09-Visualizing-Quantities.5c846edd805a5238.webp
similarity index 100%
rename from translated_images/hk/09-Visualizing-Quantities.5c846edd805a5238.webp
rename to translated_images/zh-HK/09-Visualizing-Quantities.5c846edd805a5238.webp
diff --git a/translated_images/hk/1.0b520df6a0d9d3c4.webp b/translated_images/zh-HK/1.0b520df6a0d9d3c4.webp
similarity index 100%
rename from translated_images/hk/1.0b520df6a0d9d3c4.webp
rename to translated_images/zh-HK/1.0b520df6a0d9d3c4.webp
diff --git a/translated_images/hk/10-Visualizing-Distributions.8097fd8abd7221a1.webp b/translated_images/zh-HK/10-Visualizing-Distributions.8097fd8abd7221a1.webp
similarity index 100%
rename from translated_images/hk/10-Visualizing-Distributions.8097fd8abd7221a1.webp
rename to translated_images/zh-HK/10-Visualizing-Distributions.8097fd8abd7221a1.webp
diff --git a/translated_images/hk/11-Visualizing-Proportions.3e82f24af94d206e.webp b/translated_images/zh-HK/11-Visualizing-Proportions.3e82f24af94d206e.webp
similarity index 100%
rename from translated_images/hk/11-Visualizing-Proportions.3e82f24af94d206e.webp
rename to translated_images/zh-HK/11-Visualizing-Proportions.3e82f24af94d206e.webp
diff --git a/translated_images/hk/12-Visualizing-Relationships.4466f9bd260f03dd.webp b/translated_images/zh-HK/12-Visualizing-Relationships.4466f9bd260f03dd.webp
similarity index 100%
rename from translated_images/hk/12-Visualizing-Relationships.4466f9bd260f03dd.webp
rename to translated_images/zh-HK/12-Visualizing-Relationships.4466f9bd260f03dd.webp
diff --git a/translated_images/hk/13-MeaningfulViz.4db6f1997e519908.webp b/translated_images/zh-HK/13-MeaningfulViz.4db6f1997e519908.webp
similarity index 100%
rename from translated_images/hk/13-MeaningfulViz.4db6f1997e519908.webp
rename to translated_images/zh-HK/13-MeaningfulViz.4db6f1997e519908.webp
diff --git a/translated_images/hk/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp b/translated_images/zh-HK/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
similarity index 100%
rename from translated_images/hk/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
rename to translated_images/zh-HK/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
diff --git a/translated_images/hk/15-Analyzing.b501f3dbdc958f6f.webp b/translated_images/zh-HK/15-Analyzing.b501f3dbdc958f6f.webp
similarity index 100%
rename from translated_images/hk/15-Analyzing.b501f3dbdc958f6f.webp
rename to translated_images/zh-HK/15-Analyzing.b501f3dbdc958f6f.webp
diff --git a/translated_images/hk/16-Communicating.f1d29cd7984442a4.webp b/translated_images/zh-HK/16-Communicating.f1d29cd7984442a4.webp
similarity index 100%
rename from translated_images/hk/16-Communicating.f1d29cd7984442a4.webp
rename to translated_images/zh-HK/16-Communicating.f1d29cd7984442a4.webp
diff --git a/translated_images/hk/17-DataScience-Cloud.0df76ac874805c14.webp b/translated_images/zh-HK/17-DataScience-Cloud.0df76ac874805c14.webp
similarity index 100%
rename from translated_images/hk/17-DataScience-Cloud.0df76ac874805c14.webp
rename to translated_images/zh-HK/17-DataScience-Cloud.0df76ac874805c14.webp
diff --git a/translated_images/hk/18-DataScience-Cloud.3a7292e8182b74eb.webp b/translated_images/zh-HK/18-DataScience-Cloud.3a7292e8182b74eb.webp
similarity index 100%
rename from translated_images/hk/18-DataScience-Cloud.3a7292e8182b74eb.webp
rename to translated_images/zh-HK/18-DataScience-Cloud.3a7292e8182b74eb.webp
diff --git a/translated_images/hk/19-DataScience-Cloud.177b38fb86301fc6.webp b/translated_images/zh-HK/19-DataScience-Cloud.177b38fb86301fc6.webp
similarity index 100%
rename from translated_images/hk/19-DataScience-Cloud.177b38fb86301fc6.webp
rename to translated_images/zh-HK/19-DataScience-Cloud.177b38fb86301fc6.webp
diff --git a/translated_images/hk/20-DataScience-Humanities.1d1a155f4d12a667.webp b/translated_images/zh-HK/20-DataScience-Humanities.1d1a155f4d12a667.webp
similarity index 100%
rename from translated_images/hk/20-DataScience-Humanities.1d1a155f4d12a667.webp
rename to translated_images/zh-HK/20-DataScience-Humanities.1d1a155f4d12a667.webp
diff --git a/translated_images/hk/20-DataScience-RealWorld.976976229ee11342.webp b/translated_images/zh-HK/20-DataScience-RealWorld.976976229ee11342.webp
similarity index 100%
rename from translated_images/hk/20-DataScience-RealWorld.976976229ee11342.webp
rename to translated_images/zh-HK/20-DataScience-RealWorld.976976229ee11342.webp
diff --git a/translated_images/hk/20-DataScience-Research.da434814c51b4ef8.webp b/translated_images/zh-HK/20-DataScience-Research.da434814c51b4ef8.webp
similarity index 100%
rename from translated_images/hk/20-DataScience-Research.da434814c51b4ef8.webp
rename to translated_images/zh-HK/20-DataScience-Research.da434814c51b4ef8.webp
diff --git a/translated_images/hk/20-DataScience-Sustainability.d4097bc684431da6.webp b/translated_images/zh-HK/20-DataScience-Sustainability.d4097bc684431da6.webp
similarity index 100%
rename from translated_images/hk/20-DataScience-Sustainability.d4097bc684431da6.webp
rename to translated_images/zh-HK/20-DataScience-Sustainability.d4097bc684431da6.webp
diff --git a/translated_images/pt/2D-wb.ae22fdd33936507a.webp b/translated_images/zh-HK/2D-wb.ae22fdd33936507a.webp
similarity index 100%
rename from translated_images/pt/2D-wb.ae22fdd33936507a.webp
rename to translated_images/zh-HK/2D-wb.ae22fdd33936507a.webp
diff --git a/translated_images/pt/2D.b3342157139dd804.webp b/translated_images/zh-HK/2D.b3342157139dd804.webp
similarity index 100%
rename from translated_images/pt/2D.b3342157139dd804.webp
rename to translated_images/zh-HK/2D.b3342157139dd804.webp
diff --git a/translated_images/hk/2d-plot.c504786f439bd7eb.webp b/translated_images/zh-HK/2d-plot.c504786f439bd7eb.webp
similarity index 100%
rename from translated_images/hk/2d-plot.c504786f439bd7eb.webp
rename to translated_images/zh-HK/2d-plot.c504786f439bd7eb.webp
diff --git a/translated_images/pt/3d.0cec12bcc60f0ce7.webp b/translated_images/zh-HK/3d.0cec12bcc60f0ce7.webp
similarity index 100%
rename from translated_images/pt/3d.0cec12bcc60f0ce7.webp
rename to translated_images/zh-HK/3d.0cec12bcc60f0ce7.webp
diff --git a/translated_images/pt/3d.db1734c151eee87d.webp b/translated_images/zh-HK/3d.db1734c151eee87d.webp
similarity index 100%
rename from translated_images/pt/3d.db1734c151eee87d.webp
rename to translated_images/zh-HK/3d.db1734c151eee87d.webp
diff --git a/translated_images/hk/CRISP-DM.8bad2b4c66e62aa7.webp b/translated_images/zh-HK/CRISP-DM.8bad2b4c66e62aa7.webp
similarity index 100%
rename from translated_images/hk/CRISP-DM.8bad2b4c66e62aa7.webp
rename to translated_images/zh-HK/CRISP-DM.8bad2b4c66e62aa7.webp
diff --git a/translated_images/hk/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp b/translated_images/zh-HK/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
similarity index 100%
rename from translated_images/hk/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
rename to translated_images/zh-HK/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
diff --git a/translated_images/hk/MaxWingspan-lineplot.b12169f99d26fdd2.webp b/translated_images/zh-HK/MaxWingspan-lineplot.b12169f99d26fdd2.webp
similarity index 100%
rename from translated_images/hk/MaxWingspan-lineplot.b12169f99d26fdd2.webp
rename to translated_images/zh-HK/MaxWingspan-lineplot.b12169f99d26fdd2.webp
diff --git a/translated_images/hk/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp b/translated_images/zh-HK/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
similarity index 100%
rename from translated_images/hk/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
rename to translated_images/zh-HK/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
diff --git a/translated_images/hk/MaxWingspan-scatterplot.60dc9e0e19d32700.webp b/translated_images/zh-HK/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
similarity index 100%
rename from translated_images/hk/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
rename to translated_images/zh-HK/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
diff --git a/translated_images/hk/aml-1.67281a85d3a1e2f3.webp b/translated_images/zh-HK/aml-1.67281a85d3a1e2f3.webp
similarity index 100%
rename from translated_images/hk/aml-1.67281a85d3a1e2f3.webp
rename to translated_images/zh-HK/aml-1.67281a85d3a1e2f3.webp
diff --git a/translated_images/hk/aml-2.c9fb9cffb39ccbbe.webp b/translated_images/zh-HK/aml-2.c9fb9cffb39ccbbe.webp
similarity index 100%
rename from translated_images/hk/aml-2.c9fb9cffb39ccbbe.webp
rename to translated_images/zh-HK/aml-2.c9fb9cffb39ccbbe.webp
diff --git a/translated_images/hk/aml-3.a7952e4295f38cc6.webp b/translated_images/zh-HK/aml-3.a7952e4295f38cc6.webp
similarity index 100%
rename from translated_images/hk/aml-3.a7952e4295f38cc6.webp
rename to translated_images/zh-HK/aml-3.a7952e4295f38cc6.webp
diff --git a/translated_images/hk/aml-4.7a627e09cb6f16d0.webp b/translated_images/zh-HK/aml-4.7a627e09cb6f16d0.webp
similarity index 100%
rename from translated_images/hk/aml-4.7a627e09cb6f16d0.webp
rename to translated_images/zh-HK/aml-4.7a627e09cb6f16d0.webp
diff --git a/translated_images/hk/bad-chart-1.596bc93425a8ac30.webp b/translated_images/zh-HK/bad-chart-1.596bc93425a8ac30.webp
similarity index 100%
rename from translated_images/hk/bad-chart-1.596bc93425a8ac30.webp
rename to translated_images/zh-HK/bad-chart-1.596bc93425a8ac30.webp
diff --git a/translated_images/hk/bad-chart-1.93130f495b748bed.webp b/translated_images/zh-HK/bad-chart-1.93130f495b748bed.webp
similarity index 100%
rename from translated_images/hk/bad-chart-1.93130f495b748bed.webp
rename to translated_images/zh-HK/bad-chart-1.93130f495b748bed.webp
diff --git a/translated_images/hk/bad-chart-2.62edf4d2f30f4e51.webp b/translated_images/zh-HK/bad-chart-2.62edf4d2f30f4e51.webp
similarity index 100%
rename from translated_images/hk/bad-chart-2.62edf4d2f30f4e51.webp
rename to translated_images/zh-HK/bad-chart-2.62edf4d2f30f4e51.webp
diff --git a/translated_images/hk/bad-chart-2.c20e36dd4e6f617c.webp b/translated_images/zh-HK/bad-chart-2.c20e36dd4e6f617c.webp
similarity index 100%
rename from translated_images/hk/bad-chart-2.c20e36dd4e6f617c.webp
rename to translated_images/zh-HK/bad-chart-2.c20e36dd4e6f617c.webp
diff --git a/translated_images/hk/bad-chart-3.6865d0afac4108d7.webp b/translated_images/zh-HK/bad-chart-3.6865d0afac4108d7.webp
similarity index 100%
rename from translated_images/hk/bad-chart-3.6865d0afac4108d7.webp
rename to translated_images/zh-HK/bad-chart-3.6865d0afac4108d7.webp
diff --git a/translated_images/hk/bad-chart-3.e201e2e915a230bc.webp b/translated_images/zh-HK/bad-chart-3.e201e2e915a230bc.webp
similarity index 100%
rename from translated_images/hk/bad-chart-3.e201e2e915a230bc.webp
rename to translated_images/zh-HK/bad-chart-3.e201e2e915a230bc.webp
diff --git a/translated_images/hk/bad-chart-4.68cfdf4011b45447.webp b/translated_images/zh-HK/bad-chart-4.68cfdf4011b45447.webp
similarity index 100%
rename from translated_images/hk/bad-chart-4.68cfdf4011b45447.webp
rename to translated_images/zh-HK/bad-chart-4.68cfdf4011b45447.webp
diff --git a/translated_images/hk/bad-chart-4.8872b2b881ffa96c.webp b/translated_images/zh-HK/bad-chart-4.8872b2b881ffa96c.webp
similarity index 100%
rename from translated_images/hk/bad-chart-4.8872b2b881ffa96c.webp
rename to translated_images/zh-HK/bad-chart-4.8872b2b881ffa96c.webp
diff --git a/translated_images/pt/bee.0aa1d91132b12e3a.webp b/translated_images/zh-HK/bee.0aa1d91132b12e3a.webp
similarity index 100%
rename from translated_images/pt/bee.0aa1d91132b12e3a.webp
rename to translated_images/zh-HK/bee.0aa1d91132b12e3a.webp
diff --git a/translated_images/hk/bodymass-per-order.9d2b065dd931b928.webp b/translated_images/zh-HK/bodymass-per-order.9d2b065dd931b928.webp
similarity index 100%
rename from translated_images/hk/bodymass-per-order.9d2b065dd931b928.webp
rename to translated_images/zh-HK/bodymass-per-order.9d2b065dd931b928.webp
diff --git a/translated_images/hk/bodymass-smooth.d31ce526d82b0a1f.webp b/translated_images/zh-HK/bodymass-smooth.d31ce526d82b0a1f.webp
similarity index 100%
rename from translated_images/hk/bodymass-smooth.d31ce526d82b0a1f.webp
rename to translated_images/zh-HK/bodymass-smooth.d31ce526d82b0a1f.webp
diff --git a/translated_images/hk/boxplot_byrole.036b27a1c3f52d42.webp b/translated_images/zh-HK/boxplot_byrole.036b27a1c3f52d42.webp
similarity index 100%
rename from translated_images/hk/boxplot_byrole.036b27a1c3f52d42.webp
rename to translated_images/zh-HK/boxplot_byrole.036b27a1c3f52d42.webp
diff --git a/translated_images/hk/boxplot_explanation.4039b7de08780fd4.webp b/translated_images/zh-HK/boxplot_explanation.4039b7de08780fd4.webp
similarity index 100%
rename from translated_images/hk/boxplot_explanation.4039b7de08780fd4.webp
rename to translated_images/zh-HK/boxplot_explanation.4039b7de08780fd4.webp
diff --git a/translated_images/hk/busing.7b9e3b41cd4b981c.webp b/translated_images/zh-HK/busing.7b9e3b41cd4b981c.webp
similarity index 100%
rename from translated_images/hk/busing.7b9e3b41cd4b981c.webp
rename to translated_images/zh-HK/busing.7b9e3b41cd4b981c.webp
diff --git a/translated_images/hk/busing.8157cf1bc89a3f65.webp b/translated_images/zh-HK/busing.8157cf1bc89a3f65.webp
similarity index 100%
rename from translated_images/hk/busing.8157cf1bc89a3f65.webp
rename to translated_images/zh-HK/busing.8157cf1bc89a3f65.webp
diff --git a/translated_images/hk/category-counts-02.0b9a0a4de42275ae.webp b/translated_images/zh-HK/category-counts-02.0b9a0a4de42275ae.webp
similarity index 100%
rename from translated_images/hk/category-counts-02.0b9a0a4de42275ae.webp
rename to translated_images/zh-HK/category-counts-02.0b9a0a4de42275ae.webp
diff --git a/translated_images/pt/category-counts.abee8188c4c9b6f0.webp b/translated_images/zh-HK/category-counts.abee8188c4c9b6f0.webp
similarity index 100%
rename from translated_images/pt/category-counts.abee8188c4c9b6f0.webp
rename to translated_images/zh-HK/category-counts.abee8188c4c9b6f0.webp
diff --git a/translated_images/hk/category-length-02.7304bf519375c980.webp b/translated_images/zh-HK/category-length-02.7304bf519375c980.webp
similarity index 100%
rename from translated_images/hk/category-length-02.7304bf519375c980.webp
rename to translated_images/zh-HK/category-length-02.7304bf519375c980.webp
diff --git a/translated_images/hk/category-length.7e34c296690e85d6.webp b/translated_images/zh-HK/category-length.7e34c296690e85d6.webp
similarity index 100%
rename from translated_images/hk/category-length.7e34c296690e85d6.webp
rename to translated_images/zh-HK/category-length.7e34c296690e85d6.webp
diff --git a/translated_images/pt/category-length.b0d9a0208a7b3713.webp b/translated_images/zh-HK/category-length.b0d9a0208a7b3713.webp
similarity index 100%
rename from translated_images/pt/category-length.b0d9a0208a7b3713.webp
rename to translated_images/zh-HK/category-length.b0d9a0208a7b3713.webp
diff --git a/translated_images/pt/cloud-picture.f5526de3c6c6387b.webp b/translated_images/zh-HK/cloud-picture.f5526de3c6c6387b.webp
similarity index 100%
rename from translated_images/pt/cloud-picture.f5526de3c6c6387b.webp
rename to translated_images/zh-HK/cloud-picture.f5526de3c6c6387b.webp
diff --git a/translated_images/hk/cluster-1.b78cb630bb543729.webp b/translated_images/zh-HK/cluster-1.b78cb630bb543729.webp
similarity index 100%
rename from translated_images/hk/cluster-1.b78cb630bb543729.webp
rename to translated_images/zh-HK/cluster-1.b78cb630bb543729.webp
diff --git a/translated_images/hk/cluster-2.ea30cdbc9f926bb9.webp b/translated_images/zh-HK/cluster-2.ea30cdbc9f926bb9.webp
similarity index 100%
rename from translated_images/hk/cluster-2.ea30cdbc9f926bb9.webp
rename to translated_images/zh-HK/cluster-2.ea30cdbc9f926bb9.webp
diff --git a/translated_images/hk/cluster-3.8a334bc070ec173a.webp b/translated_images/zh-HK/cluster-3.8a334bc070ec173a.webp
similarity index 100%
rename from translated_images/hk/cluster-3.8a334bc070ec173a.webp
rename to translated_images/zh-HK/cluster-3.8a334bc070ec173a.webp
diff --git a/translated_images/hk/columnar-db.ffcfe73c3e9063a8.webp b/translated_images/zh-HK/columnar-db.ffcfe73c3e9063a8.webp
similarity index 100%
rename from translated_images/hk/columnar-db.ffcfe73c3e9063a8.webp
rename to translated_images/zh-HK/columnar-db.ffcfe73c3e9063a8.webp
diff --git a/translated_images/pt/communication.06d8e2a88d30d168.webp b/translated_images/zh-HK/communication.06d8e2a88d30d168.webp
similarity index 100%
rename from translated_images/pt/communication.06d8e2a88d30d168.webp
rename to translated_images/zh-HK/communication.06d8e2a88d30d168.webp
diff --git a/translated_images/hk/comparingdata.f486a450d61c7ca5.webp b/translated_images/zh-HK/comparingdata.f486a450d61c7ca5.webp
similarity index 100%
rename from translated_images/hk/comparingdata.f486a450d61c7ca5.webp
rename to translated_images/zh-HK/comparingdata.f486a450d61c7ca5.webp
diff --git a/translated_images/hk/compute-instance-1.dba347cb199ca499.webp b/translated_images/zh-HK/compute-instance-1.dba347cb199ca499.webp
similarity index 100%
rename from translated_images/hk/compute-instance-1.dba347cb199ca499.webp
rename to translated_images/zh-HK/compute-instance-1.dba347cb199ca499.webp
diff --git a/translated_images/hk/consumption-1.700abd196452842a.webp b/translated_images/zh-HK/consumption-1.700abd196452842a.webp
similarity index 100%
rename from translated_images/hk/consumption-1.700abd196452842a.webp
rename to translated_images/zh-HK/consumption-1.700abd196452842a.webp
diff --git a/translated_images/hk/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp b/translated_images/zh-HK/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
similarity index 100%
rename from translated_images/hk/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
rename to translated_images/zh-HK/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
diff --git a/translated_images/hk/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp b/translated_images/zh-HK/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
similarity index 100%
rename from translated_images/hk/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
rename to translated_images/zh-HK/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
diff --git a/translated_images/hk/cosmosdb-emulator-persons.bf640586a7077c89.webp b/translated_images/zh-HK/cosmosdb-emulator-persons.bf640586a7077c89.webp
similarity index 100%
rename from translated_images/hk/cosmosdb-emulator-persons.bf640586a7077c89.webp
rename to translated_images/zh-HK/cosmosdb-emulator-persons.bf640586a7077c89.webp
diff --git a/translated_images/mo/covidspread.f3d131c4f1d260ab.webp b/translated_images/zh-HK/covidspread.f3d131c4f1d260ab.webp
similarity index 100%
rename from translated_images/mo/covidspread.f3d131c4f1d260ab.webp
rename to translated_images/zh-HK/covidspread.f3d131c4f1d260ab.webp
diff --git a/translated_images/hk/covidtreat.b2ba59f57ca45fbc.webp b/translated_images/zh-HK/covidtreat.b2ba59f57ca45fbc.webp
similarity index 100%
rename from translated_images/hk/covidtreat.b2ba59f57ca45fbc.webp
rename to translated_images/zh-HK/covidtreat.b2ba59f57ca45fbc.webp
diff --git a/translated_images/mo/data-love.a22ef29e6742c852.webp b/translated_images/zh-HK/data-love.a22ef29e6742c852.webp
similarity index 100%
rename from translated_images/mo/data-love.a22ef29e6742c852.webp
rename to translated_images/zh-HK/data-love.a22ef29e6742c852.webp
diff --git a/translated_images/hk/data-science-applications.4e5019cd8790ebac.webp b/translated_images/zh-HK/data-science-applications.4e5019cd8790ebac.webp
similarity index 100%
rename from translated_images/hk/data-science-applications.4e5019cd8790ebac.webp
rename to translated_images/zh-HK/data-science-applications.4e5019cd8790ebac.webp
diff --git a/translated_images/hk/data-science-lifecycle.a1e362637503c4fb.webp b/translated_images/zh-HK/data-science-lifecycle.a1e362637503c4fb.webp
similarity index 100%
rename from translated_images/hk/data-science-lifecycle.a1e362637503c4fb.webp
rename to translated_images/zh-HK/data-science-lifecycle.a1e362637503c4fb.webp
diff --git a/translated_images/hk/data.48e22bb7617d8d92.webp b/translated_images/zh-HK/data.48e22bb7617d8d92.webp
similarity index 100%
rename from translated_images/hk/data.48e22bb7617d8d92.webp
rename to translated_images/zh-HK/data.48e22bb7617d8d92.webp
diff --git a/translated_images/hk/dataframe-1.caf409f0c688e84c.webp b/translated_images/zh-HK/dataframe-1.caf409f0c688e84c.webp
similarity index 100%
rename from translated_images/hk/dataframe-1.caf409f0c688e84c.webp
rename to translated_images/zh-HK/dataframe-1.caf409f0c688e84c.webp
diff --git a/translated_images/hk/datascienceinthecloud.59ffb059a670fb0a.webp b/translated_images/zh-HK/datascienceinthecloud.59ffb059a670fb0a.webp
similarity index 100%
rename from translated_images/hk/datascienceinthecloud.59ffb059a670fb0a.webp
rename to translated_images/zh-HK/datascienceinthecloud.59ffb059a670fb0a.webp
diff --git a/translated_images/hk/dataset-1.e86ab4e10907a6e9.webp b/translated_images/zh-HK/dataset-1.e86ab4e10907a6e9.webp
similarity index 100%
rename from translated_images/hk/dataset-1.e86ab4e10907a6e9.webp
rename to translated_images/zh-HK/dataset-1.e86ab4e10907a6e9.webp
diff --git a/translated_images/hk/dataset-2.f58de1c435d5bf9c.webp b/translated_images/zh-HK/dataset-2.f58de1c435d5bf9c.webp
similarity index 100%
rename from translated_images/hk/dataset-2.f58de1c435d5bf9c.webp
rename to translated_images/zh-HK/dataset-2.f58de1c435d5bf9c.webp
diff --git a/translated_images/hk/dataset-3.58db8c0eb783e892.webp b/translated_images/zh-HK/dataset-3.58db8c0eb783e892.webp
similarity index 100%
rename from translated_images/hk/dataset-3.58db8c0eb783e892.webp
rename to translated_images/zh-HK/dataset-3.58db8c0eb783e892.webp
diff --git a/translated_images/mo/density-plot.675ccf865b76c690.webp b/translated_images/zh-HK/density-plot.675ccf865b76c690.webp
similarity index 100%
rename from translated_images/mo/density-plot.675ccf865b76c690.webp
rename to translated_images/zh-HK/density-plot.675ccf865b76c690.webp
diff --git a/translated_images/mo/density1.8801043bd4af2567.webp b/translated_images/zh-HK/density1.8801043bd4af2567.webp
similarity index 100%
rename from translated_images/mo/density1.8801043bd4af2567.webp
rename to translated_images/zh-HK/density1.8801043bd4af2567.webp
diff --git a/translated_images/hk/density2.8e7647257060ff54.webp b/translated_images/zh-HK/density2.8e7647257060ff54.webp
similarity index 100%
rename from translated_images/hk/density2.8e7647257060ff54.webp
rename to translated_images/zh-HK/density2.8e7647257060ff54.webp
diff --git a/translated_images/hk/density3.84ae27da82f31e6b.webp b/translated_images/zh-HK/density3.84ae27da82f31e6b.webp
similarity index 100%
rename from translated_images/hk/density3.84ae27da82f31e6b.webp
rename to translated_images/zh-HK/density3.84ae27da82f31e6b.webp
diff --git a/translated_images/hk/density4.e9d6c033f15c500f.webp b/translated_images/zh-HK/density4.e9d6c033f15c500f.webp
similarity index 100%
rename from translated_images/hk/density4.e9d6c033f15c500f.webp
rename to translated_images/zh-HK/density4.e9d6c033f15c500f.webp
diff --git a/translated_images/hk/deploy-1.ddad725acadc84e3.webp b/translated_images/zh-HK/deploy-1.ddad725acadc84e3.webp
similarity index 100%
rename from translated_images/hk/deploy-1.ddad725acadc84e3.webp
rename to translated_images/zh-HK/deploy-1.ddad725acadc84e3.webp
diff --git a/translated_images/hk/deploy-2.94dbb13f23908647.webp b/translated_images/zh-HK/deploy-2.94dbb13f23908647.webp
similarity index 100%
rename from translated_images/hk/deploy-2.94dbb13f23908647.webp
rename to translated_images/zh-HK/deploy-2.94dbb13f23908647.webp
diff --git a/translated_images/hk/deploy-3.fecefef070e8ef3b.webp b/translated_images/zh-HK/deploy-3.fecefef070e8ef3b.webp
similarity index 100%
rename from translated_images/hk/deploy-3.fecefef070e8ef3b.webp
rename to translated_images/zh-HK/deploy-3.fecefef070e8ef3b.webp
diff --git a/translated_images/hk/dist1-wb.0d0cac82e2974fbb.webp b/translated_images/zh-HK/dist1-wb.0d0cac82e2974fbb.webp
similarity index 100%
rename from translated_images/hk/dist1-wb.0d0cac82e2974fbb.webp
rename to translated_images/zh-HK/dist1-wb.0d0cac82e2974fbb.webp
diff --git a/translated_images/pt/dist1.0010100b00231819.webp b/translated_images/zh-HK/dist1.0010100b00231819.webp
similarity index 100%
rename from translated_images/pt/dist1.0010100b00231819.webp
rename to translated_images/zh-HK/dist1.0010100b00231819.webp
diff --git a/translated_images/hk/dist2-wb.2c0a7a3499b2fbf5.webp b/translated_images/zh-HK/dist2-wb.2c0a7a3499b2fbf5.webp
similarity index 100%
rename from translated_images/hk/dist2-wb.2c0a7a3499b2fbf5.webp
rename to translated_images/zh-HK/dist2-wb.2c0a7a3499b2fbf5.webp
diff --git a/translated_images/pt/dist2.c398bfd5320401b9.webp b/translated_images/zh-HK/dist2.c398bfd5320401b9.webp
similarity index 100%
rename from translated_images/pt/dist2.c398bfd5320401b9.webp
rename to translated_images/zh-HK/dist2.c398bfd5320401b9.webp
diff --git a/translated_images/hk/dist3-wb.64b88db7f9780200.webp b/translated_images/zh-HK/dist3-wb.64b88db7f9780200.webp
similarity index 100%
rename from translated_images/hk/dist3-wb.64b88db7f9780200.webp
rename to translated_images/zh-HK/dist3-wb.64b88db7f9780200.webp
diff --git a/translated_images/pt/dist3.ad4d9658559690f5.webp b/translated_images/zh-HK/dist3.ad4d9658559690f5.webp
similarity index 100%
rename from translated_images/pt/dist3.ad4d9658559690f5.webp
rename to translated_images/zh-HK/dist3.ad4d9658559690f5.webp
diff --git a/translated_images/hk/distribution-30bins.6a3921ea7a421bf7.webp b/translated_images/zh-HK/distribution-30bins.6a3921ea7a421bf7.webp
similarity index 100%
rename from translated_images/hk/distribution-30bins.6a3921ea7a421bf7.webp
rename to translated_images/zh-HK/distribution-30bins.6a3921ea7a421bf7.webp
diff --git a/translated_images/hk/distribution-over-the-entire-dataset.d22afd3fa96be854.webp b/translated_images/zh-HK/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
similarity index 100%
rename from translated_images/hk/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
rename to translated_images/zh-HK/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
diff --git a/translated_images/hk/document-db.ddeec48c6dc9e5fd.webp b/translated_images/zh-HK/document-db.ddeec48c6dc9e5fd.webp
similarity index 100%
rename from translated_images/hk/document-db.ddeec48c6dc9e5fd.webp
rename to translated_images/zh-HK/document-db.ddeec48c6dc9e5fd.webp
diff --git a/translated_images/hk/donut-wb.34e6fb275da9d834.webp b/translated_images/zh-HK/donut-wb.34e6fb275da9d834.webp
similarity index 100%
rename from translated_images/hk/donut-wb.34e6fb275da9d834.webp
rename to translated_images/zh-HK/donut-wb.34e6fb275da9d834.webp
diff --git a/translated_images/hk/donut-wb.be3c12a22712302b.webp b/translated_images/zh-HK/donut-wb.be3c12a22712302b.webp
similarity index 100%
rename from translated_images/hk/donut-wb.be3c12a22712302b.webp
rename to translated_images/zh-HK/donut-wb.be3c12a22712302b.webp
diff --git a/translated_images/pt/donut.f016d7be7f08c8f8.webp b/translated_images/zh-HK/donut.f016d7be7f08c8f8.webp
similarity index 100%
rename from translated_images/pt/donut.f016d7be7f08c8f8.webp
rename to translated_images/zh-HK/donut.f016d7be7f08c8f8.webp
diff --git a/translated_images/hk/ds-for-beginners.d01930c9193ef522.webp b/translated_images/zh-HK/ds-for-beginners.d01930c9193ef522.webp
similarity index 100%
rename from translated_images/hk/ds-for-beginners.d01930c9193ef522.webp
rename to translated_images/zh-HK/ds-for-beginners.d01930c9193ef522.webp
diff --git a/translated_images/hk/ds_wordcloud.664a7c07dca57de0.webp b/translated_images/zh-HK/ds_wordcloud.664a7c07dca57de0.webp
similarity index 100%
rename from translated_images/hk/ds_wordcloud.664a7c07dca57de0.webp
rename to translated_images/zh-HK/ds_wordcloud.664a7c07dca57de0.webp
diff --git a/translated_images/hk/dual-line.a4c28ce659603fab.webp b/translated_images/zh-HK/dual-line.a4c28ce659603fab.webp
similarity index 100%
rename from translated_images/hk/dual-line.a4c28ce659603fab.webp
rename to translated_images/zh-HK/dual-line.a4c28ce659603fab.webp
diff --git a/translated_images/hk/dual-line.fc4665f360a54018.webp b/translated_images/zh-HK/dual-line.fc4665f360a54018.webp
similarity index 100%
rename from translated_images/hk/dual-line.fc4665f360a54018.webp
rename to translated_images/zh-HK/dual-line.fc4665f360a54018.webp
diff --git a/translated_images/mo/facet.491ad90d61c2a7cc.webp b/translated_images/zh-HK/facet.491ad90d61c2a7cc.webp
similarity index 100%
rename from translated_images/mo/facet.491ad90d61c2a7cc.webp
rename to translated_images/zh-HK/facet.491ad90d61c2a7cc.webp
diff --git a/translated_images/hk/facet.6a34851dcd540050.webp b/translated_images/zh-HK/facet.6a34851dcd540050.webp
similarity index 100%
rename from translated_images/hk/facet.6a34851dcd540050.webp
rename to translated_images/zh-HK/facet.6a34851dcd540050.webp
diff --git a/translated_images/pt/favicon.37b561214b36d454.webp b/translated_images/zh-HK/favicon.37b561214b36d454.webp
similarity index 100%
rename from translated_images/pt/favicon.37b561214b36d454.webp
rename to translated_images/zh-HK/favicon.37b561214b36d454.webp
diff --git a/translated_images/hk/filtered-histogram.6bf5d2bfd8253322.webp b/translated_images/zh-HK/filtered-histogram.6bf5d2bfd8253322.webp
similarity index 100%
rename from translated_images/hk/filtered-histogram.6bf5d2bfd8253322.webp
rename to translated_images/zh-HK/filtered-histogram.6bf5d2bfd8253322.webp
diff --git a/translated_images/hk/formula-excel.ad1068c220892f5e.webp b/translated_images/zh-HK/formula-excel.ad1068c220892f5e.webp
similarity index 100%
rename from translated_images/hk/formula-excel.ad1068c220892f5e.webp
rename to translated_images/zh-HK/formula-excel.ad1068c220892f5e.webp
diff --git a/translated_images/hk/full-data-bar-02.aaa3fda71c63ed56.webp b/translated_images/zh-HK/full-data-bar-02.aaa3fda71c63ed56.webp
similarity index 100%
rename from translated_images/hk/full-data-bar-02.aaa3fda71c63ed56.webp
rename to translated_images/zh-HK/full-data-bar-02.aaa3fda71c63ed56.webp
diff --git a/translated_images/hk/full-data-bar.a0b37da71a6cd236.webp b/translated_images/zh-HK/full-data-bar.a0b37da71a6cd236.webp
similarity index 100%
rename from translated_images/hk/full-data-bar.a0b37da71a6cd236.webp
rename to translated_images/zh-HK/full-data-bar.a0b37da71a6cd236.webp
diff --git a/translated_images/hk/function-excel.be2ae4feddc10ca0.webp b/translated_images/zh-HK/function-excel.be2ae4feddc10ca0.webp
similarity index 100%
rename from translated_images/hk/function-excel.be2ae4feddc10ca0.webp
rename to translated_images/zh-HK/function-excel.be2ae4feddc10ca0.webp
diff --git a/translated_images/hk/graph-db.d13629152f79a9da.webp b/translated_images/zh-HK/graph-db.d13629152f79a9da.webp
similarity index 100%
rename from translated_images/hk/graph-db.d13629152f79a9da.webp
rename to translated_images/zh-HK/graph-db.d13629152f79a9da.webp
diff --git a/translated_images/pt/height-boxplot.ccb66b2848b5f51c.webp b/translated_images/zh-HK/height-boxplot.ccb66b2848b5f51c.webp
similarity index 100%
rename from translated_images/pt/height-boxplot.ccb66b2848b5f51c.webp
rename to translated_images/zh-HK/height-boxplot.ccb66b2848b5f51c.webp
diff --git a/translated_images/hk/histogram-conservation-wb.3c40450eb072c14d.webp b/translated_images/zh-HK/histogram-conservation-wb.3c40450eb072c14d.webp
similarity index 100%
rename from translated_images/hk/histogram-conservation-wb.3c40450eb072c14d.webp
rename to translated_images/zh-HK/histogram-conservation-wb.3c40450eb072c14d.webp
diff --git a/translated_images/hk/histogram-conservation.13b3542e7784e415.webp b/translated_images/zh-HK/histogram-conservation.13b3542e7784e415.webp
similarity index 100%
rename from translated_images/hk/histogram-conservation.13b3542e7784e415.webp
rename to translated_images/zh-HK/histogram-conservation.13b3542e7784e415.webp
diff --git a/translated_images/hk/kv-db.e8f2b75686bbdfcb.webp b/translated_images/zh-HK/kv-db.e8f2b75686bbdfcb.webp
similarity index 100%
rename from translated_images/hk/kv-db.e8f2b75686bbdfcb.webp
rename to translated_images/zh-HK/kv-db.e8f2b75686bbdfcb.webp
diff --git a/translated_images/hk/labeled-wingspan-02.6110e2d2401cd523.webp b/translated_images/zh-HK/labeled-wingspan-02.6110e2d2401cd523.webp
similarity index 100%
rename from translated_images/hk/labeled-wingspan-02.6110e2d2401cd523.webp
rename to translated_images/zh-HK/labeled-wingspan-02.6110e2d2401cd523.webp
diff --git a/translated_images/hk/labeled-wingspan.900ffedd7e3ec6de.webp b/translated_images/zh-HK/labeled-wingspan.900ffedd7e3ec6de.webp
similarity index 100%
rename from translated_images/hk/labeled-wingspan.900ffedd7e3ec6de.webp
rename to translated_images/zh-HK/labeled-wingspan.900ffedd7e3ec6de.webp
diff --git a/translated_images/hk/less-smooth-bodymass.10f4db8b683cc17d.webp b/translated_images/zh-HK/less-smooth-bodymass.10f4db8b683cc17d.webp
similarity index 100%
rename from translated_images/hk/less-smooth-bodymass.10f4db8b683cc17d.webp
rename to translated_images/zh-HK/less-smooth-bodymass.10f4db8b683cc17d.webp
diff --git a/translated_images/hk/liaisons.7b440b28f6d07ea4.webp b/translated_images/zh-HK/liaisons.7b440b28f6d07ea4.webp
similarity index 100%
rename from translated_images/hk/liaisons.7b440b28f6d07ea4.webp
rename to translated_images/zh-HK/liaisons.7b440b28f6d07ea4.webp
diff --git a/translated_images/hk/liaisons.90ce7360bcf84765.webp b/translated_images/zh-HK/liaisons.90ce7360bcf84765.webp
similarity index 100%
rename from translated_images/hk/liaisons.90ce7360bcf84765.webp
rename to translated_images/zh-HK/liaisons.90ce7360bcf84765.webp
diff --git a/translated_images/hk/line1.299b576fbb2a59e6.webp b/translated_images/zh-HK/line1.299b576fbb2a59e6.webp
similarity index 100%
rename from translated_images/hk/line1.299b576fbb2a59e6.webp
rename to translated_images/zh-HK/line1.299b576fbb2a59e6.webp
diff --git a/translated_images/hk/line1.f36eb465229a3b1f.webp b/translated_images/zh-HK/line1.f36eb465229a3b1f.webp
similarity index 100%
rename from translated_images/hk/line1.f36eb465229a3b1f.webp
rename to translated_images/zh-HK/line1.f36eb465229a3b1f.webp
diff --git a/translated_images/hk/line2.3b18fcda7176ceba.webp b/translated_images/zh-HK/line2.3b18fcda7176ceba.webp
similarity index 100%
rename from translated_images/hk/line2.3b18fcda7176ceba.webp
rename to translated_images/zh-HK/line2.3b18fcda7176ceba.webp
diff --git a/translated_images/hk/line2.a5b3493dc01058af.webp b/translated_images/zh-HK/line2.a5b3493dc01058af.webp
similarity index 100%
rename from translated_images/hk/line2.a5b3493dc01058af.webp
rename to translated_images/zh-HK/line2.a5b3493dc01058af.webp
diff --git a/translated_images/hk/max-length-per-order.e5b283d952c78c12.webp b/translated_images/zh-HK/max-length-per-order.e5b283d952c78c12.webp
similarity index 100%
rename from translated_images/hk/max-length-per-order.e5b283d952c78c12.webp
rename to translated_images/zh-HK/max-length-per-order.e5b283d952c78c12.webp
diff --git a/translated_images/pt/max-wingspan-02.e79fd847b2640b89.webp b/translated_images/zh-HK/max-wingspan-02.e79fd847b2640b89.webp
similarity index 100%
rename from translated_images/pt/max-wingspan-02.e79fd847b2640b89.webp
rename to translated_images/zh-HK/max-wingspan-02.e79fd847b2640b89.webp
diff --git a/translated_images/hk/max-wingspan-labels-02.aa90e826ca49a9d1.webp b/translated_images/zh-HK/max-wingspan-labels-02.aa90e826ca49a9d1.webp
similarity index 100%
rename from translated_images/hk/max-wingspan-labels-02.aa90e826ca49a9d1.webp
rename to translated_images/zh-HK/max-wingspan-labels-02.aa90e826ca49a9d1.webp
diff --git a/translated_images/pt/max-wingspan-labels.46f0cc3c48edd4e0.webp b/translated_images/zh-HK/max-wingspan-labels.46f0cc3c48edd4e0.webp
similarity index 100%
rename from translated_images/pt/max-wingspan-labels.46f0cc3c48edd4e0.webp
rename to translated_images/zh-HK/max-wingspan-labels.46f0cc3c48edd4e0.webp
diff --git a/translated_images/pt/max-wingspan.0b8d0858436414aa.webp b/translated_images/zh-HK/max-wingspan.0b8d0858436414aa.webp
similarity index 100%
rename from translated_images/pt/max-wingspan.0b8d0858436414aa.webp
rename to translated_images/zh-HK/max-wingspan.0b8d0858436414aa.webp
diff --git a/translated_images/hk/multi.56548caa9eae8d0f.webp b/translated_images/zh-HK/multi.56548caa9eae8d0f.webp
similarity index 100%
rename from translated_images/hk/multi.56548caa9eae8d0f.webp
rename to translated_images/zh-HK/multi.56548caa9eae8d0f.webp
diff --git a/translated_images/hk/new-container.650e10c7a20a5f83.webp b/translated_images/zh-HK/new-container.650e10c7a20a5f83.webp
similarity index 100%
rename from translated_images/hk/new-container.650e10c7a20a5f83.webp
rename to translated_images/zh-HK/new-container.650e10c7a20a5f83.webp
diff --git a/translated_images/pt/normal-histogram.dfae0d67c202137d.webp b/translated_images/zh-HK/normal-histogram.dfae0d67c202137d.webp
similarity index 100%
rename from translated_images/pt/normal-histogram.dfae0d67c202137d.webp
rename to translated_images/zh-HK/normal-histogram.dfae0d67c202137d.webp
diff --git a/translated_images/hk/notebook-1.12998af7b02c83f5.webp b/translated_images/zh-HK/notebook-1.12998af7b02c83f5.webp
similarity index 100%
rename from translated_images/hk/notebook-1.12998af7b02c83f5.webp
rename to translated_images/zh-HK/notebook-1.12998af7b02c83f5.webp
diff --git a/translated_images/hk/notebook-2.9a657c037e34f1cf.webp b/translated_images/zh-HK/notebook-2.9a657c037e34f1cf.webp
similarity index 100%
rename from translated_images/hk/notebook-2.9a657c037e34f1cf.webp
rename to translated_images/zh-HK/notebook-2.9a657c037e34f1cf.webp
diff --git a/translated_images/hk/parts-of-spreadsheet.120711c82aa18a45.webp b/translated_images/zh-HK/parts-of-spreadsheet.120711c82aa18a45.webp
similarity index 100%
rename from translated_images/hk/parts-of-spreadsheet.120711c82aa18a45.webp
rename to translated_images/zh-HK/parts-of-spreadsheet.120711c82aa18a45.webp
diff --git a/translated_images/zh/pie1-wb.685df063673751f4.webp b/translated_images/zh-HK/pie1-wb.685df063673751f4.webp
similarity index 100%
rename from translated_images/zh/pie1-wb.685df063673751f4.webp
rename to translated_images/zh-HK/pie1-wb.685df063673751f4.webp
diff --git a/translated_images/zh/pie1-wb.e201f2fcc3354131.webp b/translated_images/zh-HK/pie1-wb.e201f2fcc3354131.webp
similarity index 100%
rename from translated_images/zh/pie1-wb.e201f2fcc3354131.webp
rename to translated_images/zh-HK/pie1-wb.e201f2fcc3354131.webp
diff --git a/translated_images/mo/pie1.8f6a8bfac96de60e.webp b/translated_images/zh-HK/pie1.8f6a8bfac96de60e.webp
similarity index 100%
rename from translated_images/mo/pie1.8f6a8bfac96de60e.webp
rename to translated_images/zh-HK/pie1.8f6a8bfac96de60e.webp
diff --git a/translated_images/hk/planetary-computer-explorer.c1e95a9b053167d6.webp b/translated_images/zh-HK/planetary-computer-explorer.c1e95a9b053167d6.webp
similarity index 100%
rename from translated_images/hk/planetary-computer-explorer.c1e95a9b053167d6.webp
rename to translated_images/zh-HK/planetary-computer-explorer.c1e95a9b053167d6.webp
diff --git a/translated_images/mo/probability-density.a8aad29f17a14afb.webp b/translated_images/zh-HK/probability-density.a8aad29f17a14afb.webp
similarity index 100%
rename from translated_images/mo/probability-density.a8aad29f17a14afb.webp
rename to translated_images/zh-HK/probability-density.a8aad29f17a14afb.webp
diff --git a/translated_images/hk/project-schema.420e56d495624541.webp b/translated_images/zh-HK/project-schema.420e56d495624541.webp
similarity index 100%
rename from translated_images/hk/project-schema.420e56d495624541.webp
rename to translated_images/zh-HK/project-schema.420e56d495624541.webp
diff --git a/translated_images/hk/project-schema.736f6e403f321eb4.webp b/translated_images/zh-HK/project-schema.736f6e403f321eb4.webp
similarity index 100%
rename from translated_images/hk/project-schema.736f6e403f321eb4.webp
rename to translated_images/zh-HK/project-schema.736f6e403f321eb4.webp
diff --git a/translated_images/hk/scatter-wb.9d98b0ed7f0388af.webp b/translated_images/zh-HK/scatter-wb.9d98b0ed7f0388af.webp
similarity index 100%
rename from translated_images/hk/scatter-wb.9d98b0ed7f0388af.webp
rename to translated_images/zh-HK/scatter-wb.9d98b0ed7f0388af.webp
diff --git a/translated_images/pt/scatter.520a43eceb46dbcb.webp b/translated_images/zh-HK/scatter.520a43eceb46dbcb.webp
similarity index 100%
rename from translated_images/pt/scatter.520a43eceb46dbcb.webp
rename to translated_images/zh-HK/scatter.520a43eceb46dbcb.webp
diff --git a/translated_images/hk/scatter1.5e1aa5fd6706c5d1.webp b/translated_images/zh-HK/scatter1.5e1aa5fd6706c5d1.webp
similarity index 100%
rename from translated_images/hk/scatter1.5e1aa5fd6706c5d1.webp
rename to translated_images/zh-HK/scatter1.5e1aa5fd6706c5d1.webp
diff --git a/translated_images/hk/scatter1.86b8900674d88b26.webp b/translated_images/zh-HK/scatter1.86b8900674d88b26.webp
similarity index 100%
rename from translated_images/hk/scatter1.86b8900674d88b26.webp
rename to translated_images/zh-HK/scatter1.86b8900674d88b26.webp
diff --git a/translated_images/hk/scatter2.4d1cbc693bad20e2.webp b/translated_images/zh-HK/scatter2.4d1cbc693bad20e2.webp
similarity index 100%
rename from translated_images/hk/scatter2.4d1cbc693bad20e2.webp
rename to translated_images/zh-HK/scatter2.4d1cbc693bad20e2.webp
diff --git a/translated_images/hk/scatter2.c0041a58621ca702.webp b/translated_images/zh-HK/scatter2.c0041a58621ca702.webp
similarity index 100%
rename from translated_images/hk/scatter2.c0041a58621ca702.webp
rename to translated_images/zh-HK/scatter2.c0041a58621ca702.webp
diff --git a/translated_images/hk/scatter3.3c160a3d1dcb36b3.webp b/translated_images/zh-HK/scatter3.3c160a3d1dcb36b3.webp
similarity index 100%
rename from translated_images/hk/scatter3.3c160a3d1dcb36b3.webp
rename to translated_images/zh-HK/scatter3.3c160a3d1dcb36b3.webp
diff --git a/translated_images/hk/scatter3.722d21e6f20b3ea2.webp b/translated_images/zh-HK/scatter3.722d21e6f20b3ea2.webp
similarity index 100%
rename from translated_images/hk/scatter3.722d21e6f20b3ea2.webp
rename to translated_images/zh-HK/scatter3.722d21e6f20b3ea2.webp
diff --git a/translated_images/hk/scatterplot-wingspan-02.1c33790094ce36a7.webp b/translated_images/zh-HK/scatterplot-wingspan-02.1c33790094ce36a7.webp
similarity index 100%
rename from translated_images/hk/scatterplot-wingspan-02.1c33790094ce36a7.webp
rename to translated_images/zh-HK/scatterplot-wingspan-02.1c33790094ce36a7.webp
diff --git a/translated_images/pt/scatterplot-wingspan.bdab448702939bb3.webp b/translated_images/zh-HK/scatterplot-wingspan.bdab448702939bb3.webp
similarity index 100%
rename from translated_images/pt/scatterplot-wingspan.bdab448702939bb3.webp
rename to translated_images/zh-HK/scatterplot-wingspan.bdab448702939bb3.webp
diff --git a/translated_images/hk/stacked-bar-chart.0c92264e89da7b39.webp b/translated_images/zh-HK/stacked-bar-chart.0c92264e89da7b39.webp
similarity index 100%
rename from translated_images/hk/stacked-bar-chart.0c92264e89da7b39.webp
rename to translated_images/zh-HK/stacked-bar-chart.0c92264e89da7b39.webp
diff --git a/translated_images/hk/superimposed-02.f03058536baeb2ed.webp b/translated_images/zh-HK/superimposed-02.f03058536baeb2ed.webp
similarity index 100%
rename from translated_images/hk/superimposed-02.f03058536baeb2ed.webp
rename to translated_images/zh-HK/superimposed-02.f03058536baeb2ed.webp
diff --git a/translated_images/hk/superimposed-values.5363f0705a1da416.webp b/translated_images/zh-HK/superimposed-values.5363f0705a1da416.webp
similarity index 100%
rename from translated_images/hk/superimposed-values.5363f0705a1da416.webp
rename to translated_images/zh-HK/superimposed-values.5363f0705a1da416.webp
diff --git a/translated_images/pt/superimposed.8b5bd0e8825d9c5c.webp b/translated_images/zh-HK/superimposed.8b5bd0e8825d9c5c.webp
similarity index 100%
rename from translated_images/pt/superimposed.8b5bd0e8825d9c5c.webp
rename to translated_images/zh-HK/superimposed.8b5bd0e8825d9c5c.webp
diff --git a/translated_images/hk/tdsp-lifecycle2.e19029d598e2e73d.webp b/translated_images/zh-HK/tdsp-lifecycle2.e19029d598e2e73d.webp
similarity index 100%
rename from translated_images/hk/tdsp-lifecycle2.e19029d598e2e73d.webp
rename to translated_images/zh-HK/tdsp-lifecycle2.e19029d598e2e73d.webp
diff --git a/translated_images/hk/timeseries-1.80de678ab1cf727e.webp b/translated_images/zh-HK/timeseries-1.80de678ab1cf727e.webp
similarity index 100%
rename from translated_images/hk/timeseries-1.80de678ab1cf727e.webp
rename to translated_images/zh-HK/timeseries-1.80de678ab1cf727e.webp
diff --git a/translated_images/mo/timeseries-2.aae51d575c55181c.webp b/translated_images/zh-HK/timeseries-2.aae51d575c55181c.webp
similarity index 100%
rename from translated_images/mo/timeseries-2.aae51d575c55181c.webp
rename to translated_images/zh-HK/timeseries-2.aae51d575c55181c.webp
diff --git a/translated_images/mo/timeseries-3.f3147cbc8c624881.webp b/translated_images/zh-HK/timeseries-3.f3147cbc8c624881.webp
similarity index 100%
rename from translated_images/mo/timeseries-3.f3147cbc8c624881.webp
rename to translated_images/zh-HK/timeseries-3.f3147cbc8c624881.webp
diff --git a/translated_images/hk/tornado.2880ffc7f135f82b.webp b/translated_images/zh-HK/tornado.2880ffc7f135f82b.webp
similarity index 100%
rename from translated_images/hk/tornado.2880ffc7f135f82b.webp
rename to translated_images/zh-HK/tornado.2880ffc7f135f82b.webp
diff --git a/translated_images/hk/tornado.9f42168791208f97.webp b/translated_images/zh-HK/tornado.9f42168791208f97.webp
similarity index 100%
rename from translated_images/hk/tornado.9f42168791208f97.webp
rename to translated_images/zh-HK/tornado.9f42168791208f97.webp
diff --git a/translated_images/hk/video-def-ds.6623ee2392ef1abf.webp b/translated_images/zh-HK/video-def-ds.6623ee2392ef1abf.webp
similarity index 100%
rename from translated_images/hk/video-def-ds.6623ee2392ef1abf.webp
rename to translated_images/zh-HK/video-def-ds.6623ee2392ef1abf.webp
diff --git a/translated_images/hk/video-ds-python.245247dc811db8e4.webp b/translated_images/zh-HK/video-ds-python.245247dc811db8e4.webp
similarity index 100%
rename from translated_images/hk/video-ds-python.245247dc811db8e4.webp
rename to translated_images/zh-HK/video-ds-python.245247dc811db8e4.webp
diff --git a/translated_images/hk/video-prob-and-stats.e4282e5efa2f2543.webp b/translated_images/zh-HK/video-prob-and-stats.e4282e5efa2f2543.webp
similarity index 100%
rename from translated_images/hk/video-prob-and-stats.e4282e5efa2f2543.webp
rename to translated_images/zh-HK/video-prob-and-stats.e4282e5efa2f2543.webp
diff --git a/translated_images/hk/waffle.5455dbae4ccf17d5.webp b/translated_images/zh-HK/waffle.5455dbae4ccf17d5.webp
similarity index 100%
rename from translated_images/hk/waffle.5455dbae4ccf17d5.webp
rename to translated_images/zh-HK/waffle.5455dbae4ccf17d5.webp
diff --git a/translated_images/hk/waffle.aaa75c5337735a6e.webp b/translated_images/zh-HK/waffle.aaa75c5337735a6e.webp
similarity index 100%
rename from translated_images/hk/waffle.aaa75c5337735a6e.webp
rename to translated_images/zh-HK/waffle.aaa75c5337735a6e.webp
diff --git a/translated_images/pt/weight-boxplot.1dbab1c03af26f8a.webp b/translated_images/zh-HK/weight-boxplot.1dbab1c03af26f8a.webp
similarity index 100%
rename from translated_images/pt/weight-boxplot.1dbab1c03af26f8a.webp
rename to translated_images/zh-HK/weight-boxplot.1dbab1c03af26f8a.webp
diff --git a/translated_images/mo/weight-height-relationship.3f06bde4ca2aba99.webp b/translated_images/zh-HK/weight-height-relationship.3f06bde4ca2aba99.webp
similarity index 100%
rename from translated_images/mo/weight-height-relationship.3f06bde4ca2aba99.webp
rename to translated_images/zh-HK/weight-height-relationship.3f06bde4ca2aba99.webp
diff --git a/translated_images/hk/weight-histogram.bfd00caf7fc30b14.webp b/translated_images/zh-HK/weight-histogram.bfd00caf7fc30b14.webp
similarity index 100%
rename from translated_images/hk/weight-histogram.bfd00caf7fc30b14.webp
rename to translated_images/zh-HK/weight-histogram.bfd00caf7fc30b14.webp
diff --git a/translated_images/hk/wingspan-conservation-collation.4024e9aa6910866a.webp b/translated_images/zh-HK/wingspan-conservation-collation.4024e9aa6910866a.webp
similarity index 100%
rename from translated_images/hk/wingspan-conservation-collation.4024e9aa6910866a.webp
rename to translated_images/zh-HK/wingspan-conservation-collation.4024e9aa6910866a.webp
diff --git a/translated_images/hk/workspace-1.ac8694d60b073ed1.webp b/translated_images/zh-HK/workspace-1.ac8694d60b073ed1.webp
similarity index 100%
rename from translated_images/hk/workspace-1.ac8694d60b073ed1.webp
rename to translated_images/zh-HK/workspace-1.ac8694d60b073ed1.webp
diff --git a/translated_images/hk/workspace-2.ae7c486db8796147.webp b/translated_images/zh-HK/workspace-2.ae7c486db8796147.webp
similarity index 100%
rename from translated_images/hk/workspace-2.ae7c486db8796147.webp
rename to translated_images/zh-HK/workspace-2.ae7c486db8796147.webp
diff --git a/translated_images/hk/workspace-3.398ca4a5858132cc.webp b/translated_images/zh-HK/workspace-3.398ca4a5858132cc.webp
similarity index 100%
rename from translated_images/hk/workspace-3.398ca4a5858132cc.webp
rename to translated_images/zh-HK/workspace-3.398ca4a5858132cc.webp
diff --git a/translated_images/hk/workspace-4.bac87f6599c4df63.webp b/translated_images/zh-HK/workspace-4.bac87f6599c4df63.webp
similarity index 100%
rename from translated_images/hk/workspace-4.bac87f6599c4df63.webp
rename to translated_images/zh-HK/workspace-4.bac87f6599c4df63.webp
diff --git a/translated_images/hk/workspace-5.a6eb17e0a5e64200.webp b/translated_images/zh-HK/workspace-5.a6eb17e0a5e64200.webp
similarity index 100%
rename from translated_images/hk/workspace-5.a6eb17e0a5e64200.webp
rename to translated_images/zh-HK/workspace-5.a6eb17e0a5e64200.webp
diff --git a/translated_images/hk/workspace-6.8dd81fe841797ee1.webp b/translated_images/zh-HK/workspace-6.8dd81fe841797ee1.webp
similarity index 100%
rename from translated_images/hk/workspace-6.8dd81fe841797ee1.webp
rename to translated_images/zh-HK/workspace-6.8dd81fe841797ee1.webp
diff --git a/translated_images/mo/.co-op-translator.json b/translated_images/zh-MO/.co-op-translator.json
similarity index 89%
rename from translated_images/mo/.co-op-translator.json
rename to translated_images/zh-MO/.co-op-translator.json
index a35b70d1..377feaed 100644
--- a/translated_images/mo/.co-op-translator.json
+++ b/translated_images/zh-MO/.co-op-translator.json
@@ -3,1092 +3,1092 @@
"original_hash": "ecf8b739e8b862f9c4dac338bd614aa7",
"translation_date": "2026-01-16T10:18:46+00:00",
"source_file": "sketchnotes/00-Roadmap.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"00-Title.8af36cd35da1ac55.webp": {
"original_hash": "533863b4c050b07b1d90ecb948237ffc",
"translation_date": "2026-01-16T10:21:41+00:00",
"source_file": "sketchnotes/00-Title.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"01-Definitions.1b14ddc9525dc0d9.webp": {
"original_hash": "56648d71e5fb4865d3f621010f220582",
"translation_date": "2026-01-16T10:21:35+00:00",
"source_file": "sketchnotes/01-Definitions.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"02-Ethics.728d166895302ab0.webp": {
"original_hash": "005bd88e9721003310c7b2f17dd0e35a",
"translation_date": "2026-01-16T10:25:00+00:00",
"source_file": "sketchnotes/02-Ethics.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"03-DefiningData.f800817186949e07.webp": {
"original_hash": "8c60eda506de75c669370430aa8ecc00",
"translation_date": "2026-01-16T10:22:47+00:00",
"source_file": "sketchnotes/03-DefiningData.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"04-Statistics-Probability.cfc569d84a9f1867.webp": {
"original_hash": "2ee100d33c054ce8a39267530f23377c",
"translation_date": "2026-01-16T10:25:10+00:00",
"source_file": "sketchnotes/04-Statistics-Probability.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"05-RelationalData.af50f5a3e50f7456.webp": {
"original_hash": "e4e0576bddd38fe9a4bd941f73d6de3b",
"translation_date": "2026-01-16T10:17:20+00:00",
"source_file": "sketchnotes/05-RelationalData.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"06-NoSQL.42a91ea0cd5769fe.webp": {
"original_hash": "f5873c65a3a544e1b1a94417c5ee55c8",
"translation_date": "2026-01-16T10:21:08+00:00",
"source_file": "sketchnotes/06-NoSQL.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"07-WorkWithPython.8bf4a5013718bef9.webp": {
"original_hash": "5cbac0986c16de6e4347ed8e6ae6f9c3",
"translation_date": "2026-01-16T10:23:27+00:00",
"source_file": "sketchnotes/07-WorkWithPython.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"08-DataPreparation.e3b185c37958e964.webp": {
"original_hash": "0201767bfac86b208c4c9de0fce95141",
"translation_date": "2026-01-16T10:16:54+00:00",
"source_file": "sketchnotes/08-DataPreparation.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"09-Visualizing-Quantities.5c846edd805a5238.webp": {
"original_hash": "63def3198fdcbc1a6b9ef585745a82c8",
"translation_date": "2026-01-16T10:24:25+00:00",
"source_file": "sketchnotes/09-Visualizing-Quantities.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"1.0b520df6a0d9d3c4.webp": {
"original_hash": "54586a26505aae6cbcc8962a2852b277",
"translation_date": "2026-01-16T10:16:44+00:00",
"source_file": "images/1.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"10-Visualizing-Distributions.8097fd8abd7221a1.webp": {
"original_hash": "885512a64dcab7202c5a53cbde907da2",
"translation_date": "2026-01-16T10:17:06+00:00",
"source_file": "sketchnotes/10-Visualizing-Distributions.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"11-Visualizing-Proportions.3e82f24af94d206e.webp": {
"original_hash": "e7f8f167d209a389c3100d3ac210b69d",
"translation_date": "2026-01-16T10:22:12+00:00",
"source_file": "sketchnotes/11-Visualizing-Proportions.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"12-Visualizing-Relationships.4466f9bd260f03dd.webp": {
"original_hash": "10d06245ecbdc48880e555f03a62f64c",
"translation_date": "2026-01-16T10:20:54+00:00",
"source_file": "sketchnotes/12-Visualizing-Relationships.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"13-MeaningfulViz.4db6f1997e519908.webp": {
"original_hash": "6d0db913181bac3b1aebc649e843ddb3",
"translation_date": "2026-01-16T10:25:21+00:00",
"source_file": "sketchnotes/13-MeaningfulViz.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp": {
"original_hash": "96cbd264a85530f5876c353b2e57956d",
"translation_date": "2026-01-16T10:21:52+00:00",
"source_file": "sketchnotes/14-DataScience-Lifecycle.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"15-Analyzing.b501f3dbdc958f6f.webp": {
"original_hash": "973333ac82d2472591675e2b93afc87e",
"translation_date": "2026-01-16T10:25:43+00:00",
"source_file": "sketchnotes/15-Analyzing.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"16-Communicating.f1d29cd7984442a4.webp": {
"original_hash": "9a65542ddae4e103ab2a665fe65629ce",
"translation_date": "2026-01-16T10:17:31+00:00",
"source_file": "sketchnotes/16-Communicating.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"17-DataScience-Cloud.0df76ac874805c14.webp": {
"original_hash": "221a9e5d40e6f47fe793f175a8754ae0",
"translation_date": "2026-01-16T10:24:41+00:00",
"source_file": "sketchnotes/17-DataScience-Cloud.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"18-DataScience-Cloud.3a7292e8182b74eb.webp": {
"original_hash": "c1094124ae2e325016c6ddcb95599c7a",
"translation_date": "2026-01-16T10:24:00+00:00",
"source_file": "sketchnotes/18-DataScience-Cloud.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"19-DataScience-Cloud.177b38fb86301fc6.webp": {
"original_hash": "78eb918c3512a018c0d99a217bc72038",
"translation_date": "2026-01-16T10:23:40+00:00",
"source_file": "sketchnotes/19-DataScience-Cloud.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"20-DataScience-Humanities.1d1a155f4d12a667.webp": {
"original_hash": "1458acca113e1f3c64fb18d6a434fb5c",
"translation_date": "2026-01-16T10:23:00+00:00",
"source_file": "sketchnotes/20-DataScience-Humanities.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"20-DataScience-RealWorld.976976229ee11342.webp": {
"original_hash": "ff1861c005ea9fe7644777c4069008b9",
"translation_date": "2026-01-16T10:21:22+00:00",
"source_file": "sketchnotes/20-DataScience-RealWorld.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"20-DataScience-Research.da434814c51b4ef8.webp": {
"original_hash": "c1d7c67564ad6767200da0cab95eeb52",
"translation_date": "2026-01-16T10:22:31+00:00",
"source_file": "sketchnotes/20-DataScience-Research.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"20-DataScience-Sustainability.d4097bc684431da6.webp": {
"original_hash": "966e2a6eea920d7cb30a343e0bf5c856",
"translation_date": "2026-01-16T10:23:15+00:00",
"source_file": "sketchnotes/20-DataScience-Sustainability.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"2D-wb.ae22fdd33936507a.webp": {
"original_hash": "621c501b663b89b0739ff0a3d89324d4",
"translation_date": "2026-01-16T10:40:41+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/2D-wb.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"2D.b3342157139dd804.webp": {
"original_hash": "43f6f9ba817c493c2f38383fb22df3ff",
"translation_date": "2026-01-16T10:40:45+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/2D.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"2d-plot.c504786f439bd7eb.webp": {
"original_hash": "b5a6251e8480b8dbcf6ca9972efd2a94",
"translation_date": "2026-01-16T10:44:45+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/2d-plot.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"3d.0cec12bcc60f0ce7.webp": {
"original_hash": "24efe448af156c5520372b9b554a2c89",
"translation_date": "2026-01-16T10:44:18+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/3d.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"3d.db1734c151eee87d.webp": {
"original_hash": "24efe448af156c5520372b9b554a2c89",
"translation_date": "2026-01-16T10:50:00+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/3d.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"CRISP-DM.8bad2b4c66e62aa7.webp": {
"original_hash": "eac24034dc4554b1292c0c035a852548",
"translation_date": "2026-01-16T10:35:36+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/CRISP-DM.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp": {
"original_hash": "25abf3baadac4535fac2aa1c8794f537",
"translation_date": "2026-01-16T10:47:53+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot-improved.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"MaxWingspan-lineplot.b12169f99d26fdd2.webp": {
"original_hash": "8a0744b5301a1c4dc64b580728b5771a",
"translation_date": "2026-01-16T10:47:13+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp": {
"original_hash": "c5b4723c8624caa7463c66fd7278854e",
"translation_date": "2026-01-16T10:49:05+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot-improved.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"MaxWingspan-scatterplot.60dc9e0e19d32700.webp": {
"original_hash": "58de03db6718a04f8e61e2405ea2b502",
"translation_date": "2026-01-16T10:47:18+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"aml-1.67281a85d3a1e2f3.webp": {
"original_hash": "130c64f0112c117a400926da0bbaf090",
"translation_date": "2026-01-16T10:34:55+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-1.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"aml-2.c9fb9cffb39ccbbe.webp": {
"original_hash": "703a44252eca61e2b68c1365f4beb179",
"translation_date": "2026-01-16T10:29:24+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-2.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"aml-3.a7952e4295f38cc6.webp": {
"original_hash": "33433e94fe719f0e4104ad809338f91d",
"translation_date": "2026-01-16T10:29:08+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-3.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"aml-4.7a627e09cb6f16d0.webp": {
"original_hash": "983ad36543a02fffcb8f05fb94e09ef4",
"translation_date": "2026-01-16T10:30:41+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-4.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"bad-chart-1.596bc93425a8ac30.webp": {
"original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
"translation_date": "2026-01-16T10:49:12+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-1.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"bad-chart-1.93130f495b748bed.webp": {
"original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
"translation_date": "2026-01-16T10:43:27+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-1.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"bad-chart-2.62edf4d2f30f4e51.webp": {
"original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
"translation_date": "2026-01-16T10:49:50+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-2.jpg",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"bad-chart-2.c20e36dd4e6f617c.webp": {
"original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
"translation_date": "2026-01-16T10:44:08+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-2.jpg",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"bad-chart-3.6865d0afac4108d7.webp": {
"original_hash": "80f955c8f50661e029730e9b06959c0b",
"translation_date": "2026-01-16T10:43:36+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-3.jpg",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"bad-chart-3.e201e2e915a230bc.webp": {
"original_hash": "80f955c8f50661e029730e9b06959c0b",
"translation_date": "2026-01-16T10:49:21+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-3.jpg",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"bad-chart-4.68cfdf4011b45447.webp": {
"original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
"translation_date": "2026-01-16T10:44:27+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-4.jpg",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"bad-chart-4.8872b2b881ffa96c.webp": {
"original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
"translation_date": "2026-01-16T10:50:09+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-4.jpg",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"bee.0aa1d91132b12e3a.webp": {
"original_hash": "107a59a0fdfa76d213eacf0f46df0292",
"translation_date": "2026-01-16T10:39:54+00:00",
"source_file": "3-Data-Visualization/images/bee.jpg",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"bodymass-per-order.9d2b065dd931b928.webp": {
"original_hash": "b009aeba10679cfeb880d3869e7d1db2",
"translation_date": "2026-01-16T10:45:18+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-per-order.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"bodymass-smooth.d31ce526d82b0a1f.webp": {
"original_hash": "9e0c8215e2ce2cc7120491a79559a907",
"translation_date": "2026-01-16T10:44:58+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-smooth.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"boxplot_byrole.036b27a1c3f52d42.webp": {
"original_hash": "1193ef907e122e99637e73ef9f83d2a5",
"translation_date": "2026-01-16T10:27:45+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/boxplot_byrole.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"boxplot_explanation.4039b7de08780fd4.webp": {
"original_hash": "18e16e4144706f7e9006fc2ff958e622",
"translation_date": "2026-01-16T10:27:01+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/boxplot_explanation.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"busing.7b9e3b41cd4b981c.webp": {
"original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
"translation_date": "2026-01-16T10:43:45+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/busing.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"busing.8157cf1bc89a3f65.webp": {
"original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
"translation_date": "2026-01-16T10:49:29+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/busing.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"category-counts-02.0b9a0a4de42275ae.webp": {
"original_hash": "d0ebdd74049aa407805cb1b28d9d5075",
"translation_date": "2026-01-16T10:51:19+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts-02.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"category-counts.abee8188c4c9b6f0.webp": {
"original_hash": "3b55836da9e8a6b487c6657b01156a99",
"translation_date": "2026-01-16T10:50:38+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"category-length-02.7304bf519375c980.webp": {
"original_hash": "2638d345ceee48d8c40a54f6388c8caa",
"translation_date": "2026-01-16T10:50:49+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length-02.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"category-length.7e34c296690e85d6.webp": {
"original_hash": "f5c753a1fe65d51b8cc15b8b46c6d4e6",
"translation_date": "2026-01-16T10:47:31+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/category-length.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"category-length.b0d9a0208a7b3713.webp": {
"original_hash": "990ba20663dfb1d5bc21e39b9162f412",
"translation_date": "2026-01-16T10:50:35+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"cloud-picture.f5526de3c6c6387b.webp": {
"original_hash": "112d96f85f2037814d2df8b88267a595",
"translation_date": "2026-01-16T10:27:53+00:00",
"source_file": "5-Data-Science-In-Cloud/images/cloud-picture.jpg",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"cluster-1.b78cb630bb543729.webp": {
"original_hash": "d938d671e7eabf7fbc012cf1987dc43f",
"translation_date": "2026-01-16T10:31:47+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-1.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"cluster-2.ea30cdbc9f926bb9.webp": {
"original_hash": "0486b9eb10e88dc53fc2927c9197cd27",
"translation_date": "2026-01-16T10:31:09+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-2.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"cluster-3.8a334bc070ec173a.webp": {
"original_hash": "b440d88eb5ce449ebe780c1edbac221d",
"translation_date": "2026-01-16T10:30:03+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-3.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"columnar-db.ffcfe73c3e9063a8.webp": {
"original_hash": "be6caa9571dc877703116566bc1a59d4",
"translation_date": "2026-01-16T10:38:14+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/columnar-db.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"communication.06d8e2a88d30d168.webp": {
"original_hash": "5736c0fd0f68676dbd5b27c5b04f4b48",
"translation_date": "2026-01-16T10:35:19+00:00",
"source_file": "4-Data-Science-Lifecycle/images/communication.jpg",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"comparingdata.f486a450d61c7ca5.webp": {
"original_hash": "c5f1049b89ea0d7015e420acc0728045",
"translation_date": "2026-01-16T10:48:06+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/comparingdata.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"compute-instance-1.dba347cb199ca499.webp": {
"original_hash": "7af64073de557468a0b652e4bcecf2d1",
"translation_date": "2026-01-16T10:28:04+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/compute-instance-1.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"consumption-1.700abd196452842a.webp": {
"original_hash": "a5ecdcdff30f2d1059763b9ce5abe4eb",
"translation_date": "2026-01-16T10:34:07+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/consumption-1.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"cosmosdb-emulator-explorer.a1c80b1347206fe2.webp": {
"original_hash": "cdd5affc23e1edf90e5a1d4d5d0f1f8d",
"translation_date": "2026-01-16T10:38:30+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-explorer.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp": {
"original_hash": "4ab74b4d99e8e2a503433a1faf6921be",
"translation_date": "2026-01-16T10:37:46+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons-query.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"cosmosdb-emulator-persons.bf640586a7077c89.webp": {
"original_hash": "4cf764cdeb46013888dafcd430447f3a",
"translation_date": "2026-01-16T10:39:27+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"covidspread.f3d131c4f1d260ab.webp": {
"original_hash": "461f7858f407e9f5b9eb9caf8ca21367",
"translation_date": "2026-01-16T10:37:19+00:00",
"source_file": "2-Working-With-Data/07-python/images/covidspread.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"covidtreat.b2ba59f57ca45fbc.webp": {
"original_hash": "b2b1e40794073c65faa986c5995754c9",
"translation_date": "2026-01-16T10:37:06+00:00",
"source_file": "2-Working-With-Data/07-python/images/covidtreat.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"data-love.a22ef29e6742c852.webp": {
"original_hash": "e7fcf82d891c727f86c21960cb63efa6",
"translation_date": "2026-01-16T10:36:19+00:00",
"source_file": "2-Working-With-Data/images/data-love.jpg",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"data-science-applications.4e5019cd8790ebac.webp": {
"original_hash": "602217d731f1576c21ac91148222cfa1",
"translation_date": "2026-01-16T10:52:31+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/data-science-applications.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"data-science-lifecycle.a1e362637503c4fb.webp": {
"original_hash": "594be62e68ef5e92f5447febe91c7794",
"translation_date": "2026-01-16T10:35:44+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/data-science-lifecycle.jpg",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"data.48e22bb7617d8d92.webp": {
"original_hash": "1a84026266861a50791b9f952fbab540",
"translation_date": "2026-01-16T10:25:57+00:00",
"source_file": "1-Introduction/images/data.jpg",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"dataframe-1.caf409f0c688e84c.webp": {
"original_hash": "2ca632a405bd7b501a0e0df0fa55515a",
"translation_date": "2026-01-16T10:37:01+00:00",
"source_file": "2-Working-With-Data/07-python/images/dataframe-1.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"datascienceinthecloud.59ffb059a670fb0a.webp": {
"original_hash": "d66cf00bfc41a3d1bef7e1d54ac4e03f",
"translation_date": "2026-01-16T10:30:30+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/datascienceinthecloud.jpg",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"dataset-1.e86ab4e10907a6e9.webp": {
"original_hash": "b742ef1724e601f68a1bdf3f1faa89c6",
"translation_date": "2026-01-16T10:31:34+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-1.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"dataset-2.f58de1c435d5bf9c.webp": {
"original_hash": "328c65d45aa937db952093099bc408ce",
"translation_date": "2026-01-16T10:33:31+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-2.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"dataset-3.58db8c0eb783e892.webp": {
"original_hash": "cc2177288c2ac7289b614ce41ee68d60",
"translation_date": "2026-01-16T10:33:08+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-3.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"density-plot.675ccf865b76c690.webp": {
"original_hash": "269df7655a489ba893c9a930e54996b4",
"translation_date": "2026-01-16T10:45:23+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/density-plot.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"density1.8801043bd4af2567.webp": {
"original_hash": "159abed877f261a34aeefc1c2f7d9f14",
"translation_date": "2026-01-16T10:40:49+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density1.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"density2.8e7647257060ff54.webp": {
"original_hash": "ae4ee53e81dca21c2d475642c9acf970",
"translation_date": "2026-01-16T10:41:08+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density2.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"density3.84ae27da82f31e6b.webp": {
"original_hash": "1c4b40707ab63224822854698a26f6ca",
"translation_date": "2026-01-16T10:40:03+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density3.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"density4.e9d6c033f15c500f.webp": {
"original_hash": "e007401afeb86f57097c31b272c54f59",
"translation_date": "2026-01-16T10:40:55+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density4.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"deploy-1.ddad725acadc84e3.webp": {
"original_hash": "d91956f565f29332f32fc85095206456",
"translation_date": "2026-01-16T10:29:47+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-1.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"deploy-2.94dbb13f23908647.webp": {
"original_hash": "cb622a2e6374ccfdb376d3528e2bb9c8",
"translation_date": "2026-01-16T10:34:44+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-2.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"deploy-3.fecefef070e8ef3b.webp": {
"original_hash": "487c6cd79b0232e10e40fdab2e6b929f",
"translation_date": "2026-01-16T10:32:14+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-3.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"dist1-wb.0d0cac82e2974fbb.webp": {
"original_hash": "2f624fcf08f90cfedf12238e86730517",
"translation_date": "2026-01-16T10:40:30+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1-wb.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"dist1.0010100b00231819.webp": {
"original_hash": "637343564b5cc6aa01b966bb3f010c81",
"translation_date": "2026-01-16T10:41:05+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"dist2-wb.2c0a7a3499b2fbf5.webp": {
"original_hash": "f66e1b4cf106774c02ddc8111fb26ea8",
"translation_date": "2026-01-16T10:41:13+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2-wb.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"dist2.c398bfd5320401b9.webp": {
"original_hash": "fc0ce2a2e3087e5754770998f75db398",
"translation_date": "2026-01-16T10:40:00+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"dist3-wb.64b88db7f9780200.webp": {
"original_hash": "b3d78f1f00c6c3d087f161dd74318aff",
"translation_date": "2026-01-16T10:40:08+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3-wb.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"dist3.ad4d9658559690f5.webp": {
"original_hash": "a4f7f50a3cc98d22d6a1321d1df7781b",
"translation_date": "2026-01-16T10:40:38+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"distribution-30bins.6a3921ea7a421bf7.webp": {
"original_hash": "e06c4dfd27b06597b94a75072e9c4bc5",
"translation_date": "2026-01-16T10:44:54+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-30bins.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"distribution-over-the-entire-dataset.d22afd3fa96be854.webp": {
"original_hash": "338c78ae2ee25ed179e49ec1a4e7923b",
"translation_date": "2026-01-16T10:45:03+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-over-the-entire-dataset.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"document-db.ddeec48c6dc9e5fd.webp": {
"original_hash": "8cee40487b4a8926c048c397be218e6e",
"translation_date": "2026-01-16T10:39:02+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/document-db.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"donut-wb.34e6fb275da9d834.webp": {
"original_hash": "1fca738bcee99e03430409599cef33f3",
"translation_date": "2026-01-16T10:47:01+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/donut-wb.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"donut-wb.be3c12a22712302b.webp": {
"original_hash": "84f5657fc2c817fe6487993027aeb3e0",
"translation_date": "2026-01-16T10:42:55+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut-wb.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"donut.f016d7be7f08c8f8.webp": {
"original_hash": "055fcaf0a6d93663278eb958137b460c",
"translation_date": "2026-01-16T10:43:18+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"ds-for-beginners.d01930c9193ef522.webp": {
"original_hash": "b84eca5411f4bc0041e671becb05fe48",
"translation_date": "2026-01-16T10:16:37+00:00",
"source_file": "ds-for-beginners.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"ds_wordcloud.664a7c07dca57de0.webp": {
"original_hash": "df525e123083bea87f16bce2c07970c7",
"translation_date": "2026-01-16T10:26:13+00:00",
"source_file": "1-Introduction/01-defining-data-science/images/ds_wordcloud.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"dual-line.a4c28ce659603fab.webp": {
"original_hash": "354c3a3b7493b3ec80eec454e7e1661f",
"translation_date": "2026-01-16T10:41:40+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/dual-line.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"dual-line.fc4665f360a54018.webp": {
"original_hash": "a80f6d08e4639389726abb5b1c3d5d9f",
"translation_date": "2026-01-16T10:46:11+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/dual-line.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"facet.491ad90d61c2a7cc.webp": {
"original_hash": "2a0a7fea3ccea24ef9a0d37487f38ba3",
"translation_date": "2026-01-16T10:45:59+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/facet.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"facet.6a34851dcd540050.webp": {
"original_hash": "b1972d34a64eaf50b7f64de8455601d6",
"translation_date": "2026-01-16T10:41:23+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/facet.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"favicon.37b561214b36d454.webp": {
"original_hash": "228faa6584f8ba1f7e9a75e3200112e9",
"translation_date": "2026-01-16T10:16:40+00:00",
"source_file": "images/favicon.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"filtered-histogram.6bf5d2bfd8253322.webp": {
"original_hash": "9beae93b6d3063f7afa19070ca9b21f2",
"translation_date": "2026-01-16T10:45:07+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/filtered-histogram.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"formula-excel.ad1068c220892f5e.webp": {
"original_hash": "ffc48a46663588ed68f07739e1c6faec",
"translation_date": "2026-01-16T10:38:42+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/formula-excel.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"full-data-bar-02.aaa3fda71c63ed56.webp": {
"original_hash": "68ced4f3a959790addfa4c361f5abc0f",
"translation_date": "2026-01-16T10:52:04+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar-02.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"full-data-bar.a0b37da71a6cd236.webp": {
"original_hash": "bd639cfebb870669bcf5280302347b15",
"translation_date": "2026-01-16T10:52:20+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"function-excel.be2ae4feddc10ca0.webp": {
"original_hash": "72ab7b76f4fab0df5aa91fa839722a60",
"translation_date": "2026-01-16T10:38:07+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/function-excel.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"graph-db.d13629152f79a9da.webp": {
"original_hash": "9642744eabff608b20e9241ba5931752",
"translation_date": "2026-01-16T10:38:54+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/graph-db.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"height-boxplot.ccb66b2848b5f51c.webp": {
"original_hash": "0f3d954cc0e0b9644f64f7bc1c8a5518",
"translation_date": "2026-01-16T10:27:29+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/height-boxplot.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"histogram-conservation-wb.3c40450eb072c14d.webp": {
"original_hash": "83ec1d81dea6fabb80c6386edf8eb241",
"translation_date": "2026-01-16T10:40:25+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation-wb.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"histogram-conservation.13b3542e7784e415.webp": {
"original_hash": "ec86b1d6a476f4cf80f9d2b346525c92",
"translation_date": "2026-01-16T10:40:35+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"kv-db.e8f2b75686bbdfcb.webp": {
"original_hash": "b11fd06948e523a4f05e4fc016b72151",
"translation_date": "2026-01-16T10:38:22+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/kv-db.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"labeled-wingspan-02.6110e2d2401cd523.webp": {
"original_hash": "0f218473d2563c14c8caddecdea3a4c3",
"translation_date": "2026-01-16T10:52:12+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan-02.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"labeled-wingspan.900ffedd7e3ec6de.webp": {
"original_hash": "92a8853541cd37a14b9523a58d655f7f",
"translation_date": "2026-01-16T10:52:25+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"less-smooth-bodymass.10f4db8b683cc17d.webp": {
"original_hash": "407ad13c340ab84466724135c99aa8d6",
"translation_date": "2026-01-16T10:44:50+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/less-smooth-bodymass.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"liaisons.7b440b28f6d07ea4.webp": {
"original_hash": "6d42370a9c4ee2cea0573912a6300e09",
"translation_date": "2026-01-16T10:44:38+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/liaisons.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"liaisons.90ce7360bcf84765.webp": {
"original_hash": "6d42370a9c4ee2cea0573912a6300e09",
"translation_date": "2026-01-16T10:50:19+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/liaisons.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"line1.299b576fbb2a59e6.webp": {
"original_hash": "580b92476ca343c0fce7d5713d0ca5cd",
"translation_date": "2026-01-16T10:46:51+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line1.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"line1.f36eb465229a3b1f.webp": {
"original_hash": "2254eee0864847a0dbbcf3514523b938",
"translation_date": "2026-01-16T10:42:41+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/line1.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"line2.3b18fcda7176ceba.webp": {
"original_hash": "0900ae563b525221b628393ec05feaf8",
"translation_date": "2026-01-16T10:46:55+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line2.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"line2.a5b3493dc01058af.webp": {
"original_hash": "352e8164b0d75c410198bb07822e43cb",
"translation_date": "2026-01-16T10:42:46+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/line2.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"max-length-per-order.e5b283d952c78c12.webp": {
"original_hash": "3669afd28a61d41ee39429418ee938a0",
"translation_date": "2026-01-16T10:45:31+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/max-length-per-order.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"max-wingspan-02.e79fd847b2640b89.webp": {
"original_hash": "424b2d5e92fd7ad1f1651fd34c48a43b",
"translation_date": "2026-01-16T10:52:16+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-02.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"max-wingspan-labels-02.aa90e826ca49a9d1.webp": {
"original_hash": "b1f49941bbc193409678b7c94bd39822",
"translation_date": "2026-01-16T10:51:07+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels-02.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"max-wingspan-labels.46f0cc3c48edd4e0.webp": {
"original_hash": "67ad5348aa4963aebb0ae7ec94a7fa26",
"translation_date": "2026-01-16T10:52:09+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"max-wingspan.0b8d0858436414aa.webp": {
"original_hash": "020b2994ef28037b86c2e215771a0bf5",
"translation_date": "2026-01-16T10:51:11+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"multi.56548caa9eae8d0f.webp": {
"original_hash": "f75fa5419bb0d28a74c567876bc99455",
"translation_date": "2026-01-16T10:39:56+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/multi.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"new-container.650e10c7a20a5f83.webp": {
"original_hash": "ab63b5a8099095333eebe2afa69197e3",
"translation_date": "2026-01-16T10:39:13+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/new-container.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"normal-histogram.dfae0d67c202137d.webp": {
"original_hash": "46ee775d2df1d79815c1aab51bd8d2fe",
"translation_date": "2026-01-16T10:27:40+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/normal-histogram.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"notebook-1.12998af7b02c83f5.webp": {
"original_hash": "08d559b911ecbed212b67e206ae6bcf1",
"translation_date": "2026-01-16T10:28:19+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-1.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"notebook-2.9a657c037e34f1cf.webp": {
"original_hash": "018309c1ca2ed8e31fd89c3674687979",
"translation_date": "2026-01-16T10:28:30+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-2.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"parts-of-spreadsheet.120711c82aa18a45.webp": {
"original_hash": "e744b94c055058c2862aaabe84625b90",
"translation_date": "2026-01-16T10:39:46+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/parts-of-spreadsheet.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"pie1-wb.685df063673751f4.webp": {
"original_hash": "2b353f34a1a1e444a1d7f2219b78cb83",
"translation_date": "2026-01-16T10:47:10+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/pie1-wb.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"pie1-wb.e201f2fcc3354131.webp": {
"original_hash": "f2dbe68e0228fc6bb76e502dfa88a5c7",
"translation_date": "2026-01-16T10:43:22+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1-wb.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"pie1.8f6a8bfac96de60e.webp": {
"original_hash": "dc91ddf7490acc8493ca0801370d8fa8",
"translation_date": "2026-01-16T10:42:51+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"planetary-computer-explorer.c1e95a9b053167d6.webp": {
"original_hash": "1e3bcffe198a9432dfc6232e5f89e2a5",
"translation_date": "2026-01-16T10:52:44+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/planetary-computer-explorer.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"probability-density.a8aad29f17a14afb.webp": {
"original_hash": "79ec3e39c1c20e570327ebd8a2737548",
"translation_date": "2026-01-16T10:27:20+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/probability-density.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"project-schema.420e56d495624541.webp": {
"original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
"translation_date": "2026-01-16T10:28:43+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/project-schema.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"project-schema.736f6e403f321eb4.webp": {
"original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
"translation_date": "2026-01-16T10:32:39+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/project-schema.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"scatter-wb.9d98b0ed7f0388af.webp": {
"original_hash": "20b0f7bb41756f35bdf985a8f5f3a342",
"translation_date": "2026-01-16T10:40:15+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter-wb.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"scatter.520a43eceb46dbcb.webp": {
"original_hash": "0b08180e497b0df05b452d6e82139280",
"translation_date": "2026-01-16T10:41:01+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"scatter1.5e1aa5fd6706c5d1.webp": {
"original_hash": "c02fe2f5fa39f591b4a26308356ed684",
"translation_date": "2026-01-16T10:42:28+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter1.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"scatter1.86b8900674d88b26.webp": {
"original_hash": "c987462f33600689809531fc3d265f96",
"translation_date": "2026-01-16T10:46:39+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter1.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"scatter2.4d1cbc693bad20e2.webp": {
"original_hash": "770ca46665efad9996e32d596f105ea9",
"translation_date": "2026-01-16T10:46:27+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter2.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"scatter2.c0041a58621ca702.webp": {
"original_hash": "0daebd8565f87f5de940b38eb8af1b9d",
"translation_date": "2026-01-16T10:42:08+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter2.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"scatter3.3c160a3d1dcb36b3.webp": {
"original_hash": "b6dae06624fdb034a906091c859840c8",
"translation_date": "2026-01-16T10:41:52+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter3.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"scatter3.722d21e6f20b3ea2.webp": {
"original_hash": "e76960bfd5bd7187d9e021796f268d34",
"translation_date": "2026-01-16T10:46:18+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter3.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"scatterplot-wingspan-02.1c33790094ce36a7.webp": {
"original_hash": "074b877685ae02c92754fb416864f137",
"translation_date": "2026-01-16T10:50:26+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan-02.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"scatterplot-wingspan.bdab448702939bb3.webp": {
"original_hash": "a6265af4af8b135ebb0b1160ac2a85e1",
"translation_date": "2026-01-16T10:50:33+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"stacked-bar-chart.0c92264e89da7b39.webp": {
"original_hash": "150d1125735f6612e36c8d74d492c664",
"translation_date": "2026-01-16T10:48:28+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/stacked-bar-chart.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"superimposed-02.f03058536baeb2ed.webp": {
"original_hash": "06591758ffda43a2ba7a885727209a57",
"translation_date": "2026-01-16T10:51:45+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed-02.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"superimposed-values.5363f0705a1da416.webp": {
"original_hash": "b41c56cb68dd92f60d7e18eefd963396",
"translation_date": "2026-01-16T10:48:43+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/superimposed-values.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"superimposed.8b5bd0e8825d9c5c.webp": {
"original_hash": "4af0c94d9d61f1d458023b01c02a247e",
"translation_date": "2026-01-16T10:50:30+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"tdsp-lifecycle2.e19029d598e2e73d.webp": {
"original_hash": "d1f838b6b0fd588b4ee6cd22cb578569",
"translation_date": "2026-01-16T10:35:56+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/tdsp-lifecycle2.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"timeseries-1.80de678ab1cf727e.webp": {
"original_hash": "30236ed2474d8d115ab3d51545e0c19e",
"translation_date": "2026-01-16T10:37:15+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-1.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"timeseries-2.aae51d575c55181c.webp": {
"original_hash": "33bd33349330cb115d729ce80b570501",
"translation_date": "2026-01-16T10:37:24+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-2.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"timeseries-3.f3147cbc8c624881.webp": {
"original_hash": "aa4b14a21a73d400073a61f37033d465",
"translation_date": "2026-01-16T10:37:31+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-3.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"tornado.2880ffc7f135f82b.webp": {
"original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
"translation_date": "2026-01-16T10:49:39+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/tornado.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"tornado.9f42168791208f97.webp": {
"original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
"translation_date": "2026-01-16T10:43:54+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/tornado.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"video-def-ds.6623ee2392ef1abf.webp": {
"original_hash": "95650b7eed7f176ce8fdee16271a464b",
"translation_date": "2026-01-16T10:26:45+00:00",
"source_file": "1-Introduction/01-defining-data-science/images/video-def-ds.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"video-ds-python.245247dc811db8e4.webp": {
"original_hash": "030eca02a7388a1428cf20faa215f2b9",
"translation_date": "2026-01-16T10:36:51+00:00",
"source_file": "2-Working-With-Data/07-python/images/video-ds-python.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"video-prob-and-stats.e4282e5efa2f2543.webp": {
"original_hash": "95894d8c6274697246b11c5ddf395c5f",
"translation_date": "2026-01-16T10:27:34+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/video-prob-and-stats.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"waffle.5455dbae4ccf17d5.webp": {
"original_hash": "56634c9a9dc24921e012693843466dee",
"translation_date": "2026-01-16T10:43:05+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/waffle.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"waffle.aaa75c5337735a6e.webp": {
"original_hash": "b84ca087d578965c31a20087b9215d88",
"translation_date": "2026-01-16T10:47:06+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/waffle.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"weight-boxplot.1dbab1c03af26f8a.webp": {
"original_hash": "4e39b904d1a4313d66663aa3f7ab9602",
"translation_date": "2026-01-16T10:27:11+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-boxplot.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"weight-height-relationship.3f06bde4ca2aba99.webp": {
"original_hash": "2412d31f9c41004d2d0cb80179d6021f",
"translation_date": "2026-01-16T10:27:24+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-height-relationship.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"weight-histogram.bfd00caf7fc30b14.webp": {
"original_hash": "bef55b4cd03923b2d8674e92bb1757c9",
"translation_date": "2026-01-16T10:27:16+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-histogram.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"wingspan-conservation-collation.4024e9aa6910866a.webp": {
"original_hash": "898d4cfbbc9bd4723c3ce92f5746a6f8",
"translation_date": "2026-01-16T10:45:12+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/wingspan-conservation-collation.png",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"workspace-1.ac8694d60b073ed1.webp": {
"original_hash": "5e9f3153bfd5af7d8b6adcb09c08cabd",
"translation_date": "2026-01-16T10:29:37+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-1.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"workspace-2.ae7c486db8796147.webp": {
"original_hash": "9299f5ae459f0a153da6aaae9accc78d",
"translation_date": "2026-01-16T10:31:59+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-2.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"workspace-3.398ca4a5858132cc.webp": {
"original_hash": "2ee0b036fbc5fd13a526f26ac9d60347",
"translation_date": "2026-01-16T10:35:07+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-3.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"workspace-4.bac87f6599c4df63.webp": {
"original_hash": "099e0b18ce11f3966c0b7d954c2eb4fb",
"translation_date": "2026-01-16T10:30:19+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-4.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"workspace-5.a6eb17e0a5e64200.webp": {
"original_hash": "01b1c520e46b3fbd6fba0d54bb80bece",
"translation_date": "2026-01-16T10:34:31+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-5.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
},
"workspace-6.8dd81fe841797ee1.webp": {
"original_hash": "fd0194c1a558063ddb53e5c1ead0a2b0",
"translation_date": "2026-01-16T10:33:44+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-6.PNG",
- "language_code": "mo"
+ "language_code": "zh-MO"
}
}
\ No newline at end of file
diff --git a/translated_images/mo/00-Roadmap.4905d6567dff4753.webp b/translated_images/zh-MO/00-Roadmap.4905d6567dff4753.webp
similarity index 100%
rename from translated_images/mo/00-Roadmap.4905d6567dff4753.webp
rename to translated_images/zh-MO/00-Roadmap.4905d6567dff4753.webp
diff --git a/translated_images/mo/00-Title.8af36cd35da1ac55.webp b/translated_images/zh-MO/00-Title.8af36cd35da1ac55.webp
similarity index 100%
rename from translated_images/mo/00-Title.8af36cd35da1ac55.webp
rename to translated_images/zh-MO/00-Title.8af36cd35da1ac55.webp
diff --git a/translated_images/mo/01-Definitions.1b14ddc9525dc0d9.webp b/translated_images/zh-MO/01-Definitions.1b14ddc9525dc0d9.webp
similarity index 100%
rename from translated_images/mo/01-Definitions.1b14ddc9525dc0d9.webp
rename to translated_images/zh-MO/01-Definitions.1b14ddc9525dc0d9.webp
diff --git a/translated_images/mo/02-Ethics.728d166895302ab0.webp b/translated_images/zh-MO/02-Ethics.728d166895302ab0.webp
similarity index 100%
rename from translated_images/mo/02-Ethics.728d166895302ab0.webp
rename to translated_images/zh-MO/02-Ethics.728d166895302ab0.webp
diff --git a/translated_images/mo/03-DefiningData.f800817186949e07.webp b/translated_images/zh-MO/03-DefiningData.f800817186949e07.webp
similarity index 100%
rename from translated_images/mo/03-DefiningData.f800817186949e07.webp
rename to translated_images/zh-MO/03-DefiningData.f800817186949e07.webp
diff --git a/translated_images/mo/04-Statistics-Probability.cfc569d84a9f1867.webp b/translated_images/zh-MO/04-Statistics-Probability.cfc569d84a9f1867.webp
similarity index 100%
rename from translated_images/mo/04-Statistics-Probability.cfc569d84a9f1867.webp
rename to translated_images/zh-MO/04-Statistics-Probability.cfc569d84a9f1867.webp
diff --git a/translated_images/mo/05-RelationalData.af50f5a3e50f7456.webp b/translated_images/zh-MO/05-RelationalData.af50f5a3e50f7456.webp
similarity index 100%
rename from translated_images/mo/05-RelationalData.af50f5a3e50f7456.webp
rename to translated_images/zh-MO/05-RelationalData.af50f5a3e50f7456.webp
diff --git a/translated_images/mo/06-NoSQL.42a91ea0cd5769fe.webp b/translated_images/zh-MO/06-NoSQL.42a91ea0cd5769fe.webp
similarity index 100%
rename from translated_images/mo/06-NoSQL.42a91ea0cd5769fe.webp
rename to translated_images/zh-MO/06-NoSQL.42a91ea0cd5769fe.webp
diff --git a/translated_images/mo/07-WorkWithPython.8bf4a5013718bef9.webp b/translated_images/zh-MO/07-WorkWithPython.8bf4a5013718bef9.webp
similarity index 100%
rename from translated_images/mo/07-WorkWithPython.8bf4a5013718bef9.webp
rename to translated_images/zh-MO/07-WorkWithPython.8bf4a5013718bef9.webp
diff --git a/translated_images/mo/08-DataPreparation.e3b185c37958e964.webp b/translated_images/zh-MO/08-DataPreparation.e3b185c37958e964.webp
similarity index 100%
rename from translated_images/mo/08-DataPreparation.e3b185c37958e964.webp
rename to translated_images/zh-MO/08-DataPreparation.e3b185c37958e964.webp
diff --git a/translated_images/mo/09-Visualizing-Quantities.5c846edd805a5238.webp b/translated_images/zh-MO/09-Visualizing-Quantities.5c846edd805a5238.webp
similarity index 100%
rename from translated_images/mo/09-Visualizing-Quantities.5c846edd805a5238.webp
rename to translated_images/zh-MO/09-Visualizing-Quantities.5c846edd805a5238.webp
diff --git a/translated_images/mo/1.0b520df6a0d9d3c4.webp b/translated_images/zh-MO/1.0b520df6a0d9d3c4.webp
similarity index 100%
rename from translated_images/mo/1.0b520df6a0d9d3c4.webp
rename to translated_images/zh-MO/1.0b520df6a0d9d3c4.webp
diff --git a/translated_images/mo/10-Visualizing-Distributions.8097fd8abd7221a1.webp b/translated_images/zh-MO/10-Visualizing-Distributions.8097fd8abd7221a1.webp
similarity index 100%
rename from translated_images/mo/10-Visualizing-Distributions.8097fd8abd7221a1.webp
rename to translated_images/zh-MO/10-Visualizing-Distributions.8097fd8abd7221a1.webp
diff --git a/translated_images/mo/11-Visualizing-Proportions.3e82f24af94d206e.webp b/translated_images/zh-MO/11-Visualizing-Proportions.3e82f24af94d206e.webp
similarity index 100%
rename from translated_images/mo/11-Visualizing-Proportions.3e82f24af94d206e.webp
rename to translated_images/zh-MO/11-Visualizing-Proportions.3e82f24af94d206e.webp
diff --git a/translated_images/mo/12-Visualizing-Relationships.4466f9bd260f03dd.webp b/translated_images/zh-MO/12-Visualizing-Relationships.4466f9bd260f03dd.webp
similarity index 100%
rename from translated_images/mo/12-Visualizing-Relationships.4466f9bd260f03dd.webp
rename to translated_images/zh-MO/12-Visualizing-Relationships.4466f9bd260f03dd.webp
diff --git a/translated_images/mo/13-MeaningfulViz.4db6f1997e519908.webp b/translated_images/zh-MO/13-MeaningfulViz.4db6f1997e519908.webp
similarity index 100%
rename from translated_images/mo/13-MeaningfulViz.4db6f1997e519908.webp
rename to translated_images/zh-MO/13-MeaningfulViz.4db6f1997e519908.webp
diff --git a/translated_images/mo/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp b/translated_images/zh-MO/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
similarity index 100%
rename from translated_images/mo/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
rename to translated_images/zh-MO/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
diff --git a/translated_images/mo/15-Analyzing.b501f3dbdc958f6f.webp b/translated_images/zh-MO/15-Analyzing.b501f3dbdc958f6f.webp
similarity index 100%
rename from translated_images/mo/15-Analyzing.b501f3dbdc958f6f.webp
rename to translated_images/zh-MO/15-Analyzing.b501f3dbdc958f6f.webp
diff --git a/translated_images/mo/16-Communicating.f1d29cd7984442a4.webp b/translated_images/zh-MO/16-Communicating.f1d29cd7984442a4.webp
similarity index 100%
rename from translated_images/mo/16-Communicating.f1d29cd7984442a4.webp
rename to translated_images/zh-MO/16-Communicating.f1d29cd7984442a4.webp
diff --git a/translated_images/mo/17-DataScience-Cloud.0df76ac874805c14.webp b/translated_images/zh-MO/17-DataScience-Cloud.0df76ac874805c14.webp
similarity index 100%
rename from translated_images/mo/17-DataScience-Cloud.0df76ac874805c14.webp
rename to translated_images/zh-MO/17-DataScience-Cloud.0df76ac874805c14.webp
diff --git a/translated_images/mo/18-DataScience-Cloud.3a7292e8182b74eb.webp b/translated_images/zh-MO/18-DataScience-Cloud.3a7292e8182b74eb.webp
similarity index 100%
rename from translated_images/mo/18-DataScience-Cloud.3a7292e8182b74eb.webp
rename to translated_images/zh-MO/18-DataScience-Cloud.3a7292e8182b74eb.webp
diff --git a/translated_images/mo/19-DataScience-Cloud.177b38fb86301fc6.webp b/translated_images/zh-MO/19-DataScience-Cloud.177b38fb86301fc6.webp
similarity index 100%
rename from translated_images/mo/19-DataScience-Cloud.177b38fb86301fc6.webp
rename to translated_images/zh-MO/19-DataScience-Cloud.177b38fb86301fc6.webp
diff --git a/translated_images/mo/20-DataScience-Humanities.1d1a155f4d12a667.webp b/translated_images/zh-MO/20-DataScience-Humanities.1d1a155f4d12a667.webp
similarity index 100%
rename from translated_images/mo/20-DataScience-Humanities.1d1a155f4d12a667.webp
rename to translated_images/zh-MO/20-DataScience-Humanities.1d1a155f4d12a667.webp
diff --git a/translated_images/mo/20-DataScience-RealWorld.976976229ee11342.webp b/translated_images/zh-MO/20-DataScience-RealWorld.976976229ee11342.webp
similarity index 100%
rename from translated_images/mo/20-DataScience-RealWorld.976976229ee11342.webp
rename to translated_images/zh-MO/20-DataScience-RealWorld.976976229ee11342.webp
diff --git a/translated_images/mo/20-DataScience-Research.da434814c51b4ef8.webp b/translated_images/zh-MO/20-DataScience-Research.da434814c51b4ef8.webp
similarity index 100%
rename from translated_images/mo/20-DataScience-Research.da434814c51b4ef8.webp
rename to translated_images/zh-MO/20-DataScience-Research.da434814c51b4ef8.webp
diff --git a/translated_images/mo/20-DataScience-Sustainability.d4097bc684431da6.webp b/translated_images/zh-MO/20-DataScience-Sustainability.d4097bc684431da6.webp
similarity index 100%
rename from translated_images/mo/20-DataScience-Sustainability.d4097bc684431da6.webp
rename to translated_images/zh-MO/20-DataScience-Sustainability.d4097bc684431da6.webp
diff --git a/translated_images/tw/2D-wb.ae22fdd33936507a.webp b/translated_images/zh-MO/2D-wb.ae22fdd33936507a.webp
similarity index 100%
rename from translated_images/tw/2D-wb.ae22fdd33936507a.webp
rename to translated_images/zh-MO/2D-wb.ae22fdd33936507a.webp
diff --git a/translated_images/tw/2D.b3342157139dd804.webp b/translated_images/zh-MO/2D.b3342157139dd804.webp
similarity index 100%
rename from translated_images/tw/2D.b3342157139dd804.webp
rename to translated_images/zh-MO/2D.b3342157139dd804.webp
diff --git a/translated_images/mo/2d-plot.c504786f439bd7eb.webp b/translated_images/zh-MO/2d-plot.c504786f439bd7eb.webp
similarity index 100%
rename from translated_images/mo/2d-plot.c504786f439bd7eb.webp
rename to translated_images/zh-MO/2d-plot.c504786f439bd7eb.webp
diff --git a/translated_images/tw/3d.0cec12bcc60f0ce7.webp b/translated_images/zh-MO/3d.0cec12bcc60f0ce7.webp
similarity index 100%
rename from translated_images/tw/3d.0cec12bcc60f0ce7.webp
rename to translated_images/zh-MO/3d.0cec12bcc60f0ce7.webp
diff --git a/translated_images/tw/3d.db1734c151eee87d.webp b/translated_images/zh-MO/3d.db1734c151eee87d.webp
similarity index 100%
rename from translated_images/tw/3d.db1734c151eee87d.webp
rename to translated_images/zh-MO/3d.db1734c151eee87d.webp
diff --git a/translated_images/mo/CRISP-DM.8bad2b4c66e62aa7.webp b/translated_images/zh-MO/CRISP-DM.8bad2b4c66e62aa7.webp
similarity index 100%
rename from translated_images/mo/CRISP-DM.8bad2b4c66e62aa7.webp
rename to translated_images/zh-MO/CRISP-DM.8bad2b4c66e62aa7.webp
diff --git a/translated_images/mo/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp b/translated_images/zh-MO/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
similarity index 100%
rename from translated_images/mo/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
rename to translated_images/zh-MO/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
diff --git a/translated_images/mo/MaxWingspan-lineplot.b12169f99d26fdd2.webp b/translated_images/zh-MO/MaxWingspan-lineplot.b12169f99d26fdd2.webp
similarity index 100%
rename from translated_images/mo/MaxWingspan-lineplot.b12169f99d26fdd2.webp
rename to translated_images/zh-MO/MaxWingspan-lineplot.b12169f99d26fdd2.webp
diff --git a/translated_images/mo/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp b/translated_images/zh-MO/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
similarity index 100%
rename from translated_images/mo/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
rename to translated_images/zh-MO/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
diff --git a/translated_images/mo/MaxWingspan-scatterplot.60dc9e0e19d32700.webp b/translated_images/zh-MO/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
similarity index 100%
rename from translated_images/mo/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
rename to translated_images/zh-MO/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
diff --git a/translated_images/mo/aml-1.67281a85d3a1e2f3.webp b/translated_images/zh-MO/aml-1.67281a85d3a1e2f3.webp
similarity index 100%
rename from translated_images/mo/aml-1.67281a85d3a1e2f3.webp
rename to translated_images/zh-MO/aml-1.67281a85d3a1e2f3.webp
diff --git a/translated_images/mo/aml-2.c9fb9cffb39ccbbe.webp b/translated_images/zh-MO/aml-2.c9fb9cffb39ccbbe.webp
similarity index 100%
rename from translated_images/mo/aml-2.c9fb9cffb39ccbbe.webp
rename to translated_images/zh-MO/aml-2.c9fb9cffb39ccbbe.webp
diff --git a/translated_images/mo/aml-3.a7952e4295f38cc6.webp b/translated_images/zh-MO/aml-3.a7952e4295f38cc6.webp
similarity index 100%
rename from translated_images/mo/aml-3.a7952e4295f38cc6.webp
rename to translated_images/zh-MO/aml-3.a7952e4295f38cc6.webp
diff --git a/translated_images/mo/aml-4.7a627e09cb6f16d0.webp b/translated_images/zh-MO/aml-4.7a627e09cb6f16d0.webp
similarity index 100%
rename from translated_images/mo/aml-4.7a627e09cb6f16d0.webp
rename to translated_images/zh-MO/aml-4.7a627e09cb6f16d0.webp
diff --git a/translated_images/mo/bad-chart-1.596bc93425a8ac30.webp b/translated_images/zh-MO/bad-chart-1.596bc93425a8ac30.webp
similarity index 100%
rename from translated_images/mo/bad-chart-1.596bc93425a8ac30.webp
rename to translated_images/zh-MO/bad-chart-1.596bc93425a8ac30.webp
diff --git a/translated_images/mo/bad-chart-1.93130f495b748bed.webp b/translated_images/zh-MO/bad-chart-1.93130f495b748bed.webp
similarity index 100%
rename from translated_images/mo/bad-chart-1.93130f495b748bed.webp
rename to translated_images/zh-MO/bad-chart-1.93130f495b748bed.webp
diff --git a/translated_images/mo/bad-chart-2.62edf4d2f30f4e51.webp b/translated_images/zh-MO/bad-chart-2.62edf4d2f30f4e51.webp
similarity index 100%
rename from translated_images/mo/bad-chart-2.62edf4d2f30f4e51.webp
rename to translated_images/zh-MO/bad-chart-2.62edf4d2f30f4e51.webp
diff --git a/translated_images/mo/bad-chart-2.c20e36dd4e6f617c.webp b/translated_images/zh-MO/bad-chart-2.c20e36dd4e6f617c.webp
similarity index 100%
rename from translated_images/mo/bad-chart-2.c20e36dd4e6f617c.webp
rename to translated_images/zh-MO/bad-chart-2.c20e36dd4e6f617c.webp
diff --git a/translated_images/mo/bad-chart-3.6865d0afac4108d7.webp b/translated_images/zh-MO/bad-chart-3.6865d0afac4108d7.webp
similarity index 100%
rename from translated_images/mo/bad-chart-3.6865d0afac4108d7.webp
rename to translated_images/zh-MO/bad-chart-3.6865d0afac4108d7.webp
diff --git a/translated_images/mo/bad-chart-3.e201e2e915a230bc.webp b/translated_images/zh-MO/bad-chart-3.e201e2e915a230bc.webp
similarity index 100%
rename from translated_images/mo/bad-chart-3.e201e2e915a230bc.webp
rename to translated_images/zh-MO/bad-chart-3.e201e2e915a230bc.webp
diff --git a/translated_images/mo/bad-chart-4.68cfdf4011b45447.webp b/translated_images/zh-MO/bad-chart-4.68cfdf4011b45447.webp
similarity index 100%
rename from translated_images/mo/bad-chart-4.68cfdf4011b45447.webp
rename to translated_images/zh-MO/bad-chart-4.68cfdf4011b45447.webp
diff --git a/translated_images/mo/bad-chart-4.8872b2b881ffa96c.webp b/translated_images/zh-MO/bad-chart-4.8872b2b881ffa96c.webp
similarity index 100%
rename from translated_images/mo/bad-chart-4.8872b2b881ffa96c.webp
rename to translated_images/zh-MO/bad-chart-4.8872b2b881ffa96c.webp
diff --git a/translated_images/tw/bee.0aa1d91132b12e3a.webp b/translated_images/zh-MO/bee.0aa1d91132b12e3a.webp
similarity index 100%
rename from translated_images/tw/bee.0aa1d91132b12e3a.webp
rename to translated_images/zh-MO/bee.0aa1d91132b12e3a.webp
diff --git a/translated_images/mo/bodymass-per-order.9d2b065dd931b928.webp b/translated_images/zh-MO/bodymass-per-order.9d2b065dd931b928.webp
similarity index 100%
rename from translated_images/mo/bodymass-per-order.9d2b065dd931b928.webp
rename to translated_images/zh-MO/bodymass-per-order.9d2b065dd931b928.webp
diff --git a/translated_images/mo/bodymass-smooth.d31ce526d82b0a1f.webp b/translated_images/zh-MO/bodymass-smooth.d31ce526d82b0a1f.webp
similarity index 100%
rename from translated_images/mo/bodymass-smooth.d31ce526d82b0a1f.webp
rename to translated_images/zh-MO/bodymass-smooth.d31ce526d82b0a1f.webp
diff --git a/translated_images/mo/boxplot_byrole.036b27a1c3f52d42.webp b/translated_images/zh-MO/boxplot_byrole.036b27a1c3f52d42.webp
similarity index 100%
rename from translated_images/mo/boxplot_byrole.036b27a1c3f52d42.webp
rename to translated_images/zh-MO/boxplot_byrole.036b27a1c3f52d42.webp
diff --git a/translated_images/mo/boxplot_explanation.4039b7de08780fd4.webp b/translated_images/zh-MO/boxplot_explanation.4039b7de08780fd4.webp
similarity index 100%
rename from translated_images/mo/boxplot_explanation.4039b7de08780fd4.webp
rename to translated_images/zh-MO/boxplot_explanation.4039b7de08780fd4.webp
diff --git a/translated_images/mo/busing.7b9e3b41cd4b981c.webp b/translated_images/zh-MO/busing.7b9e3b41cd4b981c.webp
similarity index 100%
rename from translated_images/mo/busing.7b9e3b41cd4b981c.webp
rename to translated_images/zh-MO/busing.7b9e3b41cd4b981c.webp
diff --git a/translated_images/mo/busing.8157cf1bc89a3f65.webp b/translated_images/zh-MO/busing.8157cf1bc89a3f65.webp
similarity index 100%
rename from translated_images/mo/busing.8157cf1bc89a3f65.webp
rename to translated_images/zh-MO/busing.8157cf1bc89a3f65.webp
diff --git a/translated_images/mo/category-counts-02.0b9a0a4de42275ae.webp b/translated_images/zh-MO/category-counts-02.0b9a0a4de42275ae.webp
similarity index 100%
rename from translated_images/mo/category-counts-02.0b9a0a4de42275ae.webp
rename to translated_images/zh-MO/category-counts-02.0b9a0a4de42275ae.webp
diff --git a/translated_images/tw/category-counts.abee8188c4c9b6f0.webp b/translated_images/zh-MO/category-counts.abee8188c4c9b6f0.webp
similarity index 100%
rename from translated_images/tw/category-counts.abee8188c4c9b6f0.webp
rename to translated_images/zh-MO/category-counts.abee8188c4c9b6f0.webp
diff --git a/translated_images/mo/category-length-02.7304bf519375c980.webp b/translated_images/zh-MO/category-length-02.7304bf519375c980.webp
similarity index 100%
rename from translated_images/mo/category-length-02.7304bf519375c980.webp
rename to translated_images/zh-MO/category-length-02.7304bf519375c980.webp
diff --git a/translated_images/mo/category-length.7e34c296690e85d6.webp b/translated_images/zh-MO/category-length.7e34c296690e85d6.webp
similarity index 100%
rename from translated_images/mo/category-length.7e34c296690e85d6.webp
rename to translated_images/zh-MO/category-length.7e34c296690e85d6.webp
diff --git a/translated_images/tw/category-length.b0d9a0208a7b3713.webp b/translated_images/zh-MO/category-length.b0d9a0208a7b3713.webp
similarity index 100%
rename from translated_images/tw/category-length.b0d9a0208a7b3713.webp
rename to translated_images/zh-MO/category-length.b0d9a0208a7b3713.webp
diff --git a/translated_images/tw/cloud-picture.f5526de3c6c6387b.webp b/translated_images/zh-MO/cloud-picture.f5526de3c6c6387b.webp
similarity index 100%
rename from translated_images/tw/cloud-picture.f5526de3c6c6387b.webp
rename to translated_images/zh-MO/cloud-picture.f5526de3c6c6387b.webp
diff --git a/translated_images/mo/cluster-1.b78cb630bb543729.webp b/translated_images/zh-MO/cluster-1.b78cb630bb543729.webp
similarity index 100%
rename from translated_images/mo/cluster-1.b78cb630bb543729.webp
rename to translated_images/zh-MO/cluster-1.b78cb630bb543729.webp
diff --git a/translated_images/mo/cluster-2.ea30cdbc9f926bb9.webp b/translated_images/zh-MO/cluster-2.ea30cdbc9f926bb9.webp
similarity index 100%
rename from translated_images/mo/cluster-2.ea30cdbc9f926bb9.webp
rename to translated_images/zh-MO/cluster-2.ea30cdbc9f926bb9.webp
diff --git a/translated_images/mo/cluster-3.8a334bc070ec173a.webp b/translated_images/zh-MO/cluster-3.8a334bc070ec173a.webp
similarity index 100%
rename from translated_images/mo/cluster-3.8a334bc070ec173a.webp
rename to translated_images/zh-MO/cluster-3.8a334bc070ec173a.webp
diff --git a/translated_images/mo/columnar-db.ffcfe73c3e9063a8.webp b/translated_images/zh-MO/columnar-db.ffcfe73c3e9063a8.webp
similarity index 100%
rename from translated_images/mo/columnar-db.ffcfe73c3e9063a8.webp
rename to translated_images/zh-MO/columnar-db.ffcfe73c3e9063a8.webp
diff --git a/translated_images/tw/communication.06d8e2a88d30d168.webp b/translated_images/zh-MO/communication.06d8e2a88d30d168.webp
similarity index 100%
rename from translated_images/tw/communication.06d8e2a88d30d168.webp
rename to translated_images/zh-MO/communication.06d8e2a88d30d168.webp
diff --git a/translated_images/mo/comparingdata.f486a450d61c7ca5.webp b/translated_images/zh-MO/comparingdata.f486a450d61c7ca5.webp
similarity index 100%
rename from translated_images/mo/comparingdata.f486a450d61c7ca5.webp
rename to translated_images/zh-MO/comparingdata.f486a450d61c7ca5.webp
diff --git a/translated_images/mo/compute-instance-1.dba347cb199ca499.webp b/translated_images/zh-MO/compute-instance-1.dba347cb199ca499.webp
similarity index 100%
rename from translated_images/mo/compute-instance-1.dba347cb199ca499.webp
rename to translated_images/zh-MO/compute-instance-1.dba347cb199ca499.webp
diff --git a/translated_images/mo/consumption-1.700abd196452842a.webp b/translated_images/zh-MO/consumption-1.700abd196452842a.webp
similarity index 100%
rename from translated_images/mo/consumption-1.700abd196452842a.webp
rename to translated_images/zh-MO/consumption-1.700abd196452842a.webp
diff --git a/translated_images/mo/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp b/translated_images/zh-MO/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
similarity index 100%
rename from translated_images/mo/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
rename to translated_images/zh-MO/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
diff --git a/translated_images/mo/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp b/translated_images/zh-MO/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
similarity index 100%
rename from translated_images/mo/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
rename to translated_images/zh-MO/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
diff --git a/translated_images/mo/cosmosdb-emulator-persons.bf640586a7077c89.webp b/translated_images/zh-MO/cosmosdb-emulator-persons.bf640586a7077c89.webp
similarity index 100%
rename from translated_images/mo/cosmosdb-emulator-persons.bf640586a7077c89.webp
rename to translated_images/zh-MO/cosmosdb-emulator-persons.bf640586a7077c89.webp
diff --git a/translated_images/zh/covidspread.f3d131c4f1d260ab.webp b/translated_images/zh-MO/covidspread.f3d131c4f1d260ab.webp
similarity index 100%
rename from translated_images/zh/covidspread.f3d131c4f1d260ab.webp
rename to translated_images/zh-MO/covidspread.f3d131c4f1d260ab.webp
diff --git a/translated_images/mo/covidtreat.b2ba59f57ca45fbc.webp b/translated_images/zh-MO/covidtreat.b2ba59f57ca45fbc.webp
similarity index 100%
rename from translated_images/mo/covidtreat.b2ba59f57ca45fbc.webp
rename to translated_images/zh-MO/covidtreat.b2ba59f57ca45fbc.webp
diff --git a/translated_images/tw/data-love.a22ef29e6742c852.webp b/translated_images/zh-MO/data-love.a22ef29e6742c852.webp
similarity index 100%
rename from translated_images/tw/data-love.a22ef29e6742c852.webp
rename to translated_images/zh-MO/data-love.a22ef29e6742c852.webp
diff --git a/translated_images/mo/data-science-applications.4e5019cd8790ebac.webp b/translated_images/zh-MO/data-science-applications.4e5019cd8790ebac.webp
similarity index 100%
rename from translated_images/mo/data-science-applications.4e5019cd8790ebac.webp
rename to translated_images/zh-MO/data-science-applications.4e5019cd8790ebac.webp
diff --git a/translated_images/mo/data-science-lifecycle.a1e362637503c4fb.webp b/translated_images/zh-MO/data-science-lifecycle.a1e362637503c4fb.webp
similarity index 100%
rename from translated_images/mo/data-science-lifecycle.a1e362637503c4fb.webp
rename to translated_images/zh-MO/data-science-lifecycle.a1e362637503c4fb.webp
diff --git a/translated_images/mo/data.48e22bb7617d8d92.webp b/translated_images/zh-MO/data.48e22bb7617d8d92.webp
similarity index 100%
rename from translated_images/mo/data.48e22bb7617d8d92.webp
rename to translated_images/zh-MO/data.48e22bb7617d8d92.webp
diff --git a/translated_images/mo/dataframe-1.caf409f0c688e84c.webp b/translated_images/zh-MO/dataframe-1.caf409f0c688e84c.webp
similarity index 100%
rename from translated_images/mo/dataframe-1.caf409f0c688e84c.webp
rename to translated_images/zh-MO/dataframe-1.caf409f0c688e84c.webp
diff --git a/translated_images/mo/datascienceinthecloud.59ffb059a670fb0a.webp b/translated_images/zh-MO/datascienceinthecloud.59ffb059a670fb0a.webp
similarity index 100%
rename from translated_images/mo/datascienceinthecloud.59ffb059a670fb0a.webp
rename to translated_images/zh-MO/datascienceinthecloud.59ffb059a670fb0a.webp
diff --git a/translated_images/mo/dataset-1.e86ab4e10907a6e9.webp b/translated_images/zh-MO/dataset-1.e86ab4e10907a6e9.webp
similarity index 100%
rename from translated_images/mo/dataset-1.e86ab4e10907a6e9.webp
rename to translated_images/zh-MO/dataset-1.e86ab4e10907a6e9.webp
diff --git a/translated_images/mo/dataset-2.f58de1c435d5bf9c.webp b/translated_images/zh-MO/dataset-2.f58de1c435d5bf9c.webp
similarity index 100%
rename from translated_images/mo/dataset-2.f58de1c435d5bf9c.webp
rename to translated_images/zh-MO/dataset-2.f58de1c435d5bf9c.webp
diff --git a/translated_images/mo/dataset-3.58db8c0eb783e892.webp b/translated_images/zh-MO/dataset-3.58db8c0eb783e892.webp
similarity index 100%
rename from translated_images/mo/dataset-3.58db8c0eb783e892.webp
rename to translated_images/zh-MO/dataset-3.58db8c0eb783e892.webp
diff --git a/translated_images/zh/density-plot.675ccf865b76c690.webp b/translated_images/zh-MO/density-plot.675ccf865b76c690.webp
similarity index 100%
rename from translated_images/zh/density-plot.675ccf865b76c690.webp
rename to translated_images/zh-MO/density-plot.675ccf865b76c690.webp
diff --git a/translated_images/tw/density1.8801043bd4af2567.webp b/translated_images/zh-MO/density1.8801043bd4af2567.webp
similarity index 100%
rename from translated_images/tw/density1.8801043bd4af2567.webp
rename to translated_images/zh-MO/density1.8801043bd4af2567.webp
diff --git a/translated_images/mo/density2.8e7647257060ff54.webp b/translated_images/zh-MO/density2.8e7647257060ff54.webp
similarity index 100%
rename from translated_images/mo/density2.8e7647257060ff54.webp
rename to translated_images/zh-MO/density2.8e7647257060ff54.webp
diff --git a/translated_images/mo/density3.84ae27da82f31e6b.webp b/translated_images/zh-MO/density3.84ae27da82f31e6b.webp
similarity index 100%
rename from translated_images/mo/density3.84ae27da82f31e6b.webp
rename to translated_images/zh-MO/density3.84ae27da82f31e6b.webp
diff --git a/translated_images/mo/density4.e9d6c033f15c500f.webp b/translated_images/zh-MO/density4.e9d6c033f15c500f.webp
similarity index 100%
rename from translated_images/mo/density4.e9d6c033f15c500f.webp
rename to translated_images/zh-MO/density4.e9d6c033f15c500f.webp
diff --git a/translated_images/mo/deploy-1.ddad725acadc84e3.webp b/translated_images/zh-MO/deploy-1.ddad725acadc84e3.webp
similarity index 100%
rename from translated_images/mo/deploy-1.ddad725acadc84e3.webp
rename to translated_images/zh-MO/deploy-1.ddad725acadc84e3.webp
diff --git a/translated_images/mo/deploy-2.94dbb13f23908647.webp b/translated_images/zh-MO/deploy-2.94dbb13f23908647.webp
similarity index 100%
rename from translated_images/mo/deploy-2.94dbb13f23908647.webp
rename to translated_images/zh-MO/deploy-2.94dbb13f23908647.webp
diff --git a/translated_images/mo/deploy-3.fecefef070e8ef3b.webp b/translated_images/zh-MO/deploy-3.fecefef070e8ef3b.webp
similarity index 100%
rename from translated_images/mo/deploy-3.fecefef070e8ef3b.webp
rename to translated_images/zh-MO/deploy-3.fecefef070e8ef3b.webp
diff --git a/translated_images/mo/dist1-wb.0d0cac82e2974fbb.webp b/translated_images/zh-MO/dist1-wb.0d0cac82e2974fbb.webp
similarity index 100%
rename from translated_images/mo/dist1-wb.0d0cac82e2974fbb.webp
rename to translated_images/zh-MO/dist1-wb.0d0cac82e2974fbb.webp
diff --git a/translated_images/tw/dist1.0010100b00231819.webp b/translated_images/zh-MO/dist1.0010100b00231819.webp
similarity index 100%
rename from translated_images/tw/dist1.0010100b00231819.webp
rename to translated_images/zh-MO/dist1.0010100b00231819.webp
diff --git a/translated_images/mo/dist2-wb.2c0a7a3499b2fbf5.webp b/translated_images/zh-MO/dist2-wb.2c0a7a3499b2fbf5.webp
similarity index 100%
rename from translated_images/mo/dist2-wb.2c0a7a3499b2fbf5.webp
rename to translated_images/zh-MO/dist2-wb.2c0a7a3499b2fbf5.webp
diff --git a/translated_images/tw/dist2.c398bfd5320401b9.webp b/translated_images/zh-MO/dist2.c398bfd5320401b9.webp
similarity index 100%
rename from translated_images/tw/dist2.c398bfd5320401b9.webp
rename to translated_images/zh-MO/dist2.c398bfd5320401b9.webp
diff --git a/translated_images/mo/dist3-wb.64b88db7f9780200.webp b/translated_images/zh-MO/dist3-wb.64b88db7f9780200.webp
similarity index 100%
rename from translated_images/mo/dist3-wb.64b88db7f9780200.webp
rename to translated_images/zh-MO/dist3-wb.64b88db7f9780200.webp
diff --git a/translated_images/tw/dist3.ad4d9658559690f5.webp b/translated_images/zh-MO/dist3.ad4d9658559690f5.webp
similarity index 100%
rename from translated_images/tw/dist3.ad4d9658559690f5.webp
rename to translated_images/zh-MO/dist3.ad4d9658559690f5.webp
diff --git a/translated_images/mo/distribution-30bins.6a3921ea7a421bf7.webp b/translated_images/zh-MO/distribution-30bins.6a3921ea7a421bf7.webp
similarity index 100%
rename from translated_images/mo/distribution-30bins.6a3921ea7a421bf7.webp
rename to translated_images/zh-MO/distribution-30bins.6a3921ea7a421bf7.webp
diff --git a/translated_images/mo/distribution-over-the-entire-dataset.d22afd3fa96be854.webp b/translated_images/zh-MO/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
similarity index 100%
rename from translated_images/mo/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
rename to translated_images/zh-MO/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
diff --git a/translated_images/mo/document-db.ddeec48c6dc9e5fd.webp b/translated_images/zh-MO/document-db.ddeec48c6dc9e5fd.webp
similarity index 100%
rename from translated_images/mo/document-db.ddeec48c6dc9e5fd.webp
rename to translated_images/zh-MO/document-db.ddeec48c6dc9e5fd.webp
diff --git a/translated_images/mo/donut-wb.34e6fb275da9d834.webp b/translated_images/zh-MO/donut-wb.34e6fb275da9d834.webp
similarity index 100%
rename from translated_images/mo/donut-wb.34e6fb275da9d834.webp
rename to translated_images/zh-MO/donut-wb.34e6fb275da9d834.webp
diff --git a/translated_images/mo/donut-wb.be3c12a22712302b.webp b/translated_images/zh-MO/donut-wb.be3c12a22712302b.webp
similarity index 100%
rename from translated_images/mo/donut-wb.be3c12a22712302b.webp
rename to translated_images/zh-MO/donut-wb.be3c12a22712302b.webp
diff --git a/translated_images/tw/donut.f016d7be7f08c8f8.webp b/translated_images/zh-MO/donut.f016d7be7f08c8f8.webp
similarity index 100%
rename from translated_images/tw/donut.f016d7be7f08c8f8.webp
rename to translated_images/zh-MO/donut.f016d7be7f08c8f8.webp
diff --git a/translated_images/mo/ds-for-beginners.d01930c9193ef522.webp b/translated_images/zh-MO/ds-for-beginners.d01930c9193ef522.webp
similarity index 100%
rename from translated_images/mo/ds-for-beginners.d01930c9193ef522.webp
rename to translated_images/zh-MO/ds-for-beginners.d01930c9193ef522.webp
diff --git a/translated_images/mo/ds_wordcloud.664a7c07dca57de0.webp b/translated_images/zh-MO/ds_wordcloud.664a7c07dca57de0.webp
similarity index 100%
rename from translated_images/mo/ds_wordcloud.664a7c07dca57de0.webp
rename to translated_images/zh-MO/ds_wordcloud.664a7c07dca57de0.webp
diff --git a/translated_images/mo/dual-line.a4c28ce659603fab.webp b/translated_images/zh-MO/dual-line.a4c28ce659603fab.webp
similarity index 100%
rename from translated_images/mo/dual-line.a4c28ce659603fab.webp
rename to translated_images/zh-MO/dual-line.a4c28ce659603fab.webp
diff --git a/translated_images/mo/dual-line.fc4665f360a54018.webp b/translated_images/zh-MO/dual-line.fc4665f360a54018.webp
similarity index 100%
rename from translated_images/mo/dual-line.fc4665f360a54018.webp
rename to translated_images/zh-MO/dual-line.fc4665f360a54018.webp
diff --git a/translated_images/tw/facet.491ad90d61c2a7cc.webp b/translated_images/zh-MO/facet.491ad90d61c2a7cc.webp
similarity index 100%
rename from translated_images/tw/facet.491ad90d61c2a7cc.webp
rename to translated_images/zh-MO/facet.491ad90d61c2a7cc.webp
diff --git a/translated_images/mo/facet.6a34851dcd540050.webp b/translated_images/zh-MO/facet.6a34851dcd540050.webp
similarity index 100%
rename from translated_images/mo/facet.6a34851dcd540050.webp
rename to translated_images/zh-MO/facet.6a34851dcd540050.webp
diff --git a/translated_images/tw/favicon.37b561214b36d454.webp b/translated_images/zh-MO/favicon.37b561214b36d454.webp
similarity index 100%
rename from translated_images/tw/favicon.37b561214b36d454.webp
rename to translated_images/zh-MO/favicon.37b561214b36d454.webp
diff --git a/translated_images/mo/filtered-histogram.6bf5d2bfd8253322.webp b/translated_images/zh-MO/filtered-histogram.6bf5d2bfd8253322.webp
similarity index 100%
rename from translated_images/mo/filtered-histogram.6bf5d2bfd8253322.webp
rename to translated_images/zh-MO/filtered-histogram.6bf5d2bfd8253322.webp
diff --git a/translated_images/mo/formula-excel.ad1068c220892f5e.webp b/translated_images/zh-MO/formula-excel.ad1068c220892f5e.webp
similarity index 100%
rename from translated_images/mo/formula-excel.ad1068c220892f5e.webp
rename to translated_images/zh-MO/formula-excel.ad1068c220892f5e.webp
diff --git a/translated_images/mo/full-data-bar-02.aaa3fda71c63ed56.webp b/translated_images/zh-MO/full-data-bar-02.aaa3fda71c63ed56.webp
similarity index 100%
rename from translated_images/mo/full-data-bar-02.aaa3fda71c63ed56.webp
rename to translated_images/zh-MO/full-data-bar-02.aaa3fda71c63ed56.webp
diff --git a/translated_images/mo/full-data-bar.a0b37da71a6cd236.webp b/translated_images/zh-MO/full-data-bar.a0b37da71a6cd236.webp
similarity index 100%
rename from translated_images/mo/full-data-bar.a0b37da71a6cd236.webp
rename to translated_images/zh-MO/full-data-bar.a0b37da71a6cd236.webp
diff --git a/translated_images/mo/function-excel.be2ae4feddc10ca0.webp b/translated_images/zh-MO/function-excel.be2ae4feddc10ca0.webp
similarity index 100%
rename from translated_images/mo/function-excel.be2ae4feddc10ca0.webp
rename to translated_images/zh-MO/function-excel.be2ae4feddc10ca0.webp
diff --git a/translated_images/mo/graph-db.d13629152f79a9da.webp b/translated_images/zh-MO/graph-db.d13629152f79a9da.webp
similarity index 100%
rename from translated_images/mo/graph-db.d13629152f79a9da.webp
rename to translated_images/zh-MO/graph-db.d13629152f79a9da.webp
diff --git a/translated_images/tw/height-boxplot.ccb66b2848b5f51c.webp b/translated_images/zh-MO/height-boxplot.ccb66b2848b5f51c.webp
similarity index 100%
rename from translated_images/tw/height-boxplot.ccb66b2848b5f51c.webp
rename to translated_images/zh-MO/height-boxplot.ccb66b2848b5f51c.webp
diff --git a/translated_images/mo/histogram-conservation-wb.3c40450eb072c14d.webp b/translated_images/zh-MO/histogram-conservation-wb.3c40450eb072c14d.webp
similarity index 100%
rename from translated_images/mo/histogram-conservation-wb.3c40450eb072c14d.webp
rename to translated_images/zh-MO/histogram-conservation-wb.3c40450eb072c14d.webp
diff --git a/translated_images/mo/histogram-conservation.13b3542e7784e415.webp b/translated_images/zh-MO/histogram-conservation.13b3542e7784e415.webp
similarity index 100%
rename from translated_images/mo/histogram-conservation.13b3542e7784e415.webp
rename to translated_images/zh-MO/histogram-conservation.13b3542e7784e415.webp
diff --git a/translated_images/mo/kv-db.e8f2b75686bbdfcb.webp b/translated_images/zh-MO/kv-db.e8f2b75686bbdfcb.webp
similarity index 100%
rename from translated_images/mo/kv-db.e8f2b75686bbdfcb.webp
rename to translated_images/zh-MO/kv-db.e8f2b75686bbdfcb.webp
diff --git a/translated_images/mo/labeled-wingspan-02.6110e2d2401cd523.webp b/translated_images/zh-MO/labeled-wingspan-02.6110e2d2401cd523.webp
similarity index 100%
rename from translated_images/mo/labeled-wingspan-02.6110e2d2401cd523.webp
rename to translated_images/zh-MO/labeled-wingspan-02.6110e2d2401cd523.webp
diff --git a/translated_images/mo/labeled-wingspan.900ffedd7e3ec6de.webp b/translated_images/zh-MO/labeled-wingspan.900ffedd7e3ec6de.webp
similarity index 100%
rename from translated_images/mo/labeled-wingspan.900ffedd7e3ec6de.webp
rename to translated_images/zh-MO/labeled-wingspan.900ffedd7e3ec6de.webp
diff --git a/translated_images/mo/less-smooth-bodymass.10f4db8b683cc17d.webp b/translated_images/zh-MO/less-smooth-bodymass.10f4db8b683cc17d.webp
similarity index 100%
rename from translated_images/mo/less-smooth-bodymass.10f4db8b683cc17d.webp
rename to translated_images/zh-MO/less-smooth-bodymass.10f4db8b683cc17d.webp
diff --git a/translated_images/mo/liaisons.7b440b28f6d07ea4.webp b/translated_images/zh-MO/liaisons.7b440b28f6d07ea4.webp
similarity index 100%
rename from translated_images/mo/liaisons.7b440b28f6d07ea4.webp
rename to translated_images/zh-MO/liaisons.7b440b28f6d07ea4.webp
diff --git a/translated_images/mo/liaisons.90ce7360bcf84765.webp b/translated_images/zh-MO/liaisons.90ce7360bcf84765.webp
similarity index 100%
rename from translated_images/mo/liaisons.90ce7360bcf84765.webp
rename to translated_images/zh-MO/liaisons.90ce7360bcf84765.webp
diff --git a/translated_images/mo/line1.299b576fbb2a59e6.webp b/translated_images/zh-MO/line1.299b576fbb2a59e6.webp
similarity index 100%
rename from translated_images/mo/line1.299b576fbb2a59e6.webp
rename to translated_images/zh-MO/line1.299b576fbb2a59e6.webp
diff --git a/translated_images/mo/line1.f36eb465229a3b1f.webp b/translated_images/zh-MO/line1.f36eb465229a3b1f.webp
similarity index 100%
rename from translated_images/mo/line1.f36eb465229a3b1f.webp
rename to translated_images/zh-MO/line1.f36eb465229a3b1f.webp
diff --git a/translated_images/mo/line2.3b18fcda7176ceba.webp b/translated_images/zh-MO/line2.3b18fcda7176ceba.webp
similarity index 100%
rename from translated_images/mo/line2.3b18fcda7176ceba.webp
rename to translated_images/zh-MO/line2.3b18fcda7176ceba.webp
diff --git a/translated_images/mo/line2.a5b3493dc01058af.webp b/translated_images/zh-MO/line2.a5b3493dc01058af.webp
similarity index 100%
rename from translated_images/mo/line2.a5b3493dc01058af.webp
rename to translated_images/zh-MO/line2.a5b3493dc01058af.webp
diff --git a/translated_images/mo/max-length-per-order.e5b283d952c78c12.webp b/translated_images/zh-MO/max-length-per-order.e5b283d952c78c12.webp
similarity index 100%
rename from translated_images/mo/max-length-per-order.e5b283d952c78c12.webp
rename to translated_images/zh-MO/max-length-per-order.e5b283d952c78c12.webp
diff --git a/translated_images/tw/max-wingspan-02.e79fd847b2640b89.webp b/translated_images/zh-MO/max-wingspan-02.e79fd847b2640b89.webp
similarity index 100%
rename from translated_images/tw/max-wingspan-02.e79fd847b2640b89.webp
rename to translated_images/zh-MO/max-wingspan-02.e79fd847b2640b89.webp
diff --git a/translated_images/mo/max-wingspan-labels-02.aa90e826ca49a9d1.webp b/translated_images/zh-MO/max-wingspan-labels-02.aa90e826ca49a9d1.webp
similarity index 100%
rename from translated_images/mo/max-wingspan-labels-02.aa90e826ca49a9d1.webp
rename to translated_images/zh-MO/max-wingspan-labels-02.aa90e826ca49a9d1.webp
diff --git a/translated_images/tw/max-wingspan-labels.46f0cc3c48edd4e0.webp b/translated_images/zh-MO/max-wingspan-labels.46f0cc3c48edd4e0.webp
similarity index 100%
rename from translated_images/tw/max-wingspan-labels.46f0cc3c48edd4e0.webp
rename to translated_images/zh-MO/max-wingspan-labels.46f0cc3c48edd4e0.webp
diff --git a/translated_images/tw/max-wingspan.0b8d0858436414aa.webp b/translated_images/zh-MO/max-wingspan.0b8d0858436414aa.webp
similarity index 100%
rename from translated_images/tw/max-wingspan.0b8d0858436414aa.webp
rename to translated_images/zh-MO/max-wingspan.0b8d0858436414aa.webp
diff --git a/translated_images/mo/multi.56548caa9eae8d0f.webp b/translated_images/zh-MO/multi.56548caa9eae8d0f.webp
similarity index 100%
rename from translated_images/mo/multi.56548caa9eae8d0f.webp
rename to translated_images/zh-MO/multi.56548caa9eae8d0f.webp
diff --git a/translated_images/mo/new-container.650e10c7a20a5f83.webp b/translated_images/zh-MO/new-container.650e10c7a20a5f83.webp
similarity index 100%
rename from translated_images/mo/new-container.650e10c7a20a5f83.webp
rename to translated_images/zh-MO/new-container.650e10c7a20a5f83.webp
diff --git a/translated_images/tw/normal-histogram.dfae0d67c202137d.webp b/translated_images/zh-MO/normal-histogram.dfae0d67c202137d.webp
similarity index 100%
rename from translated_images/tw/normal-histogram.dfae0d67c202137d.webp
rename to translated_images/zh-MO/normal-histogram.dfae0d67c202137d.webp
diff --git a/translated_images/mo/notebook-1.12998af7b02c83f5.webp b/translated_images/zh-MO/notebook-1.12998af7b02c83f5.webp
similarity index 100%
rename from translated_images/mo/notebook-1.12998af7b02c83f5.webp
rename to translated_images/zh-MO/notebook-1.12998af7b02c83f5.webp
diff --git a/translated_images/mo/notebook-2.9a657c037e34f1cf.webp b/translated_images/zh-MO/notebook-2.9a657c037e34f1cf.webp
similarity index 100%
rename from translated_images/mo/notebook-2.9a657c037e34f1cf.webp
rename to translated_images/zh-MO/notebook-2.9a657c037e34f1cf.webp
diff --git a/translated_images/mo/parts-of-spreadsheet.120711c82aa18a45.webp b/translated_images/zh-MO/parts-of-spreadsheet.120711c82aa18a45.webp
similarity index 100%
rename from translated_images/mo/parts-of-spreadsheet.120711c82aa18a45.webp
rename to translated_images/zh-MO/parts-of-spreadsheet.120711c82aa18a45.webp
diff --git a/translated_images/mo/pie1-wb.685df063673751f4.webp b/translated_images/zh-MO/pie1-wb.685df063673751f4.webp
similarity index 100%
rename from translated_images/mo/pie1-wb.685df063673751f4.webp
rename to translated_images/zh-MO/pie1-wb.685df063673751f4.webp
diff --git a/translated_images/mo/pie1-wb.e201f2fcc3354131.webp b/translated_images/zh-MO/pie1-wb.e201f2fcc3354131.webp
similarity index 100%
rename from translated_images/mo/pie1-wb.e201f2fcc3354131.webp
rename to translated_images/zh-MO/pie1-wb.e201f2fcc3354131.webp
diff --git a/translated_images/tw/pie1.8f6a8bfac96de60e.webp b/translated_images/zh-MO/pie1.8f6a8bfac96de60e.webp
similarity index 100%
rename from translated_images/tw/pie1.8f6a8bfac96de60e.webp
rename to translated_images/zh-MO/pie1.8f6a8bfac96de60e.webp
diff --git a/translated_images/mo/planetary-computer-explorer.c1e95a9b053167d6.webp b/translated_images/zh-MO/planetary-computer-explorer.c1e95a9b053167d6.webp
similarity index 100%
rename from translated_images/mo/planetary-computer-explorer.c1e95a9b053167d6.webp
rename to translated_images/zh-MO/planetary-computer-explorer.c1e95a9b053167d6.webp
diff --git a/translated_images/tw/probability-density.a8aad29f17a14afb.webp b/translated_images/zh-MO/probability-density.a8aad29f17a14afb.webp
similarity index 100%
rename from translated_images/tw/probability-density.a8aad29f17a14afb.webp
rename to translated_images/zh-MO/probability-density.a8aad29f17a14afb.webp
diff --git a/translated_images/mo/project-schema.420e56d495624541.webp b/translated_images/zh-MO/project-schema.420e56d495624541.webp
similarity index 100%
rename from translated_images/mo/project-schema.420e56d495624541.webp
rename to translated_images/zh-MO/project-schema.420e56d495624541.webp
diff --git a/translated_images/mo/project-schema.736f6e403f321eb4.webp b/translated_images/zh-MO/project-schema.736f6e403f321eb4.webp
similarity index 100%
rename from translated_images/mo/project-schema.736f6e403f321eb4.webp
rename to translated_images/zh-MO/project-schema.736f6e403f321eb4.webp
diff --git a/translated_images/mo/scatter-wb.9d98b0ed7f0388af.webp b/translated_images/zh-MO/scatter-wb.9d98b0ed7f0388af.webp
similarity index 100%
rename from translated_images/mo/scatter-wb.9d98b0ed7f0388af.webp
rename to translated_images/zh-MO/scatter-wb.9d98b0ed7f0388af.webp
diff --git a/translated_images/tw/scatter.520a43eceb46dbcb.webp b/translated_images/zh-MO/scatter.520a43eceb46dbcb.webp
similarity index 100%
rename from translated_images/tw/scatter.520a43eceb46dbcb.webp
rename to translated_images/zh-MO/scatter.520a43eceb46dbcb.webp
diff --git a/translated_images/mo/scatter1.5e1aa5fd6706c5d1.webp b/translated_images/zh-MO/scatter1.5e1aa5fd6706c5d1.webp
similarity index 100%
rename from translated_images/mo/scatter1.5e1aa5fd6706c5d1.webp
rename to translated_images/zh-MO/scatter1.5e1aa5fd6706c5d1.webp
diff --git a/translated_images/mo/scatter1.86b8900674d88b26.webp b/translated_images/zh-MO/scatter1.86b8900674d88b26.webp
similarity index 100%
rename from translated_images/mo/scatter1.86b8900674d88b26.webp
rename to translated_images/zh-MO/scatter1.86b8900674d88b26.webp
diff --git a/translated_images/mo/scatter2.4d1cbc693bad20e2.webp b/translated_images/zh-MO/scatter2.4d1cbc693bad20e2.webp
similarity index 100%
rename from translated_images/mo/scatter2.4d1cbc693bad20e2.webp
rename to translated_images/zh-MO/scatter2.4d1cbc693bad20e2.webp
diff --git a/translated_images/mo/scatter2.c0041a58621ca702.webp b/translated_images/zh-MO/scatter2.c0041a58621ca702.webp
similarity index 100%
rename from translated_images/mo/scatter2.c0041a58621ca702.webp
rename to translated_images/zh-MO/scatter2.c0041a58621ca702.webp
diff --git a/translated_images/mo/scatter3.3c160a3d1dcb36b3.webp b/translated_images/zh-MO/scatter3.3c160a3d1dcb36b3.webp
similarity index 100%
rename from translated_images/mo/scatter3.3c160a3d1dcb36b3.webp
rename to translated_images/zh-MO/scatter3.3c160a3d1dcb36b3.webp
diff --git a/translated_images/mo/scatter3.722d21e6f20b3ea2.webp b/translated_images/zh-MO/scatter3.722d21e6f20b3ea2.webp
similarity index 100%
rename from translated_images/mo/scatter3.722d21e6f20b3ea2.webp
rename to translated_images/zh-MO/scatter3.722d21e6f20b3ea2.webp
diff --git a/translated_images/mo/scatterplot-wingspan-02.1c33790094ce36a7.webp b/translated_images/zh-MO/scatterplot-wingspan-02.1c33790094ce36a7.webp
similarity index 100%
rename from translated_images/mo/scatterplot-wingspan-02.1c33790094ce36a7.webp
rename to translated_images/zh-MO/scatterplot-wingspan-02.1c33790094ce36a7.webp
diff --git a/translated_images/tw/scatterplot-wingspan.bdab448702939bb3.webp b/translated_images/zh-MO/scatterplot-wingspan.bdab448702939bb3.webp
similarity index 100%
rename from translated_images/tw/scatterplot-wingspan.bdab448702939bb3.webp
rename to translated_images/zh-MO/scatterplot-wingspan.bdab448702939bb3.webp
diff --git a/translated_images/mo/stacked-bar-chart.0c92264e89da7b39.webp b/translated_images/zh-MO/stacked-bar-chart.0c92264e89da7b39.webp
similarity index 100%
rename from translated_images/mo/stacked-bar-chart.0c92264e89da7b39.webp
rename to translated_images/zh-MO/stacked-bar-chart.0c92264e89da7b39.webp
diff --git a/translated_images/mo/superimposed-02.f03058536baeb2ed.webp b/translated_images/zh-MO/superimposed-02.f03058536baeb2ed.webp
similarity index 100%
rename from translated_images/mo/superimposed-02.f03058536baeb2ed.webp
rename to translated_images/zh-MO/superimposed-02.f03058536baeb2ed.webp
diff --git a/translated_images/mo/superimposed-values.5363f0705a1da416.webp b/translated_images/zh-MO/superimposed-values.5363f0705a1da416.webp
similarity index 100%
rename from translated_images/mo/superimposed-values.5363f0705a1da416.webp
rename to translated_images/zh-MO/superimposed-values.5363f0705a1da416.webp
diff --git a/translated_images/tw/superimposed.8b5bd0e8825d9c5c.webp b/translated_images/zh-MO/superimposed.8b5bd0e8825d9c5c.webp
similarity index 100%
rename from translated_images/tw/superimposed.8b5bd0e8825d9c5c.webp
rename to translated_images/zh-MO/superimposed.8b5bd0e8825d9c5c.webp
diff --git a/translated_images/mo/tdsp-lifecycle2.e19029d598e2e73d.webp b/translated_images/zh-MO/tdsp-lifecycle2.e19029d598e2e73d.webp
similarity index 100%
rename from translated_images/mo/tdsp-lifecycle2.e19029d598e2e73d.webp
rename to translated_images/zh-MO/tdsp-lifecycle2.e19029d598e2e73d.webp
diff --git a/translated_images/mo/timeseries-1.80de678ab1cf727e.webp b/translated_images/zh-MO/timeseries-1.80de678ab1cf727e.webp
similarity index 100%
rename from translated_images/mo/timeseries-1.80de678ab1cf727e.webp
rename to translated_images/zh-MO/timeseries-1.80de678ab1cf727e.webp
diff --git a/translated_images/tw/timeseries-2.aae51d575c55181c.webp b/translated_images/zh-MO/timeseries-2.aae51d575c55181c.webp
similarity index 100%
rename from translated_images/tw/timeseries-2.aae51d575c55181c.webp
rename to translated_images/zh-MO/timeseries-2.aae51d575c55181c.webp
diff --git a/translated_images/tw/timeseries-3.f3147cbc8c624881.webp b/translated_images/zh-MO/timeseries-3.f3147cbc8c624881.webp
similarity index 100%
rename from translated_images/tw/timeseries-3.f3147cbc8c624881.webp
rename to translated_images/zh-MO/timeseries-3.f3147cbc8c624881.webp
diff --git a/translated_images/mo/tornado.2880ffc7f135f82b.webp b/translated_images/zh-MO/tornado.2880ffc7f135f82b.webp
similarity index 100%
rename from translated_images/mo/tornado.2880ffc7f135f82b.webp
rename to translated_images/zh-MO/tornado.2880ffc7f135f82b.webp
diff --git a/translated_images/mo/tornado.9f42168791208f97.webp b/translated_images/zh-MO/tornado.9f42168791208f97.webp
similarity index 100%
rename from translated_images/mo/tornado.9f42168791208f97.webp
rename to translated_images/zh-MO/tornado.9f42168791208f97.webp
diff --git a/translated_images/mo/video-def-ds.6623ee2392ef1abf.webp b/translated_images/zh-MO/video-def-ds.6623ee2392ef1abf.webp
similarity index 100%
rename from translated_images/mo/video-def-ds.6623ee2392ef1abf.webp
rename to translated_images/zh-MO/video-def-ds.6623ee2392ef1abf.webp
diff --git a/translated_images/mo/video-ds-python.245247dc811db8e4.webp b/translated_images/zh-MO/video-ds-python.245247dc811db8e4.webp
similarity index 100%
rename from translated_images/mo/video-ds-python.245247dc811db8e4.webp
rename to translated_images/zh-MO/video-ds-python.245247dc811db8e4.webp
diff --git a/translated_images/mo/video-prob-and-stats.e4282e5efa2f2543.webp b/translated_images/zh-MO/video-prob-and-stats.e4282e5efa2f2543.webp
similarity index 100%
rename from translated_images/mo/video-prob-and-stats.e4282e5efa2f2543.webp
rename to translated_images/zh-MO/video-prob-and-stats.e4282e5efa2f2543.webp
diff --git a/translated_images/mo/waffle.5455dbae4ccf17d5.webp b/translated_images/zh-MO/waffle.5455dbae4ccf17d5.webp
similarity index 100%
rename from translated_images/mo/waffle.5455dbae4ccf17d5.webp
rename to translated_images/zh-MO/waffle.5455dbae4ccf17d5.webp
diff --git a/translated_images/mo/waffle.aaa75c5337735a6e.webp b/translated_images/zh-MO/waffle.aaa75c5337735a6e.webp
similarity index 100%
rename from translated_images/mo/waffle.aaa75c5337735a6e.webp
rename to translated_images/zh-MO/waffle.aaa75c5337735a6e.webp
diff --git a/translated_images/tw/weight-boxplot.1dbab1c03af26f8a.webp b/translated_images/zh-MO/weight-boxplot.1dbab1c03af26f8a.webp
similarity index 100%
rename from translated_images/tw/weight-boxplot.1dbab1c03af26f8a.webp
rename to translated_images/zh-MO/weight-boxplot.1dbab1c03af26f8a.webp
diff --git a/translated_images/tw/weight-height-relationship.3f06bde4ca2aba99.webp b/translated_images/zh-MO/weight-height-relationship.3f06bde4ca2aba99.webp
similarity index 100%
rename from translated_images/tw/weight-height-relationship.3f06bde4ca2aba99.webp
rename to translated_images/zh-MO/weight-height-relationship.3f06bde4ca2aba99.webp
diff --git a/translated_images/mo/weight-histogram.bfd00caf7fc30b14.webp b/translated_images/zh-MO/weight-histogram.bfd00caf7fc30b14.webp
similarity index 100%
rename from translated_images/mo/weight-histogram.bfd00caf7fc30b14.webp
rename to translated_images/zh-MO/weight-histogram.bfd00caf7fc30b14.webp
diff --git a/translated_images/mo/wingspan-conservation-collation.4024e9aa6910866a.webp b/translated_images/zh-MO/wingspan-conservation-collation.4024e9aa6910866a.webp
similarity index 100%
rename from translated_images/mo/wingspan-conservation-collation.4024e9aa6910866a.webp
rename to translated_images/zh-MO/wingspan-conservation-collation.4024e9aa6910866a.webp
diff --git a/translated_images/mo/workspace-1.ac8694d60b073ed1.webp b/translated_images/zh-MO/workspace-1.ac8694d60b073ed1.webp
similarity index 100%
rename from translated_images/mo/workspace-1.ac8694d60b073ed1.webp
rename to translated_images/zh-MO/workspace-1.ac8694d60b073ed1.webp
diff --git a/translated_images/mo/workspace-2.ae7c486db8796147.webp b/translated_images/zh-MO/workspace-2.ae7c486db8796147.webp
similarity index 100%
rename from translated_images/mo/workspace-2.ae7c486db8796147.webp
rename to translated_images/zh-MO/workspace-2.ae7c486db8796147.webp
diff --git a/translated_images/mo/workspace-3.398ca4a5858132cc.webp b/translated_images/zh-MO/workspace-3.398ca4a5858132cc.webp
similarity index 100%
rename from translated_images/mo/workspace-3.398ca4a5858132cc.webp
rename to translated_images/zh-MO/workspace-3.398ca4a5858132cc.webp
diff --git a/translated_images/mo/workspace-4.bac87f6599c4df63.webp b/translated_images/zh-MO/workspace-4.bac87f6599c4df63.webp
similarity index 100%
rename from translated_images/mo/workspace-4.bac87f6599c4df63.webp
rename to translated_images/zh-MO/workspace-4.bac87f6599c4df63.webp
diff --git a/translated_images/mo/workspace-5.a6eb17e0a5e64200.webp b/translated_images/zh-MO/workspace-5.a6eb17e0a5e64200.webp
similarity index 100%
rename from translated_images/mo/workspace-5.a6eb17e0a5e64200.webp
rename to translated_images/zh-MO/workspace-5.a6eb17e0a5e64200.webp
diff --git a/translated_images/mo/workspace-6.8dd81fe841797ee1.webp b/translated_images/zh-MO/workspace-6.8dd81fe841797ee1.webp
similarity index 100%
rename from translated_images/mo/workspace-6.8dd81fe841797ee1.webp
rename to translated_images/zh-MO/workspace-6.8dd81fe841797ee1.webp
diff --git a/translated_images/tw/.co-op-translator.json b/translated_images/zh-TW/.co-op-translator.json
similarity index 89%
rename from translated_images/tw/.co-op-translator.json
rename to translated_images/zh-TW/.co-op-translator.json
index d90548a6..62ba2f4f 100644
--- a/translated_images/tw/.co-op-translator.json
+++ b/translated_images/zh-TW/.co-op-translator.json
@@ -3,1092 +3,1092 @@
"original_hash": "ecf8b739e8b862f9c4dac338bd614aa7",
"translation_date": "2026-01-16T10:20:50+00:00",
"source_file": "sketchnotes/00-Roadmap.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"00-Title.8af36cd35da1ac55.webp": {
"original_hash": "533863b4c050b07b1d90ecb948237ffc",
"translation_date": "2026-01-16T10:21:45+00:00",
"source_file": "sketchnotes/00-Title.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"01-Definitions.1b14ddc9525dc0d9.webp": {
"original_hash": "56648d71e5fb4865d3f621010f220582",
"translation_date": "2026-01-16T10:21:39+00:00",
"source_file": "sketchnotes/01-Definitions.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"02-Ethics.728d166895302ab0.webp": {
"original_hash": "005bd88e9721003310c7b2f17dd0e35a",
"translation_date": "2026-01-16T10:25:05+00:00",
"source_file": "sketchnotes/02-Ethics.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"03-DefiningData.f800817186949e07.webp": {
"original_hash": "8c60eda506de75c669370430aa8ecc00",
"translation_date": "2026-01-16T10:22:54+00:00",
"source_file": "sketchnotes/03-DefiningData.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"04-Statistics-Probability.cfc569d84a9f1867.webp": {
"original_hash": "2ee100d33c054ce8a39267530f23377c",
"translation_date": "2026-01-16T10:25:15+00:00",
"source_file": "sketchnotes/04-Statistics-Probability.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"05-RelationalData.af50f5a3e50f7456.webp": {
"original_hash": "e4e0576bddd38fe9a4bd941f73d6de3b",
"translation_date": "2026-01-16T10:17:27+00:00",
"source_file": "sketchnotes/05-RelationalData.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"06-NoSQL.42a91ea0cd5769fe.webp": {
"original_hash": "f5873c65a3a544e1b1a94417c5ee55c8",
"translation_date": "2026-01-16T10:21:16+00:00",
"source_file": "sketchnotes/06-NoSQL.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"07-WorkWithPython.8bf4a5013718bef9.webp": {
"original_hash": "5cbac0986c16de6e4347ed8e6ae6f9c3",
"translation_date": "2026-01-16T10:23:36+00:00",
"source_file": "sketchnotes/07-WorkWithPython.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"08-DataPreparation.e3b185c37958e964.webp": {
"original_hash": "0201767bfac86b208c4c9de0fce95141",
"translation_date": "2026-01-16T10:17:02+00:00",
"source_file": "sketchnotes/08-DataPreparation.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"09-Visualizing-Quantities.5c846edd805a5238.webp": {
"original_hash": "63def3198fdcbc1a6b9ef585745a82c8",
"translation_date": "2026-01-16T10:24:35+00:00",
"source_file": "sketchnotes/09-Visualizing-Quantities.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"1.0b520df6a0d9d3c4.webp": {
"original_hash": "54586a26505aae6cbcc8962a2852b277",
"translation_date": "2026-01-16T10:16:49+00:00",
"source_file": "images/1.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"10-Visualizing-Distributions.8097fd8abd7221a1.webp": {
"original_hash": "885512a64dcab7202c5a53cbde907da2",
"translation_date": "2026-01-16T10:17:16+00:00",
"source_file": "sketchnotes/10-Visualizing-Distributions.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"11-Visualizing-Proportions.3e82f24af94d206e.webp": {
"original_hash": "e7f8f167d209a389c3100d3ac210b69d",
"translation_date": "2026-01-16T10:22:25+00:00",
"source_file": "sketchnotes/11-Visualizing-Proportions.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"12-Visualizing-Relationships.4466f9bd260f03dd.webp": {
"original_hash": "10d06245ecbdc48880e555f03a62f64c",
"translation_date": "2026-01-16T10:21:04+00:00",
"source_file": "sketchnotes/12-Visualizing-Relationships.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"13-MeaningfulViz.4db6f1997e519908.webp": {
"original_hash": "6d0db913181bac3b1aebc649e843ddb3",
"translation_date": "2026-01-16T10:25:38+00:00",
"source_file": "sketchnotes/13-MeaningfulViz.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp": {
"original_hash": "96cbd264a85530f5876c353b2e57956d",
"translation_date": "2026-01-16T10:22:06+00:00",
"source_file": "sketchnotes/14-DataScience-Lifecycle.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"15-Analyzing.b501f3dbdc958f6f.webp": {
"original_hash": "973333ac82d2472591675e2b93afc87e",
"translation_date": "2026-01-16T10:25:55+00:00",
"source_file": "sketchnotes/15-Analyzing.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"16-Communicating.f1d29cd7984442a4.webp": {
"original_hash": "9a65542ddae4e103ab2a665fe65629ce",
"translation_date": "2026-01-16T10:17:38+00:00",
"source_file": "sketchnotes/16-Communicating.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"17-DataScience-Cloud.0df76ac874805c14.webp": {
"original_hash": "221a9e5d40e6f47fe793f175a8754ae0",
"translation_date": "2026-01-16T10:24:56+00:00",
"source_file": "sketchnotes/17-DataScience-Cloud.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"18-DataScience-Cloud.3a7292e8182b74eb.webp": {
"original_hash": "c1094124ae2e325016c6ddcb95599c7a",
"translation_date": "2026-01-16T10:24:20+00:00",
"source_file": "sketchnotes/18-DataScience-Cloud.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"19-DataScience-Cloud.177b38fb86301fc6.webp": {
"original_hash": "78eb918c3512a018c0d99a217bc72038",
"translation_date": "2026-01-16T10:23:50+00:00",
"source_file": "sketchnotes/19-DataScience-Cloud.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"20-DataScience-Humanities.1d1a155f4d12a667.webp": {
"original_hash": "1458acca113e1f3c64fb18d6a434fb5c",
"translation_date": "2026-01-16T10:23:12+00:00",
"source_file": "sketchnotes/20-DataScience-Humanities.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"20-DataScience-RealWorld.976976229ee11342.webp": {
"original_hash": "ff1861c005ea9fe7644777c4069008b9",
"translation_date": "2026-01-16T10:21:34+00:00",
"source_file": "sketchnotes/20-DataScience-RealWorld.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"20-DataScience-Research.da434814c51b4ef8.webp": {
"original_hash": "c1d7c67564ad6767200da0cab95eeb52",
"translation_date": "2026-01-16T10:22:44+00:00",
"source_file": "sketchnotes/20-DataScience-Research.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"20-DataScience-Sustainability.d4097bc684431da6.webp": {
"original_hash": "966e2a6eea920d7cb30a343e0bf5c856",
"translation_date": "2026-01-16T10:23:23+00:00",
"source_file": "sketchnotes/20-DataScience-Sustainability.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"2D-wb.ae22fdd33936507a.webp": {
"original_hash": "621c501b663b89b0739ff0a3d89324d4",
"translation_date": "2026-01-16T10:40:44+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/2D-wb.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"2D.b3342157139dd804.webp": {
"original_hash": "43f6f9ba817c493c2f38383fb22df3ff",
"translation_date": "2026-01-16T10:40:48+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/2D.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"2d-plot.c504786f439bd7eb.webp": {
"original_hash": "b5a6251e8480b8dbcf6ca9972efd2a94",
"translation_date": "2026-01-16T10:44:49+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/2d-plot.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"3d.0cec12bcc60f0ce7.webp": {
"original_hash": "24efe448af156c5520372b9b554a2c89",
"translation_date": "2026-01-16T10:44:24+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/3d.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"3d.db1734c151eee87d.webp": {
"original_hash": "24efe448af156c5520372b9b554a2c89",
"translation_date": "2026-01-16T10:50:06+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/3d.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"CRISP-DM.8bad2b4c66e62aa7.webp": {
"original_hash": "eac24034dc4554b1292c0c035a852548",
"translation_date": "2026-01-16T10:35:40+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/CRISP-DM.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp": {
"original_hash": "25abf3baadac4535fac2aa1c8794f537",
"translation_date": "2026-01-16T10:47:57+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot-improved.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"MaxWingspan-lineplot.b12169f99d26fdd2.webp": {
"original_hash": "8a0744b5301a1c4dc64b580728b5771a",
"translation_date": "2026-01-16T10:47:16+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-lineplot.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp": {
"original_hash": "c5b4723c8624caa7463c66fd7278854e",
"translation_date": "2026-01-16T10:49:10+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot-improved.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"MaxWingspan-scatterplot.60dc9e0e19d32700.webp": {
"original_hash": "58de03db6718a04f8e61e2405ea2b502",
"translation_date": "2026-01-16T10:47:21+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/MaxWingspan-scatterplot.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"aml-1.67281a85d3a1e2f3.webp": {
"original_hash": "130c64f0112c117a400926da0bbaf090",
"translation_date": "2026-01-16T10:35:02+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-1.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"aml-2.c9fb9cffb39ccbbe.webp": {
"original_hash": "703a44252eca61e2b68c1365f4beb179",
"translation_date": "2026-01-16T10:29:34+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-2.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"aml-3.a7952e4295f38cc6.webp": {
"original_hash": "33433e94fe719f0e4104ad809338f91d",
"translation_date": "2026-01-16T10:29:19+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-3.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"aml-4.7a627e09cb6f16d0.webp": {
"original_hash": "983ad36543a02fffcb8f05fb94e09ef4",
"translation_date": "2026-01-16T10:31:00+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/aml-4.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"bad-chart-1.596bc93425a8ac30.webp": {
"original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
"translation_date": "2026-01-16T10:49:18+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-1.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"bad-chart-1.93130f495b748bed.webp": {
"original_hash": "394d6720cc6661b80f93ec4f9ae5188b",
"translation_date": "2026-01-16T10:43:33+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-1.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"bad-chart-2.62edf4d2f30f4e51.webp": {
"original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
"translation_date": "2026-01-16T10:49:58+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-2.jpg",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"bad-chart-2.c20e36dd4e6f617c.webp": {
"original_hash": "29dbd98b3baae6e5b31bf42b72d9c54c",
"translation_date": "2026-01-16T10:44:15+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-2.jpg",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"bad-chart-3.6865d0afac4108d7.webp": {
"original_hash": "80f955c8f50661e029730e9b06959c0b",
"translation_date": "2026-01-16T10:43:42+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-3.jpg",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"bad-chart-3.e201e2e915a230bc.webp": {
"original_hash": "80f955c8f50661e029730e9b06959c0b",
"translation_date": "2026-01-16T10:49:27+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-3.jpg",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"bad-chart-4.68cfdf4011b45447.webp": {
"original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
"translation_date": "2026-01-16T10:44:34+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/bad-chart-4.jpg",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"bad-chart-4.8872b2b881ffa96c.webp": {
"original_hash": "99bbd8d60d515f46157ca3e284b6cbdd",
"translation_date": "2026-01-16T10:50:16+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/bad-chart-4.jpg",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"bee.0aa1d91132b12e3a.webp": {
"original_hash": "107a59a0fdfa76d213eacf0f46df0292",
"translation_date": "2026-01-16T10:39:55+00:00",
"source_file": "3-Data-Visualization/images/bee.jpg",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"bodymass-per-order.9d2b065dd931b928.webp": {
"original_hash": "b009aeba10679cfeb880d3869e7d1db2",
"translation_date": "2026-01-16T10:45:22+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-per-order.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"bodymass-smooth.d31ce526d82b0a1f.webp": {
"original_hash": "9e0c8215e2ce2cc7120491a79559a907",
"translation_date": "2026-01-16T10:45:01+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/bodymass-smooth.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"boxplot_byrole.036b27a1c3f52d42.webp": {
"original_hash": "1193ef907e122e99637e73ef9f83d2a5",
"translation_date": "2026-01-16T10:27:50+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/boxplot_byrole.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"boxplot_explanation.4039b7de08780fd4.webp": {
"original_hash": "18e16e4144706f7e9006fc2ff958e622",
"translation_date": "2026-01-16T10:27:10+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/boxplot_explanation.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"busing.7b9e3b41cd4b981c.webp": {
"original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
"translation_date": "2026-01-16T10:43:50+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/busing.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"busing.8157cf1bc89a3f65.webp": {
"original_hash": "2140ccbfc39ce661cb76aac08602d9fe",
"translation_date": "2026-01-16T10:49:36+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/busing.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"category-counts-02.0b9a0a4de42275ae.webp": {
"original_hash": "d0ebdd74049aa407805cb1b28d9d5075",
"translation_date": "2026-01-16T10:51:37+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts-02.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"category-counts.abee8188c4c9b6f0.webp": {
"original_hash": "3b55836da9e8a6b487c6657b01156a99",
"translation_date": "2026-01-16T10:50:40+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-counts.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"category-length-02.7304bf519375c980.webp": {
"original_hash": "2638d345ceee48d8c40a54f6388c8caa",
"translation_date": "2026-01-16T10:51:05+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length-02.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"category-length.7e34c296690e85d6.webp": {
"original_hash": "f5c753a1fe65d51b8cc15b8b46c6d4e6",
"translation_date": "2026-01-16T10:47:51+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/category-length.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"category-length.b0d9a0208a7b3713.webp": {
"original_hash": "990ba20663dfb1d5bc21e39b9162f412",
"translation_date": "2026-01-16T10:50:37+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/category-length.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"cloud-picture.f5526de3c6c6387b.webp": {
"original_hash": "112d96f85f2037814d2df8b88267a595",
"translation_date": "2026-01-16T10:27:59+00:00",
"source_file": "5-Data-Science-In-Cloud/images/cloud-picture.jpg",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"cluster-1.b78cb630bb543729.webp": {
"original_hash": "d938d671e7eabf7fbc012cf1987dc43f",
"translation_date": "2026-01-16T10:31:55+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-1.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"cluster-2.ea30cdbc9f926bb9.webp": {
"original_hash": "0486b9eb10e88dc53fc2927c9197cd27",
"translation_date": "2026-01-16T10:31:28+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-2.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"cluster-3.8a334bc070ec173a.webp": {
"original_hash": "b440d88eb5ce449ebe780c1edbac221d",
"translation_date": "2026-01-16T10:30:15+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/cluster-3.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"columnar-db.ffcfe73c3e9063a8.webp": {
"original_hash": "be6caa9571dc877703116566bc1a59d4",
"translation_date": "2026-01-16T10:38:21+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/columnar-db.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"communication.06d8e2a88d30d168.webp": {
"original_hash": "5736c0fd0f68676dbd5b27c5b04f4b48",
"translation_date": "2026-01-16T10:35:33+00:00",
"source_file": "4-Data-Science-Lifecycle/images/communication.jpg",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"comparingdata.f486a450d61c7ca5.webp": {
"original_hash": "c5f1049b89ea0d7015e420acc0728045",
"translation_date": "2026-01-16T10:48:26+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/comparingdata.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"compute-instance-1.dba347cb199ca499.webp": {
"original_hash": "7af64073de557468a0b652e4bcecf2d1",
"translation_date": "2026-01-16T10:28:14+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/compute-instance-1.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"consumption-1.700abd196452842a.webp": {
"original_hash": "a5ecdcdff30f2d1059763b9ce5abe4eb",
"translation_date": "2026-01-16T10:34:26+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/consumption-1.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"cosmosdb-emulator-explorer.a1c80b1347206fe2.webp": {
"original_hash": "cdd5affc23e1edf90e5a1d4d5d0f1f8d",
"translation_date": "2026-01-16T10:38:39+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-explorer.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp": {
"original_hash": "4ab74b4d99e8e2a503433a1faf6921be",
"translation_date": "2026-01-16T10:38:05+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons-query.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"cosmosdb-emulator-persons.bf640586a7077c89.webp": {
"original_hash": "4cf764cdeb46013888dafcd430447f3a",
"translation_date": "2026-01-16T10:39:42+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/cosmosdb-emulator-persons.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"covidspread.f3d131c4f1d260ab.webp": {
"original_hash": "461f7858f407e9f5b9eb9caf8ca21367",
"translation_date": "2026-01-16T10:37:22+00:00",
"source_file": "2-Working-With-Data/07-python/images/covidspread.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"covidtreat.b2ba59f57ca45fbc.webp": {
"original_hash": "b2b1e40794073c65faa986c5995754c9",
"translation_date": "2026-01-16T10:37:12+00:00",
"source_file": "2-Working-With-Data/07-python/images/covidtreat.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"data-love.a22ef29e6742c852.webp": {
"original_hash": "e7fcf82d891c727f86c21960cb63efa6",
"translation_date": "2026-01-16T10:36:47+00:00",
"source_file": "2-Working-With-Data/images/data-love.jpg",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"data-science-applications.4e5019cd8790ebac.webp": {
"original_hash": "602217d731f1576c21ac91148222cfa1",
"translation_date": "2026-01-16T10:52:39+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/data-science-applications.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"data-science-lifecycle.a1e362637503c4fb.webp": {
"original_hash": "594be62e68ef5e92f5447febe91c7794",
"translation_date": "2026-01-16T10:35:51+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/data-science-lifecycle.jpg",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"data.48e22bb7617d8d92.webp": {
"original_hash": "1a84026266861a50791b9f952fbab540",
"translation_date": "2026-01-16T10:26:02+00:00",
"source_file": "1-Introduction/images/data.jpg",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"dataframe-1.caf409f0c688e84c.webp": {
"original_hash": "2ca632a405bd7b501a0e0df0fa55515a",
"translation_date": "2026-01-16T10:37:04+00:00",
"source_file": "2-Working-With-Data/07-python/images/dataframe-1.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"datascienceinthecloud.59ffb059a670fb0a.webp": {
"original_hash": "d66cf00bfc41a3d1bef7e1d54ac4e03f",
"translation_date": "2026-01-16T10:30:32+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/datascienceinthecloud.jpg",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"dataset-1.e86ab4e10907a6e9.webp": {
"original_hash": "b742ef1724e601f68a1bdf3f1faa89c6",
"translation_date": "2026-01-16T10:31:44+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-1.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"dataset-2.f58de1c435d5bf9c.webp": {
"original_hash": "328c65d45aa937db952093099bc408ce",
"translation_date": "2026-01-16T10:33:36+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-2.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"dataset-3.58db8c0eb783e892.webp": {
"original_hash": "cc2177288c2ac7289b614ce41ee68d60",
"translation_date": "2026-01-16T10:33:29+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/dataset-3.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"density-plot.675ccf865b76c690.webp": {
"original_hash": "269df7655a489ba893c9a930e54996b4",
"translation_date": "2026-01-16T10:45:26+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/density-plot.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"density1.8801043bd4af2567.webp": {
"original_hash": "159abed877f261a34aeefc1c2f7d9f14",
"translation_date": "2026-01-16T10:40:52+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density1.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"density2.8e7647257060ff54.webp": {
"original_hash": "ae4ee53e81dca21c2d475642c9acf970",
"translation_date": "2026-01-16T10:41:11+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density2.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"density3.84ae27da82f31e6b.webp": {
"original_hash": "1c4b40707ab63224822854698a26f6ca",
"translation_date": "2026-01-16T10:40:06+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density3.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"density4.e9d6c033f15c500f.webp": {
"original_hash": "e007401afeb86f57097c31b272c54f59",
"translation_date": "2026-01-16T10:41:00+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/density4.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"deploy-1.ddad725acadc84e3.webp": {
"original_hash": "d91956f565f29332f32fc85095206456",
"translation_date": "2026-01-16T10:29:59+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-1.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"deploy-2.94dbb13f23908647.webp": {
"original_hash": "cb622a2e6374ccfdb376d3528e2bb9c8",
"translation_date": "2026-01-16T10:34:50+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-2.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"deploy-3.fecefef070e8ef3b.webp": {
"original_hash": "487c6cd79b0232e10e40fdab2e6b929f",
"translation_date": "2026-01-16T10:32:30+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/deploy-3.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"dist1-wb.0d0cac82e2974fbb.webp": {
"original_hash": "2f624fcf08f90cfedf12238e86730517",
"translation_date": "2026-01-16T10:40:34+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1-wb.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"dist1.0010100b00231819.webp": {
"original_hash": "637343564b5cc6aa01b966bb3f010c81",
"translation_date": "2026-01-16T10:41:06+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist1.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"dist2-wb.2c0a7a3499b2fbf5.webp": {
"original_hash": "f66e1b4cf106774c02ddc8111fb26ea8",
"translation_date": "2026-01-16T10:41:16+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2-wb.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"dist2.c398bfd5320401b9.webp": {
"original_hash": "fc0ce2a2e3087e5754770998f75db398",
"translation_date": "2026-01-16T10:40:01+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist2.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"dist3-wb.64b88db7f9780200.webp": {
"original_hash": "b3d78f1f00c6c3d087f161dd74318aff",
"translation_date": "2026-01-16T10:40:11+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3-wb.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"dist3.ad4d9658559690f5.webp": {
"original_hash": "a4f7f50a3cc98d22d6a1321d1df7781b",
"translation_date": "2026-01-16T10:40:40+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/dist3.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"distribution-30bins.6a3921ea7a421bf7.webp": {
"original_hash": "e06c4dfd27b06597b94a75072e9c4bc5",
"translation_date": "2026-01-16T10:44:57+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-30bins.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"distribution-over-the-entire-dataset.d22afd3fa96be854.webp": {
"original_hash": "338c78ae2ee25ed179e49ec1a4e7923b",
"translation_date": "2026-01-16T10:45:06+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/distribution-over-the-entire-dataset.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"document-db.ddeec48c6dc9e5fd.webp": {
"original_hash": "8cee40487b4a8926c048c397be218e6e",
"translation_date": "2026-01-16T10:39:08+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/document-db.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"donut-wb.34e6fb275da9d834.webp": {
"original_hash": "1fca738bcee99e03430409599cef33f3",
"translation_date": "2026-01-16T10:47:05+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/donut-wb.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"donut-wb.be3c12a22712302b.webp": {
"original_hash": "84f5657fc2c817fe6487993027aeb3e0",
"translation_date": "2026-01-16T10:42:59+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut-wb.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"donut.f016d7be7f08c8f8.webp": {
"original_hash": "055fcaf0a6d93663278eb958137b460c",
"translation_date": "2026-01-16T10:43:21+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/donut.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"ds-for-beginners.d01930c9193ef522.webp": {
"original_hash": "b84eca5411f4bc0041e671becb05fe48",
"translation_date": "2026-01-16T10:16:40+00:00",
"source_file": "ds-for-beginners.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"ds_wordcloud.664a7c07dca57de0.webp": {
"original_hash": "df525e123083bea87f16bce2c07970c7",
"translation_date": "2026-01-16T10:26:39+00:00",
"source_file": "1-Introduction/01-defining-data-science/images/ds_wordcloud.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"dual-line.a4c28ce659603fab.webp": {
"original_hash": "354c3a3b7493b3ec80eec454e7e1661f",
"translation_date": "2026-01-16T10:41:45+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/dual-line.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"dual-line.fc4665f360a54018.webp": {
"original_hash": "a80f6d08e4639389726abb5b1c3d5d9f",
"translation_date": "2026-01-16T10:46:16+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/dual-line.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"facet.491ad90d61c2a7cc.webp": {
"original_hash": "2a0a7fea3ccea24ef9a0d37487f38ba3",
"translation_date": "2026-01-16T10:46:09+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/facet.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"facet.6a34851dcd540050.webp": {
"original_hash": "b1972d34a64eaf50b7f64de8455601d6",
"translation_date": "2026-01-16T10:41:37+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/facet.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"favicon.37b561214b36d454.webp": {
"original_hash": "228faa6584f8ba1f7e9a75e3200112e9",
"translation_date": "2026-01-16T10:16:41+00:00",
"source_file": "images/favicon.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"filtered-histogram.6bf5d2bfd8253322.webp": {
"original_hash": "9beae93b6d3063f7afa19070ca9b21f2",
"translation_date": "2026-01-16T10:45:10+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/filtered-histogram.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"formula-excel.ad1068c220892f5e.webp": {
"original_hash": "ffc48a46663588ed68f07739e1c6faec",
"translation_date": "2026-01-16T10:38:52+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/formula-excel.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"full-data-bar-02.aaa3fda71c63ed56.webp": {
"original_hash": "68ced4f3a959790addfa4c361f5abc0f",
"translation_date": "2026-01-16T10:52:08+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar-02.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"full-data-bar.a0b37da71a6cd236.webp": {
"original_hash": "bd639cfebb870669bcf5280302347b15",
"translation_date": "2026-01-16T10:52:23+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/full-data-bar.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"function-excel.be2ae4feddc10ca0.webp": {
"original_hash": "72ab7b76f4fab0df5aa91fa839722a60",
"translation_date": "2026-01-16T10:38:12+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/function-excel.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"graph-db.d13629152f79a9da.webp": {
"original_hash": "9642744eabff608b20e9241ba5931752",
"translation_date": "2026-01-16T10:38:59+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/graph-db.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"height-boxplot.ccb66b2848b5f51c.webp": {
"original_hash": "0f3d954cc0e0b9644f64f7bc1c8a5518",
"translation_date": "2026-01-16T10:27:31+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/height-boxplot.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"histogram-conservation-wb.3c40450eb072c14d.webp": {
"original_hash": "83ec1d81dea6fabb80c6386edf8eb241",
"translation_date": "2026-01-16T10:40:28+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation-wb.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"histogram-conservation.13b3542e7784e415.webp": {
"original_hash": "ec86b1d6a476f4cf80f9d2b346525c92",
"translation_date": "2026-01-16T10:40:38+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/histogram-conservation.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"kv-db.e8f2b75686bbdfcb.webp": {
"original_hash": "b11fd06948e523a4f05e4fc016b72151",
"translation_date": "2026-01-16T10:38:25+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/kv-db.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"labeled-wingspan-02.6110e2d2401cd523.webp": {
"original_hash": "0f218473d2563c14c8caddecdea3a4c3",
"translation_date": "2026-01-16T10:52:15+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan-02.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"labeled-wingspan.900ffedd7e3ec6de.webp": {
"original_hash": "92a8853541cd37a14b9523a58d655f7f",
"translation_date": "2026-01-16T10:52:27+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/labeled-wingspan.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"less-smooth-bodymass.10f4db8b683cc17d.webp": {
"original_hash": "407ad13c340ab84466724135c99aa8d6",
"translation_date": "2026-01-16T10:44:53+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/less-smooth-bodymass.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"liaisons.7b440b28f6d07ea4.webp": {
"original_hash": "6d42370a9c4ee2cea0573912a6300e09",
"translation_date": "2026-01-16T10:44:44+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/liaisons.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"liaisons.90ce7360bcf84765.webp": {
"original_hash": "6d42370a9c4ee2cea0573912a6300e09",
"translation_date": "2026-01-16T10:50:25+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/liaisons.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"line1.299b576fbb2a59e6.webp": {
"original_hash": "580b92476ca343c0fce7d5713d0ca5cd",
"translation_date": "2026-01-16T10:46:54+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line1.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"line1.f36eb465229a3b1f.webp": {
"original_hash": "2254eee0864847a0dbbcf3514523b938",
"translation_date": "2026-01-16T10:42:44+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/line1.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"line2.3b18fcda7176ceba.webp": {
"original_hash": "0900ae563b525221b628393ec05feaf8",
"translation_date": "2026-01-16T10:46:59+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/line2.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"line2.a5b3493dc01058af.webp": {
"original_hash": "352e8164b0d75c410198bb07822e43cb",
"translation_date": "2026-01-16T10:42:49+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/line2.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"max-length-per-order.e5b283d952c78c12.webp": {
"original_hash": "3669afd28a61d41ee39429418ee938a0",
"translation_date": "2026-01-16T10:45:52+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/max-length-per-order.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"max-wingspan-02.e79fd847b2640b89.webp": {
"original_hash": "424b2d5e92fd7ad1f1651fd34c48a43b",
"translation_date": "2026-01-16T10:52:18+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-02.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"max-wingspan-labels-02.aa90e826ca49a9d1.webp": {
"original_hash": "b1f49941bbc193409678b7c94bd39822",
"translation_date": "2026-01-16T10:51:10+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels-02.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"max-wingspan-labels.46f0cc3c48edd4e0.webp": {
"original_hash": "67ad5348aa4963aebb0ae7ec94a7fa26",
"translation_date": "2026-01-16T10:52:11+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan-labels.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"max-wingspan.0b8d0858436414aa.webp": {
"original_hash": "020b2994ef28037b86c2e215771a0bf5",
"translation_date": "2026-01-16T10:51:11+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/max-wingspan.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"multi.56548caa9eae8d0f.webp": {
"original_hash": "f75fa5419bb0d28a74c567876bc99455",
"translation_date": "2026-01-16T10:39:59+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/multi.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"new-container.650e10c7a20a5f83.webp": {
"original_hash": "ab63b5a8099095333eebe2afa69197e3",
"translation_date": "2026-01-16T10:39:20+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/new-container.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"normal-histogram.dfae0d67c202137d.webp": {
"original_hash": "46ee775d2df1d79815c1aab51bd8d2fe",
"translation_date": "2026-01-16T10:27:43+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/normal-histogram.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"notebook-1.12998af7b02c83f5.webp": {
"original_hash": "08d559b911ecbed212b67e206ae6bcf1",
"translation_date": "2026-01-16T10:28:28+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-1.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"notebook-2.9a657c037e34f1cf.webp": {
"original_hash": "018309c1ca2ed8e31fd89c3674687979",
"translation_date": "2026-01-16T10:28:33+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/notebook-2.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"parts-of-spreadsheet.120711c82aa18a45.webp": {
"original_hash": "e744b94c055058c2862aaabe84625b90",
"translation_date": "2026-01-16T10:39:54+00:00",
"source_file": "2-Working-With-Data/06-non-relational/images/parts-of-spreadsheet.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"pie1-wb.685df063673751f4.webp": {
"original_hash": "2b353f34a1a1e444a1d7f2219b78cb83",
"translation_date": "2026-01-16T10:47:12+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/pie1-wb.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"pie1-wb.e201f2fcc3354131.webp": {
"original_hash": "f2dbe68e0228fc6bb76e502dfa88a5c7",
"translation_date": "2026-01-16T10:43:24+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1-wb.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"pie1.8f6a8bfac96de60e.webp": {
"original_hash": "dc91ddf7490acc8493ca0801370d8fa8",
"translation_date": "2026-01-16T10:42:54+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/pie1.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"planetary-computer-explorer.c1e95a9b053167d6.webp": {
"original_hash": "1e3bcffe198a9432dfc6232e5f89e2a5",
"translation_date": "2026-01-16T10:52:52+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/images/planetary-computer-explorer.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"probability-density.a8aad29f17a14afb.webp": {
"original_hash": "79ec3e39c1c20e570327ebd8a2737548",
"translation_date": "2026-01-16T10:27:22+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/probability-density.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"project-schema.420e56d495624541.webp": {
"original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
"translation_date": "2026-01-16T10:29:01+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/images/project-schema.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"project-schema.736f6e403f321eb4.webp": {
"original_hash": "ac50741c7ac13ecfdef9db5564f80bbd",
"translation_date": "2026-01-16T10:32:58+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/project-schema.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"scatter-wb.9d98b0ed7f0388af.webp": {
"original_hash": "20b0f7bb41756f35bdf985a8f5f3a342",
"translation_date": "2026-01-16T10:40:23+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter-wb.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"scatter.520a43eceb46dbcb.webp": {
"original_hash": "0b08180e497b0df05b452d6e82139280",
"translation_date": "2026-01-16T10:41:04+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/images/scatter.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"scatter1.5e1aa5fd6706c5d1.webp": {
"original_hash": "c02fe2f5fa39f591b4a26308356ed684",
"translation_date": "2026-01-16T10:42:39+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter1.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"scatter1.86b8900674d88b26.webp": {
"original_hash": "c987462f33600689809531fc3d265f96",
"translation_date": "2026-01-16T10:46:50+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter1.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"scatter2.4d1cbc693bad20e2.webp": {
"original_hash": "770ca46665efad9996e32d596f105ea9",
"translation_date": "2026-01-16T10:46:34+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter2.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"scatter2.c0041a58621ca702.webp": {
"original_hash": "0daebd8565f87f5de940b38eb8af1b9d",
"translation_date": "2026-01-16T10:42:20+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter2.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"scatter3.3c160a3d1dcb36b3.webp": {
"original_hash": "b6dae06624fdb034a906091c859840c8",
"translation_date": "2026-01-16T10:42:02+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/images/scatter3.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"scatter3.722d21e6f20b3ea2.webp": {
"original_hash": "e76960bfd5bd7187d9e021796f268d34",
"translation_date": "2026-01-16T10:46:24+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/images/scatter3.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"scatterplot-wingspan-02.1c33790094ce36a7.webp": {
"original_hash": "074b877685ae02c92754fb416864f137",
"translation_date": "2026-01-16T10:50:29+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan-02.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"scatterplot-wingspan.bdab448702939bb3.webp": {
"original_hash": "a6265af4af8b135ebb0b1160ac2a85e1",
"translation_date": "2026-01-16T10:50:34+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/scatterplot-wingspan.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"stacked-bar-chart.0c92264e89da7b39.webp": {
"original_hash": "150d1125735f6612e36c8d74d492c664",
"translation_date": "2026-01-16T10:48:33+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/stacked-bar-chart.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"superimposed-02.f03058536baeb2ed.webp": {
"original_hash": "06591758ffda43a2ba7a885727209a57",
"translation_date": "2026-01-16T10:52:01+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed-02.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"superimposed-values.5363f0705a1da416.webp": {
"original_hash": "b41c56cb68dd92f60d7e18eefd963396",
"translation_date": "2026-01-16T10:49:03+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/images/superimposed-values.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"superimposed.8b5bd0e8825d9c5c.webp": {
"original_hash": "4af0c94d9d61f1d458023b01c02a247e",
"translation_date": "2026-01-16T10:50:32+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/images/superimposed.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"tdsp-lifecycle2.e19029d598e2e73d.webp": {
"original_hash": "d1f838b6b0fd588b4ee6cd22cb578569",
"translation_date": "2026-01-16T10:36:06+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/images/tdsp-lifecycle2.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"timeseries-1.80de678ab1cf727e.webp": {
"original_hash": "30236ed2474d8d115ab3d51545e0c19e",
"translation_date": "2026-01-16T10:37:18+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-1.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"timeseries-2.aae51d575c55181c.webp": {
"original_hash": "33bd33349330cb115d729ce80b570501",
"translation_date": "2026-01-16T10:37:28+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-2.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"timeseries-3.f3147cbc8c624881.webp": {
"original_hash": "aa4b14a21a73d400073a61f37033d465",
"translation_date": "2026-01-16T10:37:35+00:00",
"source_file": "2-Working-With-Data/07-python/images/timeseries-3.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"tornado.2880ffc7f135f82b.webp": {
"original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
"translation_date": "2026-01-16T10:49:47+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/images/tornado.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"tornado.9f42168791208f97.webp": {
"original_hash": "aaaeef8f6130caccd3d3a7384fd215cc",
"translation_date": "2026-01-16T10:44:03+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/images/tornado.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"video-def-ds.6623ee2392ef1abf.webp": {
"original_hash": "95650b7eed7f176ce8fdee16271a464b",
"translation_date": "2026-01-16T10:26:57+00:00",
"source_file": "1-Introduction/01-defining-data-science/images/video-def-ds.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"video-ds-python.245247dc811db8e4.webp": {
"original_hash": "030eca02a7388a1428cf20faa215f2b9",
"translation_date": "2026-01-16T10:36:59+00:00",
"source_file": "2-Working-With-Data/07-python/images/video-ds-python.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"video-prob-and-stats.e4282e5efa2f2543.webp": {
"original_hash": "95894d8c6274697246b11c5ddf395c5f",
"translation_date": "2026-01-16T10:27:39+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/video-prob-and-stats.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"waffle.5455dbae4ccf17d5.webp": {
"original_hash": "56634c9a9dc24921e012693843466dee",
"translation_date": "2026-01-16T10:43:17+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/images/waffle.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"waffle.aaa75c5337735a6e.webp": {
"original_hash": "b84ca087d578965c31a20087b9215d88",
"translation_date": "2026-01-16T10:47:09+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/images/waffle.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"weight-boxplot.1dbab1c03af26f8a.webp": {
"original_hash": "4e39b904d1a4313d66663aa3f7ab9602",
"translation_date": "2026-01-16T10:27:14+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-boxplot.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"weight-height-relationship.3f06bde4ca2aba99.webp": {
"original_hash": "2412d31f9c41004d2d0cb80179d6021f",
"translation_date": "2026-01-16T10:27:28+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-height-relationship.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"weight-histogram.bfd00caf7fc30b14.webp": {
"original_hash": "bef55b4cd03923b2d8674e92bb1757c9",
"translation_date": "2026-01-16T10:27:19+00:00",
"source_file": "1-Introduction/04-stats-and-probability/images/weight-histogram.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"wingspan-conservation-collation.4024e9aa6910866a.webp": {
"original_hash": "898d4cfbbc9bd4723c3ce92f5746a6f8",
"translation_date": "2026-01-16T10:45:15+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/images/wingspan-conservation-collation.png",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"workspace-1.ac8694d60b073ed1.webp": {
"original_hash": "5e9f3153bfd5af7d8b6adcb09c08cabd",
"translation_date": "2026-01-16T10:29:42+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-1.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"workspace-2.ae7c486db8796147.webp": {
"original_hash": "9299f5ae459f0a153da6aaae9accc78d",
"translation_date": "2026-01-16T10:32:07+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-2.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"workspace-3.398ca4a5858132cc.webp": {
"original_hash": "2ee0b036fbc5fd13a526f26ac9d60347",
"translation_date": "2026-01-16T10:35:13+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-3.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"workspace-4.bac87f6599c4df63.webp": {
"original_hash": "099e0b18ce11f3966c0b7d954c2eb4fb",
"translation_date": "2026-01-16T10:30:29+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-4.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"workspace-5.a6eb17e0a5e64200.webp": {
"original_hash": "01b1c520e46b3fbd6fba0d54bb80bece",
"translation_date": "2026-01-16T10:34:41+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-5.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
},
"workspace-6.8dd81fe841797ee1.webp": {
"original_hash": "fd0194c1a558063ddb53e5c1ead0a2b0",
"translation_date": "2026-01-16T10:33:58+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/images/workspace-6.PNG",
- "language_code": "tw"
+ "language_code": "zh-TW"
}
}
\ No newline at end of file
diff --git a/translated_images/tw/00-Roadmap.4905d6567dff4753.webp b/translated_images/zh-TW/00-Roadmap.4905d6567dff4753.webp
similarity index 100%
rename from translated_images/tw/00-Roadmap.4905d6567dff4753.webp
rename to translated_images/zh-TW/00-Roadmap.4905d6567dff4753.webp
diff --git a/translated_images/tw/00-Title.8af36cd35da1ac55.webp b/translated_images/zh-TW/00-Title.8af36cd35da1ac55.webp
similarity index 100%
rename from translated_images/tw/00-Title.8af36cd35da1ac55.webp
rename to translated_images/zh-TW/00-Title.8af36cd35da1ac55.webp
diff --git a/translated_images/tw/01-Definitions.1b14ddc9525dc0d9.webp b/translated_images/zh-TW/01-Definitions.1b14ddc9525dc0d9.webp
similarity index 100%
rename from translated_images/tw/01-Definitions.1b14ddc9525dc0d9.webp
rename to translated_images/zh-TW/01-Definitions.1b14ddc9525dc0d9.webp
diff --git a/translated_images/tw/02-Ethics.728d166895302ab0.webp b/translated_images/zh-TW/02-Ethics.728d166895302ab0.webp
similarity index 100%
rename from translated_images/tw/02-Ethics.728d166895302ab0.webp
rename to translated_images/zh-TW/02-Ethics.728d166895302ab0.webp
diff --git a/translated_images/tw/03-DefiningData.f800817186949e07.webp b/translated_images/zh-TW/03-DefiningData.f800817186949e07.webp
similarity index 100%
rename from translated_images/tw/03-DefiningData.f800817186949e07.webp
rename to translated_images/zh-TW/03-DefiningData.f800817186949e07.webp
diff --git a/translated_images/tw/04-Statistics-Probability.cfc569d84a9f1867.webp b/translated_images/zh-TW/04-Statistics-Probability.cfc569d84a9f1867.webp
similarity index 100%
rename from translated_images/tw/04-Statistics-Probability.cfc569d84a9f1867.webp
rename to translated_images/zh-TW/04-Statistics-Probability.cfc569d84a9f1867.webp
diff --git a/translated_images/tw/05-RelationalData.af50f5a3e50f7456.webp b/translated_images/zh-TW/05-RelationalData.af50f5a3e50f7456.webp
similarity index 100%
rename from translated_images/tw/05-RelationalData.af50f5a3e50f7456.webp
rename to translated_images/zh-TW/05-RelationalData.af50f5a3e50f7456.webp
diff --git a/translated_images/tw/06-NoSQL.42a91ea0cd5769fe.webp b/translated_images/zh-TW/06-NoSQL.42a91ea0cd5769fe.webp
similarity index 100%
rename from translated_images/tw/06-NoSQL.42a91ea0cd5769fe.webp
rename to translated_images/zh-TW/06-NoSQL.42a91ea0cd5769fe.webp
diff --git a/translated_images/tw/07-WorkWithPython.8bf4a5013718bef9.webp b/translated_images/zh-TW/07-WorkWithPython.8bf4a5013718bef9.webp
similarity index 100%
rename from translated_images/tw/07-WorkWithPython.8bf4a5013718bef9.webp
rename to translated_images/zh-TW/07-WorkWithPython.8bf4a5013718bef9.webp
diff --git a/translated_images/tw/08-DataPreparation.e3b185c37958e964.webp b/translated_images/zh-TW/08-DataPreparation.e3b185c37958e964.webp
similarity index 100%
rename from translated_images/tw/08-DataPreparation.e3b185c37958e964.webp
rename to translated_images/zh-TW/08-DataPreparation.e3b185c37958e964.webp
diff --git a/translated_images/tw/09-Visualizing-Quantities.5c846edd805a5238.webp b/translated_images/zh-TW/09-Visualizing-Quantities.5c846edd805a5238.webp
similarity index 100%
rename from translated_images/tw/09-Visualizing-Quantities.5c846edd805a5238.webp
rename to translated_images/zh-TW/09-Visualizing-Quantities.5c846edd805a5238.webp
diff --git a/translated_images/tw/1.0b520df6a0d9d3c4.webp b/translated_images/zh-TW/1.0b520df6a0d9d3c4.webp
similarity index 100%
rename from translated_images/tw/1.0b520df6a0d9d3c4.webp
rename to translated_images/zh-TW/1.0b520df6a0d9d3c4.webp
diff --git a/translated_images/tw/10-Visualizing-Distributions.8097fd8abd7221a1.webp b/translated_images/zh-TW/10-Visualizing-Distributions.8097fd8abd7221a1.webp
similarity index 100%
rename from translated_images/tw/10-Visualizing-Distributions.8097fd8abd7221a1.webp
rename to translated_images/zh-TW/10-Visualizing-Distributions.8097fd8abd7221a1.webp
diff --git a/translated_images/tw/11-Visualizing-Proportions.3e82f24af94d206e.webp b/translated_images/zh-TW/11-Visualizing-Proportions.3e82f24af94d206e.webp
similarity index 100%
rename from translated_images/tw/11-Visualizing-Proportions.3e82f24af94d206e.webp
rename to translated_images/zh-TW/11-Visualizing-Proportions.3e82f24af94d206e.webp
diff --git a/translated_images/tw/12-Visualizing-Relationships.4466f9bd260f03dd.webp b/translated_images/zh-TW/12-Visualizing-Relationships.4466f9bd260f03dd.webp
similarity index 100%
rename from translated_images/tw/12-Visualizing-Relationships.4466f9bd260f03dd.webp
rename to translated_images/zh-TW/12-Visualizing-Relationships.4466f9bd260f03dd.webp
diff --git a/translated_images/tw/13-MeaningfulViz.4db6f1997e519908.webp b/translated_images/zh-TW/13-MeaningfulViz.4db6f1997e519908.webp
similarity index 100%
rename from translated_images/tw/13-MeaningfulViz.4db6f1997e519908.webp
rename to translated_images/zh-TW/13-MeaningfulViz.4db6f1997e519908.webp
diff --git a/translated_images/tw/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp b/translated_images/zh-TW/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
similarity index 100%
rename from translated_images/tw/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
rename to translated_images/zh-TW/14-DataScience-Lifecycle.2c9f277e4d69fbaa.webp
diff --git a/translated_images/tw/15-Analyzing.b501f3dbdc958f6f.webp b/translated_images/zh-TW/15-Analyzing.b501f3dbdc958f6f.webp
similarity index 100%
rename from translated_images/tw/15-Analyzing.b501f3dbdc958f6f.webp
rename to translated_images/zh-TW/15-Analyzing.b501f3dbdc958f6f.webp
diff --git a/translated_images/tw/16-Communicating.f1d29cd7984442a4.webp b/translated_images/zh-TW/16-Communicating.f1d29cd7984442a4.webp
similarity index 100%
rename from translated_images/tw/16-Communicating.f1d29cd7984442a4.webp
rename to translated_images/zh-TW/16-Communicating.f1d29cd7984442a4.webp
diff --git a/translated_images/tw/17-DataScience-Cloud.0df76ac874805c14.webp b/translated_images/zh-TW/17-DataScience-Cloud.0df76ac874805c14.webp
similarity index 100%
rename from translated_images/tw/17-DataScience-Cloud.0df76ac874805c14.webp
rename to translated_images/zh-TW/17-DataScience-Cloud.0df76ac874805c14.webp
diff --git a/translated_images/tw/18-DataScience-Cloud.3a7292e8182b74eb.webp b/translated_images/zh-TW/18-DataScience-Cloud.3a7292e8182b74eb.webp
similarity index 100%
rename from translated_images/tw/18-DataScience-Cloud.3a7292e8182b74eb.webp
rename to translated_images/zh-TW/18-DataScience-Cloud.3a7292e8182b74eb.webp
diff --git a/translated_images/tw/19-DataScience-Cloud.177b38fb86301fc6.webp b/translated_images/zh-TW/19-DataScience-Cloud.177b38fb86301fc6.webp
similarity index 100%
rename from translated_images/tw/19-DataScience-Cloud.177b38fb86301fc6.webp
rename to translated_images/zh-TW/19-DataScience-Cloud.177b38fb86301fc6.webp
diff --git a/translated_images/tw/20-DataScience-Humanities.1d1a155f4d12a667.webp b/translated_images/zh-TW/20-DataScience-Humanities.1d1a155f4d12a667.webp
similarity index 100%
rename from translated_images/tw/20-DataScience-Humanities.1d1a155f4d12a667.webp
rename to translated_images/zh-TW/20-DataScience-Humanities.1d1a155f4d12a667.webp
diff --git a/translated_images/tw/20-DataScience-RealWorld.976976229ee11342.webp b/translated_images/zh-TW/20-DataScience-RealWorld.976976229ee11342.webp
similarity index 100%
rename from translated_images/tw/20-DataScience-RealWorld.976976229ee11342.webp
rename to translated_images/zh-TW/20-DataScience-RealWorld.976976229ee11342.webp
diff --git a/translated_images/tw/20-DataScience-Research.da434814c51b4ef8.webp b/translated_images/zh-TW/20-DataScience-Research.da434814c51b4ef8.webp
similarity index 100%
rename from translated_images/tw/20-DataScience-Research.da434814c51b4ef8.webp
rename to translated_images/zh-TW/20-DataScience-Research.da434814c51b4ef8.webp
diff --git a/translated_images/tw/20-DataScience-Sustainability.d4097bc684431da6.webp b/translated_images/zh-TW/20-DataScience-Sustainability.d4097bc684431da6.webp
similarity index 100%
rename from translated_images/tw/20-DataScience-Sustainability.d4097bc684431da6.webp
rename to translated_images/zh-TW/20-DataScience-Sustainability.d4097bc684431da6.webp
diff --git a/translated_images/zh/2D-wb.ae22fdd33936507a.webp b/translated_images/zh-TW/2D-wb.ae22fdd33936507a.webp
similarity index 100%
rename from translated_images/zh/2D-wb.ae22fdd33936507a.webp
rename to translated_images/zh-TW/2D-wb.ae22fdd33936507a.webp
diff --git a/translated_images/zh/2D.b3342157139dd804.webp b/translated_images/zh-TW/2D.b3342157139dd804.webp
similarity index 100%
rename from translated_images/zh/2D.b3342157139dd804.webp
rename to translated_images/zh-TW/2D.b3342157139dd804.webp
diff --git a/translated_images/tw/2d-plot.c504786f439bd7eb.webp b/translated_images/zh-TW/2d-plot.c504786f439bd7eb.webp
similarity index 100%
rename from translated_images/tw/2d-plot.c504786f439bd7eb.webp
rename to translated_images/zh-TW/2d-plot.c504786f439bd7eb.webp
diff --git a/translated_images/zh/3d.0cec12bcc60f0ce7.webp b/translated_images/zh-TW/3d.0cec12bcc60f0ce7.webp
similarity index 100%
rename from translated_images/zh/3d.0cec12bcc60f0ce7.webp
rename to translated_images/zh-TW/3d.0cec12bcc60f0ce7.webp
diff --git a/translated_images/zh/3d.db1734c151eee87d.webp b/translated_images/zh-TW/3d.db1734c151eee87d.webp
similarity index 100%
rename from translated_images/zh/3d.db1734c151eee87d.webp
rename to translated_images/zh-TW/3d.db1734c151eee87d.webp
diff --git a/translated_images/tw/CRISP-DM.8bad2b4c66e62aa7.webp b/translated_images/zh-TW/CRISP-DM.8bad2b4c66e62aa7.webp
similarity index 100%
rename from translated_images/tw/CRISP-DM.8bad2b4c66e62aa7.webp
rename to translated_images/zh-TW/CRISP-DM.8bad2b4c66e62aa7.webp
diff --git a/translated_images/tw/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp b/translated_images/zh-TW/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
similarity index 100%
rename from translated_images/tw/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
rename to translated_images/zh-TW/MaxWingspan-lineplot-improved.04b73b4d5a59552a.webp
diff --git a/translated_images/tw/MaxWingspan-lineplot.b12169f99d26fdd2.webp b/translated_images/zh-TW/MaxWingspan-lineplot.b12169f99d26fdd2.webp
similarity index 100%
rename from translated_images/tw/MaxWingspan-lineplot.b12169f99d26fdd2.webp
rename to translated_images/zh-TW/MaxWingspan-lineplot.b12169f99d26fdd2.webp
diff --git a/translated_images/tw/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp b/translated_images/zh-TW/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
similarity index 100%
rename from translated_images/tw/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
rename to translated_images/zh-TW/MaxWingspan-scatterplot-improved.7d0af81658c65f3e.webp
diff --git a/translated_images/tw/MaxWingspan-scatterplot.60dc9e0e19d32700.webp b/translated_images/zh-TW/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
similarity index 100%
rename from translated_images/tw/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
rename to translated_images/zh-TW/MaxWingspan-scatterplot.60dc9e0e19d32700.webp
diff --git a/translated_images/tw/aml-1.67281a85d3a1e2f3.webp b/translated_images/zh-TW/aml-1.67281a85d3a1e2f3.webp
similarity index 100%
rename from translated_images/tw/aml-1.67281a85d3a1e2f3.webp
rename to translated_images/zh-TW/aml-1.67281a85d3a1e2f3.webp
diff --git a/translated_images/tw/aml-2.c9fb9cffb39ccbbe.webp b/translated_images/zh-TW/aml-2.c9fb9cffb39ccbbe.webp
similarity index 100%
rename from translated_images/tw/aml-2.c9fb9cffb39ccbbe.webp
rename to translated_images/zh-TW/aml-2.c9fb9cffb39ccbbe.webp
diff --git a/translated_images/tw/aml-3.a7952e4295f38cc6.webp b/translated_images/zh-TW/aml-3.a7952e4295f38cc6.webp
similarity index 100%
rename from translated_images/tw/aml-3.a7952e4295f38cc6.webp
rename to translated_images/zh-TW/aml-3.a7952e4295f38cc6.webp
diff --git a/translated_images/tw/aml-4.7a627e09cb6f16d0.webp b/translated_images/zh-TW/aml-4.7a627e09cb6f16d0.webp
similarity index 100%
rename from translated_images/tw/aml-4.7a627e09cb6f16d0.webp
rename to translated_images/zh-TW/aml-4.7a627e09cb6f16d0.webp
diff --git a/translated_images/tw/bad-chart-1.596bc93425a8ac30.webp b/translated_images/zh-TW/bad-chart-1.596bc93425a8ac30.webp
similarity index 100%
rename from translated_images/tw/bad-chart-1.596bc93425a8ac30.webp
rename to translated_images/zh-TW/bad-chart-1.596bc93425a8ac30.webp
diff --git a/translated_images/tw/bad-chart-1.93130f495b748bed.webp b/translated_images/zh-TW/bad-chart-1.93130f495b748bed.webp
similarity index 100%
rename from translated_images/tw/bad-chart-1.93130f495b748bed.webp
rename to translated_images/zh-TW/bad-chart-1.93130f495b748bed.webp
diff --git a/translated_images/tw/bad-chart-2.62edf4d2f30f4e51.webp b/translated_images/zh-TW/bad-chart-2.62edf4d2f30f4e51.webp
similarity index 100%
rename from translated_images/tw/bad-chart-2.62edf4d2f30f4e51.webp
rename to translated_images/zh-TW/bad-chart-2.62edf4d2f30f4e51.webp
diff --git a/translated_images/tw/bad-chart-2.c20e36dd4e6f617c.webp b/translated_images/zh-TW/bad-chart-2.c20e36dd4e6f617c.webp
similarity index 100%
rename from translated_images/tw/bad-chart-2.c20e36dd4e6f617c.webp
rename to translated_images/zh-TW/bad-chart-2.c20e36dd4e6f617c.webp
diff --git a/translated_images/tw/bad-chart-3.6865d0afac4108d7.webp b/translated_images/zh-TW/bad-chart-3.6865d0afac4108d7.webp
similarity index 100%
rename from translated_images/tw/bad-chart-3.6865d0afac4108d7.webp
rename to translated_images/zh-TW/bad-chart-3.6865d0afac4108d7.webp
diff --git a/translated_images/tw/bad-chart-3.e201e2e915a230bc.webp b/translated_images/zh-TW/bad-chart-3.e201e2e915a230bc.webp
similarity index 100%
rename from translated_images/tw/bad-chart-3.e201e2e915a230bc.webp
rename to translated_images/zh-TW/bad-chart-3.e201e2e915a230bc.webp
diff --git a/translated_images/tw/bad-chart-4.68cfdf4011b45447.webp b/translated_images/zh-TW/bad-chart-4.68cfdf4011b45447.webp
similarity index 100%
rename from translated_images/tw/bad-chart-4.68cfdf4011b45447.webp
rename to translated_images/zh-TW/bad-chart-4.68cfdf4011b45447.webp
diff --git a/translated_images/tw/bad-chart-4.8872b2b881ffa96c.webp b/translated_images/zh-TW/bad-chart-4.8872b2b881ffa96c.webp
similarity index 100%
rename from translated_images/tw/bad-chart-4.8872b2b881ffa96c.webp
rename to translated_images/zh-TW/bad-chart-4.8872b2b881ffa96c.webp
diff --git a/translated_images/zh/bee.0aa1d91132b12e3a.webp b/translated_images/zh-TW/bee.0aa1d91132b12e3a.webp
similarity index 100%
rename from translated_images/zh/bee.0aa1d91132b12e3a.webp
rename to translated_images/zh-TW/bee.0aa1d91132b12e3a.webp
diff --git a/translated_images/tw/bodymass-per-order.9d2b065dd931b928.webp b/translated_images/zh-TW/bodymass-per-order.9d2b065dd931b928.webp
similarity index 100%
rename from translated_images/tw/bodymass-per-order.9d2b065dd931b928.webp
rename to translated_images/zh-TW/bodymass-per-order.9d2b065dd931b928.webp
diff --git a/translated_images/tw/bodymass-smooth.d31ce526d82b0a1f.webp b/translated_images/zh-TW/bodymass-smooth.d31ce526d82b0a1f.webp
similarity index 100%
rename from translated_images/tw/bodymass-smooth.d31ce526d82b0a1f.webp
rename to translated_images/zh-TW/bodymass-smooth.d31ce526d82b0a1f.webp
diff --git a/translated_images/tw/boxplot_byrole.036b27a1c3f52d42.webp b/translated_images/zh-TW/boxplot_byrole.036b27a1c3f52d42.webp
similarity index 100%
rename from translated_images/tw/boxplot_byrole.036b27a1c3f52d42.webp
rename to translated_images/zh-TW/boxplot_byrole.036b27a1c3f52d42.webp
diff --git a/translated_images/tw/boxplot_explanation.4039b7de08780fd4.webp b/translated_images/zh-TW/boxplot_explanation.4039b7de08780fd4.webp
similarity index 100%
rename from translated_images/tw/boxplot_explanation.4039b7de08780fd4.webp
rename to translated_images/zh-TW/boxplot_explanation.4039b7de08780fd4.webp
diff --git a/translated_images/tw/busing.7b9e3b41cd4b981c.webp b/translated_images/zh-TW/busing.7b9e3b41cd4b981c.webp
similarity index 100%
rename from translated_images/tw/busing.7b9e3b41cd4b981c.webp
rename to translated_images/zh-TW/busing.7b9e3b41cd4b981c.webp
diff --git a/translated_images/tw/busing.8157cf1bc89a3f65.webp b/translated_images/zh-TW/busing.8157cf1bc89a3f65.webp
similarity index 100%
rename from translated_images/tw/busing.8157cf1bc89a3f65.webp
rename to translated_images/zh-TW/busing.8157cf1bc89a3f65.webp
diff --git a/translated_images/tw/category-counts-02.0b9a0a4de42275ae.webp b/translated_images/zh-TW/category-counts-02.0b9a0a4de42275ae.webp
similarity index 100%
rename from translated_images/tw/category-counts-02.0b9a0a4de42275ae.webp
rename to translated_images/zh-TW/category-counts-02.0b9a0a4de42275ae.webp
diff --git a/translated_images/zh/category-counts.abee8188c4c9b6f0.webp b/translated_images/zh-TW/category-counts.abee8188c4c9b6f0.webp
similarity index 100%
rename from translated_images/zh/category-counts.abee8188c4c9b6f0.webp
rename to translated_images/zh-TW/category-counts.abee8188c4c9b6f0.webp
diff --git a/translated_images/tw/category-length-02.7304bf519375c980.webp b/translated_images/zh-TW/category-length-02.7304bf519375c980.webp
similarity index 100%
rename from translated_images/tw/category-length-02.7304bf519375c980.webp
rename to translated_images/zh-TW/category-length-02.7304bf519375c980.webp
diff --git a/translated_images/tw/category-length.7e34c296690e85d6.webp b/translated_images/zh-TW/category-length.7e34c296690e85d6.webp
similarity index 100%
rename from translated_images/tw/category-length.7e34c296690e85d6.webp
rename to translated_images/zh-TW/category-length.7e34c296690e85d6.webp
diff --git a/translated_images/zh/category-length.b0d9a0208a7b3713.webp b/translated_images/zh-TW/category-length.b0d9a0208a7b3713.webp
similarity index 100%
rename from translated_images/zh/category-length.b0d9a0208a7b3713.webp
rename to translated_images/zh-TW/category-length.b0d9a0208a7b3713.webp
diff --git a/translated_images/zh/cloud-picture.f5526de3c6c6387b.webp b/translated_images/zh-TW/cloud-picture.f5526de3c6c6387b.webp
similarity index 100%
rename from translated_images/zh/cloud-picture.f5526de3c6c6387b.webp
rename to translated_images/zh-TW/cloud-picture.f5526de3c6c6387b.webp
diff --git a/translated_images/tw/cluster-1.b78cb630bb543729.webp b/translated_images/zh-TW/cluster-1.b78cb630bb543729.webp
similarity index 100%
rename from translated_images/tw/cluster-1.b78cb630bb543729.webp
rename to translated_images/zh-TW/cluster-1.b78cb630bb543729.webp
diff --git a/translated_images/tw/cluster-2.ea30cdbc9f926bb9.webp b/translated_images/zh-TW/cluster-2.ea30cdbc9f926bb9.webp
similarity index 100%
rename from translated_images/tw/cluster-2.ea30cdbc9f926bb9.webp
rename to translated_images/zh-TW/cluster-2.ea30cdbc9f926bb9.webp
diff --git a/translated_images/tw/cluster-3.8a334bc070ec173a.webp b/translated_images/zh-TW/cluster-3.8a334bc070ec173a.webp
similarity index 100%
rename from translated_images/tw/cluster-3.8a334bc070ec173a.webp
rename to translated_images/zh-TW/cluster-3.8a334bc070ec173a.webp
diff --git a/translated_images/tw/columnar-db.ffcfe73c3e9063a8.webp b/translated_images/zh-TW/columnar-db.ffcfe73c3e9063a8.webp
similarity index 100%
rename from translated_images/tw/columnar-db.ffcfe73c3e9063a8.webp
rename to translated_images/zh-TW/columnar-db.ffcfe73c3e9063a8.webp
diff --git a/translated_images/zh/communication.06d8e2a88d30d168.webp b/translated_images/zh-TW/communication.06d8e2a88d30d168.webp
similarity index 100%
rename from translated_images/zh/communication.06d8e2a88d30d168.webp
rename to translated_images/zh-TW/communication.06d8e2a88d30d168.webp
diff --git a/translated_images/tw/comparingdata.f486a450d61c7ca5.webp b/translated_images/zh-TW/comparingdata.f486a450d61c7ca5.webp
similarity index 100%
rename from translated_images/tw/comparingdata.f486a450d61c7ca5.webp
rename to translated_images/zh-TW/comparingdata.f486a450d61c7ca5.webp
diff --git a/translated_images/tw/compute-instance-1.dba347cb199ca499.webp b/translated_images/zh-TW/compute-instance-1.dba347cb199ca499.webp
similarity index 100%
rename from translated_images/tw/compute-instance-1.dba347cb199ca499.webp
rename to translated_images/zh-TW/compute-instance-1.dba347cb199ca499.webp
diff --git a/translated_images/tw/consumption-1.700abd196452842a.webp b/translated_images/zh-TW/consumption-1.700abd196452842a.webp
similarity index 100%
rename from translated_images/tw/consumption-1.700abd196452842a.webp
rename to translated_images/zh-TW/consumption-1.700abd196452842a.webp
diff --git a/translated_images/tw/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp b/translated_images/zh-TW/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
similarity index 100%
rename from translated_images/tw/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
rename to translated_images/zh-TW/cosmosdb-emulator-explorer.a1c80b1347206fe2.webp
diff --git a/translated_images/tw/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp b/translated_images/zh-TW/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
similarity index 100%
rename from translated_images/tw/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
rename to translated_images/zh-TW/cosmosdb-emulator-persons-query.6905ebb497e3cd04.webp
diff --git a/translated_images/tw/cosmosdb-emulator-persons.bf640586a7077c89.webp b/translated_images/zh-TW/cosmosdb-emulator-persons.bf640586a7077c89.webp
similarity index 100%
rename from translated_images/tw/cosmosdb-emulator-persons.bf640586a7077c89.webp
rename to translated_images/zh-TW/cosmosdb-emulator-persons.bf640586a7077c89.webp
diff --git a/translated_images/tw/covidspread.f3d131c4f1d260ab.webp b/translated_images/zh-TW/covidspread.f3d131c4f1d260ab.webp
similarity index 100%
rename from translated_images/tw/covidspread.f3d131c4f1d260ab.webp
rename to translated_images/zh-TW/covidspread.f3d131c4f1d260ab.webp
diff --git a/translated_images/tw/covidtreat.b2ba59f57ca45fbc.webp b/translated_images/zh-TW/covidtreat.b2ba59f57ca45fbc.webp
similarity index 100%
rename from translated_images/tw/covidtreat.b2ba59f57ca45fbc.webp
rename to translated_images/zh-TW/covidtreat.b2ba59f57ca45fbc.webp
diff --git a/translated_images/zh/data-love.a22ef29e6742c852.webp b/translated_images/zh-TW/data-love.a22ef29e6742c852.webp
similarity index 100%
rename from translated_images/zh/data-love.a22ef29e6742c852.webp
rename to translated_images/zh-TW/data-love.a22ef29e6742c852.webp
diff --git a/translated_images/tw/data-science-applications.4e5019cd8790ebac.webp b/translated_images/zh-TW/data-science-applications.4e5019cd8790ebac.webp
similarity index 100%
rename from translated_images/tw/data-science-applications.4e5019cd8790ebac.webp
rename to translated_images/zh-TW/data-science-applications.4e5019cd8790ebac.webp
diff --git a/translated_images/tw/data-science-lifecycle.a1e362637503c4fb.webp b/translated_images/zh-TW/data-science-lifecycle.a1e362637503c4fb.webp
similarity index 100%
rename from translated_images/tw/data-science-lifecycle.a1e362637503c4fb.webp
rename to translated_images/zh-TW/data-science-lifecycle.a1e362637503c4fb.webp
diff --git a/translated_images/tw/data.48e22bb7617d8d92.webp b/translated_images/zh-TW/data.48e22bb7617d8d92.webp
similarity index 100%
rename from translated_images/tw/data.48e22bb7617d8d92.webp
rename to translated_images/zh-TW/data.48e22bb7617d8d92.webp
diff --git a/translated_images/tw/dataframe-1.caf409f0c688e84c.webp b/translated_images/zh-TW/dataframe-1.caf409f0c688e84c.webp
similarity index 100%
rename from translated_images/tw/dataframe-1.caf409f0c688e84c.webp
rename to translated_images/zh-TW/dataframe-1.caf409f0c688e84c.webp
diff --git a/translated_images/tw/datascienceinthecloud.59ffb059a670fb0a.webp b/translated_images/zh-TW/datascienceinthecloud.59ffb059a670fb0a.webp
similarity index 100%
rename from translated_images/tw/datascienceinthecloud.59ffb059a670fb0a.webp
rename to translated_images/zh-TW/datascienceinthecloud.59ffb059a670fb0a.webp
diff --git a/translated_images/tw/dataset-1.e86ab4e10907a6e9.webp b/translated_images/zh-TW/dataset-1.e86ab4e10907a6e9.webp
similarity index 100%
rename from translated_images/tw/dataset-1.e86ab4e10907a6e9.webp
rename to translated_images/zh-TW/dataset-1.e86ab4e10907a6e9.webp
diff --git a/translated_images/tw/dataset-2.f58de1c435d5bf9c.webp b/translated_images/zh-TW/dataset-2.f58de1c435d5bf9c.webp
similarity index 100%
rename from translated_images/tw/dataset-2.f58de1c435d5bf9c.webp
rename to translated_images/zh-TW/dataset-2.f58de1c435d5bf9c.webp
diff --git a/translated_images/tw/dataset-3.58db8c0eb783e892.webp b/translated_images/zh-TW/dataset-3.58db8c0eb783e892.webp
similarity index 100%
rename from translated_images/tw/dataset-3.58db8c0eb783e892.webp
rename to translated_images/zh-TW/dataset-3.58db8c0eb783e892.webp
diff --git a/translated_images/tw/density-plot.675ccf865b76c690.webp b/translated_images/zh-TW/density-plot.675ccf865b76c690.webp
similarity index 100%
rename from translated_images/tw/density-plot.675ccf865b76c690.webp
rename to translated_images/zh-TW/density-plot.675ccf865b76c690.webp
diff --git a/translated_images/zh/density1.8801043bd4af2567.webp b/translated_images/zh-TW/density1.8801043bd4af2567.webp
similarity index 100%
rename from translated_images/zh/density1.8801043bd4af2567.webp
rename to translated_images/zh-TW/density1.8801043bd4af2567.webp
diff --git a/translated_images/tw/density2.8e7647257060ff54.webp b/translated_images/zh-TW/density2.8e7647257060ff54.webp
similarity index 100%
rename from translated_images/tw/density2.8e7647257060ff54.webp
rename to translated_images/zh-TW/density2.8e7647257060ff54.webp
diff --git a/translated_images/tw/density3.84ae27da82f31e6b.webp b/translated_images/zh-TW/density3.84ae27da82f31e6b.webp
similarity index 100%
rename from translated_images/tw/density3.84ae27da82f31e6b.webp
rename to translated_images/zh-TW/density3.84ae27da82f31e6b.webp
diff --git a/translated_images/tw/density4.e9d6c033f15c500f.webp b/translated_images/zh-TW/density4.e9d6c033f15c500f.webp
similarity index 100%
rename from translated_images/tw/density4.e9d6c033f15c500f.webp
rename to translated_images/zh-TW/density4.e9d6c033f15c500f.webp
diff --git a/translated_images/tw/deploy-1.ddad725acadc84e3.webp b/translated_images/zh-TW/deploy-1.ddad725acadc84e3.webp
similarity index 100%
rename from translated_images/tw/deploy-1.ddad725acadc84e3.webp
rename to translated_images/zh-TW/deploy-1.ddad725acadc84e3.webp
diff --git a/translated_images/tw/deploy-2.94dbb13f23908647.webp b/translated_images/zh-TW/deploy-2.94dbb13f23908647.webp
similarity index 100%
rename from translated_images/tw/deploy-2.94dbb13f23908647.webp
rename to translated_images/zh-TW/deploy-2.94dbb13f23908647.webp
diff --git a/translated_images/tw/deploy-3.fecefef070e8ef3b.webp b/translated_images/zh-TW/deploy-3.fecefef070e8ef3b.webp
similarity index 100%
rename from translated_images/tw/deploy-3.fecefef070e8ef3b.webp
rename to translated_images/zh-TW/deploy-3.fecefef070e8ef3b.webp
diff --git a/translated_images/tw/dist1-wb.0d0cac82e2974fbb.webp b/translated_images/zh-TW/dist1-wb.0d0cac82e2974fbb.webp
similarity index 100%
rename from translated_images/tw/dist1-wb.0d0cac82e2974fbb.webp
rename to translated_images/zh-TW/dist1-wb.0d0cac82e2974fbb.webp
diff --git a/translated_images/zh/dist1.0010100b00231819.webp b/translated_images/zh-TW/dist1.0010100b00231819.webp
similarity index 100%
rename from translated_images/zh/dist1.0010100b00231819.webp
rename to translated_images/zh-TW/dist1.0010100b00231819.webp
diff --git a/translated_images/tw/dist2-wb.2c0a7a3499b2fbf5.webp b/translated_images/zh-TW/dist2-wb.2c0a7a3499b2fbf5.webp
similarity index 100%
rename from translated_images/tw/dist2-wb.2c0a7a3499b2fbf5.webp
rename to translated_images/zh-TW/dist2-wb.2c0a7a3499b2fbf5.webp
diff --git a/translated_images/zh/dist2.c398bfd5320401b9.webp b/translated_images/zh-TW/dist2.c398bfd5320401b9.webp
similarity index 100%
rename from translated_images/zh/dist2.c398bfd5320401b9.webp
rename to translated_images/zh-TW/dist2.c398bfd5320401b9.webp
diff --git a/translated_images/tw/dist3-wb.64b88db7f9780200.webp b/translated_images/zh-TW/dist3-wb.64b88db7f9780200.webp
similarity index 100%
rename from translated_images/tw/dist3-wb.64b88db7f9780200.webp
rename to translated_images/zh-TW/dist3-wb.64b88db7f9780200.webp
diff --git a/translated_images/zh/dist3.ad4d9658559690f5.webp b/translated_images/zh-TW/dist3.ad4d9658559690f5.webp
similarity index 100%
rename from translated_images/zh/dist3.ad4d9658559690f5.webp
rename to translated_images/zh-TW/dist3.ad4d9658559690f5.webp
diff --git a/translated_images/tw/distribution-30bins.6a3921ea7a421bf7.webp b/translated_images/zh-TW/distribution-30bins.6a3921ea7a421bf7.webp
similarity index 100%
rename from translated_images/tw/distribution-30bins.6a3921ea7a421bf7.webp
rename to translated_images/zh-TW/distribution-30bins.6a3921ea7a421bf7.webp
diff --git a/translated_images/tw/distribution-over-the-entire-dataset.d22afd3fa96be854.webp b/translated_images/zh-TW/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
similarity index 100%
rename from translated_images/tw/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
rename to translated_images/zh-TW/distribution-over-the-entire-dataset.d22afd3fa96be854.webp
diff --git a/translated_images/tw/document-db.ddeec48c6dc9e5fd.webp b/translated_images/zh-TW/document-db.ddeec48c6dc9e5fd.webp
similarity index 100%
rename from translated_images/tw/document-db.ddeec48c6dc9e5fd.webp
rename to translated_images/zh-TW/document-db.ddeec48c6dc9e5fd.webp
diff --git a/translated_images/tw/donut-wb.34e6fb275da9d834.webp b/translated_images/zh-TW/donut-wb.34e6fb275da9d834.webp
similarity index 100%
rename from translated_images/tw/donut-wb.34e6fb275da9d834.webp
rename to translated_images/zh-TW/donut-wb.34e6fb275da9d834.webp
diff --git a/translated_images/tw/donut-wb.be3c12a22712302b.webp b/translated_images/zh-TW/donut-wb.be3c12a22712302b.webp
similarity index 100%
rename from translated_images/tw/donut-wb.be3c12a22712302b.webp
rename to translated_images/zh-TW/donut-wb.be3c12a22712302b.webp
diff --git a/translated_images/zh/donut.f016d7be7f08c8f8.webp b/translated_images/zh-TW/donut.f016d7be7f08c8f8.webp
similarity index 100%
rename from translated_images/zh/donut.f016d7be7f08c8f8.webp
rename to translated_images/zh-TW/donut.f016d7be7f08c8f8.webp
diff --git a/translated_images/tw/ds-for-beginners.d01930c9193ef522.webp b/translated_images/zh-TW/ds-for-beginners.d01930c9193ef522.webp
similarity index 100%
rename from translated_images/tw/ds-for-beginners.d01930c9193ef522.webp
rename to translated_images/zh-TW/ds-for-beginners.d01930c9193ef522.webp
diff --git a/translated_images/tw/ds_wordcloud.664a7c07dca57de0.webp b/translated_images/zh-TW/ds_wordcloud.664a7c07dca57de0.webp
similarity index 100%
rename from translated_images/tw/ds_wordcloud.664a7c07dca57de0.webp
rename to translated_images/zh-TW/ds_wordcloud.664a7c07dca57de0.webp
diff --git a/translated_images/tw/dual-line.a4c28ce659603fab.webp b/translated_images/zh-TW/dual-line.a4c28ce659603fab.webp
similarity index 100%
rename from translated_images/tw/dual-line.a4c28ce659603fab.webp
rename to translated_images/zh-TW/dual-line.a4c28ce659603fab.webp
diff --git a/translated_images/tw/dual-line.fc4665f360a54018.webp b/translated_images/zh-TW/dual-line.fc4665f360a54018.webp
similarity index 100%
rename from translated_images/tw/dual-line.fc4665f360a54018.webp
rename to translated_images/zh-TW/dual-line.fc4665f360a54018.webp
diff --git a/translated_images/zh/facet.491ad90d61c2a7cc.webp b/translated_images/zh-TW/facet.491ad90d61c2a7cc.webp
similarity index 100%
rename from translated_images/zh/facet.491ad90d61c2a7cc.webp
rename to translated_images/zh-TW/facet.491ad90d61c2a7cc.webp
diff --git a/translated_images/tw/facet.6a34851dcd540050.webp b/translated_images/zh-TW/facet.6a34851dcd540050.webp
similarity index 100%
rename from translated_images/tw/facet.6a34851dcd540050.webp
rename to translated_images/zh-TW/facet.6a34851dcd540050.webp
diff --git a/translated_images/zh/favicon.37b561214b36d454.webp b/translated_images/zh-TW/favicon.37b561214b36d454.webp
similarity index 100%
rename from translated_images/zh/favicon.37b561214b36d454.webp
rename to translated_images/zh-TW/favicon.37b561214b36d454.webp
diff --git a/translated_images/tw/filtered-histogram.6bf5d2bfd8253322.webp b/translated_images/zh-TW/filtered-histogram.6bf5d2bfd8253322.webp
similarity index 100%
rename from translated_images/tw/filtered-histogram.6bf5d2bfd8253322.webp
rename to translated_images/zh-TW/filtered-histogram.6bf5d2bfd8253322.webp
diff --git a/translated_images/tw/formula-excel.ad1068c220892f5e.webp b/translated_images/zh-TW/formula-excel.ad1068c220892f5e.webp
similarity index 100%
rename from translated_images/tw/formula-excel.ad1068c220892f5e.webp
rename to translated_images/zh-TW/formula-excel.ad1068c220892f5e.webp
diff --git a/translated_images/tw/full-data-bar-02.aaa3fda71c63ed56.webp b/translated_images/zh-TW/full-data-bar-02.aaa3fda71c63ed56.webp
similarity index 100%
rename from translated_images/tw/full-data-bar-02.aaa3fda71c63ed56.webp
rename to translated_images/zh-TW/full-data-bar-02.aaa3fda71c63ed56.webp
diff --git a/translated_images/tw/full-data-bar.a0b37da71a6cd236.webp b/translated_images/zh-TW/full-data-bar.a0b37da71a6cd236.webp
similarity index 100%
rename from translated_images/tw/full-data-bar.a0b37da71a6cd236.webp
rename to translated_images/zh-TW/full-data-bar.a0b37da71a6cd236.webp
diff --git a/translated_images/tw/function-excel.be2ae4feddc10ca0.webp b/translated_images/zh-TW/function-excel.be2ae4feddc10ca0.webp
similarity index 100%
rename from translated_images/tw/function-excel.be2ae4feddc10ca0.webp
rename to translated_images/zh-TW/function-excel.be2ae4feddc10ca0.webp
diff --git a/translated_images/tw/graph-db.d13629152f79a9da.webp b/translated_images/zh-TW/graph-db.d13629152f79a9da.webp
similarity index 100%
rename from translated_images/tw/graph-db.d13629152f79a9da.webp
rename to translated_images/zh-TW/graph-db.d13629152f79a9da.webp
diff --git a/translated_images/zh/height-boxplot.ccb66b2848b5f51c.webp b/translated_images/zh-TW/height-boxplot.ccb66b2848b5f51c.webp
similarity index 100%
rename from translated_images/zh/height-boxplot.ccb66b2848b5f51c.webp
rename to translated_images/zh-TW/height-boxplot.ccb66b2848b5f51c.webp
diff --git a/translated_images/tw/histogram-conservation-wb.3c40450eb072c14d.webp b/translated_images/zh-TW/histogram-conservation-wb.3c40450eb072c14d.webp
similarity index 100%
rename from translated_images/tw/histogram-conservation-wb.3c40450eb072c14d.webp
rename to translated_images/zh-TW/histogram-conservation-wb.3c40450eb072c14d.webp
diff --git a/translated_images/tw/histogram-conservation.13b3542e7784e415.webp b/translated_images/zh-TW/histogram-conservation.13b3542e7784e415.webp
similarity index 100%
rename from translated_images/tw/histogram-conservation.13b3542e7784e415.webp
rename to translated_images/zh-TW/histogram-conservation.13b3542e7784e415.webp
diff --git a/translated_images/tw/kv-db.e8f2b75686bbdfcb.webp b/translated_images/zh-TW/kv-db.e8f2b75686bbdfcb.webp
similarity index 100%
rename from translated_images/tw/kv-db.e8f2b75686bbdfcb.webp
rename to translated_images/zh-TW/kv-db.e8f2b75686bbdfcb.webp
diff --git a/translated_images/tw/labeled-wingspan-02.6110e2d2401cd523.webp b/translated_images/zh-TW/labeled-wingspan-02.6110e2d2401cd523.webp
similarity index 100%
rename from translated_images/tw/labeled-wingspan-02.6110e2d2401cd523.webp
rename to translated_images/zh-TW/labeled-wingspan-02.6110e2d2401cd523.webp
diff --git a/translated_images/tw/labeled-wingspan.900ffedd7e3ec6de.webp b/translated_images/zh-TW/labeled-wingspan.900ffedd7e3ec6de.webp
similarity index 100%
rename from translated_images/tw/labeled-wingspan.900ffedd7e3ec6de.webp
rename to translated_images/zh-TW/labeled-wingspan.900ffedd7e3ec6de.webp
diff --git a/translated_images/tw/less-smooth-bodymass.10f4db8b683cc17d.webp b/translated_images/zh-TW/less-smooth-bodymass.10f4db8b683cc17d.webp
similarity index 100%
rename from translated_images/tw/less-smooth-bodymass.10f4db8b683cc17d.webp
rename to translated_images/zh-TW/less-smooth-bodymass.10f4db8b683cc17d.webp
diff --git a/translated_images/tw/liaisons.7b440b28f6d07ea4.webp b/translated_images/zh-TW/liaisons.7b440b28f6d07ea4.webp
similarity index 100%
rename from translated_images/tw/liaisons.7b440b28f6d07ea4.webp
rename to translated_images/zh-TW/liaisons.7b440b28f6d07ea4.webp
diff --git a/translated_images/tw/liaisons.90ce7360bcf84765.webp b/translated_images/zh-TW/liaisons.90ce7360bcf84765.webp
similarity index 100%
rename from translated_images/tw/liaisons.90ce7360bcf84765.webp
rename to translated_images/zh-TW/liaisons.90ce7360bcf84765.webp
diff --git a/translated_images/tw/line1.299b576fbb2a59e6.webp b/translated_images/zh-TW/line1.299b576fbb2a59e6.webp
similarity index 100%
rename from translated_images/tw/line1.299b576fbb2a59e6.webp
rename to translated_images/zh-TW/line1.299b576fbb2a59e6.webp
diff --git a/translated_images/tw/line1.f36eb465229a3b1f.webp b/translated_images/zh-TW/line1.f36eb465229a3b1f.webp
similarity index 100%
rename from translated_images/tw/line1.f36eb465229a3b1f.webp
rename to translated_images/zh-TW/line1.f36eb465229a3b1f.webp
diff --git a/translated_images/tw/line2.3b18fcda7176ceba.webp b/translated_images/zh-TW/line2.3b18fcda7176ceba.webp
similarity index 100%
rename from translated_images/tw/line2.3b18fcda7176ceba.webp
rename to translated_images/zh-TW/line2.3b18fcda7176ceba.webp
diff --git a/translated_images/tw/line2.a5b3493dc01058af.webp b/translated_images/zh-TW/line2.a5b3493dc01058af.webp
similarity index 100%
rename from translated_images/tw/line2.a5b3493dc01058af.webp
rename to translated_images/zh-TW/line2.a5b3493dc01058af.webp
diff --git a/translated_images/tw/max-length-per-order.e5b283d952c78c12.webp b/translated_images/zh-TW/max-length-per-order.e5b283d952c78c12.webp
similarity index 100%
rename from translated_images/tw/max-length-per-order.e5b283d952c78c12.webp
rename to translated_images/zh-TW/max-length-per-order.e5b283d952c78c12.webp
diff --git a/translated_images/zh/max-wingspan-02.e79fd847b2640b89.webp b/translated_images/zh-TW/max-wingspan-02.e79fd847b2640b89.webp
similarity index 100%
rename from translated_images/zh/max-wingspan-02.e79fd847b2640b89.webp
rename to translated_images/zh-TW/max-wingspan-02.e79fd847b2640b89.webp
diff --git a/translated_images/tw/max-wingspan-labels-02.aa90e826ca49a9d1.webp b/translated_images/zh-TW/max-wingspan-labels-02.aa90e826ca49a9d1.webp
similarity index 100%
rename from translated_images/tw/max-wingspan-labels-02.aa90e826ca49a9d1.webp
rename to translated_images/zh-TW/max-wingspan-labels-02.aa90e826ca49a9d1.webp
diff --git a/translated_images/zh/max-wingspan-labels.46f0cc3c48edd4e0.webp b/translated_images/zh-TW/max-wingspan-labels.46f0cc3c48edd4e0.webp
similarity index 100%
rename from translated_images/zh/max-wingspan-labels.46f0cc3c48edd4e0.webp
rename to translated_images/zh-TW/max-wingspan-labels.46f0cc3c48edd4e0.webp
diff --git a/translated_images/zh/max-wingspan.0b8d0858436414aa.webp b/translated_images/zh-TW/max-wingspan.0b8d0858436414aa.webp
similarity index 100%
rename from translated_images/zh/max-wingspan.0b8d0858436414aa.webp
rename to translated_images/zh-TW/max-wingspan.0b8d0858436414aa.webp
diff --git a/translated_images/tw/multi.56548caa9eae8d0f.webp b/translated_images/zh-TW/multi.56548caa9eae8d0f.webp
similarity index 100%
rename from translated_images/tw/multi.56548caa9eae8d0f.webp
rename to translated_images/zh-TW/multi.56548caa9eae8d0f.webp
diff --git a/translated_images/tw/new-container.650e10c7a20a5f83.webp b/translated_images/zh-TW/new-container.650e10c7a20a5f83.webp
similarity index 100%
rename from translated_images/tw/new-container.650e10c7a20a5f83.webp
rename to translated_images/zh-TW/new-container.650e10c7a20a5f83.webp
diff --git a/translated_images/zh/normal-histogram.dfae0d67c202137d.webp b/translated_images/zh-TW/normal-histogram.dfae0d67c202137d.webp
similarity index 100%
rename from translated_images/zh/normal-histogram.dfae0d67c202137d.webp
rename to translated_images/zh-TW/normal-histogram.dfae0d67c202137d.webp
diff --git a/translated_images/tw/notebook-1.12998af7b02c83f5.webp b/translated_images/zh-TW/notebook-1.12998af7b02c83f5.webp
similarity index 100%
rename from translated_images/tw/notebook-1.12998af7b02c83f5.webp
rename to translated_images/zh-TW/notebook-1.12998af7b02c83f5.webp
diff --git a/translated_images/tw/notebook-2.9a657c037e34f1cf.webp b/translated_images/zh-TW/notebook-2.9a657c037e34f1cf.webp
similarity index 100%
rename from translated_images/tw/notebook-2.9a657c037e34f1cf.webp
rename to translated_images/zh-TW/notebook-2.9a657c037e34f1cf.webp
diff --git a/translated_images/tw/parts-of-spreadsheet.120711c82aa18a45.webp b/translated_images/zh-TW/parts-of-spreadsheet.120711c82aa18a45.webp
similarity index 100%
rename from translated_images/tw/parts-of-spreadsheet.120711c82aa18a45.webp
rename to translated_images/zh-TW/parts-of-spreadsheet.120711c82aa18a45.webp
diff --git a/translated_images/tw/pie1-wb.685df063673751f4.webp b/translated_images/zh-TW/pie1-wb.685df063673751f4.webp
similarity index 100%
rename from translated_images/tw/pie1-wb.685df063673751f4.webp
rename to translated_images/zh-TW/pie1-wb.685df063673751f4.webp
diff --git a/translated_images/tw/pie1-wb.e201f2fcc3354131.webp b/translated_images/zh-TW/pie1-wb.e201f2fcc3354131.webp
similarity index 100%
rename from translated_images/tw/pie1-wb.e201f2fcc3354131.webp
rename to translated_images/zh-TW/pie1-wb.e201f2fcc3354131.webp
diff --git a/translated_images/zh/pie1.8f6a8bfac96de60e.webp b/translated_images/zh-TW/pie1.8f6a8bfac96de60e.webp
similarity index 100%
rename from translated_images/zh/pie1.8f6a8bfac96de60e.webp
rename to translated_images/zh-TW/pie1.8f6a8bfac96de60e.webp
diff --git a/translated_images/tw/planetary-computer-explorer.c1e95a9b053167d6.webp b/translated_images/zh-TW/planetary-computer-explorer.c1e95a9b053167d6.webp
similarity index 100%
rename from translated_images/tw/planetary-computer-explorer.c1e95a9b053167d6.webp
rename to translated_images/zh-TW/planetary-computer-explorer.c1e95a9b053167d6.webp
diff --git a/translated_images/zh/probability-density.a8aad29f17a14afb.webp b/translated_images/zh-TW/probability-density.a8aad29f17a14afb.webp
similarity index 100%
rename from translated_images/zh/probability-density.a8aad29f17a14afb.webp
rename to translated_images/zh-TW/probability-density.a8aad29f17a14afb.webp
diff --git a/translated_images/tw/project-schema.420e56d495624541.webp b/translated_images/zh-TW/project-schema.420e56d495624541.webp
similarity index 100%
rename from translated_images/tw/project-schema.420e56d495624541.webp
rename to translated_images/zh-TW/project-schema.420e56d495624541.webp
diff --git a/translated_images/tw/project-schema.736f6e403f321eb4.webp b/translated_images/zh-TW/project-schema.736f6e403f321eb4.webp
similarity index 100%
rename from translated_images/tw/project-schema.736f6e403f321eb4.webp
rename to translated_images/zh-TW/project-schema.736f6e403f321eb4.webp
diff --git a/translated_images/tw/scatter-wb.9d98b0ed7f0388af.webp b/translated_images/zh-TW/scatter-wb.9d98b0ed7f0388af.webp
similarity index 100%
rename from translated_images/tw/scatter-wb.9d98b0ed7f0388af.webp
rename to translated_images/zh-TW/scatter-wb.9d98b0ed7f0388af.webp
diff --git a/translated_images/zh/scatter.520a43eceb46dbcb.webp b/translated_images/zh-TW/scatter.520a43eceb46dbcb.webp
similarity index 100%
rename from translated_images/zh/scatter.520a43eceb46dbcb.webp
rename to translated_images/zh-TW/scatter.520a43eceb46dbcb.webp
diff --git a/translated_images/tw/scatter1.5e1aa5fd6706c5d1.webp b/translated_images/zh-TW/scatter1.5e1aa5fd6706c5d1.webp
similarity index 100%
rename from translated_images/tw/scatter1.5e1aa5fd6706c5d1.webp
rename to translated_images/zh-TW/scatter1.5e1aa5fd6706c5d1.webp
diff --git a/translated_images/tw/scatter1.86b8900674d88b26.webp b/translated_images/zh-TW/scatter1.86b8900674d88b26.webp
similarity index 100%
rename from translated_images/tw/scatter1.86b8900674d88b26.webp
rename to translated_images/zh-TW/scatter1.86b8900674d88b26.webp
diff --git a/translated_images/tw/scatter2.4d1cbc693bad20e2.webp b/translated_images/zh-TW/scatter2.4d1cbc693bad20e2.webp
similarity index 100%
rename from translated_images/tw/scatter2.4d1cbc693bad20e2.webp
rename to translated_images/zh-TW/scatter2.4d1cbc693bad20e2.webp
diff --git a/translated_images/tw/scatter2.c0041a58621ca702.webp b/translated_images/zh-TW/scatter2.c0041a58621ca702.webp
similarity index 100%
rename from translated_images/tw/scatter2.c0041a58621ca702.webp
rename to translated_images/zh-TW/scatter2.c0041a58621ca702.webp
diff --git a/translated_images/tw/scatter3.3c160a3d1dcb36b3.webp b/translated_images/zh-TW/scatter3.3c160a3d1dcb36b3.webp
similarity index 100%
rename from translated_images/tw/scatter3.3c160a3d1dcb36b3.webp
rename to translated_images/zh-TW/scatter3.3c160a3d1dcb36b3.webp
diff --git a/translated_images/tw/scatter3.722d21e6f20b3ea2.webp b/translated_images/zh-TW/scatter3.722d21e6f20b3ea2.webp
similarity index 100%
rename from translated_images/tw/scatter3.722d21e6f20b3ea2.webp
rename to translated_images/zh-TW/scatter3.722d21e6f20b3ea2.webp
diff --git a/translated_images/tw/scatterplot-wingspan-02.1c33790094ce36a7.webp b/translated_images/zh-TW/scatterplot-wingspan-02.1c33790094ce36a7.webp
similarity index 100%
rename from translated_images/tw/scatterplot-wingspan-02.1c33790094ce36a7.webp
rename to translated_images/zh-TW/scatterplot-wingspan-02.1c33790094ce36a7.webp
diff --git a/translated_images/zh/scatterplot-wingspan.bdab448702939bb3.webp b/translated_images/zh-TW/scatterplot-wingspan.bdab448702939bb3.webp
similarity index 100%
rename from translated_images/zh/scatterplot-wingspan.bdab448702939bb3.webp
rename to translated_images/zh-TW/scatterplot-wingspan.bdab448702939bb3.webp
diff --git a/translated_images/tw/stacked-bar-chart.0c92264e89da7b39.webp b/translated_images/zh-TW/stacked-bar-chart.0c92264e89da7b39.webp
similarity index 100%
rename from translated_images/tw/stacked-bar-chart.0c92264e89da7b39.webp
rename to translated_images/zh-TW/stacked-bar-chart.0c92264e89da7b39.webp
diff --git a/translated_images/tw/superimposed-02.f03058536baeb2ed.webp b/translated_images/zh-TW/superimposed-02.f03058536baeb2ed.webp
similarity index 100%
rename from translated_images/tw/superimposed-02.f03058536baeb2ed.webp
rename to translated_images/zh-TW/superimposed-02.f03058536baeb2ed.webp
diff --git a/translated_images/tw/superimposed-values.5363f0705a1da416.webp b/translated_images/zh-TW/superimposed-values.5363f0705a1da416.webp
similarity index 100%
rename from translated_images/tw/superimposed-values.5363f0705a1da416.webp
rename to translated_images/zh-TW/superimposed-values.5363f0705a1da416.webp
diff --git a/translated_images/zh/superimposed.8b5bd0e8825d9c5c.webp b/translated_images/zh-TW/superimposed.8b5bd0e8825d9c5c.webp
similarity index 100%
rename from translated_images/zh/superimposed.8b5bd0e8825d9c5c.webp
rename to translated_images/zh-TW/superimposed.8b5bd0e8825d9c5c.webp
diff --git a/translated_images/tw/tdsp-lifecycle2.e19029d598e2e73d.webp b/translated_images/zh-TW/tdsp-lifecycle2.e19029d598e2e73d.webp
similarity index 100%
rename from translated_images/tw/tdsp-lifecycle2.e19029d598e2e73d.webp
rename to translated_images/zh-TW/tdsp-lifecycle2.e19029d598e2e73d.webp
diff --git a/translated_images/tw/timeseries-1.80de678ab1cf727e.webp b/translated_images/zh-TW/timeseries-1.80de678ab1cf727e.webp
similarity index 100%
rename from translated_images/tw/timeseries-1.80de678ab1cf727e.webp
rename to translated_images/zh-TW/timeseries-1.80de678ab1cf727e.webp
diff --git a/translated_images/zh/timeseries-2.aae51d575c55181c.webp b/translated_images/zh-TW/timeseries-2.aae51d575c55181c.webp
similarity index 100%
rename from translated_images/zh/timeseries-2.aae51d575c55181c.webp
rename to translated_images/zh-TW/timeseries-2.aae51d575c55181c.webp
diff --git a/translated_images/zh/timeseries-3.f3147cbc8c624881.webp b/translated_images/zh-TW/timeseries-3.f3147cbc8c624881.webp
similarity index 100%
rename from translated_images/zh/timeseries-3.f3147cbc8c624881.webp
rename to translated_images/zh-TW/timeseries-3.f3147cbc8c624881.webp
diff --git a/translated_images/tw/tornado.2880ffc7f135f82b.webp b/translated_images/zh-TW/tornado.2880ffc7f135f82b.webp
similarity index 100%
rename from translated_images/tw/tornado.2880ffc7f135f82b.webp
rename to translated_images/zh-TW/tornado.2880ffc7f135f82b.webp
diff --git a/translated_images/tw/tornado.9f42168791208f97.webp b/translated_images/zh-TW/tornado.9f42168791208f97.webp
similarity index 100%
rename from translated_images/tw/tornado.9f42168791208f97.webp
rename to translated_images/zh-TW/tornado.9f42168791208f97.webp
diff --git a/translated_images/tw/video-def-ds.6623ee2392ef1abf.webp b/translated_images/zh-TW/video-def-ds.6623ee2392ef1abf.webp
similarity index 100%
rename from translated_images/tw/video-def-ds.6623ee2392ef1abf.webp
rename to translated_images/zh-TW/video-def-ds.6623ee2392ef1abf.webp
diff --git a/translated_images/tw/video-ds-python.245247dc811db8e4.webp b/translated_images/zh-TW/video-ds-python.245247dc811db8e4.webp
similarity index 100%
rename from translated_images/tw/video-ds-python.245247dc811db8e4.webp
rename to translated_images/zh-TW/video-ds-python.245247dc811db8e4.webp
diff --git a/translated_images/tw/video-prob-and-stats.e4282e5efa2f2543.webp b/translated_images/zh-TW/video-prob-and-stats.e4282e5efa2f2543.webp
similarity index 100%
rename from translated_images/tw/video-prob-and-stats.e4282e5efa2f2543.webp
rename to translated_images/zh-TW/video-prob-and-stats.e4282e5efa2f2543.webp
diff --git a/translated_images/tw/waffle.5455dbae4ccf17d5.webp b/translated_images/zh-TW/waffle.5455dbae4ccf17d5.webp
similarity index 100%
rename from translated_images/tw/waffle.5455dbae4ccf17d5.webp
rename to translated_images/zh-TW/waffle.5455dbae4ccf17d5.webp
diff --git a/translated_images/tw/waffle.aaa75c5337735a6e.webp b/translated_images/zh-TW/waffle.aaa75c5337735a6e.webp
similarity index 100%
rename from translated_images/tw/waffle.aaa75c5337735a6e.webp
rename to translated_images/zh-TW/waffle.aaa75c5337735a6e.webp
diff --git a/translated_images/zh/weight-boxplot.1dbab1c03af26f8a.webp b/translated_images/zh-TW/weight-boxplot.1dbab1c03af26f8a.webp
similarity index 100%
rename from translated_images/zh/weight-boxplot.1dbab1c03af26f8a.webp
rename to translated_images/zh-TW/weight-boxplot.1dbab1c03af26f8a.webp
diff --git a/translated_images/zh/weight-height-relationship.3f06bde4ca2aba99.webp b/translated_images/zh-TW/weight-height-relationship.3f06bde4ca2aba99.webp
similarity index 100%
rename from translated_images/zh/weight-height-relationship.3f06bde4ca2aba99.webp
rename to translated_images/zh-TW/weight-height-relationship.3f06bde4ca2aba99.webp
diff --git a/translated_images/tw/weight-histogram.bfd00caf7fc30b14.webp b/translated_images/zh-TW/weight-histogram.bfd00caf7fc30b14.webp
similarity index 100%
rename from translated_images/tw/weight-histogram.bfd00caf7fc30b14.webp
rename to translated_images/zh-TW/weight-histogram.bfd00caf7fc30b14.webp
diff --git a/translated_images/tw/wingspan-conservation-collation.4024e9aa6910866a.webp b/translated_images/zh-TW/wingspan-conservation-collation.4024e9aa6910866a.webp
similarity index 100%
rename from translated_images/tw/wingspan-conservation-collation.4024e9aa6910866a.webp
rename to translated_images/zh-TW/wingspan-conservation-collation.4024e9aa6910866a.webp
diff --git a/translated_images/tw/workspace-1.ac8694d60b073ed1.webp b/translated_images/zh-TW/workspace-1.ac8694d60b073ed1.webp
similarity index 100%
rename from translated_images/tw/workspace-1.ac8694d60b073ed1.webp
rename to translated_images/zh-TW/workspace-1.ac8694d60b073ed1.webp
diff --git a/translated_images/tw/workspace-2.ae7c486db8796147.webp b/translated_images/zh-TW/workspace-2.ae7c486db8796147.webp
similarity index 100%
rename from translated_images/tw/workspace-2.ae7c486db8796147.webp
rename to translated_images/zh-TW/workspace-2.ae7c486db8796147.webp
diff --git a/translated_images/tw/workspace-3.398ca4a5858132cc.webp b/translated_images/zh-TW/workspace-3.398ca4a5858132cc.webp
similarity index 100%
rename from translated_images/tw/workspace-3.398ca4a5858132cc.webp
rename to translated_images/zh-TW/workspace-3.398ca4a5858132cc.webp
diff --git a/translated_images/tw/workspace-4.bac87f6599c4df63.webp b/translated_images/zh-TW/workspace-4.bac87f6599c4df63.webp
similarity index 100%
rename from translated_images/tw/workspace-4.bac87f6599c4df63.webp
rename to translated_images/zh-TW/workspace-4.bac87f6599c4df63.webp
diff --git a/translated_images/tw/workspace-5.a6eb17e0a5e64200.webp b/translated_images/zh-TW/workspace-5.a6eb17e0a5e64200.webp
similarity index 100%
rename from translated_images/tw/workspace-5.a6eb17e0a5e64200.webp
rename to translated_images/zh-TW/workspace-5.a6eb17e0a5e64200.webp
diff --git a/translated_images/tw/workspace-6.8dd81fe841797ee1.webp b/translated_images/zh-TW/workspace-6.8dd81fe841797ee1.webp
similarity index 100%
rename from translated_images/tw/workspace-6.8dd81fe841797ee1.webp
rename to translated_images/zh-TW/workspace-6.8dd81fe841797ee1.webp
diff --git a/translations/ar/.co-op-translator.json b/translations/ar/.co-op-translator.json
new file mode 100644
index 00000000..9c05ba1c
--- /dev/null
+++ b/translations/ar/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:35:59+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "ar"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-27T09:03:26+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "ar"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-27T09:04:22+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "ar"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:02:24+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "ar"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-27T08:56:06+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "ar"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-06T06:30:52+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "ar"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-27T09:08:04+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "ar"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T12:54:36+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "ar"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-27T09:16:57+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "ar"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-27T08:43:36+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "ar"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T10:31:55+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "ar"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:52:28+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "ar"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-06T06:22:10+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "ar"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-27T08:41:31+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "ar"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:23:39+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "ar"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-27T08:36:52+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "ar"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-06T06:23:58+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "ar"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-27T08:29:38+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "ar"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-27T08:18:51+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-06T06:27:22+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-27T10:45:53+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-06T06:28:49+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-27T10:16:01+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-06T06:26:28+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-27T10:50:01+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:27:34+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-27T10:20:37+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-06T06:27:47+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-27T10:10:44+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T10:11:56+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T10:11:22+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-27T10:30:08+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-27T10:34:05+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-27T10:22:08+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-27T10:24:24+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-27T10:38:35+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-27T10:25:30+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-27T10:35:12+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "ar"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-27T10:05:51+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "ar"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:20:21+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "ar"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-27T09:53:46+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "ar"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:19:47+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "ar"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-27T09:57:22+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "ar"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:20:41+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "ar"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-27T10:04:57+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "ar"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-27T09:47:52+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "ar"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-06T06:21:09+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "ar"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-27T09:38:43+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "ar"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-06T06:19:49+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "ar"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-27T09:33:41+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "ar"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-06T06:21:34+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "ar"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-27T09:45:30+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "ar"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-27T09:25:41+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "ar"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:14:08+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "ar"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-27T09:24:37+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "ar"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-27T09:18:14+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "ar"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:02:42+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "ar"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-27T08:15:59+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "ar"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:24:14+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "ar"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:14:41+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "ar"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:08:08+00:00",
+ "source_file": "README.md",
+ "language_code": "ar"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-27T08:16:42+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "ar"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-27T08:13:59+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "ar"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:30:25+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "ar"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:53:12+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "ar"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-27T08:42:23+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "ar"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:56:28+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "ar"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:52:12+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "ar"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-27T09:46:27+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "ar"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-27T09:17:48+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "ar"
+ }
+}
\ No newline at end of file
diff --git a/translations/ar/1-Introduction/01-defining-data-science/README.md b/translations/ar/1-Introduction/01-defining-data-science/README.md
index 30826de6..cad2cd7e 100644
--- a/translations/ar/1-Introduction/01-defining-data-science/README.md
+++ b/translations/ar/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# تعريف علم البيانات
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/ar/1-Introduction/01-defining-data-science/assignment.md b/translations/ar/1-Introduction/01-defining-data-science/assignment.md
index 7159c111..15dce8a2 100644
--- a/translations/ar/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/ar/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# المهمة: سيناريوهات علم البيانات
في هذه المهمة الأولى، نطلب منك التفكير في عملية أو مشكلة حقيقية في مجالات مختلفة، وكيف يمكنك تحسينها باستخدام عملية علم البيانات. فكر في النقاط التالية:
diff --git a/translations/ar/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/ar/1-Introduction/01-defining-data-science/solution/assignment.md
index 6ff2d7c3..61b37ca7 100644
--- a/translations/ar/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/ar/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# المهمة: سيناريوهات علم البيانات
في هذه المهمة الأولى، نطلب منك التفكير في عملية أو مشكلة حقيقية في مجالات مختلفة، وكيف يمكنك تحسينها باستخدام عملية علم البيانات. فكر في النقاط التالية:
diff --git a/translations/ar/1-Introduction/02-ethics/README.md b/translations/ar/1-Introduction/02-ethics/README.md
index 165bc74a..7d2ea4eb 100644
--- a/translations/ar/1-Introduction/02-ethics/README.md
+++ b/translations/ar/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# مقدمة إلى أخلاقيات البيانات
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/ar/1-Introduction/02-ethics/assignment.md b/translations/ar/1-Introduction/02-ethics/assignment.md
index 999e537e..136469b7 100644
--- a/translations/ar/1-Introduction/02-ethics/assignment.md
+++ b/translations/ar/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## كتابة دراسة حالة عن أخلاقيات البيانات
## التعليمات
diff --git a/translations/ar/1-Introduction/03-defining-data/README.md b/translations/ar/1-Introduction/03-defining-data/README.md
index 81430b39..aba7e093 100644
--- a/translations/ar/1-Introduction/03-defining-data/README.md
+++ b/translations/ar/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# تعريف البيانات
|](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/ar/1-Introduction/03-defining-data/assignment.md b/translations/ar/1-Introduction/03-defining-data/assignment.md
index 921f4792..1bf1933f 100644
--- a/translations/ar/1-Introduction/03-defining-data/assignment.md
+++ b/translations/ar/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# تصنيف مجموعات البيانات
## التعليمات
diff --git a/translations/ar/1-Introduction/04-stats-and-probability/README.md b/translations/ar/1-Introduction/04-stats-and-probability/README.md
index f06667bc..ebf996dc 100644
--- a/translations/ar/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/ar/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# مقدمة موجزة في الإحصاء والاحتمالات
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
يمكننا تمثيل العلاقة بين الوسيط والرباعيات في رسم بياني يُسمى **مخطط الصندوق**:
-
+
هنا نحسب أيضًا **النطاق بين الرباعيات** IQR=Q3-Q1، وما يُسمى **القيم المتطرفة** - وهي القيم التي تقع خارج الحدود [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/ar/1-Introduction/04-stats-and-probability/assignment.md b/translations/ar/1-Introduction/04-stats-and-probability/assignment.md
index 929659c0..92f6015b 100644
--- a/translations/ar/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/ar/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# دراسة صغيرة عن مرض السكري
في هذه المهمة، سنعمل مع مجموعة بيانات صغيرة لمرضى السكري مأخوذة من [هنا](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/ar/1-Introduction/README.md b/translations/ar/1-Introduction/README.md
index f5995c0f..403d97fd 100644
--- a/translations/ar/1-Introduction/README.md
+++ b/translations/ar/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# مقدمة في علم البيانات

diff --git a/translations/ar/2-Working-With-Data/05-relational-databases/README.md b/translations/ar/2-Working-With-Data/05-relational-databases/README.md
index 31c07d4e..0997176c 100644
--- a/translations/ar/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/ar/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# العمل مع البيانات: قواعد البيانات العلائقية
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/ar/2-Working-With-Data/05-relational-databases/assignment.md b/translations/ar/2-Working-With-Data/05-relational-databases/assignment.md
index f58f27c0..a3fc312e 100644
--- a/translations/ar/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/ar/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# عرض بيانات المطارات
تم تزويدك بـ [قاعدة بيانات](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) مبنية على [SQLite](https://sqlite.org/index.html) تحتوي على معلومات حول المطارات. يتم عرض المخطط أدناه. ستستخدم [امتداد SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) في [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) لعرض معلومات حول مطارات المدن المختلفة.
diff --git a/translations/ar/2-Working-With-Data/06-non-relational/README.md b/translations/ar/2-Working-With-Data/06-non-relational/README.md
index d532bec7..8025d24b 100644
--- a/translations/ar/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/ar/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# العمل مع البيانات: البيانات غير العلائقية
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/ar/2-Working-With-Data/06-non-relational/assignment.md b/translations/ar/2-Working-With-Data/06-non-relational/assignment.md
index fbf0f370..37d655c0 100644
--- a/translations/ar/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/ar/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# أرباح الصودا
## التعليمات
diff --git a/translations/ar/2-Working-With-Data/07-python/README.md b/translations/ar/2-Working-With-Data/07-python/README.md
index 65e271e0..3fea6a93 100644
--- a/translations/ar/2-Working-With-Data/07-python/README.md
+++ b/translations/ar/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# العمل مع البيانات: بايثون ومكتبة Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/ar/2-Working-With-Data/07-python/assignment.md b/translations/ar/2-Working-With-Data/07-python/assignment.md
index adc92ecb..54c6c153 100644
--- a/translations/ar/2-Working-With-Data/07-python/assignment.md
+++ b/translations/ar/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# واجب معالجة البيانات باستخدام بايثون
في هذا الواجب، سنطلب منك التوسع في الكود الذي بدأنا تطويره في تحدياتنا. يتكون الواجب من جزأين:
diff --git a/translations/ar/2-Working-With-Data/08-data-preparation/README.md b/translations/ar/2-Working-With-Data/08-data-preparation/README.md
index 9984d442..e30a26df 100644
--- a/translations/ar/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/ar/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# العمل مع البيانات: إعداد البيانات
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/ar/2-Working-With-Data/08-data-preparation/assignment.md b/translations/ar/2-Working-With-Data/08-data-preparation/assignment.md
index f59f6f36..82dd4337 100644
--- a/translations/ar/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/ar/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# تقييم البيانات من نموذج
قام أحد العملاء باختبار [نموذج صغير](../../../../2-Working-With-Data/08-data-preparation/index.html) لجمع بعض البيانات الأساسية عن قاعدة عملائهم. وقد أحضروا النتائج التي حصلوا عليها إليك للتحقق من صحة البيانات التي جمعوها. يمكنك فتح صفحة `index.html` في المتصفح لإلقاء نظرة على النموذج.
diff --git a/translations/ar/2-Working-With-Data/README.md b/translations/ar/2-Working-With-Data/README.md
index e011b566..e7169e1f 100644
--- a/translations/ar/2-Working-With-Data/README.md
+++ b/translations/ar/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# العمل مع البيانات

diff --git a/translations/ar/3-Data-Visualization/09-visualization-quantities/README.md b/translations/ar/3-Data-Visualization/09-visualization-quantities/README.md
index 25eb8350..6cdf4b11 100644
--- a/translations/ar/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/ar/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# تصور الكميات
|](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/ar/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/ar/3-Data-Visualization/09-visualization-quantities/assignment.md
index 65873bba..cb5532f3 100644
--- a/translations/ar/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/ar/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# الخطوط، التبعثر والأعمدة
## التعليمات
diff --git a/translations/ar/3-Data-Visualization/10-visualization-distributions/README.md b/translations/ar/3-Data-Visualization/10-visualization-distributions/README.md
index bcdd6c29..b20c7118 100644
--- a/translations/ar/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/ar/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# تصور التوزيعات
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ar/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/ar/3-Data-Visualization/10-visualization-distributions/assignment.md
index 9d68b68d..bd671fcd 100644
--- a/translations/ar/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/ar/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# طبق مهاراتك
## التعليمات
diff --git a/translations/ar/3-Data-Visualization/11-visualization-proportions/README.md b/translations/ar/3-Data-Visualization/11-visualization-proportions/README.md
index 8e61ff83..af83ef78 100644
--- a/translations/ar/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/ar/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# تصور النسب
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ar/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/ar/3-Data-Visualization/11-visualization-proportions/assignment.md
index 31a952f4..b7b4fd77 100644
--- a/translations/ar/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/ar/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# جربها في Excel
## التعليمات
diff --git a/translations/ar/3-Data-Visualization/12-visualization-relationships/README.md b/translations/ar/3-Data-Visualization/12-visualization-relationships/README.md
index 5d6ec48e..b3bf2d0d 100644
--- a/translations/ar/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/ar/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# تصور العلاقات: كل شيء عن العسل 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ar/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/ar/3-Data-Visualization/12-visualization-relationships/assignment.md
index 33117a38..b516a5ba 100644
--- a/translations/ar/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/ar/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# الغوص في خلية النحل
## التعليمات
diff --git a/translations/ar/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/ar/3-Data-Visualization/13-meaningful-visualizations/README.md
index 29e49b25..cf09c256 100644
--- a/translations/ar/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/ar/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# إنشاء تصورات ذات معنى
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ar/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/ar/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 8ad0e354..e9b9c19e 100644
--- a/translations/ar/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/ar/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# قم بإنشاء تصور مخصص خاص بك
## التعليمات
diff --git a/translations/ar/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/ar/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 27fcaa50..2db5de39 100644
--- a/translations/ar/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/ar/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# مشروع تصور البيانات Dangerous Liaisons
لبدء العمل، تحتاج إلى التأكد من أن NPM وNode يعملان على جهازك. قم بتثبيت التبعيات (npm install) ثم قم بتشغيل المشروع محليًا (npm run serve):
diff --git a/translations/ar/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/ar/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 6fe6c606..c0a4aca4 100644
--- a/translations/ar/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/ar/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# مشروع تصور البيانات Dangerous Liaisons
لبدء العمل، تحتاج إلى التأكد من أن NPM وNode يعملان على جهازك. قم بتثبيت التبعيات (npm install) ثم قم بتشغيل المشروع محليًا (npm run serve):
diff --git a/translations/ar/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/ar/3-Data-Visualization/R/09-visualization-quantities/README.md
index 716ddf79..d6c11777 100644
--- a/translations/ar/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/ar/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# تصور الكميات
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/ar/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/ar/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 4294a7dd..cb0450a4 100644
--- a/translations/ar/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/ar/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# الخطوط، التبعثر والأعمدة
## التعليمات
diff --git a/translations/ar/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/ar/3-Data-Visualization/R/10-visualization-distributions/README.md
index 1c26dde6..ea44455d 100644
--- a/translations/ar/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/ar/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# تصور التوزيعات
|](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ar/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/ar/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index d952f967..2eff4c1e 100644
--- a/translations/ar/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/ar/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# طبق مهاراتك
## التعليمات
diff --git a/translations/ar/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/ar/3-Data-Visualization/R/11-visualization-proportions/README.md
index 4ab4e4ea..6ca3bdbb 100644
--- a/translations/ar/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/ar/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# تصور النسب
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ar/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/ar/3-Data-Visualization/R/12-visualization-relationships/README.md
index 53e5a440..6b072007 100644
--- a/translations/ar/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/ar/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# تصور العلاقات: كل شيء عن العسل 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ar/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/ar/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 3389de46..156696f2 100644
--- a/translations/ar/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/ar/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# إنشاء تصورات ذات معنى
|](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ar/3-Data-Visualization/README.md b/translations/ar/3-Data-Visualization/README.md
index a3082ee4..4c0afa67 100644
--- a/translations/ar/3-Data-Visualization/README.md
+++ b/translations/ar/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# التصورات

diff --git a/translations/ar/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/ar/4-Data-Science-Lifecycle/14-Introduction/README.md
index a85df37b..36a383be 100644
--- a/translations/ar/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/ar/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# مقدمة في دورة حياة علم البيانات
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/ar/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/ar/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 9d871571..d5fc9459 100644
--- a/translations/ar/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/ar/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# تقييم مجموعة البيانات
تواصل مع فريقك عميل يطلب المساعدة في دراسة عادات الإنفاق الموسمية لعملاء سيارات الأجرة في مدينة نيويورك.
diff --git a/translations/ar/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/ar/4-Data-Science-Lifecycle/15-analyzing/README.md
index 79c5d0d6..8f73a621 100644
--- a/translations/ar/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/ar/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# دورة حياة علم البيانات: التحليل
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/ar/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/ar/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index b05cb42a..186ec081 100644
--- a/translations/ar/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/ar/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# البحث عن الإجابات
هذا استمرار لمهمة الدرس السابق [assignment](../14-Introduction/assignment.md)، حيث ألقينا نظرة سريعة على مجموعة البيانات. الآن سنقوم بإلقاء نظرة أعمق على البيانات.
diff --git a/translations/ar/4-Data-Science-Lifecycle/16-communication/README.md b/translations/ar/4-Data-Science-Lifecycle/16-communication/README.md
index 81e595b2..77167da5 100644
--- a/translations/ar/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/ar/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# دورة حياة علم البيانات: التواصل
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/ar/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/ar/4-Data-Science-Lifecycle/16-communication/assignment.md
index a75f74b1..b82399b5 100644
--- a/translations/ar/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/ar/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# احكِ قصة
## التعليمات
diff --git a/translations/ar/4-Data-Science-Lifecycle/README.md b/translations/ar/4-Data-Science-Lifecycle/README.md
index a3ae1d93..6108aa83 100644
--- a/translations/ar/4-Data-Science-Lifecycle/README.md
+++ b/translations/ar/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# دورة حياة علم البيانات

diff --git a/translations/ar/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/ar/5-Data-Science-In-Cloud/17-Introduction/README.md
index 525344ee..55547a36 100644
--- a/translations/ar/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/ar/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# مقدمة إلى علم البيانات في السحابة
|](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/ar/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/ar/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 1435e89a..80622ba5 100644
--- a/translations/ar/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/ar/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# أبحاث السوق
## التعليمات
diff --git a/translations/ar/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/ar/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 422483c7..2c8e89d5 100644
--- a/translations/ar/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/ar/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# علم البيانات في السحابة: الطريقة "قليلة الكود/بدون كود"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/ar/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/ar/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index bc0d02f4..e78e9a85 100644
--- a/translations/ar/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/ar/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# مشروع علوم البيانات باستخدام البرمجة منخفضة الكود/بدون كود على Azure ML
## التعليمات
diff --git a/translations/ar/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/ar/5-Data-Science-In-Cloud/19-Azure/README.md
index 68a9510d..73d7d4a0 100644
--- a/translations/ar/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/ar/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# علم البيانات في السحابة: طريقة "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/ar/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/ar/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 7da19c51..402d00bd 100644
--- a/translations/ar/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/ar/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# مشروع علم البيانات باستخدام Azure ML SDK
## التعليمات
diff --git a/translations/ar/5-Data-Science-In-Cloud/README.md b/translations/ar/5-Data-Science-In-Cloud/README.md
index f5b217e7..62ee0bc7 100644
--- a/translations/ar/5-Data-Science-In-Cloud/README.md
+++ b/translations/ar/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# علم البيانات في السحابة

diff --git a/translations/ar/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/ar/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 020000e1..f72df202 100644
--- a/translations/ar/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/ar/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# علم البيانات في العالم الحقيقي
| ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/ar/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/ar/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 56e9c168..a59b6a90 100644
--- a/translations/ar/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/ar/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# استكشاف مجموعة بيانات من الحاسوب الكوكبي
## التعليمات
diff --git a/translations/ar/6-Data-Science-In-Wild/README.md b/translations/ar/6-Data-Science-In-Wild/README.md
index 7ce3a57b..517c3fc8 100644
--- a/translations/ar/6-Data-Science-In-Wild/README.md
+++ b/translations/ar/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# علم البيانات في العالم الحقيقي
تطبيقات علم البيانات في مختلف الصناعات.
diff --git a/translations/ar/AGENTS.md b/translations/ar/AGENTS.md
index f2bb7bee..4e22421b 100644
--- a/translations/ar/AGENTS.md
+++ b/translations/ar/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## نظرة عامة على المشروع
diff --git a/translations/ar/CODE_OF_CONDUCT.md b/translations/ar/CODE_OF_CONDUCT.md
index befcc81d..d2d2993e 100644
--- a/translations/ar/CODE_OF_CONDUCT.md
+++ b/translations/ar/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# مدونة قواعد السلوك لمصادر مايكروسوفت المفتوحة
لقد تبنى هذا المشروع [مدونة قواعد السلوك لمصادر مايكروسوفت المفتوحة](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/ar/CONTRIBUTING.md b/translations/ar/CONTRIBUTING.md
index d52d1406..2e32af47 100644
--- a/translations/ar/CONTRIBUTING.md
+++ b/translations/ar/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# المساهمة في منهج علم البيانات للمبتدئين
شكرًا لاهتمامك بالمساهمة في منهج علم البيانات للمبتدئين! نحن نرحب بمساهمات المجتمع.
diff --git a/translations/ar/INSTALLATION.md b/translations/ar/INSTALLATION.md
index 8314b203..1efe8a5a 100644
--- a/translations/ar/INSTALLATION.md
+++ b/translations/ar/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# دليل التثبيت
هذا الدليل سيساعدك في إعداد بيئتك للعمل مع منهج "علم البيانات للمبتدئين".
diff --git a/translations/ar/README.md b/translations/ar/README.md
index 746fe5f7..605d5f21 100644
--- a/translations/ar/README.md
+++ b/translations/ar/README.md
@@ -1,205 +1,197 @@
-
# علم البيانات للمبتدئين - منهج دراسي
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
+[](http://makeapullrequest.com)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
-[](https://discord.gg/nTYy5BXMWG)
+[](https://discord.gg/nTYy5BXMWG)
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
-يسعد دعاة السحابة في Microsoft Azure أن يقدموا منهجًا دراسيًا لمدة 10 أسابيع و20 درسًا كله حول علم البيانات. يتضمن كل درس اختبارات قبل الدرس وبعده، وتعليمات مكتوبة لإكمال الدرس، وحل، ومهمة. تسمح لك منهجية التعلم القائمة على المشاريع بالتعلم أثناء البناء، وهي طريقة مثبتة لجعل المهارات الجديدة "تثبت".
+يسر فريق مدافعي السحابة في مايكروسوفت أن يقدم منهجًا دراسيًا لمدة 10 أسابيع و20 درسًا كليًا عن علم البيانات. يتضمن كل درس اختبارات قبل وبعد الدرس، تعليمات مكتوبة لإكمال الدرس، حل، ومهمة. تسمح طريقتنا التعليمية المبنية على المشاريع بالتعلم أثناء البناء، وهي طريقة مثبتة لترسيخ المهارات الجديدة.
-**شكرًا جزيلًا لمؤلفينا:** [Jasmine Greenaway](https://www.twitter.com/paladique)، [Dmitry Soshnikov](http://soshnikov.com)، [Nitya Narasimhan](https://twitter.com/nitya)، [Jalen McGee](https://twitter.com/JalenMcG)، [Jen Looper](https://twitter.com/jenlooper)، [Maud Levy](https://twitter.com/maudstweets)، [Tiffany Souterre](https://twitter.com/TiffanySouterre)، [Christopher Harrison](https://www.twitter.com/geektrainer).
+**شكراً جزيلاً لمؤلفينا:** [Jasmine Greenaway](https://www.twitter.com/paladique)، [Dmitry Soshnikov](http://soshnikov.com)، [Nitya Narasimhan](https://twitter.com/nitya)، [Jalen McGee](https://twitter.com/JalenMcG)، [Jen Looper](https://twitter.com/jenlooper)، [Maud Levy](https://twitter.com/maudstweets)، [Tiffany Souterre](https://twitter.com/TiffanySouterre)، [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 شكر خاص 🙏 لمؤلفينا، والمراجعين، والمساهمين في المحتوى من [سفراء الطلاب في Microsoft](https://studentambassadors.microsoft.com/)،** ولا سيما Aaryan Arora و[Aditya Garg](https://github.com/AdityaGarg00) و[Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/) و[Ankita Singh](https://www.linkedin.com/in/ankitasingh007) و[Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/) و[Arpita Das](https://www.linkedin.com/in/arpitadas01/) وChhailBihari Dubey و[Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor) و[Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb) و[Majd Safi](https://www.linkedin.com/in/majd-s/) و[Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/) و[Miguel Correa](https://www.linkedin.com/in/miguelmque/) و[Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119) و[Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum) و[Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/) و[Rohit Yadav](https://www.linkedin.com/in/rty2423) وSamridhi Sharma و[Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200) و[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/) و[Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/) وYogendrasingh Pawar و[Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/) و[Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
+**🙏 شكر خاص 🙏 لمؤلفينا، المراجعين، والمساهمين من سفراء الطلبة لمايكروسوفت [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/)،** بالأخص Aaryan Arora، [Aditya Garg](https://github.com/AdityaGarg00)، [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/)، [Ankita Singh](https://www.linkedin.com/in/ankitasingh007)، [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/)، [Arpita Das](https://www.linkedin.com/in/arpitadas01/)، ChhailBihari Dubey، [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor)، [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb)، [Majd Safi](https://www.linkedin.com/in/majd-s/)، [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/)، [Miguel Correa](https://www.linkedin.com/in/miguelmque/)، [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119)، [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum)، [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/)، [Rohit Yadav](https://www.linkedin.com/in/rty2423)، Samridhi Sharma، [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)،
+[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/)، [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/)، Yogendrasingh Pawar ، [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/)، [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| علم البيانات للمبتدئين - _مخطط مرئي بواسطة [@nitya](https://twitter.com/nitya)_ |
+| علم البيانات للمبتدئين - _ملاحظة مرسومة بواسطة [@nitya](https://twitter.com/nitya)_ |
### 🌐 دعم متعدد اللغات
-#### مدعوم عبر GitHub Action (آلي ودائم التحديث)
+#### مدعوم عبر GitHub Action (آلي ومحدث دائماً)
-[Arabic](./README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](./README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **هل تفضل النسخ محليًا؟**
+> **هل تفضل الاستنساخ محليًا؟**
-> يتضمن هذا المستودع أكثر من 50 ترجمة للغات مما يزيد بشكل كبير من حجم التنزيل. للنسخ دون الترجمات، استخدم فحص الانتقاء الضيق:
+> يحتوي هذا المستودع على ترجمات لأكثر من 50 لغة مما يزيد بشكل كبير من حجم التنزيل. للاستنساخ بدون الترجمات، استخدم الفحص الجزئي:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> هذا يمنحك كل ما تحتاجه لإكمال الدورة مع تنزيل أسرع بكثير.
+> يوفر لك هذا كل ما تحتاجه لإكمال الدورة بسرعة تنزيل أسرع بكثير.
-**إذا كنت ترغب في دعم لغات ترجمة إضافية، فهذه اللغات مدرجة [هنا](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**إذا كنت ترغب في دعم لغات ترجمة إضافية، فهي مدرجة [هنا](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### انضم إلى مجتمعنا
-[](https://discord.gg/nTYy5BXMWG)
+#### انضم إلى مجتمعنا
+[](https://discord.gg/nTYy5BXMWG)
-لدينا سلسلة تعلم عبر Discord مع AI جارية، تعرف أكثر وانضم إلينا في [سلسلة التعلم مع AI](https://aka.ms/learnwithai/discord) من 18 إلى 30 سبتمبر 2025. ستحصل على نصائح وحيل لاستخدام GitHub Copilot في علم البيانات.
+لدينا سلسلة تعلم على Discord عبر AI مستمرة، تعرف أكثر وانضم إلينا في [Learn with AI Series](https://aka.ms/learnwithai/discord) من 18 إلى 30 سبتمبر 2025. ستحصل على نصائح وحيل لاستخدام GitHub Copilot في علم البيانات.
-
+
# هل أنت طالب؟
ابدأ بالموارد التالية:
-- [صفحة مركز الطلاب](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) في هذه الصفحة، ستجد موارد للمبتدئين، وعلب الطالب، وحتى طرق للحصول على قسيمة شهادة مجانية. هذه صفحة ترغب في وضعها في المفضلة والتحقق منها من وقت لآخر حيث نغير المحتوى على الأقل شهريًا.
-- [سفراء الطلاب في Microsoft Learn](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) انضم إلى مجتمع عالمي من سفراء الطلاب، قد تكون هذه طريقتك لدخول Microsoft.
+- [صفحة مركز الطلاب](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) في هذه الصفحة، ستجد موارد للمبتدئين، حزماً للطلاب وحتى طرق للحصول على قسيمة شهادة مجانية. هذه صفحة ترغب في وضع إشارة مرجعية لها والتحقق منها من وقت لآخر حيث نقوم بتغيير المحتوى على الأقل شهريًا.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) انضم إلى مجتمع عالمي من سفراء الطلاب، قد تكون هذه طريقتك للدخول إلى مايكروسوفت.
# البدء
-## 📚 التوثيق
+## 📚 الوثائق
-- **[دليل التثبيت](INSTALLATION.md)** - تعليمات الإعداد خطوة بخطوة للمبتدئين
-- **[دليل الاستخدام](USAGE.md)** - أمثلة وسير عمل شائع
-- **[استكشاف الأخطاء وإصلاحها](TROUBLESHOOTING.md)** - حلول للمشاكل الشائعة
+- **[دليل التثبيت](INSTALLATION.md)** - إرشادات الإعداد خطوة بخطوة للمبتدئين
+- **[دليل الاستخدام](USAGE.md)** - أمثلة وطرق عمل شائعة
+- **[استكشاف الأخطاء وإصلاحها](TROUBLESHOOTING.md)** - حلول للمشكلات الشائعة
- **[دليل المساهمة](CONTRIBUTING.md)** - كيفية المساهمة في هذا المشروع
-- **[للمعلمين](for-teachers.md)** - إرشادات التدريس وموارد الفصول الدراسية
+- **[للمدرسين](for-teachers.md)** - إرشادات التدريس وموارد للصف الدراسي
## 👨🎓 للطلاب
-> **للمبتدئين تمامًا**: جديد في علم البيانات؟ ابدأ بأمثلتنا [الصديقة للمبتدئين](examples/README.md)! هذه الأمثلة البسيطة والمشروحة جيدًا ستساعدك على فهم الأساسيات قبل الغوص في المنهج الكامل.
-> **[الطلاب](https://aka.ms/student-page)**: لاستخدام هذا المنهج بمفردك، استنسخ المستودع بالكامل وأكمل التمارين بنفسك، بدءًا باختبار ما قبل المحاضرة. ثم اقرأ المحاضرة وأكمل بقية الأنشطة. حاول إنشاء المشاريع بفهم الدروس بدلاً من نسخ كود الحل؛ ومع ذلك، يتوفر ذلك الكود في مجلدات /solutions في كل درس موجه نحو المشروع. فكرة أخرى هي تشكيل مجموعة دراسية مع الأصدقاء ومراجعة المحتوى معًا. للدراسة الإضافية، نوصي بـ [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **مبتدئون تماماً**: جديد في علم البيانات؟ ابدأ بـ [أمثلتنا المناسبة للمبتدئين](examples/README.md)! هذه الأمثلة البسيطة والمشروحة جيدًا ستساعدك على فهم الأساسيات قبل الغوص في المنهج الكامل.
+> **[الطلاب](https://aka.ms/student-page)**: لاستخدام هذا المنهج بمفردك، قم بعمل fork للمستودع بالكامل وأكمل التمارين بنفسك، بدءًا من اختبار ما قبل المحاضرة. ثم اقرأ المحاضرة وأكمل بقية الأنشطة. حاول إنشاء المشاريع بفهم الدروس بدلاً من نسخ كود الحل؛ مع ذلك، هذا الكود متاح في مجلد /solutions في كل درس موجه نحو مشروع. فكرة أخرى هي تشكيل مجموعة دراسية مع أصدقائك والذهاب عبر المحتوى معًا. لمزيد من الدراسة، نوصي بـ [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**بدء سريع:**
1. تحقق من [دليل التثبيت](INSTALLATION.md) لإعداد بيئتك
-2. راجع [دليل الاستخدام](USAGE.md) لتتعلم كيفية العمل مع المنهج
-3. ابدأ بالدرس 1 وواصل العمل بالتتابع
-4. انضم إلى مجتمعنا على [Discord](https://aka.ms/ds4beginners/discord) للدعم
+2. راجع [دليل الاستخدام](USAGE.md) لتعلّم كيفية العمل مع المنهج
+3. ابدأ بالدرس 1 وواصل التتالي
+4. انضم إلى [مجتمعنا على ديسكورد](https://aka.ms/ds4beginners/discord) للدعم
-## 👩🏫 للمعلمين
-
-> **للمعلمين**: لقد أدرجنا [بعض الاقتراحات](for-teachers.md) حول كيفية استخدام هذا المنهج. نحب أن نحصل على ملاحظاتكم [في منتدى النقاش الخاص بنا](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## 👩🏫 للمدرسين
+> **للمدرسين**: لقد أدرجنا [بعض الاقتراحات](for-teachers.md) حول كيفية استخدام هذا المنهج. نحب أن نحصل على ملاحظاتكم [في منتدى النقاش](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## تعرف على الفريق
+
[](https://youtu.be/8mzavjQSMM4 "فيديو ترويجي")
-**الصورة المتحركة من** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+**صنع بواسطة** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 انقر على الصورة أعلاه لمشاهدة فيديو حول المشروع والأشخاص الذين أنشأوه!
+> 🎥 انقر على الصورة أعلاه لمشاهدة فيديو عن المشروع والأشخاص الذين أنشأوه!
## المنهجية التعليمية
-لقد اخترنا مبدأين تعليميين أثناء بناء هذا المنهج الدراسي: التأكد من أنه قائم على المشاريع وأنه يشمل اختبارات متكررة. بنهاية هذه السلسلة، سيكون الطلاب قد تعلموا المبادئ الأساسية لعلوم البيانات، بما في ذلك المفاهيم الأخلاقية، وتحضير البيانات، وطرق مختلفة للعمل مع البيانات، وتصوير البيانات، وتحليل البيانات، وحالات استخدام علوم البيانات في العالم الحقيقي، وأكثر من ذلك.
+لقد اخترنا مبدأين تربويين أثناء بناء هذا المنهج: التأكد من أنه قائم على المشاريع وأنه يشتمل على اختبارات متكررة. بنهاية هذه السلسلة، سيكون الطلاب قد تعلموا المبادئ الأساسية لعلوم البيانات، بما في ذلك المفاهيم الأخلاقية، تجهيز البيانات، طرق مختلفة للعمل مع البيانات، تصور البيانات، تحليل البيانات، حالات استخدام فعلية لعلوم البيانات، وأكثر.
-بالإضافة إلى ذلك، يحدد اختبار خفيف قبل الدرس هدف الطالب تجاه تعلم موضوع ما، بينما يضمن اختبار ثاني بعد الدرس مزيدًا من الاحتفاظ بالمعلومات. صُمم هذا المنهج ليكون مرنًا وممتعًا ويمكن أخذه بالكامل أو جزئيًا. تبدأ المشاريع صغيرة وتصبح أكثر تعقيدًا بنهاية دورة العشرة أسابيع.
+بالإضافة إلى ذلك، تهيئة الاختبار الخفيف قبل الصف توجه نية الطالب نحو تعلم موضوع معين، في حين أن اختبارًا ثانيًا بعد الصف يضمن الاحتفاظ بالمعلومات بشكل أفضل. تم تصميم هذا المنهج ليكون مرنًا وممتعًا ويمكن أخذه كاملاً أو جزئيًا. تبدأ المشاريع صغيرة وتزداد تعقيدًا مع انتهاء دورة العشرة أسابيع.
-> يمكنك العثور على [ميثاق السلوك](CODE_OF_CONDUCT.md)، وإرشادات [المساهمة](CONTRIBUTING.md)، و[الترجمة](TRANSLATIONS.md). نرحب بملاحظاتك البناءة!
+> اطلع على [قواعد السلوك](CODE_OF_CONDUCT.md)، و[المساهمة](CONTRIBUTING.md)، و[إرشادات الترجمة](TRANSLATIONS.md). نحن نرحب بتعليقاتك البناءة!
-## يتضمن كل درس:
+## تتضمن كل درس:
-- ملاحظات مرسومة اختيارية
-- فيديو داعم اختياري
-- اختبار تحضير قبل الدرس
-- الدرس المكتوب
-- للدروس القائمة على المشاريع، أدلة خطوة بخطوة لبناء المشروع
-- فحوصات المعرفة
+- ملاحظات تخطيطية اختيارية
+- فيديو إضافي اختياري
+- اختبار تهيئة قبل الدرس
+- درس مكتوب
+- دروس خطوة بخطوة لبناء المشروع للدرسان القائمة على المشروع
+- فحوصات معرفية
- تحدي
-- قراءة داعمة
+- قراءات إضافية
- مهمة
- [اختبار ما بعد الدرس](https://ff-quizzes.netlify.app/en/)
-> **ملاحظة حول الاختبارات**: جميع الاختبارات موجودة في مجلد Quiz-App، بإجمالي 40 اختبارًا، كل منها يتضمن ثلاثة أسئلة. يتم الربط من داخل الدروس، لكن يمكن تشغيل تطبيق الاختبار محليًا أو نشره على Azure؛ اتبع التعليمات في مجلد `quiz-app`. يتم توطينها تدريجيًا.
+> **ملاحظة بشأن الاختبارات**: جميع الاختبارات موجودة في مجلد Quiz-App، بمجموع 40 اختبارًا يحتوي كل منها على ثلاث أسئلة. وهي مرتبطة داخل الدروس، لكن يمكن تشغيل تطبيق الاختبارات محليًا أو نشره على أزور؛ اتبع التعليمات داخل مجلد `quiz-app`. جاري تعريبها تدريجيًا.
## 🎓 أمثلة مناسبة للمبتدئين
-**جديد في علوم البيانات؟** أنشأنا مجلد [أمثلة](examples/README.md) خاص يحتوي على رمز بسيط مع تعليقات جيدة لمساعدتك على البدء:
+**هل أنت جديد في علوم البيانات؟** لقد أنشأنا مجلد [أمثلة](examples/README.md) خاصًا يحتوي على كود بسيط ومعلق جيدًا لمساعدتك على البدء:
-- 🌟 **مرحبًا بالعالم** - برنامجك الأول في علوم البيانات
-- 📂 **تحميل البيانات** - تعلّم كيفية قراءة واستكشاف مجموعات البيانات
-- 📊 **تحليل بسيط** - حساب الإحصائيات والعثور على الأنماط
-- 📈 **تصوير أساسي** - إنشاء المخططات والرسوم البيانية
-- 🔬 **مشروع من العالم الحقيقي** - سير عمل مكتمل من البداية للنهاية
+- 🌟 **مرحبًا بالعالم** - أول برنامج علوم بيانات لك
+- 📂 **تحميل البيانات** - تعلم قراءة واستكشاف مجموعات البيانات
+- 📊 **تحليل بسيط** - حساب الإحصاءات والعثور على الأنماط
+- 📈 **تصوير أساسي** - إنشاء مخططات ورسوم بيانية
+- 🔬 **مشروع حقيقي** - سير عمل كامل من البداية للنهاية
-يحتوي كل مثال على تعليقات مفصلة تشرح كل خطوة، مما يجعله مثاليًا للمبتدئين تمامًا!
+تتضمن كل مثال تعليقات مفصلة تشرح كل خطوة، مما يجعله مثاليًا للمبتدئين تمامًا!
👉 **[ابدأ بالأمثلة](examples/README.md)** 👈
## الدروس
-||
+||
|:---:|
-|علوم البيانات للمبتدئين: خارطة طريق - _ملاحظات مرسومة بواسطة [@nitya](https://twitter.com/nitya)_|
-
-
-| رقم الدرس | الموضوع | مجموعة الدروس | أهداف التعلم | الدرس المرتبط | المؤلف |
-| :-------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | تعريف علوم البيانات | [مقدمة](1-Introduction/README.md) | تعلّم المفاهيم الأساسية وراء علوم البيانات وكيف ترتبط بالذكاء الاصطناعي، وتعلم الآلة، والبيانات الضخمة. | [الدرس](1-Introduction/01-defining-data-science/README.md) [فيديو](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | أخلاقيات علوم البيانات | [مقدمة](1-Introduction/README.md) | مفاهيم التحديات والأُطُر الأخلاقية للبيانات. | [الدرس](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | تعريف البيانات | [مقدمة](1-Introduction/README.md) | كيف يتم تصنيف البيانات ومصادرها الشائعة. | [الدرس](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | مقدمة في الإحصاء والاحتمالات | [مقدمة](1-Introduction/README.md) | التقنيات الرياضية للاحتمالات والإحصاء لفهم البيانات. | [الدرس](1-Introduction/04-stats-and-probability/README.md) [فيديو](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | العمل مع البيانات العلائقية | [العمل مع البيانات](2-Working-With-Data/README.md) | مقدمة للبيانات العلائقية وأساسيات استكشاف وتحليل البيانات العلائقية باستخدام لغة الاستعلام الهيكلية، المعروفة أيضًا بـ SQL (تُنطق "سي-كويل"). | [الدرس](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | العمل مع بيانات NoSQL | [العمل مع البيانات](2-Working-With-Data/README.md) | مقدمة للبيانات غير العلائقية وأنواعها المختلفة وأساسيات استكشاف وتحليل قواعد بيانات الوثائق. | [الدرس](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | العمل مع بايثون | [العمل مع البيانات](2-Working-With-Data/README.md) | أساسيات استخدام بايثون لاستكشاف البيانات باستخدام مكتبات مثل Pandas. يوصى بفهم أساسي لبرمجة بايثون. | [الدرس](2-Working-With-Data/07-python/README.md) [فيديو](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | تحضير البيانات | [العمل مع البيانات](2-Working-With-Data/README.md) | مواضيع حول تقنيات تنظيف وتحويل البيانات للتعامل مع تحديات البيانات المفقودة أو غير الدقيقة أو غير المكتملة. | [الدرس](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | تصور الكميات | [تصوير البيانات](3-Data-Visualization/README.md) | تعلّم كيفية استخدام Matplotlib لتصوير بيانات الطيور 🦆 | [الدرس](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | تصوير توزيع البيانات | [تصوير البيانات](3-Data-Visualization/README.md) | تصوير الملاحظات والاتجاهات ضمن فاصل زمني. | [الدرس](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | تصوير النسب | [تصوير البيانات](3-Data-Visualization/README.md) | تصوير النسب المئوية المتقطعة والمجمعة. | [الدرس](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | تصوير العلاقات | [تصوير البيانات](3-Data-Visualization/README.md) | تصوير الاتصالات والارتباطات بين مجموعات البيانات ومتغيراتها. | [الدرس](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | التصويرات ذات المعنى | [تصوير البيانات](3-Data-Visualization/README.md) | تقنيات وإرشادات لجعل تصوراتك ذات قيمة لحل المشكلات الفعّال واستخلاص الأفكار. | [الدرس](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | مقدمة لدورة حياة علوم البيانات | [دورة الحياة](4-Data-Science-Lifecycle/README.md) | مقدمة لدورة حياة علوم البيانات وخطوتها الأولى لجمع واستخلاص البيانات. | [الدرس](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | التحليل | [دورة الحياة](4-Data-Science-Lifecycle/README.md) | يركّز هذا المرحلة من دورة حياة علوم البيانات على تقنيات تحليل البيانات. | [الدرس](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | التواصل | [دورة الحياة](4-Data-Science-Lifecycle/README.md) | يركّز هذا المرحلة من دورة حياة علوم البيانات على تقديم النتائج من البيانات بطريقة تسهل على صانعي القرار فهمها. | [الدرس](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | علوم البيانات في السحابة | [بيانات السحابة](5-Data-Science-In-Cloud/README.md) | هذه السلسلة من الدروس تقدم علوم البيانات في السحابة وفوائدها. | [الدرس](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
-| 18 | علوم البيانات في السحابة | [بيانات السحابة](5-Data-Science-In-Cloud/README.md) | تدريب النماذج باستخدام أدوات Low Code. |[الدرس](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
-| 19 | علوم البيانات في السحابة | [بيانات السحابة](5-Data-Science-In-Cloud/README.md) | نشر النماذج باستخدام Azure Machine Learning Studio. | [الدرس](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) و [Maud](https://twitter.com/maudstweets) |
-| 20 | علوم البيانات في الواقع | [في الواقع](6-Data-Science-In-Wild/README.md) | مشاريع مدفوعة بعلوم البيانات في العالم الحقيقي. | [الدرس](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| علوم البيانات للمبتدئين: خارطة طريق - _ملاحظات تخطيطية بواسطة [@nitya](https://twitter.com/nitya)_ |
+
+
+| رقم الدرس | الموضوع | مجموعة الدرس | أهداف التعلم | الدرس المرتبط | المؤلف |
+| :-------: | :------------------------------------------: | :--------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------: | :----: |
+| 01 | تعريف علوم البيانات | [المقدمة](1-Introduction/README.md) | تعلم المفاهيم الأساسية خلف علوم البيانات وكيفية ارتباطها بالذكاء الاصطناعي، التعلم الآلي، والبيانات الكبيرة. | [درس](1-Introduction/01-defining-data-science/README.md) [فيديو](https://youtu.be/beZ7Mb_oz9I) | [دميتري](http://soshnikov.com) |
+| 02 | أخلاقيات علوم البيانات | [المقدمة](1-Introduction/README.md) | مفاهيم تحديات وأُطُر أخلاقيات البيانات. | [درس](1-Introduction/02-ethics/README.md) | [نيتيا](https://twitter.com/nitya) |
+| 03 | تعريف البيانات | [المقدمة](1-Introduction/README.md) | كيفية تصنيف البيانات ومصادرها الشائعة. | [درس](1-Introduction/03-defining-data/README.md) | [ياسمين](https://www.twitter.com/paladique) |
+| 04 | مقدمة في الإحصاء والاحتمالات | [المقدمة](1-Introduction/README.md) | التقنيات الرياضية في الاحتمالات والإحصاء لفهم البيانات. | [درس](1-Introduction/04-stats-and-probability/README.md) [فيديو](https://youtu.be/Z5Zy85g4Yjw) | [دميتري](http://soshnikov.com) |
+| 05 | العمل مع البيانات العلائقية | [العمل مع البيانات](2-Working-With-Data/README.md) | مقدمة للبيانات العلائقية وأساسيات استكشاف البيانات العلائقية وتحليلها باستخدام لغة الاستعلام الهيكلية، المعروفة أيضًا بـ SQL (تُلفظ "سي كويل"). | [درس](2-Working-With-Data/05-relational-databases/README.md) | [كريستوفر](https://www.twitter.com/geektrainer) | | |
+| 06 | العمل مع بيانات NoSQL | [العمل مع البيانات](2-Working-With-Data/README.md) | مقدمة للبيانات غير العلائقية وأنواعها المختلفة وأساسيات استكشاف وتحليل قواعد البيانات المستندية. | [درس](2-Working-With-Data/06-non-relational/README.md) | [ياسمين](https://twitter.com/paladique)|
+| 07 | العمل مع بايثون | [العمل مع البيانات](2-Working-With-Data/README.md) | أساسيات استخدام بايثون لاستكشاف البيانات مع مكتبات مثل Pandas. يُنصح بفهم أساسي لبرمجة بايثون. | [درس](2-Working-With-Data/07-python/README.md) [فيديو](https://youtu.be/dZjWOGbsN4Y) | [دميتري](http://soshnikov.com) |
+| 08 | تجهيز البيانات | [العمل مع البيانات](2-Working-With-Data/README.md) | موضوعات حول تقنيات تنظيف وتحويل البيانات للتعامل مع تحديات البيانات المفقودة، غير الدقيقة، أو غير المكتملة. | [درس](2-Working-With-Data/08-data-preparation/README.md) | [ياسمين](https://www.twitter.com/paladique) |
+| 09 | تصور الكميات | [تصوير البيانات](3-Data-Visualization/README.md) | تعلم كيفية استخدام Matplotlib لتصور بيانات الطيور 🦆 | [درس](3-Data-Visualization/09-visualization-quantities/README.md) | [جين](https://twitter.com/jenlooper) |
+| 10 | تصور توزيعات البيانات | [تصوير البيانات](3-Data-Visualization/README.md) | تصور الملاحظات والاتجاهات داخل فترة زمنية. | [درس](3-Data-Visualization/10-visualization-distributions/README.md) | [جين](https://twitter.com/jenlooper) |
+| 11 | تصور النسب | [تصوير البيانات](3-Data-Visualization/README.md) | تصور النسب المئوية المتقطعة والمجمعة. | [درس](3-Data-Visualization/11-visualization-proportions/README.md) | [جين](https://twitter.com/jenlooper) |
+| 12 | تصور العلاقات | [تصوير البيانات](3-Data-Visualization/README.md) | تصور الاتصالات والارتباطات بين مجموعات البيانات والمتغيرات الخاصة بها. | [درس](3-Data-Visualization/12-visualization-relationships/README.md) | [جين](https://twitter.com/jenlooper) |
+| 13 | تصورات ذات معنى | [تصوير البيانات](3-Data-Visualization/README.md) | تقنيات وإرشادات لجعل تصوراتك ذات قيمة لحل المشكلات بشكل فعال والحصول على رؤى. | [درس](3-Data-Visualization/13-meaningful-visualizations/README.md) | [جين](https://twitter.com/jenlooper) |
+| 14 | مقدمة لدورة حياة علوم البيانات | [دورة الحياة](4-Data-Science-Lifecycle/README.md) | مقدمة لدورة حياة علوم البيانات وخطوتها الأولى لاكتساب واستخراج البيانات. | [درس](4-Data-Science-Lifecycle/14-Introduction/README.md) | [ياسمين](https://twitter.com/paladique) |
+| 15 | التحليل | [دورة الحياة](4-Data-Science-Lifecycle/README.md) | هذه المرحلة من دورة علوم البيانات تركز على تقنيات تحليل البيانات. | [درس](4-Data-Science-Lifecycle/15-analyzing/README.md) | [ياسمين](https://twitter.com/paladique) | | |
+| 16 | التواصل | [دورة الحياة](4-Data-Science-Lifecycle/README.md) | هذه المرحلة من دورة علوم البيانات تركز على تقديم الرؤى المستخلصة من البيانات بطريقة تسهل على متخذي القرار فهمها. | [درس](4-Data-Science-Lifecycle/16-communication/README.md) | [جالن](https://twitter.com/JalenMcG) | | |
+| 17 | علوم البيانات في السحابة | [بيانات السحابة](5-Data-Science-In-Cloud/README.md) | سلسلة دروس تعرفك على علوم البيانات في السحابة وفوائدها. | [درس](5-Data-Science-In-Cloud/17-Introduction/README.md) | [تيفاني](https://twitter.com/TiffanySouterre) و [مود](https://twitter.com/maudstweets) |
+| 18 | علوم البيانات في السحابة | [بيانات السحابة](5-Data-Science-In-Cloud/README.md) | تدريب النماذج باستخدام أدوات قليلة الأكواد. |[درس](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [تيفاني](https://twitter.com/TiffanySouterre) و [مود](https://twitter.com/maudstweets) |
+| 19 | علوم البيانات في السحابة | [بيانات السحابة](5-Data-Science-In-Cloud/README.md) | نشر النماذج باستخدام Azure Machine Learning Studio. | [درس](5-Data-Science-In-Cloud/19-Azure/README.md)| [تيفاني](https://twitter.com/TiffanySouterre) و [مود](https://twitter.com/maudstweets) |
+| 20 | علوم البيانات في العالم الواقعي | [في العالم الواقعي](6-Data-Science-In-Wild/README.md) | مشاريع معتمدة على علوم البيانات في الواقع الحقيقي. | [درس](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [نيتيا](https://twitter.com/nitya) |
## GitHub Codespaces
-اتبع هذه الخطوات لفتح هذا النموذج في Codespace:
-1. انقر على قائمة Code المنسدلة واختر خيار Open with Codespaces.
+اتبع الخطوات التالية لفتح هذا المثال في Codespace:
+1. انقر على قائمة السهم المنسدل لكود واختر خيار Open with Codespaces.
2. اختر + New codespace في أسفل اللوحة.
-لمزيد من المعلومات، اطلع على [توثيق GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+لمزيد من المعلومات، راجع [توثيق GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-اتبع هذه الخطوات لفتح هذا المستودع في حاوية باستخدام جهازك المحلي وVSCode باستخدام امتداد VS Code Remote - Containers:
+اتبع هذه الخطوات لفتح هذا المستودع داخل حاوية باستخدام جهازك المحلي وVSCode باستخدام امتداد Remote - Containers:
-1. إذا كانت هذه المرة الأولى التي تستخدم فيها حاوية تطوير، يرجى التأكد من أن النظام يلبي المتطلبات المسبقة (أي تثبيت Docker) في [توثيق البدء](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. إذا كانت هذه هي المرة الأولى لاستخدام حاوية التطوير، يرجى التأكد من أن النظام يلبي المتطلبات المسبقة (مثل تثبيت Docker) في [توثيق البدء السريع](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-لاستخدام هذا المستودع، يمكنك فتحه في حجم Docker معزول:
+لاستخدام هذا المستودع، يمكنك فتحه إما في حجم Docker معزول:
-**ملاحظة**: تحت الغطاء، سيستخدم هذا الأمر Remote-Containers: **Clone Repository in Container Volume...** لاستنساخ شفرة المصدر في حجم Docker بدلاً من نظام الملفات المحلي. [الأحجام](https://docs.docker.com/storage/volumes/) هي الآلية المفضلة للحفاظ على بيانات الحاوية.
+**ملاحظة**: من الناحية التقنية، سيتم استخدام أمر Remote-Containers: **Clone Repository in Container Volume...** لاستنساخ كود المصدر داخل حجم Docker بدلاً من نظام الملفات المحلي. [الأحجام](https://docs.docker.com/storage/volumes/) هي الآلية المفضلة للحفاظ على بيانات الحاوية.
-أو افتح نسخة مستنسخة محليًا أو محملة من المستودع:
+أو فتح نسخة مستنسخة أو محملة من المستودع محليًا:
-- استنساخ هذا المستودع إلى نظام الملفات المحلي لديك.
+- استنسخ هذا المستودع إلى نظام الملفات المحلي.
- اضغط F1 واختر أمر **Remote-Containers: Open Folder in Container...**.
-- اختر النسخة المستنسخة من هذا المجلد، انتظر بدء الحاوية، وجرب الأمور.
+- اختر النسخة المستنسخة من هذا المجلد، انتظر بدء الحاوية، وجرب العمل.
## الوصول دون اتصال
-يمكنك تشغيل هذا التوثيق دون اتصال باستخدام [Docsify](https://docsify.js.org/#/). قم بعمل فورك لهذا المستودع، [تثبيت Docsify](https://docsify.js.org/#/quickstart) على جهازك المحلي، ثم في المجلد الجذري لهذا المستودع، اكتب `docsify serve`. سيتم تقديم الموقع على المنفذ 3000 على المضيف المحلي الخاص بك: `localhost:3000`.
+يمكنك تشغيل هذا التوثيق دون اتصال باستخدام [Docsify](https://docsify.js.org/#/). قم بعمل فورك لهذا المستودع، [ثبّت Docsify](https://docsify.js.org/#/quickstart) على جهازك المحلي، ثم في مجلد الجذر لهذا المستودع، اكتب `docsify serve`. سيتم تقديم الموقع على المنفذ 3000 في جهازك المحلي: `localhost:3000`.
-> ملاحظة، لن يتم عرض دفاتر الملاحظات عبر Docsify، لذا عند الحاجة لتشغيل دفتر ملاحظات، قم بذلك بشكل منفصل في VS Code باستخدام نواة بايثون.
+> ملاحظة، دفاتر الملاحظات لن تعرض عبر Docsify، لذلك عند الحاجة لتشغيل دفتر ملاحظات، قم بذلك بشكل منفصل في VS Code باستخدام نواة بايثون.
## مناهج أخرى
-ينتج فريقنا مناهج دراسية أخرى! اطلع على:
+يقوم فريقنا بإنتاج مناهج أخرى! اطلع على:
### LangChain
@@ -210,7 +202,7 @@ CO_OP_TRANSLATOR_METADATA:
### أزور / إيدج / MCP / الوكلاء
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
@@ -219,8 +211,8 @@ CO_OP_TRANSLATOR_METADATA:
### سلسلة الذكاء الاصطناعي التوليدي
[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
@@ -231,31 +223,31 @@ CO_OP_TRANSLATOR_METADATA:
[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-### سلسلة كوبايلوت
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+### سلسلة كوبيلوت
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## الحصول على المساعدة
-**تواجه مشاكل؟** تحقق من [دليل استكشاف الأخطاء وإصلاحها](TROUBLESHOOTING.md) لحلول المشكلات الشائعة.
+**تواجه مشاكل؟** تفقد دليل [استكشاف الأخطاء وإصلاحها](TROUBLESHOOTING.md) لحلول المشاكل الشائعة.
-إذا واجهت صعوبة أو كان لديك أي أسئلة حول بناء تطبيقات الذكاء الاصطناعي. انضم إلى المتعلمين الآخرين والمطورين ذوي الخبرة في مناقشات حول MCP. إنها مجتمع داعم حيث تُرحب بالأسئلة ويُشارك المعرفة بحرية.
+إذا علقت أو كانت لديك أي أسئلة حول بناء تطبيقات الذكاء الاصطناعي. انضم إلى زملائك المتعلمين والمطورين ذوي الخبرة في مناقشات حول MCP. إنها مجتمع داعم حيث تُرحب الأسئلة ويتم تبادل المعرفة بحرية.
-[](https://discord.gg/nTYy5BXMWG)
+[](https://discord.gg/nTYy5BXMWG)
-إذا كان لديك ملاحظات على المنتج أو أخطاء أثناء البناء، قم بزيارة:
+إذا كان لديك ملاحظات على المنتج أو أخطاء أثناء البناء قم بزيارة:
[](https://aka.ms/foundry/forum)
---
-**إخلاء المسؤولية**:
-تمت ترجمة هذا المستند باستخدام خدمة الترجمة الآلية [Co-op Translator](https://github.com/Azure/co-op-translator). بينما نسعى لتحقيق الدقة، يرجى العلم أن الترجمات الآلية قد تحتوي على أخطاء أو عدم دقة. يجب اعتبار المستند الأصلي بلغته الأصلية المصدر المعتمد. بالنسبة للمعلومات الحساسة، يُنصح بالاعتماد على ترجمة بشرية محترفة. نحن غير مسؤولين عن أي سوء فهم أو تفسير ناتج عن استخدام هذه الترجمة.
+**إخلاء مسؤولية**:
+تمت ترجمة هذا المستند باستخدام خدمة الترجمة الآلية [Co-op Translator](https://github.com/Azure/co-op-translator). بينما نسعى لتحقيق الدقة، يرجى العلم أن الترجمات الآلية قد تحتوي على أخطاء أو عدم دقة. يجب اعتبار المستند الأصلي بلغته الأصلية المصدر الرسمي والمعتمد. للمعلومات الهامة، يُنصح بالاستعانة بترجمة بشرية محترفة. نحن غير مسؤولين عن أي سوء فهم أو تفسير ناتج عن استخدام هذه الترجمة.
\ No newline at end of file
diff --git a/translations/ar/SECURITY.md b/translations/ar/SECURITY.md
index 4fdfc0ef..184e56d5 100644
--- a/translations/ar/SECURITY.md
+++ b/translations/ar/SECURITY.md
@@ -1,12 +1,3 @@
-
## الأمن
تأخذ Microsoft أمن منتجاتها وخدماتها البرمجية على محمل الجد، بما في ذلك جميع مستودعات التعليمات البرمجية المصدرية التي تُدار من خلال منظماتنا على GitHub، والتي تشمل [Microsoft](https://github.com/Microsoft)، [Azure](https://github.com/Azure)، [DotNet](https://github.com/dotnet)، [AspNet](https://github.com/aspnet)، [Xamarin](https://github.com/xamarin)، و[منظماتنا على GitHub](https://opensource.microsoft.com/).
diff --git a/translations/ar/SUPPORT.md b/translations/ar/SUPPORT.md
index 0cf23570..741ee765 100644
--- a/translations/ar/SUPPORT.md
+++ b/translations/ar/SUPPORT.md
@@ -1,12 +1,3 @@
-
# الدعم
## كيفية تقديم المشاكل والحصول على المساعدة
diff --git a/translations/ar/TROUBLESHOOTING.md b/translations/ar/TROUBLESHOOTING.md
index b2bcdc1d..a2624a22 100644
--- a/translations/ar/TROUBLESHOOTING.md
+++ b/translations/ar/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# دليل استكشاف الأخطاء وإصلاحها
يوفر هذا الدليل حلولًا للمشكلات الشائعة التي قد تواجهها أثناء العمل مع منهج "علم البيانات للمبتدئين".
diff --git a/translations/ar/USAGE.md b/translations/ar/USAGE.md
index 48e22ee0..fdad00b7 100644
--- a/translations/ar/USAGE.md
+++ b/translations/ar/USAGE.md
@@ -1,12 +1,3 @@
-
# دليل الاستخدام
يوفر هذا الدليل أمثلة ومسارات عمل شائعة لاستخدام منهج "علم البيانات للمبتدئين".
diff --git a/translations/ar/docs/_sidebar.md b/translations/ar/docs/_sidebar.md
index ece15349..14726b91 100644
--- a/translations/ar/docs/_sidebar.md
+++ b/translations/ar/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- المقدمة
- [تعريف علم البيانات](../1-Introduction/01-defining-data-science/README.md)
- [أخلاقيات علم البيانات](../1-Introduction/02-ethics/README.md)
diff --git a/translations/ar/examples/README.md b/translations/ar/examples/README.md
index 40cdb656..db64f6e9 100644
--- a/translations/ar/examples/README.md
+++ b/translations/ar/examples/README.md
@@ -1,12 +1,3 @@
-
# أمثلة سهلة للمبتدئين في علم البيانات
مرحبًا بك في دليل الأمثلة! تم تصميم هذه المجموعة من الأمثلة البسيطة والمشروحة بشكل جيد لمساعدتك على البدء في علم البيانات، حتى لو كنت مبتدئًا تمامًا.
diff --git a/translations/ar/for-teachers.md b/translations/ar/for-teachers.md
index 52bc0c59..76552b51 100644
--- a/translations/ar/for-teachers.md
+++ b/translations/ar/for-teachers.md
@@ -1,12 +1,3 @@
-
## للمعلمين
هل ترغب في استخدام هذا المنهج في صفك الدراسي؟ لا تتردد!
diff --git a/translations/ar/quiz-app/README.md b/translations/ar/quiz-app/README.md
index dda599f1..b2283c29 100644
--- a/translations/ar/quiz-app/README.md
+++ b/translations/ar/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# الاختبارات
هذه الاختبارات هي اختبارات ما قبل وبعد المحاضرات لمنهج علم البيانات على الرابط https://aka.ms/datascience-beginners
diff --git a/translations/ar/sketchnotes/README.md b/translations/ar/sketchnotes/README.md
index d9d99808..bc395ac0 100644
--- a/translations/ar/sketchnotes/README.md
+++ b/translations/ar/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
اعثر على جميع الرسومات التخطيطية هنا!
## الشكر والتقدير
diff --git a/translations/bg/.co-op-translator.json b/translations/bg/.co-op-translator.json
new file mode 100644
index 00000000..af4d8a37
--- /dev/null
+++ b/translations/bg/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:07:38+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-26T15:25:37+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-26T15:27:07+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:59:02+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-26T15:17:42+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T18:51:20+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-26T15:32:01+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T14:09:47+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-26T15:43:08+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "bg"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-26T15:00:13+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "bg"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T12:12:07+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "bg"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:58:21+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "bg"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T18:39:01+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "bg"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-26T14:58:13+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "bg"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:59:51+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "bg"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-26T14:52:09+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "bg"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T18:41:23+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "bg"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-26T14:42:03+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "bg"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-26T14:28:05+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T18:45:22+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-26T17:27:18+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T18:47:13+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-26T16:53:10+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T18:44:49+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-26T17:31:19+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:47:22+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-26T16:57:59+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T18:45:57+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-26T16:47:33+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T16:48:52+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T16:48:13+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-26T17:12:23+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-26T17:14:05+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-26T17:01:26+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-26T17:02:36+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-26T17:21:36+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-26T17:05:57+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-26T17:17:44+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "bg"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-26T16:42:16+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "bg"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:38:07+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "bg"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-26T16:28:33+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "bg"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:37:20+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "bg"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-26T16:32:14+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "bg"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:38:37+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "bg"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-26T16:40:34+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "bg"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-26T16:21:14+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "bg"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T18:37:41+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "bg"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-26T16:10:25+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "bg"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T18:35:54+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "bg"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-26T16:04:56+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "bg"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T18:38:13+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "bg"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-26T16:17:42+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "bg"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-26T15:53:33+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "bg"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:44:27+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "bg"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-26T15:52:23+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "bg"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-26T15:44:21+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "bg"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:40:17+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "bg"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-26T14:24:16+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "bg"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:37:25+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "bg"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:25:40+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "bg"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:25:22+00:00",
+ "source_file": "README.md",
+ "language_code": "bg"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-26T14:26:09+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "bg"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-26T14:21:37+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "bg"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:47:38+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "bg"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:09:52+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "bg"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-26T14:59:19+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "bg"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:07:41+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "bg"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T20:01:16+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "bg"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-26T16:20:17+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "bg"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-26T15:43:47+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "bg"
+ }
+}
\ No newline at end of file
diff --git a/translations/bg/1-Introduction/01-defining-data-science/README.md b/translations/bg/1-Introduction/01-defining-data-science/README.md
index 7fcfc32b..579f36c4 100644
--- a/translations/bg/1-Introduction/01-defining-data-science/README.md
+++ b/translations/bg/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Определение на науката за данни
| ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/bg/1-Introduction/01-defining-data-science/assignment.md b/translations/bg/1-Introduction/01-defining-data-science/assignment.md
index dec544a5..716dfca6 100644
--- a/translations/bg/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/bg/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Задача: Сценарии за анализ на данни
В тази първа задача ви молим да помислите за някакъв реален процес или проблем в различни области и как можете да го подобрите, използвайки процеса на анализ на данни. Помислете за следното:
diff --git a/translations/bg/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/bg/1-Introduction/01-defining-data-science/solution/assignment.md
index c3bbde0d..58d0fdb7 100644
--- a/translations/bg/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/bg/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Задача: Сценарии за анализ на данни
В тази първа задача ви молим да помислите за някакъв реален процес или проблем в различни области и как можете да го подобрите, използвайки процеса на анализ на данни. Помислете за следното:
diff --git a/translations/bg/1-Introduction/02-ethics/README.md b/translations/bg/1-Introduction/02-ethics/README.md
index e32f47af..60f74639 100644
--- a/translations/bg/1-Introduction/02-ethics/README.md
+++ b/translations/bg/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Въведение в етиката на данните
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/bg/1-Introduction/02-ethics/assignment.md b/translations/bg/1-Introduction/02-ethics/assignment.md
index 14bb70de..26051bc1 100644
--- a/translations/bg/1-Introduction/02-ethics/assignment.md
+++ b/translations/bg/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Напишете казус за етика на данни
## Инструкции
diff --git a/translations/bg/1-Introduction/03-defining-data/README.md b/translations/bg/1-Introduction/03-defining-data/README.md
index 361378f4..2dfb5827 100644
--- a/translations/bg/1-Introduction/03-defining-data/README.md
+++ b/translations/bg/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Определяне на данни
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/bg/1-Introduction/03-defining-data/assignment.md b/translations/bg/1-Introduction/03-defining-data/assignment.md
index e10559c1..f69dd0e1 100644
--- a/translations/bg/1-Introduction/03-defining-data/assignment.md
+++ b/translations/bg/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Класифициране на набори от данни
## Инструкции
diff --git a/translations/bg/1-Introduction/04-stats-and-probability/README.md b/translations/bg/1-Introduction/04-stats-and-probability/README.md
index 49d69734..4e7e55c9 100644
--- a/translations/bg/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/bg/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Кратко въведение в статистиката и теорията на вероятностите
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
Графично можем да представим връзката между медианата и квартилите в диаграма, наречена **кутия и мустаци**:
-
+
Тук също изчисляваме **междуквартилен обхват** IQR=Q3-Q1 и така наречените **отклонения** - стойности, които лежат извън границите [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/bg/1-Introduction/04-stats-and-probability/assignment.md b/translations/bg/1-Introduction/04-stats-and-probability/assignment.md
index 2189bb43..3dbba656 100644
--- a/translations/bg/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/bg/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Малко изследване на диабет
В това задание ще работим с малък набор от данни за пациенти с диабет, взет от [тук](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/bg/1-Introduction/README.md b/translations/bg/1-Introduction/README.md
index cbab3211..ebf451ff 100644
--- a/translations/bg/1-Introduction/README.md
+++ b/translations/bg/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Въведение в науката за данните

diff --git a/translations/bg/2-Working-With-Data/05-relational-databases/README.md b/translations/bg/2-Working-With-Data/05-relational-databases/README.md
index 7569d4cd..233cf928 100644
--- a/translations/bg/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/bg/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Работа с данни: Релационни бази данни
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/bg/2-Working-With-Data/05-relational-databases/assignment.md b/translations/bg/2-Working-With-Data/05-relational-databases/assignment.md
index 856b8457..90b08923 100644
--- a/translations/bg/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/bg/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Показване на данни за летища
Предоставена ви е [база данни](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db), изградена на [SQLite](https://sqlite.org/index.html), която съдържа информация за летища. Схемата е показана по-долу. Ще използвате [SQLite разширението](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) в [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum), за да покажете информация за летищата в различни градове.
diff --git a/translations/bg/2-Working-With-Data/06-non-relational/README.md b/translations/bg/2-Working-With-Data/06-non-relational/README.md
index e5895345..26a98dbe 100644
--- a/translations/bg/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/bg/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Работа с данни: Нерелационни данни
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/bg/2-Working-With-Data/06-non-relational/assignment.md b/translations/bg/2-Working-With-Data/06-non-relational/assignment.md
index 67bff437..067bf1f8 100644
--- a/translations/bg/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/bg/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Печалби от сода
## Инструкции
diff --git a/translations/bg/2-Working-With-Data/07-python/README.md b/translations/bg/2-Working-With-Data/07-python/README.md
index 10d89cb6..c1a00422 100644
--- a/translations/bg/2-Working-With-Data/07-python/README.md
+++ b/translations/bg/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Работа с данни: Python и библиотеката Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/bg/2-Working-With-Data/07-python/assignment.md b/translations/bg/2-Working-With-Data/07-python/assignment.md
index d70b37f1..97eeb884 100644
--- a/translations/bg/2-Working-With-Data/07-python/assignment.md
+++ b/translations/bg/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Задание за обработка на данни с Python
В това задание ще ви помолим да доразвиете кода, който започнахме да разработваме в нашите предизвикателства. Заданието се състои от две части:
diff --git a/translations/bg/2-Working-With-Data/08-data-preparation/README.md b/translations/bg/2-Working-With-Data/08-data-preparation/README.md
index b502e138..bdaab594 100644
--- a/translations/bg/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/bg/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Работа с данни: Подготовка на данни
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/bg/2-Working-With-Data/08-data-preparation/assignment.md b/translations/bg/2-Working-With-Data/08-data-preparation/assignment.md
index 1a61b72a..cbf58859 100644
--- a/translations/bg/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/bg/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Оценяване на данни от формуляр
Клиент е тествал [малък формуляр](../../../../2-Working-With-Data/08-data-preparation/index.html), за да събере основна информация за своята клиентска база. Те са ви предоставили своите резултати, за да валидирате събраните данни. Можете да отворите страницата `index.html` в браузъра, за да разгледате формуляра.
diff --git a/translations/bg/2-Working-With-Data/README.md b/translations/bg/2-Working-With-Data/README.md
index 070d1282..19a2ca5f 100644
--- a/translations/bg/2-Working-With-Data/README.md
+++ b/translations/bg/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Работа с данни

diff --git a/translations/bg/3-Data-Visualization/09-visualization-quantities/README.md b/translations/bg/3-Data-Visualization/09-visualization-quantities/README.md
index 4df9d275..85ab3b10 100644
--- a/translations/bg/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/bg/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Визуализиране на количества
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/bg/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/bg/3-Data-Visualization/09-visualization-quantities/assignment.md
index bfa2259f..c873c531 100644
--- a/translations/bg/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/bg/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Линии, Разпръснати точки и Ленти
## Инструкции
diff --git a/translations/bg/3-Data-Visualization/10-visualization-distributions/README.md b/translations/bg/3-Data-Visualization/10-visualization-distributions/README.md
index 870dbd0b..a9fbed38 100644
--- a/translations/bg/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/bg/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Визуализиране на разпределения
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/bg/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/bg/3-Data-Visualization/10-visualization-distributions/assignment.md
index 010c5ab7..f8497ad5 100644
--- a/translations/bg/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/bg/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Приложете уменията си
## Инструкции
diff --git a/translations/bg/3-Data-Visualization/11-visualization-proportions/README.md b/translations/bg/3-Data-Visualization/11-visualization-proportions/README.md
index 5dc6efe8..9cb37243 100644
--- a/translations/bg/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/bg/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Визуализиране на пропорции
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/bg/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/bg/3-Data-Visualization/11-visualization-proportions/assignment.md
index ccb144bb..4602ab63 100644
--- a/translations/bg/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/bg/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Опитайте го в Excel
## Инструкции
diff --git a/translations/bg/3-Data-Visualization/12-visualization-relationships/README.md b/translations/bg/3-Data-Visualization/12-visualization-relationships/README.md
index 5fdc914b..182202ed 100644
--- a/translations/bg/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/bg/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Визуализиране на връзки: Всичко за меда 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/bg/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/bg/3-Data-Visualization/12-visualization-relationships/assignment.md
index ef42140d..ef476be0 100644
--- a/translations/bg/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/bg/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Потопете се в кошера
## Инструкции
diff --git a/translations/bg/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/bg/3-Data-Visualization/13-meaningful-visualizations/README.md
index 976c890d..37798791 100644
--- a/translations/bg/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/bg/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Създаване на смислени визуализации
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/bg/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/bg/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index debe9db3..c369dab2 100644
--- a/translations/bg/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/bg/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Създайте своя собствена персонализирана визуализация
## Инструкции
diff --git a/translations/bg/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/bg/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 84ea8b96..e6e00ed4 100644
--- a/translations/bg/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/bg/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Проект за визуализация на данни "Опасни връзки"
За да започнете, трябва да се уверите, че имате инсталирани NPM и Node на вашата машина. Инсталирайте зависимостите (npm install) и след това стартирайте проекта локално (npm run serve):
diff --git a/translations/bg/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/bg/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index c656d320..641a7d74 100644
--- a/translations/bg/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/bg/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Проект за визуализация на данни "Опасни връзки"
За да започнете, трябва да се уверите, че имате инсталирани NPM и Node на вашата машина. Инсталирайте зависимостите (npm install) и след това стартирайте проекта локално (npm run serve):
diff --git a/translations/bg/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/bg/3-Data-Visualization/R/09-visualization-quantities/README.md
index 481671ca..c3a29de2 100644
--- a/translations/bg/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/bg/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Визуализиране на количества
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/bg/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/bg/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 32c7b0ad..b2bf37af 100644
--- a/translations/bg/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/bg/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Линии, Разпръснати точки и Ленти
## Инструкции
diff --git a/translations/bg/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/bg/3-Data-Visualization/R/10-visualization-distributions/README.md
index a0192738..1230eaca 100644
--- a/translations/bg/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/bg/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Визуализиране на разпределения
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/bg/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/bg/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index b72e8f95..cb16e8a7 100644
--- a/translations/bg/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/bg/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Приложете уменията си
## Инструкции
diff --git a/translations/bg/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/bg/3-Data-Visualization/R/11-visualization-proportions/README.md
index 047b2150..c097d5bd 100644
--- a/translations/bg/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/bg/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Визуализиране на пропорции
|](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/bg/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/bg/3-Data-Visualization/R/12-visualization-relationships/README.md
index 4ac9aad7..b14b874d 100644
--- a/translations/bg/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/bg/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Визуализиране на връзки: Всичко за меда 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/bg/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/bg/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 0e4fa4ab..96807b74 100644
--- a/translations/bg/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/bg/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Създаване на смислени визуализации
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/bg/3-Data-Visualization/README.md b/translations/bg/3-Data-Visualization/README.md
index ad9c2c0b..ac3a2810 100644
--- a/translations/bg/3-Data-Visualization/README.md
+++ b/translations/bg/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Визуализации

diff --git a/translations/bg/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/bg/4-Data-Science-Lifecycle/14-Introduction/README.md
index 3edeef6f..7afbc73f 100644
--- a/translations/bg/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/bg/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Въведение в жизнения цикъл на науката за данни
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/bg/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/bg/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 6ef6f7bb..117e60be 100644
--- a/translations/bg/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/bg/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Оценка на набор от данни
Клиент се е обърнал към вашия екип за помощ при изследване на сезонните навици за разходи на клиентите на таксита в Ню Йорк.
diff --git a/translations/bg/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/bg/4-Data-Science-Lifecycle/15-analyzing/README.md
index 4da5c12d..9f9f1448 100644
--- a/translations/bg/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/bg/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Жизнен цикъл на науката за данни: Анализиране
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/bg/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/bg/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index ab6f371a..8cf9d272 100644
--- a/translations/bg/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/bg/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Изследване за отговори
Това е продължение на [заданието](../14-Introduction/assignment.md) от предишния урок, където разгледахме набързо набора от данни. Сега ще направим по-задълбочен анализ на данните.
diff --git a/translations/bg/4-Data-Science-Lifecycle/16-communication/README.md b/translations/bg/4-Data-Science-Lifecycle/16-communication/README.md
index 8aecc91b..0059fe60 100644
--- a/translations/bg/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/bg/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Жизнен цикъл на науката за данни: Комуникация
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/bg/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/bg/4-Data-Science-Lifecycle/16-communication/assignment.md
index 388def7c..842d843d 100644
--- a/translations/bg/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/bg/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Разкажете история
## Инструкции
diff --git a/translations/bg/4-Data-Science-Lifecycle/README.md b/translations/bg/4-Data-Science-Lifecycle/README.md
index 9ac7de0f..0531a0a7 100644
--- a/translations/bg/4-Data-Science-Lifecycle/README.md
+++ b/translations/bg/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Жизненият цикъл на науката за данни

diff --git a/translations/bg/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/bg/5-Data-Science-In-Cloud/17-Introduction/README.md
index a57d7215..f99f64e9 100644
--- a/translations/bg/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/bg/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Въведение в науката за данни в облака
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/bg/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/bg/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index d916ead9..af0f981a 100644
--- a/translations/bg/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/bg/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Проучване на пазара
## Инструкции
diff --git a/translations/bg/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/bg/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 061e168f..722f021d 100644
--- a/translations/bg/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/bg/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Наука за данни в облака: Методът "Малко код/Без код"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/bg/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/bg/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 0b0ebde4..30df9ca1 100644
--- a/translations/bg/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/bg/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Проект за Data Science с малко или без код на Azure ML
## Инструкции
diff --git a/translations/bg/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/bg/5-Data-Science-In-Cloud/19-Azure/README.md
index 0d4c04c1..1c45a3b7 100644
--- a/translations/bg/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/bg/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Наука за данни в облака: Пътят на "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/bg/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/bg/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 090fef3b..0a5dedc6 100644
--- a/translations/bg/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/bg/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Проект за анализ на данни с Azure ML SDK
## Инструкции
diff --git a/translations/bg/5-Data-Science-In-Cloud/README.md b/translations/bg/5-Data-Science-In-Cloud/README.md
index 132cfb07..05846c77 100644
--- a/translations/bg/5-Data-Science-In-Cloud/README.md
+++ b/translations/bg/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Наука за данни в облака

diff --git a/translations/bg/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/bg/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 4d975277..45d2148d 100644
--- a/translations/bg/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/bg/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Наука за данни в реалния свят
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/bg/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/bg/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index f8aea9a7..18dfe81d 100644
--- a/translations/bg/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/bg/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Изследване на набор от данни от Planetary Computer
## Инструкции
diff --git a/translations/bg/6-Data-Science-In-Wild/README.md b/translations/bg/6-Data-Science-In-Wild/README.md
index d83df6fb..ccb4a0b0 100644
--- a/translations/bg/6-Data-Science-In-Wild/README.md
+++ b/translations/bg/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Наука за данни в реалния свят
Приложения на науката за данни в различни индустрии.
diff --git a/translations/bg/AGENTS.md b/translations/bg/AGENTS.md
index 3cbc90f2..6c6dbcbd 100644
--- a/translations/bg/AGENTS.md
+++ b/translations/bg/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Преглед на проекта
diff --git a/translations/bg/CODE_OF_CONDUCT.md b/translations/bg/CODE_OF_CONDUCT.md
index a8c99cb2..84b81eb0 100644
--- a/translations/bg/CODE_OF_CONDUCT.md
+++ b/translations/bg/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Кодекс за поведение при отворен код на Microsoft
Този проект е приел [Кодекса за поведение при отворен код на Microsoft](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/bg/CONTRIBUTING.md b/translations/bg/CONTRIBUTING.md
index fdc0adc5..eecd6694 100644
--- a/translations/bg/CONTRIBUTING.md
+++ b/translations/bg/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Принос към "Основи на науката за данни"
Благодарим ви за интереса към приноса към учебната програма "Основи на науката за данни"! Приветстваме приноси от общността.
diff --git a/translations/bg/INSTALLATION.md b/translations/bg/INSTALLATION.md
index bd1eb755..e40dd504 100644
--- a/translations/bg/INSTALLATION.md
+++ b/translations/bg/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Ръководство за инсталация
Това ръководство ще ви помогне да настроите вашата среда за работа с учебната програма "Наука за данни за начинаещи".
diff --git a/translations/bg/README.md b/translations/bg/README.md
index b0cf2143..90221dcc 100644
--- a/translations/bg/README.md
+++ b/translations/bg/README.md
@@ -1,202 +1,193 @@
-
-# Data Science за начинаещи - Учебна програма
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+# Наука за данните за начинаещи - Учебна програма
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
[](https://aka.ms/foundry/forum)
-Azure Cloud Advocates в Microsoft с радост предлагат 10-седмична учебна програма с 20 урока, посветена на Науката за данните. Всеки урок включва тестове преди и след урока, писмени инструкции за завършване на урока, решение и задача. Нашата проектно-ориентирана педагогика ви позволява да учите, докато изграждате – изпитана методика за усвояване на нови умения.
+Адвокатите за облака Azure в Microsoft с удоволствие представят 10-седмична учебна програма от 20 урока, изцяло посветена на науката за данните. Всеки урок включва предварителен и последващ тест, писмени инструкции за изпълнение на урока, решение и задание. Нашата проектно-базирана педагогика ви позволява да учите, докато изграждате, доказано ефективен начин новите умения да "залепват".
-**Сърдечни благодарности на нашите автори:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Благодарим от сърце на нашите автори:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Специални благодарности 🙏 на нашите автори, рецензенти и сътрудници от [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** главно на Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Специални благодарности 🙏 на нашите [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) автори, рецензенти и сътрудници на съдържание,** сред които Аариан Арора, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Наука за данните за начинаещи - _Скетчноут от [@nitya](https://twitter.com/nitya)_ |
+| Наука за данните за начинаещи - _Скетчнот от [@nitya](https://twitter.com/nitya)_ |
-### 🌐 Многоезична поддръжка
+### 🌐 Поддръжка на много езици
-#### Поддържа се чрез GitHub Action (Автоматично и винаги актуално)
+#### Поддържа се чрез GitHub Action (Автоматизирано и винаги актуално)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](./README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](./README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
> **Предпочитате да клонирате локално?**
-> Това хранилище включва над 50 езикови превода, което значително увеличава размера на изтегляне. За клониране без преводи, използвайте sparse checkout:
+> Това хранилище включва преводи на над 50 езика, което значително увеличава размера на изтегляне. За да клонирате без преводите, използвайте sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Това ви дава всичко необходимо за завършване на курса с много по-бързо изтегляне.
+> Това ви дава всичко необходимо, за да завършите курса с много по-бързо изтегляне.
-**Ако желаете да се добавят поддържани допълнителни езици, те са изброени [тук](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Ако искате да бъдат добавени допълнителни езикови преводи, поддържаните езици са изброени [тук](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Присъединете се към нашата общност
+#### Присъединете се към нашата общност
[](https://discord.gg/nTYy5BXMWG)
-Имаме текуща серия в Discord с учене с AI, научете повече и се присъединете към нас в [Learn with AI Series](https://aka.ms/learnwithai/discord) от 18 до 30 септември 2025 г. Ще получите съвети и трикове за използване на GitHub Copilot за Наука за данните.
+Имаме активна серия "Научи с AI" в Discord, научете повече и се присъединете към нас на [Learn with AI Series](https://aka.ms/learnwithai/discord) от 18 до 30 септември 2025 г. Ще получите съвети и трикове за използване на GitHub Copilot за наука за данните.
-
+
# Студент ли сте?
Започнете с следните ресурси:
-- [Страница Студентски център](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Тук ще намерите ресурси за начинаещи, студентски пакети и дори начини да получите безплатен сертификат. Това е страница, която ще искате да запазите в отметки и да проверявате от време на време, тъй като съдържанието се обновява поне веднъж месечно.
+- [Страница за студенти](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) На тази страница ще откриете ресурси за начинаещи, студентски пакети и дори начини да получите безплатен сертификатен ваучер. Това е страница, която ще искате да отбелязвате и преглеждате от време на време, тъй като съдържанието се обновява поне месечно.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Присъединете се към глобална общност от студентски посланици, това може да бъде вашият път към Microsoft.
# Започване
## 📚 Документация
-- **[Ръководство за инсталация](INSTALLATION.md)** - Стъпка по стъпка инструкции за начинаещи
+- **[Ръководство за инсталиране](INSTALLATION.md)** - Подробни инструкции за настройка за начинаещи
- **[Ръководство за употреба](USAGE.md)** - Примери и често използвани работни потоци
-- **[Отстраняване на проблеми](TROUBLESHOOTING.md)** - Решения на често срещани проблеми
-- **[Ръководство за принос](CONTRIBUTING.md)** - Как да допринесете за този проект
+- **[Отстраняване на проблеми](TROUBLESHOOTING.md)** - Решения на чести проблеми
+- **[Ръководство за сътрудничество](CONTRIBUTING.md)** - Как да допринесете към този проект
- **[За учители](for-teachers.md)** - Насоки за преподаване и ресурси за класната стая
## 👨🎓 За студенти
-> **Пълни начинаещи:** Нови сте в науката за данните? Започнете с нашите [лесни за начинаещи примери](examples/README.md)! Тези прости и добре коментирани примери ще ви помогнат да разберете основите преди да навлезете в пълната учебна програма.
-> **[Студенти](https://aka.ms/student-page):** за да използвате тази учебна програма самостоятелно, форкнете цялото хранилище и завършете упражненията самостоятелно, започвайки с тест преди лекцията. След това прочетете лекцията и завършете останалите дейности. Опитайте да създадете проектите като разбирате уроците, вместо да копирате кода за решение; все пак този код е наличен в папките /solutions във всеки проектно-ориентиран урок. Друга идея е да създадете учебна група с приятели и да преминете през съдържанието заедно. За допълнително изучаване препоръчваме [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Напълно начинаещи**: Нови сте в науката за данните? Започнете с нашите [лесни за начинаещи примери](examples/README.md)! Тези прости, добре коментирани примери ще ви помогнат да разберете основите преди да се потопите в пълната учебна програма.
+> **[Студенти](https://aka.ms/student-page)**: за да използвате тази учебна програма самостоятелно, форкнете цялото репо и изпълнете задачите самостоятелно, започвайки с предварителен тест. След това прочетете лекцията и завършете останалите дейности. Опитайте се да създадете проектите, като разбирате уроците, а не като копирате кода за решения; въпреки това, кодът е наличен в папките /solutions във всеки проектно ориентиран урок. Друга идея е да формирате учебна група с приятели и да преминете през съдържанието заедно. За по-нататъшно обучение препоръчваме [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
-**Бързо започване:**
-1. Прегледайте [Ръководството за инсталация](INSTALLATION.md), за да настроите средата си
+**Бърз старт:**
+1. Прегледайте [Ръководството за инсталиране](INSTALLATION.md), за да настроите средата си
2. Разгледайте [Ръководството за употреба](USAGE.md), за да научите как да работите с учебната програма
-3. Започнете с урок 1 и продължете последователно
-4. Присъединете се към нашата [Discord общност](https://aka.ms/ds4beginners/discord) за помощ
+3. Започнете с Урок 1 и продължете последователно
+4. Присъединете се към нашата [Discord общност](https://aka.ms/ds4beginners/discord) за подкрепа
## 👩🏫 За учители
-> **Учители:** включили сме някои [предложения](for-teachers.md) как да използвате тази учебна програма. Ще се радваме на вашата обратна връзка [в нашия дискусионен форум](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
+> **Учители**: ние сме [включили някои предложения](for-teachers.md) за това как да използвате тази учебна програма. Ще се радваме на вашата обратна връзка [в нашия дискусионен форум](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Запознайте се с екипа
+
[](https://youtu.be/8mzavjQSMM4 "Промо видео")
-**Гиф от** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+**Гиф от** [Мохит Джайзал](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Натиснете изображението по-горе за видео за проекта и хората, които го създадоха!
+> 🎥 Кликнете върху изображението по-горе за видео за проекта и хората, които го създадоха!
## Педагогика
-Ние избрахме две педагогически принципа при създаването на тази учебна програма: да бъде базирана на проекти и да включва чести викторини. Към края на тази серия студентите ще са научили основни принципи на науката за данни, включително етични концепции, подготовка на данни, различни начини за работа с данни, визуализация на данни, анализ на данни, реални случаи на използване на науката за данни и още много.
+Избрахме две педагогически основи при изграждането на тази учебна програма: да бъде базирана на проекти и да включва чести тестове. Към края на тази серия студентите ще са научили основните принципи на науката за данни, включително етични концепции, подготовка на данни, различни начини за работа с данни, визуализация на данни, анализ на данни, реални случаи на използване на науката за данни и още.
-Освен това, нискозаложена викторина преди урока поставя намерението на студента за учене на темата, докато втора викторина след урока осигурява допълнително задържане на знанията. Тази учебна програма е проектирана да бъде гъвкава и забавна и може да се премине изцяло или частично. Проектите започват малки и стават все по-сложни към края на 10-седмичния цикъл.
+Освен това, тест с нисък залог преди урока задава намерението на ученика към изучаването на тема, а втори тест след урока осигурява по-добро запомняне. Тази учебна програма е проектирана да бъде гъвкава и забавна и може да се предприеме изцяло или на части. Проектите започват малки и стават все по-сложни към края на 10-седмичния цикъл.
-> Намерете нашите [Правила за поведение](CODE_OF_CONDUCT.md), [Принос](CONTRIBUTING.md), [Превод](TRANSLATIONS.md) указания. Очакваме вашата конструктивна обратна връзка!
+> Намерете нашите [Правила за поведение](CODE_OF_CONDUCT.md), [Приноси](CONTRIBUTING.md), [Превод](TRANSLATIONS.md) насоки. Очакваме вашата конструктивна обратна връзка!
## Всеки урок включва:
-- По избор скичен бележник
-- По избор допълнително видео
-- Предурочна загряваща викторина
+- По желание скицник
+- По желание допълнително видео
+- Загряващ тест преди урока
- Писмен урок
-- За уроци на базата на проекти, стъпка по стъпка ръководства за изграждане на проекта
-- Проверки на знанията
+- За уроци основани на проекти, стъпка по стъпка водачи как да изградите проекта
+- Провери на знанията
- Предизвикателство
- Допълнително четиво
- Задача
-- [Викторина след урока](https://ff-quizzes.netlify.app/en/)
+- [Тест след урока](https://ff-quizzes.netlify.app/en/)
-> **Бележка относно викторините**: Всички викторини са в папката Quiz-App, общо 40 викторини с по три въпроса всяка. Те са свързани в уроците, но приложението за викторини може да се стартира локално или да се разположи в Azure; следвайте инструкциите в папката `quiz-app`. Те се локализират постепенно.
+> **Бележка относно тестовете**: Всички тестове са в папката Quiz-App, общо 40 теста с по три въпроса. Те са свързани от самите уроци, но приложението за тестове може да се стартира локално или да се разположи в Azure; следвайте инструкциите в папката `quiz-app`. Те постепенно се локализират.
## 🎓 Примери за начинаещи
-**Ново в науката за данни?** Създадохме специална [директория с примери](examples/README.md) с прост и добре коментиран код, за да ви помогнем да започнете:
+**Нови в науката за данни?** Създадохме специален [директория с примери](examples/README.md) с прост, добре коментиран код, който ще ви помогне да започнете:
-- 🌟 **Hello World** - Вашата първа програма за наука за данни
-- 📂 **Зареждане на данни** - Научете как да четете и изследвате набори от данни
-- 📊 **Прост анализ** - Изчислете статистики и открийте модели
-- 📈 **Основна визуализация** - Създайте диаграми и графики
-- 🔬 **Реален проект** - Завършен работен поток от начало до край
+- 🌟 **Здравей свят** - Вашата първа програма за наука за данни
+- 📂 **Зареждане на данни** - Научете се да четете и изследвате набори от данни
+- 📊 **Прост анализ** - Изчисляване на статистики и търсене на модели
+- 📈 **Основна визуализация** - Създаване на диаграми и графики
+- 🔬 **Реален проект** - Цялостен работен процес от начало до край
-Всеки пример включва подробни коментари, обясняващи всяка стъпка, правейки го перфектен за абсолютни начинаещи!
+Всеки пример включва подробни коментари, обясняващи всяка стъпка, което го прави идеален за абсолютни начинаещи!
👉 **[Започнете с примерите](examples/README.md)** 👈
## Уроци
-||
+||
|:---:|
-| Наука за данни за начинаещи: Пътна карта - _Скичен бележник от [@nitya](https://twitter.com/nitya)_ |
+| Наука за данни за начинаещи: План - _Скицник от [@nitya](https://twitter.com/nitya)_ |
-| Номер на урока | Тема | Групиране на урока | Учебни цели | Свързан урок | Автор |
+| Номер на урока | Тема | Групиране на урока | Цели за обучение | Свързан урок | Автор |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Определение за наука за данни | [Въведение](1-Introduction/README.md) | Научете основните концепции зад науката за данни и как тя е свързана с изкуствен интелект, машинно обучение и големи данни. | [урок](1-Introduction/01-defining-data-science/README.md) [видео](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Етика в науката за данни | [Въведение](1-Introduction/README.md) | Концепции, предизвикателства и рамки за етика в данните. | [урок](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Определяне на данни | [Въведение](1-Introduction/README.md) | Как се класифицират данните и чести източници. | [урок](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Въведение в статистиката и вероятностите | [Въведение](1-Introduction/README.md) | Математическите техники на вероятността и статистиката за разбиране на данни. | [урок](1-Introduction/04-stats-and-probability/README.md) [видео](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Работа с релационни данни | [Работа с данни](2-Working-With-Data/README.md) | Въведение в релационните данни и основите на изследване и анализ на такива данни с езика за структурирани заявки, известен като SQL (произнася се „сис-квел“). | [урок](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Работа с NoSQL данни | [Работа с данни](2-Working-With-Data/README.md) | Въведение в нерелационни данни, различните им типове и основите за изследване и анализ на документни бази данни. | [урок](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Работа с Python | [Работа с данни](2-Working-With-Data/README.md) | Основи на използването на Python за изследване на данни с библиотеки като Pandas. Препоръчва се основно разбиране на програмиране с Python. | [урок](2-Working-With-Data/07-python/README.md) [видео](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Подготовка на данни | [Работа с данни](2-Working-With-Data/README.md) | Теми за техники за почистване и трансформиране на данните, справяне с проблеми като липсващи, неточни или непълни данни. | [урок](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Визуализация на количества | [Визуализация на данни](3-Data-Visualization/README.md) | Научете как да използвате Matplotlib за визуализация на данни за птици 🦆 | [урок](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Визуализация на разпределенията на данни | [Визуализация на данни](3-Data-Visualization/README.md) | Визуализиране на наблюдения и тенденции в интервал. | [урок](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Визуализация на пропорции | [Визуализация на данни](3-Data-Visualization/README.md) | Визуализиране на дискретни и групирани проценти. | [урок](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Визуализация на взаимоотношения | [Визуализация на данни](3-Data-Visualization/README.md) | Визуализиране на връзки и корелации между набори от данни и техните променливи. | [урок](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Смислени визуализации | [Визуализация на данни](3-Data-Visualization/README.md) | Техники и напътствия за създаване на визуализации, ценни за ефективно решаване на проблеми и извличане на прозрения. | [урок](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Въведение в жизнения цикъл на науката за данни | [Жизнен цикъл](4-Data-Science-Lifecycle/README.md) | Въведение в жизнения цикъл на науката за данни и първата му стъпка - придобиване и извличане на данни. | [урок](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Анализиране | [Жизнен цикъл](4-Data-Science-Lifecycle/README.md) | Тази фаза от жизнения цикъл на науката за данни се фокусира върху техники за анализ на данни. | [урок](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Комуникация | [Жизнен цикъл](4-Data-Science-Lifecycle/README.md) | Тази фаза от жизнения цикъл на науката за данни се фокусира върху представяне на прозренията от данните по начин, който улеснява разбирането им от вземащите решения. | [урок](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Наука за данни в облака | [Данни в облака](5-Data-Science-In-Cloud/README.md) | Тази серия уроци представя науката за данни в облака и нейните предимства. | [урок](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) и [Maud](https://twitter.com/maudstweets) |
-| 18 | Наука за данни в облака | [Данни в облака](5-Data-Science-In-Cloud/README.md) | Обучение на модели с инструменти Low Code. |[урок](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) и [Maud](https://twitter.com/maudstweets) |
-| 19 | Наука за данни в облака | [Данни в облака](5-Data-Science-In-Cloud/README.md) | Разгръщане на модели с Azure Machine Learning Studio. | [урок](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) и [Maud](https://twitter.com/maudstweets) |
-| 20 | Наука за данни навън | [В дивата природа](6-Data-Science-In-Wild/README.md) | Проекти, базирани на науката за данни в реалния свят. | [урок](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | Определяне на науката за данни | [Въведение](1-Introduction/README.md) | Научете основните понятия зад науката за данни и как тя е свързана с изкуствен интелект, машинно обучение и големи данни. | [урок](1-Introduction/01-defining-data-science/README.md) [видео](https://youtu.be/beZ7Mb_oz9I) | [Дмитрий](http://soshnikov.com) |
+| 02 | Етика в науката за данни | [Въведение](1-Introduction/README.md) | Концепции, предизвикателства и рамки на етиката в данните. | [урок](1-Introduction/02-ethics/README.md) | [Нитя](https://twitter.com/nitya) |
+| 03 | Определяне на данни | [Въведение](1-Introduction/README.md) | Как се класифицират данните и техните чести източници. | [урок](1-Introduction/03-defining-data/README.md) | [Жасмин](https://www.twitter.com/paladique) |
+| 04 | Въведение в статистиката и вероятността | [Въведение](1-Introduction/README.md) | Математическите техники на вероятност и статистика за разбиране на данните. | [урок](1-Introduction/04-stats-and-probability/README.md) [видео](https://youtu.be/Z5Zy85g4Yjw) | [Дмитрий](http://soshnikov.com) |
+| 05 | Работа с релационни данни | [Работа с данни](2-Working-With-Data/README.md) | Въведение в релационни данни и основите на изследване и анализ на релационни данни с езика за структурирани заявки, известен като SQL (произнася се “си-кю-ел”). | [урок](2-Working-With-Data/05-relational-databases/README.md) | [Кристофър](https://www.twitter.com/geektrainer) | | |
+| 06 | Работа с NoSQL данни | [Работа с данни](2-Working-With-Data/README.md) | Въведение в нерелационни данни, различните им типове и основите на изследване и анализ на документно-базирани бази данни. | [урок](2-Working-With-Data/06-non-relational/README.md) | [Жасмин](https://twitter.com/paladique)|
+| 07 | Работа с Python | [Работа с данни](2-Working-With-Data/README.md) | Основи на използването на Python за изследване на данни с библиотеки като Pandas. Препоръчва се основно разбиране на програмирането с Python. | [урок](2-Working-With-Data/07-python/README.md) [видео](https://youtu.be/dZjWOGbsN4Y) | [Дмитрий](http://soshnikov.com) |
+| 08 | Подготовка на данни | [Работа с данни](2-Working-With-Data/README.md) | Теми за техники за почистване и трансформиране на данните, за да се справят с проблеми като липсващи, неточни или непълни данни. | [урок](2-Working-With-Data/08-data-preparation/README.md) | [Жасмин](https://www.twitter.com/paladique) |
+| 09 | Визуализация на количества | [Визуализация на данни](3-Data-Visualization/README.md) | Научете как да използвате Matplotlib за визуализиране на данни за птици 🦆 | [урок](3-Data-Visualization/09-visualization-quantities/README.md) | [Джен](https://twitter.com/jenlooper) |
+| 10 | Визуализация на разпределения на данни | [Визуализация на данни](3-Data-Visualization/README.md) | Визуализиране на наблюдения и тенденции в интервал. | [урок](3-Data-Visualization/10-visualization-distributions/README.md) | [Джен](https://twitter.com/jenlooper) |
+| 11 | Визуализация на пропорции | [Визуализация на данни](3-Data-Visualization/README.md) | Визуализиране на дискретни и групирани проценти. | [урок](3-Data-Visualization/11-visualization-proportions/README.md) | [Джен](https://twitter.com/jenlooper) |
+| 12 | Визуализация на връзки | [Визуализация на данни](3-Data-Visualization/README.md) | Визуализиране на връзки и корелации между набори от данни и техните променливи. | [урок](3-Data-Visualization/12-visualization-relationships/README.md) | [Джен](https://twitter.com/jenlooper) |
+| 13 | Значими визуализации | [Визуализация на данни](3-Data-Visualization/README.md) | Техники и насоки за правене на визуализациите ви ценни за ефективно решаване на проблеми и прозрения. | [урок](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Джен](https://twitter.com/jenlooper) |
+| 14 | Въведение в жизнения цикъл на науката за данни | [Жизнен цикъл](4-Data-Science-Lifecycle/README.md) | Въведение в жизнения цикъл на науката за данни и първата му стъпка за придобиване и извличане на данни. | [урок](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Жасмин](https://twitter.com/paladique) |
+| 15 | Анализиране | [Жизнен цикъл](4-Data-Science-Lifecycle/README.md) | Тази фаза от жизнения цикъл на науката за данни се фокусира върху техники за анализ на данни. | [урок](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Жасмин](https://twitter.com/paladique) | | |
+| 16 | Комуникация | [Жизнен цикъл](4-Data-Science-Lifecycle/README.md) | Тази фаза от жизнения цикъл на науката за данни се фокусира върху представяне на прозренията от данните по начин, който улеснява разбирането им от вземащите решения. | [урок](4-Data-Science-Lifecycle/16-communication/README.md) | [Джален](https://twitter.com/JalenMcG) | | |
+| 17 | Наука за данни в облака | [Облачни данни](5-Data-Science-In-Cloud/README.md) | Тази серия уроци представя науката за данни в облака и нейните предимства. | [урок](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Тифани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
+| 18 | Наука за данни в облака | [Облачни данни](5-Data-Science-In-Cloud/README.md) | Обучение на модели чрез инструменти с нисък код. |[урок](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Тифани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
+| 19 | Наука за данни в облака | [Облачни данни](5-Data-Science-In-Cloud/README.md) | Разгръщане на модели с Azure Machine Learning Studio. | [урок](5-Data-Science-In-Cloud/19-Azure/README.md)| [Тифани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
+| 20 | Наука за данни в реалния свят | [В дивата природа](6-Data-Science-In-Wild/README.md) | Проекти, базирани на наука за данни в реалния свят. | [урок](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Нитя](https://twitter.com/nitya) |
## GitHub Codespaces
Следвайте тези стъпки, за да отворите този пример в Codespace:
-1. Натиснете падащото меню Code и изберете опцията Open with Codespaces.
+1. Кликнете върху менюто Code и изберете опцията Open with Codespaces.
2. Изберете + New codespace в долната част на панела.
-За повече информация вижте [документацията на GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+За повече информация, вижте [документацията на GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Контейнери
-Следвайте тези стъпки, за да отворите това хранилище в контейнер, използвайки вашия локален компютър и VSCode с разширението VS Code Remote - Containers:
+Следвайте тези стъпки, за да отворите това репо в контейнер чрез вашия локален компютър и VSCode, използвайки разширението VS Code Remote - Containers:
-1. Ако това е първият път, когато използвате контейнер за разработка, уверете се, че системата ви отговаря на изискванията (напр. Docker е инсталиран) в [документацията за започване](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Ако използвате контейнер за разработка за първи път, уверете се, че системата ви отговаря на предварителните изисквания (т.е. имате инсталиран Docker) в [документацията за започване](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-За да използвате това хранилище, можете или да отворите хранилището в изолиран Docker том:
+За да използвате това хранилище, можете да отворите хранилището в изолиран Docker том:
-**Забележка**: Работа под капака това ще използва командата Remote-Containers: **Clone Repository in Container Volume...** за клониране на сорс кода в Docker том, вместо в локалната файлова система. [Томовете](https://docs.docker.com/storage/volumes/) са предпочитания механизъм за съхранение на данни на контейнера.
+**Забележка**: Под капака, това ще използва командата Remote-Containers: **Clone Repository in Container Volume...** за клониране на изходния код в Docker том вместо локалната файлова система. [Томове](https://docs.docker.com/storage/volumes/) са предпочитаният механизъм за съхранение на данни на контейнера.
-Или да отворите локално клонирана или свалена версия на хранилището:
+Или отворете локално клонирана или изтеглена версия на хранилището:
-- Клонирайте това хранилище на вашия локален диск.
+- Клонирайте хранилището на локалната си файлова система.
- Натиснете F1 и изберете командата **Remote-Containers: Open Folder in Container...**.
-- Изберете клонираното копие на тази папка, изчакайте контейнера да стартира и изпробвайте нещата.
+- Изберете клонираното копие на тази папка, изчакайте да стартира контейнера и опитайте.
## Достъп офлайн
-Можете да използвате тази документация офлайн като използвате [Docsify](https://docsify.js.org/#/). Форкнете това хранилище, [инсталирайте Docsify](https://docsify.js.org/#/quickstart) на вашия локален компютър, след това в основната папка на това хранилище въведете `docsify serve`. Уебсайтът ще бъде предоставен на порт 3000 на локалния ви адрес: `localhost:3000`.
+Можете да стартирате тази документация офлайн, като използвате [Docsify](https://docsify.js.org/#/). Форкнете това хранилище, [инсталирайте Docsify](https://docsify.js.org/#/quickstart) на локалната си машина, след което в основната папка на това хранилище напишете `docsify serve`. Уебсайтът ще се сервира на порт 3000 на вашия localhost: `localhost:3000`.
-> Забележка, тетрадките няма да се визуализират чрез Docsify, така че когато трябва да изпълните тетрадка, направете го отделно във VS Code с изпълняващ се Python kernel.
+> Забележка, бележниците няма да бъдат изобразявани чрез Docsify, така че когато трябва да изпълните бележник, направете това отделно в VS Code с работещ Python ядро.
## Други учебни програми
@@ -217,17 +208,17 @@ Azure Cloud Advocates в Microsoft с радост предлагат 10-сед
---
-### Серия за генеративен AI
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+### Поредица за генериращ AI
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
### Основно обучение
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
@@ -236,27 +227,27 @@ Azure Cloud Advocates в Microsoft с радост предлагат 10-сед
---
-### Серия за Copilot
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+### Поредица Copilot
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Получаване на помощ
-**Имате проблеми?** Вижте нашето [Ръководство за отстраняване на проблеми](TROUBLESHOOTING.md) за решения на често срещани проблеми.
+**Имали проблеми?** Проверете нашето [Ръководство за отстраняване на проблеми](TROUBLESHOOTING.md) за решения на често срещани проблеми.
-Ако се затруднявате или имате въпроси относно изграждането на AI приложения, присъединете се към други учащи се и опитни разработчици в дискусии за MCP. Това е подкрепяща общност, където въпросите са добре дошли и знанията се споделят свободно.
+Ако сте зациклили или имате въпроси относно създаването на AI приложения, присъединете се към други обучаващи се и опитни разработчици в дискусии за MCP. Това е подкрепяща общност, където въпросите са добре дошли и знанието се споделя свободно.
[](https://discord.gg/nTYy5BXMWG)
-Ако имате обратна връзка за продукта или грешки при изграждане, посетете:
+Ако имате обратна връзка за продукта или грешки по време на разработка посетете:
[](https://aka.ms/foundry/forum)
---
-**Отказ от отговорност**:
-Този документ е преведен с помощта на AI преводаческа услуга [Co-op Translator](https://github.com/Azure/co-op-translator). Въпреки че се стремим към точност, моля, имайте предвид, че автоматичните преводи могат да съдържат грешки или неточности. Оригиналният документ на неговия език трябва да се счита за официален източник. За критична информация се препоръчва професионален човешки превод. Ние не носим отговорност за каквито и да е недоразумения или неправилни тълкувания, произтичащи от използването на този превод.
+**Отказ от отговорност**:
+Този документ е преведен с помощта на AI преводаческа услуга [Co-op Translator](https://github.com/Azure/co-op-translator). Въпреки че се стремим към точност, моля, имайте предвид, че автоматизираните преводи могат да съдържат грешки или неточности. Оригиналният документ на неговия език трябва да се счита за авторитетен източник. За критична информация се препоръчва професионален човешки превод. Ние не носим отговорност за никакви недоразумения или неправилни тълкувания, произтичащи от използването на този превод.
\ No newline at end of file
diff --git a/translations/bg/SECURITY.md b/translations/bg/SECURITY.md
index f71ec4f2..f71083a4 100644
--- a/translations/bg/SECURITY.md
+++ b/translations/bg/SECURITY.md
@@ -1,12 +1,3 @@
-
## Сигурност
Microsoft приема сигурността на своите софтуерни продукти и услуги сериозно, включително всички хранилища с изходен код, управлявани чрез нашите GitHub организации, които включват [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) и [нашите GitHub организации](https://opensource.microsoft.com/).
diff --git a/translations/bg/SUPPORT.md b/translations/bg/SUPPORT.md
index b4f22ad7..d7bbe1c8 100644
--- a/translations/bg/SUPPORT.md
+++ b/translations/bg/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Поддръжка
## Как да докладвате проблеми и получите помощ
diff --git a/translations/bg/TROUBLESHOOTING.md b/translations/bg/TROUBLESHOOTING.md
index 2248f6ea..5aa0e0a8 100644
--- a/translations/bg/TROUBLESHOOTING.md
+++ b/translations/bg/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Ръководство за отстраняване на проблеми
Това ръководство предоставя решения на често срещани проблеми, които може да срещнете, докато работите с учебната програма "Наука за данни за начинаещи".
diff --git a/translations/bg/USAGE.md b/translations/bg/USAGE.md
index eccacaf3..becdfccc 100644
--- a/translations/bg/USAGE.md
+++ b/translations/bg/USAGE.md
@@ -1,12 +1,3 @@
-
# Ръководство за използване
Това ръководство предоставя примери и често срещани работни процеси за използване на учебната програма "Наука за данни за начинаещи".
diff --git a/translations/bg/docs/_sidebar.md b/translations/bg/docs/_sidebar.md
index 5270a896..8800e35e 100644
--- a/translations/bg/docs/_sidebar.md
+++ b/translations/bg/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Въведение
- [Определяне на науката за данни](../1-Introduction/01-defining-data-science/README.md)
- [Етика в науката за данни](../1-Introduction/02-ethics/README.md)
diff --git a/translations/bg/examples/README.md b/translations/bg/examples/README.md
index 990f818c..391780af 100644
--- a/translations/bg/examples/README.md
+++ b/translations/bg/examples/README.md
@@ -1,12 +1,3 @@
-
# Примери за наука за данни за начинаещи
Добре дошли в директорията с примери! Тази колекция от прости, добре коментирани примери е създадена, за да ви помогне да започнете с науката за данни, дори ако сте напълно начинаещи.
diff --git a/translations/bg/for-teachers.md b/translations/bg/for-teachers.md
index 31c5de67..3262a81c 100644
--- a/translations/bg/for-teachers.md
+++ b/translations/bg/for-teachers.md
@@ -1,12 +1,3 @@
-
## За преподаватели
Искате ли да използвате тази учебна програма във вашата класна стая? Чувствайте се свободни да го направите!
diff --git a/translations/bg/quiz-app/README.md b/translations/bg/quiz-app/README.md
index b05b01cd..b4ab2065 100644
--- a/translations/bg/quiz-app/README.md
+++ b/translations/bg/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Тестове
Тези тестове са предварителни и заключителни тестове за учебната програма по наука за данни на https://aka.ms/datascience-beginners
diff --git a/translations/bg/sketchnotes/README.md b/translations/bg/sketchnotes/README.md
index 12fa0180..a9b496e0 100644
--- a/translations/bg/sketchnotes/README.md
+++ b/translations/bg/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Намерете всички скицноти тук!
## Кредити
diff --git a/translations/bn/.co-op-translator.json b/translations/bn/.co-op-translator.json
new file mode 100644
index 00000000..bf1b8e28
--- /dev/null
+++ b/translations/bn/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:44:28+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "bn"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-27T09:03:57+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "bn"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-27T09:05:06+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "bn"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:17:29+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "bn"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-27T08:56:42+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "bn"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-06T07:19:03+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "bn"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-27T09:08:41+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "bn"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:15:51+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "bn"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-27T09:17:30+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "bn"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-27T08:44:01+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "bn"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T10:59:01+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "bn"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:54:05+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "bn"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-06T07:07:51+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "bn"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-27T08:42:00+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "bn"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:33:03+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "bn"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-27T08:37:27+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "bn"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-06T07:10:37+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "bn"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-27T08:30:01+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "bn"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-27T08:19:17+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-06T07:14:06+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-27T10:46:15+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-06T07:15:44+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-27T10:16:25+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-06T07:13:40+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-27T10:50:23+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:32:56+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-27T10:20:59+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-06T07:14:39+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-27T10:11:07+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T10:12:19+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T10:11:42+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-27T10:33:12+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-27T10:34:24+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-27T10:23:42+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-27T10:24:47+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-27T10:40:42+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-27T10:28:02+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-27T10:37:24+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "bn"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-27T10:06:49+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "bn"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:39:29+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "bn"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-27T09:54:20+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "bn"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:39:07+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "bn"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-27T09:57:49+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "bn"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:39:56+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "bn"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-27T10:05:24+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "bn"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-27T09:48:14+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "bn"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-06T07:06:38+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "bn"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-27T09:39:04+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "bn"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-06T07:05:25+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "bn"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-27T09:34:07+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "bn"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-06T07:07:09+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "bn"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-27T09:45:57+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "bn"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-27T09:26:13+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "bn"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:21:37+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "bn"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-27T09:25:15+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "bn"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-27T09:18:31+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "bn"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:12:23+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "bn"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-27T08:16:19+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "bn"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:42:08+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "bn"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:17:50+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "bn"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:30:40+00:00",
+ "source_file": "README.md",
+ "language_code": "bn"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-27T08:17:45+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "bn"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-27T08:14:18+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "bn"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:35:19+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "bn"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:58:16+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "bn"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-27T08:43:16+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "bn"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:59:26+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "bn"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:54:37+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "bn"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-27T09:47:21+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "bn"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-27T09:18:03+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "bn"
+ }
+}
\ No newline at end of file
diff --git a/translations/bn/1-Introduction/01-defining-data-science/README.md b/translations/bn/1-Introduction/01-defining-data-science/README.md
index 436c753c..cf8c72e0 100644
--- a/translations/bn/1-Introduction/01-defining-data-science/README.md
+++ b/translations/bn/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# ডেটা সায়েন্স সংজ্ঞায়িত করা
|  দ্বারা ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/bn/1-Introduction/01-defining-data-science/assignment.md b/translations/bn/1-Introduction/01-defining-data-science/assignment.md
index 50129d78..97ad85fc 100644
--- a/translations/bn/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/bn/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# অ্যাসাইনমেন্ট: ডেটা সায়েন্স পরিস্থিতি
এই প্রথম অ্যাসাইনমেন্টে, আমরা আপনাকে অনুরোধ করছি বিভিন্ন সমস্যার ক্ষেত্র বা বাস্তব জীবনের প্রক্রিয়া সম্পর্কে চিন্তা করতে এবং কীভাবে ডেটা সায়েন্স প্রক্রিয়া ব্যবহার করে এটি উন্নত করা যায় তা ভাবতে। নিম্নলিখিত বিষয়গুলো বিবেচনা করুন:
diff --git a/translations/bn/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/bn/1-Introduction/01-defining-data-science/solution/assignment.md
index 17d06aa6..6423abc9 100644
--- a/translations/bn/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/bn/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# অ্যাসাইনমেন্ট: ডেটা সায়েন্স পরিস্থিতি
এই প্রথম অ্যাসাইনমেন্টে, আপনাকে বিভিন্ন সমস্যার ক্ষেত্র বা বাস্তব জীবনের প্রক্রিয়া নিয়ে চিন্তা করতে বলা হচ্ছে এবং কীভাবে ডেটা সায়েন্স প্রক্রিয়া ব্যবহার করে এটি উন্নত করা যায় তা ভাবতে বলা হচ্ছে। নিম্নলিখিত বিষয়গুলো বিবেচনা করুন:
diff --git a/translations/bn/1-Introduction/02-ethics/README.md b/translations/bn/1-Introduction/02-ethics/README.md
index ed83fbaa..b4cc17e1 100644
--- a/translations/bn/1-Introduction/02-ethics/README.md
+++ b/translations/bn/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# ডেটা নৈতিকতার পরিচিতি
| দ্বারা ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/bn/1-Introduction/02-ethics/assignment.md b/translations/bn/1-Introduction/02-ethics/assignment.md
index df0e0638..9f466a93 100644
--- a/translations/bn/1-Introduction/02-ethics/assignment.md
+++ b/translations/bn/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## একটি ডেটা নীতিশাস্ত্র কেস স্টাডি লিখুন
## নির্দেশাবলী
diff --git a/translations/bn/1-Introduction/03-defining-data/README.md b/translations/bn/1-Introduction/03-defining-data/README.md
index 1b2c2f68..538a560c 100644
--- a/translations/bn/1-Introduction/03-defining-data/README.md
+++ b/translations/bn/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# ডেটা সংজ্ঞায়িত করা
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/bn/1-Introduction/03-defining-data/assignment.md b/translations/bn/1-Introduction/03-defining-data/assignment.md
index 499952f7..52e0a272 100644
--- a/translations/bn/1-Introduction/03-defining-data/assignment.md
+++ b/translations/bn/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# ডেটাসেট শ্রেণীবিন্যাস
## নির্দেশাবলী
diff --git a/translations/bn/1-Introduction/04-stats-and-probability/README.md b/translations/bn/1-Introduction/04-stats-and-probability/README.md
index 99cdc8d5..cd50ead5 100644
--- a/translations/bn/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/bn/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# পরিসংখ্যান এবং সম্ভাবনার একটি সংক্ষিপ্ত পরিচিতি
| দ্বারা ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
গ্রাফিকভাবে আমরা মধ্যক এবং চতুর্ভাগের সম্পর্ককে **বক্স প্লট** নামে একটি চিত্রে উপস্থাপন করতে পারি:
-
+
এখানে আমরা **ইন্টার-চতুর্ভাগ পরিসর** IQR=Q3-Q1 এবং তথাকথিত **আউটলায়ার** - মানগুলি, যা সীমানার বাইরে [Q1-1.5*IQR,Q3+1.5*IQR] এ পড়ে, তা গণনা করি।
diff --git a/translations/bn/1-Introduction/04-stats-and-probability/assignment.md b/translations/bn/1-Introduction/04-stats-and-probability/assignment.md
index cfa47e79..82b2d94c 100644
--- a/translations/bn/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/bn/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# ছোট ডায়াবেটিস গবেষণা
এই অ্যাসাইনমেন্টে, আমরা ডায়াবেটিস রোগীদের একটি ছোট ডেটাসেট নিয়ে কাজ করব যা [এখান থেকে](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) নেওয়া হয়েছে।
diff --git a/translations/bn/1-Introduction/README.md b/translations/bn/1-Introduction/README.md
index 31dd153f..bfcef533 100644
--- a/translations/bn/1-Introduction/README.md
+++ b/translations/bn/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# ডেটা সায়েন্সের পরিচিতি

diff --git a/translations/bn/2-Working-With-Data/05-relational-databases/README.md b/translations/bn/2-Working-With-Data/05-relational-databases/README.md
index 15c934e7..fb7ede41 100644
--- a/translations/bn/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/bn/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# ডেটার সাথে কাজ: রিলেশনাল ডাটাবেস
| দ্বারা ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/bn/2-Working-With-Data/05-relational-databases/assignment.md b/translations/bn/2-Working-With-Data/05-relational-databases/assignment.md
index daa14b81..01308740 100644
--- a/translations/bn/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/bn/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# বিমানবন্দর ডেটা প্রদর্শন
আপনাকে একটি [ডেটাবেস](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) প্রদান করা হয়েছে যা [SQLite](https://sqlite.org/index.html)-এর উপর ভিত্তি করে তৈরি এবং এতে বিমানবন্দর সম্পর্কিত তথ্য রয়েছে। নিচে স্কিমা প্রদর্শিত হয়েছে। আপনি [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum)-এ [SQLite extension](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) ব্যবহার করে বিভিন্ন শহরের বিমানবন্দর সম্পর্কিত তথ্য প্রদর্শন করবেন।
diff --git a/translations/bn/2-Working-With-Data/06-non-relational/README.md b/translations/bn/2-Working-With-Data/06-non-relational/README.md
index e73a7eeb..6ef32df7 100644
--- a/translations/bn/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/bn/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# ডেটা নিয়ে কাজ করা: নন-রিলেশনাল ডেটা
| এর স্কেচনোট ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/bn/2-Working-With-Data/06-non-relational/assignment.md b/translations/bn/2-Working-With-Data/06-non-relational/assignment.md
index eb6e26b2..5365e782 100644
--- a/translations/bn/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/bn/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# সোডা লাভ
## নির্দেশনা
diff --git a/translations/bn/2-Working-With-Data/07-python/README.md b/translations/bn/2-Working-With-Data/07-python/README.md
index aac16483..06534238 100644
--- a/translations/bn/2-Working-With-Data/07-python/README.md
+++ b/translations/bn/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# ডেটার সাথে কাজ করা: পাইথন এবং প্যান্ডাস লাইব্রেরি
|  এর স্কেচনোট ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/bn/2-Working-With-Data/07-python/assignment.md b/translations/bn/2-Working-With-Data/07-python/assignment.md
index 35ab2dd9..bb0ea775 100644
--- a/translations/bn/2-Working-With-Data/07-python/assignment.md
+++ b/translations/bn/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# পাইথনে ডেটা প্রসেসিংয়ের জন্য অ্যাসাইনমেন্ট
এই অ্যাসাইনমেন্টে, আমরা আপনাকে আমাদের চ্যালেঞ্জগুলিতে শুরু করা কোডটি আরও বিস্তারিতভাবে ব্যাখ্যা করতে বলব। অ্যাসাইনমেন্টটি দুইটি অংশে বিভক্ত:
diff --git a/translations/bn/2-Working-With-Data/08-data-preparation/README.md b/translations/bn/2-Working-With-Data/08-data-preparation/README.md
index 96c51359..99e99f95 100644
--- a/translations/bn/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/bn/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# ডেটার সাথে কাজ করা: ডেটা প্রস্তুতি
| দ্বারা ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/bn/2-Working-With-Data/08-data-preparation/assignment.md b/translations/bn/2-Working-With-Data/08-data-preparation/assignment.md
index e8eb7721..05d108df 100644
--- a/translations/bn/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/bn/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# একটি ফর্ম থেকে ডেটা মূল্যায়ন
একজন ক্লায়েন্ট তাদের গ্রাহক-ভিত্তি সম্পর্কে কিছু মৌলিক তথ্য সংগ্রহ করার জন্য একটি [ছোট ফর্ম](../../../../2-Working-With-Data/08-data-preparation/index.html) পরীক্ষা করেছেন। তারা তাদের সংগ্রহ করা ডেটা যাচাই করার জন্য আপনার কাছে এনেছেন। ফর্মটি দেখতে আপনি ব্রাউজারে `index.html` পৃষ্ঠাটি খুলতে পারেন।
diff --git a/translations/bn/2-Working-With-Data/README.md b/translations/bn/2-Working-With-Data/README.md
index d65e15bb..08b53de3 100644
--- a/translations/bn/2-Working-With-Data/README.md
+++ b/translations/bn/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# ডেটা নিয়ে কাজ করা

diff --git a/translations/bn/3-Data-Visualization/09-visualization-quantities/README.md b/translations/bn/3-Data-Visualization/09-visualization-quantities/README.md
index ad5ec488..11954015 100644
--- a/translations/bn/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/bn/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# পরিমাণের ভিজ্যুয়ালাইজেশন
| দ্বারা ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/bn/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/bn/3-Data-Visualization/09-visualization-quantities/assignment.md
index f61eb664..de5bf372 100644
--- a/translations/bn/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/bn/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# লাইন, স্ক্যাটার এবং বার
## নির্দেশনা
diff --git a/translations/bn/3-Data-Visualization/10-visualization-distributions/README.md b/translations/bn/3-Data-Visualization/10-visualization-distributions/README.md
index 6372d94d..aec734b9 100644
--- a/translations/bn/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/bn/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# ডিস্ট্রিবিউশন ভিজুয়ালাইজেশন
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/bn/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/bn/3-Data-Visualization/10-visualization-distributions/assignment.md
index 07758e54..ccf4f493 100644
--- a/translations/bn/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/bn/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# আপনার দক্ষতা প্রয়োগ করুন
## নির্দেশাবলী
diff --git a/translations/bn/3-Data-Visualization/11-visualization-proportions/README.md b/translations/bn/3-Data-Visualization/11-visualization-proportions/README.md
index 4d558279..bb56bb2c 100644
--- a/translations/bn/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/bn/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# অনুপাতের ভিজ্যুয়ালাইজেশন
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/bn/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/bn/3-Data-Visualization/11-visualization-proportions/assignment.md
index 455c4f6c..d54eb804 100644
--- a/translations/bn/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/bn/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# এক্সেলে চেষ্টা করুন
## নির্দেশনা
diff --git a/translations/bn/3-Data-Visualization/12-visualization-relationships/README.md b/translations/bn/3-Data-Visualization/12-visualization-relationships/README.md
index ef209a7a..d8ebe33a 100644
--- a/translations/bn/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/bn/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# সম্পর্কের ভিজ্যুয়ালাইজেশন: মধুর গল্প 🍯
| দ্বারা ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/bn/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/bn/3-Data-Visualization/12-visualization-relationships/assignment.md
index 13a96427..a9525493 100644
--- a/translations/bn/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/bn/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# মৌমাছির চাকের গভীরে ডুব দিন
## নির্দেশনা
diff --git a/translations/bn/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/bn/3-Data-Visualization/13-meaningful-visualizations/README.md
index 9de44b88..37a225c9 100644
--- a/translations/bn/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/bn/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# অর্থবহ ভিজ্যুয়ালাইজেশন তৈরি করা
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/bn/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/bn/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 753f5278..ffbe5df3 100644
--- a/translations/bn/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/bn/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# নিজের কাস্টম ভিজ তৈরি করুন
## নির্দেশনা
diff --git a/translations/bn/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/bn/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 4b0e0609..f72c29b5 100644
--- a/translations/bn/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/bn/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# বিপজ্জনক সম্পর্ক ডেটা ভিজ্যুয়ালাইজেশন প্রকল্প
শুরু করার জন্য, নিশ্চিত করুন যে আপনার মেশিনে NPM এবং Node চালু রয়েছে। ডিপেনডেন্সিগুলি ইনস্টল করুন (npm install) এবং তারপর প্রকল্পটি লোকালভাবে চালান (npm run serve):
diff --git a/translations/bn/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/bn/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 3a9f7f0d..714f6dee 100644
--- a/translations/bn/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/bn/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# বিপজ্জনক সম্পর্ক ডেটা ভিজ্যুয়ালাইজেশন প্রকল্প
শুরু করার জন্য, নিশ্চিত করুন যে আপনার মেশিনে NPM এবং Node চালু রয়েছে। ডিপেনডেন্সিগুলি ইনস্টল করুন (npm install) এবং তারপর প্রকল্পটি লোকালভাবে চালান (npm run serve):
diff --git a/translations/bn/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/bn/3-Data-Visualization/R/09-visualization-quantities/README.md
index 13a0e5e5..277d734f 100644
--- a/translations/bn/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/bn/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# পরিমাণের ভিজ্যুয়ালাইজেশন
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/bn/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/bn/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index b85d0aa5..fd20a0c7 100644
--- a/translations/bn/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/bn/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# লাইন, স্ক্যাটার এবং বার
## নির্দেশনা
diff --git a/translations/bn/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/bn/3-Data-Visualization/R/10-visualization-distributions/README.md
index f9285b77..2570253b 100644
--- a/translations/bn/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/bn/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# ডিস্ট্রিবিউশন ভিজুয়ালাইজেশন
| দ্বারা ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/bn/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/bn/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 0fac4c3a..b5f1a11f 100644
--- a/translations/bn/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/bn/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# আপনার দক্ষতা প্রয়োগ করুন
## নির্দেশাবলী
diff --git a/translations/bn/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/bn/3-Data-Visualization/R/11-visualization-proportions/README.md
index 933dda96..466196c4 100644
--- a/translations/bn/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/bn/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# অনুপাতের ভিজ্যুয়ালাইজেশন
| দ্বারা ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/bn/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/bn/3-Data-Visualization/R/12-visualization-relationships/README.md
index 6a8fb8c4..31874ca6 100644
--- a/translations/bn/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/bn/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# সম্পর্কের ভিজ্যুয়ালাইজেশন: মধুর গল্প 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/bn/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/bn/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 0496aaf3..ffb86ac7 100644
--- a/translations/bn/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/bn/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# অর্থবহ ভিজ্যুয়ালাইজেশন তৈরি করা
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/bn/3-Data-Visualization/README.md b/translations/bn/3-Data-Visualization/README.md
index 9e2515bf..20844410 100644
--- a/translations/bn/3-Data-Visualization/README.md
+++ b/translations/bn/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# ভিজুয়ালাইজেশন

diff --git a/translations/bn/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/bn/4-Data-Science-Lifecycle/14-Introduction/README.md
index 10336568..98dba4d2 100644
--- a/translations/bn/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/bn/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# ডেটা সায়েন্স লাইফসাইকেলের পরিচিতি
| দ্বারা ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/bn/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/bn/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 31dd40a8..e984a2d7 100644
--- a/translations/bn/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/bn/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# ডেটাসেট মূল্যায়ন
একজন ক্লায়েন্ট আপনার টিমের কাছে নিউ ইয়র্ক সিটির ট্যাক্সি গ্রাহকদের ঋতুভিত্তিক ব্যয় অভ্যাস তদন্ত করার জন্য সাহায্য চেয়েছেন।
diff --git a/translations/bn/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/bn/4-Data-Science-Lifecycle/15-analyzing/README.md
index d72bf0f3..753add96 100644
--- a/translations/bn/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/bn/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# ডেটা সায়েন্স লাইফসাইকেল: বিশ্লেষণ
| দ্বারা ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/bn/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/bn/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index f24ef043..51b4cdad 100644
--- a/translations/bn/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/bn/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# উত্তর অনুসন্ধান করা
এটি আগের পাঠের [অ্যাসাইনমেন্টের](../14-Introduction/assignment.md) একটি ধারাবাহিকতা, যেখানে আমরা ডেটাসেটটি সংক্ষেপে দেখেছিলাম। এখন আমরা ডেটাসেটটি আরও গভীরভাবে বিশ্লেষণ করব।
diff --git a/translations/bn/4-Data-Science-Lifecycle/16-communication/README.md b/translations/bn/4-Data-Science-Lifecycle/16-communication/README.md
index 00d28b60..8963c594 100644
--- a/translations/bn/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/bn/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# ডেটা সায়েন্স লাইফসাইকেল: যোগাযোগ
| দ্বারা](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/bn/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/bn/4-Data-Science-Lifecycle/16-communication/assignment.md
index b537ed20..61ddd0ab 100644
--- a/translations/bn/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/bn/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# একটি গল্প বলুন
## নির্দেশনা
diff --git a/translations/bn/4-Data-Science-Lifecycle/README.md b/translations/bn/4-Data-Science-Lifecycle/README.md
index c9f5fe50..fe6054c5 100644
--- a/translations/bn/4-Data-Science-Lifecycle/README.md
+++ b/translations/bn/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# ডেটা সায়েন্স লাইফসাইকেল

diff --git a/translations/bn/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/bn/5-Data-Science-In-Cloud/17-Introduction/README.md
index 83f06a1e..3f2cefbb 100644
--- a/translations/bn/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/bn/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# ক্লাউডে ডেটা সায়েন্সের পরিচিতি
| এর স্কেচনোট ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/bn/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/bn/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 2abc35e9..f1437774 100644
--- a/translations/bn/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/bn/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# বাজার গবেষণা
## নির্দেশাবলী
diff --git a/translations/bn/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/bn/5-Data-Science-In-Cloud/18-Low-Code/README.md
index b1ea4745..efcfa1ab 100644
--- a/translations/bn/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/bn/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# ক্লাউডে ডেটা সায়েন্স: "লো কোড/নো কোড" পদ্ধতি
| দ্বারা স্কেচনোট ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/bn/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/bn/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 32596699..8215a3ae 100644
--- a/translations/bn/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/bn/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML-এ Low code/No code ডেটা সায়েন্স প্রকল্প
## নির্দেশাবলী
diff --git a/translations/bn/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/bn/5-Data-Science-In-Cloud/19-Azure/README.md
index 67a222d6..2b38a806 100644
--- a/translations/bn/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/bn/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# ক্লাউডে ডেটা সায়েন্স: "Azure ML SDK" পদ্ধতি
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/bn/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/bn/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 287002ac..c9330904 100644
--- a/translations/bn/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/bn/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML SDK ব্যবহার করে ডেটা সায়েন্স প্রকল্প
## নির্দেশাবলী
diff --git a/translations/bn/5-Data-Science-In-Cloud/README.md b/translations/bn/5-Data-Science-In-Cloud/README.md
index 60ead4bd..10f1db18 100644
--- a/translations/bn/5-Data-Science-In-Cloud/README.md
+++ b/translations/bn/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# ক্লাউডে ডেটা সায়েন্স

diff --git a/translations/bn/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/bn/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index b633b50d..b0cc269c 100644
--- a/translations/bn/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/bn/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# বাস্তব জীবনে ডেটা সায়েন্স
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/bn/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/bn/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 431f9ee9..88d830ee 100644
--- a/translations/bn/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/bn/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# একটি প্ল্যানেটারি কম্পিউটার ডেটাসেট অন্বেষণ করুন
## নির্দেশনা
diff --git a/translations/bn/6-Data-Science-In-Wild/README.md b/translations/bn/6-Data-Science-In-Wild/README.md
index 68e9c339..83f4ab59 100644
--- a/translations/bn/6-Data-Science-In-Wild/README.md
+++ b/translations/bn/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# বাস্তব জীবনে ডেটা সায়েন্স
বিভিন্ন শিল্পক্ষেত্রে বাস্তব জীবনে ডেটা সায়েন্সের প্রয়োগ।
diff --git a/translations/bn/AGENTS.md b/translations/bn/AGENTS.md
index 09e4380d..839ac202 100644
--- a/translations/bn/AGENTS.md
+++ b/translations/bn/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## প্রকল্পের সংক্ষিপ্ত বিবরণ
diff --git a/translations/bn/CODE_OF_CONDUCT.md b/translations/bn/CODE_OF_CONDUCT.md
index d8db8836..4a16f386 100644
--- a/translations/bn/CODE_OF_CONDUCT.md
+++ b/translations/bn/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# মাইক্রোসফট ওপেন সোর্স আচরণবিধি
এই প্রকল্পটি [মাইক্রোসফট ওপেন সোর্স আচরণবিধি](https://opensource.microsoft.com/codeofconduct/) গ্রহণ করেছে।
diff --git a/translations/bn/CONTRIBUTING.md b/translations/bn/CONTRIBUTING.md
index fefa548f..be68c25c 100644
--- a/translations/bn/CONTRIBUTING.md
+++ b/translations/bn/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# ডেটা সায়েন্স ফর বিগিনার্স-এ অবদান রাখুন
ডেটা সায়েন্স ফর বিগিনার্স কারিকুলামে অবদান রাখার প্রতি আপনার আগ্রহের জন্য ধন্যবাদ! আমরা কমিউনিটির কাছ থেকে অবদানকে স্বাগত জানাই।
diff --git a/translations/bn/INSTALLATION.md b/translations/bn/INSTALLATION.md
index 984333cb..68603d34 100644
--- a/translations/bn/INSTALLATION.md
+++ b/translations/bn/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# ইনস্টলেশন গাইড
এই গাইডটি আপনাকে Data Science for Beginners কারিকুলামের জন্য আপনার পরিবেশ সেট আপ করতে সাহায্য করবে।
diff --git a/translations/bn/README.md b/translations/bn/README.md
index 1f029266..fda8bc83 100644
--- a/translations/bn/README.md
+++ b/translations/bn/README.md
@@ -1,13 +1,4 @@
-
-# শিক্ষানবিসদের জন্য ডেটা সায়েন্স - একটি পাঠক্রম
+# Data Science ফর বেগিনার্স - একটি কারিকুলাম
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,181 +17,182 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-মাইক্রোসফটের Azure Cloud Advocates আনন্দের সঙ্গে ডেটা সায়েন্স সম্পর্কিত একটি ১০ সপ্তাহব্যাপী, ২০টি পাঠের পাঠক্রম প্রদান করছে। প্রতিটি পাঠ অন্তর্ভুক্ত করে পাঠ পূর্ববর্তী ও পরে কুইজ, পাঠ সম্পন্ন করার জন্য লিখিত নির্দেশাবলী, একটি সমাধান, এবং একটি অ্যাসাইনমেন্ট। আমাদের প্রকল্পভিত্তিক শিক্ষাদান পদ্ধতি আপনাকে শেখার সাথে সাথেই গড়ে তুলতে দেয়, যা নতুন দক্ষতা স্থায়ী করার একটি প্রমাণিত উপায়।
+মাইক্রোসফটের আজুর ক্লাউড অ্যাডভোকেটরা ডেটা সায়েন্স সম্পর্কে ১০ সপ্তাহ, ২০টি পাঠবিশিষ্ট একটি কারিকুলাম দিতে পেরে আনন্দিত। প্রতিটি পাঠে প্রি-লেসন এবং পোস্ট-লেসন কুইজ, পাঠ সম্পূর্ণ করার জন্য লিখিত নির্দেশাবলী, একটি সমাধান এবং একটি অ্যাসাইনমেন্ট অন্তর্ভুক্ত রয়েছে। আমাদের প্রজেক্ট-ভিত্তিক শিক্ষাদান পদ্ধতি আপনাকে শেখার সাথে সাথে নির্মাণ করতে দেয়, যা নতুন দক্ষতা 'টিকিয়ে রাখার' প্রমাণিত উপায়।
-**আমাদের লেখকদের প্রতি আন্তরিক ধন্যবাদ:** [জাসমিন গ্রিনওয়ে](https://www.twitter.com/paladique), [ডিমিত্রি সোশনিকভ](http://soshnikov.com), [নিত্য নরসিমহন](https://twitter.com/nitya), [জ্যালেন ম্যাগি](https://twitter.com/JalenMcG), [জেন লুপার](https://twitter.com/jenlooper), [মাউড লেভি](https://twitter.com/maudstweets), [টিফানি সাউটের](https://twitter.com/TiffanySouterre), [ক্রিস্টোফার হ্যারিসন](https://www.twitter.com/geektrainer)।
+**আমাদের লেখকদের প্রতি আন্তরিক ধন্যবাদ:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer)।
-**🙏 বিশেষ ধন্যবাদ 🙏 আমাদের [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) লেখক, পর্যালোচক এবং বিষয়বস্তু অবদানকারীদের,** বিশেষ করে আর্যন অরোরা, [আদিত্য গরগ](https://github.com/AdityaGarg00), [আলন্দ্রা সাঞ্চেজ](https://www.linkedin.com/in/alondra-sanchez-molina/), [অঙ্কিতা সিংহ](https://www.linkedin.com/in/ankitasingh007), [অনুপম মিশ্রা](https://www.linkedin.com/in/anupam--mishra/), [অর্পিতা দাস](https://www.linkedin.com/in/arpitadas01/), ছাইলবিহারী দুবে, [ডিব্রি নসফোর](https://www.linkedin.com/in/dibrinsofor), [ডিশিতা ভাসিন](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [মাজদ সাফি](https://www.linkedin.com/in/majd-s/), [ম্যাক্স ব্লাম](https://www.linkedin.com/in/max-blum-6036a1186/), [মিগুয়েল করিয়া](https://www.linkedin.com/in/miguelmque/), [মোহাম্মা ইফতেখের (ইফটু) এবনে জালাল](https://twitter.com/iftu119), [নওরিন তাবাসসম](https://www.linkedin.com/in/nawrin-tabassum), [রেমন্ড ওয়াংসা পুত্রা](https://www.linkedin.com/in/raymond-wp/), [রোহিত যাদব](https://www.linkedin.com/in/rty2423), সমৃদ্ধি শর্মা, [সানিয়া সিনহা](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
-[শিনা নারুলা](https://www.linkedin.com/in/sheena-narua-n/), [তাউকীর আহমাদ](https://www.linkedin.com/in/tauqeerahmad5201/), যোগেন্দ্রসিং পওয়ার , [বিদুষী গুপ্তা](https://www.linkedin.com/in/vidushi-gupta07/), [জাসলিন সোনধি](https://www.linkedin.com/in/jasleen-sondhi/)
+**🙏 বিশেষ ধন্যবাদ 🙏 আমাদের [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) লেখক, রিভিউয়ার এবং কন্টেন্ট কন্ট্রিবিউটরদের,** বিশেষ করে আরিয়ান অরোরা, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)।
-||
+||
|:---:|
-| শিক্ষানবিসদের জন্য ডেটা সায়েন্স - _স্কেচনোট [@nitya](https://twitter.com/nitya) দ্বারা_ |
+| Data Science ফর বেগিনার্স - _স্কেচনোট [@nitya](https://twitter.com/nitya) দ্বারা_ |
-### 🌐 বহু-ভাষায় সহযোগিতা
+### 🌐 মাল্টি-ভাষা সমর্থন
-#### গিটহাব অ্যাকশন মাধ্যমে সমর্থিত (স্বয়ংক্রিয় ও সর্বদা আপ-টু-ডেট)
+#### গিটহাব অ্যাকশনের মাধ্যমে সমর্থিত (স্বয়ংক্রিয় ও সর্বদা আপ-টু-ডেট)
-[Arabic](../ar/README.md) | [Bengali](./README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](./README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **স্থানীয়ভাবে ক্লোন করতে চান?**
+> **স্থানীয়ভাবে ক্লোন করতে পছন্দ করেন?**
-> এই রেপোজিটরিটি ৫০+ ভাষার অনুবাদ অন্তর্ভুক্ত করে যা ডাউনলোড আকার উল্লেখযোগ্যভাবে বৃদ্ধি করে। অনুবাদ ব্যতীত ক্লোন করতে sparse checkout ব্যবহার করুন:
+> এই রিপোজিটরিতে ৫০+ ভাষার অনুবাদ অন্তর্ভুক্ত রয়েছে যা ডাউনলোডের আকার উল্লেখযোগ্যভাবে বৃদ্ধি করে। অনুবাদ ব্যতীত ক্লোন করতে sparse checkout ব্যবহার করুন:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> এটি আপনাকে খুব দ্রুত একটি ডাউনলোডের মাধ্যমে পুরো কোর্সটি সম্পন্ন করার জন্য প্রয়োজনীয় সবকিছু দেবে।
+> এটি আপনাকে কোর্স সম্পূর্ণ করার জন্য প্রয়োজনীয় সবকিছু দেয় দ্রুত ডাউনলোড সহ।
-**যদি আপনি অতিরিক্ত অনুবাদের প্রয়োজন পান তাহলে সেগুলি এখানে [তালিকাভুক্ত](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) রয়েছে**
+**আপনি যদি অতিরিক্ত অনুবাদ ভাষা চান সেগুলি এখানে তালিকাভুক্ত আছে [here](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### আমাদের কমিউনিটিতে যোগ দিন
[](https://discord.gg/nTYy5BXMWG)
-আমাদের কাছে একটি ডিসকর্ড লার্ন উইথ AI সিরিজ চলছে, আরও জানুন এবং আমাদের সাথে যুক্ত হোন [Learn with AI Series](https://aka.ms/learnwithai/discord) ১৮ - ৩০ সেপ্টেম্বর, ২০২৫ থেকে। আপনি ডেটা সায়েন্সের জন্য GitHub Copilot ব্যবহারের টিপস এবং ট্রিকস পাবেন।
+আমাদের একটি ডিসকর্ড লার্ন উইথ AI সিরিজ চলছে, আরও জানুন এবং আমাদের সাথে যোগ দিন [Learn with AI Series](https://aka.ms/learnwithai/discord) ১৮ - ৩০ সেপ্টেম্বর, ২০২৫। আপনি GitHub Copilot ব্যবহার করে Data Science এর টিপস এবং ট্রিকস পাবেন।
-
+
# আপনি কি একজন ছাত্র?
-নিম্নলিখিত সম্পদ দিয়ে শুরু করুন:
+নিম্নলিখিত উৎস থেকে শুরু করুন:
-- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) এই পৃষ্ঠায় আপনি শুরু করার জন্য রিসোর্স, শিক্ষার্থীদের জন্য প্যাক এবং এমনকি একটি বিনামূল্যে সার্টিফিকেট ভাউচার পাওয়ার উপায়গুলি পাবেন। এটি এমন একটি পৃষ্ঠা যা আপনি বুকমার্ক করতে চাইবেন এবং মাঝে মাঝে পরীক্ষা করবেন কারণ আমরা প্রতি মাস অন্ততএকবার বিষয়বস্তু পরিবর্তন করি।
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) একটি গ্লোবাল স্টুডেন্ট অ্যাম্বাসেডর কমিউনিটিতে যোগ দিন, এটি হতে পারে মাইক্রোসফটে প্রবেশের আপনার পথ।
+- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) এই পেজে আপনি বেগিনার্স রিসোর্স, ছাত্র প্যাক এবং এমনকি একটি ফ্রি সার্টিফিকেট ভাউচার পাওয়ার উপায় পাবেন। এটি একটি পেজ যা আপনি বুকমার্ক করতে এবং মাঝে মাঝে চেক করতে চান কারণ আমরা মাসের কমপক্ষে একবার কনটেন্ট পরিবর্তন করি।
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) একটি গ্লোবাল ছাত্র অ্যাম্বাসাডর কমিউনিটিতে যোগ দিন, এটি হতে পারে মাইক্রোসফটে আপনার পথ।
-# শুরু করা হচ্ছে
+# শুরু করা যাক
## 📚 ডকুমেন্টেশন
-- **[ইনস্টলেশন গাইড](INSTALLATION.md)** - শিক্ষানবিসদের জন্য ধাপে ধাপে সেটআপ নির্দেশাবলী
-- **[ব্যবহার নির্দেশিকা](USAGE.md)** - উদাহরণ এবং সাধারণ কর্মপ্রবাহ
-- **[সমস্যা সমাধান](TROUBLESHOOTING.md)** - সাধারণ সমস্যার সমাধান
-- **[অবদানকারী গাইড](CONTRIBUTING.md)** - এই প্রকল্পে অবদান রাখার উপায়
-- **[শিক্ষকদের জন্য](for-teachers.md)** - শিক্ষাদান নির্দেশনা এবং শ্রেণীকক্ষ সম্পদ
+- **[ইনস্টলেশন গাইড](INSTALLATION.md)** - বেগিনারদের জন্য ধাপে ধাপে সেটআপ নির্দেশনা
+- **[ব্যবহারের গাইড](USAGE.md)** - উদাহরণ এবং সাধারণ ওয়ার্কফ্লো
+- **[ট্রাবলশুটিং](TROUBLESHOOTING.md)** - সাধারণ সমস্যার সমাধান
+- **[কনট্রিবিউটিং গাইড](CONTRIBUTING.md)** - কিভাবে এই প্রোজেক্টে অবদান রাখবেন
+- **[শিক্ষকদের জন্য](for-teachers.md)** - শেখানোর নির্দেশনা এবং ক্লাসরুম রিসোর্স
## 👨🎓 শিক্ষার্থীদের জন্য
-> **পূর্ণ শিখনশীলরা**: ডেটা সায়েন্সে নতুন? আমাদের [শিক্ষানবিস-বান্ধব উদাহরণগুলি](examples/README.md) দিয়ে শুরু করুন! এই সহজ, ভাল টীকা যুক্ত উদাহরণগুলি আপনাকে পুরো পাঠক্রমে প্রবেশ করার আগে মৌলিক বিষয়গুলি বোঝাতে সাহায্য করবে।
-> **[শিক্ষার্থীরা](https://aka.ms/student-page)**: নিজের জন্য এই পাঠক্রম ব্যবহার করতে চাইলে, পুরো রেপো ফর্ক করুন এবং নিজেরাই কার্যাবলী সম্পন্ন করুন, একটি প্রি-লেকচার কুইজ দিয়ে শুরু করুন। তারপর লেকচার পড়ুন এবং বাকি কাজগুলি সম্পন্ন করুন। সমাধানের কোড অনুলিপি করার পরিবর্তে পাঠগুলি বোঝার মাধ্যমে প্রকল্পগুলি তৈরি করার চেষ্টা করুন; তবে, এই কোডগুলি প্রতিটি প্রকল্পভিত্তিক পাঠের /solutions ফোল্ডারে পাওয়া যায়। অন্য একটি ধারণা হলো বন্ধুদের সাথে একটি অধ্যয়ন গোষ্ঠী গঠন করে একত্রে বিষয়বস্তু পড়া। আরও অধ্যয়নের জন্য, আমরা [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) সুপারিশ করি।
+> **সম্পূর্ণ নতুনদের জন্য**: ডেটা সায়েন্সে নতুন? আমাদের [শিখতে সহজ উদাহরণগুলি](examples/README.md) দিয়ে শুরু করুন! এই সহজ, ভালোভাবে টীকা করা উদাহরণগুলি আপনাকে মৌলিক বিষয়গুলো বোঝাতে সাহায্য করবে পূর্ণ কারিকুলামে যাওয়ার আগে।
+> **[শিক্ষার্থীরা](https://aka.ms/student-page)**: এই কারিকুলাম নিজে ব্যবহার করার জন্য, পুরো রেপো ফর্ক করে নিজে নিজে প্রাক-লেকচার কুইজ দিয়ে শুরু করুন। তারপর লেকচার পড়ুন এবং বাকি কার্যক্রমগুলি সম্পন্ন করুন। সমাধান কোড কপি করার পরিবর্তে পাঠগুলো বোঝার মাধ্যমে প্রজেক্ট তৈরি করার চেষ্টা করুন; তবে প্রতিটি প্রজেক্ট-ভিত্তিক পাঠের /solutions ফোল্ডারে সেই কোড উপলব্ধ। আরেকটি ধারণা হলো বন্ধুদের সাথে স্টাডি গ্রুপ তৈরি করে একসাথে বিষয়বস্তু পড়া। আরো পড়াশোনার জন্য, আমরা [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) সুপারিশ করি।
**দ্রুত শুরু:**
-1. পরিবেশ সেটআপের জন্য [ইনস্টলেশন গাইড](INSTALLATION.md) দেখুন
-2. পাঠক্রমের সঙ্গে কাজ করার জন্য [ব্যবহার নির্দেশিকা](USAGE.md) পর্যালোচনা করুন
-3. পাঠ ১ থেকে শুরু করে ধারাবাহিকভাবে এগিয়ে যান
+1. আপনার পরিবেশ সেটআপ করতে [ইনস্টলেশন গাইড](INSTALLATION.md) দেখুন
+2. কারিকুলামের সাথে কাজ করার জন্য [ব্যবহারের গাইড](USAGE.md) পর্যালোচনা করুন
+3. পাঠ ১ থেকে শুরু করে ধারাবাহিকভাবে কাজ করুন
4. সহায়তার জন্য আমাদের [ডিসকর্ড কমিউনিটিতে](https://aka.ms/ds4beginners/discord) যোগ দিন
## 👩🏫 শিক্ষকদের জন্য
-> **শিক্ষকগণ**: আমরা এই পাঠক্রম ব্যবহারের কিছু পরামর্শ [অন্তর্ভুক্ত করেছি](for-teachers.md)। আমাদের আলোচনা ফোরামে আপনার মতামত জানান [এখানে](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+> **শিক্ষকবৃন্দ**: আমরা এই কারিকুলাম কিভাবে ব্যবহার করবেন সে সম্পর্কে [কিছু পরামর্শ](for-teachers.md) অন্তর্ভুক্ত করেছি। আপনার মতামত আমাদের [আলোচনা ফোরামে](https://github.com/microsoft/Data-Science-For-Beginners/discussions) জানাতে চাই!
+## টিমের সাথে পরিচিত হন
-## দলকে পরিচিত করুন
[](https://youtu.be/8mzavjQSMM4 "প্রোমো ভিডিও")
-**গিফ তৈরি করেছেন** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+**গিফ বিকাশ করেছেন** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 প্রকল্প সম্পর্কে এবং যারা এটি তৈরি করেছেন তাদের জন্য ভিডিও দেখতে উপরের ছবিটি ক্লিক করুন!
+> 🎥 উপরের ছবিতে ক্লিক করে প্রকল্প এবং যারা এটি তৈরি করেছেন তাদের সম্পর্কে একটি ভিডিও দেখুন!
-## শিক্ষাবিদ্যা
+## পেডাগজি
-আমরা এই পাঠক্রম তৈরির সময় দুটি শিক্ষণগত নীতিকে বেছে নিয়েছি: নিশ্চিত করা যে এটি প্রকল্পভিত্তিক এবং এতে নিয়মিত ছোট কুইজ অন্তর্ভুক্ত রয়েছে। এই সিরিজের শেষে, শিক্ষার্থীরা ডেটা সায়েন্সের মৌলিক নীতিমালা শিখবে, যার মধ্যে রয়েছে নৈতিক ধারণা, ডেটা প্রস্তুতি, ডেটার সাথে কাজ করার বিভিন্ন উপায়, ডেটা ভিজ্যুয়ালাইজেশন, ডেটা বিশ্লেষণ, ডেটা সায়েন্সের বাস্তব-জগতের ব্যবহার, এবং আরো অনেক কিছু।
+আমরা এই কারিকুলাম নির্মাণের সময় দুটি পেডাগজিকাল নীতিমালা বেছে নিয়েছি: তা প্রকল্প-ভিত্তিক নিশ্চিত করা এবং এতে প্রায়শই কুইজ অন্তর্ভুক্ত থাকা। এই সিরিজের শেষে, শিক্ষার্থীরা ডেটা সায়েন্সের মৌলিক নীতিমালা শিখবে, যার মধ্যে রয়েছে নৈতিক ধারণা, ডেটা প্রস্তুতি, ডেটার সাথে কাজ করার বিভিন্ন উপায়, ডেটা ভিজ্যুয়ালাইজেশন, ডেটা বিশ্লেষণ, ডেটা সায়েন্সের বাস্তব বিশ্বের ব্যবহার ক্ষেত্রে এবং আরও অনেক কিছু।
-অতিরিক্তভাবে, কোনও ক্লাসের আগে একটি কম ঝুঁকিপূর্ণ কুইজ শিক্ষার্থীদের একটি বিষয় শেখার উদ্দেশ্য নির্ধারণ করে, এবং ক্লাসের পরের দ্বিতীয় কুইজ আরও ভালো স্মরণশক্তি নিশ্চিত করে। এই পাঠক্রমটি নমনীয় এবং মজাদার দেখতে তৈরি করা হয়েছে এবং এটি সম্পূর্ণ বা আংশিকভাবে গ্রহণ করা যেতে পারে। প্রকল্পগুলি ছোট থেকে শুরু করে শেষ ১০ সপ্তাহের চক্রে ক্রমবর্ধমান জটিল হয়ে ওঠে।
+অতিরিক্তভাবে, একটি শ্রেণীর আগে একটি কম ঝুঁকিপূর্ণ কুইজ শিক্ষার্থীর শেখার উদ্দেশ্য স্থাপন করে, जबकि শ্রেণী শেষের পর দ্বিতীয় কুইজ আরও মেমোরি নিশ্চিত করে। এই কারিকুলামটি নমনীয় এবং মজার করে ডিজাইন করা হয়েছে এবং সম্পূর্ণ বা আংশিকভাবে নেওয়া যেতে পারে। প্রকল্পগুলি ছোট থেকে শুরু হয় এবং ১০ সপ্তাহের শেষে ক্রমশ জটিল হয়ে ওঠে।
-> আমাদের [আচরণবিধি](CODE_OF_CONDUCT.md), [অংশগ্রহণের নিয়মাবলি](CONTRIBUTING.md), [অনুবাদ গাইডলাইন](TRANSLATIONS.md) দেখুন। আমরা আপনার গঠনমূলক মতামত স্বাগত জানাই!
+> আমাদের [আচারসংহিতা](CODE_OF_CONDUCT.md), [অবদান](CONTRIBUTING.md), [অনুবাদ](TRANSLATIONS.md) নির্দেশিকা দেখুন। আমরা আপনার গঠনমূলক প্রতিক্রিয়ার স্বাগত জানাই!
-## প্রতিটি পাঠে অন্তর্ভুক্ত:
+## প্রতিটি পাঠের মধ্যে রয়েছে:
- ঐচ্ছিক স্কেচনোট
-- ঐচ্ছিক সম্পূরক ভিডিও
+- ঐচ্ছিক অতিরিক্ত ভিডিও
- পাঠের আগে ওয়ার্মআপ কুইজ
- লিখিত পাঠ
-- প্রকল্প-ভিত্তিক পাঠের জন্য, প্রকল্পটি কীভাবে তৈরি করবেন তার ধাপে ধাপে গাইড
+- প্রকল্প-ভিত্তিক পাঠের জন্য, ধাপে ধাপে প্রকল্প তৈরি করার গাইড
- জ্ঞান যাচাই
- একটি চ্যালেঞ্জ
-- সম্পূরক পড়াশোনা
-- অ্যাসাইনমেন্ট
-- [পাঠের পরবর্তী কুইজ](https://ff-quizzes.netlify.app/en/)
+- অতিরিক্ত পঠন
+- নিয়োগ
+- [পাঠের পরের কুইজ](https://ff-quizzes.netlify.app/en/)
-> **কুইজ সম্পর্কে একটি নোট**: সমস্ত কুইজ Quiz-App ফোল্ডারে থাকে, মোট ৪০টি কুইজ, প্রতিটিতে তিনটি প্রশ্ন। এগুলি পাঠের মধ্যে লিঙ্ক করা হয়েছে, কিন্তু কুইজ অ্যাপ লোকালি চালানো বা Azure এ ডিপ্লয় করা যেতে পারে; `quiz-app` ফোল্ডারের নির্দেশনা অনুসরণ করুন। এগুলো ধীরে ধীরে স্থানীয়করণ হচ্ছে।
+> **কুইজ সম্পর্কে একটি নোট**: সমস্ত কুইজগুলি Quiz-App ফোল্ডারে রয়েছে, মোট ৪০টি কুইজ যার প্রতিটিতে তিনটি প্রশ্ন। এগুলি পাঠের মধ্যে লিঙ্ক করা আছে, তবে কুইজ অ্যাপটি লোকালি চালানো বা Azure-এ স্থাপন করা যেতে পারে; `quiz-app` ফোল্ডারের নির্দেশ অনুসরণ করুন। এগুলি ধীরে ধীরে স্থানীয়করণ করা হচ্ছে।
-## 🎓 নবীনদের উপযোগী উদাহরণ
+## 🎓 শুরুতে বন্ধু-সুলভ উদাহরণ
-**ডেটা সায়েন্সে নতুন?** আমরা একটি বিশেষ [উদাহরণ ডিরেক্টরি](examples/README.md) তৈরি করেছি সাদামাটা, ভালভাবে মন্তব্যযুক্ত কোডসহ যা আপনাকে শুরু করতে সাহায্য করবে:
+**ডেটা সায়েন্সে নতুন?** আমরা একটি বিশেষ [উদাহরণের ডিরেক্টরি](examples/README.md) তৈরি করেছি যেখানে সহজ, স্পষ্ট মন্তব্য সহ কোড আছে যা আপনাকে শুরু করতে সাহায্য করবে:
-- 🌟 **Hello World** - আপনার প্রথম ডেটা সায়েন্স প্রোগ্রাম
-- 📂 **ডেটা লোডিং** - ডেটাসেট পড়া এবং অন্বেষণ শেখা
+- 🌟 **হ্যালো ওয়ার্ল্ড** - আপনার প্রথম ডেটা সায়েন্স প্রোগ্রাম
+- 📂 **ডেটা লোড করা** - ডেটাসেট পড়া এবং অন্বেষণ করা শেখা
- 📊 **সহজ বিশ্লেষণ** - পরিসংখ্যান গণনা এবং প্যাটার্ন খোঁজা
-- 📈 **মৌলিক ভিজ্যুয়ালাইজেশন** - চার্ট এবং গ্রাফ তৈরি
-- 🔬 **বাস্তব-জগতের প্রকল্প** - শুরু থেকে শেষ পর্যন্ত সম্পূর্ণ কাজের প্রবাহ
+- 📈 **বেসিক ভিজ্যুয়ালাইজেশন** - চার্ট এবং গ্রাফ তৈরি করা
+- 🔬 **বাস্তব প্রকল্প** - শুরু থেকে শেষ পর্যন্ত সম্পূর্ণ কার্যপ্রণালি
-প্রতিটি উদাহরণ বিস্তারিত মন্তব্য সহ আসে যা প্রতিটি ধাপ ব্যাখ্যা করে, যা একেবারে নবীনদের জন্য আদর্শ!
+প্রতিটি উদাহরণ বিশদ মন্তব্য অন্তর্ভুক্ত করে যা প্রতিটি ধাপ ব্যাখ্যা করে, যা সম্পূর্ণ নতুনদের জন্য উপযুক্ত!
👉 **[উদাহরণগুলি দিয়ে শুরু করুন](examples/README.md)** 👈
## পাঠসমূহ
-||
+||
|:---:|
-| ডেটা সায়েন্স ফর বিগিনার্স: রোডম্যাপ - _স্কেচনোট [@nitya](https://twitter.com/nitya) দ্বারা_ |
-
-
-| পাঠ নম্বর | বিষয় | পাঠ গ্রুপিং | শেখার উদ্দেশ্য | লিঙ্কযুক্ত পাঠ | লেখক |
-| :-------: | :----------------------------------------: | :-----------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | ডেটা সায়েন্স সংজ্ঞায়িত করা | [পরিচয়](1-Introduction/README.md) | ডেটা সায়েন্সের মৌলিক ধারণাগুলো শেখা এবং কিভাবে এটি কৃত্রিম বুদ্ধিমত্তা, মেশিন লার্নিং এবং বড় ডেটার সাথে সম্পর্কিত। | [পাঠ](1-Introduction/01-defining-data-science/README.md) [ভিডিও](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | ডেটা সায়েন্স নীতিশাস্ত্র | [পরিচয়](1-Introduction/README.md) | ডেটা নীতিশাস্ত্রের ধারণা, চ্যালেঞ্জ ও কাঠামো। | [পাঠ](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | ডেটা সংজ্ঞা | [পরিচয়](1-Introduction/README.md) | কিভাবে ডেটাকে শ্রেণীবদ্ধ করা হয় এবং তার সাধারণ উত্স। | [পাঠ](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | পরিসংখ্যান ও সম্ভাবনায় পরিচয় | [পরিচয়](1-Introduction/README.md) | ডেটা বোঝার জন্য সম্ভাবনা ও পরিসংখ্যানের গাণিতিক কৌশল। | [পাঠ](1-Introduction/04-stats-and-probability/README.md) [ভিডিও](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | রিলেশনাল ডেটার সাথে কাজ | [ডেটার সাথে কাজ](2-Working-With-Data/README.md) | রিলেশনাল ডেটার পরিচয় এবং স্ট্রাকচার্ড কুয়েরি ল্যাঙ্গুয়েজ(SQL) ব্যবহার করে ডেটা অন্বেষণ ও বিশ্লেষণের মৌলিক বিষয়। | [পাঠ](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) |
-| 06 | নন-রিলেশনাল ডেটার সাথে কাজ | [ডেটার সাথে কাজ](2-Working-With-Data/README.md) | নন-রিলেশনাল ডেটার পরিচয়, বিভিন্ন প্রকার এবং ডকুমেন্ট ডাটাবেস অন্বেষণ ও বিশ্লেষণের মৌলিক বিষয়। | [পাঠ](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | পাইথনের সাথে কাজ | [ডেটার সাথে কাজ](2-Working-With-Data/README.md) | পাইথন ব্যবহার করে ডেটা অন্বেষণের মৌলিক বিষয়সমূহ, যেমন প্যান্ডাস লাইব্রেরি। পাইথন প্রোগ্রামিংয়ের প্রাথমিক ধারণা থাকা প্রয়োজন। | [পাঠ](2-Working-With-Data/07-python/README.md) [ভিডিও](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | ডেটা প্রস্তুতি | [ডেটার সাথে কাজ](2-Working-With-Data/README.md) | মিসিং, ভুল বা অসম্পূর্ণ ডেটা মোকাবিলার জন্য ডেটা পরিষ্কারকরণ ও রূপান্তর কৌশল। | [পাঠ](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | পরিমাণ ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | বাটার ডেটা 🦆 ভিজ্যুয়ালাইজ করতে ম্যাটপ্লটলিব ব্যবহার শেখা | [পাঠ](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | ডেটার বণ্টন ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | পর্যবেক্ষণ এবং প্রবণতাগুলো একটি ইন্টারভ্যালে ভিজ্যুয়ালাইজ করা। | [পাঠ](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | অনুপাত ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | বিচ্ছিন্ন এবং গ্রুপকৃত শতাংশ ভিজ্যুয়ালাইজ করা। | [পাঠ](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | সম্পর্ক ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | ডেটা সেট এবং তাদের ভেরিয়েবলের মধ্যে সংযোগ এবং সম্পর্ক ভিজ্যুয়ালাইজ করা। | [পাঠ](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | অর্থবহ ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | সমস্যা সমাধান ও অন্তর্দৃষ্টির জন্য আপনার ভিজ্যুয়ালাইজেশন মূল্যবান করার কৌশল এবং নির্দেশনা। | [পাঠ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | ডেটা সায়েন্স লাইফসাইকেলে পরিচয় | [লাইফসাইকেল](4-Data-Science-Lifecycle/README.md) | ডেটা সায়েন্স জীবচক্র পরিচিতি এবং প্রথম ধাপ - ডেটা সংগ্রহ ও নিষ্কাশন। | [পাঠ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | বিশ্লেষণ | [লাইফসাইকেল](4-Data-Science-Lifecycle/README.md) | ডেটা বিশ্লেষণের জন্য ডেটা সায়েন্স লাইফসাইকেলের এই পর্যায়ের কৌশল। | [পাঠ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 16 | যোগাযোগ | [লাইফসাইকেল](4-Data-Science-Lifecycle/README.md) | তথ্য থেকে অন্তর্দৃষ্টি উপস্থাপন করার লক্ষ্যে সিদ্ধান্তগ্রহণকারীকে সহজবোধ্য উপস্থাপনা। | [পাঠ](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) |
-| 17 | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | ক্লাউডের মধ্যে ডেটা সায়েন্স এবং এর সুবিধাসমূহের পরিচয়। | [পাঠ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) এবং [Maud](https://twitter.com/maudstweets) |
-| 18 | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | লো কোড সরঞ্জাম ব্যবহার করে মডেল প্রশিক্ষণ। | [পাঠ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) এবং [Maud](https://twitter.com/maudstweets) |
-| 19 | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | অ্যাজিউর মেশিন লার্নিং স্টুডিও দিয়ে মডেল ডিপ্লয়মেন্ট। | [পাঠ](5-Data-Science-In-Cloud/19-Azure/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) এবং [Maud](https://twitter.com/maudstweets) |
-| 20 | প্রকৃত জগতে ডেটা সায়েন্স | [প্রকৃত জগতে](6-Data-Science-In-Wild/README.md) | বাস্তব জগতে ডেটা সায়েন্স চালিত প্রকল্পসমূহ। | [পাঠ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| ডেটা সায়েন্স ফর বিগিনারস: রোডম্যাপ - _স্কেচনোট [@nitya](https://twitter.com/nitya) দ্বারা_ |
+
+
+| পাঠ নম্বর | বিষয় | পাঠ গোষ্ঠী | শেখার উদ্দেশ্য | লিংক করা পাঠ | লেখক |
+| :-------: | :----------------------------------------: | :--------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------: | :----: |
+| ০১ | ডেটা সায়েন্স সংজ্ঞায়িত করা | [পরিচিতি](1-Introduction/README.md) | ডেটা সায়েন্সের মৌলিক ধারণা এবং এটি কিভাবে কৃত্রিম বুদ্ধিমত্তা, মেশিন লার্নিং, এবং বড় ডেটার সাথে সম্পর্কিত তা শেখা। | [পাঠ](1-Introduction/01-defining-data-science/README.md) [ভিডিও](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| ০২ | ডেটা সায়েন্স নীতি | [পরিচিতি](1-Introduction/README.md) | ডেটা নীতিশাস্ত্রের ধারণা, চ্যালেঞ্জ ও নীতিমালা। | [পাঠ](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| ০৩ | ডেটা সংজ্ঞায়িত করা | [পরিচিতি](1-Introduction/README.md) | ডেটা কিভাবে শ্রেণীবদ্ধ এবং সাধারণ উৎসগুলো কী তা শেখা। | [পাঠ](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| ০৪ | পরিসংখ্যান ও সম্ভাবনার পরিচিতি | [পরিচিতি](1-Introduction/README.md) | ডেটা বোঝার জন্য সম্ভাবনা ও পরিসংখ্যানের গাণিতিক কৌশল। | [পাঠ](1-Introduction/04-stats-and-probability/README.md) [ভিডিও](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| ০৫ | সম্পর্কযুক্ত ডেটার সাথে কাজ | [ডেটার সাথে কাজ](2-Working-With-Data/README.md) | সম্পর্কযুক্ত ডেটার পরিচিতি এবং Structured Query Language (SQL) ব্যবহার করে ডেটা অন্বেষণ ও বিশ্লেষণের প্রাথমিক ধারণা। | [পাঠ](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| ০৬ | NoSQL ডেটার সাথে কাজ | [ডেটার সাথে কাজ](2-Working-With-Data/README.md) | সম্পর্কবিহীন ডেটার পরিচিতি, এর বিভিন্ন ধরন, এবং ডকুমেন্ট ডেটাবেস বিশ্লেষণের প্রাথমিক ধারণা। | [পাঠ](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique) |
+| ০৭ | পাইথন এর সাথে কাজ | [ডেটার সাথে কাজ](2-Working-With-Data/README.md) | Pandas এর মতো লাইব্রেরি ব্যবহার করে ডেটা অন্বেষণের জন্য পাইথন ব্যবহারের মূলনীতি। পাইথন প্রোগ্রামিংয়ের মৌলিক ধারণা থাকা উত্তম। | [পাঠ](2-Working-With-Data/07-python/README.md) [ভিডিও](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| ০৮ | ডেটা প্রস্তুতি | [ডেটার সাথে কাজ](2-Working-With-Data/README.md) | অনুপস্থিত, ভুল বা অসম্পূর্ণ ডেটার সমস্যা মোকাবেলার জন্য ডেটা পরিষ্কারকরণ এবং রূপান্তরের প্রযুক্তি। | [পাঠ](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| ০৯ | পরিমাণের ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | Matplotlib ব্যবহার করে পাখির ডেটা ভিজ্যুয়ালাইজেশন শেখা 🦆 | [পাঠ](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| ১০ | ডেটার বন্টনের ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | একটি ইন্টারভ্যালে পর্যবেক্ষণ এবং প্রবণতা ভিজ্যুয়ালাইজেশন। | [পাঠ](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| ১১ | অনুপাতের ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | বিচ্ছিন্ন এবং গোষ্ঠীবদ্ধ শতাংশের ভিজ্যুয়ালাইজেশন। | [পাঠ](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| ১২ | সম্পর্কের ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | ডেটার সেট এবং তাদের পরিবর্তকদের মধ্যে সংযোগ এবং সহসম্পর্কের ভিজ্যুয়ালাইজেশন। | [পাঠ](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| ১৩ | অর্থপূর্ণ ভিজ্যুয়ালাইজেশন | [ডেটা ভিজ্যুয়ালাইজেশন](3-Data-Visualization/README.md) | কার্যকর সমস্যা সমাধান এবং অন্তর্দৃষ্টির জন্য আপনার ভিজ্যুয়ালাইজেশনকে মূল্যবান করার কৌশল ও নির্দেশনা। | [পাঠ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| ১৪ | ডেটা সায়েন্স লাইফসাইকেলের পরিচিতি | [লাইফসাইকেল](4-Data-Science-Lifecycle/README.md) | ডেটা সায়েন্স লাইফসাইকেলের পরিচিতি এবং ডেটা অর্জন ও নিষ্কাশনের প্রথম ধাপ। | [পাঠ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| ১৫ | বিশ্লেষণ | [লাইফসাইকেল](4-Data-Science-Lifecycle/README.md) | ডেটা সায়েন্স লাইফসাইকেলের এই ধাপটি ডেটা বিশ্লেষণের কৌশলগুলোর প্রতি মনোযোগ দেয়। | [পাঠ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| ১৬ | যোগাযোগ | [লাইফসাইকেল](4-Data-Science-Lifecycle/README.md) | এই ধাপটি ডেটা থেকে প্রাপ্ত অন্তর্দৃষ্টি উপস্থাপনের ওপর কেন্দ্রিত, যেন সিদ্ধান্ত গ্রহণকারীরা সহজে বুঝতে পারে। | [পাঠ](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| ১৭ | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | ক্লাউডে ডেটা সায়েন্স এবং এর সুবিধাসমূহ পরিচয় করিয়ে দেয়। | [পাঠ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) এবং [Maud](https://twitter.com/maudstweets) |
+| ১৮ | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | Low Code টুল ব্যবহার করে মডেল প্রশিক্ষণ। |[পাঠ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) এবং [Maud](https://twitter.com/maudstweets) |
+| ১৯ | ক্লাউডে ডেটা সায়েন্স | [ক্লাউড ডেটা](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio দিয়ে মডেল মোতায়েন। | [পাঠ](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) এবং [Maud](https://twitter.com/maudstweets) |
+| ২০ | বন্যে ডেটা সায়েন্স | [ইন দ্য ওয়াইল্ড](6-Data-Science-In-Wild/README.md) | বাস্তব জগতে ডেটা সায়েন্স চালিত প্রকল্প। | [পাঠ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-এই নমুনাটি একটি Codespace এ খুলতে নিম্নলিখিত ধাপগুলি অনুসরণ করুন:
-1. Code ড্রপ-ডাউন মেনুতে ক্লিক করুন এবং Open with Codespaces অপশন নির্বাচন করুন।
-2. প্যানেল-এর নিচে + New codespace নির্বাচন করুন।
-অতিরিক্ত তথ্যের জন্য, [GitHub ডকুমেন্টেশন](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) দেখুন।
+এই নমুনাটি একটি Codespace-এ খোলার জন্য নিচের ধাপগুলি অনুসরণ করুন:
+১. কোড ড্রপ-ডাউন মেনুতে ক্লিক করুন এবং Open with Codespaces অপশন নির্বাচন করুন।
+২. পেনের নীচে + New codespace নির্বাচন করুন।
+আরো তথ্যের জন্য, [GitHub ডকুমেন্টেশন](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) দেখুন।
-## VSCode রিমোট - কনটেইনারস
-আপনার স্থানীয় মেশিন ও VSCode ব্যবহার করে VS Code Remote - Containers এক্সটেনশন দিয়ে একটি কনটেইনারে এই রিপোজিটরি খুলতে:
+## VSCode রিমোট - কন্টেইনার
-1. এই প্রথম যদি কোনও ডেভেলপমেন্ট কনটেইনার ব্যবহার করেন, দয়া করে নিশ্চিত করুন আপনার সিস্টেমের প্রয়োজনীয়তা পূরণ করে (যেমন ডকার ইনস্টল করা আছে) [গেটিং স্টার্টেড ডকুমেন্টেশন](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) এ।
+আপনার স্থানীয় মেশিন এবং VSCode ব্যবহার করে এই রিপোজিটরিটি একটি কন্টেইনার এ খোলার জন্য VS Code Remote - Containers এক্সটেনশন ব্যবহার করুন:
-এই রিপোজিটরি ব্যবহার করতে, আপনি বা হয়তো একটি বিচ্ছিন্ন ডকার ভলিউমে রিপোজিটরি খুলতে পারেন:
+১. যদি এটি আপনার প্রথমবার ডেভেলপমেন্ট কন্টেইনার ব্যবহার করা হয়, তাহলে নিশ্চিত করুন আপনার সিস্টেম প্রয়োজনীয়তা পূরণ করে (যেমন Docker ইনস্টল করা রয়েছে) [গেটিং স্টার্টেড ডকুমেন্টেশন](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) এ।
-**দ্রষ্টব্য**: আন্ডার দ্য হুড, এটি Remote-Containers: **Clone Repository in Container Volume...** কমান্ড ব্যবহার করবে সোর্স কোড ডকার ভলিউমে ক্লোন করার জন্য স্থানীয় ফাইল সিস্টেমের পরিবর্তে। [ভলিউমস](https://docs.docker.com/storage/volumes/) হল কনটেইনার ডেটা সংরক্ষণের জন্য পছন্দের পদ্ধতি।
+এই রিপোজিটরিটি ব্যবহার করতে আপনি পৃথক Docker ভলিউমে রিপোজিটরিটি খুলতে পারেন:
-অথবা স্থানীয়ভাবে ক্লোন করা বা ডাউনলোড করা রিপোজিটরি খুলুন:
+**বিঃদ্রঃ** ভিতরে Remote-Containers: **Clone Repository in Container Volume...** কমান্ড ব্যবহার করে সোর্স কোড লোকাল ফাইল সিস্টেমের পরিবর্তে Docker ভলিউমে ক্লোন করবে। [ভলিউম](https://docs.docker.com/storage/volumes/) হলো কন্টেইনার ডেটা সংরক্ষণের প্রিয় পদ্ধতি।
-- এই রিপোজিটরিটি আপনার লোকাল ফাইল সিস্টেমে ক্লোন করুন।
+অথবা স্থানীয়ভাবে ক্লোন বা ডাউনলোডকৃত সংকলনটি খুলুন:
+
+- রিপোজিটরিটি আপনার লোকাল ফাইল সিস্টেমে ক্লোন করুন।
- F1 চাপুন এবং **Remote-Containers: Open Folder in Container...** কমান্ড নির্বাচন করুন।
-- এই ফোল্ডারটির ক্লোনকৃত কপি নির্বাচন করুন, কনটেইনার শুরু হওয়ার জন্য অপেক্ষা করুন, এবং কাজ শুরু করুন।
+- এই ফোল্ডারের ক্লোনকৃত কপি নির্বাচন করুন, কন্টেইনার শুরু হওয়া পর্যন্ত অপেক্ষা করুন এবং কাজ শুরু করুন।
-## অফলাইন প্রবেশাধিকার
+## অফলাইনে অ্যাক্সেস
-আপনি [Docsify](https://docsify.js.org/#/) ব্যবহার করে এই ডকুমেন্টেশন অফলাইনে চালাতে পারেন। এই রিপোজিটরিটি ফর্ক করুন, আপনার লোকাল মেশিনে [Docsify ইন্সটল করুন](https://docsify.js.org/#/quickstart), তারপর এই রিপোর রুট ফোল্ডারে `docsify serve` টাইপ করুন। ওয়েবসাইটটি আপনার লোকালহোস্টে ৩০০০ নম্বর পোর্টে চলবে: `localhost:3000`।
+[Docsify](https://docsify.js.org/#/) ব্যবহার করে আপনি অফলাইনে এই ডকুমেন্টেশনটি চালাতে পারেন। এই রিপো ফর্ক করুন, আপনার লোকাল মেশিনে [Docsify ইনস্টল করুন](https://docsify.js.org/#/quickstart), তারপর এই রিপো-এর রুট ফোল্ডারে `docsify serve` টাইপ করুন। ওয়েবসাইটটি আপনার লোকালহোস্টের পোর্ট ৩০০০-এ পরিবেশন হবে: `localhost:3000`।
-> নোট করুন, নোটবুকগুলো Docsify দিয়ে রেন্ডার হবে না, তাই যখন কোনও নোটবুক চালাতে হবে, সেটি আলাদাভাবে VS Code এ পাইথন কার্নেল চালিয়ে করুন।
+> লক্ষ্য করুন, নোটবুকগুলি Docsify দ্বারা রেন্ডার করা হবে না, তাই যখন নোটবুক চালানোর প্রয়োজন হবে, আলাদা করে VS Code-এ Python কের্নেল চালিয়ে তা করুন।
-## অন্যান্য পাঠক্রম
+## অন্যান্য কারিকুলাম
-আমাদের টিম অন্যান্য পাঠক্রম তৈরি করে! দেখুন:
+আমাদের টিম অন্যান্য কারিকুলামও তৈরি করে! দেখুন:
### LangChain
@@ -209,7 +201,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-### আজুর / এজ / এমসিপি / এজেন্টস
+### Azure / Edge / MCP / Agents
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
@@ -217,7 +209,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-### জেনারেটিভ এআই সিরিজ
+### Generative AI সিরিজ
[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
@@ -225,7 +217,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-### কোর লার্নিং
+### মূল শিখন
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
@@ -236,27 +228,27 @@ CO_OP_TRANSLATOR_METADATA:
---
-### কপিলট সিরিজ
+### কপাইলট সিরিজ
[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-## সাহায্য পাওয়া
+## সহায়তা নেওয়া
-**সমস্যার সম্মুখীন হচ্ছেন?** সাধারণ সমস্যার সমাধানের জন্য আমাদের [Troubleshooting Guide](TROUBLESHOOTING.md) দেখুন।
+**সমস্যায় পড়েছেন?** সাধারণ সমস্যার সমাধানের জন্য আমাদের [Troubleshooting Guide](TROUBLESHOOTING.md) দেখুন।
-যদি আপনি আটকে যান বা AI অ্যাপস তৈরির বিষয়ে কোনো প্রশ্ন থাকে। এমসিপি নিয়ে আলোচনা করতে শিখতে ইচ্ছুক বন্ধু ও অভিজ্ঞ ডেভেলপারদের সাথে যোগ দিন। এটি একটি সহযোগী সম্প্রদায় যেখানে প্রশ্ন স্বাগত এবং জ্ঞান মুক্তভাবে ভাগ করা হয়।
+যদি আটকে যান অথবা AI অ্যাপ তৈরি করার বিষয়ে কোনও প্রশ্ন থাকে। MCP সম্পর্কে আলোচনায় সহশিক্ষার্থী ও অভিজ্ঞ ডেভেলপারদের সাথে যোগ দিন। এটি একটি সহায়ক কমিউনিটি যেখানে প্রশ্ন স্বাগত এবং জ্ঞান স্বাধীনভাবে শেয়ার করা হয়।
[](https://discord.gg/nTYy5BXMWG)
-পণ্য সম্পর্কে প্রতিক্রিয়া বা তৈরি করার সময় ত্রুটি থাকলে যান:
+পণ্য প্রতিক্রিয়া বা ত্রুটি থাকলে এই ঠিকানায় যান:
[](https://aka.ms/foundry/forum)
---
-**অস্বীকারোক্তি**:
-এই দস্তাবেজটি AI অনুবাদ পরিষেবা [Co-op Translator](https://github.com/Azure/co-op-translator) ব্যবহার করে অনূদিত হয়েছে। আমরা যথাসম্ভব সঠিকতা বজায় রাখতে চেষ্টা করি, তবে স্বয়ংক্রিয় অনুবাদে ভুল বা ত্রুটি থাকতে পারে। মৌলিক ভাষায় থাকা আসল দস্তাবেজটিকে কর্তৃত্বপূর্ণ উৎস হিসাবে বিবেচনা করা উচিত। গুরুত্বপূর্ণ তথ্যের ক্ষেত্রে পেশাদার মানুষ দ্বারা অনুবাদ করানো শিফারিশ করা হয়। এই অনুবাদের ব্যবহারের ফলে কোনো ভুল ধারণা বা ভুল ব্যাখ্যার জন্য আমরা দায়বদ্ধ না।
+**বিষয়ভিত্তিক সতর্কতা**:
+এই ডকুমেন্টটি AI অনুবাদ সেবা [Co-op Translator](https://github.com/Azure/co-op-translator) ব্যবহার করে অনূদিত হয়েছে। যদিও আমরা যথাসাধ্য সঠিকতার জন্য চেষ্টা করি, তবুও স্বয়ংক্রিয় অনুবাদে ভুল বা অসততা থাকতে পারে। মূল ডকুমেন্টটির নিজ ভাষায় থাকা তথ্যই সর্বোচ্চ প্রমাণ স্বরূপ গ্রহণ করতে হবে। জরুরি তথ্যের জন্য পেশাজীবী মানব অনুবাদের পরামর্শ দেওয়া হয়। এই অনুবাদের ব্যবহার থেকে সৃষ্ট যেকোনো ভুল বোঝাবুঝি বা ভুল অর্থ গ্রহণের জন্য আমরা দায়ী নই।
\ No newline at end of file
diff --git a/translations/bn/SECURITY.md b/translations/bn/SECURITY.md
index de7ad481..ffdd7396 100644
--- a/translations/bn/SECURITY.md
+++ b/translations/bn/SECURITY.md
@@ -1,12 +1,3 @@
-
## নিরাপত্তা
মাইক্রোসফট আমাদের সফটওয়্যার পণ্য এবং পরিষেবার নিরাপত্তাকে অত্যন্ত গুরুত্ব দেয়, যার মধ্যে রয়েছে আমাদের GitHub সংগঠনগুলোর মাধ্যমে পরিচালিত সমস্ত সোর্স কোড রিপোজিটরি। এই সংগঠনগুলোর মধ্যে রয়েছে [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), এবং [আমাদের GitHub সংগঠনগুলো](https://opensource.microsoft.com/)।
diff --git a/translations/bn/SUPPORT.md b/translations/bn/SUPPORT.md
index 2f300016..bf78c267 100644
--- a/translations/bn/SUPPORT.md
+++ b/translations/bn/SUPPORT.md
@@ -1,12 +1,3 @@
-
# সহায়তা
## সমস্যা জমা দেওয়া এবং সহায়তা পাওয়ার উপায়
diff --git a/translations/bn/TROUBLESHOOTING.md b/translations/bn/TROUBLESHOOTING.md
index 18e2d75d..fb24ed7b 100644
--- a/translations/bn/TROUBLESHOOTING.md
+++ b/translations/bn/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# সমস্যার সমাধানের গাইড
এই গাইডটি ডেটা সায়েন্স ফর বিগিনার্স কারিকুলাম নিয়ে কাজ করার সময় সাধারণ সমস্যাগুলোর সমাধান প্রদান করে।
diff --git a/translations/bn/USAGE.md b/translations/bn/USAGE.md
index c0b5f1ad..d45b974a 100644
--- a/translations/bn/USAGE.md
+++ b/translations/bn/USAGE.md
@@ -1,12 +1,3 @@
-
# ব্যবহার নির্দেশিকা
এই নির্দেশিকাটি ডেটা সায়েন্স ফর বিগিনার্স কারিকুলাম ব্যবহারের উদাহরণ এবং সাধারণ কর্মপ্রবাহ প্রদান করে।
diff --git a/translations/bn/docs/_sidebar.md b/translations/bn/docs/_sidebar.md
index ffba2bbd..d9402e32 100644
--- a/translations/bn/docs/_sidebar.md
+++ b/translations/bn/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- পরিচিতি
- [ডেটা সায়েন্স সংজ্ঞায়িত করা](../1-Introduction/01-defining-data-science/README.md)
- [ডেটা সায়েন্সের নৈতিকতা](../1-Introduction/02-ethics/README.md)
diff --git a/translations/bn/examples/README.md b/translations/bn/examples/README.md
index 7d109b2d..55675f31 100644
--- a/translations/bn/examples/README.md
+++ b/translations/bn/examples/README.md
@@ -1,12 +1,3 @@
-
# ডেটা সায়েন্সের জন্য সহজ উদাহরণ
উদাহরণ ডিরেক্টরিতে আপনাকে স্বাগতম! এই সহজ, বিস্তারিত মন্তব্যসহ উদাহরণগুলো এমনভাবে ডিজাইন করা হয়েছে যাতে আপনি ডেটা সায়েন্স শুরু করতে পারেন, এমনকি আপনি যদি একেবারে নতুন হন।
diff --git a/translations/bn/for-teachers.md b/translations/bn/for-teachers.md
index 58abbbb0..c193bf82 100644
--- a/translations/bn/for-teachers.md
+++ b/translations/bn/for-teachers.md
@@ -1,12 +1,3 @@
-
## শিক্ষকদের জন্য
আপনি কি আপনার ক্লাসরুমে এই পাঠ্যক্রম ব্যবহার করতে চান? নির্দ্বিধায় ব্যবহার করুন!
diff --git a/translations/bn/quiz-app/README.md b/translations/bn/quiz-app/README.md
index 73f4a309..af499576 100644
--- a/translations/bn/quiz-app/README.md
+++ b/translations/bn/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# কুইজসমূহ
এই কুইজগুলো ডেটা সায়েন্স কারিকুলামের প্রাক-লেকচার এবং পোস্ট-লেকচার কুইজ, যা পাওয়া যাবে এখানে: https://aka.ms/datascience-beginners
diff --git a/translations/bn/sketchnotes/README.md b/translations/bn/sketchnotes/README.md
index 7ad8f95c..d11bbe4d 100644
--- a/translations/bn/sketchnotes/README.md
+++ b/translations/bn/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
সমস্ত স্কেচনোট এখানে খুঁজুন!
## কৃতজ্ঞতা
diff --git a/translations/br/README.md b/translations/br/README.md
deleted file mode 100644
index 49c22d10..00000000
--- a/translations/br/README.md
+++ /dev/null
@@ -1,262 +0,0 @@
-
-# Ciência de Dados para Iniciantes - Um Currículo
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
-
-
-[](https://discord.gg/nTYy5BXMWG)
-
-[](https://aka.ms/foundry/forum)
-
-Os Azure Cloud Advocates da Microsoft têm o prazer de oferecer um currículo de 10 semanas e 20 lições totalmente sobre Ciência de Dados. Cada lição inclui questionários pré e pós-lição, instruções escritas para completar a lição, uma solução e uma tarefa. Nossa pedagogia baseada em projetos permite que você aprenda enquanto constrói, uma forma comprovada para novas habilidades 'ficarem'.
-
-**Agradecimentos sinceros aos nossos autores:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-
-**🙏 Agradecimentos especiais 🙏 aos nossos autores, revisores e colaboradores de conteúdo do [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** notavelmente Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
-[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-
-||
-|:---:|
-| Ciência de Dados para Iniciantes - _Anotação visual por [@nitya](https://twitter.com/nitya)_ |
-
-### 🌐 Suporte Multilíngue
-
-#### Suportado via GitHub Action (Automatizado & Sempre Atualizado)
-
-
-[Árabe](../ar/README.md) | [Bengali](../bn/README.md) | [Búlgaro](../bg/README.md) | [Birmanês (Myanmar)](../my/README.md) | [Chinês (Simplificado)](../zh/README.md) | [Chinês (Tradicional, Hong Kong)](../hk/README.md) | [Chinês (Tradicional, Macau)](../mo/README.md) | [Chinês (Tradicional, Taiwan)](../tw/README.md) | [Croata](../hr/README.md) | [Tcheco](../cs/README.md) | [Dinamarquês](../da/README.md) | [Holandês](../nl/README.md) | [Estoniano](../et/README.md) | [Finlandês](../fi/README.md) | [Francês](../fr/README.md) | [Alemão](../de/README.md) | [Grego](../el/README.md) | [Hebraico](../he/README.md) | [Hindi](../hi/README.md) | [Húngaro](../hu/README.md) | [Indonésio](../id/README.md) | [Italiano](../it/README.md) | [Japonês](../ja/README.md) | [Kannada](../kn/README.md) | [Coreano](../ko/README.md) | [Lituano](../lt/README.md) | [Malaio](../ms/README.md) | [Malaiala](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Pidgin Nigeriano](../pcm/README.md) | [Norueguês](../no/README.md) | [Persa (Farsi)](../fa/README.md) | [Polonês](../pl/README.md) | [Português (Brasil)](./README.md) | [Português (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romeno](../ro/README.md) | [Russo](../ru/README.md) | [Sérvio (Cirílico)](../sr/README.md) | [Eslovaco](../sk/README.md) | [Esloveno](../sl/README.md) | [Espanhol](../es/README.md) | [Suaíli](../sw/README.md) | [Sueco](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tâmil](../ta/README.md) | [Telugu](../te/README.md) | [Tailandês](../th/README.md) | [Turco](../tr/README.md) | [Ucraniano](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamita](../vi/README.md)
-
-> **Prefere Clonar Localmente?**
-
-> Este repositório inclui mais de 50 traduções de idiomas, o que aumenta significativamente o tamanho do download. Para clonar sem traduções, use o sparse checkout:
-> ```bash
-> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
-> cd Data-Science-For-Beginners
-> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
-> ```
-> Isso te dá tudo que precisa para completar o curso com um download muito mais rápido.
-
-
-**Se desejar ter suporte para idiomas adicionais, os idiomas suportados estão listados [aqui](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-
-#### Junte-se à Nossa Comunidade
-[](https://discord.gg/nTYy5BXMWG)
-
-Estamos com uma série de aprendizado no Discord com IA, saiba mais e junte-se a nós em [Learn with AI Series](https://aka.ms/learnwithai/discord) de 18 a 30 de setembro de 2025. Você receberá dicas e truques para usar o GitHub Copilot para Ciência de Dados.
-
-
-
-# Você é estudante?
-
-Comece com os seguintes recursos:
-
-- [Página do Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Nesta página, você encontrará recursos para iniciantes, kits para estudantes e até maneiras de obter um voucher de certificação gratuito. Esta é uma página que você vai querer salvar nos favoritos e checar de tempos em tempos, pois trocamos o conteúdo pelo menos mensalmente.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Junte-se a uma comunidade global de embaixadores estudantis, esta pode ser sua porta de entrada para a Microsoft.
-
-# Começando
-
-## 📚 Documentação
-
-- **[Guia de Instalação](INSTALLATION.md)** - Instruções de configuração passo a passo para iniciantes
-- **[Guia de Uso](USAGE.md)** - Exemplos e fluxos de trabalho comuns
-- **[Resolução de Problemas](TROUBLESHOOTING.md)** - Soluções para problemas comuns
-- **[Guia de Contribuição](CONTRIBUTING.md)** - Como contribuir para este projeto
-- **[Para Professores](for-teachers.md)** - Orientações para ensino e recursos para sala de aula
-
-## 👨🎓 Para Estudantes
-> **Iniciantes Completos**: Novo em ciência de dados? Comece com nossos [exemplos amigáveis para iniciantes](examples/README.md)! Esses exemplos simples e bem comentados ajudarão você a entender o básico antes de mergulhar no currículo completo.
-> **[Estudantes](https://aka.ms/student-page)**: para usar este currículo por conta própria, faça um fork do repositório inteiro e complete os exercícios sozinho, começando com um questionário pré-curso. Então leia a aula e complete o restante das atividades. Tente criar os projetos compreendendo as lições em vez de copiar o código da solução; entretanto, esse código está disponível nas pastas /solutions em cada lição orientada a projetos. Outra ideia seria formar um grupo de estudos com amigos e passar pelo conteúdo juntos. Para estudo adicional, recomendamos [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
-
-**Início rápido:**
-1. Confira o [Guia de Instalação](INSTALLATION.md) para configurar seu ambiente
-2. Revise o [Guia de Uso](USAGE.md) para aprender a trabalhar com o currículo
-3. Comece pela Lição 1 e avance sequencialmente
-4. Junte-se à nossa [comunidade no Discord](https://aka.ms/ds4beginners/discord) para suporte
-
-## 👩🏫 Para Professores
-
-> **Professores**: incluímos [algumas sugestões](for-teachers.md) sobre como usar este currículo. Adoraríamos seu feedback [em nosso fórum de discussões](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
-## Conheça a Equipe
-[](https://youtu.be/8mzavjQSMM4 "Vídeo promocional")
-
-**Gif por** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-
-> 🎥 Clique na imagem acima para um vídeo sobre o projeto e as pessoas que o criaram!
-
-## Pedagogia
-
-Escolhemos dois princípios pedagógicos ao construir este currículo: garantir que ele seja baseado em projetos e que inclua questionários frequentes. Ao final desta série, os estudantes terão aprendido princípios básicos de ciência de dados, incluindo conceitos éticos, preparação de dados, diferentes formas de trabalhar com dados, visualização de dados, análise de dados, casos reais de uso da ciência de dados e mais.
-
-Além disso, um questionário de baixo risco antes da aula define a intenção do estudante em aprender um tópico, enquanto um segundo questionário após a aula garante maior retenção. Este currículo foi projetado para ser flexível e divertido e pode ser feito na íntegra ou em partes. Os projetos começam pequenos e se tornam progressivamente mais complexos ao longo de 10 semanas.
-
-> Encontre nosso [Código de Conduta](CODE_OF_CONDUCT.md), diretrizes de [Contribuição](CONTRIBUTING.md), [Tradução](TRANSLATIONS.md). Agradecemos seu feedback construtivo!
-
-## Cada aula inclui:
-
-- Sketchnote opcional
-- Vídeo suplementar opcional
-- Questionário preparatório pré-aula
-- Aula escrita
-- Para aulas baseadas em projetos, guias passo a passo de como construir o projeto
-- Verificações de conhecimento
-- Um desafio
-- Leitura suplementar
-- Tarefa
-- [Questionário pós-aula](https://ff-quizzes.netlify.app/en/)
-
-> **Uma nota sobre questionários**: Todos os questionários estão contidos na pasta Quiz-App, totalizando 40 questionários com três perguntas cada. Eles estão vinculados dentro das aulas, mas o app de questionários pode ser executado localmente ou implantado no Azure; siga as instruções na pasta `quiz-app`. Eles estão sendo gradualmente localizados.
-
-## 🎓 Exemplos para Iniciantes
-
-**Novo em Ciência de Dados?** Criamos um diretório especial de [exemplos](examples/README.md) com códigos simples e bem comentados para ajudar você a começar:
-
-- 🌟 **Hello World** - Seu primeiro programa de ciência de dados
-- 📂 **Carregando Dados** - Aprenda a ler e explorar conjuntos de dados
-- 📊 **Análise Simples** - Calcule estatísticas e encontre padrões
-- 📈 **Visualização Básica** - Crie gráficos e diagramas
-- 🔬 **Projeto do Mundo Real** - Fluxo completo do início ao fim
-
-Cada exemplo inclui comentários detalhados explicando cada passo, tornando-o perfeito para iniciantes absolutos!
-
-👉 **[Comece com os exemplos](examples/README.md)** 👈
-
-## Aulas
-
-
-||
-|:---:|
-| Ciência de Dados para Iniciantes: Roteiro - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
-
-
-| Número da Aula | Tópico | Grupo de Aula | Objetivos de Aprendizagem | Aula Vinculada | Autor |
-| :------------: | :-----------------------------: | :------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Definindo Ciência de Dados | [Introdução](1-Introduction/README.md) | Conheça os conceitos básicos por trás da ciência de dados e como ela se relaciona com inteligência artificial, aprendizado de máquina e big data. | [aula](1-Introduction/01-defining-data-science/README.md) [vídeo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Ética em Ciência de Dados | [Introdução](1-Introduction/README.md) | Conceitos, desafios e frameworks de Ética em Dados. | [aula](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Definindo Dados | [Introdução](1-Introduction/README.md) | Como os dados são classificados e suas fontes comuns. | [aula](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Introdução a Estatística e Probabilidade | [Introdução](1-Introduction/README.md) | Técnicas matemáticas de probabilidade e estatística para entender dados. | [aula](1-Introduction/04-stats-and-probability/README.md) [vídeo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Trabalhando com Dados Relacionais | [Trabalhando com Dados](2-Working-With-Data/README.md) | Introdução aos dados relacionais e noções básicas de exploração e análise de dados relacionais com a Structured Query Language, também conhecida como SQL (pronuncia-se “sí-quel”). | [aula](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Trabalhando com Dados NoSQL | [Trabalhando com Dados](2-Working-With-Data/README.md) | Introdução aos dados não relacionais, seus vários tipos e noções básicas de exploração e análise em bancos de dados de documentos. | [aula](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Trabalhando com Python | [Trabalhando com Dados](2-Working-With-Data/README.md) | Noções básicas de uso do Python para exploração de dados com bibliotecas como Pandas. Recomenda-se compreensão básica em programação Python. | [aula](2-Working-With-Data/07-python/README.md) [vídeo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Preparação de Dados | [Trabalhando com Dados](2-Working-With-Data/README.md) | Técnicas para limpeza e transformação de dados para lidar com desafios de dados ausentes, imprecisos ou incompletos. | [aula](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Visualizando Quantidades | [Visualização de Dados](3-Data-Visualization/README.md) | Aprenda a usar Matplotlib para visualizar dados sobre pássaros 🦆 | [aula](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Visualizando Distribuições de Dados | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizando observações e tendências dentro de um intervalo. | [aula](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Visualizando Proporções | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizando percentuais discretos e agrupados. | [aula](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Visualizando Relações | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizando conexões e correlações entre conjuntos de dados e suas variáveis. | [aula](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Visualizações Significativas | [Visualização de Dados](3-Data-Visualization/README.md) | Técnicas e orientações para tornar suas visualizações valiosas e eficazes para resolução de problemas e insights. | [aula](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Introdução ao ciclo de vida da Ciência de Dados | [Ciclo de vida](4-Data-Science-Lifecycle/README.md) | Introdução ao ciclo de vida da ciência de dados e sua primeira etapa de aquisição e extração de dados. | [aula](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analisando | [Ciclo de vida](4-Data-Science-Lifecycle/README.md) | Esta fase do ciclo de vida da ciência de dados foca em técnicas para analisar dados. | [aula](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Comunicação | [Ciclo de vida](4-Data-Science-Lifecycle/README.md) | Esta fase do ciclo de vida da ciência de dados foca em apresentar os insights obtidos dos dados de forma que facilite a compreensão por tomadores de decisão. | [aula](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Esta série de aulas introduz a ciência de dados na nuvem e seus benefícios. | [aula](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
-| 18 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Treinamento de modelos usando ferramentas Low Code. |[aula](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
-| 19 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Implantação de modelos com Azure Machine Learning Studio. | [aula](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
-| 20 | Ciência de Dados no Mundo Real | [No Mundo Real](6-Data-Science-In-Wild/README.md) | Projetos de ciência de dados aplicados em situações reais. | [aula](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
-
-## GitHub Codespaces
-
-Siga estes passos para abrir este exemplo em um Codespace:
-1. Clique no menu suspenso Code e selecione a opção Open with Codespaces.
-2. Selecione + New codespace na parte inferior do painel.
-Para mais informações, consulte a [documentação do GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
-
-## VSCode Remote - Containers
-Siga estes passos para abrir este repositório em um container usando sua máquina local e o VSCode com a extensão VS Code Remote - Containers:
-
-1. Se esta for sua primeira vez usando um container de desenvolvimento, certifique-se de que seu sistema atende aos pré-requisitos (por exemplo, ter Docker instalado) na [documentação de primeiros passos](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-
-Para usar este repositório, você pode abrir o repositório em um volume Docker isolado:
-
-**Nota**: Nos bastidores, isso usará o comando Remote-Containers: **Clone Repository in Container Volume...** para clonar o código-fonte em um volume Docker em vez do sistema de arquivos local. [Volumes](https://docs.docker.com/storage/volumes/) são o mecanismo preferido para persistir dados de containers.
-
-Ou abra uma versão clonada localmente ou baixada do repositório:
-
-- Clone este repositório para seu sistema de arquivos local.
-- Pressione F1 e selecione o comando **Remote-Containers: Open Folder in Container...**.
-- Selecione a cópia clonada desta pasta, aguarde o container iniciar e experimente.
-
-## Acesso Offline
-
-Você pode executar esta documentação offline usando [Docsify](https://docsify.js.org/#/). Faça um fork deste repositório, [instale o Docsify](https://docsify.js.org/#/quickstart) em sua máquina local, então na pasta raiz deste repositório, digite `docsify serve`. O site será servido na porta 3000 no seu localhost: `localhost:3000`.
-
-> Observe que notebooks não serão renderizados via Docsify, portanto quando precisar executar um notebook, faça isso separadamente no VS Code executando um kernel Python.
-
-## Outros Currículos
-
-Nossa equipe produz outros currículos! Confira:
-
-
-### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
-
----
-
-### Azure / Edge / MCP / Agentes
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
-
----
-
-### Série de IA Generativa
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
-
----
-
-### Aprendizado Fundamental
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
-
----
-
-### Série Copilot
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-
-
-## Obter Ajuda
-
-**Encontrando problemas?** Confira nosso [Guia de Solução de Problemas](TROUBLESHOOTING.md) para soluções para problemas comuns.
-
-Se você ficar travado ou tiver alguma pergunta sobre como criar aplicativos de IA. Junte-se a outros alunos e desenvolvedores experientes em discussões sobre MCP. É uma comunidade acolhedora onde perguntas são bem-vindas e o conhecimento é compartilhado livremente.
-
-[](https://discord.gg/nTYy5BXMWG)
-
-Se você tiver feedback sobre produtos ou erros durante a construção, visite:
-
-[](https://aka.ms/foundry/forum)
-
----
-
-
-**Aviso**:
-Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original em sua língua nativa deve ser considerado a fonte autorizada. Para informações críticas, recomenda-se a tradução profissional humana. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes do uso desta tradução.
-
\ No newline at end of file
diff --git a/translations/cs/.co-op-translator.json b/translations/cs/.co-op-translator.json
new file mode 100644
index 00000000..4e221815
--- /dev/null
+++ b/translations/cs/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:04:57+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "cs"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-26T15:24:45+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "cs"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-26T15:26:20+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "cs"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:54:39+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "cs"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-26T15:17:07+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "cs"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T17:57:18+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "cs"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-26T15:31:23+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "cs"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T14:02:33+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "cs"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-26T15:42:33+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "cs"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-26T14:59:49+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "cs"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T12:03:54+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "cs"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:57:49+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "cs"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T17:44:58+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "cs"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-26T14:57:50+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "cs"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:56:55+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "cs"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-26T14:51:30+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "cs"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T17:47:16+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "cs"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-26T14:41:39+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "cs"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-26T14:27:36+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T17:51:16+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-26T17:26:56+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T17:53:01+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-26T16:52:47+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T17:50:43+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-26T17:30:51+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:45:35+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-26T16:57:37+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T17:51:48+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-26T16:47:11+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T16:48:33+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T16:47:54+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-26T17:08:32+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-26T17:13:41+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-26T16:59:42+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-26T17:02:14+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-26T17:19:47+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-26T17:03:52+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-26T17:15:47+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "cs"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-26T16:41:22+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "cs"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:31:19+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "cs"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-26T16:28:00+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "cs"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:30:33+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "cs"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-26T16:31:36+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "cs"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:31:50+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "cs"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-26T16:40:11+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "cs"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-26T16:20:53+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "cs"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T17:43:48+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "cs"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-26T16:09:57+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "cs"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T17:42:30+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "cs"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-26T16:04:30+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "cs"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T17:44:15+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "cs"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-26T16:17:17+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "cs"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-26T15:52:59+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "cs"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:41:52+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "cs"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-26T15:51:44+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "cs"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-26T15:44:05+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "cs"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:36:41+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "cs"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-26T14:23:55+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "cs"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:31:12+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "cs"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:24:46+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "cs"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:18:21+00:00",
+ "source_file": "README.md",
+ "language_code": "cs"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-26T14:25:07+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "cs"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-26T14:21:17+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "cs"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:46:04+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "cs"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:08:40+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "cs"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-26T14:58:43+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "cs"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:06:44+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "cs"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T20:00:28+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "cs"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-26T16:18:40+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "cs"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-26T15:43:31+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "cs"
+ }
+}
\ No newline at end of file
diff --git a/translations/cs/1-Introduction/01-defining-data-science/README.md b/translations/cs/1-Introduction/01-defining-data-science/README.md
index 392f9157..c0118347 100644
--- a/translations/cs/1-Introduction/01-defining-data-science/README.md
+++ b/translations/cs/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Definice datové vědy
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/cs/1-Introduction/01-defining-data-science/assignment.md b/translations/cs/1-Introduction/01-defining-data-science/assignment.md
index 80c7e11c..7857c24c 100644
--- a/translations/cs/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/cs/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Zadání: Scénáře datové vědy
V tomto prvním úkolu vás žádáme, abyste přemýšleli o nějakém reálném procesu nebo problému v různých oblastech a o tom, jak jej můžete zlepšit pomocí procesu datové vědy. Zamyslete se nad následujícím:
diff --git a/translations/cs/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/cs/1-Introduction/01-defining-data-science/solution/assignment.md
index 1981b5a2..5af13d07 100644
--- a/translations/cs/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/cs/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Zadání: Scénáře datové vědy
V tomto prvním úkolu vás žádáme, abyste přemýšleli o nějakém reálném procesu nebo problému v různých oblastech a o tom, jak jej můžete zlepšit pomocí procesu datové vědy. Zamyslete se nad následujícím:
diff --git a/translations/cs/1-Introduction/02-ethics/README.md b/translations/cs/1-Introduction/02-ethics/README.md
index d22a22e1..c97c6762 100644
--- a/translations/cs/1-Introduction/02-ethics/README.md
+++ b/translations/cs/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Úvod do datové etiky
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/cs/1-Introduction/02-ethics/assignment.md b/translations/cs/1-Introduction/02-ethics/assignment.md
index 3877d03a..d5f2e50a 100644
--- a/translations/cs/1-Introduction/02-ethics/assignment.md
+++ b/translations/cs/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Napište případovou studii o etice dat
## Pokyny
diff --git a/translations/cs/1-Introduction/03-defining-data/README.md b/translations/cs/1-Introduction/03-defining-data/README.md
index f81f0eb6..608f835d 100644
--- a/translations/cs/1-Introduction/03-defining-data/README.md
+++ b/translations/cs/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Definování dat
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/cs/1-Introduction/03-defining-data/assignment.md b/translations/cs/1-Introduction/03-defining-data/assignment.md
index ef5cb416..739ed1fc 100644
--- a/translations/cs/1-Introduction/03-defining-data/assignment.md
+++ b/translations/cs/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Klasifikace datových sad
## Pokyny
diff --git a/translations/cs/1-Introduction/04-stats-and-probability/README.md b/translations/cs/1-Introduction/04-stats-and-probability/README.md
index 426d0ed2..ca556c84 100644
--- a/translations/cs/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/cs/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Stručný úvod do statistiky a pravděpodobnosti
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Pro lepší pochopení rozdělení dat je užitečné mluvit o **kvartilech**:
Graficky můžeme vztah mezi mediánem a kvartily znázornit v diagramu nazývaném **box plot**:
-
+
Zde také vypočítáme **mezikvartilové rozpětí** IQR=Q3-Q1 a tzv. **odlehlé hodnoty** - hodnoty, které leží mimo hranice [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/cs/1-Introduction/04-stats-and-probability/assignment.md b/translations/cs/1-Introduction/04-stats-and-probability/assignment.md
index 4f190e16..38557eb3 100644
--- a/translations/cs/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/cs/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Malá studie o cukrovce
V tomto úkolu budeme pracovat s malým datovým souborem pacientů s cukrovkou, který je dostupný [zde](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/cs/1-Introduction/README.md b/translations/cs/1-Introduction/README.md
index c9ce2811..4e5ebaf4 100644
--- a/translations/cs/1-Introduction/README.md
+++ b/translations/cs/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Úvod do datové vědy

diff --git a/translations/cs/2-Working-With-Data/05-relational-databases/README.md b/translations/cs/2-Working-With-Data/05-relational-databases/README.md
index baea2247..4ec701c6 100644
--- a/translations/cs/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/cs/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Práce s daty: Relační databáze
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/cs/2-Working-With-Data/05-relational-databases/assignment.md b/translations/cs/2-Working-With-Data/05-relational-databases/assignment.md
index 6e33eb96..8d1a3da7 100644
--- a/translations/cs/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/cs/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Zobrazení dat o letištích
Byla vám poskytnuta [databáze](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) vytvořená na [SQLite](https://sqlite.org/index.html), která obsahuje informace o letištích. Schéma je zobrazeno níže. Budete používat [rozšíření SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) v [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) k zobrazení informací o letištích v různých městech.
diff --git a/translations/cs/2-Working-With-Data/06-non-relational/README.md b/translations/cs/2-Working-With-Data/06-non-relational/README.md
index c25efdfd..3066fa70 100644
--- a/translations/cs/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/cs/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Práce s daty: Nerelační data
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/cs/2-Working-With-Data/06-non-relational/assignment.md b/translations/cs/2-Working-With-Data/06-non-relational/assignment.md
index 420d10b9..29fb4af6 100644
--- a/translations/cs/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/cs/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Zisky z limonád
## Pokyny
diff --git a/translations/cs/2-Working-With-Data/07-python/README.md b/translations/cs/2-Working-With-Data/07-python/README.md
index 83431ef4..d27030a8 100644
--- a/translations/cs/2-Working-With-Data/07-python/README.md
+++ b/translations/cs/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Práce s daty: Python a knihovna Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/cs/2-Working-With-Data/07-python/assignment.md b/translations/cs/2-Working-With-Data/07-python/assignment.md
index 206ec2ad..b7a29ebb 100644
--- a/translations/cs/2-Working-With-Data/07-python/assignment.md
+++ b/translations/cs/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Zadání pro zpracování dat v Pythonu
V tomto zadání vás požádáme, abyste rozpracovali kód, který jsme začali vyvíjet v našich výzvách. Zadání se skládá ze dvou částí:
diff --git a/translations/cs/2-Working-With-Data/08-data-preparation/README.md b/translations/cs/2-Working-With-Data/08-data-preparation/README.md
index 03eff437..a2ced4cd 100644
--- a/translations/cs/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/cs/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Práce s daty: Příprava dat
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/cs/2-Working-With-Data/08-data-preparation/assignment.md b/translations/cs/2-Working-With-Data/08-data-preparation/assignment.md
index 46c281a8..a135a8b1 100644
--- a/translations/cs/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/cs/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Vyhodnocení dat z formuláře
Klient testoval [malý formulář](../../../../2-Working-With-Data/08-data-preparation/index.html) pro sběr základních údajů o své klientele. Přinesli vám svá zjištění, abyste ověřili data, která shromáždili. Stránku `index.html` si můžete otevřít v prohlížeči a podívat se na formulář.
diff --git a/translations/cs/2-Working-With-Data/README.md b/translations/cs/2-Working-With-Data/README.md
index d9ca1232..bcbef889 100644
--- a/translations/cs/2-Working-With-Data/README.md
+++ b/translations/cs/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Práce s daty

diff --git a/translations/cs/3-Data-Visualization/09-visualization-quantities/README.md b/translations/cs/3-Data-Visualization/09-visualization-quantities/README.md
index a68a4e12..fbccf359 100644
--- a/translations/cs/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/cs/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Vizualizace množství
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/cs/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/cs/3-Data-Visualization/09-visualization-quantities/assignment.md
index e0685e97..38288ece 100644
--- a/translations/cs/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/cs/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Čáry, bodové grafy a sloupcové grafy
## Pokyny
diff --git a/translations/cs/3-Data-Visualization/10-visualization-distributions/README.md b/translations/cs/3-Data-Visualization/10-visualization-distributions/README.md
index e5c09569..0f0f6f52 100644
--- a/translations/cs/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/cs/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizace distribucí
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/cs/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/cs/3-Data-Visualization/10-visualization-distributions/assignment.md
index 25f3827b..31c0ea44 100644
--- a/translations/cs/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/cs/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Uplatněte své dovednosti
## Pokyny
diff --git a/translations/cs/3-Data-Visualization/11-visualization-proportions/README.md b/translations/cs/3-Data-Visualization/11-visualization-proportions/README.md
index d72a1ea0..d794b241 100644
--- a/translations/cs/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/cs/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizace poměrů
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/cs/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/cs/3-Data-Visualization/11-visualization-proportions/assignment.md
index d4f624db..a25c38b9 100644
--- a/translations/cs/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/cs/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Vyzkoušejte to v Excelu
## Pokyny
diff --git a/translations/cs/3-Data-Visualization/12-visualization-relationships/README.md b/translations/cs/3-Data-Visualization/12-visualization-relationships/README.md
index 57e64019..5b3d2605 100644
--- a/translations/cs/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/cs/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Vizualizace vztahů: Vše o medu 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/cs/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/cs/3-Data-Visualization/12-visualization-relationships/assignment.md
index e59425ea..0bee766b 100644
--- a/translations/cs/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/cs/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Ponořte se do úlu
## Instrukce
diff --git a/translations/cs/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/cs/3-Data-Visualization/13-meaningful-visualizations/README.md
index 30b275f7..08a50135 100644
--- a/translations/cs/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/cs/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Vytváření smysluplných vizualizací
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/cs/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/cs/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 1d15856b..13fbf86b 100644
--- a/translations/cs/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/cs/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Vytvořte si vlastní vizualizaci
## Pokyny
diff --git a/translations/cs/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/cs/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index bb10d73b..fd4ac869 100644
--- a/translations/cs/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/cs/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Projekt vizualizace dat Dangerous Liaisons
Abyste mohli začít, ujistěte se, že máte na svém počítači nainstalované NPM a Node. Nainstalujte závislosti (npm install) a poté spusťte projekt lokálně (npm run serve):
diff --git a/translations/cs/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/cs/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 353be2de..0b99b9a3 100644
--- a/translations/cs/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/cs/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Projekt vizualizace dat Dangerous Liaisons
Než začnete, ujistěte se, že máte na svém počítači nainstalované NPM a Node. Nainstalujte závislosti (npm install) a poté spusťte projekt lokálně (npm run serve):
diff --git a/translations/cs/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/cs/3-Data-Visualization/R/09-visualization-quantities/README.md
index d749854e..13015904 100644
--- a/translations/cs/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/cs/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Vizualizace množství
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/cs/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/cs/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 2ba11870..b813faa4 100644
--- a/translations/cs/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/cs/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Čáry, body a sloupce
## Pokyny
diff --git a/translations/cs/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/cs/3-Data-Visualization/R/10-visualization-distributions/README.md
index e771ce87..ecedee63 100644
--- a/translations/cs/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/cs/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizace distribucí
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/cs/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/cs/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 28375713..185937bd 100644
--- a/translations/cs/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/cs/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Uplatněte své dovednosti
## Pokyny
diff --git a/translations/cs/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/cs/3-Data-Visualization/R/11-visualization-proportions/README.md
index ba1d3b19..8d3fefff 100644
--- a/translations/cs/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/cs/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizace proporcí
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/cs/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/cs/3-Data-Visualization/R/12-visualization-relationships/README.md
index 800eed4d..1ac2c990 100644
--- a/translations/cs/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/cs/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Vizualizace vztahů: Vše o medu 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/cs/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/cs/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 2b4d2bc4..f19217de 100644
--- a/translations/cs/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/cs/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Vytváření smysluplných vizualizací
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/cs/3-Data-Visualization/README.md b/translations/cs/3-Data-Visualization/README.md
index a8dc42ac..9ddce28b 100644
--- a/translations/cs/3-Data-Visualization/README.md
+++ b/translations/cs/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Vizualizace

diff --git a/translations/cs/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/cs/4-Data-Science-Lifecycle/14-Introduction/README.md
index 3b3b3ff8..00526507 100644
--- a/translations/cs/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/cs/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Úvod do životního cyklu datové vědy
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/cs/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/cs/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index e7fff386..b97cd266 100644
--- a/translations/cs/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/cs/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Posouzení datové sady
Klient se obrátil na váš tým s žádostí o pomoc při zkoumání sezónních výdajových návyků zákazníků taxi služeb v New Yorku.
diff --git a/translations/cs/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/cs/4-Data-Science-Lifecycle/15-analyzing/README.md
index 7887032a..cb2260b2 100644
--- a/translations/cs/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/cs/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Životní cyklus datové vědy: Analýza
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/cs/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/cs/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index d18dea88..92cadb4c 100644
--- a/translations/cs/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/cs/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Hledání odpovědí
Toto je pokračování [úkolu](../14-Introduction/assignment.md) z předchozí lekce, kde jsme se krátce podívali na datový soubor. Nyní se podíváme na data podrobněji.
diff --git a/translations/cs/4-Data-Science-Lifecycle/16-communication/README.md b/translations/cs/4-Data-Science-Lifecycle/16-communication/README.md
index 0eab03b7..8bde4afd 100644
--- a/translations/cs/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/cs/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Životní cyklus datové vědy: Komunikace
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/cs/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/cs/4-Data-Science-Lifecycle/16-communication/assignment.md
index bc9b73fa..ac9f0b1e 100644
--- a/translations/cs/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/cs/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Vyprávějte příběh
## Pokyny
diff --git a/translations/cs/4-Data-Science-Lifecycle/README.md b/translations/cs/4-Data-Science-Lifecycle/README.md
index bdf8f49d..2eac414b 100644
--- a/translations/cs/4-Data-Science-Lifecycle/README.md
+++ b/translations/cs/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Životní cyklus datové vědy

diff --git a/translations/cs/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/cs/5-Data-Science-In-Cloud/17-Introduction/README.md
index bf59abf9..f0d867e8 100644
--- a/translations/cs/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/cs/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Úvod do datové vědy v cloudu
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/cs/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/cs/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 37f2cae5..e6ade962 100644
--- a/translations/cs/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/cs/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Průzkum trhu
## Pokyny
diff --git a/translations/cs/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/cs/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 5a839611..481d3098 100644
--- a/translations/cs/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/cs/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Data Science v cloudu: Cesta "Low code/No code"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/cs/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/cs/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 5eb062ba..e384d9f2 100644
--- a/translations/cs/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/cs/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Projekt Data Science s nízkým kódem/bez kódu na Azure ML
## Instrukce
diff --git a/translations/cs/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/cs/5-Data-Science-In-Cloud/19-Azure/README.md
index 4255b9ca..cf1e72fc 100644
--- a/translations/cs/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/cs/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Data Science v cloudu: Cesta "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/cs/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/cs/5-Data-Science-In-Cloud/19-Azure/assignment.md
index a354e832..10957bd8 100644
--- a/translations/cs/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/cs/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Projekt Data Science pomocí Azure ML SDK
## Pokyny
diff --git a/translations/cs/5-Data-Science-In-Cloud/README.md b/translations/cs/5-Data-Science-In-Cloud/README.md
index aa0c2795..acb070b8 100644
--- a/translations/cs/5-Data-Science-In-Cloud/README.md
+++ b/translations/cs/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Data Science v cloudu

diff --git a/translations/cs/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/cs/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 677b86ca..759565d2 100644
--- a/translations/cs/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/cs/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Data Science v reálném světě
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/cs/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/cs/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 4c31792f..3bd78196 100644
--- a/translations/cs/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/cs/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Prozkoumejte dataset Planetary Computer
## Pokyny
diff --git a/translations/cs/6-Data-Science-In-Wild/README.md b/translations/cs/6-Data-Science-In-Wild/README.md
index 62209499..b3e07e0b 100644
--- a/translations/cs/6-Data-Science-In-Wild/README.md
+++ b/translations/cs/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Data Science v praxi
Praktické aplikace datové vědy napříč odvětvími.
diff --git a/translations/cs/AGENTS.md b/translations/cs/AGENTS.md
index b80a7bc7..9a94cd15 100644
--- a/translations/cs/AGENTS.md
+++ b/translations/cs/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Přehled projektu
diff --git a/translations/cs/CODE_OF_CONDUCT.md b/translations/cs/CODE_OF_CONDUCT.md
index b5729e75..cc765d62 100644
--- a/translations/cs/CODE_OF_CONDUCT.md
+++ b/translations/cs/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Kodex chování pro open source od Microsoftu
Tento projekt přijal [Kodex chování pro open source od Microsoftu](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/cs/CONTRIBUTING.md b/translations/cs/CONTRIBUTING.md
index a3c8e18f..2afbc7cb 100644
--- a/translations/cs/CONTRIBUTING.md
+++ b/translations/cs/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Přispívání do Data Science pro začátečníky
Děkujeme za váš zájem o přispění do kurikula Data Science pro začátečníky! Uvítáme příspěvky od komunity.
diff --git a/translations/cs/INSTALLATION.md b/translations/cs/INSTALLATION.md
index 5e89b901..ab8f3a5a 100644
--- a/translations/cs/INSTALLATION.md
+++ b/translations/cs/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Průvodce instalací
Tento průvodce vám pomůže nastavit prostředí pro práci s učebními materiály Data Science for Beginners.
diff --git a/translations/cs/README.md b/translations/cs/README.md
index b40e9b53..cd538d22 100644
--- a/translations/cs/README.md
+++ b/translations/cs/README.md
@@ -1,210 +1,201 @@
-
-# Data Science pro začátečníky - Kurikulum
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+# Data Science pro začátečníky - osnovy
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
[](http://makeapullrequest.com)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
[](https://aka.ms/foundry/forum)
-Azure Cloud Advocates ve Microsoftu s potěšením nabízejí 10týdenní, 20lekční kurikulum zaměřené na Data Science. Každá lekce obsahuje kvízy před a po lekci, psané pokyny k dokončení lekce, řešení a úkol. Naše výuková metoda založená na projektech vám umožňuje učit se při tvorbě, což je osvědčený způsob, jak si nové dovednosti opravdu osvojit.
+Azure Cloud Advocates v Microsoft mají radost, že mohou nabídnout 10týdenní osnovu, která obsahuje 20 lekcí věnovaných datové vědě. Každá lekce zahrnuje kvízy před a po lekci, psané pokyny k dokončení lekce, řešení a úkol. Naše projektově orientovaná pedagogika vám umožňuje učit se při tvorbě, což je osvědčený způsob, jak nové dovednosti "zůstanou".
-**Srdečné poděkování našim autorům:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Upřímné poděkování našim autorům:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Zvláštní poděkování 🙏 našim [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) autorům, recenzentům a přispěvatelům obsahu,** zejména Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Zvláštní poděkování 🙏 našim autorům, recenzentům a přispěvatelům obsahu z [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** zejména Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
| Data Science pro začátečníky - _Sketchnote od [@nitya](https://twitter.com/nitya)_ |
### 🌐 Podpora více jazyků
-#### Podporováno přes GitHub Action (automatické a vždy aktuální)
+#### Podporováno přes GitHub Action (automatizované & vždy aktuální)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](./README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](./README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **Preferujete klonovat lokálně?**
+> **Dáváte přednost klonování lokálně?**
-> Tento repozitář zahrnuje více než 50 překladových jazyků, což výrazně zvětšuje velikost stažení. Pro klonování bez překladů použijte sparse checkout:
+> Tento repozitář zahrnuje více než 50 jazykových překladů, což výrazně zvětšuje velikost stahování. Pro klonování bez překladů použijte sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Toto vám poskytne vše potřebné k dokončení kurzu s mnohem rychlejším stažením.
+> To vám poskytne vše potřebné k dokončení kurzu s mnohem rychlejším stažením.
-**Pokud chcete podporu dalších jazyků překladů, jsou uvedeny [zde](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Pokud si přejete podpořit další jazyky, podporované jazyky jsou uvedeny [zde](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Připojte se k naší komunitě
+#### Připojte se k naší komunitě
[](https://discord.gg/nTYy5BXMWG)
-Máme probíhající Discord sérii Learn with AI, dozvíte se více a připojte se k nám na [Learn with AI Series](https://aka.ms/learnwithai/discord) od 18. do 30. září 2025. Získáte tipy a triky, jak používat GitHub Copilot pro Data Science.
+Máme probíhající řadu Learn with AI na Discordu, dozvíte se více a připojte se k nám na [Learn with AI Series](https://aka.ms/learnwithai/discord) v době od 18. do 30. září 2025. Získáte tipy a triky, jak používat GitHub Copilot pro datovou vědu.
-
+
# Jste student?
Začněte s následujícími zdroji:
-- [Student Hub stránka](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na této stránce najdete zdroje pro začátečníky, studentské balíčky a dokonce i způsoby, jak získat bezplatný certifikační voucher. To je stránka, kterou si chcete uložit do záložek a občas ji navštívit, protože obsah měníme alespoň jednou měsíčně.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Připojte se k globální komunitě studentských ambasadorů, to může být vaše cesta do Microsoftu.
+- [Student Hub stránka](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na této stránce najdete zdroje pro začátečníky, studentské balíčky a dokonce i způsoby, jak získat bezplatný certifikační voucher. Tuto stránku si rozhodně uložte mezi záložky a pravidelně kontrolujte, protože obsah měníme alespoň jednou měsíčně.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Připojte se k celosvětové komunitě studentských velvyslanců, může to být vaše cesta do Microsoftu.
# Začínáme
## 📚 Dokumentace
-- **[Průvodce instalací](INSTALLATION.md)** - Krok za krokem nastavení pro začátečníky
+- **[Instalační příručka](INSTALLATION.md)** - Krok za krokem nastavení pro začátečníky
- **[Průvodce používáním](USAGE.md)** - Příklady a běžné pracovní postupy
- **[Řešení problémů](TROUBLESHOOTING.md)** - Řešení běžných problémů
-- **[Příspěvky do projektu](CONTRIBUTING.md)** - Jak přispět do tohoto projektu
-- **[Pro učitele](for-teachers.md)** - Příručka pro výuku a zdroje do tříd
+- **[Příručka přispívání](CONTRIBUTING.md)** - Jak přispět do tohoto projektu
+- **[Pro učitele](for-teachers.md)** - Doporučení k výuce a materiály do výuky
## 👨🎓 Pro studenty
-> **Úplní začátečníci**: Noví v oblasti data science? Začněte s našimi [přátelskými příklady pro začátečníky](examples/README.md)! Tyto jednoduché, dobře komentované příklady vám pomohou pochopit základy předtím, než se pustíte do celého kurikula.
-> **[Studenti](https://aka.ms/student-page)**: pro použití tohoto kurikula sami, vyfofrkujte celý repozitář a samostatně dokončujte cvičení, začněte kvízem před přednáškou. Pak si přečtěte přednášku a dokončete zbytek aktivit. Snažte se vytvářet projekty na základě porozumění lekcím, nikoli pouze kopírováním kódu řešení; ten je ale dostupný ve složkách /solutions v každé projektově orientované lekci. Další možností je vytvořit studijní skupinu s přáteli a projít obsah společně. Pro další studium doporučujeme [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Úplní začátečníci**: Jste noví v datové vědě? Začněte s našimi [příklady přátelskými pro začátečníky](examples/README.md)! Tyto jednoduché, dobře komentované příklady vám pomohou pochopit základy před tím, než se do osnovy ponoříte.
+> **[Studenti](https://aka.ms/student-page)**: Chcete-li tento kurz využít sami, forknete celý repozitář a samostatně dokončete cvičení, začínající přednáškovým kvízem. Poté si přečtěte lekci a dokončete zbytek aktivit. Snažte se projekty vytvářet tak, že pochopíte lekce, místo abyste pouze kopírovali řešení; však tyto kódy jsou k dispozici v /solutions složkách v každé lekci orientované na projekt. Dalším nápadem je vytvořit studijní skupinu s přáteli a projít obsah společně. Pro další studium doporučujeme [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Rychlý start:**
-1. Pro instalaci spoléháte na [Průvodce instalací](INSTALLATION.md)
-2. Podívejte se na [Průvodce používáním](USAGE.md), abyste se naučili pracovat s kurikulem
-3. Začněte Lekcí 1 a postupujte chronologicky
-4. Připojte se k naší [Discord komunitě](https://aka.ms/ds4beginners/discord) pro podporu
+1. Podívejte se na [Instalační příručku](INSTALLATION.md) k nastavení svého prostředí
+2. Prohlédněte si [Průvodce používáním](USAGE.md), abyste se naučili, jak s osnovou pracovat
+3. Začněte Lekcí 1 a pokračujte postupně
+4. Připojte se k naší [komunitě na Discordu](https://aka.ms/ds4beginners/discord) pro podporu
## 👩🏫 Pro učitele
-> **Učitelé**: přidali jsme [několik návrhů](for-teachers.md), jak používat toto kurikulum. Budeme rádi za vaši zpětnou vazbu [v našem diskuzním fóru](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
+> **Učitelé**: přidali jsme [několik návrhů](for-teachers.md), jak tuto osnovu používat. Rádi uvítáme vaše připomínky [v našem diskusním fóru](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Seznamte se s týmem
-[](https://youtu.be/8mzavjQSMM4 "Propagační video")
+
+[](https://youtu.be/8mzavjQSMM4 "Promo video")
**Gif od** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Klikněte na obrázek výše pro video o projektu a lidech, kteří jej vytvořili!
+> 🎥 Klikněte na obrázek výše pro video o projektu a lidech, kteří ho vytvořili!
## Pedagogika
-Při tvorbě tohoto kurikula jsme zvolili dvě pedagogické zásady: zajistit, aby bylo založeno na projektech, a aby obsahovalo časté kvízy. Na konci této série se studenti naučí základní principy datové vědy, včetně etických konceptů, přípravy dat, různých způsobů práce s daty, vizualizace dat, analýzy dat, reálných případů použití datové vědy a další.
+Při tvorbě této učební osnovy jsme zvolili dvě pedagogické zásady: zajistit, aby byl kurz založen na projektech a aby obsahoval časté kvízy. Na konci této série se studenti naučí základní principy datové vědy, včetně etických konceptů, přípravy dat, různých způsobů práce s daty, vizualizace dat, analýzy dat, praktických případů použití datové vědy a další.
-Navíc nízkorizikový kvíz před hodinou nastavuje záměr studenta ke studiu daného tématu, zatímco druhý kvíz po hodině zajišťuje lepší zapamatování. Toto kurikulum bylo navrženo tak, aby bylo flexibilní a zábavné a může být absolvováno celé nebo částečně. Projekty začínají malé a postupně se během 10týdenního cyklu stávají složitějšími.
+Navíc nízkorizikový kvíz před lekcí nastavuje záměr studenta k učení daného tématu, zatímco druhý kvíz po lekci zajišťuje lepší zapamatování. Tento kurz byl navržen tak, aby byl flexibilní a zábavný a může být absolvován celý nebo jen jeho část. Projekty začínají malé a postupně se během 10týdenního cyklu stávají složitějšími.
-> Najdete zde naše [Kodex chování](CODE_OF_CONDUCT.md), [Pravidla přispívání](CONTRIBUTING.md) a [Překlady](TRANSLATIONS.md). Vítáme vaše konstruktivní připomínky!
+> Najděte náš [Kodex chování](CODE_OF_CONDUCT.md), [Příspěvky](CONTRIBUTING.md), [Překlad](TRANSLATIONS.md) pravidla. Vítáme vaši konstruktivní zpětnou vazbu!
## Každá lekce obsahuje:
-- Volitelnou náčrtnou poznámku
+- Volitelný sketchnote
- Volitelné doplňkové video
-- Zahřívací kvíz před lekcí
-- Psána lekce
-- U lekcí založených na projektu podrobné návody, jak projekt vybudovat
+- Předlekční rozcvičovací kvíz
+- Písemnou lekci
+- U projektových lekcí podrobné návody, jak projekt sestavit
- Kontroly znalostí
- Výzvu
- Doplňující četbu
- Zadání
-- [Kvíz po lekci](https://ff-quizzes.netlify.app/en/)
+- [Pověrečnou kvíz](https://ff-quizzes.netlify.app/en/)
-> **Poznámka ke kvízům**: Všechny kvízy jsou uloženy v složce Quiz-App, celkem 40 kvízů po třech otázkách. Jsou propojeny z lekcí, ale aplikaci kvízů je možné spustit lokálně nebo nasadit do Azure; postupujte podle pokynů ve složce `quiz-app`. Postupně se lokalizují.
+> **Poznámka k učebním kvízům**: Všechny kvízy jsou obsaženy ve složce Quiz-App, kde je celkem 40 kvízů po třech otázkách. Jsou propojeny v rámci lekcí, ale kvízovou aplikaci lze spustit lokálně nebo nasadit do Azure; postupujte podle pokynů ve složce `quiz-app`. Postupně jsou lokalizovány.
-## 🎓 Příklady přátelské k začátečníkům
+## 🎓 Příklady vhodné pro začátečníky
-**Nový ve světě datové vědy?** Vytvořili jsme speciální [adresář příkladů](examples/README.md) se jednoduchým, dobře komentovaným kódem, který vám pomůže začít:
+**Jste v datové vědě nováčkem?** Vytvořili jsme speciální [adresář s příklady](examples/README.md) s jednoduchým, dobře okomentovaným kódem, který vám pomůže začít:
-- 🌟 **Hello World** - Váš první program datové vědy
-- 📂 **Načítání dat** - Naučte se číst a prozkoumávat dataset
+- 🌟 **Hello World** - Váš první program v datové vědě
+- 📂 **Načítání dat** - Naučte se číst a zkoumat datové sady
- 📊 **Jednoduchá analýza** - Vypočítejte statistiky a najděte vzory
-- 📈 **Základní vizualizace** - Vytvořte grafy a diagramy
-- 🔬 **Projekt z reálného světa** - Kompletní pracovní postup od začátku do konce
+- 📈 **Základní vizualizace** - Vytvářejte grafy a diagramy
+- 🔬 **Projekt ze skutečného světa** - Kompletní workflow od začátku do konce
-Každý příklad obsahuje podrobné komentáře vysvětlující každý krok, ideální pro úplné začátečníky!
+Každý příklad obsahuje podrobné komentáře vysvětlující každý krok, což je ideální pro úplné začátečníky!
👉 **[Začněte s příklady](examples/README.md)** 👈
## Lekce
-||
+||
|:---:|
-| Data Science Pro Začátečníky: Plán - _Nákres poznámky od [@nitya](https://twitter.com/nitya)_ |
+| Datová věda pro začátečníky: Plán - _Sketchnote od [@nitya](https://twitter.com/nitya)_ |
-| Číslo lekce | Téma | Skupina lekcí | Výukové cíle | Odkaz na lekci | Autor |
-| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Definice datové vědy | [Úvod](1-Introduction/README.md) | Naučte se základní pojmy datové vědy a jak souvisí s umělou inteligencí, strojovým učením a velkými daty. | [lekce](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Etika datové vědy | [Úvod](1-Introduction/README.md) | Koncepty etiky dat, výzvy a rámce. | [lekce](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| Číslo lekce | Téma | Zařazení lekce | Cíle učení | Odkaz na lekci | Autor |
+| :---------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
+| 01 | Definice datové vědy | [Úvod](1-Introduction/README.md) | Naučte se základní koncepty datové vědy a jak souvisí s umělou inteligencí, strojovým učením a big daty. | [lekce](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Etika datové vědy | [Úvod](1-Introduction/README.md) | Koncepty, výzvy a rámce etiky dat. | [lekce](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definice dat | [Úvod](1-Introduction/README.md) | Jak jsou data klasifikována a jejich běžné zdroje. | [lekce](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Úvod do statistiky a pravděpodobnosti | [Úvod](1-Introduction/README.md) | Matematické techniky pravděpodobnosti a statistiky k pochopení dat. | [lekce](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Práce s relačními daty | [Práce s daty](2-Working-With-Data/README.md) | Úvod do relačních dat a základy prozkoumávání a analýzy relačních dat pomocí jazyka Structured Query Language, známého jako SQL (vyslovuje se „sí-kvel“). | [lekce](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Práce s NoSQL daty | [Práce s daty](2-Working-With-Data/README.md) | Úvod do nerelačních dat, jejich různých typů a základy prozkoumávání a analýzy dokumentových databází. | [lekce](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Práce s Pythonem | [Práce s daty](2-Working-With-Data/README.md) | Základy použití Pythonu pro průzkum dat s knihovnami, jako je Pandas. Doporučuje se základní porozumění programování v Pythonu. | [lekce](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Příprava dat | [Práce s daty](2-Working-With-Data/README.md) | Témata o technikách čistění a transformace dat pro zvládání problémů s chybějícími, nepřesnými nebo neúplnými daty. | [lekce](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Vizualizace množství | [Vizualizace dat](3-Data-Visualization/README.md) | Naučte se používat Matplotlib k vizualizaci dat o ptácích 🦆 | [lekce](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Vizualizace rozložení dat | [Vizualizace dat](3-Data-Visualization/README.md) | Vizualizace pozorování a trendů v rámci intervalu. | [lekce](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Vizualizace poměrů | [Vizualizace dat](3-Data-Visualization/README.md) | Vizualizace diskrétních a seskupených procent. | [lekce](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Vizualizace vztahů | [Vizualizace dat](3-Data-Visualization/README.md) | Vizualizace propojení a korelací mezi sadami dat a jejich proměnnými. | [lekce](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Významné vizualizace | [Vizualizace dat](3-Data-Visualization/README.md) | Techniky a rady, jak učinit vaše vizualizace hodnotnými pro efektivní řešení problémů a získání poznatků. | [lekce](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Úvod do životního cyklu datové vědy | [Životní cyklus](4-Data-Science-Lifecycle/README.md) | Úvod do životního cyklu datové vědy a jeho prvního kroku, získávání a extrakce dat. | [lekce](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analýza | [Životní cyklus](4-Data-Science-Lifecycle/README.md) | Tato fáze životního cyklu datové vědy se zaměřuje na techniky analýzy dat. | [lekce](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Komunikace | [Životní cyklus](4-Data-Science-Lifecycle/README.md) | Tato fáze životního cyklu datové vědy se zaměřuje na prezentaci poznatků z dat tak, aby byly snadněji pochopitelné pro rozhodovatele. | [lekce](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 04 | Úvod do statistiky a pravděpodobnosti | [Úvod](1-Introduction/README.md) | Matematické techniky pravděpodobnosti a statistiky pro pochopení dat. | [lekce](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Práce s relačními daty | [Práce s daty](2-Working-With-Data/README.md) | Úvod do relačních dat a základy průzkumu a analýzy relačních dat za pomocí strukturovaného dotazovacího jazyka, známého jako SQL (vyslovováno „ess-kyu-el“). | [lekce](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) |
+| 06 | Práce s NoSQL daty | [Práce s daty](2-Working-With-Data/README.md) | Úvod do nerelačních dat, jejich různých typů a základy průzkumu a analýzy dokumentových databází. | [lekce](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 07 | Práce s Pythonem | [Práce s daty](2-Working-With-Data/README.md) | Základy použití Pythonu pro průzkum dat s knihovnami jako Pandas. Doporučuje se základní znalost programování v Pythonu. | [lekce](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Příprava dat | [Práce s daty](2-Working-With-Data/README.md) | Témata o technikách vyčištění a transformace dat pro řešení problémů s chybějícími, nepřesnými nebo neúplnými daty. | [lekce](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Vizualizace množství | [Vizualizace dat](3-Data-Visualization/README.md) | Naučte se, jak používat Matplotlib k vizualizaci dat ptáků 🦆 | [lekce](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Vizualizace rozložení dat | [Vizualizace dat](3-Data-Visualization/README.md) | Vizualizace pozorování a trendů v intervalu. | [lekce](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Vizualizace podílů | [Vizualizace dat](3-Data-Visualization/README.md) | Vizualizace diskrétních a seskupených procent. | [lekce](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Vizualizace vztahů | [Vizualizace dat](3-Data-Visualization/README.md) | Vizualizace spojení a korelací mezi sadami dat a jejich proměnnými. | [lekce](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Smysluplné vizualizace | [Vizualizace dat](3-Data-Visualization/README.md) | Techniky a rady, jak udělat vaše vizualizace hodnotnými pro efektivní řešení problémů a získávání poznatků. | [lekce](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Úvod do životního cyklu datové vědy | [Životní cyklus](4-Data-Science-Lifecycle/README.md) | Úvod do životního cyklu datové vědy a jeho prvního kroku získávání a extrakce dat. | [lekce](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Analýza | [Životní cyklus](4-Data-Science-Lifecycle/README.md) | Tato fáze životního cyklu datové vědy se zaměřuje na techniky analýzy dat. | [lekce](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 16 | Komunikace | [Životní cyklus](4-Data-Science-Lifecycle/README.md) | Tato fáze životního cyklu datové vědy se zaměřuje na prezentaci poznatků z dat tak, aby bylo snazší je pochopit rozhodovacím orgánům. | [lekce](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) |
| 17 | Datová věda v cloudu | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Tato série lekcí představuje datovou vědu v cloudu a její výhody. | [lekce](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) a [Maud](https://twitter.com/maudstweets) |
-| 18 | Datová věda v cloudu | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Trénování modelů pomocí nástrojů s nízkým kódem. |[lekce](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) a [Maud](https://twitter.com/maudstweets) |
-| 19 | Datová věda v cloudu | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Nasazení modelů pomocí Azure Machine Learning Studio. | [lekce](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) a [Maud](https://twitter.com/maudstweets) |
-| 20 | Datová věda v reálném životě | [In the Wild](6-Data-Science-In-Wild/README.md) | Projekty řízené datovou vědou v reálném světě. | [lekce](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 18 | Datová věda v cloudu | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Trénink modelů pomocí nástrojů Low Code. | [lekce](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) a [Maud](https://twitter.com/maudstweets) |
+| 19 | Datová věda v cloudu | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Nasazení modelů pomocí Azure Machine Learning Studio. | [lekce](5-Data-Science-In-Cloud/19-Azure/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) a [Maud](https://twitter.com/maudstweets) |
+| 20 | Datová věda v terénu | [V terénu](6-Data-Science-In-Wild/README.md) | Projekty poháněné datovou vědou ve skutečném světě. | [lekce](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Postupujte podle těchto kroků, abyste otevřeli tento příklad v Codespace:
-1. Klikněte na rozbalovací nabídku Kód a vyberte možnost Otevřít pomocí Codespaces.
+Postupujte podle těchto kroků pro otevření tohoto vzoru v Codespace:
+1. Klikněte na rozbalovací nabídku Kód a vyberte možnost Otevřít v Codespaces.
2. Vyberte + Nový codespace ve spodní části panelu.
-Pro více informací si přečtěte [dokumentaci GitHubu](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+Další informace naleznete v [dokumentaci GitHubu](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Postupujte podle těchto kroků pro otevření tohoto repozitáře v kontejneru pomocí vašeho lokálního počítače a VSCode pomocí rozšíření VS Code Remote - Containers:
+Postupujte podle těchto kroků pro otevření tohoto repozitáře v kontejneru pomocí vašeho místního počítače a VSCode pomocí rozšíření VS Code Remote - Containers:
-1. Pokud používáte vývojový kontejner poprvé, ujistěte se, že váš systém splňuje požadavky (tj. máte nainstalovaný Docker) v [dokumentaci pro začátečníky](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Pokud poprvé používáte vývojový kontejner, ujistěte se, že váš systém splňuje požadavky (například máte nainstalovaný Docker) v [dokumentaci pro začátečníky](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Pro používání tohoto repozitáře můžete buď otevřít repozitář v izolovaném Docker svazku:
+Pro použití tohoto repozitáře můžete buď otevřít repozitář v izolovaném Docker volume:
-**Poznámka**: Pod kapotou bude použito Remote-Containers: **Klonovat repozitář do svazku kontejneru...** příkaz pro naklonování zdrojového kódu do Docker svazku místo lokálního souborového systému. [Svazky](https://docs.docker.com/storage/volumes/) jsou preferovaný mechanismus pro uchovávání dat kontejneru.
+**Poznámka**: Pod kapotou se použije příkaz Remote-Containers: **Clone Repository in Container Volume...** pro naklonování zdrojového kódu do Docker volume místo lokálního souborového systému. [Volumes](https://docs.docker.com/storage/volumes/) jsou preferovaný mechanismus pro uchovávání dat kontejneru.
-Nebo otevřete lokálně naklonovanou či staženou verzi repozitáře:
+Nebo otevřete lokálně klonovanou nebo staženou verzi repozitáře:
-- Naklonujte tento repozitář do lokálního souborového systému.
-- Stiskněte F1 a vyberte příkaz **Remote-Containers: Otevřít složku v kontejneru...**.
-- Vyberte naklonovanou kopii této složky, počkejte, až se kontejner spustí, a vyzkoušejte to.
+- Naklonujte tento repozitář do svého místního souborového systému.
+- Stiskněte F1 a vyberte příkaz **Remote-Containers: Open Folder in Container...**.
+- Vyberte klonovanou kopii této složky, počkejte na spuštění kontejneru a vyzkoušejte.
## Offline přístup
-Tuto dokumentaci můžete spustit offline pomocí [Docsify](https://docsify.js.org/#/). Vytvořte fork tohoto repozitáře, [nainstalujte Docsify](https://docsify.js.org/#/quickstart) na váš lokální počítač, poté v kořenové složce tohoto repozitáře spusťte `docsify serve`. Webová stránka bude dostupná na portu 3000 na vašem localhostu: `localhost:3000`.
+Tuto dokumentaci můžete spustit offline pomocí [Docsify](https://docsify.js.org/#/). Forkněte tento repozitář, [nainstalujte Docsify](https://docsify.js.org/#/quickstart) na svůj místní počítač, poté v kořenové složce tohoto repozitáře zadejte `docsify serve`. Webová stránka bude dostupná na portu 3000 na vašem localhostu: `localhost:3000`.
-> Poznámka, poznámkové bloky nebudou vykresleny přes Docsify, takže pokud potřebujete spustit poznámkový blok, udělejte to samostatně ve VS Code s běžícím Python jádrem.
+> Poznámka, notebooky nebudou vykresleny přes Docsify, takže pokud potřebujete spustit notebook, udělejte to samostatně ve VS Code, kde běží Python kernel.
-## Další kurikula
+## Další kurzy
Náš tým vytváří další kurikula! Podívejte se na:
### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchain4j-for-beginners)
[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
@@ -213,50 +204,50 @@ Náš tým vytváří další kurikula! Podívejte se na:
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-### Série Generativní AI
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+### Sérii Generativní AI
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
-### Základní vzdělávání
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+### Základní učení
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### Série Copilot
[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Získání pomoci
-**Máte problémy?** Podívejte se do našeho [Průvodce řešením problémů](TROUBLESHOOTING.md) pro řešení běžných potíží.
+**Narážíte na problémy?** Podívejte se na náš [Průvodce řešením problémů](TROUBLESHOOTING.md) pro řešení běžných potíží.
-Pokud uvíznete nebo máte jakékoli dotazy ohledně vytváření AI aplikací. Připojte se k ostatním studentům a zkušeným vývojářům v diskusích o MCP. Je to podpůrná komunita, kde jsou dotazy vítány a znalosti se volně sdílejí.
+Pokud se zaseknete nebo máte jakékoli otázky ohledně vytváření AI aplikací. Připojte se k ostatním studentům a zkušeným vývojářům k diskuzím o MCP. Je to podpůrná komunita, kde jsou otázky vítány a znalosti jsou sdíleny volně.
[](https://discord.gg/nTYy5BXMWG)
-Pokud máte zpětnou vazbu k produktu nebo narazíte na chyby během vývoje, navštivte:
+Pokud máte zpětnou vazbu k produktu nebo chyby při tvorbě navštivte:
[](https://aka.ms/foundry/forum)
---
-**Prohlášení o vyloučení odpovědnosti**:
-Tento dokument byl přeložen pomocí AI překladatelské služby [Co-op Translator](https://github.com/Azure/co-op-translator). Přestože usilujeme o přesnost, mějte prosím na paměti, že automatizované překlady mohou obsahovat chyby nebo nepřesnosti. Originální dokument v jeho mateřském jazyce by měl být považován za autoritativní zdroj. Pro kritické informace doporučujeme profesionální lidský překlad. Nejsme zodpovědní za jakékoli nedorozumění nebo nesprávné výklady vyplývající z použití tohoto překladu.
+**Upozornění**:
+Tento dokument byl přeložen pomocí AI překladatelské služby [Co-op Translator](https://github.com/Azure/co-op-translator). I když usilujeme o přesnost, vezměte prosím na vědomí, že automatické překlady mohou obsahovat chyby nebo nepřesnosti. Původní dokument v jeho mateřském jazyce by měl být považován za autoritativní zdroj. Pro zásadní informace se doporučuje profesionální lidský překlad. Neručíme za jakékoli nedorozumění nebo nesprávné výklady vyplývající z použití tohoto překladu.
\ No newline at end of file
diff --git a/translations/cs/SECURITY.md b/translations/cs/SECURITY.md
index 5673315c..90e2a10d 100644
--- a/translations/cs/SECURITY.md
+++ b/translations/cs/SECURITY.md
@@ -1,12 +1,3 @@
-
## Zabezpečení
Společnost Microsoft bere bezpečnost svých softwarových produktů a služeb vážně, což zahrnuje všechny repozitáře zdrojového kódu spravované prostřednictvím našich organizací na GitHubu, mezi které patří [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) a [naše GitHub organizace](https://opensource.microsoft.com/).
diff --git a/translations/cs/SUPPORT.md b/translations/cs/SUPPORT.md
index 184a4099..6fef70c6 100644
--- a/translations/cs/SUPPORT.md
+++ b/translations/cs/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Podpora
## Jak nahlásit problémy a získat pomoc
diff --git a/translations/cs/TROUBLESHOOTING.md b/translations/cs/TROUBLESHOOTING.md
index 2325c2ae..5073699f 100644
--- a/translations/cs/TROUBLESHOOTING.md
+++ b/translations/cs/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Průvodce řešením problémů
Tento průvodce poskytuje řešení běžných problémů, na které můžete narazit při práci s kurikulem Data Science for Beginners.
diff --git a/translations/cs/USAGE.md b/translations/cs/USAGE.md
index 48b6e478..432b6d8e 100644
--- a/translations/cs/USAGE.md
+++ b/translations/cs/USAGE.md
@@ -1,12 +1,3 @@
-
# Průvodce použitím
Tento průvodce poskytuje příklady a běžné pracovní postupy pro použití kurikula Data Science for Beginners.
diff --git a/translations/cs/docs/_sidebar.md b/translations/cs/docs/_sidebar.md
index 515315fe..9429a3dc 100644
--- a/translations/cs/docs/_sidebar.md
+++ b/translations/cs/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Úvod
- [Definování datové vědy](../1-Introduction/01-defining-data-science/README.md)
- [Etika datové vědy](../1-Introduction/02-ethics/README.md)
diff --git a/translations/cs/examples/README.md b/translations/cs/examples/README.md
index 39612c61..b72c4fa1 100644
--- a/translations/cs/examples/README.md
+++ b/translations/cs/examples/README.md
@@ -1,12 +1,3 @@
-
# Příklady pro začátečníky v datové vědě
Vítejte v adresáři příkladů! Tato sbírka jednoduchých, dobře okomentovaných příkladů je navržena tak, aby vám pomohla začít s datovou vědou, i když jste úplný začátečník.
diff --git a/translations/cs/for-teachers.md b/translations/cs/for-teachers.md
index 7a5e5386..75b93373 100644
--- a/translations/cs/for-teachers.md
+++ b/translations/cs/for-teachers.md
@@ -1,12 +1,3 @@
-
## Pro pedagogy
Chcete použít tento vzdělávací program ve své třídě? Klidně to udělejte!
diff --git a/translations/cs/quiz-app/README.md b/translations/cs/quiz-app/README.md
index fb398c8a..7115b30a 100644
--- a/translations/cs/quiz-app/README.md
+++ b/translations/cs/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Kvízy
Tyto kvízy slouží jako přednáškové a popřednáškové kvízy pro kurikulum datové vědy na https://aka.ms/datascience-beginners
diff --git a/translations/cs/sketchnotes/README.md b/translations/cs/sketchnotes/README.md
index 2494d8c8..0c7734d6 100644
--- a/translations/cs/sketchnotes/README.md
+++ b/translations/cs/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Najděte všechny sketchnoty zde!
## Poděkování
diff --git a/translations/da/.co-op-translator.json b/translations/da/.co-op-translator.json
new file mode 100644
index 00000000..649cb37d
--- /dev/null
+++ b/translations/da/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:55:31+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "da"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-26T21:34:38+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "da"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-26T21:35:47+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "da"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:38:15+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "da"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-26T21:27:29+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "da"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T22:09:02+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "da"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-26T21:39:51+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "da"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:39:06+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "da"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-26T21:48:09+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "da"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-26T21:14:00+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "da"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:33:15+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "da"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:56:05+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "da"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T21:57:30+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "da"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-26T21:12:13+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "da"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:46:35+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "da"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-26T21:07:25+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "da"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T21:59:34+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "da"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-26T20:59:37+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "da"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-26T20:47:18+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T22:03:39+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-26T23:19:31+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T22:05:26+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-26T22:51:15+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T22:03:12+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-26T23:24:09+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:39:47+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-26T22:55:31+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T22:04:08+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-26T22:45:54+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T22:47:11+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T22:46:36+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-26T23:06:37+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-26T23:09:13+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-26T22:57:45+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-26T22:59:39+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-26T23:14:48+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-26T23:01:58+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-26T23:11:32+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "da"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-26T22:40:50+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "da"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:08:32+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "da"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-26T22:28:10+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "da"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:07:53+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "da"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-26T22:31:06+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "da"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:09:01+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "da"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-26T22:39:34+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "da"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-26T22:20:52+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "da"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T21:56:30+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "da"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-26T22:11:14+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "da"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T21:55:30+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "da"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-26T22:06:03+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "da"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T21:56:51+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "da"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-26T22:18:07+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "da"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-26T21:57:19+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "da"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:32:54+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "da"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-26T21:56:14+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "da"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-26T21:49:27+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "da"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:25:00+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "da"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-26T20:44:41+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "da"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:08:06+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "da"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:21:35+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "da"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:56:40+00:00",
+ "source_file": "README.md",
+ "language_code": "da"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-26T20:45:34+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "da"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-26T20:42:29+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "da"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:41:16+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "da"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:04:24+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "da"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-26T21:13:07+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "da"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:03:28+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "da"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:57:46+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "da"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-26T22:19:23+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "da"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-26T21:48:55+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "da"
+ }
+}
\ No newline at end of file
diff --git a/translations/da/1-Introduction/01-defining-data-science/README.md b/translations/da/1-Introduction/01-defining-data-science/README.md
index 90e67fa9..f9af3b62 100644
--- a/translations/da/1-Introduction/01-defining-data-science/README.md
+++ b/translations/da/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Definition af Data Science
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/da/1-Introduction/01-defining-data-science/assignment.md b/translations/da/1-Introduction/01-defining-data-science/assignment.md
index 72201115..4d81d7ee 100644
--- a/translations/da/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/da/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Opgave: Data Science Scenarier
I denne første opgave beder vi dig om at tænke over nogle virkelige processer eller problemer inden for forskellige problemområder, og hvordan du kan forbedre dem ved hjælp af Data Science-processen. Tænk over følgende:
diff --git a/translations/da/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/da/1-Introduction/01-defining-data-science/solution/assignment.md
index 8dfa3ffd..393d68a2 100644
--- a/translations/da/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/da/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Opgave: Data Science Scenarier
I denne første opgave beder vi dig om at tænke på nogle virkelige processer eller problemer inden for forskellige problemområder, og hvordan du kan forbedre dem ved hjælp af Data Science-processen. Tænk over følgende:
diff --git a/translations/da/1-Introduction/02-ethics/README.md b/translations/da/1-Introduction/02-ethics/README.md
index 37db5a1f..dac01d72 100644
--- a/translations/da/1-Introduction/02-ethics/README.md
+++ b/translations/da/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Introduktion til Dataetik
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/da/1-Introduction/02-ethics/assignment.md b/translations/da/1-Introduction/02-ethics/assignment.md
index 7f7af8c4..de6f6bfb 100644
--- a/translations/da/1-Introduction/02-ethics/assignment.md
+++ b/translations/da/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Skriv en Case Study om Dataetik
## Instruktioner
diff --git a/translations/da/1-Introduction/03-defining-data/README.md b/translations/da/1-Introduction/03-defining-data/README.md
index 95af8209..1821d09f 100644
--- a/translations/da/1-Introduction/03-defining-data/README.md
+++ b/translations/da/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Definering af Data
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/da/1-Introduction/03-defining-data/assignment.md b/translations/da/1-Introduction/03-defining-data/assignment.md
index f40fb941..399decbb 100644
--- a/translations/da/1-Introduction/03-defining-data/assignment.md
+++ b/translations/da/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Klassificering af datasæt
## Instruktioner
diff --git a/translations/da/1-Introduction/04-stats-and-probability/README.md b/translations/da/1-Introduction/04-stats-and-probability/README.md
index 1dcd6b55..77dc2b05 100644
--- a/translations/da/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/da/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# En Kort Introduktion til Statistik og Sandsynlighed
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ For at hjælpe os med at forstå fordelingen af data er det nyttigt at tale om *
Grafisk kan vi repræsentere forholdet mellem median og kvartiler i et diagram kaldet **boksplot**:
-
+
Her beregner vi også **interkvartilafstand** IQR=Q3-Q1 og såkaldte **outliers** - værdier, der ligger uden for grænserne [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/da/1-Introduction/04-stats-and-probability/assignment.md b/translations/da/1-Introduction/04-stats-and-probability/assignment.md
index 332619fb..fc22cae5 100644
--- a/translations/da/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/da/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Lille Diabetesundersøgelse
I denne opgave skal vi arbejde med et lille datasæt af diabetespatienter taget fra [her](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/da/1-Introduction/README.md b/translations/da/1-Introduction/README.md
index f7319518..63863ba1 100644
--- a/translations/da/1-Introduction/README.md
+++ b/translations/da/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduktion til Data Science

diff --git a/translations/da/2-Working-With-Data/05-relational-databases/README.md b/translations/da/2-Working-With-Data/05-relational-databases/README.md
index bcaef325..627ea508 100644
--- a/translations/da/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/da/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Arbejde med data: Relationelle databaser
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/da/2-Working-With-Data/05-relational-databases/assignment.md b/translations/da/2-Working-With-Data/05-relational-databases/assignment.md
index 9af8f110..90f10b61 100644
--- a/translations/da/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/da/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Vise lufthavnsdata
Du har fået en [database](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) bygget på [SQLite](https://sqlite.org/index.html), som indeholder information om lufthavne. Skemaet vises nedenfor. Du vil bruge [SQLite-udvidelsen](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) i [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) til at vise information om forskellige byers lufthavne.
diff --git a/translations/da/2-Working-With-Data/06-non-relational/README.md b/translations/da/2-Working-With-Data/06-non-relational/README.md
index b9040365..061d6027 100644
--- a/translations/da/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/da/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Arbejde med data: Ikke-relationelle data
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/da/2-Working-With-Data/06-non-relational/assignment.md b/translations/da/2-Working-With-Data/06-non-relational/assignment.md
index 0688c126..13eead93 100644
--- a/translations/da/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/da/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Sodavandsfortjenester
## Instruktioner
diff --git a/translations/da/2-Working-With-Data/07-python/README.md b/translations/da/2-Working-With-Data/07-python/README.md
index 597d7f86..57162750 100644
--- a/translations/da/2-Working-With-Data/07-python/README.md
+++ b/translations/da/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Arbejde med Data: Python og Pandas-biblioteket
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/da/2-Working-With-Data/07-python/assignment.md b/translations/da/2-Working-With-Data/07-python/assignment.md
index 4eef0887..11749bd9 100644
--- a/translations/da/2-Working-With-Data/07-python/assignment.md
+++ b/translations/da/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Opgave i Databehandling med Python
I denne opgave vil vi bede dig om at uddybe den kode, vi er begyndt at udvikle i vores udfordringer. Opgaven består af to dele:
diff --git a/translations/da/2-Working-With-Data/08-data-preparation/README.md b/translations/da/2-Working-With-Data/08-data-preparation/README.md
index 10b9772b..1adfb1a5 100644
--- a/translations/da/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/da/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Arbejde med data: Dataklargøring
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/da/2-Working-With-Data/08-data-preparation/assignment.md b/translations/da/2-Working-With-Data/08-data-preparation/assignment.md
index 6cb712cb..9ff1f3f2 100644
--- a/translations/da/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/da/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Evaluering af data fra en formular
En kunde har testet en [lille formular](../../../../2-Working-With-Data/08-data-preparation/index.html) for at indsamle nogle grundlæggende oplysninger om deres kundebase. De har givet dig deres resultater for at validere de data, de har indsamlet. Du kan åbne `index.html`-siden i browseren for at se formularen.
diff --git a/translations/da/2-Working-With-Data/README.md b/translations/da/2-Working-With-Data/README.md
index 558b80bf..d91d0996 100644
--- a/translations/da/2-Working-With-Data/README.md
+++ b/translations/da/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Arbejde med data

diff --git a/translations/da/3-Data-Visualization/09-visualization-quantities/README.md b/translations/da/3-Data-Visualization/09-visualization-quantities/README.md
index 859caddc..7258b509 100644
--- a/translations/da/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/da/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualisering af mængder
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/da/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/da/3-Data-Visualization/09-visualization-quantities/assignment.md
index ebb89af5..0b88a635 100644
--- a/translations/da/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/da/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linjer, Spredningsdiagrammer og Søjler
## Instruktioner
diff --git a/translations/da/3-Data-Visualization/10-visualization-distributions/README.md b/translations/da/3-Data-Visualization/10-visualization-distributions/README.md
index 1bb4b168..70def782 100644
--- a/translations/da/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/da/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualisering af fordelinger
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/da/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/da/3-Data-Visualization/10-visualization-distributions/assignment.md
index 0bdaf93a..bc145716 100644
--- a/translations/da/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/da/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Anvend dine færdigheder
## Instruktioner
diff --git a/translations/da/3-Data-Visualization/11-visualization-proportions/README.md b/translations/da/3-Data-Visualization/11-visualization-proportions/README.md
index f8ab0753..0391866e 100644
--- a/translations/da/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/da/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualisering af proportioner
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/da/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/da/3-Data-Visualization/11-visualization-proportions/assignment.md
index 2f1cdfd1..3459bfec 100644
--- a/translations/da/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/da/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Prøv det i Excel
## Instruktioner
diff --git a/translations/da/3-Data-Visualization/12-visualization-relationships/README.md b/translations/da/3-Data-Visualization/12-visualization-relationships/README.md
index acc8d49f..271d20b9 100644
--- a/translations/da/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/da/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualisering af relationer: Alt om honning 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/da/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/da/3-Data-Visualization/12-visualization-relationships/assignment.md
index 9ab3b20b..97c823f5 100644
--- a/translations/da/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/da/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Dyk ned i bikuben
## Instruktioner
diff --git a/translations/da/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/da/3-Data-Visualization/13-meaningful-visualizations/README.md
index 14bb7a8b..a7ce17b2 100644
--- a/translations/da/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/da/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Skabe Meningsfulde Visualiseringer
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/da/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/da/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index cf31143c..12f1809f 100644
--- a/translations/da/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/da/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Byg din egen tilpassede vis
## Instruktioner
diff --git a/translations/da/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/da/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 849a3078..7d8e1225 100644
--- a/translations/da/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/da/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Dangerous Liaisons datavisualiseringsprojekt
For at komme i gang skal du sikre dig, at du har NPM og Node installeret på din maskine. Installer afhængighederne (npm install), og kør derefter projektet lokalt (npm run serve):
diff --git a/translations/da/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/da/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 138e30f9..a2b3103a 100644
--- a/translations/da/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/da/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Dangerous Liaisons data visualiseringsprojekt
For at komme i gang skal du sikre dig, at du har NPM og Node kørende på din maskine. Installer afhængighederne (npm install) og kør derefter projektet lokalt (npm run serve):
diff --git a/translations/da/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/da/3-Data-Visualization/R/09-visualization-quantities/README.md
index 993054e2..207afbb7 100644
--- a/translations/da/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/da/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualisering af mængder
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/da/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/da/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index cd5fa67b..359a3a89 100644
--- a/translations/da/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/da/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linjer, Spredningsdiagrammer og Søjlediagrammer
## Instruktioner
diff --git a/translations/da/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/da/3-Data-Visualization/R/10-visualization-distributions/README.md
index 83606408..3d34542e 100644
--- a/translations/da/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/da/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualisering af fordelinger
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/da/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/da/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index ccc9b90f..0c789f08 100644
--- a/translations/da/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/da/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Anvend dine færdigheder
## Instruktioner
diff --git a/translations/da/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/da/3-Data-Visualization/R/11-visualization-proportions/README.md
index 04473f10..ecb467fb 100644
--- a/translations/da/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/da/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualisering af proportioner
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/da/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/da/3-Data-Visualization/R/12-visualization-relationships/README.md
index d4f42b01..23e0c2fe 100644
--- a/translations/da/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/da/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualisering af relationer: Alt om honning 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/da/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/da/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index b96a9b35..b264f385 100644
--- a/translations/da/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/da/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Skabe Meningsfulde Visualiseringer
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/da/3-Data-Visualization/README.md b/translations/da/3-Data-Visualization/README.md
index 07faa603..01287938 100644
--- a/translations/da/3-Data-Visualization/README.md
+++ b/translations/da/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Visualiseringer

diff --git a/translations/da/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/da/4-Data-Science-Lifecycle/14-Introduction/README.md
index 03cf6c7d..d0604a9d 100644
--- a/translations/da/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/da/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduktion til Data Science Livscyklus
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/da/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/da/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 81c262df..25b69e41 100644
--- a/translations/da/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/da/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Vurdering af et datasæt
En klient har henvendt sig til jeres team for hjælp til at undersøge en taxikundes sæsonmæssige forbrugsvaner i New York City.
diff --git a/translations/da/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/da/4-Data-Science-Lifecycle/15-analyzing/README.md
index 25aa10b1..3525ee58 100644
--- a/translations/da/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/da/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Data Science Livscyklus: Analyse
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/da/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/da/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index c6426293..410b186f 100644
--- a/translations/da/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/da/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Udforskning efter svar
Dette er en fortsættelse af den tidligere lektions [opgave](../14-Introduction/assignment.md), hvor vi kort kiggede på datasættet. Nu vil vi tage et dybere kig på dataene.
diff --git a/translations/da/4-Data-Science-Lifecycle/16-communication/README.md b/translations/da/4-Data-Science-Lifecycle/16-communication/README.md
index 70ec32dc..3aabef73 100644
--- a/translations/da/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/da/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Data Science Livscyklus: Kommunikation
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/da/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/da/4-Data-Science-Lifecycle/16-communication/assignment.md
index c394e682..eb0e9ab0 100644
--- a/translations/da/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/da/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Fortæl en historie
## Instruktioner
diff --git a/translations/da/4-Data-Science-Lifecycle/README.md b/translations/da/4-Data-Science-Lifecycle/README.md
index 4c3984dd..c7f5e4f2 100644
--- a/translations/da/4-Data-Science-Lifecycle/README.md
+++ b/translations/da/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Data Science Livscyklus

diff --git a/translations/da/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/da/5-Data-Science-In-Cloud/17-Introduction/README.md
index 2ea11851..cc7a6a5d 100644
--- a/translations/da/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/da/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduktion til Data Science i Skyen
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/da/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/da/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index cecbcca2..a1e1c44c 100644
--- a/translations/da/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/da/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Markedsundersøgelse
## Instruktioner
diff --git a/translations/da/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/da/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 35a4517d..bb8e9683 100644
--- a/translations/da/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/da/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Data Science i skyen: Den "Low code/No code" tilgang
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/da/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/da/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index b932b3a8..cbd900b7 100644
--- a/translations/da/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/da/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Low code/No code Data Science-projekt på Azure ML
## Instruktioner
diff --git a/translations/da/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/da/5-Data-Science-In-Cloud/19-Azure/README.md
index 04a63037..1da2b4a6 100644
--- a/translations/da/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/da/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Data Science i skyen: Den "Azure ML SDK" måde
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/da/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/da/5-Data-Science-In-Cloud/19-Azure/assignment.md
index b9da84e1..d820ddc3 100644
--- a/translations/da/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/da/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Data Science-projekt ved brug af Azure ML SDK
## Instruktioner
diff --git a/translations/da/5-Data-Science-In-Cloud/README.md b/translations/da/5-Data-Science-In-Cloud/README.md
index 751add34..e61e43b3 100644
--- a/translations/da/5-Data-Science-In-Cloud/README.md
+++ b/translations/da/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Data Science i skyen

diff --git a/translations/da/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/da/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index b0c44d35..f6972570 100644
--- a/translations/da/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/da/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Data Science i den Virkelige Verden
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/da/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/da/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 4a8d9dd9..5609ad61 100644
--- a/translations/da/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/da/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Udforsk et Planetary Computer-datasæt
## Instruktioner
diff --git a/translations/da/6-Data-Science-In-Wild/README.md b/translations/da/6-Data-Science-In-Wild/README.md
index e731635f..8e37f158 100644
--- a/translations/da/6-Data-Science-In-Wild/README.md
+++ b/translations/da/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Data Science i det virkelige liv
Anvendelser af data science i forskellige industrier.
diff --git a/translations/da/AGENTS.md b/translations/da/AGENTS.md
index 9c363974..4a6ab5f9 100644
--- a/translations/da/AGENTS.md
+++ b/translations/da/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Projektoversigt
diff --git a/translations/da/CODE_OF_CONDUCT.md b/translations/da/CODE_OF_CONDUCT.md
index df5eb746..cb788f66 100644
--- a/translations/da/CODE_OF_CONDUCT.md
+++ b/translations/da/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft Open Source Adfærdskodeks
Dette projekt har vedtaget [Microsoft Open Source Adfærdskodeks](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/da/CONTRIBUTING.md b/translations/da/CONTRIBUTING.md
index 461ce8ac..18d6f6a4 100644
--- a/translations/da/CONTRIBUTING.md
+++ b/translations/da/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Bidrag til Data Science for Beginners
Tak for din interesse i at bidrage til Data Science for Beginners-kurset! Vi værdsætter bidrag fra fællesskabet.
diff --git a/translations/da/INSTALLATION.md b/translations/da/INSTALLATION.md
index 8e8e16b9..82ccbfa5 100644
--- a/translations/da/INSTALLATION.md
+++ b/translations/da/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Installationsvejledning
Denne vejledning hjælper dig med at opsætte dit miljø til at arbejde med Data Science for Beginners-kurset.
diff --git a/translations/da/README.md b/translations/da/README.md
index 24a28946..70a623be 100644
--- a/translations/da/README.md
+++ b/translations/da/README.md
@@ -1,13 +1,4 @@
-
-# Data Science for Beginners - En læreplan
+# Data Science for Beginners - Et Læreplan
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,27 +17,27 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Azure Cloud Advocates hos Microsoft er glade for at tilbyde en 10-ugers, 20-lektioners læreplan, der handler om Data Science. Hver lektion inkluderer quizzer før og efter lektionen, skriftlige instruktioner til at fuldføre lektionen, en løsning og en opgave. Vores projektbaserede pædagogik giver dig mulighed for at lære, mens du bygger, en bevist måde for nye færdigheder at "sidde fast".
+Azure Cloud Advocates hos Microsoft er glade for at tilbyde en 10-ugers, 20-lektions læreplan, der handler om Data Science. Hver lektion inkluderer quizzer før og efter lektionen, skriftlige instruktioner til at gennemføre lektionen, en løsning og en opgave. Vores projektbaserede pædagogik giver dig mulighed for at lære, mens du bygger, en bevist metode til at få nye færdigheder til at "sidde fast".
**Hjertelig tak til vores forfattere:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Særlige tak 🙏 til vores [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) forfattere, anmeldere og indholdsbidragydere,** især Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Særlige tak 🙏 til vores [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) forfattere, anmeldere og indholdsleverandører,** især Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
| Data Science For Beginners - _Sketchnote af [@nitya](https://twitter.com/nitya)_ |
-### 🌐 Understøttelse af flere sprog
+### 🌐 Flere Sprog Understøttelse
#### Understøttet via GitHub Action (Automatiseret & Altid Opdateret)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](./README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](./README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
> **Foretrækker du at klone lokalt?**
-> Dette repositorium inkluderer 50+ sprogoversættelser, som væsentligt øger downloadstørrelsen. For at klone uden oversættelser, brug sparse checkout:
+> Dette repository inkluderer mere end 50 sprogoversættelser, som øger downloadstørrelsen betydeligt. For at klone uden oversættelser, brug sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
@@ -55,152 +46,152 @@ Azure Cloud Advocates hos Microsoft er glade for at tilbyde en 10-ugers, 20-lekt
> Dette giver dig alt, hvad du behøver for at gennemføre kurset med en meget hurtigere download.
-**Hvis du ønsker at få flere oversættelsessprog understøttet, er de listet [her](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Hvis du ønsker at få yderligere oversættelsessprog understøttet, er de opført [her](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Deltag i vores fællesskab
+#### Deltag i vores fællesskab
[](https://discord.gg/nTYy5BXMWG)
-Vi har en igangværende Discord lær med AI-serie, lær mere og deltag i os på [Learn with AI Series](https://aka.ms/learnwithai/discord) fra 18. - 30. september 2025. Du vil få tips og tricks til brug af GitHub Copilot for Data Science.
+Vi har en igangværende Discord lær med AI serie, lær mere og deltag hos [Learn with AI Series](https://aka.ms/learnwithai/discord) fra 18. - 30. september 2025. Du får tips og tricks til brug af GitHub Copilot til Data Science.
-
+
# Er du studerende?
Kom i gang med følgende ressourcer:
-- [Student Hub side](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) På denne side finder du begynderressourcer, studenterpakker og endda måder at få en gratis certifikatvoucher på. Dette er en side, du vil bogmærke og tjekke jævnligt, da vi skifter indhold mindst månedligt.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Deltag i et globalt fællesskab af studenterambassadører, det kan være din vej ind i Microsoft.
+- [Student Hub siden](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) På denne side finder du begynderressourcer, studenterpakker og endda måder at få en gratis certifikatvoucher på. Dette er en side, du ønsker at bogmærke og tjekke fra tid til anden, da vi skifter indhold mindst månedligt.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Bliv medlem af et globalt fællesskab af student ambassadors, dette kunne være din vej ind i Microsoft.
# Kom godt i gang
## 📚 Dokumentation
-- **[Installationsguide](INSTALLATION.md)** - Trin-for-trin installationsinstruktioner for begyndere
-- **[Brugsvejledning](USAGE.md)** - Eksempler og typiske arbejdsgange
+- **[Installationsguide](INSTALLATION.md)** - Trin-for-trin opsætningsinstruktioner for begyndere
+- **[Brugsvejledning](USAGE.md)** - Eksempler og almindelige arbejdsgange
- **[Fejlfinding](TROUBLESHOOTING.md)** - Løsninger på almindelige problemer
-- **[Bidragende guide](CONTRIBUTING.md)** - Sådan bidrager du til dette projekt
-- **[For lærere](for-teachers.md)** - Undervisningsvejledning og ressourcer til klasseværelset
+- **[Bidragsvejledning](CONTRIBUTING.md)** - Hvordan man bidrager til dette projekt
+- **[For undervisere](for-teachers.md)** - Undervisningsvejledning og klasseværelsesressourcer
## 👨🎓 For studerende
-> **Helt begynder:** Ny inden for data science? Start med vores [begyndervenlige eksempler](examples/README.md)! Disse enkle, godt kommenterede eksempler hjælper dig med at forstå det grundlæggende, før du dykker ned i hele læreplanen.
-> **[Studerende](https://aka.ms/student-page)**: for at bruge denne læreplan på egen hånd, lav en fork af hele repoen og gennemfør øvelserne selv, startende med en quiz før forelæsningen. Læs derefter forelæsningen og gennemfør resten af aktiviteterne. Prøv at skabe projekterne ved at forstå lektionerne snarere end at kopiere løsningskoden; dog er denne kode tilgængelig i /solutions mapperne i hver projektorienteret lektion. En anden idé er at danne en studiegruppe med venner og gennemgå indholdet sammen. Til yderligere studie anbefaler vi [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Fuldstændige begyndere**: Ny til data science? Start med vores [begynder-venlige eksempler](examples/README.md)! Disse simple, velkommenterede eksempler vil hjælpe dig med at forstå det grundlæggende, før du går i dybden med hele læreplanen.
+> **[Studerende](https://aka.ms/student-page)**: for at bruge denne læreplan på egen hånd, forgrene hele repo'et og gennemfør øvelserne på egen hånd, startende med en quiz før forelæsningen. Læs derefter forelæsningen og gennemfør resten af aktiviteterne. Prøv at skabe projekterne ved at forstå lektionerne frem for at kopiere løsningskoden; denne kode findes dog i /solutions mapperne i hver projektorienteret lektion. En anden idé er at danne en studiegruppe med venner og gennemgå indholdet sammen. Til yderligere studie anbefaler vi [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Hurtig start:**
1. Tjek [Installationsguiden](INSTALLATION.md) for at sætte dit miljø op
-2. Gennemgå [Brugsvejledning](USAGE.md) for at lære, hvordan du arbejder med læreplanen
-3. Start med lektion 1 og arbejd dig igennem sekventielt
-4. Deltag i vores [Discord fællesskab](https://aka.ms/ds4beginners/discord) for support
+2. Gennemgå [Brugsvejledningen](USAGE.md) for at lære, hvordan du arbejder med læreplanen
+3. Start med Lektion 1 og arbejd dig sekventielt igennem
+4. Deltag i vores [Discord-fællesskab](https://aka.ms/ds4beginners/discord) for support
-## 👩🏫 For lærere
-
-> **Lærere**: vi har [inkluderet nogle forslag](for-teachers.md) til, hvordan denne læreplan kan bruges. Vi vil meget gerne have din feedback [i vores diskussionsforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## 👩🏫 For undervisere
+> **Undervisere**: vi har [inkluderet nogle forslag](for-teachers.md) til, hvordan man bruger denne læreplan. Vi vil meget gerne have din feedback [i vores diskussionsforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Mød teamet
+
[](https://youtu.be/8mzavjQSMM4 "Promo video")
**Gif af** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Klik på billedet ovenfor for en video om projektet og folkene, der har skabt det!
+> 🎥 Klik på billedet ovenfor for en video om projektet og de personer, der skabte det!
## Pædagogik
-Vi har valgt to pædagogiske principper, mens vi byggede dette pensum: at sikre, at det er projektbaseret, og at det indeholder hyppige quizzer. Ved slutningen af denne serie vil eleverne have lært grundlæggende principper inden for datavidenskab, herunder etiske begreber, dataklargøring, forskellige måder at arbejde med data på, datavisualisering, dataanalyse, virkelige anvendelse af datavidenskab og mere.
+Vi har valgt to pædagogiske principper, mens vi byggede denne læseplan: at sikre, at den er projektbaseret, og at den inkluderer hyppige quizzer. Ved slutningen af denne serie vil eleverne have lært grundlæggende principper for data science, inklusive etiske koncepter, datapreparation, forskellige måder at arbejde med data på, datavisualisering, dataanalyse, virkelige anvendelsestilfælde af data science og meget mere.
-Derudover sætter en lavrisiko quiz før en klasse elevens intention mod at lære et emne, mens en anden quiz efter klassen sikrer yderligere fastholdelse. Dette pensum er designet til at være fleksibelt og sjovt og kan tages helt eller delvist. Projekterne starter små og bliver gradvist mere komplekse i løbet af den 10-ugers cyklus.
+Derudover sætter en lavrisiko-quiz før en klasse elevens intention mod at lære et emne, mens en anden quiz efter klassen sikrer yderligere fastholdelse. Denne læseplan er designet til at være fleksibel og sjov, og kan tages i sin helhed eller delvist. Projekterne starter småt og bliver gradvist mere komplekse mod slutningen af den 10-ugers cyklus.
-> Find vores [Adfærdskodeks](CODE_OF_CONDUCT.md), [Bidragning](CONTRIBUTING.md), [Oversættelse](TRANSLATIONS.md) retningslinjer. Vi byder dine konstruktive tilbagemeldinger velkommen!
+> Find vores [Adfærdskodeks](CODE_OF_CONDUCT.md), [Bidrag](CONTRIBUTING.md), [Oversættelse](TRANSLATIONS.md) retningslinjer. Vi byder konstruktiv feedback velkommen!
## Hver lektion inkluderer:
-- Valgfri sketchnote
+- Valgfri skitsenote
- Valgfri supplerende video
-- Opvarmningsquiz før lektionen
-- Skriftlig lektion
-- For projektbaserede lektioner, trin-for-trin vejledninger til, hvordan man bygger projektet
+- For-lesson opvarmningsquiz
+- Skreven lektion
+- For projektbaserede lektioner, trin-for-trin guider til, hvordan man bygger projektet
- Videnstjek
- En udfordring
- Supplerende læsning
- Opgave
-- [Quiz efter lektionen](https://ff-quizzes.netlify.app/en/)
+- [Post-lesson quiz](https://ff-quizzes.netlify.app/en/)
-> **En note om quizzer**: Alle quizzer findes i Quiz-App-mappen, med i alt 40 quizzer med tre spørgsmål hver. De er linket fra lektionerne, men quiz-appen kan køres lokalt eller deployeres til Azure; følg instruktionerne i `quiz-app` mappen. De bliver gradvist oversat.
+> **En note om quizzer**: Alle quizzer findes i Quiz-App mappen, med i alt 40 quizzer med tre spørgsmål hver. De er linket fra lektionerne, men quiz-appen kan køre lokalt eller implementeres til Azure; følg instruktionerne i `quiz-app` mappen. De bliver gradvist lokaliseret.
## 🎓 Begynder-venlige eksempler
-**Ny til datavidenskab?** Vi har oprettet et specielt [eksempelbibliotek](examples/README.md) med enkel, velkommenteret kode for at hjælpe dig i gang:
+**Ny til Data Science?** Vi har lavet en speciel [eksempelmapppe](examples/README.md) med simpel, velkommenteret kode for at hjælpe dig i gang:
-- 🌟 **Hello World** - Dit første datavidenskabsprogram
+- 🌟 **Hello World** - Dit første data science program
- 📂 **Indlæsning af data** - Lær at læse og udforske datasæt
- 📊 **Simpel analyse** - Beregn statistik og find mønstre
-- 📈 **Grundlæggende visualisering** - Lav diagrammer og grafer
-- 🔬 **Virkeligt projekt** - Fuld arbejdsgang fra start til slut
+- 📈 **Grundlæggende visualisering** - Skab diagrammer og grafer
+- 🔬 **Virkelighedsnært projekt** - Fuld arbejdsproces fra start til slut
-Hvert eksempel indeholder detaljerede kommentarer, der forklarer hvert trin, hvilket gør det perfekt til absolutte begyndere!
+Hvert eksempel inkluderer detaljerede kommentarer, der forklarer hvert trin, hvilket gør det perfekt for absolutte begyndere!
👉 **[Start med eksemplerne](examples/README.md)** 👈
## Lektioner
-||
+||
|:---:|
| Data Science For Beginners: Roadmap - _Sketchnote af [@nitya](https://twitter.com/nitya)_ |
-| Lektion Nummer | Emne | Lektion Gruppereing | Læringsmål | Linket Lektion | Forfatter |
+| Lektion nummer | Emne | Lektion gruppe | Læringsmål | Linket lektion | Forfatter |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Definition af datavidenskab | [Introduktion](1-Introduction/README.md) | Lær grundlæggende begreber bag datavidenskab og hvordan det relaterer sig til kunstig intelligens, maskinlæring og big data. | [lektion](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Etik i datavidenskab | [Introduktion](1-Introduction/README.md) | Begreber, udfordringer og rammer for dataetik. | [lektion](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Definition af data | [Introduktion](1-Introduction/README.md) | Hvordan data klassificeres og dets almindelige kilder. | [lektion](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Introduktion til statistik & sandsynlighed | [Introduktion](1-Introduction/README.md) | Matematiske teknikker inden for sandsynlighed og statistik til at forstå data. | [lektion](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 01 | Definering af Data Science | [Introduktion](1-Introduction/README.md) | Lær de grundlæggende koncepter bag data science og hvordan det relaterer sig til kunstig intelligens, maskinlæring og big data. | [lektion](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Data Science etik | [Introduktion](1-Introduction/README.md) | Dataetik koncepter, udfordringer og rammer. | [lektion](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Definering af Data | [Introduktion](1-Introduction/README.md) | Hvordan data klassificeres og dets almindelige kilder. | [lektion](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Introduktion til statistik & sandsynlighed | [Introduktion](1-Introduction/README.md) | Matematiske teknikker inden for sandsynlighed og statistik til forståelse af data. | [lektion](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Arbejde med relationelle data | [Arbejde med data](2-Working-With-Data/README.md) | Introduktion til relationelle data og grundlæggende udforskning og analyse af relationelle data med Structured Query Language, også kendt som SQL (udtales “see-quell”). | [lektion](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Arbejde med NoSQL-data | [Arbejde med data](2-Working-With-Data/README.md) | Introduktion til ikke-relationelle data, deres forskellige typer og grundlæggende udforskning og analyse af dokumentdatabaser. | [lektion](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Arbejde med Python | [Arbejde med data](2-Working-With-Data/README.md) | Grundlæggende brug af Python til dataudforskning med biblioteker som Pandas. En grundlæggende forståelse af Python programmering anbefales. | [lektion](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Dataklargøring | [Arbejde med data](2-Working-With-Data/README.md) | Emner om datateknikker til rengøring og omdannelse af data for at håndtere udfordringer med manglende, unøjagtige eller ufuldstændige data. | [lektion](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Visualisering af mængder | [Datavisualisering](3-Data-Visualization/README.md) | Lær hvordan du bruger Matplotlib til at visualisere fugledata 🦆 | [lektion](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Visualisering af datadistributioner | [Datavisualisering](3-Data-Visualization/README.md) | Visualisering af observationer og trends inden for et interval. | [lektion](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Visualisering af forhold | [Datavisualisering](3-Data-Visualization/README.md) | Visualisering af diskrete og grupperede procenter. | [lektion](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Visualisering af relationer | [Datavisualisering](3-Data-Visualization/README.md) | Visualisering af forbindelser og korrelationer mellem datasæt og deres variable. | [lektion](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 06 | Arbejde med NoSQL data | [Arbejde med data](2-Working-With-Data/README.md) | Introduktion til ikke-relationelle data, dens forskellige typer og grundlæggende udforskning og analyse af dokumentdatabaser. | [lektion](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Arbejde med Python | [Arbejde med data](2-Working-With-Data/README.md) | Grundlæggende brug af Python til dataudforskning med biblioteker som Pandas. Grundlæggende forståelse af Python programmering anbefales. | [lektion](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Datapreparation | [Arbejde med data](2-Working-With-Data/README.md) | Emner om datateknikker til rengøring og omdannelse af data for at håndtere udfordringer med manglende, unøjagtige eller ufuldstændige data. | [lektion](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Visualisering af mængder | [Datavisualisering](3-Data-Visualization/README.md) | Lær at bruge Matplotlib til at visualisere fugledata 🦆 | [lektion](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Visualisering af datadistributioner | [Datavisualisering](3-Data-Visualization/README.md) | Visualisering af observationer og tendenser inden for et interval. | [lektion](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Visualisering af procenter | [Datavisualisering](3-Data-Visualization/README.md) | Visualisering af diskrete og grupperede procenter. | [lektion](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Visualisering af relationer | [Datavisualisering](3-Data-Visualization/README.md) | Visualisering af forbindelser og korrelationer mellem datasæt og deres variabler. | [lektion](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Meningsfulde visualiseringer | [Datavisualisering](3-Data-Visualization/README.md) | Teknikker og vejledning til at gøre dine visualiseringer værdifulde for effektiv problemløsning og indsigt. | [lektion](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Introduktion til datavidenskabslivscyklussen | [Livscyklus](4-Data-Science-Lifecycle/README.md) | Introduktion til datavidenskabslivscyklussen og dets første trin med erhvervelse og udvinding af data. | [lektion](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analyse | [Livscyklus](4-Data-Science-Lifecycle/README.md) | Denne fase i datavidenskabslivscyklussen fokuserer på teknikker til at analysere data. | [lektion](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Kommunikation | [Livscyklus](4-Data-Science-Lifecycle/README.md) | Denne fase i datavidenskabslivscyklussen fokuserer på at præsentere indsigt fra data på en måde, der gør det lettere for beslutningstagere at forstå. | [lektion](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Datavidenskab i skyen | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Denne serie lektioner introducerer datavidenskab i skyen og dens fordele. | [lektion](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
-| 18 | Datavidenskab i skyen | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Træning af modeller ved brug af Low Code værktøjer. |[lektion](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
-| 19 | Datavidenskab i skyen | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Implementering af modeller med Azure Machine Learning Studio. | [lektion](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
-| 20 | Datavidenskab i praksis | [In the Wild](6-Data-Science-In-Wild/README.md) | Datavidenskabsdrevede projekter i den virkelige verden. | [lektion](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 14 | Introduktion til Data Science livscyklus | [Livscyklus](4-Data-Science-Lifecycle/README.md) | Introduktion til data science livscyklus og dets første trin med at erhverve og udtrække data. | [lektion](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Analyse | [Livscyklus](4-Data-Science-Lifecycle/README.md) | Denne fase af data science livscyklussen fokuserer på teknikker til at analysere data. | [lektion](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Kommunikation | [Livscyklus](4-Data-Science-Lifecycle/README.md) | Denne fase af data science livscyklussen fokuserer på at præsentere indsigt fra data på en måde, som gør det nemmere for beslutningstagere at forstå. | [lektion](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Data Science i skyen | [Skydata](5-Data-Science-In-Cloud/README.md) | Denne serie lektioner introducerer data science i skyen og dens fordele. | [lektion](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
+| 18 | Data Science i skyen | [Skydata](5-Data-Science-In-Cloud/README.md) | Træning af modeller med Low Code værktøjer. |[lektion](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
+| 19 | Data Science i skyen | [Skydata](5-Data-Science-In-Cloud/README.md) | Udrulning af modeller med Azure Machine Learning Studio. | [lektion](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
+| 20 | Data Science i det fri | [I det fri](6-Data-Science-In-Wild/README.md) | Data science drevne projekter i den virkelige verden. | [lektion](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Følg disse trin for at åbne dette eksempel i en Codespace:
-1. Klik på Code dropdown-menuen og vælg Open with Codespaces option.
-2. Vælg + New codespace nederst i panelet.
+1. Klik på Code drop-down menuen og vælg mulighederne Åbn med Codespaces.
+2. Vælg + Ny codespace nederst i panelet.
For mere info, se [GitHub dokumentationen](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
-## VSCode Remote - Containers
-Følg disse trin for at åbne dette repo i en container ved at bruge din lokale maskine og VSCode med VS Code Remote - Containers udvidelsen:
+## VSCode Remote - Containere
+Følg disse trin for at åbne dette repositorium i en container ved hjælp af din lokale maskine og VSCode ved hjælp af VS Code Remote - Containers udvidelsen:
-1. Hvis dette er første gang du bruger en udviklingscontainer, skal du sikre dig, at dit system opfylder forudsætningerne (fx Docker installeret) i [komm-i-gang-dokumentationen](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Hvis dette er første gang du bruger en udviklingscontainer, skal du sikre, at dit system opfylder forudsætningerne (f.eks. at Docker er installeret) i [kom godt i gang dokumentationen](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-For at bruge dette repository kan du enten åbne repod i et isoleret Docker-volume:
+For at bruge dette repositorium kan du enten åbne repositoriet i et isoleret Docker-volumen:
-**Bemærk**: Under motorhjelmen bruges kommandoen Remote-Containers: **Clone Repository in Container Volume...** til at klone koden i et Docker-volume i stedet for lokalt filsystem. [Volumes](https://docs.docker.com/storage/volumes/) er den foretrukne mekanisme til at bevare containerdata.
+**Bemærk**: Under motorhjelmen vil dette bruge Remote-Containers: **Clone Repository in Container Volume...** kommandoen til at klone kildekoden i et Docker-volumen i stedet for det lokale filsystem. [Volumener](https://docs.docker.com/storage/volumes/) er den foretrukne mekanisme til at bevare containerdata.
-Eller åbne en lokalt klonet eller downloadet version af repot:
+Eller åbne en lokalt klonet eller downloadet version af repositoriet:
-- Klon dette repository til dit lokale filsystem.
-- Tryk F1 og vælg kommandoen **Remote-Containers: Open Folder in Container...**.
-- Vælg den klonede kopi af denne mappe, vent på at containeren starter, og prøv tingene.
+- Klon dette repositorium til dit lokale filsystem.
+- Tryk på F1 og vælg kommandoen **Remote-Containers: Open Folder in Container...**.
+- Vælg den klonede kopi af denne mappe, vent på at containeren starter, og prøv tingene af.
## Offline adgang
-Du kan køre denne dokumentation offline ved at bruge [Docsify](https://docsify.js.org/#/). Fork dette repo, [installer Docsify](https://docsify.js.org/#/quickstart) på din lokale maskine, og i rodbiblioteket af dette repo, skriv `docsify serve`. Websitet vil blive serveret på port 3000 på din localhost: `localhost:3000`.
+Du kan køre denne dokumentation offline ved at bruge [Docsify](https://docsify.js.org/#/). Fork dette repositorium, [installer Docsify](https://docsify.js.org/#/quickstart) på din lokale maskine, skriv derefter i rodmappen af dette repositorium `docsify serve`. Websitet vil blive serveret på port 3000 på din localhost: `localhost:3000`.
-> Bemærk, notebooks bliver ikke gengivet via Docsify, så når du skal køre en notebook, gør det separat i VS Code med en Python kernel.
+> Bemærk, at notebooks ikke bliver gengivet via Docsify, så når du skal køre en notebook, skal det gøres separat i VS Code med en Python-kernel.
-## Andre pensum
+## Andre læseplaner
-Vores team producerer andre pensum! Tag et kig på:
+Vores team producerer andre læseplaner! Tjek:
### LangChain
@@ -217,7 +208,7 @@ Vores team producerer andre pensum! Tag et kig på:
---
-### Generativ AI-serie
+### Generativ AI Serie
[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
@@ -236,27 +227,27 @@ Vores team producerer andre pensum! Tag et kig på:
---
-### Copilot-serie
+### Copilot Serie
[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-## Få hjælp
+## Få Hjælp
**Oplever du problemer?** Se vores [Fejlfinding Guide](TROUBLESHOOTING.md) for løsninger på almindelige problemer.
-Hvis du sidder fast eller har spørgsmål om at bygge AI-apps. Deltag i diskussioner om MCP med medlærende og erfarne udviklere. Det er et støttende fællesskab, hvor spørgsmål er velkomne, og viden deles frit.
+Hvis du sidder fast eller har spørgsmål om at bygge AI-apps. Deltag sammen med andre lærende og erfarne udviklere i diskussioner om MCP. Det er et støttende fællesskab, hvor spørgsmål er velkomne, og viden deles frit.
[](https://discord.gg/nTYy5BXMWG)
-Hvis du har produktfeedback eller fejl under udviklingen, besøg:
+Hvis du har feedback på produktet eller fejler under opbygning, besøg:
[](https://aka.ms/foundry/forum)
---
-**Ansvarsfraskrivelse**:
-Dette dokument er blevet oversat ved hjælp af AI-oversættelsestjenesten [Co-op Translator](https://github.com/Azure/co-op-translator). Selvom vi bestræber os på nøjagtighed, bedes du være opmærksom på, at automatiserede oversættelser kan indeholde fejl eller unøjagtigheder. Det oprindelige dokument på dets modersmål bør betragtes som den autoritative kilde. For kritisk information anbefales professionel human oversættelse. Vi påtager os intet ansvar for misforståelser eller fejltolkninger, der måtte opstå som følge af brugen af denne oversættelse.
+**Ansvarsfraskrivelse**:
+Dette dokument er blevet oversat ved hjælp af AI-oversættelsestjenesten [Co-op Translator](https://github.com/Azure/co-op-translator). Selvom vi bestræber os på nøjagtighed, bedes du være opmærksom på, at automatiserede oversættelser kan indeholde fejl eller unøjagtigheder. Det originale dokument på dets modersmål bør betragtes som den autoritative kilde. For kritisk information anbefales professionel menneskelig oversættelse. Vi er ikke ansvarlige for eventuelle misforståelser eller fejltolkninger, der opstår som følge af brugen af denne oversættelse.
\ No newline at end of file
diff --git a/translations/da/SECURITY.md b/translations/da/SECURITY.md
index a0c33d5a..f94c1899 100644
--- a/translations/da/SECURITY.md
+++ b/translations/da/SECURITY.md
@@ -1,12 +1,3 @@
-
## Sikkerhed
Microsoft tager sikkerheden af vores softwareprodukter og -tjenester alvorligt, hvilket inkluderer alle kildekoderepositorier, der administreres gennem vores GitHub-organisationer, som inkluderer [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) og [vores GitHub-organisationer](https://opensource.microsoft.com/).
diff --git a/translations/da/SUPPORT.md b/translations/da/SUPPORT.md
index de1e5b51..8c0b4777 100644
--- a/translations/da/SUPPORT.md
+++ b/translations/da/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Support
## Sådan indberetter du problemer og får hjælp
diff --git a/translations/da/TROUBLESHOOTING.md b/translations/da/TROUBLESHOOTING.md
index 7ee76564..7b439a5c 100644
--- a/translations/da/TROUBLESHOOTING.md
+++ b/translations/da/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Fejlfindingsguide
Denne guide giver løsninger på almindelige problemer, du kan støde på, mens du arbejder med Data Science for Beginners-kurset.
diff --git a/translations/da/USAGE.md b/translations/da/USAGE.md
index d8382672..206a4c7c 100644
--- a/translations/da/USAGE.md
+++ b/translations/da/USAGE.md
@@ -1,12 +1,3 @@
-
# Brugsvejledning
Denne vejledning giver eksempler og almindelige arbejdsgange til brug af Data Science for Beginners-kurset.
diff --git a/translations/da/docs/_sidebar.md b/translations/da/docs/_sidebar.md
index ee79c6f9..7473519f 100644
--- a/translations/da/docs/_sidebar.md
+++ b/translations/da/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Introduktion
- [Definition af Data Science](../1-Introduction/01-defining-data-science/README.md)
- [Etik i Data Science](../1-Introduction/02-ethics/README.md)
diff --git a/translations/da/examples/README.md b/translations/da/examples/README.md
index 61a7e07a..38830265 100644
--- a/translations/da/examples/README.md
+++ b/translations/da/examples/README.md
@@ -1,12 +1,3 @@
-
# Begynder-venlige Data Science Eksempler
Velkommen til eksempelmappen! Denne samling af enkle, velkommenterede eksempler er designet til at hjælpe dig i gang med data science, selv hvis du er helt nybegynder.
diff --git a/translations/da/for-teachers.md b/translations/da/for-teachers.md
index a1a49a76..764a9094 100644
--- a/translations/da/for-teachers.md
+++ b/translations/da/for-teachers.md
@@ -1,12 +1,3 @@
-
## For undervisere
Vil du gerne bruge dette pensum i dit klasseværelse? Vær så god!
diff --git a/translations/da/quiz-app/README.md b/translations/da/quiz-app/README.md
index f3f8403d..0d87c562 100644
--- a/translations/da/quiz-app/README.md
+++ b/translations/da/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Quizzer
Disse quizzer er før- og efterforelæsningsquizzer for data science-kurset på https://aka.ms/datascience-beginners
diff --git a/translations/da/sketchnotes/README.md b/translations/da/sketchnotes/README.md
index 0e3f17c8..cf6ef004 100644
--- a/translations/da/sketchnotes/README.md
+++ b/translations/da/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Find alle sketchnotes her!
## Kreditering
diff --git a/translations/de/.co-op-translator.json b/translations/de/.co-op-translator.json
new file mode 100644
index 00000000..a6b4fd96
--- /dev/null
+++ b/translations/de/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:34:28+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "de"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-24T21:31:00+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "de"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-24T21:31:58+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "de"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T15:59:55+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "de"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-24T21:25:07+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "de"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T14:03:08+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "de"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-24T21:35:34+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "de"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T12:50:19+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "de"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-24T21:44:16+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "de"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-24T21:15:04+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "de"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T10:26:28+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "de"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:52:11+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "de"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T13:51:52+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "de"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-24T21:13:25+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "de"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:21:43+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "de"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-24T21:09:08+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "de"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T13:53:59+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "de"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-24T21:02:07+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "de"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-24T20:52:14+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T13:57:26+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-24T23:03:43+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T13:59:03+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-24T22:38:02+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T13:56:59+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-24T23:07:16+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:26:33+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-24T22:42:03+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T13:57:57+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-24T22:33:28+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-24T22:34:34+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-24T22:34:02+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-24T22:50:01+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-24T22:53:43+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-24T22:43:18+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-24T22:45:20+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-24T22:58:08+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-24T22:46:42+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-24T22:54:59+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "de"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-24T22:29:01+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "de"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:16:33+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "de"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-24T22:17:17+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "de"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:15:50+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "de"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-24T22:20:02+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "de"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:17:00+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "de"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-24T22:28:04+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "de"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-24T22:13:51+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "de"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T13:49:35+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "de"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-24T22:04:55+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "de"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T13:48:31+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "de"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-24T22:01:34+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "de"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T13:51:07+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "de"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-24T22:11:31+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "de"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-24T21:52:38+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "de"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:12:40+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "de"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-24T21:51:39+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "de"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-24T21:45:33+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "de"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:00:36+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "de"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-24T20:49:38+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "de"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:20:00+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "de"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:14:09+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "de"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:05:08+00:00",
+ "source_file": "README.md",
+ "language_code": "de"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-24T20:50:25+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "de"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-24T20:47:31+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "de"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:29:25+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "de"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:52:27+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "de"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-24T21:14:10+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "de"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:55:50+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "de"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:51:47+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "de"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-24T22:12:33+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "de"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-24T21:45:04+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "de"
+ }
+}
\ No newline at end of file
diff --git a/translations/de/1-Introduction/01-defining-data-science/README.md b/translations/de/1-Introduction/01-defining-data-science/README.md
index 53fcb53a..16edf947 100644
--- a/translations/de/1-Introduction/01-defining-data-science/README.md
+++ b/translations/de/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Definition von Data Science
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/de/1-Introduction/01-defining-data-science/assignment.md b/translations/de/1-Introduction/01-defining-data-science/assignment.md
index 658c18d5..e12ddb4c 100644
--- a/translations/de/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/de/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Aufgabe: Szenarien der Datenwissenschaft
In dieser ersten Aufgabe bitten wir Sie, über einige reale Prozesse oder Probleme in verschiedenen Problembereichen nachzudenken und darüber, wie Sie diese mithilfe des Datenwissenschaftsprozesses verbessern können. Denken Sie über Folgendes nach:
diff --git a/translations/de/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/de/1-Introduction/01-defining-data-science/solution/assignment.md
index 34d15caa..a2818bd4 100644
--- a/translations/de/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/de/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Aufgabe: Szenarien der Datenwissenschaft
In dieser ersten Aufgabe bitten wir Sie, über einen realen Prozess oder ein Problem in verschiedenen Problembereichen nachzudenken und wie Sie diesen mithilfe des Datenwissenschaftsprozesses verbessern können. Denken Sie über Folgendes nach:
diff --git a/translations/de/1-Introduction/02-ethics/README.md b/translations/de/1-Introduction/02-ethics/README.md
index a426d717..e931c55f 100644
--- a/translations/de/1-Introduction/02-ethics/README.md
+++ b/translations/de/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Einführung in Datenethik
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/de/1-Introduction/02-ethics/assignment.md b/translations/de/1-Introduction/02-ethics/assignment.md
index 9d8fbf78..5560ad98 100644
--- a/translations/de/1-Introduction/02-ethics/assignment.md
+++ b/translations/de/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Schreibe eine Fallstudie zu Datenethik
## Anweisungen
diff --git a/translations/de/1-Introduction/03-defining-data/README.md b/translations/de/1-Introduction/03-defining-data/README.md
index d4ff8429..185e470e 100644
--- a/translations/de/1-Introduction/03-defining-data/README.md
+++ b/translations/de/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Definition von Daten
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/de/1-Introduction/03-defining-data/assignment.md b/translations/de/1-Introduction/03-defining-data/assignment.md
index 0c0fdc3c..9307bc81 100644
--- a/translations/de/1-Introduction/03-defining-data/assignment.md
+++ b/translations/de/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Klassifizierung von Datensätzen
## Anweisungen
diff --git a/translations/de/1-Introduction/04-stats-and-probability/README.md b/translations/de/1-Introduction/04-stats-and-probability/README.md
index a6a37a4c..2a65987b 100644
--- a/translations/de/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/de/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Eine kurze Einführung in Statistik und Wahrscheinlichkeitsrechnung
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Um die Verteilung der Daten besser zu verstehen, ist es hilfreich, über **Quart
Grafisch können wir die Beziehung zwischen Median und Quartilen in einem Diagramm namens **Boxplot** darstellen:
-
+
Hier berechnen wir auch den **Interquartilsabstand** IQR=Q3-Q1 und sogenannte **Ausreißer** – Werte, die außerhalb der Grenzen [Q1-1.5*IQR, Q3+1.5*IQR] liegen.
diff --git a/translations/de/1-Introduction/04-stats-and-probability/assignment.md b/translations/de/1-Introduction/04-stats-and-probability/assignment.md
index a91f96ef..da30d594 100644
--- a/translations/de/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/de/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Kleine Diabetes-Studie
In dieser Aufgabe arbeiten wir mit einem kleinen Datensatz von Diabetes-Patienten, der von [hier](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) stammt.
diff --git a/translations/de/1-Introduction/README.md b/translations/de/1-Introduction/README.md
index d756713f..b62675c9 100644
--- a/translations/de/1-Introduction/README.md
+++ b/translations/de/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Einführung in Data Science

diff --git a/translations/de/2-Working-With-Data/05-relational-databases/README.md b/translations/de/2-Working-With-Data/05-relational-databases/README.md
index 4cd2bfd2..c6e91ca0 100644
--- a/translations/de/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/de/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Arbeiten mit Daten: Relationale Datenbanken
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/de/2-Working-With-Data/05-relational-databases/assignment.md b/translations/de/2-Working-With-Data/05-relational-databases/assignment.md
index 61beaea2..d11ea333 100644
--- a/translations/de/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/de/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Anzeigen von Flughafendaten
Ihnen wurde eine [Datenbank](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) auf Basis von [SQLite](https://sqlite.org/index.html) zur Verfügung gestellt, die Informationen über Flughäfen enthält. Das Schema wird unten angezeigt. Sie werden die [SQLite-Erweiterung](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) in [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) verwenden, um Informationen über Flughäfen in verschiedenen Städten anzuzeigen.
diff --git a/translations/de/2-Working-With-Data/06-non-relational/README.md b/translations/de/2-Working-With-Data/06-non-relational/README.md
index e3bca656..11960174 100644
--- a/translations/de/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/de/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Arbeiten mit Daten: Nicht-relationale Daten
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/de/2-Working-With-Data/06-non-relational/assignment.md b/translations/de/2-Working-With-Data/06-non-relational/assignment.md
index 420aedd3..055a1604 100644
--- a/translations/de/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/de/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Soda-Gewinne
## Anweisungen
diff --git a/translations/de/2-Working-With-Data/07-python/README.md b/translations/de/2-Working-With-Data/07-python/README.md
index 7638e35c..a60b501c 100644
--- a/translations/de/2-Working-With-Data/07-python/README.md
+++ b/translations/de/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Arbeiten mit Daten: Python und die Pandas-Bibliothek
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/de/2-Working-With-Data/07-python/assignment.md b/translations/de/2-Working-With-Data/07-python/assignment.md
index cb9caf93..5a2413a3 100644
--- a/translations/de/2-Working-With-Data/07-python/assignment.md
+++ b/translations/de/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Aufgabe zur Datenverarbeitung in Python
In dieser Aufgabe bitten wir Sie, den Code, den wir in unseren Herausforderungen begonnen haben, weiterzuentwickeln. Die Aufgabe besteht aus zwei Teilen:
diff --git a/translations/de/2-Working-With-Data/08-data-preparation/README.md b/translations/de/2-Working-With-Data/08-data-preparation/README.md
index 8d9310a2..dee6ee68 100644
--- a/translations/de/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/de/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Arbeiten mit Daten: Datenvorbereitung
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/de/2-Working-With-Data/08-data-preparation/assignment.md b/translations/de/2-Working-With-Data/08-data-preparation/assignment.md
index 8b82f44e..521effe9 100644
--- a/translations/de/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/de/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Auswertung von Daten aus einem Formular
Ein Kunde hat ein [kleines Formular](../../../../2-Working-With-Data/08-data-preparation/index.html) getestet, um einige grundlegende Daten über seine Kundschaft zu sammeln. Er hat seine Ergebnisse mitgebracht, damit Sie die gesammelten Daten validieren. Sie können die Seite `index.html` im Browser öffnen, um sich das Formular anzusehen.
diff --git a/translations/de/2-Working-With-Data/README.md b/translations/de/2-Working-With-Data/README.md
index 093dd7cd..2d0d9608 100644
--- a/translations/de/2-Working-With-Data/README.md
+++ b/translations/de/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Arbeiten mit Daten

diff --git a/translations/de/3-Data-Visualization/09-visualization-quantities/README.md b/translations/de/3-Data-Visualization/09-visualization-quantities/README.md
index 1d7b414c..0d6e31f5 100644
--- a/translations/de/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/de/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualisierung von Mengen
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/de/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/de/3-Data-Visualization/09-visualization-quantities/assignment.md
index dd29f55d..e6e524aa 100644
--- a/translations/de/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/de/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linien, Streudiagramme und Balken
## Anweisungen
diff --git a/translations/de/3-Data-Visualization/10-visualization-distributions/README.md b/translations/de/3-Data-Visualization/10-visualization-distributions/README.md
index 580860b6..a3ecc016 100644
--- a/translations/de/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/de/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualisierung von Verteilungen
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/de/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/de/3-Data-Visualization/10-visualization-distributions/assignment.md
index 4001579a..27878c5d 100644
--- a/translations/de/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/de/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Wenden Sie Ihre Fähigkeiten an
## Anweisungen
diff --git a/translations/de/3-Data-Visualization/11-visualization-proportions/README.md b/translations/de/3-Data-Visualization/11-visualization-proportions/README.md
index c558e5d5..23206247 100644
--- a/translations/de/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/de/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualisierung von Proportionen
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/de/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/de/3-Data-Visualization/11-visualization-proportions/assignment.md
index 0ae30c3e..79eeb4b6 100644
--- a/translations/de/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/de/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Probieren Sie es in Excel aus
## Anweisungen
diff --git a/translations/de/3-Data-Visualization/12-visualization-relationships/README.md b/translations/de/3-Data-Visualization/12-visualization-relationships/README.md
index c6b83cac..25e532a3 100644
--- a/translations/de/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/de/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Beziehungen visualisieren: Alles über Honig 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/de/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/de/3-Data-Visualization/12-visualization-relationships/assignment.md
index 04fe5d35..0a32c064 100644
--- a/translations/de/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/de/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Tauche in den Bienenstock ein
## Anweisungen
diff --git a/translations/de/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/de/3-Data-Visualization/13-meaningful-visualizations/README.md
index 379e2ca6..f9364006 100644
--- a/translations/de/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/de/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Bedeutungsvolle Visualisierungen erstellen
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/de/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/de/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index ca562086..907457dd 100644
--- a/translations/de/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/de/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Erstelle deine eigene benutzerdefinierte Visualisierung
## Anweisungen
diff --git a/translations/de/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/de/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 75c831a5..35af80bc 100644
--- a/translations/de/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/de/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Datenvisualisierungsprojekt "Gefährliche Liebschaften"
Um loszulegen, müssen Sie sicherstellen, dass NPM und Node auf Ihrem Rechner laufen. Installieren Sie die Abhängigkeiten (npm install) und führen Sie das Projekt anschließend lokal aus (npm run serve):
diff --git a/translations/de/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/de/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index b0e1d3d7..2cacbc7e 100644
--- a/translations/de/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/de/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Datenvisualisierungsprojekt "Gefährliche Liebschaften"
Um loszulegen, stellen Sie sicher, dass NPM und Node auf Ihrem Rechner laufen. Installieren Sie die Abhängigkeiten (npm install) und führen Sie das Projekt anschließend lokal aus (npm run serve):
diff --git a/translations/de/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/de/3-Data-Visualization/R/09-visualization-quantities/README.md
index 95fea52a..eebb1c08 100644
--- a/translations/de/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/de/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualisierung von Mengen
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/de/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/de/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index b322f319..4140f175 100644
--- a/translations/de/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/de/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linien, Streudiagramme und Balken
## Anweisungen
diff --git a/translations/de/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/de/3-Data-Visualization/R/10-visualization-distributions/README.md
index c7aed78d..9cff0525 100644
--- a/translations/de/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/de/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualisierung von Verteilungen
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/de/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/de/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index d05ab749..57b50012 100644
--- a/translations/de/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/de/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Wende deine Fähigkeiten an
## Anweisungen
diff --git a/translations/de/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/de/3-Data-Visualization/R/11-visualization-proportions/README.md
index 93a16f4a..af78af8a 100644
--- a/translations/de/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/de/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualisierung von Proportionen
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/de/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/de/3-Data-Visualization/R/12-visualization-relationships/README.md
index afe00802..cf0de8e0 100644
--- a/translations/de/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/de/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualisierung von Beziehungen: Alles über Honig 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/de/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/de/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index c3fcaa19..f0e247cb 100644
--- a/translations/de/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/de/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Sinnvolle Visualisierungen erstellen
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/de/3-Data-Visualization/README.md b/translations/de/3-Data-Visualization/README.md
index b255d976..05e301f2 100644
--- a/translations/de/3-Data-Visualization/README.md
+++ b/translations/de/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Visualisierungen

diff --git a/translations/de/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/de/4-Data-Science-Lifecycle/14-Introduction/README.md
index 683cfd56..936b0b65 100644
--- a/translations/de/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/de/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Einführung in den Lebenszyklus der Datenwissenschaft
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/de/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/de/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 49c06949..dec09d20 100644
--- a/translations/de/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/de/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Bewertung eines Datensatzes
Ein Kunde hat sich an Ihr Team gewandt, um Hilfe bei der Untersuchung der saisonalen Ausgabengewohnheiten von Taxikunden in New York City zu erhalten.
diff --git a/translations/de/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/de/4-Data-Science-Lifecycle/15-analyzing/README.md
index d3647f35..6ffce586 100644
--- a/translations/de/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/de/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Der Lebenszyklus der Datenwissenschaft: Analysieren
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/de/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/de/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 8f5120f0..6dd8c978 100644
--- a/translations/de/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/de/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Antworten erkunden
Dies ist eine Fortsetzung der [Aufgabe](../14-Introduction/assignment.md) aus der vorherigen Lektion, in der wir einen kurzen Blick auf den Datensatz geworfen haben. Jetzt werden wir den Datensatz genauer untersuchen.
diff --git a/translations/de/4-Data-Science-Lifecycle/16-communication/README.md b/translations/de/4-Data-Science-Lifecycle/16-communication/README.md
index fa924784..98cf1bda 100644
--- a/translations/de/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/de/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Der Lebenszyklus der Datenwissenschaft: Kommunikation
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/de/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/de/4-Data-Science-Lifecycle/16-communication/assignment.md
index 29b8263b..b19415b5 100644
--- a/translations/de/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/de/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Erzähle eine Geschichte
## Anweisungen
diff --git a/translations/de/4-Data-Science-Lifecycle/README.md b/translations/de/4-Data-Science-Lifecycle/README.md
index b4f85369..1df76f4e 100644
--- a/translations/de/4-Data-Science-Lifecycle/README.md
+++ b/translations/de/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Der Lebenszyklus der Datenwissenschaft

diff --git a/translations/de/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/de/5-Data-Science-In-Cloud/17-Introduction/README.md
index 0d635767..43380a3b 100644
--- a/translations/de/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/de/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Einführung in Data Science in der Cloud
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/de/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/de/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 691bb6a7..41b26800 100644
--- a/translations/de/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/de/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Marktforschung
## Anweisungen
diff --git a/translations/de/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/de/5-Data-Science-In-Cloud/18-Low-Code/README.md
index ee06c6e9..511b4ae4 100644
--- a/translations/de/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/de/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Data Science in der Cloud: Der "Low Code/No Code"-Ansatz
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/de/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/de/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index e22262db..45a15adf 100644
--- a/translations/de/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/de/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Low-Code/No-Code Data-Science-Projekt auf Azure ML
## Anweisungen
diff --git a/translations/de/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/de/5-Data-Science-In-Cloud/19-Azure/README.md
index 593daa51..6921d6b9 100644
--- a/translations/de/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/de/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Datenwissenschaft in der Cloud: Der "Azure ML SDK"-Ansatz
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/de/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/de/5-Data-Science-In-Cloud/19-Azure/assignment.md
index b181da4c..a5e31289 100644
--- a/translations/de/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/de/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Data-Science-Projekt mit Azure ML SDK
## Anweisungen
diff --git a/translations/de/5-Data-Science-In-Cloud/README.md b/translations/de/5-Data-Science-In-Cloud/README.md
index 04a40a97..f2849998 100644
--- a/translations/de/5-Data-Science-In-Cloud/README.md
+++ b/translations/de/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Datenwissenschaft in der Cloud

diff --git a/translations/de/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/de/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 3e63d37b..1062bd44 100644
--- a/translations/de/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/de/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Datenwissenschaft in der realen Welt
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/de/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/de/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 313ae0d2..195e7064 100644
--- a/translations/de/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/de/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Erkunde einen Planetary Computer-Datensatz
## Anweisungen
diff --git a/translations/de/6-Data-Science-In-Wild/README.md b/translations/de/6-Data-Science-In-Wild/README.md
index b1403f4c..34562c7e 100644
--- a/translations/de/6-Data-Science-In-Wild/README.md
+++ b/translations/de/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Datenwissenschaft in der Praxis
Anwendungen der Datenwissenschaft in verschiedenen Branchen.
diff --git a/translations/de/AGENTS.md b/translations/de/AGENTS.md
index 3e388887..2b9e03f9 100644
--- a/translations/de/AGENTS.md
+++ b/translations/de/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Projektübersicht
diff --git a/translations/de/CODE_OF_CONDUCT.md b/translations/de/CODE_OF_CONDUCT.md
index 4d7a6a9a..aa9997de 100644
--- a/translations/de/CODE_OF_CONDUCT.md
+++ b/translations/de/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft Open Source Verhaltenskodex
Dieses Projekt hat den [Microsoft Open Source Verhaltenskodex](https://opensource.microsoft.com/codeofconduct/) übernommen.
diff --git a/translations/de/CONTRIBUTING.md b/translations/de/CONTRIBUTING.md
index e5fb91ae..c0a85e28 100644
--- a/translations/de/CONTRIBUTING.md
+++ b/translations/de/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Beitrag zu Data Science für Anfänger
Vielen Dank für Ihr Interesse, zum Lehrplan "Data Science für Anfänger" beizutragen! Wir freuen uns über Beiträge aus der Community.
diff --git a/translations/de/INSTALLATION.md b/translations/de/INSTALLATION.md
index b0596118..05a6fbc6 100644
--- a/translations/de/INSTALLATION.md
+++ b/translations/de/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Installationsanleitung
Diese Anleitung hilft Ihnen, Ihre Umgebung für die Arbeit mit dem Data Science for Beginners-Lehrplan einzurichten.
diff --git a/translations/de/README.md b/translations/de/README.md
index b70e4edb..52de1eb8 100644
--- a/translations/de/README.md
+++ b/translations/de/README.md
@@ -1,13 +1,4 @@
-
-# Data Science für Anfänger - Ein Lehrplan
+# Data Science für Einsteiger - Ein Lehrplan
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,199 +17,199 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Die Azure Cloud Advocates bei Microsoft freuen sich, einen 10-wöchigen Lehrplan mit 20 Lektionen rund um das Thema Data Science anbieten zu können. Jede Lektion beinhaltet Quiz vor und nach der Lektion, schriftliche Anweisungen zur Durchführung der Lektion, eine Lösung und eine Aufgabe. Unsere projektbasierte Pädagogik ermöglicht es dir, beim Bauen zu lernen – eine bewährte Methode, damit neue Fähigkeiten „haften bleiben“.
+Die Azure Cloud Advocates bei Microsoft freuen sich, einen 10-wöchigen, 20-teiligen Lehrplan über Data Science anbieten zu können. Jede Lektion beinhaltet Vor- und Nach-Quizze, schriftliche Anweisungen zur Durchführung der Lektion, eine Lösung und eine Aufgabe. Unsere projektbasierte Pädagogik ermöglicht es Ihnen, während des Bauens zu lernen – eine bewährte Methode, um neue Fähigkeiten dauerhaft zu verankern.
**Herzlichen Dank an unsere Autoren:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Besonderer Dank 🙏 an unsere [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) Autoren, Prüfer und Inhaltsbeiträger,** insbesondere Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Besonderer Dank 🙏 an unsere [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) Autoren, Reviewer und Beitragenden,** insbesondere Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Data Science für Anfänger - _Sketchnote von [@nitya](https://twitter.com/nitya)_ |
+| Data Science für Einsteiger – _Sketchnote von [@nitya](https://twitter.com/nitya)_ |
-### 🌐 Unterstützung mehrerer Sprachen
+### 🌐 Mehrsprachige Unterstützung
-#### Unterstützt über GitHub Action (Automatisiert & Immer Aktuell)
+#### Unterstützt über GitHub Action (Automatisch & immer aktuell)
-[Arabisch](../ar/README.md) | [Bengalisch](../bn/README.md) | [Bulgarisch](../bg/README.md) | [Birma (Myanmar)](../my/README.md) | [Chinesisch (Vereinfacht)](../zh/README.md) | [Chinesisch (Traditionell, Hongkong)](../hk/README.md) | [Chinesisch (Traditionell, Macau)](../mo/README.md) | [Chinesisch (Traditionell, Taiwan)](../tw/README.md) | [Kroatisch](../hr/README.md) | [Tschechisch](../cs/README.md) | [Dänisch](../da/README.md) | [Niederländisch](../nl/README.md) | [Estnisch](../et/README.md) | [Finnisch](../fi/README.md) | [Französisch](../fr/README.md) | [Deutsch](./README.md) | [Griechisch](../el/README.md) | [Hebräisch](../he/README.md) | [Hindi](../hi/README.md) | [Ungarisch](../hu/README.md) | [Indonesisch](../id/README.md) | [Italienisch](../it/README.md) | [Japanisch](../ja/README.md) | [Kannada](../kn/README.md) | [Koreanisch](../ko/README.md) | [Litauisch](../lt/README.md) | [Malaysisch](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepalesisch](../ne/README.md) | [Nigerianisches Pidgin](../pcm/README.md) | [Norwegisch](../no/README.md) | [Persisch (Farsi)](../fa/README.md) | [Polnisch](../pl/README.md) | [Portugiesisch (Brasilien)](../br/README.md) | [Portugiesisch (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Rumänisch](../ro/README.md) | [Russisch](../ru/README.md) | [Serbisch (Kyrillisch)](../sr/README.md) | [Slowakisch](../sk/README.md) | [Slowenisch](../sl/README.md) | [Spanisch](../es/README.md) | [Suaheli](../sw/README.md) | [Schwedisch](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thailändisch](../th/README.md) | [Türkisch](../tr/README.md) | [Ukrainisch](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamesisch](../vi/README.md)
+[Arabisch](../ar/README.md) | [Bengalisch](../bn/README.md) | [Bulgarisch](../bg/README.md) | [Birmanisch (Myanmar)](../my/README.md) | [Chinesisch (vereinfacht)](../zh-CN/README.md) | [Chinesisch (traditionell, Hongkong)](../zh-HK/README.md) | [Chinesisch (traditionell, Macau)](../zh-MO/README.md) | [Chinesisch (traditionell, Taiwan)](../zh-TW/README.md) | [Kroatisch](../hr/README.md) | [Tschechisch](../cs/README.md) | [Dänisch](../da/README.md) | [Niederländisch](../nl/README.md) | [Estnisch](../et/README.md) | [Finnisch](../fi/README.md) | [Französisch](../fr/README.md) | [Deutsch](./README.md) | [Griechisch](../el/README.md) | [Hebräisch](../he/README.md) | [Hindi](../hi/README.md) | [Ungarisch](../hu/README.md) | [Indonesisch](../id/README.md) | [Italienisch](../it/README.md) | [Japanisch](../ja/README.md) | [Kannada](../kn/README.md) | [Koreanisch](../ko/README.md) | [Litauisch](../lt/README.md) | [Malaiisch](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepalesisch](../ne/README.md) | [Nigerianisches Pidgin](../pcm/README.md) | [Norwegisch](../no/README.md) | [Persisch (Farsi)](../fa/README.md) | [Polnisch](../pl/README.md) | [Portugiesisch (Brasilien)](../pt-BR/README.md) | [Portugiesisch (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Rumänisch](../ro/README.md) | [Russisch](../ru/README.md) | [Serbisch (Kyrillisch)](../sr/README.md) | [Slowakisch](../sk/README.md) | [Slowenisch](../sl/README.md) | [Spanisch](../es/README.md) | [Suaheli](../sw/README.md) | [Schwedisch](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thailändisch](../th/README.md) | [Türkisch](../tr/README.md) | [Ukrainisch](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamesisch](../vi/README.md)
-> **Lieber lokal klonen?**
+> **Möchten Sie lieber lokal klonen?**
-> Dieses Repository enthält 50+ Sprachübersetzungen, was die Downloadgröße erheblich erhöht. Um ohne Übersetzungen zu klonen, nutze den Sparse Checkout:
+> Dieses Repository enthält über 50 Sprachübersetzungen, was die Downloadgröße erheblich erhöht. Um ohne Übersetzungen zu klonen, verwenden Sie Sparse Checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> So erhältst du alles, was du benötigst, um den Kurs mit einem viel schnelleren Download abzuschließen.
+> Dies gibt Ihnen alles, was Sie zum Abschließen des Kurses benötigen, mit einem deutlich schnelleren Download.
-**Wenn du möchtest, dass weitere Übersetzungen unterstützt werden, findest du eine Liste [hier](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Wenn Sie weitere unterstützte Übersetzungssprachen wünschen, finden Sie diese [hier](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Werde Teil unserer Community
+#### Treten Sie unserer Community bei
[](https://discord.gg/nTYy5BXMWG)
-Wir haben derzeit eine Discord „Learn with AI“-Serie, erfahre mehr und mach mit unter [Learn with AI Series](https://aka.ms/learnwithai/discord) vom 18. bis 30. September 2025. Dort bekommst du Tipps und Tricks zur Nutzung von GitHub Copilot für Data Science.
+Wir haben eine laufende Discord-Serie „Learn with AI“, erfahren Sie mehr und machen Sie mit unter [Learn with AI Series](https://aka.ms/learnwithai/discord) vom 18. bis 30. September 2025. Sie erhalten Tipps und Tricks zur Nutzung von GitHub Copilot für Data Science.
-
+
-# Bist du Student/in?
+# Sind Sie Student/in?
-Starte mit den folgenden Ressourcen:
+Starten Sie mit den folgenden Ressourcen:
-- [Studenten-Hub-Seite](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Auf dieser Seite findest du Anfängerressourcen, Studentenpakete und sogar Möglichkeiten, einen kostenlosen Zertifikatgutschein zu erhalten. Diese Seite solltest du als Lesezeichen setzen und von Zeit zu Zeit überprüfen, da wir den Inhalt mindestens monatlich aktualisieren.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Werde Teil einer globalen Community von Studentenbotschaftern – das könnte dein Weg zu Microsoft sein.
+- [Student Hub Seite](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Auf dieser Seite finden Sie Einsteiger-Ressourcen, Studentenpakete und sogar Möglichkeiten, einen kostenlosen Zertifizierungsgutschein zu erhalten. Diese Seite sollten Sie als Lesezeichen speichern und von Zeit zu Zeit überprüfen, da wir mindestens monatlich Inhalte austauschen.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Treten Sie einer globalen Gemeinschaft von Student Ambassadors bei, dies könnte Ihr Weg zu Microsoft sein.
# Erste Schritte
## 📚 Dokumentation
-- **[Installationsanleitung](INSTALLATION.md)** - Schritt-für-Schritt-Anleitung für Anfänger
-- **[Nutzungsanleitung](USAGE.md)** - Beispiele und gängige Arbeitsabläufe
-- **[Fehlerbehebung](TROUBLESHOOTING.md)** - Lösungen für häufige Probleme
-- **[Beitrag leisten](CONTRIBUTING.md)** - Wie du zu diesem Projekt beitragen kannst
-- **[Für Lehrkräfte](for-teachers.md)** - Anleitung für Unterricht und Unterrichtsmaterialien
+- **[Installationsanleitung](INSTALLATION.md)** – Schritt-für-Schritt-Anleitung für Anfänger
+- **[Benutzerhandbuch](USAGE.md)** – Beispiele und gängige Arbeitsabläufe
+- **[Fehlerbehebung](TROUBLESHOOTING.md)** – Lösungen für häufige Probleme
+- **[Beitragsleitfaden](CONTRIBUTING.md)** – Wie Sie zu diesem Projekt beitragen können
+- **[Für Lehrkräfte](for-teachers.md)** – Lehranleitungen und Unterrichtsmaterialien
## 👨🎓 Für Studierende
-> **Absolute Anfänger**: Neu in Data Science? Starte mit unseren [einsteigerfreundlichen Beispielen](examples/README.md)! Diese einfachen, gut kommentierten Beispiele helfen dir, die Grundlagen zu verstehen, bevor du dich in den kompletten Lehrplan vertiefst.
-> **[Studierende](https://aka.ms/student-page)**: Um diesen Lehrplan eigenständig zu nutzen, forke das gesamte Repo und bearbeite die Übungen selbstständig, beginnend mit einem Quiz vor der Lektion. Dann lese die Lektion und erledige die übrigen Aktivitäten. Versuche, die Projekte zu erstellen, indem du die Lektionen verstehst, statt nur den Lösungscode zu kopieren; dennoch ist dieser Code in den jeweiligen /solutions-Ordnern der projektorientierten Lektionen verfügbar. Eine weitere Idee ist, eine Lerngruppe mit Freunden zu bilden und gemeinsam den Inhalt durchzugehen. Für vertiefendes Lernen empfehlen wir [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Absolute Anfänger:** Neu in der Datenwissenschaft? Beginnen Sie mit unseren [einsteigerfreundlichen Beispielen](examples/README.md)! Diese einfachen, gut kommentierten Beispiele helfen Ihnen, die Grundlagen zu verstehen, bevor Sie in den vollständigen Lehrplan eintauchen.
+> **[Studierende](https://aka.ms/student-page):** Um diesen Lehrplan eigenständig zu nutzen, forken Sie das gesamte Repository und bearbeiten Sie die Übungen selbstständig, beginnend mit einem Quiz vor der Vorlesung. Lesen Sie dann die Vorlesung und bearbeiten Sie die restlichen Aktivitäten. Versuchen Sie, die Projekte durch Verstehen der Lektionen zu erstellen, anstatt den Lösungscode zu kopieren; dieser Code ist jedoch in den /solutions-Ordnern jeder projektorientierten Lektion verfügbar. Eine weitere Idee ist, eine Lerngruppe mit Freunden zu bilden und die Inhalte gemeinsam durchzugehen. Für weiterführende Studien empfehlen wir [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Schnellstart:**
-1. Sieh dir die [Installationsanleitung](INSTALLATION.md) an, um deine Umgebung einzurichten
-2. Schau dir die [Nutzungsanleitung](USAGE.md) an, um zu lernen, wie du mit dem Lehrplan arbeitest
-3. Beginne mit Lektion 1 und arbeite dich der Reihe nach durch
-4. Tritt unserer [Discord-Community](https://aka.ms/ds4beginners/discord) für Unterstützung bei
+1. Sehen Sie sich die [Installationsanleitung](INSTALLATION.md) an, um Ihre Umgebung einzurichten
+2. Überprüfen Sie das [Benutzerhandbuch](USAGE.md), um zu lernen, wie man mit dem Lehrplan arbeitet
+3. Beginnen Sie mit Lektion 1 und arbeiten Sie sie der Reihe nach durch
+4. Treten Sie unserer [Discord-Community](https://aka.ms/ds4beginners/discord) zur Unterstützung bei
## 👩🏫 Für Lehrkräfte
-> **Lehrkräfte**: Wir haben [einige Vorschläge](for-teachers.md) für die Nutzung dieses Lehrplans zusammengestellt. Wir freuen uns auf dein Feedback [in unserem Diskussionsforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
+> **Lehrkräfte:** Wir haben [einige Vorschläge](for-teachers.md) aufgenommen, wie Sie diesen Lehrplan nutzen können. Wir freuen uns auf Ihr Feedback [in unserem Diskussionsforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Treffen Sie das Team
+
[](https://youtu.be/8mzavjQSMM4 "Promo-Video")
**Gif von** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Klicken Sie auf das obige Bild für ein Video über das Projekt und die Menschen, die es erstellt haben!
+> 🎥 Klicken Sie auf das obige Bild für ein Video über das Projekt und die Leute, die es erstellt haben!
## Pädagogik
-Wir haben beim Aufbau dieses Curriculums zwei pädagogische Grundsätze gewählt: sicherzustellen, dass es projektbasiert ist und dass es häufige Quizze enthält. Am Ende dieser Serie werden die Lernenden grundlegende Prinzipien der Datenwissenschaft gelernt haben, einschließlich ethischer Konzepte, Datenvorbereitung, verschiedener Arbeitsweisen mit Daten, Datenvisualisierung, Datenanalyse, realer Anwendungsfälle der Datenwissenschaft und mehr.
+Wir haben beim Aufbau dieses Curriculums zwei pädagogische Grundsätze gewählt: sicherzustellen, dass es projektbasiert ist und regelmäßige Quizze enthält. Am Ende dieser Serie werden die Studierenden grundlegende Prinzipien der Datenwissenschaft gelernt haben, einschließlich ethischer Konzepte, Datenaufbereitung, verschiedener Methoden zur Arbeit mit Daten, Datenvisualisierung, Datenanalyse, Anwendungsfälle der Datenwissenschaft in der Praxis und mehr.
-Zusätzlich setzt ein Quiz mit niedrigem Risiko vor dem Unterricht die Lernabsicht des Studenten auf ein Thema, während ein zweites Quiz nach dem Unterricht die weitere Behaltensleistung sichert. Dieses Curriculum wurde so konzipiert, dass es flexibel und unterhaltsam ist und insgesamt oder teilweise durchlaufen werden kann. Die Projekte beginnen klein und werden bis zum Ende des 10-wöchigen Zyklus zunehmend komplexer.
+Außerdem setzt ein niedrigschwelliges Quiz vor dem Unterricht die Absicht des Lernenden, ein Thema zu erlernen, während ein zweites Quiz nach der Stunde die weitere Beibehaltung des Wissens gewährleistet. Dieses Curriculum wurde flexibel und unterhaltsam gestaltet und kann vollständig oder teilweise absolviert werden. Die Projekte beginnen klein und werden bis zum Ende des 10-wöchigen Zyklus zunehmend komplexer.
-> Finden Sie unseren [Verhaltenskodex](CODE_OF_CONDUCT.md), [Mitwirkendenleitfaden](CONTRIBUTING.md), [Übersetzungsleitfaden](TRANSLATIONS.md). Wir freuen uns über Ihr konstruktives Feedback!
+> Finden Sie unseren [Verhaltenskodex](CODE_OF_CONDUCT.md), [Mitwirkenden](CONTRIBUTING.md) und [Übersetzungsrichtlinien](TRANSLATIONS.md). Wir freuen uns über Ihr konstruktives Feedback!
-## Jede Lektion beinhaltet:
+## Jede Lektion enthält:
- Optionale Sketchnote
- Optionales ergänzendes Video
-- Aufwärm-Quiz vor der Lektion
-- Geschriebene Lektion
-- Für projektbasierte Lektionen Schritt-für-Schritt-Anleitungen zum Aufbau des Projekts
+- Aufwärmquiz vor der Lektion
+- Schriftliche Lektion
+- Für projektbasierte Lektionen Schritt-für-Schritt-Anleitungen zum Bau des Projekts
- Wissensüberprüfungen
- Eine Herausforderung
-- Ergänzende Lektüre
+- Zusatzlektüre
- Aufgabe
- [Quiz nach der Lektion](https://ff-quizzes.netlify.app/en/)
-> **Eine Anmerkung zu den Quizzen**: Alle Quizze befinden sich im Quiz-App-Ordner, insgesamt 40 Quizze mit jeweils drei Fragen. Sie sind innerhalb der Lektionen verlinkt, aber die Quiz-App kann lokal ausgeführt oder in Azure bereitgestellt werden; folgen Sie der Anleitung im Ordner `quiz-app`. Sie werden nach und nach lokalisiert.
+> **Eine Anmerkung zu den Quizzen**: Alle Quizze befinden sich im Quiz-App-Ordner, insgesamt 40 Quizze mit jeweils drei Fragen. Sie sind in den Lektionen verlinkt, aber die Quiz-App kann lokal ausgeführt oder in Azure bereitgestellt werden; folgen Sie den Anweisungen im `quiz-app`-Ordner. Sie werden schrittweise lokalisiert.
## 🎓 Anfängerfreundliche Beispiele
-**Neu in Data Science?** Wir haben ein spezielles [Beispiele-Verzeichnis](examples/README.md) mit einfachem, gut kommentiertem Code erstellt, um Ihnen den Einstieg zu erleichtern:
+**Neu in der Datenwissenschaft?** Wir haben ein spezielles [Beispielverzeichnis](examples/README.md) mit einfachem, gut kommentiertem Code erstellt, um Ihnen den Einstieg zu erleichtern:
-- 🌟 **Hello World** – Ihr erstes Data-Science-Programm
-- 📂 **Daten laden** – Lernen, Datensätze zu lesen und zu erkunden
-- 📊 **Einfache Analyse** – Statistiken berechnen und Muster erkennen
-- 📈 **Grundlegende Visualisierung** – Diagramme und Grafiken erstellen
-- 🔬 **Praxisprojekt** – Komplett-Workflow von Anfang bis Ende
+- 🌟 **Hello World** – Ihr erstes Datenwissenschaftsprogramm
+- 📂 **Daten laden** – Lernen Sie, Datensätze zu lesen und zu erkunden
+- 📊 **Einfache Analyse** – Berechnen Sie Statistiken und finden Sie Muster
+- 📈 **Grundlegende Visualisierung** – Erstellen Sie Diagramme und Grafiken
+- 🔬 **Projekt aus der Praxis** – Vollständiger Workflow von Anfang bis Ende
-Jedes Beispiel enthält detaillierte Kommentare, die jeden Schritt erklären, perfekt für absolute Anfänger!
+Jedes Beispiel enthält ausführliche Kommentare, die jeden Schritt erklären – perfekt für absolute Anfänger!
-👉 **[Starten Sie mit den Beispielen](examples/README.md)** 👈
+👉 **[Beginnen Sie mit den Beispielen](examples/README.md)** 👈
## Lektionen
-||
+||
|:---:|
-| Data Science für Anfänger: Roadmap – _Sketchnote von [@nitya](https://twitter.com/nitya)_ |
+| Data Science für Anfänger: Fahrplan - _Sketchnote von [@nitya](https://twitter.com/nitya)_ |
-| Lektion Nummer | Thema | Lektionsgruppe | Lernziele | Verlinkte Lektion | Autor |
+| Lektion Nummer | Thema | Lektion Gruppierung | Lernziele | Verlinkte Lektion | Autor |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Definition von Data Science | [Einführung](1-Introduction/README.md) | Lernen Sie die grundlegenden Konzepte hinter Data Science und wie es mit künstlicher Intelligenz, maschinellem Lernen und Big Data zusammenhängt. | [Lektionen](1-Introduction/01-defining-data-science/README.md) [Video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Ethik in Data Science | [Einführung](1-Introduction/README.md) | Konzepte, Herausforderungen und Rahmenwerke der Datenethik. | [Lektion](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Definition von Daten | [Einführung](1-Introduction/README.md) | Wie Daten klassifiziert werden und ihre häufigsten Quellen. | [Lektion](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Einführung in Statistik & Wahrscheinlichkeit | [Einführung](1-Introduction/README.md) | Die mathematischen Techniken der Wahrscheinlichkeit und Statistik zum Verständnis von Daten. | [Lektion](1-Introduction/04-stats-and-probability/README.md) [Video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Arbeiten mit relationalen Daten | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Einführung in relationale Daten und die Grundlagen der Erkundung und Analyse relationaler Daten mit der Structured Query Language, bekannt als SQL („see-quell“ ausgesprochen). | [Lektion](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Arbeiten mit NoSQL-Daten | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Einführung in nicht-relationale Daten, deren verschiedene Arten und Grundlagen der Erkundung und Analyse von Dokumentendatenbanken. | [Lektion](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Arbeiten mit Python | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Grundlagen der Nutzung von Python für die Datenexploration mit Bibliotheken wie Pandas. Grundlegendes Verständnis der Python-Programmierung wird empfohlen. | [Lektion](2-Working-With-Data/07-python/README.md) [Video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Datenvorbereitung | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Themen zu Datenbereinigung und -transformation, um Herausforderungen bei fehlenden, ungenauen oder unvollständigen Daten zu bewältigen. | [Lektion](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 01 | Definition von Data Science | [Einführung](1-Introduction/README.md) | Lernen Sie die grundlegenden Konzepte hinter der Datenwissenschaft kennen und wie sie mit künstlicher Intelligenz, maschinellem Lernen und Big Data zusammenhängt. | [Lektion](1-Introduction/01-defining-data-science/README.md) [Video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Datenethik | [Einführung](1-Introduction/README.md) | Konzepte, Herausforderungen & Rahmenwerke der Datenethik. | [Lektion](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Definition von Daten | [Einführung](1-Introduction/README.md) | Wie Daten klassifiziert werden und ihre häufigen Quellen. | [Lektion](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Einführung in Statistik & Wahrscheinlichkeit | [Einführung](1-Introduction/README.md) | Mathematische Techniken der Wahrscheinlichkeit und Statistik zur Datenverständnis. | [Lektion](1-Introduction/04-stats-and-probability/README.md) [Video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Arbeit mit relationalen Daten | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Einführung in relationale Daten und Grundlagen der Erkundung und Analyse relationaler Daten mit der Structured Query Language, auch bekannt als SQL (ausgesprochen „see-quell“). | [Lektion](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) |
+| 06 | Arbeit mit NoSQL-Daten | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Einführung in nicht-relationale Daten, ihre verschiedenen Typen und die Grundlagen der Erkundung und Analyse von Dokumentdatenbanken. | [Lektion](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 07 | Arbeit mit Python | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Grundlagen der Verwendung von Python zur Datenerkundung mit Bibliotheken wie Pandas. Grundlegendes Verständnis der Python-Programmierung wird empfohlen. | [Lektion](2-Working-With-Data/07-python/README.md) [Video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Datenaufbereitung | [Arbeiten mit Daten](2-Working-With-Data/README.md) | Themen zu Datentechniken zum Reinigen und Transformieren der Daten, um Herausforderungen fehlender, ungenauer oder unvollständiger Daten zu bewältigen. | [Lektion](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualisierung von Mengen | [Datenvisualisierung](3-Data-Visualization/README.md) | Lernen Sie, wie man mit Matplotlib Vogeldaten visualisiert 🦆 | [Lektion](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Visualisierung von Verteilungen | [Datenvisualisierung](3-Data-Visualization/README.md) | Visualisierung von Beobachtungen und Trends innerhalb eines Intervalls. | [Lektion](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Visualisierung von Datenverteilungen | [Datenvisualisierung](3-Data-Visualization/README.md) | Visualisierung von Beobachtungen und Trends innerhalb eines Intervalls. | [Lektion](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualisierung von Anteilen | [Datenvisualisierung](3-Data-Visualization/README.md) | Visualisierung diskreter und gruppierter Prozentsätze. | [Lektion](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Visualisierung von Zusammenhängen | [Datenvisualisierung](3-Data-Visualization/README.md) | Visualisierung von Verbindungen und Korrelationen zwischen Datensätzen und deren Variablen. | [Lektion](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Sinnvolle Visualisierungen | [Datenvisualisierung](3-Data-Visualization/README.md) | Techniken und Richtlinien, um Ihre Visualisierungen wertvoll für effektives Problemlösen und Erkenntnisse zu gestalten. | [Lektion](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Einführung in den Data Science-Lebenszyklus | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Einführung in den Lebenszyklus der Datenwissenschaft und dem ersten Schritt der Datenbeschaffung und -extraktion. | [Lektion](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analysieren | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Diese Phase des Data-Science-Lebenszyklus konzentriert sich auf Techniken zur Datenanalyse. | [Lektion](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Kommunikation | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Diese Phase des Data-Science-Lebenszyklus konzentriert sich darauf, die Erkenntnisse aus den Daten so zu präsentieren, dass Entscheidungsträger sie besser verstehen können. | [Lektion](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Data Science in der Cloud | [Cloud-Daten](5-Data-Science-In-Cloud/README.md) | Diese Reihe von Lektionen führt in Data Science in der Cloud und deren Vorteile ein. | [Lektion](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) und [Maud](https://twitter.com/maudstweets) |
-| 18 | Data Science in der Cloud | [Cloud-Daten](5-Data-Science-In-Cloud/README.md) | Modelltraining mit Low-Code-Tools. |[Lektion](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) und [Maud](https://twitter.com/maudstweets) |
-| 19 | Data Science in der Cloud | [Cloud-Daten](5-Data-Science-In-Cloud/README.md) | Modelle mit Azure Machine Learning Studio bereitstellen. | [Lektion](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) und [Maud](https://twitter.com/maudstweets) |
-| 20 | Data Science in der Praxis | [Im Einsatz](6-Data-Science-In-Wild/README.md) | Data-Science-getriebene Projekte in der realen Welt. | [Lektion](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 12 | Visualisierung von Beziehungen | [Datenvisualisierung](3-Data-Visualization/README.md) | Visualisierung von Verbindungen und Korrelationen zwischen Datensätzen und deren Variablen. | [Lektion](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Sinnvolle Visualisierungen | [Datenvisualisierung](3-Data-Visualization/README.md) | Techniken und Hinweise, um Visualisierungen wertvoll für effektive Problemlösung und Erkenntnisse zu machen. | [Lektion](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Einführung in den Datenwissenschafts-Lebenszyklus | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Einführung in den Datenwissenschafts-Lebenszyklus und dessen ersten Schritt des Erwerbs und der Extraktion von Daten. | [Lektion](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Analysieren | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Diese Phase des Datenwissenschafts-Lebenszyklus konzentriert sich auf Techniken zur Datenanalyse. | [Lektion](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 16 | Kommunikation | [Lebenszyklus](4-Data-Science-Lifecycle/README.md) | Diese Phase des Datenwissenschafts-Lebenszyklus konzentriert sich darauf, Erkenntnisse aus den Daten so zu präsentieren, dass Entscheidungsträger sie besser verstehen können. | [Lektion](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) |
+| 17 | Datenwissenschaft in der Cloud | [Cloud-Daten](5-Data-Science-In-Cloud/README.md) | Diese Lektionenreihe führt in Datenwissenschaft in der Cloud und deren Vorteile ein. | [Lektion](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) und [Maud](https://twitter.com/maudstweets) |
+| 18 | Datenwissenschaft in der Cloud | [Cloud-Daten](5-Data-Science-In-Cloud/README.md) | Modelle mit Low-Code-Tools trainieren. | [Lektion](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) und [Maud](https://twitter.com/maudstweets) |
+| 19 | Datenwissenschaft in der Cloud | [Cloud-Daten](5-Data-Science-In-Cloud/README.md) | Bereitstellung von Modellen mit Azure Machine Learning Studio. | [Lektion](5-Data-Science-In-Cloud/19-Azure/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) und [Maud](https://twitter.com/maudstweets) |
+| 20 | Datenwissenschaft in der Praxis | [In freier Wildbahn](6-Data-Science-In-Wild/README.md) | Datenwissenschaftlich getriebene Projekte in der realen Welt. | [Lektion](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Führen Sie diese Schritte aus, um dieses Beispiel in einem Codespace zu öffnen:
-1. Klicken Sie auf das Dropdown-Menü „Code“ und wählen Sie die Option „Open with Codespaces“.
-2. Wählen Sie unten im Bereich + Neuer Codespace.
+Folgen Sie diesen Schritten, um dieses Beispiel in einem Codespace zu öffnen:
+1. Klicken Sie auf das Dropdown-Menü Code und wählen Sie die Option "Öffnen mit Codespaces".
+2. Wählen Sie unten im Bereich + Neuer Codespace aus.
Weitere Informationen finden Sie in der [GitHub-Dokumentation](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
-## VSCode Remote - Containers
-Führen Sie diese Schritte aus, um dieses Repository mit Ihrem lokalen Rechner und VSCode unter Verwendung der VS Code Remote - Containers Erweiterung in einem Container zu öffnen:
+## VSCode Remote – Container
+Folgen Sie diesen Schritten, um dieses Repository in einem Container auf Ihrer lokalen Maschine mit VSCode unter Verwendung der VS Code Remote – Containers-Erweiterung zu öffnen:
-1. Falls dies Ihr erster Einsatz eines Entwicklungscontainers ist, vergewissern Sie sich bitte, dass Ihr System die Voraussetzungen (z.B. Docker installiert) erfüllt in [der Einführung-Dokumentation](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Wenn dies das erste Mal ist, dass Sie einen Entwicklungscontainer verwenden, stellen Sie bitte sicher, dass Ihr System die Voraussetzungen erfüllt (z. B. Docker installiert) gemäß der [Einsteiger-Dokumentation](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Um dieses Repository zu verwenden, können Sie es entweder in einem isolierten Docker-Volume öffnen:
+Um dieses Repository zu verwenden, können Sie entweder das Repository in einem isolierten Docker-Volume öffnen:
-**Hinweis**: Im Hintergrund wird der Befehl Remote-Containers: **Klone Repository in Container-Volume...** verwendet, um den Quellcode in einem Docker-Volume anstatt im lokalen Dateisystem zu klonen. [Volumes](https://docs.docker.com/storage/volumes/) sind der bevorzugte Mechanismus, um Container-Daten zu persistieren.
+**Hinweis**: Im Hintergrund wird der Befehl Remote-Containers: **Repository im Containervolume klonen...** verwendet, um den Quellcode in einem Docker-Volume statt im lokalen Dateisystem zu klonen. [Volumes](https://docs.docker.com/storage/volumes/) sind der bevorzugte Mechanismus zur Persistenz von Containerdaten.
-Oder öffnen Sie eine lokal geklonte oder heruntergeladene Version des Repositories:
+Oder öffnen Sie eine lokal geklonte oder heruntergeladene Version des Repositorys:
-- Klonen Sie dieses Repository lokal auf Ihr Dateisystem.
+- Klonen Sie dieses Repository auf Ihr lokales Dateisystem.
- Drücken Sie F1 und wählen Sie den Befehl **Remote-Containers: Ordner im Container öffnen...**.
-- Wählen Sie die geklonte Kopie dieses Ordners aus, warten Sie, bis der Container startet, und probieren Sie es aus.
+- Wählen Sie die geklonte Kopie dieses Ordners, warten Sie, bis der Container gestartet ist, und probieren Sie es aus.
## Offline-Zugriff
-Sie können diese Dokumentation offline nutzen, indem Sie [Docsify](https://docsify.js.org/#/) verwenden. Forken Sie dieses Repository, [installieren Sie Docsify](https://docsify.js.org/#/quickstart) auf Ihrem lokalen Rechner, und geben Sie im Stammordner dieses Repositories `docsify serve` ein. Die Website wird auf Port 3000 auf Ihrem localhost bereitgestellt: `localhost:3000`.
+Sie können diese Dokumentation offline mit [Docsify](https://docsify.js.org/#/) ausführen. Forken Sie dieses Repository, [installieren Sie Docsify](https://docsify.js.org/#/quickstart) auf Ihrer lokalen Maschine und geben Sie dann im Stammordner dieses Repos `docsify serve` ein. Die Website wird lokal auf Port 3000 unter `localhost:3000` bereitgestellt.
-> Hinweis: Notebooks werden über Docsify nicht gerendert, daher müssen Sie ein Notebook bei Bedarf separat in VS Code mit einem Python-Kernel ausführen.
+> Hinweis: Notebooks werden via Docsify nicht gerendert, daher müssen Sie, wenn Sie ein Notebook ausführen möchten, dies separat in VS Code mit einem Python-Kernel tun.
## Weitere Curricula
-Unser Team produziert weitere Curricula! Schauen Sie sich an:
+Unser Team erstellt weitere Curricula! Schauen Sie sich an:
### LangChain
[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
### Azure / Edge / MCP / Agents
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-### Generative KI-Serie
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+### Generative KI-Reihe
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
@@ -226,37 +217,37 @@ Unser Team produziert weitere Curricula! Schauen Sie sich an:
---
### Kernlernen
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-### Copilot-Serie
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+### Copilot-Reihe
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Hilfe erhalten
-**Probleme?** Sieh dir unseren [Fehlerbehebungsleitfaden](TROUBLESHOOTING.md) an für Lösungen zu häufigen Problemen.
+**Probleme?** Sieh dir unseren [Fehlerbehebungsleitfaden](TROUBLESHOOTING.md) für Lösungen zu häufigen Problemen an.
-Wenn du feststeckst oder Fragen zum Erstellen von KI-Anwendungen hast, tausche dich mit anderen Lernenden und erfahrenen Entwicklern in Diskussionen über MCP aus. Es ist eine unterstützende Gemeinschaft, in der Fragen willkommen sind und Wissen frei geteilt wird.
+Wenn du nicht weiterkommst oder Fragen zum Erstellen von KI-Anwendungen hast, nimm an Diskussionen mit anderen Lernenden und erfahrenen Entwicklern zum MCP teil. Es ist eine unterstützende Gemeinschaft, in der Fragen willkommen sind und Wissen frei geteilt wird.
[](https://discord.gg/nTYy5BXMWG)
-Wenn du Produktfeedback oder Fehler beim Entwickeln hast, besuche:
+Wenn du Produktfeedback oder Fehler beim Erstellen hast, besuche:
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
---
-**Haftungsausschluss**:
-Dieses Dokument wurde mit dem KI-Übersetzungsdienst [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir nach Genauigkeit streben, können automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten. Das Originaldokument in seiner Ursprungssprache gilt als maßgebliche Quelle. Bei wichtigen Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die aus der Verwendung dieser Übersetzung entstehen.
+**Haftungsausschluss**:
+Dieses Dokument wurde mithilfe des KI-Übersetzungsdienstes [Co-op Translator](https://github.com/Azure/co-op-translator) übersetzt. Obwohl wir uns um Genauigkeit bemühen, bitten wir zu beachten, dass automatisierte Übersetzungen Fehler oder Ungenauigkeiten enthalten können. Das Originaldokument in seiner Ursprungsprache gilt als maßgebliche Quelle. Für wichtige Informationen wird eine professionelle menschliche Übersetzung empfohlen. Wir übernehmen keine Haftung für Missverständnisse oder Fehlinterpretationen, die durch die Verwendung dieser Übersetzung entstehen.
\ No newline at end of file
diff --git a/translations/de/SECURITY.md b/translations/de/SECURITY.md
index dfda12b8..02de9108 100644
--- a/translations/de/SECURITY.md
+++ b/translations/de/SECURITY.md
@@ -1,12 +1,3 @@
-
## Sicherheit
Microsoft nimmt die Sicherheit seiner Softwareprodukte und -dienstleistungen ernst, einschließlich aller Quellcode-Repositories, die über unsere GitHub-Organisationen verwaltet werden, zu denen [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) und [unsere GitHub-Organisationen](https://opensource.microsoft.com/) gehören.
diff --git a/translations/de/SUPPORT.md b/translations/de/SUPPORT.md
index a79b5723..b4caff92 100644
--- a/translations/de/SUPPORT.md
+++ b/translations/de/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Unterstützung
## So melden Sie Probleme und erhalten Hilfe
diff --git a/translations/de/TROUBLESHOOTING.md b/translations/de/TROUBLESHOOTING.md
index c4903b27..be8b04df 100644
--- a/translations/de/TROUBLESHOOTING.md
+++ b/translations/de/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Fehlerbehebungsleitfaden
Dieser Leitfaden bietet Lösungen für häufige Probleme, die beim Arbeiten mit dem Data Science for Beginners-Lehrplan auftreten können.
diff --git a/translations/de/USAGE.md b/translations/de/USAGE.md
index df786ffb..25a04280 100644
--- a/translations/de/USAGE.md
+++ b/translations/de/USAGE.md
@@ -1,12 +1,3 @@
-
# Gebrauchsanleitung
Diese Anleitung bietet Beispiele und typische Arbeitsabläufe für die Nutzung des Lehrplans "Data Science für Anfänger".
diff --git a/translations/de/docs/_sidebar.md b/translations/de/docs/_sidebar.md
index a097e74e..cb2aeef0 100644
--- a/translations/de/docs/_sidebar.md
+++ b/translations/de/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Einführung
- [Definition von Data Science](../1-Introduction/01-defining-data-science/README.md)
- [Ethik in der Data Science](../1-Introduction/02-ethics/README.md)
diff --git a/translations/de/examples/README.md b/translations/de/examples/README.md
index 8f11ea30..516da629 100644
--- a/translations/de/examples/README.md
+++ b/translations/de/examples/README.md
@@ -1,12 +1,3 @@
-
# Anfängerfreundliche Data-Science-Beispiele
Willkommen im Beispielverzeichnis! Diese Sammlung einfacher, gut kommentierter Beispiele wurde entwickelt, um Ihnen den Einstieg in die Welt der Data Science zu erleichtern – auch wenn Sie ein kompletter Anfänger sind.
diff --git a/translations/de/for-teachers.md b/translations/de/for-teachers.md
index 62596309..0fd6950b 100644
--- a/translations/de/for-teachers.md
+++ b/translations/de/for-teachers.md
@@ -1,12 +1,3 @@
-
## Für Lehrkräfte
Möchten Sie dieses Curriculum in Ihrem Unterricht verwenden? Nur zu!
diff --git a/translations/de/quiz-app/README.md b/translations/de/quiz-app/README.md
index a445676a..f1caf652 100644
--- a/translations/de/quiz-app/README.md
+++ b/translations/de/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Quizfragen
Diese Quizfragen sind die Vor- und Nachbereitungsquizfragen für den Data-Science-Lehrplan unter https://aka.ms/datascience-beginners
diff --git a/translations/de/sketchnotes/README.md b/translations/de/sketchnotes/README.md
index 926a6e8a..d1e0e4f8 100644
--- a/translations/de/sketchnotes/README.md
+++ b/translations/de/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Finde alle Sketchnotes hier!
## Credits
diff --git a/translations/el/.co-op-translator.json b/translations/el/.co-op-translator.json
new file mode 100644
index 00000000..4336f3f3
--- /dev/null
+++ b/translations/el/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:53:00+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "el"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-26T21:34:06+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "el"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-26T21:35:06+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "el"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:32:38+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "el"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-26T21:26:52+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "el"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T21:18:42+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "el"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-26T21:39:18+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "el"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:33:29+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "el"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-26T21:47:36+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "el"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-26T21:13:37+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "el"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:25:12+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "el"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:55:37+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "el"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T21:04:13+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "el"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-26T21:11:51+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "el"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:43:31+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "el"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-26T21:06:51+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "el"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T21:07:33+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "el"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-26T20:59:14+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "el"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-26T20:46:50+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T21:13:01+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-26T23:19:10+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T21:15:17+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-26T22:50:51+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T21:12:25+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-26T23:23:51+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:37:56+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-26T22:55:10+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T21:13:52+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-26T22:45:34+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T22:46:53+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T22:46:14+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-26T23:03:35+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-26T23:08:52+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-26T22:55:49+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-26T22:59:15+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-26T23:13:21+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-26T22:59:59+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-26T23:09:32+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "el"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-26T22:39:54+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "el"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:00:11+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "el"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-26T22:27:42+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "el"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:59:16+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "el"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-26T22:30:36+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "el"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:01:45+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "el"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-26T22:39:10+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "el"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-26T22:20:29+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "el"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T21:02:05+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "el"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-26T22:10:54+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "el"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T21:00:46+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "el"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-26T22:05:37+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "el"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T21:03:26+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "el"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-26T22:17:43+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "el"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-26T21:56:49+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "el"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:30:19+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "el"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-26T21:55:29+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "el"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-26T21:49:11+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "el"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:21:34+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "el"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-26T20:44:23+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "el"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:01:54+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "el"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:20:45+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "el"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:49:27+00:00",
+ "source_file": "README.md",
+ "language_code": "el"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-26T20:44:57+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "el"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-26T20:42:12+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "el"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:39:38+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "el"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:02:48+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "el"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-26T21:12:37+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "el"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:02:18+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "el"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:57:01+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "el"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-26T22:18:30+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "el"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-26T21:48:40+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "el"
+ }
+}
\ No newline at end of file
diff --git a/translations/el/1-Introduction/01-defining-data-science/README.md b/translations/el/1-Introduction/01-defining-data-science/README.md
index 08268164..0e5d328c 100644
--- a/translations/el/1-Introduction/01-defining-data-science/README.md
+++ b/translations/el/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Ορισμός της Επιστήμης Δεδομένων
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/el/1-Introduction/01-defining-data-science/assignment.md b/translations/el/1-Introduction/01-defining-data-science/assignment.md
index 6b32f33f..868bff68 100644
--- a/translations/el/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/el/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Ανάθεση: Σενάρια Επιστήμης Δεδομένων
Σε αυτή την πρώτη ανάθεση, σας ζητάμε να σκεφτείτε μια πραγματική διαδικασία ή πρόβλημα σε διαφορετικούς τομείς προβλημάτων και πώς μπορείτε να το βελτιώσετε χρησιμοποιώντας τη διαδικασία της Επιστήμης Δεδομένων. Σκεφτείτε τα εξής:
diff --git a/translations/el/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/el/1-Introduction/01-defining-data-science/solution/assignment.md
index 2caa7177..5e5485b1 100644
--- a/translations/el/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/el/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Ανάθεση: Σενάρια Επιστήμης Δεδομένων
Σε αυτή την πρώτη ανάθεση, σας ζητάμε να σκεφτείτε μια πραγματική διαδικασία ή πρόβλημα σε διαφορετικούς τομείς προβλημάτων και πώς μπορείτε να το βελτιώσετε χρησιμοποιώντας τη διαδικασία της Επιστήμης Δεδομένων. Σκεφτείτε τα εξής:
diff --git a/translations/el/1-Introduction/02-ethics/README.md b/translations/el/1-Introduction/02-ethics/README.md
index 184077ad..7e078709 100644
--- a/translations/el/1-Introduction/02-ethics/README.md
+++ b/translations/el/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Εισαγωγή στην Ηθική των Δεδομένων
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/el/1-Introduction/02-ethics/assignment.md b/translations/el/1-Introduction/02-ethics/assignment.md
index 7f4e5496..8ead4dcd 100644
--- a/translations/el/1-Introduction/02-ethics/assignment.md
+++ b/translations/el/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Γράψτε Μια Μελέτη Περίπτωσης Για Την Ηθική Δεδομένων
## Οδηγίες
diff --git a/translations/el/1-Introduction/03-defining-data/README.md b/translations/el/1-Introduction/03-defining-data/README.md
index 8dcec755..8552a8cb 100644
--- a/translations/el/1-Introduction/03-defining-data/README.md
+++ b/translations/el/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Ορισμός Δεδομένων
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/el/1-Introduction/03-defining-data/assignment.md b/translations/el/1-Introduction/03-defining-data/assignment.md
index 2cc7a74d..666d0769 100644
--- a/translations/el/1-Introduction/03-defining-data/assignment.md
+++ b/translations/el/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Κατηγοριοποίηση Συνόλων Δεδομένων
## Οδηγίες
diff --git a/translations/el/1-Introduction/04-stats-and-probability/README.md b/translations/el/1-Introduction/04-stats-and-probability/README.md
index d3197571..46e81e64 100644
--- a/translations/el/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/el/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Μια Σύντομη Εισαγωγή στη Στατιστική και την Πιθανότητα
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
Γραφικά μπορούμε να αναπαραστήσουμε τη σχέση μεταξύ διαμέσου και τεταρτημορίων σε ένα διάγραμμα που ονομάζεται **κουτίγραμμα**:
-
+
Εδώ υπολογίζουμε επίσης το **εύρος μεταξύ τεταρτημορίων** IQR=Q3-Q1, και τις λεγόμενες **ακραίες τιμές** - τιμές που βρίσκονται εκτός των ορίων [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/el/1-Introduction/04-stats-and-probability/assignment.md b/translations/el/1-Introduction/04-stats-and-probability/assignment.md
index 08704631..692cb3b7 100644
--- a/translations/el/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/el/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Μικρή Μελέτη για τον Διαβήτη
Σε αυτή την εργασία, θα δουλέψουμε με ένα μικρό σύνολο δεδομένων ασθενών με διαβήτη που προέρχεται από [εδώ](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/el/1-Introduction/README.md b/translations/el/1-Introduction/README.md
index f9ba808d..37511f3b 100644
--- a/translations/el/1-Introduction/README.md
+++ b/translations/el/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Εισαγωγή στην Επιστήμη Δεδομένων

diff --git a/translations/el/2-Working-With-Data/05-relational-databases/README.md b/translations/el/2-Working-With-Data/05-relational-databases/README.md
index 0d9fe19c..5b9b937e 100644
--- a/translations/el/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/el/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Εργασία με Δεδομένα: Σχεσιακές Βάσεις Δεδομένων
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/el/2-Working-With-Data/05-relational-databases/assignment.md b/translations/el/2-Working-With-Data/05-relational-databases/assignment.md
index 091abaac..63a9c507 100644
--- a/translations/el/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/el/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Εμφάνιση δεδομένων αεροδρομίων
Σας έχει δοθεί μια [βάση δεδομένων](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) βασισμένη στο [SQLite](https://sqlite.org/index.html), η οποία περιέχει πληροφορίες για αεροδρόμια. Το σχήμα της βάσης δεδομένων εμφανίζεται παρακάτω. Θα χρησιμοποιήσετε την [επέκταση SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) στο [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) για να εμφανίσετε πληροφορίες σχετικά με τα αεροδρόμια διαφορετικών πόλεων.
diff --git a/translations/el/2-Working-With-Data/06-non-relational/README.md b/translations/el/2-Working-With-Data/06-non-relational/README.md
index 54548961..aff0721a 100644
--- a/translations/el/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/el/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Εργασία με Δεδομένα: Μη Σχεσιακά Δεδομένα
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/el/2-Working-With-Data/06-non-relational/assignment.md b/translations/el/2-Working-With-Data/06-non-relational/assignment.md
index 23bf4433..166e234b 100644
--- a/translations/el/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/el/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Κέρδη από Σόδα
## Οδηγίες
diff --git a/translations/el/2-Working-With-Data/07-python/README.md b/translations/el/2-Working-With-Data/07-python/README.md
index cc58b826..0e07ff43 100644
--- a/translations/el/2-Working-With-Data/07-python/README.md
+++ b/translations/el/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Εργασία με Δεδομένα: Python και η Βιβλιοθήκη Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/el/2-Working-With-Data/07-python/assignment.md b/translations/el/2-Working-With-Data/07-python/assignment.md
index db5ff4e4..749b7c82 100644
--- a/translations/el/2-Working-With-Data/07-python/assignment.md
+++ b/translations/el/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Ανάθεση για Επεξεργασία Δεδομένων σε Python
Σε αυτή την ανάθεση, θα σας ζητήσουμε να επεξεργαστείτε τον κώδικα που έχουμε αρχίσει να αναπτύσσουμε στις προκλήσεις μας. Η ανάθεση αποτελείται από δύο μέρη:
diff --git a/translations/el/2-Working-With-Data/08-data-preparation/README.md b/translations/el/2-Working-With-Data/08-data-preparation/README.md
index a6897cd7..95d89e82 100644
--- a/translations/el/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/el/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Εργασία με Δεδομένα: Προετοιμασία Δεδομένων
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/el/2-Working-With-Data/08-data-preparation/assignment.md b/translations/el/2-Working-With-Data/08-data-preparation/assignment.md
index 31a14029..f96ecaee 100644
--- a/translations/el/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/el/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Αξιολόγηση Δεδομένων από μια Φόρμα
Ένας πελάτης έχει δοκιμάσει μια [μικρή φόρμα](../../../../2-Working-With-Data/08-data-preparation/index.html) για να συλλέξει βασικά δεδομένα σχετικά με τη βάση πελατών του. Έχει φέρει τα ευρήματά του σε εσάς για να επικυρώσετε τα δεδομένα που έχει συλλέξει. Μπορείτε να ανοίξετε τη σελίδα `index.html` στον περιηγητή για να δείτε τη φόρμα.
diff --git a/translations/el/2-Working-With-Data/README.md b/translations/el/2-Working-With-Data/README.md
index e7ec49e3..e758275d 100644
--- a/translations/el/2-Working-With-Data/README.md
+++ b/translations/el/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Εργασία με Δεδομένα

diff --git a/translations/el/3-Data-Visualization/09-visualization-quantities/README.md b/translations/el/3-Data-Visualization/09-visualization-quantities/README.md
index f0e5f82f..29d26926 100644
--- a/translations/el/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/el/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Οπτικοποίηση Ποσοτήτων
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/el/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/el/3-Data-Visualization/09-visualization-quantities/assignment.md
index 0efa6185..8dc508d2 100644
--- a/translations/el/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/el/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Γραμμές, Διασκορπισμοί και Ραβδόγραμμα
## Οδηγίες
diff --git a/translations/el/3-Data-Visualization/10-visualization-distributions/README.md b/translations/el/3-Data-Visualization/10-visualization-distributions/README.md
index ab5171b7..a6571932 100644
--- a/translations/el/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/el/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Οπτικοποίηση Κατανομών
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/el/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/el/3-Data-Visualization/10-visualization-distributions/assignment.md
index 92bb6ded..181ac295 100644
--- a/translations/el/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/el/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Εφαρμόστε τις δεξιότητές σας
## Οδηγίες
diff --git a/translations/el/3-Data-Visualization/11-visualization-proportions/README.md b/translations/el/3-Data-Visualization/11-visualization-proportions/README.md
index e13c3b13..490f6cdc 100644
--- a/translations/el/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/el/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Οπτικοποίηση Αναλογιών
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/el/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/el/3-Data-Visualization/11-visualization-proportions/assignment.md
index cbb326fa..02e5caf0 100644
--- a/translations/el/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/el/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Δοκιμάστε το στο Excel
## Οδηγίες
diff --git a/translations/el/3-Data-Visualization/12-visualization-relationships/README.md b/translations/el/3-Data-Visualization/12-visualization-relationships/README.md
index 80ddecbc..2331f26a 100644
--- a/translations/el/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/el/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Οπτικοποίηση Σχέσεων: Όλα για το Μέλι 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/el/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/el/3-Data-Visualization/12-visualization-relationships/assignment.md
index bb1c734b..c9197ddc 100644
--- a/translations/el/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/el/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Βουτήξτε στην κυψέλη
## Οδηγίες
diff --git a/translations/el/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/el/3-Data-Visualization/13-meaningful-visualizations/README.md
index e63ee95f..3fe281e8 100644
--- a/translations/el/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/el/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Δημιουργία Σημαντικών Οπτικοποιήσεων
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/el/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/el/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 49f78ac8..949b1f4c 100644
--- a/translations/el/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/el/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Δημιουργήστε τη δική σας προσαρμοσμένη οπτικοποίηση
## Οδηγίες
diff --git a/translations/el/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/el/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 76519ee2..4b26744f 100644
--- a/translations/el/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/el/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Έργο οπτικοποίησης δεδομένων Dangerous Liaisons
Για να ξεκινήσετε, πρέπει να βεβαιωθείτε ότι έχετε εγκατεστημένα το NPM και το Node στον υπολογιστή σας. Εγκαταστήστε τις εξαρτήσεις (npm install) και στη συνέχεια εκτελέστε το έργο τοπικά (npm run serve):
diff --git a/translations/el/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/el/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 73eff4f7..2d7812e0 100644
--- a/translations/el/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/el/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Έργο οπτικοποίησης δεδομένων Dangerous Liaisons
Για να ξεκινήσετε, πρέπει να βεβαιωθείτε ότι έχετε εγκατεστημένα το NPM και το Node στον υπολογιστή σας. Εγκαταστήστε τις εξαρτήσεις (npm install) και στη συνέχεια εκτελέστε το έργο τοπικά (npm run serve):
diff --git a/translations/el/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/el/3-Data-Visualization/R/09-visualization-quantities/README.md
index 296d4323..d9645eef 100644
--- a/translations/el/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/el/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Οπτικοποίηση Ποσοτήτων
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/el/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/el/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 3f90069f..0efc78e3 100644
--- a/translations/el/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/el/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Γραμμές, Διαγράμματα Σημείων και Ραβδόγραμμα
## Οδηγίες
diff --git a/translations/el/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/el/3-Data-Visualization/R/10-visualization-distributions/README.md
index 6f899156..000d2272 100644
--- a/translations/el/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/el/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Οπτικοποίηση Κατανομών
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/el/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/el/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 8fa4160c..57003753 100644
--- a/translations/el/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/el/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Εφαρμόστε τις δεξιότητές σας
## Οδηγίες
diff --git a/translations/el/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/el/3-Data-Visualization/R/11-visualization-proportions/README.md
index ac088fc3..0dcdd8c3 100644
--- a/translations/el/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/el/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Οπτικοποίηση Αναλογιών
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/el/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/el/3-Data-Visualization/R/12-visualization-relationships/README.md
index 52d9f014..8230eda0 100644
--- a/translations/el/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/el/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Οπτικοποίηση Σχέσεων: Όλα για το Μέλι 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/el/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/el/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 809cf581..8ec94f05 100644
--- a/translations/el/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/el/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Δημιουργία Σημαντικών Οπτικοποιήσεων
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/el/3-Data-Visualization/README.md b/translations/el/3-Data-Visualization/README.md
index 4f47eda9..34722615 100644
--- a/translations/el/3-Data-Visualization/README.md
+++ b/translations/el/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Οπτικοποιήσεις

diff --git a/translations/el/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/el/4-Data-Science-Lifecycle/14-Introduction/README.md
index 58c59210..e15fcb97 100644
--- a/translations/el/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/el/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Εισαγωγή στον Κύκλο Ζωής της Επιστήμης Δεδομένων
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/el/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/el/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 4566818a..2ddce368 100644
--- a/translations/el/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/el/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Αξιολόγηση ενός Συνόλου Δεδομένων
Ένας πελάτης έχει προσεγγίσει την ομάδα σας για βοήθεια στη διερεύνηση των εποχιακών συνηθειών δαπανών των πελατών ταξί στη Νέα Υόρκη.
diff --git a/translations/el/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/el/4-Data-Science-Lifecycle/15-analyzing/README.md
index 3819c75d..a17c266a 100644
--- a/translations/el/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/el/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Ο Κύκλος Ζωής της Επιστήμης Δεδομένων: Ανάλυση
|](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/el/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/el/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 9c8b4300..991b3995 100644
--- a/translations/el/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/el/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Εξερεύνηση για απαντήσεις
Αυτή είναι η συνέχεια της [εργασίας](../14-Introduction/assignment.md) του προηγούμενου μαθήματος, όπου ρίξαμε μια σύντομη ματιά στο σύνολο δεδομένων. Τώρα θα εξετάσουμε τα δεδομένα πιο αναλυτικά.
diff --git a/translations/el/4-Data-Science-Lifecycle/16-communication/README.md b/translations/el/4-Data-Science-Lifecycle/16-communication/README.md
index 32a4e6a1..afd5c135 100644
--- a/translations/el/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/el/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Ο Κύκλος Ζωής της Επιστήμης Δεδομένων: Επικοινωνία
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/el/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/el/4-Data-Science-Lifecycle/16-communication/assignment.md
index 59ae671f..b2560e08 100644
--- a/translations/el/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/el/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Πείτε μια ιστορία
## Οδηγίες
diff --git a/translations/el/4-Data-Science-Lifecycle/README.md b/translations/el/4-Data-Science-Lifecycle/README.md
index 75e420b1..c5f41ca6 100644
--- a/translations/el/4-Data-Science-Lifecycle/README.md
+++ b/translations/el/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Ο Κύκλος Ζωής της Επιστήμης Δεδομένων

diff --git a/translations/el/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/el/5-Data-Science-In-Cloud/17-Introduction/README.md
index 89048b21..d880b7c0 100644
--- a/translations/el/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/el/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Εισαγωγή στην Επιστήμη Δεδομένων στο Cloud
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/el/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/el/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 7da3dc2d..1bf1e523 100644
--- a/translations/el/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/el/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Έρευνα Αγοράς
## Οδηγίες
diff --git a/translations/el/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/el/5-Data-Science-In-Cloud/18-Low-Code/README.md
index beb954cb..dafe9b15 100644
--- a/translations/el/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/el/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Επιστήμη Δεδομένων στο Cloud: Η μέθοδος "Low code/No code"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/el/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/el/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 3650e081..8d784bcf 100644
--- a/translations/el/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/el/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Έργο Επιστήμης Δεδομένων με Χαμηλό ή Καθόλου Κώδικα στο Azure ML
## Οδηγίες
diff --git a/translations/el/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/el/5-Data-Science-In-Cloud/19-Azure/README.md
index 1b39d3ce..6b079772 100644
--- a/translations/el/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/el/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Επιστήμη Δεδομένων στο Cloud: Ο τρόπος του "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/el/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/el/5-Data-Science-In-Cloud/19-Azure/assignment.md
index e4023b19..5c4a3fbc 100644
--- a/translations/el/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/el/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Έργο Επιστήμης Δεδομένων χρησιμοποιώντας το Azure ML SDK
## Οδηγίες
diff --git a/translations/el/5-Data-Science-In-Cloud/README.md b/translations/el/5-Data-Science-In-Cloud/README.md
index cadd5893..f20b636b 100644
--- a/translations/el/5-Data-Science-In-Cloud/README.md
+++ b/translations/el/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Επιστήμη Δεδομένων στο Cloud

diff --git a/translations/el/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/el/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 0aeca6ef..d1dcb9b4 100644
--- a/translations/el/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/el/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Επιστήμη Δεδομένων στον Πραγματικό Κόσμο
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/el/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/el/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 6a68ba7f..ab3d7aeb 100644
--- a/translations/el/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/el/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Εξερεύνηση ενός Συνόλου Δεδομένων του Planetary Computer
## Οδηγίες
diff --git a/translations/el/6-Data-Science-In-Wild/README.md b/translations/el/6-Data-Science-In-Wild/README.md
index a55a25d2..d7dbf1a1 100644
--- a/translations/el/6-Data-Science-In-Wild/README.md
+++ b/translations/el/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Επιστήμη Δεδομένων στην Πράξη
Πραγματικές εφαρμογές της επιστήμης δεδομένων σε διάφορους κλάδους.
diff --git a/translations/el/AGENTS.md b/translations/el/AGENTS.md
index 28449f1c..d7fa4f86 100644
--- a/translations/el/AGENTS.md
+++ b/translations/el/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Επισκόπηση Έργου
diff --git a/translations/el/CODE_OF_CONDUCT.md b/translations/el/CODE_OF_CONDUCT.md
index a8651502..c5349a16 100644
--- a/translations/el/CODE_OF_CONDUCT.md
+++ b/translations/el/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Κώδικας Δεοντολογίας Ανοιχτού Κώδικα της Microsoft
Αυτό το έργο έχει υιοθετήσει τον [Κώδικα Δεοντολογίας Ανοιχτού Κώδικα της Microsoft](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/el/CONTRIBUTING.md b/translations/el/CONTRIBUTING.md
index d8adbd09..dd215e27 100644
--- a/translations/el/CONTRIBUTING.md
+++ b/translations/el/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Συμμετοχή στο Data Science for Beginners
Ευχαριστούμε για το ενδιαφέρον σας να συμβάλετε στο πρόγραμμα σπουδών του Data Science for Beginners! Καλωσορίζουμε συνεισφορές από την κοινότητα.
diff --git a/translations/el/INSTALLATION.md b/translations/el/INSTALLATION.md
index 7da0f4f1..2f107948 100644
--- a/translations/el/INSTALLATION.md
+++ b/translations/el/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Οδηγός Εγκατάστασης
Αυτός ο οδηγός θα σας βοηθήσει να ρυθμίσετε το περιβάλλον σας για να εργαστείτε με το πρόγραμμα σπουδών "Data Science for Beginners".
diff --git a/translations/el/README.md b/translations/el/README.md
index ca02e5f1..c55fb914 100644
--- a/translations/el/README.md
+++ b/translations/el/README.md
@@ -1,13 +1,4 @@
-
-# Επιστήμη Δεδομένων για Αρχάριους - Ένα Αναλυτικό Πρόγραμμα Σπουδών
+# Data Science για Αρχάριους - Ένα Αναλυτικό Πρόγραμμα Σπουδών
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,181 +17,181 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Οι Πρεσβευτές Cloud Azure στη Microsoft είναι στην ευχάριστη θέση να προσφέρουν ένα πρόγραμμα σπουδών 10 εβδομάδων με 20 μαθήματα, όλα σχετικά με την Επιστήμη Δεδομένων. Κάθε μάθημα περιλαμβάνει κουίζ πριν και μετά το μάθημα, γραπτές οδηγίες για την ολοκλήρωση του μαθήματος, μια λύση και μια εργασία. Η παιδαγωγική μας που βασίζεται σε έργα σας επιτρέπει να μαθαίνετε ενόσω κατασκευάζετε, ένας αποδεδειγμένος τρόπος για νέες δεξιότητες να "εγκαθίστανται".
+Οι Πρεσβευτές του Azure Cloud στη Microsoft είναι χαρούμενοι να προσφέρουν ένα 10-εβδομάδων, 20-μαθημάτων αναλυτικό πρόγραμμα που καλύπτει όλη την Επιστήμη Δεδομένων. Κάθε μάθημα περιλαμβάνει κουίζ πριν και μετά το μάθημα, γραπτές οδηγίες για την ολοκλήρωση του μαθήματος, μια λύση και μια εργασία. Η μαθητοκεντρική προσέγγισή μας σας επιτρέπει να μαθαίνετε δημιουργώντας, έναν αποδεδειγμένο τρόπο για νέες δεξιότητες να «στερεωθούν».
-**Θερμές ευχαριστίες στους συγγραφείς μας:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Ειλικρινείς ευχαριστίες στους συγγραφείς μας:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Ειδικές ευχαριστίες 🙏 στους συγγραφείς, αξιολογητές και συνεισφέροντες περιεχόμενο από τους [Πρεσβευτές Φοιτητών Microsoft](https://studentambassadors.microsoft.com/),** ιδιαίτερα Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Ειδικές ευχαριστίες 🙏 στους συγγραφείς, αξιολογητές και συνεισφέροντες περιεχόμενο [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** ιδιαίτερα Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Επιστήμη Δεδομένων για Αρχάριους - _Σημειώσεις από [@nitya](https://twitter.com/nitya)_ |
+| Επιστήμη Δεδομένων για Αρχάριους - _Sketchnote από [@nitya](https://twitter.com/nitya)_ |
-### 🌐 Υποστήριξη Πολλών Γλωσσών
+### 🌐 Υποστήριξη σε Πολλαπλές Γλώσσες
-#### Υποστηρίζεται μέσω GitHub Action (Αυτόματη & Πάντα Ενημερωμένη)
+#### Υποστηρίζεται μέσω GitHub Action (Αυτόματο & Πάντα Ενημερωμένο)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](./README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](./README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **Προτιμάτε να Κλωνοποιήσετε Τοπικά;**
+> **Προτιμάς να κάνεις Κλωνοποίηση Τοπικά;**
-> Αυτό το αποθετήριο περιλαμβάνει περισσότερες από 50 μεταφράσεις γλωσσών, που αυξάνουν σημαντικά το μέγεθος λήψης. Για να κλωνοποιήσετε χωρίς τις μεταφράσεις, χρησιμοποιήστε sparse checkout:
+> Αυτό το αποθετήριο περιλαμβάνει 50+ μεταφράσεις σε γλώσσες που αυξάνουν σημαντικά το μέγεθος κατεβάσματος. Για κλωνοποίηση χωρίς τις μεταφράσεις, χρησιμοποίησε sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Αυτό σας δίνει ό,τι χρειάζεστε για να ολοκληρώσετε το μάθημα με πολύ πιο γρήγορη λήψη.
+> Αυτό σου δίνει όλα όσα χρειάζεσαι για να ολοκληρώσεις το μάθημα με πολύ πιο γρήγορο κατέβασμα.
-**Αν θέλετε να υποστηριχθούν επιπλέον γλώσσες μετάφρασης, παρατίθενται [εδώ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Αν επιθυμείς να υποστηριχθούν επιπλέον γλώσσες μετάφρασης, αυτές παρατίθενται [εδώ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Ενταχθείτε στην Κοινότητά μας
+#### Γίνε Μέλος της Κοινότητάς μας
[](https://discord.gg/nTYy5BXMWG)
-Έχουμε μια συνεχιζόμενη σειρά "Μάθε με AI" στο Discord, μάθετε περισσότερα και συμμετάσχετε στο [Learn with AI Series](https://aka.ms/learnwithai/discord) από 18 έως 30 Σεπτεμβρίου 2025. Θα λάβετε συμβουλές και κόλπα για τη χρήση του GitHub Copilot για την Επιστήμη Δεδομένων.
+Διοργανώνουμε μια σειρά Discord Learn with AI, μάθε περισσότερα και γίνε μέλος στο [Learn with AI Series](https://aka.ms/learnwithai/discord) από 18 - 30 Σεπτεμβρίου, 2025. Θα λάβεις συμβουλές και κόλπα για τη χρήση του GitHub Copilot στην Επιστήμη Δεδομένων.
-
+
# Είσαι φοιτητής;
-Ξεκίνα με τους ακόλουθους πόρους:
+Ξεκίνα με τους εξής πόρους:
-- [Σελίδα Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Σε αυτή τη σελίδα, θα βρείτε πόρους για αρχάριους, πακέτα για φοιτητές και ακόμη τρόπους να αποκτήσετε δωρεάν κουπόνι πιστοποίησης. Αυτή είναι μια σελίδα που αξίζει να αποθηκεύσετε στα αγαπημένα σας και να ελέγχετε από καιρό σε καιρό καθώς ανανεώνουμε το περιεχόμενο τουλάχιστον κάθε μήνα.
-- [Πρεσβευτές Φοιτητών Microsoft](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Ενταχθείτε σε μια παγκόσμια κοινότητα πρεσβευτών φοιτητών, αυτό θα μπορούσε να είναι το εισιτήριό σας για τη Microsoft.
+- [Student Hub σελίδα](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Σε αυτή τη σελίδα, θα βρεις πόρους για αρχάριους, πακέτα για φοιτητές και ακόμη και τρόπους να αποκτήσεις δωρεάν κουπόνι πιστοποίησης. Είναι μια σελίδα που θέλεις να προσθέσεις στα αγαπημένα σου και να την ελέγχεις τακτικά καθώς ανανεώνουμε το περιεχόμενο τουλάχιστον μηνιαίως.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Γίνε μέλος μιας παγκόσμιας κοινότητας φοιτητών πρεσβευτών, αυτό μπορεί να είναι ο δρόμος σου για τη Microsoft.
# Ξεκινώντας
## 📚 Τεκμηρίωση
-- **[Οδηγός Εγκατάστασης](INSTALLATION.md)** - Οδηγίες βήμα προς βήμα για αρχάριους
-- **[Οδηγός Χρήσης](USAGE.md)** - Παραδείγματα και συνήθεις ροές εργασίας
-- **[Αντιμετώπιση Προβλημάτων](TROUBLESHOOTING.md)** - Λύσεις σε κοινά ζητήματα
-- **[Οδηγός Συμβολής](CONTRIBUTING.md)** - Πώς να συμβάλετε σε αυτό το έργο
+- **[Οδηγός Εγκατάστασης](INSTALLATION.md)** - Βήμα-βήμα οδηγίες για αρχάριους
+- **[Οδηγός Χρήσης](USAGE.md)** - Παραδείγματα και συνηθισμένες εργασίες
+- **[Αντιμετώπιση Προβλημάτων](TROUBLESHOOTING.md)** - Λύσεις σε συνηθισμένα προβλήματα
+- **[Οδηγός Συμμετοχής](CONTRIBUTING.md)** - Πώς να συμβάλλετε στο έργο αυτό
- **[Για Εκπαιδευτικούς](for-teachers.md)** - Οδηγίες διδασκαλίας και πόροι για την τάξη
## 👨🎓 Για Φοιτητές
-> **Απόλυτοι Αρχάριοι**: Νέοι στην επιστήμη δεδομένων; Ξεκινήστε με τα [παραδείγματα φιλικά για αρχάριους](examples/README.md)! Αυτά τα απλά, σχολιασμένα παραδείγματα θα σας βοηθήσουν να κατανοήσετε τα βασικά πριν βουτήξετε στο πλήρες πρόγραμμα σπουδών.
-> **[Φοιτητές](https://aka.ms/student-page)**: για να χρησιμοποιήσετε αυτό το πρόγραμμα σπουδών μόνοι σας, κάντε fork ολόκληρο το repo και ολοκληρώστε τις ασκήσεις μόνοι σας, ξεκινώντας με ένα κουίζ πριν το μάθημα. Στη συνέχεια διαβάστε το μάθημα και ολοκληρώστε τις υπόλοιπες δραστηριότητες. Προσπαθήστε να δημιουργήσετε τα έργα κατανοώντας τα μαθήματα αντί να αντιγράφετε τον κώδικα λύσης· όμως, ο κώδικας αυτός είναι διαθέσιμος στους φακέλους /solutions σε κάθε μάθημα προσανατολισμένο σε έργο. Μια άλλη ιδέα είναι να σχηματίσετε μια ομάδα μελέτης με φίλους και να περάσετε το περιεχόμενο μαζί. Για περαιτέρω μελέτη, προτείνουμε το [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Απόλυτοι Αρχάριοι**: Νέοι στην επιστήμη δεδομένων; Ξεκίνα με τα [φιλικά για αρχάριους παραδείγματα](examples/README.md)! Αυτά τα απλά, καλά σχολιασμένα παραδείγματα θα σε βοηθήσουν να κατανοήσεις τις βάσεις πριν βουτήξεις στο πλήρες πρόγραμμα.
+> **[Φοιτητές](https://aka.ms/student-page)**: για να χρησιμοποιήσετε αυτό το πρόγραμμα μόνοι σας, κάντε fork ολόκληρο το αποθετήριο και ολοκληρώστε τις ασκήσεις μόνοι σας, ξεκινώντας με ένα κουίζ προ-διάλεξης. Μετά διάβασε τη διάλεξη και ολοκλήρωσε τις υπόλοιπες δραστηριότητες. Προσπάθησε να δημιουργήσεις τα έργα κατανοώντας τα μαθήματα αντί να αντιγράφεις τον κώδικα λύσης· ωστόσο, αυτός ο κώδικας είναι διαθέσιμος στους φακέλους /solutions σε κάθε μάθημα προσανατολισμένο σε έργα. Μια άλλη ιδέα είναι να σχηματίσεις μια ομάδα μελέτης με φίλους και να πάτε μαζί το περιεχόμενο. Για περαιτέρω μελέτη, προτείνουμε το [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
-**Γρήγορη εκκίνηση:**
-1. Ελέγξτε τον [Οδηγό Εγκατάστασης](INSTALLATION.md) για να ρυθμίσετε το περιβάλλον σας
-2. Ανασκοπήστε τον [Οδηγό Χρήσης](USAGE.md) για να μάθετε πώς να δουλεύετε με το πρόγραμμα σπουδών
-3. Ξεκινήστε με το Μάθημα 1 και δουλέψτε διαδοχικά
-4. Ενταχθείτε στην [κοινότητα Discord μας](https://aka.ms/ds4beginners/discord) για υποστήριξη
+**Γρήγορη Έναρξη:**
+1. Δες τον [Οδηγό Εγκατάστασης](INSTALLATION.md) για να ρυθμίσεις το περιβάλλον σου
+2. Διάβασε τον [Οδηγό Χρήσης](USAGE.md) για να μάθεις πώς να δουλεύεις με το πρόγραμμα
+3. Ξεκίνησε με το Μάθημα 1 και δούλεψε σειριακά
+4. Γίνε μέλος της [κοινότητάς μας στο Discord](https://aka.ms/ds4beginners/discord) για υποστήριξη
## 👩🏫 Για Εκπαιδευτικούς
-> **Εκπαιδευτικοί**: έχουμε [συμπεριλάβει μερικές προτάσεις](for-teachers.md) για το πώς να χρησιμοποιήσετε αυτό το πρόγραμμα σπουδών. Θα χαρούμε τα σχόλιά σας [στο φόρουμ συζητήσεών μας](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
+> **Εκπαιδευτικοί**: έχουμε [περιλάβει κάποιες προτάσεις](for-teachers.md) για το πώς να χρησιμοποιήσετε αυτό το πρόγραμμα. Θα χαρούμε πολύ να λάβουμε τα σχόλιά σας [στο φόρουμ συζητήσεων](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Γνωρίστε την Ομάδα
+
[](https://youtu.be/8mzavjQSMM4 "Προωθητικό βίντεο")
**Gif από** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Κάντε κλικ στην εικόνα παραπάνω για ένα βίντεο σχετικά με το έργο και τους ανθρώπους που το δημιούργησαν!
+> 🎥 Κάντε κλικ στην εικόνα παραπάνω για ένα βίντεο σχετικά με το έργο και τα άτομα που το δημιούργησαν!
## Παιδαγωγική
-Έχουμε επιλέξει δύο παιδαγωγικές αρχές κατά την κατασκευή αυτού του μαθήματος: να είναι βασισμένο σε έργα και να περιλαμβάνει συχνά κουίζ. Μέχρι το τέλος αυτής της σειράς, οι μαθητές θα έχουν μάθει βασικές αρχές της επιστήμης δεδομένων, συμπεριλαμβανομένων ηθικών εννοιών, προετοιμασίας δεδομένων, διαφορετικών τρόπων εργασίας με δεδομένα, οπτικοποίησης δεδομένων, ανάλυσης δεδομένων, πραγματικών περιπτώσεων χρήσης της επιστήμης δεδομένων, και άλλα.
+Έχουμε επιλέξει δύο παιδαγωγικές αρχές κατά την κατασκευή αυτής της διδακτέας ύλης: να είναι βασισμένη σε έργα και να περιλαμβάνει συχνά κουίζ. Μέχρι το τέλος αυτής της σειράς, οι μαθητές θα έχουν μάθει βασικές αρχές της επιστήμης των δεδομένων, συμπεριλαμβανομένων ηθικών εννοιών, προετοιμασίας δεδομένων, διαφορετικών τρόπων εργασίας με δεδομένα, οπτικοποίησης δεδομένων, ανάλυσης δεδομένων, πραγματικών περιπτώσεων χρήσης της επιστήμης των δεδομένων και άλλα.
-Επιπλέον, ένα χαμηλού κινδύνου κουίζ πριν από ένα μάθημα θέτει την πρόθεση του μαθητή προς την εκμάθηση ενός θέματος, ενώ ένα δεύτερο κουίζ μετά το μάθημα διασφαλίζει περαιτέρω διατήρηση. Αυτή η διδακτική ύλη σχεδιάστηκε ώστε να είναι ευέλικτη και διασκεδαστική και μπορεί να παρακολουθηθεί ολόκληρη ή μεμονωμένα μέρη. Τα έργα ξεκινούν μικρά και γίνονται όλο και πιο περίπλοκα μέχρι το τέλος του κύκλου των 10 εβδομάδων.
+Επιπλέον, ένα κουίζ χαμηλής σημασίας πριν από το μάθημα θέτει την πρόθεση του μαθητή για την εκμάθηση ενός θέματος, ενώ ένα δεύτερο κουίζ μετά το μάθημα διασφαλίζει περαιτέρω διατήρηση. Αυτή η διδακτέα ύλη σχεδιάστηκε να είναι ευέλικτη και διασκεδαστική και μπορεί να ληφθεί ολόκληρη ή μεμονωμένα. Τα έργα ξεκινούν μικρά και γίνονται όλο και πιο πολύπλοκα μέχρι το τέλος του κύκλου των 10 εβδομάδων.
-> Βρείτε τις οδηγίες μας για τον [Κώδικα Συμπεριφοράς](CODE_OF_CONDUCT.md), τη [Συνεισφορά](CONTRIBUTING.md), και τις [Μεταφράσεις](TRANSLATIONS.md). Καλωσορίζουμε τα εποικοδομητικά σας σχόλια!
+> Βρείτε τις [Οδηγίες Συμπεριφοράς μας](CODE_OF_CONDUCT.md), τις οδηγίες [Συμβολής](CONTRIBUTING.md) και [Μετάφρασης](TRANSLATIONS.md). Εκτιμούμε τα εποικοδομητικά σας σχόλια!
## Κάθε μάθημα περιλαμβάνει:
-- Προαιρετική σημείωση σχεδίασης (sketchnote)
+- Προαιρετική σημείωση σχεδίου (sketchnote)
- Προαιρετικό συμπληρωματικό βίντεο
-- Προ-μάθημα προθέρμανση μέσω κουίζ
+- Προ-μαθηματικό κουίζ προθέρμανσης
- Γραπτό μάθημα
-- Για μαθήματα βασισμένα σε έργα, βήμα-βήμα οδηγίες για την κατασκευή του έργου
+- Για μαθήματα βασισμένα σε έργα, βήμα-βήμα οδηγίες για το πώς να κατασκευάσετε το έργο
- Έλεγχοι γνώσεων
-- Πρόκληση
+- Μια πρόκληση
- Συμπληρωματική ανάγνωση
- Ανάθεση εργασίας
-- [Κουίζ μετά το μάθημα](https://ff-quizzes.netlify.app/en/)
+- [Μετα-μαθηματικό κουίζ](https://ff-quizzes.netlify.app/en/)
-> **Σημείωση για τα κουίζ**: Όλα τα κουίζ περιέχονται στον φάκελο Quiz-App, με συνολικά 40 κουίζ των τριών ερωτήσεων το καθένα. Συνδέονται από τα μαθήματα, αλλά η εφαρμογή κουίζ μπορεί να τρέξει τοπικά ή να αναπτυχθεί στο Azure· ακολουθήστε τις οδηγίες στον φάκελο `quiz-app`. Βρίσκονται σταδιακά σε διαδικασία τοπικοποίησης.
+> **Μια σημείωση για τα κουίζ**: Όλα τα κουίζ βρίσκονται στον φάκελο Quiz-App, με συνολικά 40 κουίζ των τριών ερωτήσεων το καθένα. Συνδέονται από τα μαθήματα, αλλά η εφαρμογή κουίζ μπορεί να τρέξει τοπικά ή να αναπτυχθεί στο Azure· ακολουθήστε τις οδηγίες στον φάκελο `quiz-app`. Βρίσκονται σε διαδικασία σταδιακής τοπικοποίησης.
-## 🎓 Παραδείγματα Φιλικά για Αρχάριους
+## 🎓 Παραδείγματα φιλικά προς αρχάριους
-**Νέοι στην επιστήμη δεδομένων;** Δημιουργήσαμε έναν ειδικό [φάκελο με παραδείγματα](examples/README.md) με απλό, καλά σχολιασμένο κώδικα για να σας βοηθήσει να ξεκινήσετε:
+**Νέοι στην Επιστήμη Δεδομένων;** Δημιουργήσαμε έναν ειδικό [κατάλογο παραδειγμάτων](examples/README.md) με απλό, καλά σχολιασμένο κώδικα για να σας βοηθήσει να ξεκινήσετε:
-- 🌟 **Γεια σου κόσμε** - Το πρώτο σας πρόγραμμα επιστήμης δεδομένων
-- 📂 **Φόρτωση δεδομένων** - Μάθετε να διαβάζετε και να εξερευνάτε σύνολα δεδομένων
-- 📊 **Απλή ανάλυση** - Υπολογίστε στατιστικά και βρείτε μοτίβα
-- 📈 **Βασική οπτικοποίηση** - Δημιουργία διαγραμμάτων και γραφημάτων
-- 🔬 **Πραγματικό έργο** - Ολοκληρωμένη ροή εργασίας από την αρχή μέχρι το τέλος
+- 🌟 **Γεια σου Κόσμε** - Το πρώτο σας πρόγραμμα επιστήμης δεδομένων
+- 📂 **Φόρτωση Δεδομένων** - Μάθετε να διαβάζετε και να εξερευνάτε σύνολα δεδομένων
+- 📊 **Απλή Ανάλυση** - Υπολογίστε στατιστικά και βρείτε μοτίβα
+- 📈 **Βασική Οπτικοποίηση** - Δημιουργήστε διαγράμματα και γραφήματα
+- 🔬 **Πραγματικό Έργο** - Ολοκληρωμένη διαδικασία από την αρχή ως το τέλος
-Κάθε παράδειγμα περιλαμβάνει λεπτομερή σχόλια που εξηγούν κάθε βήμα, καθιστώντας το τέλειο για απόλυτους αρχάριους!
+Κάθε παράδειγμα περιλαμβάνει λεπτομερή σχόλια που εξηγούν κάθε βήμα, καθιστώντας το ιδανικό για απόλυτους αρχάριους!
👉 **[Ξεκινήστε με τα παραδείγματα](examples/README.md)** 👈
## Μαθήματα
-||
+||
|:---:|
-| Επιστήμη Δεδομένων για Αρχάριους: Οδικός Χάρτης - _Σημείωση σχεδίασης από [@nitya](https://twitter.com/nitya)_ |
+| Επιστήμη Δεδομένων για Αρχάριους: Οδικός Χάρτης - _Σημείωση σχεδίου από [@nitya](https://twitter.com/nitya)_ |
| Αριθμός Μαθήματος | Θέμα | Ομαδοποίηση Μαθήματος | Μαθησιακοί Στόχοι | Συνδεδεμένο Μάθημα | Συγγραφέας |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Ορισμός Επιστήμης Δεδομένων | [Εισαγωγή](1-Introduction/README.md) | Μάθετε τις βασικές έννοιες πίσω από την επιστήμη δεδομένων και πώς σχετίζεται με την τεχνητή νοημοσύνη, τη μηχανική μάθηση και τα μεγάλα δεδομένα. | [μάθημα](1-Introduction/01-defining-data-science/README.md) [βίντεο](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Ηθική στην επιστήμη δεδομένων | [Εισαγωγή](1-Introduction/README.md) | Έννοιες, προκλήσεις και πλαίσια ηθικής δεδομένων. | [μάθημα](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Ορισμός Δεδομένων | [Εισαγωγή](1-Introduction/README.md) | Πώς ταξινομούνται τα δεδομένα και οι κοινές πηγές τους. | [μάθημα](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Εισαγωγή στη Στατιστική και Πιθανότητες | [Εισαγωγή](1-Introduction/README.md) | Μαθηματικές τεχνικές πιθανοτήτων και στατιστικής για την κατανόηση των δεδομένων. | [μάθημα](1-Introduction/04-stats-and-probability/README.md) [βίντεο](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Εργασία με Σχεσιακά Δεδομένα | [Εργασία με Δεδομένα](2-Working-With-Data/README.md) | Εισαγωγή σε σχεσιακά δεδομένα και τα βασικά της εξερεύνησης και ανάλυσης σχεσιακών δεδομένων με τη γλώσσα δομημένων ερωτημάτων, γνωστή και ως SQL (προφέρεται “σι-κουελ”). | [μάθημα](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 01 | Ορισμός της Επιστήμης Δεδομένων | [Εισαγωγή](1-Introduction/README.md) | Μάθετε τις βασικές έννοιες πίσω από την επιστήμη δεδομένων και πώς σχετίζεται με την τεχνητή νοημοσύνη, τη μηχανική μάθηση και τα μεγάλα δεδομένα. | [μάθημα](1-Introduction/01-defining-data-science/README.md) [βίντεο](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Ηθική της Επιστήμης Δεδομένων | [Εισαγωγή](1-Introduction/README.md) | Έννοιες Ηθικής Δεδομένων, Προκλήσεις & Πλαίσια. | [μάθημα](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Ορισμός των Δεδομένων | [Εισαγωγή](1-Introduction/README.md) | Πώς ταξινομούνται τα δεδομένα και οι κοινές πηγές τους. | [μάθημα](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Εισαγωγή στη Στατιστική & Πιθανότητες | [Εισαγωγή](1-Introduction/README.md) | Οι μαθηματικές τεχνικές πιθανοτήτων και στατιστικής για την κατανόηση των δεδομένων. | [μάθημα](1-Introduction/04-stats-and-probability/README.md) [βίντεο](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Εργασία με Σχεσιακά Δεδομένα | [Εργασία με Δεδομένα](2-Working-With-Data/README.md) | Εισαγωγή στα σχεσιακά δεδομένα και τα βασικά της εξερεύνησης και ανάλυσης σχεσιακών δεδομένων με τη Γλώσσα Δομημένων Ερωτημάτων, γνωστή και ως SQL (προφέρεται “σι-κουελ”). | [μάθημα](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Εργασία με NoSQL Δεδομένα | [Εργασία με Δεδομένα](2-Working-With-Data/README.md) | Εισαγωγή σε μη σχεσιακά δεδομένα, τους διάφορους τύπους τους και τα βασικά της εξερεύνησης και ανάλυσης βάσεων δεδομένων εγγράφων. | [μάθημα](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Εργασία με Python | [Εργασία με Δεδομένα](2-Working-With-Data/README.md) | Βασικά της χρήσης της Python για εξερεύνηση δεδομένων με βιβλιοθήκες όπως οι Pandas. Συνιστάται βασική κατανόηση προγραμματισμού Python. | [μάθημα](2-Working-With-Data/07-python/README.md) [βίντεο](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Προετοιμασία Δεδομένων | [Εργασία με Δεδομένα](2-Working-With-Data/README.md) | Θέματα για τεχνικές καθαρισμού και μετασχηματισμού των δεδομένων ώστε να αντιμετωπιστούν προβλήματα όπως τα ελλιπή, ανακριβή ή ατελή δεδομένα. | [μάθημα](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Οπτικοποίηση Ποσοτήτων | [Οπτικοποίηση Δεδομένων](3-Data-Visualization/README.md) | Μάθετε πώς να χρησιμοποιείτε το Matplotlib για οπτικοποίηση δεδομένων πουλιών 🦆 | [μάθημα](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 07 | Εργασία με Python | [Εργασία με Δεδομένα](2-Working-With-Data/README.md) | Βασικά της χρήσης της Python για εξερεύνηση δεδομένων με βιβλιοθήκες όπως η Pandas. Συνιστάται βασική κατανόηση προγραμματισμού Python. | [μάθημα](2-Working-With-Data/07-python/README.md) [βίντεο](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Προετοιμασία Δεδομένων | [Εργασία με Δεδομένα](2-Working-With-Data/README.md) | Θέματα τεχνικών δεδομένων για καθαρισμό και μετασχηματισμό των δεδομένων ώστε να αντιμετωπιστούν προκλήσεις όπως τα ελλιπή, ανακριβή ή ατελή δεδομένα. | [μάθημα](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Οπτικοποίηση Ποσοτήτων | [Οπτικοποίηση Δεδομένων](3-Data-Visualization/README.md) | Μάθετε πώς να χρησιμοποιείτε το Matplotlib για να οπτικοποιήσετε δεδομένα πουλιών 🦆 | [μάθημα](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Οπτικοποίηση Κατανομών Δεδομένων | [Οπτικοποίηση Δεδομένων](3-Data-Visualization/README.md) | Οπτικοποίηση παρατηρήσεων και τάσεων μέσα σε ένα διάστημα. | [μάθημα](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Οπτικοποίηση Αναλογιών | [Οπτικοποίηση Δεδομένων](3-Data-Visualization/README.md) | Οπτικοποίηση διακριτών και ομαδοποιημένων ποσοστών. | [μάθημα](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Οπτικοποίηση Σχέσεων | [Οπτικοποίηση Δεδομένων](3-Data-Visualization/README.md) | Οπτικοποίηση συνδέσεων και συσχετίσεων μεταξύ συνόλων δεδομένων και των μεταβλητών τους. | [μάθημα](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Σημαντικές Οπτικοποιήσεις | [Οπτικοποίηση Δεδομένων](3-Data-Visualization/README.md) | Τεχνικές και οδηγίες για τη δημιουργία οπτικοποιήσεων που έχουν αξία για αποτελεσματική επίλυση προβλημάτων και βαθύτερες γνώσεις. | [μάθημα](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Εισαγωγή στον Κύκλο Ζωής της Επιστήμης Δεδομένων | [Κύκλος Ζωής](4-Data-Science-Lifecycle/README.md) | Εισαγωγή στον κύκλο ζωής της επιστήμης δεδομένων και το πρώτο του βήμα που είναι η απόκτηση και εξαγωγή δεδομένων. | [μάθημα](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Ανάλυση | [Κύκλος Ζωής](4-Data-Science-Lifecycle/README.md) | Αυτή η φάση του κύκλου ζωής της επιστήμης δεδομένων επικεντρώνεται σε τεχνικές ανάλυσης δεδομένων. | [μάθημα](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Επικοινωνία | [Κύκλος Ζωής](4-Data-Science-Lifecycle/README.md) | Αυτή η φάση του κύκλου ζωής της επιστήμης δεδομένων επικεντρώνεται στην παρουσίαση των πληροφοριών από τα δεδομένα με τέτοιο τρόπο ώστε να διευκολύνει την κατανόηση από τους λήπτες αποφάσεων. | [μάθημα](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Επιστήμη Δεδομένων στο Cloud | [Δεδομένα στο Cloud](5-Data-Science-In-Cloud/README.md) | Αυτή η σειρά μαθημάτων εισάγει την επιστήμη δεδομένων στο cloud και τα οφέλη της. | [μάθημα](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) και [Maud](https://twitter.com/maudstweets) |
-| 18 | Επιστήμη Δεδομένων στο Cloud | [Δεδομένα στο Cloud](5-Data-Science-In-Cloud/README.md) | Εκπαίδευση μοντέλων χρησιμοποιώντας εργαλεία χαμηλού κώδικα. |[μάθημα](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) και [Maud](https://twitter.com/maudstweets) |
-| 19 | Επιστήμη Δεδομένων στο Cloud | [Δεδομένα στο Cloud](5-Data-Science-In-Cloud/README.md) | Ανάπτυξη μοντέλων με το Azure Machine Learning Studio. | [μάθημα](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) και [Maud](https://twitter.com/maudstweets) |
+| 12 | Οπτικοποίηση Συσχετίσεων | [Οπτικοποίηση Δεδομένων](3-Data-Visualization/README.md) | Οπτικοποίηση συνδέσεων και συσχετίσεων μεταξύ συνόλων δεδομένων και των μεταβλητών τους. | [μάθημα](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Σημαντικές Οπτικοποιήσεις | [Οπτικοποίηση Δεδομένων](3-Data-Visualization/README.md) | Τεχνικές και καθοδήγηση για να κάνετε τις οπτικοποιήσεις σας πολύτιμες για αποτελεσματική επίλυση προβλημάτων και εξαγωγή γνώσεων. | [μάθημα](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Εισαγωγή στον κύκλο ζωής της Επιστήμης Δεδομένων | [Κύκλος Ζωής](4-Data-Science-Lifecycle/README.md) | Εισαγωγή στον κύκλο ζωής της επιστήμης δεδομένων και το πρώτο βήμα της απόκτησης και εξαγωγής δεδομένων. | [μάθημα](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Ανάλυση | [Κύκλος Ζωής](4-Data-Science-Lifecycle/README.md) | Αυτή η φάση του κύκλου ζωής της επιστήμης δεδομένων εστιάζει σε τεχνικές ανάλυσης δεδομένων. | [μάθημα](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Επικοινωνία | [Κύκλος Ζωής](4-Data-Science-Lifecycle/README.md) | Αυτή η φάση του κύκλου ζωής της επιστήμης δεδομένων εστιάζει στην παρουσίαση των ευρημάτων από τα δεδομένα με τρόπο που διευκολύνει τους λήπτες αποφάσεων να κατανοήσουν. | [μάθημα](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Επιστήμη Δεδομένων στο Cloud | [Cloud Δεδομένα](5-Data-Science-In-Cloud/README.md) | Αυτή η σειρά μαθημάτων εισάγει την επιστήμη δεδομένων στο cloud και τα οφέλη της. | [μάθημα](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) και [Maud](https://twitter.com/maudstweets) |
+| 18 | Επιστήμη Δεδομένων στο Cloud | [Cloud Δεδομένα](5-Data-Science-In-Cloud/README.md) | Εκπαίδευση μοντέλων χρησιμοποιώντας εργαλεία Low Code. |[μάθημα](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) και [Maud](https://twitter.com/maudstweets) |
+| 19 | Επιστήμη Δεδομένων στο Cloud | [Cloud Δεδομένα](5-Data-Science-In-Cloud/README.md) | Ανάπτυξη μοντέλων με το Azure Machine Learning Studio. | [μάθημα](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) και [Maud](https://twitter.com/maudstweets) |
| 20 | Επιστήμη Δεδομένων στην Πράξη | [Στην Πράξη](6-Data-Science-In-Wild/README.md) | Έργα επιστήμης δεδομένων στον πραγματικό κόσμο. | [μάθημα](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Ακολουθήστε αυτά τα βήματα για να ανοίξετε αυτό το δείγμα σε Codespace:
-1. Κάντε κλικ στο μενού Code και επιλέξτε την επιλογή Open with Codespaces.
-2. Επιλέξτε + New codespace στο κάτω μέρος του πλαισίου.
-Για περισσότερες πληροφορίες, δείτε την [τεκμηρίωση του GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+Ακολουθήστε αυτά τα βήματα για να ανοίξετε αυτό το παράδειγμα σε ένα Codespace:
+1. Κάντε κλικ στο αναπτυσσόμενο μενού Κώδικα και επιλέξτε την επιλογή Άνοιγμα με Codespaces.
+2. Επιλέξτε + Νέο codespace στο κάτω μέρος του παραθύρου.
+Για περισσότερες πληροφορίες, δείτε την [τεκμηρίωση GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Ακολουθήστε αυτά τα βήματα για να ανοίξετε αυτό το αποθετήριο σε κοντέινερ χρησιμοποιώντας τον τοπικό σας υπολογιστή και το VSCode μέσω της επέκτασης VS Code Remote - Containers:
+Ακολουθήστε αυτά τα βήματα για να ανοίξετε αυτό το αποθετήριο σε container χρησιμοποιώντας τον τοπικό σας υπολογιστή και το VSCode με την επέκταση VS Code Remote - Containers:
-1. Αν αυτή είναι η πρώτη φορά που χρησιμοποιείτε κοντέινερ ανάπτυξης, βεβαιωθείτε ότι το σύστημά σας πληροί τις προϋποθέσεις (δηλαδή έχει εγκατεστημένο το Docker) σύμφωνα με [την τεκμηρίωση έναρξης](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Αν είναι η πρώτη φορά που χρησιμοποιείτε ένα development container, βεβαιωθείτε ότι το σύστημά σας πληροί τις προϋποθέσεις (π.χ. έχει εγκατασταθεί το Docker) στην [τεκμηρίωση εκκίνησης](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Για να χρησιμοποιήσετε αυτό το αποθετήριο, μπορείτε είτε να ανοίξετε το αποθετήριο σε απομονωμένο τόμο Docker:
+Για να χρησιμοποιήσετε αυτό το αποθετήριο, μπορείτε είτε να το ανοίξετε μέσα σε έναν απομονωμένο τόμο Docker:
-**Σημείωση**: Υπό το καπό, αυτό θα χρησιμοποιήσει την εντολή Remote-Containers: **Clone Repository in Container Volume...** για να κλωνοποιήσει τον πηγαίο κώδικα σε τόμο Docker αντί για το τοπικό σύστημα αρχείων. Οι [Volumes](https://docs.docker.com/storage/volumes/) είναι η προτιμώμενη μέθοδος για τη διατήρηση δεδομένων κοντέινερ.
+**Σημείωση**: Υπό το καπό, αυτό θα χρησιμοποιήσει την εντολή Remote-Containers: **Clone Repository in Container Volume...** για να κλωνοποιήσει τον κώδικα πηγής σε έναν τόμο Docker αντί για το τοπικό σύστημα αρχείων. Οι [τόμοι](https://docs.docker.com/storage/volumes/) είναι ο προτιμώμενος μηχανισμός για τη διατήρηση δεδομένων container.
Ή να ανοίξετε μια τοπικά κλωνοποιημένη ή κατεβασμένη έκδοση του αποθετηρίου:
-- Κλωνοποιήστε αυτό το αποθετήριο στο τοπικό σύστημά σας.
+- Κλωνοποιήστε αυτό το αποθετήριο στο τοπικό σας σύστημα αρχείων.
- Πατήστε F1 και επιλέξτε την εντολή **Remote-Containers: Open Folder in Container...**.
-- Επιλέξτε το κλωνοποιημένο αντίγραφο αυτού του φακέλου, περιμένετε να ξεκινήσει το κοντέινερ και δοκιμάστε.
+- Επιλέξτε το κλωνοποιημένο αντίγραφο αυτού του φακέλου, περιμένετε να ξεκινήσει το container και δοκιμάστε.
## Πρόσβαση εκτός σύνδεσης
-Μπορείτε να εκτελέσετε αυτή την τεκμηρίωση εκτός σύνδεσης χρησιμοποιώντας το [Docsify](https://docsify.js.org/#/). Κάντε fork αυτό το αποθετήριο, [εγκαταστήστε το Docsify](https://docsify.js.org/#/quickstart) στον τοπικό σας υπολογιστή, και στη ρίζα αυτού του φακέλου πληκτρολογήστε `docsify serve`. Η ιστοσελίδα θα σερβιριστεί στη θύρα 3000 στο localhost σας: `localhost:3000`.
+Μπορείτε να τρέξετε αυτή την τεκμηρίωση εκτός σύνδεσης χρησιμοποιώντας το [Docsify](https://docsify.js.org/#/). Κάντε fork αυτό το αποθετήριο, [εγκαταστήστε το Docsify](https://docsify.js.org/#/quickstart) στον τοπικό σας υπολογιστή, στη συνέχεια μέσα στο ριζικό φάκελο αυτού του αποθετηρίου, πληκτρολογήστε `docsify serve`. Η ιστοσελίδα θα σερβιριστεί στην πόρτα 3000 στον localhost σας: `localhost:3000`.
-> Σημείωση, τα σημειωματάρια δεν θα αποδίδονται μέσω Docsify, οπότε όταν χρειάζεται να τρέξετε ένα σημειωματάριο, κάντε το ξεχωριστά στο VS Code με έναν Python πυρήνα.
+> Σημείωση, τα notebooks δεν θα αποδίδονται μέσω Docsify, οπότε όταν χρειαστεί να τρέξετε ένα notebook, κάντε το ξεχωριστά στο VS Code με kernel Python.
## Άλλες Διδακτικές Ενότητες
-Η ομάδα μας παράγει και άλλες διδακτικές ενότητες! Ρίξτε μια ματιά:
+Η ομάδα μας παράγει και άλλες διδακτικές ενότητες! Δείτε:
### LangChain
@@ -209,54 +200,54 @@ CO_OP_TRANSLATOR_METADATA:
---
-### Azure / Edge / MCP / Πράκτορες
+### Azure / Edge / MCP / Agents
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### Σειρά Δημιουργικής Τεχνητής Νοημοσύνης
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
### Βασική Μάθηση
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### Σειρά Copilot
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Λήψη Βοήθειας
-**Αντιμετωπίζετε προβλήματα;** Δείτε τον [Οδηγό Επίλυσης Προβλημάτων](TROUBLESHOOTING.md) για λύσεις σε κοινά ζητήματα.
+**Αντιμετωπίζετε προβλήματα;** Ελέγξτε τον [Οδηγό Επίλυσης Προβλημάτων](TROUBLESHOOTING.md) για λύσεις σε συνηθισμένα ζητήματα.
-Εάν κολλήσετε ή έχετε ερωτήσεις σχετικά με τη δημιουργία εφαρμογών AI, συμμετέχετε με άλλους εκπαιδευόμενους και έμπειρους προγραμματιστές σε συζητήσεις για το MCP. Είναι μια υποστηρικτική κοινότητα όπου οι ερωτήσεις είναι ευπρόσδεκτες και η γνώση μοιράζεται ελεύθερα.
+Εάν κολλήσετε ή έχετε οποιεσδήποτε ερωτήσεις σχετικά με την κατασκευή εφαρμογών τεχνητής νοημοσύνης, συμμετέχετε με άλλους μαθητές και έμπειρους προγραμματιστές σε συζητήσεις για το MCP. Είναι μια υποστηρικτική κοινότητα όπου οι ερωτήσεις είναι ευπρόσδεκτες και η γνώση μοιράζεται ελεύθερα.
[](https://discord.gg/nTYy5BXMWG)
-Εάν έχετε σχόλια για προϊόντα ή σφάλματα κατά την ανάπτυξη επισκεφθείτε:
+Εάν έχετε σχόλια προϊόντος ή σφάλματα κατά την ανάπτυξη, επισκεφθείτε:
[](https://aka.ms/foundry/forum)
---
-**Αποποίηση ευθύνης**:
-Αυτό το έγγραφο έχει μεταφραστεί χρησιμοποιώντας την υπηρεσία αυτόματης μετάφρασης με τεχνητή νοημοσύνη [Co-op Translator](https://github.com/Azure/co-op-translator). Παρόλο που καταβάλλουμε προσπάθειες για ακρίβεια, παρακαλούμε να λάβετε υπόψη ότι οι αυτόματες μεταφράσεις ενδέχεται να περιέχουν λάθη ή ανακρίβειες. Το πρωτότυπο έγγραφο στη μητρική του γλώσσα θα πρέπει να θεωρείται η αυθεντική πηγή. Για κρίσιμες πληροφορίες συνιστάται η επαγγελματική ανθρώπινη μετάφραση. Δεν φέρουμε ευθύνη για τυχόν παρεξηγήσεις ή λανθασμένες ερμηνείες που προκύπτουν από τη χρήση αυτής της μετάφρασης.
+**Αποποίηση ευθυνών**:
+Αυτό το έγγραφο έχει μεταφραστεί χρησιμοποιώντας την υπηρεσία μετάφρασης AI [Co-op Translator](https://github.com/Azure/co-op-translator). Παρόλο που προσπαθούμε για ακρίβεια, παρακαλούμε να σημειώσετε ότι οι αυτοματοποιημένες μεταφράσεις ενδέχεται να περιέχουν λάθη ή ανακρίβειες. Το πρωτότυπο έγγραφο στη γλώσσα του θεωρείται η αυθεντική πηγή. Για κρίσιμες πληροφορίες συνιστάται επαγγελματική ανθρώπινη μετάφραση. Δεν φέρουμε ευθύνη για οποιεσδήποτε παρεξηγήσεις ή λανθασμένες ερμηνείες που προκύπτουν από τη χρήση αυτής της μετάφρασης.
\ No newline at end of file
diff --git a/translations/el/SECURITY.md b/translations/el/SECURITY.md
index 5cd8ea37..fe74d2fc 100644
--- a/translations/el/SECURITY.md
+++ b/translations/el/SECURITY.md
@@ -1,12 +1,3 @@
-
## Ασφάλεια
Η Microsoft λαμβάνει σοβαρά υπόψη την ασφάλεια των προϊόντων και υπηρεσιών λογισμικού της, συμπεριλαμβανομένων όλων των αποθετηρίων πηγαίου κώδικα που διαχειρίζεται μέσω των οργανισμών της στο GitHub, όπως [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) και [τους οργανισμούς μας στο GitHub](https://opensource.microsoft.com/).
diff --git a/translations/el/SUPPORT.md b/translations/el/SUPPORT.md
index 79cead7b..e1600dfa 100644
--- a/translations/el/SUPPORT.md
+++ b/translations/el/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Υποστήριξη
## Πώς να αναφέρετε προβλήματα και να λάβετε βοήθεια
diff --git a/translations/el/TROUBLESHOOTING.md b/translations/el/TROUBLESHOOTING.md
index bdc1ba63..9ba1f19f 100644
--- a/translations/el/TROUBLESHOOTING.md
+++ b/translations/el/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Οδηγός Αντιμετώπισης Προβλημάτων
Αυτός ο οδηγός παρέχει λύσεις σε κοινά προβλήματα που μπορεί να αντιμετωπίσετε κατά την εργασία σας με το πρόγραμμα σπουδών "Data Science for Beginners".
diff --git a/translations/el/USAGE.md b/translations/el/USAGE.md
index d59ae0f0..43033572 100644
--- a/translations/el/USAGE.md
+++ b/translations/el/USAGE.md
@@ -1,12 +1,3 @@
-
# Οδηγός Χρήσης
Αυτός ο οδηγός παρέχει παραδείγματα και κοινές ροές εργασίας για τη χρήση του προγράμματος σπουδών "Data Science for Beginners".
diff --git a/translations/el/docs/_sidebar.md b/translations/el/docs/_sidebar.md
index 3f5824b8..1dcd529c 100644
--- a/translations/el/docs/_sidebar.md
+++ b/translations/el/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Εισαγωγή
- [Ορισμός της Επιστήμης Δεδομένων](../1-Introduction/01-defining-data-science/README.md)
- [Ηθική στην Επιστήμη Δεδομένων](../1-Introduction/02-ethics/README.md)
diff --git a/translations/el/examples/README.md b/translations/el/examples/README.md
index e7901225..09dc31dc 100644
--- a/translations/el/examples/README.md
+++ b/translations/el/examples/README.md
@@ -1,12 +1,3 @@
-
# Παραδείγματα Επιστήμης Δεδομένων για Αρχάριους
Καλώς ήρθατε στον κατάλογο παραδειγμάτων! Αυτή η συλλογή από απλά, καλά σχολιασμένα παραδείγματα έχει σχεδιαστεί για να σας βοηθήσει να ξεκινήσετε με την επιστήμη δεδομένων, ακόμα κι αν είστε εντελώς αρχάριοι.
diff --git a/translations/el/for-teachers.md b/translations/el/for-teachers.md
index 89846dd9..6cd0901b 100644
--- a/translations/el/for-teachers.md
+++ b/translations/el/for-teachers.md
@@ -1,12 +1,3 @@
-
## Για Εκπαιδευτικούς
Θα θέλατε να χρησιμοποιήσετε αυτό το πρόγραμμα σπουδών στην τάξη σας; Μη διστάσετε!
diff --git a/translations/el/quiz-app/README.md b/translations/el/quiz-app/README.md
index 3e397032..fcf10492 100644
--- a/translations/el/quiz-app/README.md
+++ b/translations/el/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Κουίζ
Αυτά τα κουίζ είναι τα κουίζ πριν και μετά τις διαλέξεις για το πρόγραμμα σπουδών επιστήμης δεδομένων στο https://aka.ms/datascience-beginners
diff --git a/translations/el/sketchnotes/README.md b/translations/el/sketchnotes/README.md
index 3ccfcff2..9e45c792 100644
--- a/translations/el/sketchnotes/README.md
+++ b/translations/el/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Βρείτε όλα τα sketchnotes εδώ!
## Πιστώσεις
diff --git a/translations/en/.co-op-translator.json b/translations/en/.co-op-translator.json
new file mode 100644
index 00000000..38f6b82b
--- /dev/null
+++ b/translations/en/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:32:23+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "en"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-31T11:09:48+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "en"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-31T11:09:55+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "en"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T15:56:16+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "en"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-31T11:11:32+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "en"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-06T10:13:19+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "en"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-31T11:10:19+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "en"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T12:44:20+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "en"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-31T11:09:12+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "en"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-31T11:08:01+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "en"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T10:19:33+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "en"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:51:45+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "en"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-06T10:05:27+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "en"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-31T10:57:41+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "en"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:19:06+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "en"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-31T10:58:32+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "en"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-06T10:06:52+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "en"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-31T10:59:43+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "en"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-31T10:57:11+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-06T10:09:46+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-31T11:06:16+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-06T10:10:54+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-31T11:07:55+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-06T10:09:04+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-31T11:05:29+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:25:07+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-31T11:07:22+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-06T10:10:07+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-31T11:06:43+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-31T11:06:48+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-31T11:06:52+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-31T11:03:10+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-31T11:03:42+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-31T11:04:13+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-31T11:04:33+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-31T11:02:18+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-31T11:03:47+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-31T11:04:38+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "en"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-31T11:02:05+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "en"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:10:35+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "en"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-31T11:01:12+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "en"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:09:59+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "en"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-31T11:00:18+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "en"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:10:55+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "en"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-31T11:02:00+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "en"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-31T10:59:58+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "en"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-06T10:04:41+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "en"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-31T10:56:22+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "en"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-06T10:03:50+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "en"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-31T10:55:35+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "en"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-06T10:04:58+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "en"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-31T10:57:04+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "en"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-31T10:54:38+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "en"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:10:41+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "en"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-31T11:12:29+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "en"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-31T11:11:50+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "en"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T10:57:35+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "en"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-31T10:54:34+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "en"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:15:56+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "en"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:13:27+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "en"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T00:58:59+00:00",
+ "source_file": "README.md",
+ "language_code": "en"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-31T10:54:14+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "en"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-31T10:54:04+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "en"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:28:12+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "en"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:51:22+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "en"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-31T10:59:49+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "en"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:54:59+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "en"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:51:09+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "en"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-31T11:11:39+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "en"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-31T11:12:38+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "en"
+ }
+}
\ No newline at end of file
diff --git a/translations/en/1-Introduction/01-defining-data-science/README.md b/translations/en/1-Introduction/01-defining-data-science/README.md
index 675d4d0b..f9bd0fd5 100644
--- a/translations/en/1-Introduction/01-defining-data-science/README.md
+++ b/translations/en/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Defining Data Science
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/en/1-Introduction/01-defining-data-science/assignment.md b/translations/en/1-Introduction/01-defining-data-science/assignment.md
index 56a870da..3760cbc9 100644
--- a/translations/en/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/en/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Assignment: Data Science Scenarios
In this first assignment, we ask you to think about some real-life processes or problems in different domains, and how you can improve them using the Data Science process. Consider the following:
diff --git a/translations/en/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/en/1-Introduction/01-defining-data-science/solution/assignment.md
index b7ce465f..fa7e77c8 100644
--- a/translations/en/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/en/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Assignment: Data Science Scenarios
In this first assignment, we ask you to think about some real-life processes or problems in different domains, and how you can improve them using the Data Science process. Consider the following:
diff --git a/translations/en/1-Introduction/02-ethics/README.md b/translations/en/1-Introduction/02-ethics/README.md
index bbfbb3f9..1c1d4230 100644
--- a/translations/en/1-Introduction/02-ethics/README.md
+++ b/translations/en/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Introduction to Data Ethics
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/en/1-Introduction/02-ethics/assignment.md b/translations/en/1-Introduction/02-ethics/assignment.md
index 11e5d408..e70062da 100644
--- a/translations/en/1-Introduction/02-ethics/assignment.md
+++ b/translations/en/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Write A Data Ethics Case Study
## Instructions
diff --git a/translations/en/1-Introduction/03-defining-data/README.md b/translations/en/1-Introduction/03-defining-data/README.md
index e616655d..e0cbaf3c 100644
--- a/translations/en/1-Introduction/03-defining-data/README.md
+++ b/translations/en/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Defining Data
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/en/1-Introduction/03-defining-data/assignment.md b/translations/en/1-Introduction/03-defining-data/assignment.md
index 10c0e4ba..8161c99d 100644
--- a/translations/en/1-Introduction/03-defining-data/assignment.md
+++ b/translations/en/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Classifying Datasets
## Instructions
diff --git a/translations/en/1-Introduction/04-stats-and-probability/README.md b/translations/en/1-Introduction/04-stats-and-probability/README.md
index 73d4801a..02fce28c 100644
--- a/translations/en/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/en/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# A Brief Introduction to Statistics and Probability
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ To better understand the distribution of data, we use **quartiles**:
The relationship between the median and quartiles can be visualized using a **box plot**:
-
+
We also calculate the **interquartile range** (IQR=Q3-Q1) and identify **outliers**—values outside the range [Q1-1.5*IQR, Q3+1.5*IQR].
diff --git a/translations/en/1-Introduction/04-stats-and-probability/assignment.md b/translations/en/1-Introduction/04-stats-and-probability/assignment.md
index 9819213e..d1150e04 100644
--- a/translations/en/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/en/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Small Diabetes Study
In this assignment, we will work with a small dataset of diabetes patients taken from [here](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/en/1-Introduction/README.md b/translations/en/1-Introduction/README.md
index 00d42ab5..f25151e7 100644
--- a/translations/en/1-Introduction/README.md
+++ b/translations/en/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduction to Data Science

diff --git a/translations/en/2-Working-With-Data/05-relational-databases/README.md b/translations/en/2-Working-With-Data/05-relational-databases/README.md
index 2750761a..a2e03888 100644
--- a/translations/en/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/en/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Working with Data: Relational Databases
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/en/2-Working-With-Data/05-relational-databases/assignment.md b/translations/en/2-Working-With-Data/05-relational-databases/assignment.md
index 1521efe4..362fdf49 100644
--- a/translations/en/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/en/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Displaying airport data
You have been provided a [database](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) built on [SQLite](https://sqlite.org/index.html) which contains information about airports. The schema is displayed below. You will use the [SQLite extension](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) in [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) to display information about different cities' airports.
diff --git a/translations/en/2-Working-With-Data/06-non-relational/README.md b/translations/en/2-Working-With-Data/06-non-relational/README.md
index db2ae5bc..1997326b 100644
--- a/translations/en/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/en/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Working with Data: Non-Relational Data
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/en/2-Working-With-Data/06-non-relational/assignment.md b/translations/en/2-Working-With-Data/06-non-relational/assignment.md
index c8735c9a..7bfa92f0 100644
--- a/translations/en/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/en/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Soda Profits
## Instructions
diff --git a/translations/en/2-Working-With-Data/07-python/README.md b/translations/en/2-Working-With-Data/07-python/README.md
index 53ca825a..66c7e303 100644
--- a/translations/en/2-Working-With-Data/07-python/README.md
+++ b/translations/en/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Working with Data: Python and the Pandas Library
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/en/2-Working-With-Data/07-python/assignment.md b/translations/en/2-Working-With-Data/07-python/assignment.md
index 009150ef..d20afa00 100644
--- a/translations/en/2-Working-With-Data/07-python/assignment.md
+++ b/translations/en/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Assignment for Data Processing in Python
In this assignment, we will ask you to expand upon the code we started developing in our challenges. The assignment consists of two parts:
diff --git a/translations/en/2-Working-With-Data/08-data-preparation/README.md b/translations/en/2-Working-With-Data/08-data-preparation/README.md
index a7a0f730..6d5f54f1 100644
--- a/translations/en/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/en/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Working with Data: Data Preparation
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/en/2-Working-With-Data/08-data-preparation/assignment.md b/translations/en/2-Working-With-Data/08-data-preparation/assignment.md
index c7ec9dd8..8c24dc46 100644
--- a/translations/en/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/en/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Evaluating Data from a Form
A client has been testing a [small form](../../../../2-Working-With-Data/08-data-preparation/index.html) to collect some basic information about their customer base. They have shared their findings with you to validate the data they have gathered. You can open the `index.html` page in your browser to review the form.
diff --git a/translations/en/2-Working-With-Data/README.md b/translations/en/2-Working-With-Data/README.md
index 08ce9ae1..e2f0ae19 100644
--- a/translations/en/2-Working-With-Data/README.md
+++ b/translations/en/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Working with Data

diff --git a/translations/en/3-Data-Visualization/09-visualization-quantities/README.md b/translations/en/3-Data-Visualization/09-visualization-quantities/README.md
index abef206c..3d98bdae 100644
--- a/translations/en/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/en/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Quantities
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/en/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/en/3-Data-Visualization/09-visualization-quantities/assignment.md
index 93d7d090..f8c57dae 100644
--- a/translations/en/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/en/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Lines, Scatters and Bars
## Instructions
diff --git a/translations/en/3-Data-Visualization/10-visualization-distributions/README.md b/translations/en/3-Data-Visualization/10-visualization-distributions/README.md
index aa84f560..e938beb8 100644
--- a/translations/en/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/en/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Distributions
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/en/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/en/3-Data-Visualization/10-visualization-distributions/assignment.md
index 4712cf7d..3fd7b8e1 100644
--- a/translations/en/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/en/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Apply your skills
## Instructions
diff --git a/translations/en/3-Data-Visualization/11-visualization-proportions/README.md b/translations/en/3-Data-Visualization/11-visualization-proportions/README.md
index 17cb8357..21953eea 100644
--- a/translations/en/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/en/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Proportions
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/en/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/en/3-Data-Visualization/11-visualization-proportions/assignment.md
index ad391564..64c3d40e 100644
--- a/translations/en/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/en/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Try it in Excel
## Instructions
diff --git a/translations/en/3-Data-Visualization/12-visualization-relationships/README.md b/translations/en/3-Data-Visualization/12-visualization-relationships/README.md
index 6e0ad823..c3781f3a 100644
--- a/translations/en/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/en/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Relationships: All About Honey 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/en/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/en/3-Data-Visualization/12-visualization-relationships/assignment.md
index 6cdef82c..d4035a55 100644
--- a/translations/en/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/en/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Explore the Beehive
## Instructions
diff --git a/translations/en/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/en/3-Data-Visualization/13-meaningful-visualizations/README.md
index 6d87b81b..f1e08581 100644
--- a/translations/en/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/en/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Making Meaningful Visualizations
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/en/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/en/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index f2196e3c..bba0d928 100644
--- a/translations/en/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/en/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Build your own custom vis
## Instructions
diff --git a/translations/en/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/en/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 711b93fe..3738003c 100644
--- a/translations/en/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/en/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Dangerous Liaisons data visualization project
To begin, make sure NPM and Node are installed and running on your computer. Install the dependencies (npm install) and then launch the project locally (npm run serve):
diff --git a/translations/en/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/en/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 2bc63761..3738003c 100644
--- a/translations/en/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/en/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Dangerous Liaisons data visualization project
To begin, make sure NPM and Node are installed and running on your computer. Install the dependencies (npm install) and then launch the project locally (npm run serve):
diff --git a/translations/en/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/en/3-Data-Visualization/R/09-visualization-quantities/README.md
index 942e307b..9174f454 100644
--- a/translations/en/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/en/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Quantities
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/en/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/en/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index b8a7a354..5a16fb36 100644
--- a/translations/en/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/en/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Lines, Scatters and Bars
## Instructions
diff --git a/translations/en/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/en/3-Data-Visualization/R/10-visualization-distributions/README.md
index c000af32..486b9ebd 100644
--- a/translations/en/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/en/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Distributions
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/en/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/en/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 37be6bdb..c210b5ca 100644
--- a/translations/en/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/en/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Apply your skills
## Instructions
diff --git a/translations/en/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/en/3-Data-Visualization/R/11-visualization-proportions/README.md
index ad242727..26284c21 100644
--- a/translations/en/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/en/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Proportions
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/en/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/en/3-Data-Visualization/R/12-visualization-relationships/README.md
index d0a509b3..09acb037 100644
--- a/translations/en/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/en/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Relationships: All About Honey 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/en/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/en/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index f1a19bf6..ca1064fe 100644
--- a/translations/en/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/en/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Creating Meaningful Visualizations
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/en/3-Data-Visualization/README.md b/translations/en/3-Data-Visualization/README.md
index de7604c8..2fb9614b 100644
--- a/translations/en/3-Data-Visualization/README.md
+++ b/translations/en/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Visualizations

diff --git a/translations/en/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/en/4-Data-Science-Lifecycle/14-Introduction/README.md
index 046185fa..24ac926e 100644
--- a/translations/en/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/en/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduction to the Data Science Lifecycle
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/en/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/en/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 0f87469f..809fbd43 100644
--- a/translations/en/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/en/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Assessing a Dataset
A client has reached out to your team for assistance in analyzing the seasonal spending habits of taxi customers in New York City.
diff --git a/translations/en/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/en/4-Data-Science-Lifecycle/15-analyzing/README.md
index 2db19888..3d5c1139 100644
--- a/translations/en/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/en/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# The Data Science Lifecycle: Analyzing
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/en/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/en/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 740490d5..1860146a 100644
--- a/translations/en/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/en/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Exploring for answers
This is a continuation of the previous lesson's [assignment](../14-Introduction/assignment.md), where we briefly examined the dataset. Now, we will dive deeper into the data.
diff --git a/translations/en/4-Data-Science-Lifecycle/16-communication/README.md b/translations/en/4-Data-Science-Lifecycle/16-communication/README.md
index dba49183..5d50392f 100644
--- a/translations/en/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/en/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# The Data Science Lifecycle: Communication
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/en/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/en/4-Data-Science-Lifecycle/16-communication/assignment.md
index 369b68ee..bd546115 100644
--- a/translations/en/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/en/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Tell a story
## Instructions
diff --git a/translations/en/4-Data-Science-Lifecycle/README.md b/translations/en/4-Data-Science-Lifecycle/README.md
index 90eb5165..a194e5f8 100644
--- a/translations/en/4-Data-Science-Lifecycle/README.md
+++ b/translations/en/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# The Data Science Lifecycle

diff --git a/translations/en/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/en/5-Data-Science-In-Cloud/17-Introduction/README.md
index 87749274..359bac4f 100644
--- a/translations/en/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/en/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduction to Data Science in the Cloud
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/en/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/en/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 635c5498..eba20cec 100644
--- a/translations/en/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/en/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Market Research
## Instructions
diff --git a/translations/en/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/en/5-Data-Science-In-Cloud/18-Low-Code/README.md
index dd09fc30..88891901 100644
--- a/translations/en/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/en/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Data Science in the Cloud: The "Low code/No code" way
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/en/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/en/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 0236390e..c90db30b 100644
--- a/translations/en/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/en/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Low code/No code Data Science project on Azure ML
## Instructions
diff --git a/translations/en/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/en/5-Data-Science-In-Cloud/19-Azure/README.md
index bb589f43..40aa2fb5 100644
--- a/translations/en/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/en/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Data Science in the Cloud: The "Azure ML SDK" way
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/en/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/en/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 85e151a8..4d5a0c70 100644
--- a/translations/en/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/en/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Data Science project using Azure ML SDK
## Instructions
diff --git a/translations/en/5-Data-Science-In-Cloud/README.md b/translations/en/5-Data-Science-In-Cloud/README.md
index 0db59ba0..628013f8 100644
--- a/translations/en/5-Data-Science-In-Cloud/README.md
+++ b/translations/en/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Data Science in the Cloud

diff --git a/translations/en/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/en/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 4f5d9fef..2feee804 100644
--- a/translations/en/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/en/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Data Science in the Real World
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/en/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/en/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 5c2bd6ab..89fc48e2 100644
--- a/translations/en/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/en/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Explore a Planetary Computer Dataset
## Instructions
diff --git a/translations/en/6-Data-Science-In-Wild/README.md b/translations/en/6-Data-Science-In-Wild/README.md
index 534555bb..032f9f8d 100644
--- a/translations/en/6-Data-Science-In-Wild/README.md
+++ b/translations/en/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Data Science in the Wild
Practical applications of data science across various industries.
diff --git a/translations/en/AGENTS.md b/translations/en/AGENTS.md
index d605a579..5e497c95 100644
--- a/translations/en/AGENTS.md
+++ b/translations/en/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Project Overview
diff --git a/translations/en/CODE_OF_CONDUCT.md b/translations/en/CODE_OF_CONDUCT.md
index 54d00c58..45dfbe83 100644
--- a/translations/en/CODE_OF_CONDUCT.md
+++ b/translations/en/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft Open Source Code of Conduct
This project follows the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/en/CONTRIBUTING.md b/translations/en/CONTRIBUTING.md
index a632793f..8d707e93 100644
--- a/translations/en/CONTRIBUTING.md
+++ b/translations/en/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Contributing to Data Science for Beginners
Thank you for your interest in contributing to the Data Science for Beginners curriculum! We welcome contributions from the community.
diff --git a/translations/en/INSTALLATION.md b/translations/en/INSTALLATION.md
index 7b734d1a..2c5ac5a1 100644
--- a/translations/en/INSTALLATION.md
+++ b/translations/en/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Installation Guide
This guide will help you set up your environment to work with the Data Science for Beginners curriculum.
diff --git a/translations/en/README.md b/translations/en/README.md
index 437b3146..e4d3b405 100644
--- a/translations/en/README.md
+++ b/translations/en/README.md
@@ -1,12 +1,3 @@
-
# Data Science for Beginners - A Curriculum
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -33,7 +24,7 @@ Azure Cloud Advocates at Microsoft are pleased to offer a 10-week, 20-lesson cur
**🙏 Special thanks 🙏 to our [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) authors, reviewers and content contributors,** notably Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
| Data Science For Beginners - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
@@ -42,7 +33,7 @@ Azure Cloud Advocates at Microsoft are pleased to offer a 10-week, 20-lesson cur
#### Supported via GitHub Action (Automated & Always Up-to-Date)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
> **Prefer to Clone Locally?**
@@ -62,13 +53,13 @@ Azure Cloud Advocates at Microsoft are pleased to offer a 10-week, 20-lesson cur
We have a Discord learn with AI series ongoing, learn more and join us at [Learn with AI Series](https://aka.ms/learnwithai/discord) from 18 - 30 September, 2025. You will get tips and tricks of using GitHub Copilot for Data Science.
-
+
# Are you a student?
Get started with the following resources:
-- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) In this page, you will find beginner resources, Student packs and even ways to get a free cert voucher. This is one page you want to bookmark and check from time to time as we switch out content at least monthly.
+- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) On this page, you will find beginner resources, Student packs and even ways to get a free cert voucher. This is one page you want to bookmark and check from time to time as we switch out content at least monthly.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Join a global community of student ambassadors, this could be your way into Microsoft.
# Getting Started
@@ -94,8 +85,8 @@ Get started with the following resources:
## 👩🏫 For Teachers
> **Teachers**: we have [included some suggestions](for-teachers.md) on how to use this curriculum. We'd love your feedback [in our discussion forum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
## Meet the Team
+
[](https://youtu.be/8mzavjQSMM4 "Promo video")
**Gif by** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
@@ -142,7 +133,7 @@ Each example includes detailed comments explaining every step, making it perfect
## Lessons
-||
+||
|:---:|
| Data Science For Beginners: Roadmap - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
diff --git a/translations/en/SECURITY.md b/translations/en/SECURITY.md
index a0cfa614..4edb9d8b 100644
--- a/translations/en/SECURITY.md
+++ b/translations/en/SECURITY.md
@@ -1,12 +1,3 @@
-
## Security
Microsoft prioritizes the security of its software products and services, including all source code repositories managed through our GitHub organizations, such as [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), and [our GitHub organizations](https://opensource.microsoft.com/).
diff --git a/translations/en/SUPPORT.md b/translations/en/SUPPORT.md
index 221af0fe..ca74206b 100644
--- a/translations/en/SUPPORT.md
+++ b/translations/en/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Support
## How to report issues and seek assistance
diff --git a/translations/en/TROUBLESHOOTING.md b/translations/en/TROUBLESHOOTING.md
index 550d8e9e..aa5f5ccd 100644
--- a/translations/en/TROUBLESHOOTING.md
+++ b/translations/en/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Troubleshooting Guide
This guide provides solutions to common issues you might encounter while working with the Data Science for Beginners curriculum.
diff --git a/translations/en/USAGE.md b/translations/en/USAGE.md
index 3b62a0e2..c2b4ee81 100644
--- a/translations/en/USAGE.md
+++ b/translations/en/USAGE.md
@@ -1,12 +1,3 @@
-
# Usage Guide
This guide provides examples and common workflows for using the Data Science for Beginners curriculum.
diff --git a/translations/en/docs/_sidebar.md b/translations/en/docs/_sidebar.md
index d4b5d12f..e541f374 100644
--- a/translations/en/docs/_sidebar.md
+++ b/translations/en/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Introduction
- [Defining Data Science](../1-Introduction/01-defining-data-science/README.md)
- [Ethics of Data Science](../1-Introduction/02-ethics/README.md)
diff --git a/translations/en/examples/README.md b/translations/en/examples/README.md
index f77d5ffe..02169ae1 100644
--- a/translations/en/examples/README.md
+++ b/translations/en/examples/README.md
@@ -1,12 +1,3 @@
-
# Beginner-Friendly Data Science Examples
Welcome to the examples directory! This collection of simple, well-commented examples is designed to help you get started with data science, even if you're a complete beginner.
diff --git a/translations/en/for-teachers.md b/translations/en/for-teachers.md
index 97553872..092542d3 100644
--- a/translations/en/for-teachers.md
+++ b/translations/en/for-teachers.md
@@ -1,12 +1,3 @@
-
## For Educators
Would you like to use this curriculum in your classroom? Go ahead!
diff --git a/translations/en/quiz-app/README.md b/translations/en/quiz-app/README.md
index df7b9d76..8422c5ce 100644
--- a/translations/en/quiz-app/README.md
+++ b/translations/en/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Quizzes
These quizzes are the pre- and post-lecture quizzes for the data science curriculum at https://aka.ms/datascience-beginners
diff --git a/translations/en/sketchnotes/README.md b/translations/en/sketchnotes/README.md
index 46b160fb..b70b85b5 100644
--- a/translations/en/sketchnotes/README.md
+++ b/translations/en/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Find all sketchnotes here!
## Credits
diff --git a/translations/es/.co-op-translator.json b/translations/es/.co-op-translator.json
new file mode 100644
index 00000000..2f6c46c3
--- /dev/null
+++ b/translations/es/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:33:46+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "es"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-24T21:30:52+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "es"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-24T21:31:48+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "es"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T15:58:40+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "es"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-24T21:24:57+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "es"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T13:45:32+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "es"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-24T21:35:26+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "es"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T12:48:20+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "es"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-24T21:44:07+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "es"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-24T21:14:57+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "es"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T10:24:12+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "es"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:52:02+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "es"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T13:34:35+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "es"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-24T21:13:19+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "es"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:20:47+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "es"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-24T21:08:59+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "es"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T13:36:54+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "es"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-24T21:02:01+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "es"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-24T20:52:07+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T13:40:23+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-24T23:03:37+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T13:42:13+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-24T22:37:57+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T13:39:57+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-24T23:07:12+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:26:03+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-24T22:41:57+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T13:40:54+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-24T22:33:22+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-24T22:34:29+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-24T22:33:57+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-24T22:49:32+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-24T22:53:38+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-24T22:42:56+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-24T22:45:14+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-24T22:57:47+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-24T22:46:14+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-24T22:54:33+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "es"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-24T22:28:47+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "es"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:14:38+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "es"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-24T22:17:08+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "es"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:13:57+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "es"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-24T22:19:53+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "es"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:15:05+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "es"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-24T22:27:58+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "es"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-24T22:13:44+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "es"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T13:33:31+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "es"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-24T22:04:50+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "es"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T13:31:51+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "es"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-24T22:01:27+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "es"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T13:33:55+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "es"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-24T22:11:23+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "es"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-24T21:52:29+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "es"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:12:00+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "es"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-24T21:51:29+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "es"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-24T21:45:28+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "es"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T10:59:35+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "es"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-24T20:49:32+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "es"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:18:40+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "es"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:13:59+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "es"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:02:11+00:00",
+ "source_file": "README.md",
+ "language_code": "es"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-24T20:50:13+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "es"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-24T20:47:26+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "es"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:28:59+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "es"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:52:04+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "es"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-24T21:14:02+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "es"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:55:31+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "es"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:51:35+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "es"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-24T22:12:16+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "es"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-24T21:44:59+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "es"
+ }
+}
\ No newline at end of file
diff --git a/translations/es/1-Introduction/01-defining-data-science/README.md b/translations/es/1-Introduction/01-defining-data-science/README.md
index b8ace35f..06b6ce0b 100644
--- a/translations/es/1-Introduction/01-defining-data-science/README.md
+++ b/translations/es/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Definiendo Ciencia de Datos
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/es/1-Introduction/01-defining-data-science/assignment.md b/translations/es/1-Introduction/01-defining-data-science/assignment.md
index eba42809..955138f0 100644
--- a/translations/es/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/es/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Asignación: Escenarios de Ciencia de Datos
En esta primera asignación, te pedimos que pienses en algún proceso o problema de la vida real en diferentes dominios de problemas, y cómo podrías mejorarlo utilizando el proceso de Ciencia de Datos. Reflexiona sobre lo siguiente:
diff --git a/translations/es/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/es/1-Introduction/01-defining-data-science/solution/assignment.md
index 5a94b98a..fd177857 100644
--- a/translations/es/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/es/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Asignación: Escenarios de Ciencia de Datos
En esta primera asignación, te pedimos que pienses en algún proceso o problema de la vida real en diferentes dominios de problemas, y cómo podrías mejorarlo utilizando el proceso de Ciencia de Datos. Reflexiona sobre lo siguiente:
diff --git a/translations/es/1-Introduction/02-ethics/README.md b/translations/es/1-Introduction/02-ethics/README.md
index 808d074a..9f0d8825 100644
--- a/translations/es/1-Introduction/02-ethics/README.md
+++ b/translations/es/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Introducción a la Ética de los Datos
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/es/1-Introduction/02-ethics/assignment.md b/translations/es/1-Introduction/02-ethics/assignment.md
index 18a4cd17..a2a44e4d 100644
--- a/translations/es/1-Introduction/02-ethics/assignment.md
+++ b/translations/es/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Escribe un Estudio de Caso sobre Ética de Datos
## Instrucciones
diff --git a/translations/es/1-Introduction/03-defining-data/README.md b/translations/es/1-Introduction/03-defining-data/README.md
index 394dc5b6..fb0323ff 100644
--- a/translations/es/1-Introduction/03-defining-data/README.md
+++ b/translations/es/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Definiendo Datos
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/es/1-Introduction/03-defining-data/assignment.md b/translations/es/1-Introduction/03-defining-data/assignment.md
index 638fb32c..bd28d3b8 100644
--- a/translations/es/1-Introduction/03-defining-data/assignment.md
+++ b/translations/es/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Clasificación de Conjuntos de Datos
## Instrucciones
diff --git a/translations/es/1-Introduction/04-stats-and-probability/README.md b/translations/es/1-Introduction/04-stats-and-probability/README.md
index 455c45f8..9004df62 100644
--- a/translations/es/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/es/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Una Breve Introducción a Estadística y Probabilidad
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Para ayudarnos a entender la distribución de los datos, es útil hablar de **cu
Gráficamente, podemos representar la relación entre la mediana y los cuartiles en un diagrama llamado **diagrama de caja**:
-
+
Aquí también calculamos el **rango intercuartílico** IQR=Q3-Q1, y los llamados **valores atípicos** - valores que están fuera de los límites [Q1-1.5*IQR, Q3+1.5*IQR].
diff --git a/translations/es/1-Introduction/04-stats-and-probability/assignment.md b/translations/es/1-Introduction/04-stats-and-probability/assignment.md
index ebd1d3f0..fae8e561 100644
--- a/translations/es/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/es/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Pequeño Estudio sobre Diabetes
En esta tarea, trabajaremos con un pequeño conjunto de datos de pacientes con diabetes tomado de [aquí](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/es/1-Introduction/README.md b/translations/es/1-Introduction/README.md
index 91af5af9..bb02b60c 100644
--- a/translations/es/1-Introduction/README.md
+++ b/translations/es/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introducción a la Ciencia de Datos

diff --git a/translations/es/2-Working-With-Data/05-relational-databases/README.md b/translations/es/2-Working-With-Data/05-relational-databases/README.md
index 2aa90595..0b7868d8 100644
--- a/translations/es/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/es/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Trabajando con Datos: Bases de Datos Relacionales
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/es/2-Working-With-Data/05-relational-databases/assignment.md b/translations/es/2-Working-With-Data/05-relational-databases/assignment.md
index c9fd600c..1cb26353 100644
--- a/translations/es/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/es/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Mostrando datos de aeropuertos
Se te ha proporcionado una [base de datos](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) basada en [SQLite](https://sqlite.org/index.html) que contiene información sobre aeropuertos. El esquema se muestra a continuación. Utilizarás la [extensión SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) en [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) para mostrar información sobre los aeropuertos de diferentes ciudades.
diff --git a/translations/es/2-Working-With-Data/06-non-relational/README.md b/translations/es/2-Working-With-Data/06-non-relational/README.md
index a9de2f5e..1e3672a7 100644
--- a/translations/es/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/es/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Trabajando con Datos: Datos No Relacionales
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/es/2-Working-With-Data/06-non-relational/assignment.md b/translations/es/2-Working-With-Data/06-non-relational/assignment.md
index fc73a212..44c0e746 100644
--- a/translations/es/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/es/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Beneficios de Soda
## Instrucciones
diff --git a/translations/es/2-Working-With-Data/07-python/README.md b/translations/es/2-Working-With-Data/07-python/README.md
index 888315d5..d088de9a 100644
--- a/translations/es/2-Working-With-Data/07-python/README.md
+++ b/translations/es/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Trabajando con Datos: Python y la Biblioteca Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/es/2-Working-With-Data/07-python/assignment.md b/translations/es/2-Working-With-Data/07-python/assignment.md
index fdac9fc8..ce935de2 100644
--- a/translations/es/2-Working-With-Data/07-python/assignment.md
+++ b/translations/es/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Asignación para Procesamiento de Datos en Python
En esta asignación, te pediremos que desarrolles el código que hemos comenzado a crear en nuestros desafíos. La asignación consta de dos partes:
diff --git a/translations/es/2-Working-With-Data/08-data-preparation/README.md b/translations/es/2-Working-With-Data/08-data-preparation/README.md
index bb135142..73d80c33 100644
--- a/translations/es/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/es/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Trabajando con Datos: Preparación de Datos
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/es/2-Working-With-Data/08-data-preparation/assignment.md b/translations/es/2-Working-With-Data/08-data-preparation/assignment.md
index d24803a6..d5251a6a 100644
--- a/translations/es/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/es/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Evaluando Datos de un Formulario
Un cliente ha estado probando un [formulario pequeño](../../../../2-Working-With-Data/08-data-preparation/index.html) para recopilar algunos datos básicos sobre su base de clientes. Han traído sus hallazgos para que valides los datos que han recopilado. Puedes abrir la página `index.html` en el navegador para echar un vistazo al formulario.
diff --git a/translations/es/2-Working-With-Data/README.md b/translations/es/2-Working-With-Data/README.md
index 346f41dc..15aa3d41 100644
--- a/translations/es/2-Working-With-Data/README.md
+++ b/translations/es/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Trabajando con Datos

diff --git a/translations/es/3-Data-Visualization/09-visualization-quantities/README.md b/translations/es/3-Data-Visualization/09-visualization-quantities/README.md
index 48455a37..8abcadd2 100644
--- a/translations/es/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/es/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualizando Cantidades
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/es/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/es/3-Data-Visualization/09-visualization-quantities/assignment.md
index d70d4a2c..4f9bebe5 100644
--- a/translations/es/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/es/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Líneas, Dispersión y Barras
## Instrucciones
diff --git a/translations/es/3-Data-Visualization/10-visualization-distributions/README.md b/translations/es/3-Data-Visualization/10-visualization-distributions/README.md
index 6e1c1e63..0ff090fc 100644
--- a/translations/es/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/es/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualizando Distribuciones
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/es/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/es/3-Data-Visualization/10-visualization-distributions/assignment.md
index 39393be8..2e8231a1 100644
--- a/translations/es/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/es/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Aplica tus habilidades
## Instrucciones
diff --git a/translations/es/3-Data-Visualization/11-visualization-proportions/README.md b/translations/es/3-Data-Visualization/11-visualization-proportions/README.md
index e9016a04..3ec083f2 100644
--- a/translations/es/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/es/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualizando Proporciones
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/es/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/es/3-Data-Visualization/11-visualization-proportions/assignment.md
index c528d081..5c607e24 100644
--- a/translations/es/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/es/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Pruébalo en Excel
## Instrucciones
diff --git a/translations/es/3-Data-Visualization/12-visualization-relationships/README.md b/translations/es/3-Data-Visualization/12-visualization-relationships/README.md
index be7cd08f..14f9cd2a 100644
--- a/translations/es/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/es/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualizando Relaciones: Todo Sobre la Miel 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/es/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/es/3-Data-Visualization/12-visualization-relationships/assignment.md
index 90ed117c..ea13c135 100644
--- a/translations/es/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/es/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Sumérgete en la colmena
## Instrucciones
diff --git a/translations/es/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/es/3-Data-Visualization/13-meaningful-visualizations/README.md
index d1ce042e..c2683c39 100644
--- a/translations/es/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/es/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Creando Visualizaciones Significativas
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/es/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/es/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 055888cc..329d21dd 100644
--- a/translations/es/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/es/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Crea tu propia visualización personalizada
## Instrucciones
diff --git a/translations/es/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/es/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index d8c6f2f6..2fb6133c 100644
--- a/translations/es/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/es/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Proyecto de visualización de datos Dangerous Liaisons
Para comenzar, asegúrate de tener NPM y Node funcionando en tu máquina. Instala las dependencias (npm install) y luego ejecuta el proyecto localmente (npm run serve):
diff --git a/translations/es/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/es/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 2dcd3923..2fb6133c 100644
--- a/translations/es/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/es/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Proyecto de visualización de datos Dangerous Liaisons
Para comenzar, asegúrate de tener NPM y Node funcionando en tu máquina. Instala las dependencias (npm install) y luego ejecuta el proyecto localmente (npm run serve):
diff --git a/translations/es/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/es/3-Data-Visualization/R/09-visualization-quantities/README.md
index f2586dbc..46678dea 100644
--- a/translations/es/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/es/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualizando Cantidades
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/es/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/es/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 60c1c707..adc56bb7 100644
--- a/translations/es/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/es/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Líneas, Dispersión y Barras
## Instrucciones
diff --git a/translations/es/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/es/3-Data-Visualization/R/10-visualization-distributions/README.md
index e9d36bee..1f48f2ee 100644
--- a/translations/es/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/es/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualizando Distribuciones
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/es/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/es/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 4eff1d4c..f2ee5f2d 100644
--- a/translations/es/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/es/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Aplica tus habilidades
## Instrucciones
diff --git a/translations/es/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/es/3-Data-Visualization/R/11-visualization-proportions/README.md
index 32fce313..f328c884 100644
--- a/translations/es/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/es/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualizando Proporciones
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/es/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/es/3-Data-Visualization/R/12-visualization-relationships/README.md
index e457adec..91773264 100644
--- a/translations/es/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/es/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualizando Relaciones: Todo Sobre la Miel 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/es/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/es/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 962f947a..d94a8e58 100644
--- a/translations/es/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/es/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Creando Visualizaciones Significativas
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/es/3-Data-Visualization/README.md b/translations/es/3-Data-Visualization/README.md
index 2691e02a..4ada5a8f 100644
--- a/translations/es/3-Data-Visualization/README.md
+++ b/translations/es/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Visualizaciones

diff --git a/translations/es/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/es/4-Data-Science-Lifecycle/14-Introduction/README.md
index 1771dde7..105019a5 100644
--- a/translations/es/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/es/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introducción al Ciclo de Vida de la Ciencia de Datos
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/es/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/es/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index e4e989c9..21a10aaa 100644
--- a/translations/es/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/es/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Evaluando un Conjunto de Datos
Un cliente se ha acercado a tu equipo para solicitar ayuda en la investigación de los hábitos de gasto estacionales de los clientes de taxis en la ciudad de Nueva York.
diff --git a/translations/es/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/es/4-Data-Science-Lifecycle/15-analyzing/README.md
index 528e8dad..a0220fb8 100644
--- a/translations/es/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/es/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# El Ciclo de Vida de la Ciencia de Datos: Analizando
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/es/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/es/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index b56953d8..d044229c 100644
--- a/translations/es/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/es/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Explorando respuestas
Esta es una continuación de la [tarea](../14-Introduction/assignment.md) de la lección anterior, donde examinamos brevemente el conjunto de datos. Ahora profundizaremos más en los datos.
diff --git a/translations/es/4-Data-Science-Lifecycle/16-communication/README.md b/translations/es/4-Data-Science-Lifecycle/16-communication/README.md
index 14523354..6c377803 100644
--- a/translations/es/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/es/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# El Ciclo de Vida de la Ciencia de Datos: Comunicación
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/es/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/es/4-Data-Science-Lifecycle/16-communication/assignment.md
index 1ef9b0fe..27c376ff 100644
--- a/translations/es/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/es/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Cuenta una historia
## Instrucciones
diff --git a/translations/es/4-Data-Science-Lifecycle/README.md b/translations/es/4-Data-Science-Lifecycle/README.md
index afca247f..1e7a43b6 100644
--- a/translations/es/4-Data-Science-Lifecycle/README.md
+++ b/translations/es/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# El Ciclo de Vida de la Ciencia de Datos

diff --git a/translations/es/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/es/5-Data-Science-In-Cloud/17-Introduction/README.md
index 76cc8dc6..c5fdb895 100644
--- a/translations/es/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/es/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introducción a la Ciencia de Datos en la Nube
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/es/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/es/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 9dead6f2..accffe5f 100644
--- a/translations/es/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/es/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Investigación de Mercado
## Instrucciones
diff --git a/translations/es/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/es/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 6df3d17b..bf5a8e1b 100644
--- a/translations/es/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/es/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Ciencia de Datos en la Nube: El enfoque "Low code/No code"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/es/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/es/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index e5702dfe..b1ba4b61 100644
--- a/translations/es/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/es/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Proyecto de Ciencia de Datos Low code/No code en Azure ML
## Instrucciones
diff --git a/translations/es/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/es/5-Data-Science-In-Cloud/19-Azure/README.md
index de7f99ee..a4761e39 100644
--- a/translations/es/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/es/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Ciencia de Datos en la Nube: El camino del "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/es/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/es/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 08ffaff7..d3a51ad1 100644
--- a/translations/es/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/es/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Proyecto de Ciencia de Datos usando Azure ML SDK
## Instrucciones
diff --git a/translations/es/5-Data-Science-In-Cloud/README.md b/translations/es/5-Data-Science-In-Cloud/README.md
index bfea3b51..e90b6dfe 100644
--- a/translations/es/5-Data-Science-In-Cloud/README.md
+++ b/translations/es/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Ciencia de Datos en la Nube

diff --git a/translations/es/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/es/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index ddb4d8db..3932a2ea 100644
--- a/translations/es/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/es/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Ciencia de Datos en el Mundo Real
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/es/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/es/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index d91d6d6b..cb9060ed 100644
--- a/translations/es/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/es/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Explora un Conjunto de Datos del Planetary Computer
## Instrucciones
diff --git a/translations/es/6-Data-Science-In-Wild/README.md b/translations/es/6-Data-Science-In-Wild/README.md
index 9c50f7de..5d8af8d3 100644
--- a/translations/es/6-Data-Science-In-Wild/README.md
+++ b/translations/es/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Ciencia de Datos en el Mundo Real
Aplicaciones prácticas de la ciencia de datos en diversas industrias.
diff --git a/translations/es/AGENTS.md b/translations/es/AGENTS.md
index 88e2be36..bd96b007 100644
--- a/translations/es/AGENTS.md
+++ b/translations/es/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Resumen del Proyecto
diff --git a/translations/es/CODE_OF_CONDUCT.md b/translations/es/CODE_OF_CONDUCT.md
index 3cb6ee2e..a5945897 100644
--- a/translations/es/CODE_OF_CONDUCT.md
+++ b/translations/es/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Código de Conducta de Código Abierto de Microsoft
Este proyecto ha adoptado el [Código de Conducta de Código Abierto de Microsoft](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/es/CONTRIBUTING.md b/translations/es/CONTRIBUTING.md
index 0b89553a..2e415f5b 100644
--- a/translations/es/CONTRIBUTING.md
+++ b/translations/es/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Contribuir a Ciencia de Datos para Principiantes
¡Gracias por tu interés en contribuir al currículo de Ciencia de Datos para Principiantes! Apreciamos las contribuciones de la comunidad.
diff --git a/translations/es/INSTALLATION.md b/translations/es/INSTALLATION.md
index c0d2614b..3c91c3ea 100644
--- a/translations/es/INSTALLATION.md
+++ b/translations/es/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Guía de Instalación
Esta guía te ayudará a configurar tu entorno para trabajar con el plan de estudios de Ciencia de Datos para Principiantes.
diff --git a/translations/es/README.md b/translations/es/README.md
index c3f96503..3f50d126 100644
--- a/translations/es/README.md
+++ b/translations/es/README.md
@@ -1,52 +1,43 @@
-
-# Ciencia de Datos para Principiantes - Un Currículo
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+# Ciencia de Datos para Principiantes - Un Plan de Estudios
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
-Los Azure Cloud Advocates de Microsoft tienen el placer de ofrecer un currículo de 10 semanas, 20 lecciones, todo sobre Ciencia de Datos. Cada lección incluye cuestionarios previos y posteriores a la lección, instrucciones escritas para completar la lección, una solución y una tarea. Nuestra pedagogía basada en proyectos te permite aprender mientras construyes, una forma comprobada de que las nuevas habilidades "se queden".
+Los Defensores de la Nube de Azure en Microsoft se complacen en ofrecer un plan de estudios de 10 semanas y 20 lecciones totalmente dedicado a la Ciencia de Datos. Cada lección incluye cuestionarios antes y después de la lección, instrucciones escritas para completar la lección, una solución y una tarea. Nuestra pedagogía basada en proyectos te permite aprender mientras construyes, una forma probada para que las nuevas habilidades "se queden".
-**Muchas gracias a nuestros autores:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Un gran agradecimiento a nuestros autores:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Agradecimientos especiales 🙏 a nuestros autores, revisores y colaboradores de contenido [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** destacando a Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Agradecimiento especial 🙏 a nuestros autores, revisores y colaboradores de contenido de [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** especialmente Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
| Ciencia de Datos para Principiantes - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
### 🌐 Soporte Multilenguaje
-#### Soportado vía GitHub Action (Automatizado y Siempre Actualizado)
+#### Soportado mediante GitHub Action (Automatizado y siempre actualizado)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](./README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](./README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
> **¿Prefieres clonar localmente?**
-> Este repositorio incluye traducciones en más de 50 idiomas, lo que aumenta significativamente el tamaño de la descarga. Para clonar sin las traducciones, usa sparse checkout:
+> Este repositorio incluye más de 50 traducciones que aumentan significativamente el tamaño de la descarga. Para clonar sin traducciones, usa sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
@@ -55,21 +46,21 @@ Los Azure Cloud Advocates de Microsoft tienen el placer de ofrecer un currículo
> Esto te da todo lo que necesitas para completar el curso con una descarga mucho más rápida.
-**Si deseas soportar idiomas adicionales de traducción estos están listados [aquí](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Si deseas que se soporten idiomas adicionales, están listados [aquí](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Únete a Nuestra Comunidad
[](https://discord.gg/nTYy5BXMWG)
-Tenemos una serie de aprendizaje con IA en Discord, aprende más y únete en [Learn with AI Series](https://aka.ms/learnwithai/discord) del 18 al 30 de septiembre de 2025. Obtendrás consejos y trucos para usar GitHub Copilot para Ciencia de Datos.
+Tenemos una serie en Discord llamada Aprende con IA en curso, aprende más y únete en [Serie Aprende con IA](https://aka.ms/learnwithai/discord) del 18 al 30 de septiembre de 2025. Recibirás consejos y trucos para usar GitHub Copilot en Ciencia de Datos.
-
+
# ¿Eres estudiante?
Comienza con los siguientes recursos:
-- [Página del Hub para Estudiantes](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) En esta página encontrarás recursos para principiantes, paquetes para estudiantes e incluso formas de obtener un cupón de certificación gratis. Esta es una página que querrás marcar y revisar de vez en cuando ya que cambiamos contenido al menos mensualmente.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Únete a una comunidad global de embajadores estudiantiles, esta podría ser tu puerta de entrada a Microsoft.
+- [Página del Centro de Estudiantes](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) En esta página encontrarás recursos para principiantes, paquetes para estudiantes e incluso formas de obtener un cupón para certificación gratuita. Esta es una página que querrás marcar y revisar de vez en cuando ya que actualizamos el contenido al menos mensualmente.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Únete a una comunidad global de embajadores estudiantes, esta podría ser tu entrada a Microsoft.
# Comenzando
@@ -79,23 +70,23 @@ Comienza con los siguientes recursos:
- **[Guía de Uso](USAGE.md)** - Ejemplos y flujos de trabajo comunes
- **[Resolución de Problemas](TROUBLESHOOTING.md)** - Soluciones a problemas comunes
- **[Guía para Contribuir](CONTRIBUTING.md)** - Cómo contribuir a este proyecto
-- **[Para Profesores](for-teachers.md)** - Orientación para enseñanza y recursos para el aula
+- **[Para Profesores](for-teachers.md)** - Guía para enseñanza y recursos para el aula
## 👨🎓 Para Estudiantes
-> **Principiantes Completos**: ¿Nuevo en ciencia de datos? Comienza con nuestros [ejemplos para principiantes](examples/README.md)! Estos ejemplos simples y bien comentados te ayudarán a entender lo básico antes de sumergirte en el currículo completo.
-> **[Estudiantes](https://aka.ms/student-page)**: para usar este currículo por tu cuenta, haz un fork de todo el repositorio y completa los ejercicios por tu cuenta, empezando con un cuestionario previo a la lección. Luego lee la lección y completa el resto de las actividades. Intenta crear los proyectos comprendiendo las lecciones en lugar de copiar el código solución; sin embargo, ese código está disponible en las carpetas /solutions en cada lección orientada a proyectos. Otra idea sería formar un grupo de estudio con amigos y revisar el contenido juntos. Para estudio adicional, recomendamos [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Principiantes Completos**: ¿Nuevo en ciencia de datos? Comienza con nuestros [ejemplos amigables para principiantes](examples/README.md)! Estos ejemplos simples y bien comentados te ayudarán a comprender lo básico antes de adentrarte en el plan completo.
+> **[Estudiantes](https://aka.ms/student-page)**: para usar este plan de estudios por tu cuenta, haz un fork de todo el repositorio y completa los ejercicios comenzando con un cuestionario previo a la lección. Luego lee la lección y completa el resto de las actividades. Trata de crear los proyectos comprendiendo las lecciones en lugar de copiar el código solución; sin embargo, ese código está disponible en las carpetas /solutions en cada lección orientada a proyectos. Otra idea es formar un grupo de estudio con amigos y revisar el contenido juntos. Para estudio adicional, recomendamos [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Inicio rápido:**
1. Revisa la [Guía de Instalación](INSTALLATION.md) para configurar tu entorno
-2. Revisa la [Guía de Uso](USAGE.md) para aprender a trabajar con el currículo
+2. Revisa la [Guía de Uso](USAGE.md) para aprender a trabajar con el plan de estudios
3. Comienza con la Lección 1 y avanza secuencialmente
-4. Únete a nuestra [comunidad en Discord](https://aka.ms/ds4beginners/discord) para apoyo
+4. Únete a nuestra [comunidad de Discord](https://aka.ms/ds4beginners/discord) para soporte
## 👩🏫 Para Profesores
-> **Profesores**: hemos [incluido algunas sugerencias](for-teachers.md) sobre cómo usar este currículo. ¡Nos encantaría recibir sus comentarios [en nuestro foro de discusión](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
+> **Profesores**: hemos [incluido algunas sugerencias](for-teachers.md) sobre cómo usar este plan de estudios. ¡Nos encantaría recibir sus comentarios [en nuestro foro de discusión](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Conoce al Equipo
+
[](https://youtu.be/8mzavjQSMM4 "Video promocional")
**Gif por** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
@@ -104,107 +95,105 @@ Comienza con los siguientes recursos:
## Pedagogía
-Hemos elegido dos principios pedagógicos al construir este currículo: asegurar que sea basado en proyectos y que incluya cuestionarios frecuentes. Al final de esta serie, los estudiantes habrán aprendido principios básicos de la ciencia de datos, incluyendo conceptos éticos, preparación de datos, diferentes formas de trabajar con datos, visualización de datos, análisis de datos, casos de uso reales de la ciencia de datos, y más.
+Hemos elegido dos principios pedagógicos al construir este plan de estudios: asegurarnos de que sea basado en proyectos y que incluya cuestionarios frecuentes. Al final de esta serie, los estudiantes habrán aprendido los principios básicos de la ciencia de datos, incluidos conceptos éticos, preparación de datos, diferentes formas de trabajar con datos, visualización de datos, análisis de datos, casos de uso del mundo real de la ciencia de datos y más.
-Además, un cuestionario de baja presión antes de una clase establece la intención del estudiante hacia el aprendizaje de un tema, mientras que un segundo cuestionario después de la clase asegura una mayor retención. Este currículo fue diseñado para ser flexible y divertido y puede tomarse en su totalidad o en parte. Los proyectos comienzan pequeños y se vuelven cada vez más complejos al final del ciclo de 10 semanas.
+Además, un cuestionario de baja presión antes de una clase establece la intención del estudiante hacia el aprendizaje de un tema, mientras que un segundo cuestionario después de la clase asegura una mayor retención. Este plan de estudios fue diseñado para ser flexible y divertido y puede tomarse en su totalidad o en parte. Los proyectos comienzan pequeños y se vuelven cada vez más complejos al final del ciclo de 10 semanas.
-> Encuentra nuestro [Código de Conducta](CODE_OF_CONDUCT.md), [Contribuciones](CONTRIBUTING.md), [Traducción](TRANSLATIONS.md) y directrices. ¡Agradecemos tus comentarios constructivos!
+> Encuentra nuestro [Código de Conducta](CODE_OF_CONDUCT.md), pautas de [Contribución](CONTRIBUTING.md), [Traducción](TRANSLATIONS.md). ¡Agradecemos tus comentarios constructivos!
## Cada lección incluye:
- Sketchnote opcional
-- Video complementario opcional
-- Cuestionario de calentamiento previo a la lección
+- Video suplementario opcional
+- Cuestionario previo a la lección para calentamiento
- Lección escrita
- Para lecciones basadas en proyectos, guías paso a paso sobre cómo construir el proyecto
-- Chequeos de conocimiento
+- Verificaciones de conocimiento
- Un desafío
-- Lectura complementaria
+- Lectura suplementaria
- Tarea
- [Cuestionario posterior a la lección](https://ff-quizzes.netlify.app/en/)
-> **Una nota sobre los cuestionarios**: Todos los cuestionarios están contenidos en la carpeta Quiz-App, con un total de 40 cuestionarios de tres preguntas cada uno. Están enlazados desde dentro de las lecciones, pero la aplicación de cuestionario puede ejecutarse localmente o desplegarse en Azure; sigue las instrucciones en la carpeta `quiz-app`. Se están localizando gradualmente.
+> **Una nota sobre los cuestionarios**: Todos los cuestionarios están contenidos en la carpeta Quiz-App, con un total de 40 cuestionarios de tres preguntas cada uno. Están vinculados dentro de las lecciones, pero la aplicación de cuestionarios puede ejecutarse localmente o desplegarse en Azure; sigue las instrucciones en la carpeta `quiz-app`. Están siendo localizados gradualmente.
-## 🎓 Ejemplos para Principiantes
+## 🎓 Ejemplos Amigables para Principiantes
**¿Nuevo en Ciencia de Datos?** Hemos creado un [directorio de ejemplos](examples/README.md) especial con código simple y bien comentado para ayudarte a comenzar:
- 🌟 **Hola Mundo** - Tu primer programa de ciencia de datos
-- 📂 **Cargar Datos** - Aprende a leer y explorar conjuntos de datos
+- 📂 **Cargando Datos** - Aprende a leer y explorar conjuntos de datos
- 📊 **Análisis Simple** - Calcula estadísticas y encuentra patrones
- 📈 **Visualización Básica** - Crea gráficos y diagramas
-- 🔬 **Proyecto del Mundo Real** - Flujo de trabajo completo desde el inicio hasta el fin
+- 🔬 **Proyecto del Mundo Real** - Flujo de trabajo completo de inicio a fin
-Cada ejemplo incluye comentarios detallados explicando cada paso, ¡perfecto para principiantes absolutos!
+Cada ejemplo incluye comentarios detallados que explican cada paso, ¡perfecto para principiantes absolutos!
👉 **[Comienza con los ejemplos](examples/README.md)** 👈
## Lecciones
-
-||
+||
|:---:|
| Ciencia de Datos para Principiantes: Hoja de Ruta - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
-
-| Número de Lección | Tema | Agrupación de Lección | Objetivos de Aprendizaje | Lección Enlazada | Autor |
-| :---------------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Definiendo Ciencia de Datos | [Introducción](1-Introduction/README.md) | Aprende los conceptos básicos detrás de la ciencia de datos y cómo se relaciona con inteligencia artificial, aprendizaje automático y big data. | [lección](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Ética en Ciencia de Datos | [Introducción](1-Introduction/README.md) | Conceptos, desafíos y marcos de la ética en datos. | [lección](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| Número de Lección | Tema | Agrupación de Lección | Objetivos de Aprendizaje | Lección Vinculada | Autor |
+| :--------------: | :---------------------------------------: | :------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
+| 01 | Definiendo Ciencia de Datos | [Introducción](1-Introduction/README.md) | Aprende los conceptos básicos de la ciencia de datos y cómo se relaciona con inteligencia artificial, aprendizaje automático y big data. | [lección](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Ética en Ciencia de Datos | [Introducción](1-Introduction/README.md) | Conceptos, desafíos y marcos éticos en datos. | [lección](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definiendo Datos | [Introducción](1-Introduction/README.md) | Cómo se clasifican los datos y sus fuentes comunes. | [lección](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Introducción a Estadística y Probabilidad | [Introducción](1-Introduction/README.md) | Técnicas matemáticas de probabilidad y estadística para entender los datos. | [lección](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Trabajando con Datos Relacionales | [Trabajando con Datos](2-Working-With-Data/README.md) | Introducción a datos relacionales y los conceptos básicos de exploración y análisis de datos relacionales con el Lenguaje de Consulta Estructurado, también conocido como SQL (pronunciado “see-quell”). | [lección](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Trabajando con Datos NoSQL | [Trabajando con Datos](2-Working-With-Data/README.md) | Introducción a datos no relacionales, sus diversos tipos y los fundamentos de exploración y análisis de bases de datos de documentos. | [lección](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Trabajando con Python | [Trabajando con Datos](2-Working-With-Data/README.md) | Conceptos básicos de uso de Python para la exploración de datos con bibliotecas como Pandas. Se recomienda un entendimiento fundamental de programación en Python. | [lección](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Preparación de Datos | [Trabajando con Datos](2-Working-With-Data/README.md) | Temas sobre técnicas de datos para limpiar y transformar los datos para manejar desafíos de datos faltantes, inexactos o incompletos. | [lección](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Visualizando Cantidades | [Visualización de Datos](3-Data-Visualization/README.md) | Aprende a usar Matplotlib para visualizar datos de aves 🦆 | [lección](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Visualizando Distribuciones de Datos | [Visualización de Datos](3-Data-Visualization/README.md) | Visualizando observaciones y tendencias dentro de un intervalo. | [lección](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Visualizando Proporciones | [Visualización de Datos](3-Data-Visualization/README.md) | Visualizando porcentajes discretos y agrupados. | [lección](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Visualizando Relaciones | [Visualización de Datos](3-Data-Visualization/README.md) | Visualizando conexiones y correlaciones entre conjuntos de datos y sus variables. | [lección](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Visualizaciones Significativas | [Visualización de Datos](3-Data-Visualization/README.md) | Técnicas y consejos para hacer tus visualizaciones valiosas para la resolución efectiva de problemas y obtención de insights. | [lección](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Introducción al ciclo de vida de la Ciencia de Datos | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Introducción al ciclo de vida de la ciencia de datos y su primer paso de adquisición y extracción de datos. | [lección](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analizando | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase del ciclo de vida de la ciencia de datos se enfoca en técnicas para analizar datos. | [lección](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Comunicación | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase del ciclo de vida de la ciencia de datos se enfoca en presentar los insights de los datos de una manera que facilite la comprensión a los tomadores de decisiones. | [lección](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 04 | Introducción a Estadística y Probabilidad | [Introducción](1-Introduction/README.md) | Técnicas matemáticas de probabilidad y estadística para entender datos. | [lección](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Trabajando con Datos Relacionales | [Trabajando con Datos](2-Working-With-Data/README.md) | Introducción a datos relacionales y las bases del análisis y exploración de datos relacionales con Structured Query Language, también conocido como SQL (pronunciado “see-quell”). | [lección](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) |
+| 06 | Trabajando con Datos NoSQL | [Trabajando con Datos](2-Working-With-Data/README.md) | Introducción a datos no relacionales, sus tipos y lo básico para explorar y analizar bases de datos de documentos. | [lección](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Trabajando con Python | [Trabajando con Datos](2-Working-With-Data/README.md) | Bases del uso de Python para exploración de datos con bibliotecas como Pandas. Se recomienda comprensión fundamental de programación en Python. | [lección](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Preparación de Datos | [Trabajando con Datos](2-Working-With-Data/README.md) | Temas sobre técnicas para limpiar y transformar datos para manejar desafíos de datos faltantes, inexactos o incompletos. | [lección](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Visualización de Cantidades | [Visualización de Datos](3-Data-Visualization/README.md) | Aprende a usar Matplotlib para visualizar datos de aves 🦆 | [lección](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Visualización de Distribuciones de Datos | [Visualización de Datos](3-Data-Visualization/README.md) | Visualización de observaciones y tendencias dentro de un intervalo. | [lección](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Visualización de Proporciones | [Visualización de Datos](3-Data-Visualization/README.md) | Visualización de porcentajes discretos y agrupados. | [lección](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Visualización de Relaciones | [Visualización de Datos](3-Data-Visualization/README.md) | Visualización de conexiones y correlaciones entre conjuntos de datos y sus variables. | [lección](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Visualizaciones Significativas | [Visualización de Datos](3-Data-Visualization/README.md) | Técnicas y guía para hacer visualizaciones valiosas para una resolución de problemas efectiva y obtener insights. | [lección](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Introducción al ciclo de vida de Ciencia de Datos | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Introducción al ciclo de vida de ciencia de datos y su primer paso que es adquirir y extraer datos. | [lección](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Analizando | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase del ciclo de vida de ciencia de datos se enfoca en técnicas para analizar datos. | [lección](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 16 | Comunicación | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase del ciclo de vida de ciencia de datos se enfoca en presentar los insights de los datos de forma que facilite la comprensión de los tomadores de decisiones. | [lección](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) |
| 17 | Ciencia de Datos en la Nube | [Datos en la Nube](5-Data-Science-In-Cloud/README.md) | Esta serie de lecciones introduce la ciencia de datos en la nube y sus beneficios. | [lección](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) y [Maud](https://twitter.com/maudstweets) |
| 18 | Ciencia de Datos en la Nube | [Datos en la Nube](5-Data-Science-In-Cloud/README.md) | Entrenamiento de modelos usando herramientas Low Code. |[lección](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) y [Maud](https://twitter.com/maudstweets) |
| 19 | Ciencia de Datos en la Nube | [Datos en la Nube](5-Data-Science-In-Cloud/README.md) | Despliegue de modelos con Azure Machine Learning Studio. | [lección](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) y [Maud](https://twitter.com/maudstweets) |
-| 20 | Ciencia de Datos en el Mundo Real | [En el Mundo Real](6-Data-Science-In-Wild/README.md) | Proyectos impulsados por ciencia de datos en el mundo real. | [lección](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 20 | Ciencia de Datos en el Mundo Real | [En el Mundo](6-Data-Science-In-Wild/README.md) | Proyectos impulsados por ciencia de datos en el mundo real. | [lección](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Sigue estos pasos para abrir este ejemplo en un Codespace:
-1. Haz clic en el menú desplegable Code y selecciona la opción Open with Codespaces.
-2. Selecciona + New codespace en la parte inferior del panel.
+1. Haz clic en el menú desplegable Código y selecciona la opción Abrir con Codespaces.
+2. Selecciona + Nuevo codespace en la parte inferior del panel.
Para más información, consulta la [documentación de GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Sigue estos pasos para abrir este repositorio en un contenedor usando tu máquina local y VSCode con la extensión VS Code Remote - Containers:
-1. Si es la primera vez que usas un contenedor de desarrollo, asegúrate de que tu sistema cumple con los requisitos previos (es decir, tener Docker instalado) en [la documentación de inicio](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Si es tu primera vez usando un contenedor de desarrollo, asegúrate que tu sistema cumple los requisitos previos (por ejemplo, tener Docker instalado) en [la documentación para comenzar](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Para usar este repositorio, puedes abrirlo en un volumen Docker aislado:
+Para usar este repositorio, puedes abrirlo tanto en un volumen Docker aislado:
-**Nota**: Internamente, esto usará el comando Remote-Containers: **Clone Repository in Container Volume...** para clonar el código fuente en un volumen Docker en lugar del sistema de archivos local. [Los volúmenes](https://docs.docker.com/storage/volumes/) son el mecanismo preferido para persistir datos del contenedor.
+**Nota**: Bajo el capó, esto usará el comando Remote-Containers: **Clonar repositorio en volumen de contenedor...** para clonar el código fuente en un volumen Docker en lugar de en el sistema de archivos local. [Los volúmenes](https://docs.docker.com/storage/volumes/) son el mecanismo preferido para persistir datos de contenedor.
-O abre una versión clonada o descargada localmente del repositorio:
+O abrir una versión clonada o descargada localmente:
- Clona este repositorio en tu sistema de archivos local.
-- Presiona F1 y selecciona el comando **Remote-Containers: Open Folder in Container...**.
-- Selecciona la copia clonada de esta carpeta, espera a que el contenedor arranque y prueba.
+- Presiona F1 y selecciona el comando **Remote-Containers: Abrir carpeta en contenedor...**.
+- Selecciona la copia clonada de esta carpeta, espera a que el contenedor inicie, y pruébalo.
## Acceso sin conexión
-Puedes ejecutar esta documentación sin conexión usando [Docsify](https://docsify.js.org/#/). Haz un fork de este repositorio, [instala Docsify](https://docsify.js.org/#/quickstart) en tu máquina local, luego en la carpeta raíz de este repositorio, escribe `docsify serve`. El sitio web se servirá en el puerto 3000 en tu local: `localhost:3000`.
+Puedes ejecutar esta documentación sin conexión usando [Docsify](https://docsify.js.org/#/). Haz un fork de este repositorio, [instala Docsify](https://docsify.js.org/#/quickstart) en tu máquina local, luego en la carpeta raíz de este repo escribe `docsify serve`. El sitio se servirá en el puerto 3000 de tu localhost: `localhost:3000`.
-> Nota, los notebooks no se renderizarán con Docsify, así que cuando necesites ejecutar un notebook, hazlo por separado en VS Code usando un kernel de Python.
+> Nota, los notebooks no se visualizarán vía Docsify, por lo que cuando necesites ejecutar un notebook, hazlo por separado en VS Code con un kernel Python.
-## Otros Currículos
+## Otros Planes de Estudio
-¡Nuestro equipo produce otros currículos! Mira:
+¡Nuestro equipo produce otros planes de estudio! Revisa:
### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchain4j-for-beginners)
[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
@@ -225,7 +214,7 @@ Puedes ejecutar esta documentación sin conexión usando [Docsify](https://docsi
---
-### Aprendizaje Básico
+### Aprendizaje Central
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
@@ -237,26 +226,26 @@ Puedes ejecutar esta documentación sin conexión usando [Docsify](https://docsi
---
### Serie Copilot
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Obtener ayuda
-**¿Tienes problemas?** Consulta nuestra [Guía de Solución de Problemas](TROUBLESHOOTING.md) para encontrar soluciones a problemas comunes.
+**¿Tienes problemas?** Consulta nuestra [Guía de solución de problemas](TROUBLESHOOTING.md) para soluciones a problemas comunes.
-Si te quedas atascado o tienes alguna pregunta sobre cómo crear aplicaciones de IA, únete a otros aprendices y desarrolladores experimentados en discusiones sobre MCP. Es una comunidad de apoyo donde las preguntas son bienvenidas y el conocimiento se comparte libremente.
+Si te quedas atascado o tienes preguntas sobre cómo construir aplicaciones de IA. Únete a otros estudiantes y desarrolladores experimentados en discusiones sobre MCP. Es una comunidad de apoyo donde las preguntas son bienvenidas y el conocimiento se comparte libremente.
[](https://discord.gg/nTYy5BXMWG)
-Si tienes comentarios sobre el producto o encuentras errores mientras desarrollas, visita:
+Si tienes comentarios sobre el producto o errores mientras construyes visita:
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
---
-**Aviso legal**:
-Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por la precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o inexactitudes. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas derivadas del uso de esta traducción.
+**Descargo de responsabilidad**:
+Este documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Aunque nos esforzamos por la exactitud, tenga en cuenta que las traducciones automáticas pueden contener errores o inexactitudes. El documento original en su idioma nativo debe considerarse la fuente autorizada. Para información crítica, se recomienda la traducción profesional realizada por humanos. No nos hacemos responsables de ningún malentendido o interpretación errónea que pueda surgir del uso de esta traducción.
\ No newline at end of file
diff --git a/translations/es/SECURITY.md b/translations/es/SECURITY.md
index eafd2d54..a2e63458 100644
--- a/translations/es/SECURITY.md
+++ b/translations/es/SECURITY.md
@@ -1,12 +1,3 @@
-
## Seguridad
Microsoft se toma muy en serio la seguridad de nuestros productos y servicios de software, lo que incluye todos los repositorios de código fuente gestionados a través de nuestras organizaciones de GitHub, que incluyen [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) y [nuestras organizaciones de GitHub](https://opensource.microsoft.com/).
diff --git a/translations/es/SUPPORT.md b/translations/es/SUPPORT.md
index 297770c3..90fccd78 100644
--- a/translations/es/SUPPORT.md
+++ b/translations/es/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Soporte
## Cómo reportar problemas y obtener ayuda
diff --git a/translations/es/TROUBLESHOOTING.md b/translations/es/TROUBLESHOOTING.md
index b94990e3..4ce3a28c 100644
--- a/translations/es/TROUBLESHOOTING.md
+++ b/translations/es/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Guía de Solución de Problemas
Esta guía ofrece soluciones a problemas comunes que podrías encontrar mientras trabajas con el currículo de Ciencia de Datos para Principiantes.
diff --git a/translations/es/USAGE.md b/translations/es/USAGE.md
index 536c5e93..c96c4451 100644
--- a/translations/es/USAGE.md
+++ b/translations/es/USAGE.md
@@ -1,12 +1,3 @@
-
# Guía de Uso
Esta guía proporciona ejemplos y flujos de trabajo comunes para utilizar el currículo de Ciencia de Datos para Principiantes.
diff --git a/translations/es/docs/_sidebar.md b/translations/es/docs/_sidebar.md
index 404043fd..3e1e35c1 100644
--- a/translations/es/docs/_sidebar.md
+++ b/translations/es/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Introducción
- [Definiendo la Ciencia de Datos](../1-Introduction/01-defining-data-science/README.md)
- [Ética de la Ciencia de Datos](../1-Introduction/02-ethics/README.md)
diff --git a/translations/es/examples/README.md b/translations/es/examples/README.md
index 24b86d11..6bef580b 100644
--- a/translations/es/examples/README.md
+++ b/translations/es/examples/README.md
@@ -1,12 +1,3 @@
-
# Ejemplos de Ciencia de Datos para Principiantes
¡Bienvenido al directorio de ejemplos! Esta colección de ejemplos simples y bien comentados está diseñada para ayudarte a comenzar con la ciencia de datos, incluso si eres un principiante total.
diff --git a/translations/es/for-teachers.md b/translations/es/for-teachers.md
index 2adc6c91..0bfd2366 100644
--- a/translations/es/for-teachers.md
+++ b/translations/es/for-teachers.md
@@ -1,12 +1,3 @@
-
## Para Educadores
¿Te gustaría usar este plan de estudios en tu aula? ¡Siéntete libre de hacerlo!
diff --git a/translations/es/quiz-app/README.md b/translations/es/quiz-app/README.md
index 98abd071..568e8475 100644
--- a/translations/es/quiz-app/README.md
+++ b/translations/es/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Cuestionarios
Estos cuestionarios son los cuestionarios previos y posteriores a las lecciones del plan de estudios de ciencia de datos en https://aka.ms/datascience-beginners
diff --git a/translations/es/sketchnotes/README.md b/translations/es/sketchnotes/README.md
index b49f8017..a58e27b3 100644
--- a/translations/es/sketchnotes/README.md
+++ b/translations/es/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Encuentra todas las notas visuales aquí.
## Créditos
diff --git a/translations/et/.co-op-translator.json b/translations/et/.co-op-translator.json
new file mode 100644
index 00000000..8cadf895
--- /dev/null
+++ b/translations/et/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:16:08+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "et"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-10-11T15:34:12+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "et"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-10-11T15:34:32+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "et"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-11T15:39:35+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "et"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-10-11T15:41:10+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "et"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-10-11T15:35:12+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "et"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-10-11T15:35:44+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "et"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-10-11T15:43:30+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "et"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-10-11T15:44:40+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "et"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-10-11T15:32:32+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "et"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T12:36:42+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "et"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:59:49+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "et"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-10-11T15:23:01+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "et"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-10-11T15:23:40+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "et"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-10-11T15:19:37+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "et"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-10-11T15:20:38+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "et"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-10-11T15:21:34+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "et"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-10-11T15:22:22+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "et"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-10-11T15:17:29+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-10-11T16:05:03+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-10-11T16:05:36+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-10-11T15:54:05+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-10-11T15:54:36+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-10-11T15:55:13+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-10-11T15:55:44+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-10-11T16:03:41+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-10-11T16:04:23+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-10-11T15:56:22+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-10-11T15:56:57+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-10-11T15:57:08+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-10-11T15:57:19+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-10-11T16:02:01+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-10-11T16:02:40+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-10-11T15:57:48+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-10-11T15:58:22+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-10-11T15:58:54+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-10-11T16:00:58+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-10-11T15:59:52+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "et"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-10-11T15:53:20+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "et"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-10-11T15:48:02+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "et"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-10-11T15:48:42+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "et"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-10-11T15:49:11+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "et"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-10-11T15:49:37+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "et"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-10-11T15:51:39+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "et"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-10-11T15:52:41+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "et"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-10-11T15:47:03+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "et"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-10-11T15:29:17+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "et"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-10-11T15:29:49+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "et"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-10-11T15:27:36+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "et"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-10-11T15:28:45+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "et"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-10-11T15:31:31+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "et"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-10-11T15:32:17+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "et"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-10-11T15:25:27+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "et"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-10-11T15:45:45+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "et"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-10-11T15:46:47+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "et"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-10-11T15:44:56+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "et"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-11T15:10:42+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "et"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-10-11T15:15:04+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "et"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-11T15:08:22+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "et"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-11T15:14:44+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "et"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:45:32+00:00",
+ "source_file": "README.md",
+ "language_code": "et"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-10-11T15:16:09+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "et"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-10-11T15:14:22+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "et"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-11T15:15:34+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "et"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-11T15:11:34+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "et"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-10-11T15:52:58+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "et"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-11T15:17:07+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "et"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-10-11T15:07:02+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "et"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-10-11T15:16:34+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "et"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-10-11T15:25:14+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "et"
+ }
+}
\ No newline at end of file
diff --git a/translations/et/1-Introduction/01-defining-data-science/README.md b/translations/et/1-Introduction/01-defining-data-science/README.md
index 061bca31..290645cc 100644
--- a/translations/et/1-Introduction/01-defining-data-science/README.md
+++ b/translations/et/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Andmeteaduse määratlemine
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/et/1-Introduction/01-defining-data-science/assignment.md b/translations/et/1-Introduction/01-defining-data-science/assignment.md
index 527abb05..895b4ec2 100644
--- a/translations/et/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/et/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Ülesanne: Andmeteaduse stsenaariumid
Selles esimeses ülesandes palume teil mõelda mõnele päriselulisele protsessile või probleemile erinevates valdkondades ja sellele, kuidas saaksite seda parandada andmeteaduse protsessi abil. Mõelge järgmistele küsimustele:
diff --git a/translations/et/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/et/1-Introduction/01-defining-data-science/solution/assignment.md
index d740c097..2668bb57 100644
--- a/translations/et/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/et/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Ülesanne: Andmeteaduse stsenaariumid
Selles esimeses ülesandes palume teil mõelda mõnele päriselulisele protsessile või probleemile erinevates valdkondades ja sellele, kuidas saaksite seda parandada andmeteaduse protsessi abil. Mõelge järgmistele punktidele:
diff --git a/translations/et/1-Introduction/02-ethics/README.md b/translations/et/1-Introduction/02-ethics/README.md
index 5c06847b..46e7e5f7 100644
--- a/translations/et/1-Introduction/02-ethics/README.md
+++ b/translations/et/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Sissejuhatus andme-eetikasse
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/et/1-Introduction/02-ethics/assignment.md b/translations/et/1-Introduction/02-ethics/assignment.md
index c2395c6e..07a0338f 100644
--- a/translations/et/1-Introduction/02-ethics/assignment.md
+++ b/translations/et/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Kirjuta andme-eetika juhtumiuuring
## Juhised
diff --git a/translations/et/1-Introduction/03-defining-data/README.md b/translations/et/1-Introduction/03-defining-data/README.md
index c224547a..3735d764 100644
--- a/translations/et/1-Introduction/03-defining-data/README.md
+++ b/translations/et/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Andmete määratlemine
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/et/1-Introduction/03-defining-data/assignment.md b/translations/et/1-Introduction/03-defining-data/assignment.md
index bc2a317d..5e1a780c 100644
--- a/translations/et/1-Introduction/03-defining-data/assignment.md
+++ b/translations/et/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Andmekogumite klassifitseerimine
## Juhised
diff --git a/translations/et/1-Introduction/04-stats-and-probability/README.md b/translations/et/1-Introduction/04-stats-and-probability/README.md
index b3557ad0..512ce20b 100644
--- a/translations/et/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/et/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Lühike sissejuhatus statistikasse ja tõenäosusteooriasse
| ](../../sketchnotes/04-Statistics-Probability.png)|
diff --git a/translations/et/1-Introduction/04-stats-and-probability/assignment.md b/translations/et/1-Introduction/04-stats-and-probability/assignment.md
index 1861a7ac..d1ecd912 100644
--- a/translations/et/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/et/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Väike Diabeediuuring
Selles ülesandes töötame väikese diabeedipatsientide andmestikuga, mis on võetud [siit](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/et/1-Introduction/README.md b/translations/et/1-Introduction/README.md
index ae199971..6a1a5f78 100644
--- a/translations/et/1-Introduction/README.md
+++ b/translations/et/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Sissejuhatus andmeteadusesse

diff --git a/translations/et/2-Working-With-Data/05-relational-databases/README.md b/translations/et/2-Working-With-Data/05-relational-databases/README.md
index e3adc3a4..8d50f6f6 100644
--- a/translations/et/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/et/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Andmetega töötamine: relatsioonandmebaasid
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/et/2-Working-With-Data/05-relational-databases/assignment.md b/translations/et/2-Working-With-Data/05-relational-databases/assignment.md
index 6d721548..50c70ce3 100644
--- a/translations/et/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/et/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Lennujaamade andmete kuvamine
Teile on antud [andmebaas](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db), mis on loodud [SQLite](https://sqlite.org/index.html) abil ja sisaldab teavet lennujaamade kohta. Skeem on allpool kuvatud. Kasutate [SQLite laiendust](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) [Visual Studio Code'is](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum), et kuvada teavet erinevate linnade lennujaamade kohta.
diff --git a/translations/et/2-Working-With-Data/06-non-relational/README.md b/translations/et/2-Working-With-Data/06-non-relational/README.md
index 490c9a2e..38f21825 100644
--- a/translations/et/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/et/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Töötamine andmetega: Mitte-relatsioonilised andmed
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/et/2-Working-With-Data/06-non-relational/assignment.md b/translations/et/2-Working-With-Data/06-non-relational/assignment.md
index 2ee58576..8acc68f1 100644
--- a/translations/et/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/et/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Soda Kasumid
## Juhised
diff --git a/translations/et/2-Working-With-Data/07-python/README.md b/translations/et/2-Working-With-Data/07-python/README.md
index 93e559c0..ac4a609b 100644
--- a/translations/et/2-Working-With-Data/07-python/README.md
+++ b/translations/et/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Töötamine andmetega: Python ja Pandas teek
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/et/2-Working-With-Data/07-python/assignment.md b/translations/et/2-Working-With-Data/07-python/assignment.md
index 389927a6..ff357089 100644
--- a/translations/et/2-Working-With-Data/07-python/assignment.md
+++ b/translations/et/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Ülesanne: Andmetöötlus Pythonis
Selles ülesandes palume teil täiendada koodi, mida oleme väljakutsetes alustanud. Ülesanne koosneb kahest osast:
diff --git a/translations/et/2-Working-With-Data/08-data-preparation/README.md b/translations/et/2-Working-With-Data/08-data-preparation/README.md
index e66120a1..e3d3fb9b 100644
--- a/translations/et/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/et/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Töötamine andmetega: Andmete ettevalmistamine
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/et/2-Working-With-Data/08-data-preparation/assignment.md b/translations/et/2-Working-With-Data/08-data-preparation/assignment.md
index ae421118..7e1fbce7 100644
--- a/translations/et/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/et/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Vormilt andmete hindamine
Klient on testinud [väikest vormi](../../../../2-Working-With-Data/08-data-preparation/index.html), et koguda oma kliendibaasi kohta põhiandmeid. Nad on toonud oma tulemused teie juurde, et valideerida kogutud andmeid. Saate avada `index.html` lehe brauseris, et vormi vaadata.
diff --git a/translations/et/2-Working-With-Data/README.md b/translations/et/2-Working-With-Data/README.md
index 7f6d7c51..e6b7c83b 100644
--- a/translations/et/2-Working-With-Data/README.md
+++ b/translations/et/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Andmetega töötamine

diff --git a/translations/et/3-Data-Visualization/09-visualization-quantities/README.md b/translations/et/3-Data-Visualization/09-visualization-quantities/README.md
index 89a0cf78..89c970f7 100644
--- a/translations/et/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/et/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Koguste visualiseerimine
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/et/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/et/3-Data-Visualization/09-visualization-quantities/assignment.md
index c4e58cea..9a9a1a29 100644
--- a/translations/et/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/et/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Jooned, hajusdiagrammid ja tulpdiagrammid
## Juhised
diff --git a/translations/et/3-Data-Visualization/10-visualization-distributions/README.md b/translations/et/3-Data-Visualization/10-visualization-distributions/README.md
index be0fb126..62cf4313 100644
--- a/translations/et/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/et/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Jaotuste visualiseerimine
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/et/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/et/3-Data-Visualization/10-visualization-distributions/assignment.md
index 0d670574..f198efe8 100644
--- a/translations/et/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/et/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Rakenda oma oskusi
## Juhised
diff --git a/translations/et/3-Data-Visualization/11-visualization-proportions/README.md b/translations/et/3-Data-Visualization/11-visualization-proportions/README.md
index a1d6ebc5..91d45518 100644
--- a/translations/et/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/et/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Proportsioonide visualiseerimine
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/et/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/et/3-Data-Visualization/11-visualization-proportions/assignment.md
index 01b4f5b4..01e31dc9 100644
--- a/translations/et/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/et/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Proovi Excelis
## Juhised
diff --git a/translations/et/3-Data-Visualization/12-visualization-relationships/README.md b/translations/et/3-Data-Visualization/12-visualization-relationships/README.md
index 7a0f0c7f..81a0e4bf 100644
--- a/translations/et/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/et/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Suhete visualiseerimine: Kõik mee kohta 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/et/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/et/3-Data-Visualization/12-visualization-relationships/assignment.md
index 043fcc28..77af3d72 100644
--- a/translations/et/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/et/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Sukeldumine mesitarusse
## Juhised
diff --git a/translations/et/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/et/3-Data-Visualization/13-meaningful-visualizations/README.md
index 1a7fa94b..e20e289b 100644
--- a/translations/et/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/et/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Tähendusrikaste visualisatsioonide loomine
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/et/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/et/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 5b5b17e7..5255c922 100644
--- a/translations/et/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/et/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Loo oma kohandatud visualisatsioon
## Juhised
diff --git a/translations/et/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/et/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index a2b7fb9a..0ae0d2a2 100644
--- a/translations/et/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/et/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Ohtlike suhete andmete visualiseerimise projekt
Alustamiseks veendu, et NPM ja Node töötavad sinu arvutis. Paigalda sõltuvused (npm install) ja käivita projekt kohalikult (npm run serve):
diff --git a/translations/et/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/et/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index e3163be4..18cf4e8d 100644
--- a/translations/et/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/et/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Ohtlike suhete andmete visualiseerimise projekt
Alustamiseks veendu, et NPM ja Node töötavad sinu arvutis. Paigalda sõltuvused (npm install) ja käivita projekt kohalikult (npm run serve):
diff --git a/translations/et/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/et/3-Data-Visualization/R/09-visualization-quantities/README.md
index b7ca8eea..a86bf1fb 100644
--- a/translations/et/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/et/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Koguste visualiseerimine
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/et/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/et/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 60af4d59..313dce94 100644
--- a/translations/et/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/et/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Jooned, hajusdiagrammid ja tulpdiagrammid
## Juhised
diff --git a/translations/et/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/et/3-Data-Visualization/R/10-visualization-distributions/README.md
index d3192d3f..d3fc71e8 100644
--- a/translations/et/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/et/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Andmete jaotuse visualiseerimine
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/et/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/et/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 31cb8b6f..a878369e 100644
--- a/translations/et/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/et/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Rakenda oma oskusi
## Juhised
diff --git a/translations/et/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/et/3-Data-Visualization/R/11-visualization-proportions/README.md
index 11e87cdb..682196ac 100644
--- a/translations/et/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/et/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Proportsioonide visualiseerimine
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/et/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/et/3-Data-Visualization/R/12-visualization-relationships/README.md
index 738e1f0c..e4fff8b6 100644
--- a/translations/et/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/et/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Suhete visualiseerimine: Kõik mesist 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/et/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/et/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 0925da2d..4b11d2bc 100644
--- a/translations/et/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/et/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Tähendusrikaste visualisatsioonide loomine
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/et/3-Data-Visualization/README.md b/translations/et/3-Data-Visualization/README.md
index 027055eb..cd4ea484 100644
--- a/translations/et/3-Data-Visualization/README.md
+++ b/translations/et/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Visualisatsioonid

diff --git a/translations/et/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/et/4-Data-Science-Lifecycle/14-Introduction/README.md
index 1e96b092..b11f8163 100644
--- a/translations/et/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/et/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Sissejuhatus andmeteaduse elutsüklisse
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/et/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/et/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 1526d30a..f101ccbe 100644
--- a/translations/et/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/et/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Andmehulga hindamine
Klient on pöördunud teie meeskonna poole, et uurida taksoklientide hooajalisi kulutamisharjumusi New Yorgis.
diff --git a/translations/et/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/et/4-Data-Science-Lifecycle/15-analyzing/README.md
index b078c5ca..9c1ad140 100644
--- a/translations/et/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/et/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Andmeteaduse elutsükkel: Analüüsimine
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/et/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/et/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 87122fa7..3cfb4029 100644
--- a/translations/et/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/et/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Vastuste otsimine
See on jätk eelmise tunni [ülesandele](../14-Introduction/assignment.md), kus vaatasime andmekogumit põgusalt. Nüüd uurime andmeid põhjalikumalt.
diff --git a/translations/et/4-Data-Science-Lifecycle/16-communication/README.md b/translations/et/4-Data-Science-Lifecycle/16-communication/README.md
index aa27797a..5a4d6998 100644
--- a/translations/et/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/et/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Andmeteaduse elutsükkel: Kommunikatsioon
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/et/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/et/4-Data-Science-Lifecycle/16-communication/assignment.md
index b7f322af..85647082 100644
--- a/translations/et/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/et/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Räägi lugu
## Juhised
diff --git a/translations/et/4-Data-Science-Lifecycle/README.md b/translations/et/4-Data-Science-Lifecycle/README.md
index f9f9705f..c6e43662 100644
--- a/translations/et/4-Data-Science-Lifecycle/README.md
+++ b/translations/et/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Andmeteaduse elutsükkel

diff --git a/translations/et/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/et/5-Data-Science-In-Cloud/17-Introduction/README.md
index f7bde510..2c11d216 100644
--- a/translations/et/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/et/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Sissejuhatus andmeteadusesse pilves
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/et/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/et/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 6d4245da..f83c9d47 100644
--- a/translations/et/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/et/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Turu-uuring
## Juhised
diff --git a/translations/et/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/et/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 5ed611dd..3b85b16b 100644
--- a/translations/et/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/et/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Andmeteadus pilves: "Vähe koodi/Ilma koodita" lähenemine
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/et/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/et/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index da62ef6b..3da3b278 100644
--- a/translations/et/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/et/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Madala koodi/Ilma koodita andmeteaduse projekt Azure ML-is
## Juhised
diff --git a/translations/et/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/et/5-Data-Science-In-Cloud/19-Azure/README.md
index d7562095..8d2e130b 100644
--- a/translations/et/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/et/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Andmeteadus pilves: "Azure ML SDK" meetod
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/et/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/et/5-Data-Science-In-Cloud/19-Azure/assignment.md
index cadc2e0f..3446ed45 100644
--- a/translations/et/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/et/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Andmeteaduse projekt Azure ML SDK-ga
## Juhised
diff --git a/translations/et/5-Data-Science-In-Cloud/README.md b/translations/et/5-Data-Science-In-Cloud/README.md
index 7dde7e3b..31f70e78 100644
--- a/translations/et/5-Data-Science-In-Cloud/README.md
+++ b/translations/et/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Andmeteadus pilves

diff --git a/translations/et/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/et/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 3ac0c991..7e708b08 100644
--- a/translations/et/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/et/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Andmeteadus päriselus
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/et/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/et/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index a06b540c..ab0c5c5f 100644
--- a/translations/et/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/et/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Uuri Planetary Computer andmehulka
## Juhised
diff --git a/translations/et/6-Data-Science-In-Wild/README.md b/translations/et/6-Data-Science-In-Wild/README.md
index 93a4ec1d..49d94f41 100644
--- a/translations/et/6-Data-Science-In-Wild/README.md
+++ b/translations/et/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Andmeteadus päriselus
Andmeteaduse rakendused erinevates tööstusharudes.
diff --git a/translations/et/AGENTS.md b/translations/et/AGENTS.md
index 06dd4fab..70184294 100644
--- a/translations/et/AGENTS.md
+++ b/translations/et/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Projekti Ülevaade
diff --git a/translations/et/CODE_OF_CONDUCT.md b/translations/et/CODE_OF_CONDUCT.md
index afe29a93..6cf5785c 100644
--- a/translations/et/CODE_OF_CONDUCT.md
+++ b/translations/et/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsofti avatud lähtekoodi käitumisjuhend
See projekt on omaks võtnud [Microsofti avatud lähtekoodi käitumisjuhendi](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/et/CONTRIBUTING.md b/translations/et/CONTRIBUTING.md
index 043eaf02..4b302453 100644
--- a/translations/et/CONTRIBUTING.md
+++ b/translations/et/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Panustamine algajate andmeteaduse projekti
Täname, et olete huvitatud panustamisest algajate andmeteaduse õppekavasse! Me tervitame kogukonna panuseid.
diff --git a/translations/et/INSTALLATION.md b/translations/et/INSTALLATION.md
index 29e9f2ea..cfd0d5a0 100644
--- a/translations/et/INSTALLATION.md
+++ b/translations/et/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Paigaldusjuhend
See juhend aitab teil seadistada oma keskkonda, et töötada algajatele mõeldud andmeteaduse õppekavaga.
diff --git a/translations/et/README.md b/translations/et/README.md
index 4abe1381..778bbdb5 100644
--- a/translations/et/README.md
+++ b/translations/et/README.md
@@ -1,219 +1,210 @@
-
-# Andmeteadus algajatele – õppekava
+# Andmeteadus algajatele - Õppekava
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
[](http://makeapullrequest.com)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
-Microsofti Azure pilveesindajad pakuvad 10-nädalast, 20-õpetusega õppekava, mis on pühendatud andmeteadusele. Iga õppetund sisaldab eel- ja järeltunni viktoriine, kirjeldatud juhiseid õppetunni sooritamiseks, lahenduse ning ülesande. Meie projektipõhine õpetamismeetod võimaldab õppida koos ehitamisega, mis on tõestatud viis uute oskuste kinnistamiseks.
+Microsofti Azure pilvmeeskond on rõõmus pakkuda 10-nädalast, 20-õppetunniga õppekava, mis käsitleb andmeteadust. Iga õppetund sisaldab eeltundi ja järeltundi katseid, kirjalikke juhiseid õppetunni lõpetamiseks, lahendust ja ülesannet. Meie projektipõhine pedagoogika võimaldab õppida ehitades, mis on tõestatud viis uute oskuste kinnistamiseks.
-**Südamlikud tänud meie autoritele:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Sügav tänu meie autoritele:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Erilised tänud 🙏 meie [Microsofti tudengisaadikute](https://studentambassadors.microsoft.com/) autoritele, ülevaatajate ja sisuloojatele,** eelkõige Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Eriline tänu 🙏 meie [Microsofti üliõpilasambassadöridele](https://studentambassadors.microsoft.com/) autoritele, retsensentidele ja sisuloojatele,** oluliselt Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Andmeteadus algajatele – _sketchnote autorilt [@nitya](https://twitter.com/nitya)_ |
+| Andmeteadus algajatele - _Sketchnote autorilt [@nitya](https://twitter.com/nitya)_ |
### 🌐 Mitmekeelsuse tugi
-#### Töötletud GitHub Action abil (automatiseeritud ja alati ajakohane)
+#### Toetatud GitHub Action abil (automatiseeritud ja alati ajakohane)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](./README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](./README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **Eelistate kloonida lokaalselt?**
+> **Eelistad kloonida kohalikult?**
-> See hoidla sisaldab 50+ keele tõlkeid, mis suurendavad oluliselt allalaaditavat suurust. Tõlgeteta kloonimiseks kasutage erilist sparse checkout’i:
+> See hoidla sisaldab üle 50 keele tõlked, mis suurendavad märkimisväärselt allalaadimise suurust. Tõlgeteta kloonimiseks kasuta hõredat checkouti:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> See annab teile kõik vajaliku kursuse lõpetamiseks palju kiirema allalaadimisega.
+> Saad kõike vajalikku kursuse läbimiseks palju kiiremalt.
-**Kui soovite, et lisaks oleks toetatud rohkem tõlkekeeli, on need loetletud [siin](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Kui soovid, et toetataks täiendavaid tõlkekeeli, siis need on loetletud [siin](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Liitu meie kogukonnaga
[](https://discord.gg/nTYy5BXMWG)
-Meil on käimas Discordi õppesari „Õpi koos AI-ga“, lisateabe ja osalemise leiate aadressilt [Õpi koos AI-ga sari](https://aka.ms/learnwithai/discord) ajavahemikul 18.–30. september 2025. Saate näpunäiteid ja nippe GitHub Copiloti kasutamiseks andmeteaduses.
+Meil on käimas Discordi õppesari AI-ga, rohkem infot ja liitumiseks külasta [Õpi AI-ga sarja](https://aka.ms/learnwithai/discord) 18.-30. septembril 2025. Saad näpunäiteid ja nippe GitHub Copiloti kasutamiseks andmeteaduses.
-
+
-# Kas oled tudeng?
+# Oled tudeng?
Alusta järgmiste ressurssidega:
-- [Tudengite keskus](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Sellel lehel leiad algajatele mõeldud ressursid, tudengipakid ja isegi võimalusi saada tasuta sertifikaadi sooduskupong. See on leht, mida soovid järjehoidjates hoida ja aeg-ajalt kontrollida, sest sisu uuendatakse vähemalt kord kuus.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Liitu ülemaailmse tudengisaadikute kogukonnaga, mis võib olla sinu võimalus Microsofti minna.
+- [Tudengikeskuse leht](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Sellel lehel leiad algajatele mõeldud ressursid, tudengipakid ja isegi võimalusi saada tasuta sertifikaadi kupong. See on leht, mida soovid järjehoidjatesse lisada ja aeg-ajalt vaadata, kuna sisu vahetub vähemalt kord kuus.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Liitu tudengite ülemaailmse kogukonnaga, see võib olla sinu tee Microsofti.
# Alustamine
## 📚 Dokumentatsioon
-- **[Paigaldusjuhend](INSTALLATION.md)** – samm-sammult juhised algajatele
-- **[Kasutusjuhend](USAGE.md)** – näited ja tavalised töövood
-- **[Probleemide lahendamine](TROUBLESHOOTING.md)** – lahendused levinud probleemidele
-- **[Panustamisjuhend](CONTRIBUTING.md)** – kuidas sellesse projekti panustada
-- **[Õpetajatele](for-teachers.md)** – juhised ja klassiruumi ressursid
+- **[Paigaldusjuhend](INSTALLATION.md)** - samm-sammuline juhend algajatele
+- **[Kasutusjuhend](USAGE.md)** - näited ja levinumad töövood
+- **[Probleemide lahendamine](TROUBLESHOOTING.md)** - lahendused sagedastele probleemidele
+- **[Panustamise juhend](CONTRIBUTING.md)** - kuidas sellesse projekti panustada
+- **[Õpetajatele](for-teachers.md)** - õpetamisjuhised ja klassiruumi ressursid
## 👨🎓 Tudengitele
-> **Täielikud algajad:** Uus andmeteaduses? Alusta meie [algajasõbralike näidiste](examples/README.md) juurest! Need lihtsad ja hästi kommenteeritud näited aitavad mõista põhialuseid enne kogu õppekavaga süvenemist.
-> **[Tudengid](https://aka.ms/student-page):** selle õppekava iseseisvaks kasutamiseks tee fork kogu hoidlast ja soorita harjutused iseseisvalt, alustades eel-loengu viktoriiniga. Seejärel loe loeng läbi ja täida ülejäänud tegevused. Püüa projekte luua, mõistes õppetunde, mitte kopeerides lahendustekoodi; see kood on siiski saadaval iga projektipõhise õppetunni /solutions kaustas. Teine idee oleks sõpradega õpirühm moodustada ja sisu koos läbi käia. Täiendava õppimise jaoks soovitame [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Täielikud algajad**: Uus andmeteaduses? Alusta meie [algajatele sobivatest näidetest](examples/README.md)! Need lihtsad ja hästi kommenteeritud näited aitavad sul mõista põhitõdesid enne kogu õppekavasse süvenemist.
+> **[Tudengid](https://aka.ms/student-page)**: et kasutada seda õppekava iseseisvalt, tehtle kogu hoidla omale koopiaks (fork) ja lahenda harjutused iseseisvalt, alustades eeloengu testiga. Seejärel loe loeng ja lõpeta ülejäänud tegevused. Proovi projekte luua, mõistes õppetunde, mitte lihtsalt lahenduste koodi kopeerides; lahenduskood on kättesaadav iga projektipõhise õppetunni /solutions kaustas. Teine idee on moodustada sõpradega õpperühm ja minna sisu läbi koos. Süvendatud õpingute jaoks soovitame [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Kiire algus:**
-1. Vaata [Paigaldusjuhendit](INSTALLATION.md) oma keskkonna seadistamiseks
-2. Tutvu [Kasutusjuhendiga](USAGE.md), et õppida õppekavaga töötamist
-3. Alusta 1. õppest ja tööta järjest edasi
-4. Liitu meie [Discord-kogukonnaga](https://aka.ms/ds4beginners/discord) toe saamiseks
+1. Tutvu [paigaldusjuhendiga](INSTALLATION.md), et seada üles oma keskkond
+2. Vaata [kasutusjuhendit](USAGE.md), et õppida curriculumiga töötamist
+3. Alusta 1. õppetunnist ja liigu järjestikku edasi
+4. Liitu meie [Discordi kogukonnaga](https://aka.ms/ds4beginners/discord), et saada tuge
## 👩🏫 Õpetajatele
-> **Õpetajad:** oleme lisanud [mõned soovitused](for-teachers.md) selle õppekava kasutamiseks. Ootame teie tagasisidet [meie arutelufoorumis](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+> **Õpetajad**: oleme lisanud [mõningad soovitused](for-teachers.md) selle õppekava kasutamiseks. Ootame hea meelega teie tagasisidet [meie arutelufoorumis](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## Kohtuge meeskonnaga
-## Tutvu meeskonnaga
-[](https://youtu.be/8mzavjQSMM4 "Reklaamvideo")
+[](https://youtu.be/8mzavjQSMM4 "Promo video")
**Gif autor** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Klõpsake ülaloleval pildil, et vaadata videot projektist ja inimestest, kes selle lõid!
+> 🎥 Klõpsake ülalolevat pilti, et vaadata video projekti ja selle looja(te) kohta!
## Pedagoogika
-Selle õppekava koostamisel oleme valinud kaks pedagoogilist põhimõtet: tagada, et see põhineks projektidel, ja et see sisaldaks sagedasi viktoriine. Selle sarja lõpuks on õpilased õppinud andmeteaduse põhialuseid, sealhulgas eetilisi mõisteid, andmete ettevalmistamist, erinevaid andmetöötlusviise, andmete visualiseerimist, andmeanalüüsi, andmeteaduse praktilisi kasutusjuhte ja palju muud.
+Olemasoleva õppekava koostamisel oleme valinud kaks pedagoogilist põhimõtet: tagame, et see oleks projektipõhine ja sisaldaks sagedasi viktoriine. Selle sarja lõpuks on õpilased omandanud andmeteaduse põhilised põhimõtted, sealhulgas eetilised kontseptsioonid, andmete ettevalmistamine, erinevad viisid andmetega töötamiseks, andmete visualiseerimine, andmete analüüs, andmeteaduse praktilised kasutusjuhud ja palju muud.
-Lisaks seab madala panusega viktoriin enne tundi õppija eesmärgi antud teemat õppida, samas kui teine viktoriin pärast tundi aitab teadmisi kinnistada. See õppekava on loodud olema paindlik ja lõbus ning seda saab läbida tervikuna või osaliselt. Projektid algavad väikesest ja muutuvad 10-nädalase tsükli lõpuks järjest keerukamaks.
+Lisaks seab enne tundi toimuv madala panusega viktoriin õppija kavatsuseks teema õppimise, samas kui teine viktoriin pärast tundi tagab parema säilitamise. See õppekava on loodud olema paindlik ja lõbus ning seda saab võtta kas tervikuna või osaliselt. Projektid algavad väikestena ja muutuvad 10-nädalase tsükli lõpuks järjest keerukamaks.
-> Leiate meie [käitumisjuhendi](CODE_OF_CONDUCT.md), [panustamise](CONTRIBUTING.md), [tõlke](TRANSLATIONS.md) juhendid. Hindame teie konstruktiivset tagasisidet!
+> Leia meie [käitumisjuhend](CODE_OF_CONDUCT.md), [panustamise](CONTRIBUTING.md), [tõlke](TRANSLATIONS.md) juhised. Ootame teie konstruktiivset tagasisidet!
-## Igas õppetükis on:
+## Iga õppetund sisaldab:
-- Valikuline sketšinotis
-- Valikuline lisavideo
-- Soojenduseks viktoriin enne tundi
-- Kirjalik õppetükk
-- Projektipõhiste õppetükkide puhul samm-sammult juhised projekti ehitamiseks
-- Teadmiste kontroll
-- Väljakutse
-- Lisalugemine
-- Kodune ülesanne
-- [Viktoriin pärast tundi](https://ff-quizzes.netlify.app/en/)
+- Valikulist sketšimärkust
+- Valikulist lisavideot
+- Pre-tunniviktoriini soojenduseks
+- Kirjalikku õppetundi
+- Projektipõhiste õppetundide puhul samm-sammult juhiseid, kuidas projekti üles ehitada
+- Teadmiste kontrolli
+- Väljakutset
+- Lisalugemist
+- Kodutööd
+- [Pärastundi viktoriini](https://ff-quizzes.netlify.app/en/)
-> **Märkused viktoriinide kohta**: Kõik viktoriinid on koondatud kausta Quiz-App, kokku 40 viktoriini, kus igas on kolm küsimust. Neid lingitakse õppetükkide sees, kuid viktoriini rakendus saab käivitada lokaalselt või paigaldada Azure'i; järgige juhiseid `quiz-app` kaustas. Need on järk-järgult lokaliseeritavad.
+> **Märkus viktoriinide kohta**: Kõik viktoriinid on koondatud Quiz-App kausta, kokku 40 viktoriini, milles igas on kolm küsimust. Neile viidatakse õppetundide sees, kuid viktoriinirakendust saab käivitada lokaalselt või Azure’is; täpsemad juhised asuvad `quiz-app` kaustas. Viktoriinid tõlgitakse järk-järgult.
-## 🎓 Algajatele sõbralikud näited
+## 🎓 Algajasõbralikud näited
-**Uus andmeteaduses?** Oleme loonud spetsiaalse [näidiste kataloogi](examples/README.md) lihtsa ja hästi kommenteeritud koodiga, mis aitab teil alustada:
+**Oled andmeteadusega uus?** Oleme loonud spetsiaalse [näidiste kataloogi](examples/README.md), kus on lihtne ja hästi kommenteeritud kood, mis aitab sul alustada:
-- 🌟 **Tere, maailm!** - Teie esimene andmeteaduse programm
-- 📂 **Andmete laadimine** - Õppige andmestike lugemist ja uurimist
-- 📊 **Lihtne analüüs** - Arvutage statistikat ja leidke mustreid
-- 📈 **Põhiline visualiseerimine** - Looge diagramme ja graafikuid
-- 🔬 **Reaalne projekt** - Täielik töövoog algusest lõpuni
+- 🌟 **Hello World** - Sinu esimene andmeteaduse programm
+- 📂 **Andmete laadimine** - Õpi andmekogumeid lugema ja uurima
+- 📊 **Lihtne analüüs** - Arvuta statistikat ja leia mustreid
+- 📈 **Põhivisualiseerimine** - Loo diagramme ja graafikuid
+- 🔬 **Tegelik projekt** - Täielik töökäik algusest lõpuni
-Igas näites on üksikasjalikud kommentaarid, mis selgitavad iga sammu, muudavad selle algajatele ideaalseks!
+Igas näites on üksikasjalikud kommentaarid, mis selgitavad igat sammu, muutes selle ideaalseks täiesti algajatele!
-👉 **[Alustage näidetega](examples/README.md)** 👈
+👉 **[Alusta näidetest](examples/README.md)** 👈
-## Õppetükid
+## Õppetunnid
-||
+||
|:---:|
-| Andmeteadus algajatele: teekaart - _sketš autorilt [@nitya](https://twitter.com/nitya)_ |
+| Andmeteadus algajatele: teekaart - _Sketš @nitya_ |
-| Õppetüki number | Teema | Õppetüki grupp | Õpieesmärgid | Lingitud õppetükk | Autor |
+| Õppetunni number | Teema | Õppetunni gruppeerimine | Õpitulemused | Lingitud õppetund | Autor |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Andmeteaduse määratlemine | [Sissejuhatus](1-Introduction/README.md) | Õppige andmeteaduse põhikontseptsioone ja kuidas see on seotud tehisintellekti, masinõppe ja suurandmetega. | [õppetükk](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Andmeteaduse eetika | [Sissejuhatus](1-Introduction/README.md) | Andmete eetika kontseptsioonid, väljakutsed ja raamistikud. | [õppetükk](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Andmete määratlemine | [Sissejuhatus](1-Introduction/README.md) | Kuidas andmeid klassifitseeritakse ja selle tavalised allikad. | [õppetükk](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Sissejuhatus statistikasse ja tõenäosusõpetusse | [Sissejuhatus](1-Introduction/README.md) | Matemaatilised tõenäosuse ja statistika tehnikad andmete mõistmiseks. | [õppetükk](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Töötamine relatsiooniliste andmetega | [Töötamine andmetega](2-Working-With-Data/README.md) | Sissejuhatus relatsioonilistesse andmetesse ja relatsiooniliste andmete uurimise ja analüüsi alused Structured Query Language’i ehk SQL-i (hääldatakse „si-kwell“) abil. | [õppetükk](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Töötamine NoSQL andmetega | [Töötamine andmetega](2-Working-With-Data/README.md) | Sissejuhatus mitte-relatsioonilistesse andmetesse, selle erinevatesse tüüpidesse ja dokumentandmebaaside uurimise ja analüüsi alused. | [õppetükk](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Töötamine Pythoniga | [Töötamine andmetega](2-Working-With-Data/README.md) | Andmete uurimiseks Pythoni kasutamise alused koos selliste teekidega nagu Pandas. Soovitatav on Pythoni programmeerimise põhiline mõistmine. | [õppetükk](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Andmete ettevalmistamine | [Töötamine andmetega](2-Working-With-Data/README.md) | Teemad andmete puhastamise ja teisendamise tehnikatest, mis võimaldavad toime tulla puuduvate, ebatäpsete või puudulike andmetega seotud väljakutsetega. | [õppetükk](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Kvantiteetide visualiseerimine | [Andmete visualiseerimine](3-Data-Visualization/README.md) | Õppige kasutama Matplotlibi lindude andmete visualiseerimiseks 🦆 | [õppetükk](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Andmete jaotuste visualiseerimine | [Andmete visualiseerimine](3-Data-Visualization/README.md) | Visuaalne vaatlus ja trendide kuvamine vahemikus. | [õppetükk](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Proportsioonide visualiseerimine | [Andmete visualiseerimine](3-Data-Visualization/README.md) | Diskreetsete ja rühmitatud protsentide visualiseerimine. | [õppetükk](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Suhete visualiseerimine | [Andmete visualiseerimine](3-Data-Visualization/README.md) | Andmekogumite ja nende muutujate vaheliste seoste ja korrelatsioonide visualiseerimine. | [õppetükk](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Mõtestatud visualiseeringud | [Andmete visualiseerimine](3-Data-Visualization/README.md) | Tehnikad ja juhised, kuidas teha oma visualiseeringuid väärtuslikeks tõhusaks probleemilahenduseks ja teadmiste saamiseks. | [õppetükk](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Sissejuhatus andmeteaduse elutsüklisse | [Elutsükkel](4-Data-Science-Lifecycle/README.md) | Sissejuhatus andmeteaduse elutsüklisse ja selle esimene samm andmete hankimisse ja ekstraktsiooni. | [õppetükk](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analüüs | [Elutsükkel](4-Data-Science-Lifecycle/README.md) | See etapp andmeteaduse elutsüklis keskendub andmete analüüsimise tehnikatele. | [õppetükk](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Kommunikatsioon | [Elutsükkel](4-Data-Science-Lifecycle/README.md) | See etapp andmeteaduse elutsüklis keskendub teadmiste esitamisele andmetest viisil, mis muudab otsustajatel nende mõistmise lihtsamaks. | [õppetükk](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Andmeteadus pilves | [Pilveandmed](5-Data-Science-In-Cloud/README.md) | See õppesari tutvustab andmeteadust pilves ja selle eeliseid. | [õppetükk](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ja [Maud](https://twitter.com/maudstweets) |
-| 18 | Andmeteadus pilves | [Pilveandmed](5-Data-Science-In-Cloud/README.md) | Mudelite treenimine madala kooditaseme tööriistadega. |[õppetükk](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ja [Maud](https://twitter.com/maudstweets) |
-| 19 | Andmeteadus pilves | [Pilveandmed](5-Data-Science-In-Cloud/README.md) | Mudelite juurutamine Azure Machine Learning Studio abil. | [õppetükk](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ja [Maud](https://twitter.com/maudstweets) |
-| 20 | Andmeteadus vabas looduses | [Looduses](6-Data-Science-In-Wild/README.md) | Andmeteadusel põhinevad projektid pärismaailmas. | [õppetükk](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
-
-## GitHubi Codespaces
-
-Järgige neid samme, et avada see näidis Codespaces’is:
-1. Klõpsake koodi rippmenüüd ja valige valik Ava Codespaces’iga.
-2. Valige paani allosas + Uus codespace.
+| 01 | Andmeteaduse määratlemine | [Sissejuhatus](1-Introduction/README.md) | Õpi andmeteaduse põhimõisteid ja kuidas see on seotud tehisintellekti, masinõppe ja suurandmetega. | [õppetund](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Andmeteaduse eetika | [Sissejuhatus](1-Introduction/README.md) | Andme-eetika kontseptsioonid, väljakutsed ja raamistikud. | [õppetund](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Andmete määratlemine | [Sissejuhatus](1-Introduction/README.md) | Kuidas andmeid klassifitseeritakse ja nende levinud allikad. | [õppetund](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Sissejuhatus statistikasse ja tõenäosusse | [Sissejuhatus](1-Introduction/README.md) | Matemaatilised tõenäosuse ja statistika tehnikad andmete mõistmiseks. | [õppetund](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Töötamine relatsioonandmetega | [Töötamine andmetega](2-Working-With-Data/README.md) | Sissejuhatus relatsioonandmetesse ja andmete uurimise ning analüüsimise põhialused struktureeritud päringukeeles (SQL). | [õppetund](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Töötamine NoSQL andmetega | [Töötamine andmetega](2-Working-With-Data/README.md) | Sissejuhatus mitte-relatsioonandmetesse, nende erinevate tüüpide ja dokumentandmebaaside uurimise ning analüüsi põhialused. | [õppetund](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Töötamine Pythoniga | [Töötamine andmetega](2-Working-With-Data/README.md) | Python kasutamise põhialused andmete uurimiseks selliste teekidega nagu Pandas. Soovitatav on Python programmeerimise aluste mõistmine. | [õppetund](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Andmete ettevalmistamine | [Töötamine andmetega](2-Working-With-Data/README.md) | Andmetehnikad andmete puhastamiseks ja transformeerimiseks, et toime tulla puuduvate, ebatäpsete või puudulike andmetega. | [õppetund](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Koguste visualiseerimine | [Andmete visualiseerimine](3-Data-Visualization/README.md) | Õpi kasutama Matplotlibi lindude andmete visualiseerimiseks 🦆 | [õppetund](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Andmete jaotuste visualiseerimine | [Andmete visualiseerimine](3-Data-Visualization/README.md) | Visuaalselt kujutame tähelepanekuid ja trende kindlas intervallis. | [õppetund](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Proportsioonide visualiseerimine | [Andmete visualiseerimine](3-Data-Visualization/README.md) | Diskreetsete ja grupeeritud protsentide visualiseerimine. | [õppetund](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Suhete visualiseerimine | [Andmete visualiseerimine](3-Data-Visualization/README.md) | Andmekogumite ja nende muutujate vaheliste seoste ja korrelatsioonide kujutamine. | [õppetund](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Mõtestatud visualiseeringud | [Andmete visualiseerimine](3-Data-Visualization/README.md) | Tehnikad ja juhised, mis aitavad teha visualiseeringud väärtuslikeks tõhusaks probleemilahenduseks ja teadmisteks. | [õppetund](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Sissejuhatus andmeteaduse elutsüklisse | [Elutsükkel](4-Data-Science-Lifecycle/README.md) | Sissejuhatus andmeteaduse elutsüklisse ja selle esimene samm: andmete hankimine ja väljavõtmine. | [õppetund](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Analüüsimine | [Elutsükkel](4-Data-Science-Lifecycle/README.md) | See faas andmeteaduse elutsüklis keskendub andmete analüüsimise tehnikatele. | [õppetund](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Kommunikatsioon | [Elutsükkel](4-Data-Science-Lifecycle/README.md) | See faas andmeteaduse elutsüklis keskendub teadmiste esitamisele selliselt, et see oleks otsustajatele arusaadav. | [õppetund](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Andmeteadus pilves | [Pilvandmed](5-Data-Science-In-Cloud/README.md) | See õppesari tutvustab andmeteadust pilves ja selle eeliseid. | [õppetund](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ja [Maud](https://twitter.com/maudstweets) |
+| 18 | Andmeteadus pilves | [Pilvandmed](5-Data-Science-In-Cloud/README.md) | Mudelite treenimine madalakoodiliste tööriistade abil. |[õppetund](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ja [Maud](https://twitter.com/maudstweets) |
+| 19 | Andmeteadus pilves | [Pilvandmed](5-Data-Science-In-Cloud/README.md) | Mudelite juurutamine Azure Machine Learning Studio abil. | [õppetund](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ja [Maud](https://twitter.com/maudstweets) |
+| 20 | Andmeteadus vabamas keskkonnas | [Väljas](6-Data-Science-In-Wild/README.md) | Andmeteadusjuhtumid reaalses maailmas. | [õppetund](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+
+## GitHub Codespaces
+
+Järgige neid samme selle näite avamiseks Codespaces’is:
+1. Klõpsake menüüs Code rippmenüüd ja valige Open with Codespaces.
+2. Paneeli allosas valige + New codespace.
Lisateabe saamiseks vaadake [GitHubi dokumentatsiooni](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
-## VSCode Remote - Containerid
-Järgige neid samme, et avada see hoidla konteineris, kasutades oma kohalikku masinat ja VSCode'i koos VS Code Remote - Containers laiendiga:
+## VSCode Remote - Containers
+Järgige neid samme selle hoidla avamiseks konteineris, kasutades oma kohalikku arvutit ja VSCode’i ning Remote - Containers laiendust:
-1. Kui kasutate arenduskonteinerit esmakordselt, veenduge, et teie süsteem vastab eeltingimustele (näiteks on installitud Docker), vaadates [alustamise dokumentatsiooni](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Kui kasutate arenduscontainerit esimest korda, veenduge, et teie süsteem vastab eeltingimustele (nt Docker on paigaldatud) [käivitamise dokumentatsioonis](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Selle hoidla kasutamiseks võite kas avada hoidla isoleeritud Docker’i mahus:
+Seda hoidlat saab kasutada avades selle hoidla isoleeritud Docker mahu sees:
-**Märkus**: Tagaplaanil kasutab see Remote-Containers: **Clone Repository in Container Volume...** käsku lähtekoodi kopeerimiseks Docker’i mahus kohaliku failisüsteemi asemel. [Mahud](https://docs.docker.com/storage/volumes/) on soovitatav mehhanism konteineri andmete säilitamiseks.
+**Märkus**: Tegelikult kasutatakse Remote-Containers: **Clone Repository in Container Volume...** käsku, mis kloonib lähtekoodi Docker-mahu sisse, mitte kohalikku failisüsteemi. [Mahud](https://docs.docker.com/storage/volumes/) on eelistatud mehhanism konteineri andmete säilitamiseks.
-Või avage kohalikult kloonitud või allalaaditud hoidla versioon:
+Või avades kohalikult kloonitud või alla laetud hoidla:
- Kloonige see hoidla oma kohalikku failisüsteemi.
- Vajutage F1 ja valige käsk **Remote-Containers: Open Folder in Container...**.
-- Valige selle kausta kloonitud koopiad, oodake konteineri käivitumist ja proovige.
+- Valige selle kausta kloonitud koopia, oodake konteineri käivitumist ja proovige funktsioone.
-## Võrguühenduseta juurdepääs
+## Võrgust väljas kasutamine
-Seda dokumentatsiooni saate võrguühenduseta käivitada, kasutades [Docsify't](https://docsify.js.org/#/). Hargna see hoidla, [installi Docsify](https://docsify.js.org/#/quickstart) oma kohalikku masinasse, seejärel tippige selle hoidla juurkaustas `docsify serve`. Veebisait käivitatakse pordil 3000 aadressil `localhost:3000`.
+Seda dokumentatsiooni saab kasutada ka võrgust väljas, kasutades [Docsify](https://docsify.js.org/#/). Forkige see hoidla, paigaldage oma kohalikku masinasse [Docsify](https://docsify.js.org/#/quickstart), seejärel hoidla root-kataloogis tippige `docsify serve`. Veebileht saadetakse pordi 3000 kaudu aadressil `localhost:3000`.
-> Märkus, märkmeid (notebook-e) ei renderdata Docsify abil, nii et kui peate märkmikku kasutama, käitage see eraldi VS Code'is koos Python’i kerneliga.
+> Märkus: märkmikud ei renderdata Docsify abil, seega kui peate käivitama märkmiku, tehke seda eraldi VS Code’is Python kerneliga.
## Muud õppekavad
-Meie meeskond toodab ka teisi õppekavu! Vaadake:
+Meie meeskond toodab ka teisi õppekavasid! Vaadake:
### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchain4j-for-beginners)
[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
### Azure / Edge / MCP / Agendid
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
@@ -225,8 +216,8 @@ Meie meeskond toodab ka teisi õppekavu! Vaadake:
---
-### Põhialused
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+### Põhiteadmised
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
@@ -239,24 +230,24 @@ Meie meeskond toodab ka teisi õppekavu! Vaadake:
### Copiloti sari
[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Abi saamine
-**Tekkinud probleeme?** Vaadake meie [Tõrkeotsingu juhendit](TROUBLESHOOTING.md), kus on lahendused sageimatele probleemidele.
+**Tekivad probleemid?** Vaadake meie [Tõrkeotsingu juhendit](TROUBLESHOOTING.md) levinud probleemide lahendamiseks.
-Kui satute takistustesse või teil on küsimusi tehisintellektirakenduste loomise kohta, liituge koosõppijate ja kogenud arendajatega MCP aruteludes. See on toetav kogukond, kus küsimused on oodatud ja teadmisi jagatakse vabalt.
+Kui takerdate või teil on küsimusi AI-rakenduste loomise kohta, liituge MCP arutelufoorumis teiste õppijate ja kogenud arendajatega. See on toetav kogukond, kus küsimused on teretulnud ja teadmisi jagatakse vabalt.
[](https://discord.gg/nTYy5BXMWG)
-Kui teil on toodet puudutavat tagasisidet või vigasid arendamise käigus, külastage:
+Kui teil on toote kohta tagasisidet või ehitamise ajal vigu, külastage:
[](https://aka.ms/foundry/forum)
---
-**Vastutusest loobumine**:
-See dokument on tõlgitud kasutades tehisintellekti tõlketeenust [Co-op Translator](https://github.com/Azure/co-op-translator). Kuigi me püüame täpsust, palun pidage meeles, et automaatsed tõlked võivad sisaldada vigu või ebatäpsusi. Originaaldokument selle emakeeles tuleks pidada autoriteetseks allikaks. Kriitilise teabe korral soovitatakse kasutada professionaalset inimtõlget. Me ei vastuta tõlgendustest või arusaamatustest, mis võivad tekkida selle tõlke kasutamisest.
+**Vastutusest loobumine**:
+See dokument on tõlgitud kasutades tehisintellektil põhinevat tõlketeenust [Co-op Translator](https://github.com/Azure/co-op-translator). Kuigi püüame tagada täpsust, palun arvestage, et automatiseeritud tõlgetes võib esineda vigu või ebatäpsusi. Originaaldokument selle emakeeles tuleks pidada autoriteetseks allikaks. Kriitilise tähtsusega teabe puhul soovitatakse kasutada professionaalset inimtõlget. Me ei vastuta käesoleva tõlke kasutamisest tekkida võivate arusaamatuste või valesti mõistmiste eest.
\ No newline at end of file
diff --git a/translations/et/SECURITY.md b/translations/et/SECURITY.md
index bf7932af..46d8c6e6 100644
--- a/translations/et/SECURITY.md
+++ b/translations/et/SECURITY.md
@@ -1,12 +1,3 @@
-
## Turvalisus
diff --git a/translations/et/SUPPORT.md b/translations/et/SUPPORT.md
index 116eef3a..0a6d4e8a 100644
--- a/translations/et/SUPPORT.md
+++ b/translations/et/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Tugi
## Kuidas esitada probleeme ja saada abi
diff --git a/translations/et/TROUBLESHOOTING.md b/translations/et/TROUBLESHOOTING.md
index 66584f83..02cfcd8f 100644
--- a/translations/et/TROUBLESHOOTING.md
+++ b/translations/et/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Tõrkeotsingu juhend
See juhend pakub lahendusi levinud probleemidele, millega võite kokku puutuda Data Science for Beginners õppekava kasutamisel.
diff --git a/translations/et/USAGE.md b/translations/et/USAGE.md
index 778cbbc9..5908e977 100644
--- a/translations/et/USAGE.md
+++ b/translations/et/USAGE.md
@@ -1,12 +1,3 @@
-
# Kasutusjuhend
See juhend sisaldab näiteid ja tavapäraseid töövooge algajatele mõeldud andmeteaduse õppekava kasutamiseks.
diff --git a/translations/et/docs/_sidebar.md b/translations/et/docs/_sidebar.md
index 5be7912a..12e934c4 100644
--- a/translations/et/docs/_sidebar.md
+++ b/translations/et/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Sissejuhatus
- [Andmeteaduse määratlemine](../1-Introduction/01-defining-data-science/README.md)
- [Andmeteaduse eetika](../1-Introduction/02-ethics/README.md)
diff --git a/translations/et/examples/README.md b/translations/et/examples/README.md
index 8c804064..785cd11a 100644
--- a/translations/et/examples/README.md
+++ b/translations/et/examples/README.md
@@ -1,12 +1,3 @@
-
# Algajatele sobivad andmeteaduse näited
Tere tulemast näidete kataloogi! See lihtsate ja hästi kommenteeritud näidete kogumik on loodud selleks, et aidata sul alustada andmeteadusega, isegi kui oled täiesti algaja.
diff --git a/translations/et/for-teachers.md b/translations/et/for-teachers.md
index ac73b5f9..070f9b71 100644
--- a/translations/et/for-teachers.md
+++ b/translations/et/for-teachers.md
@@ -1,12 +1,3 @@
-
## Haridustöötajatele
Kas soovite seda õppekava oma klassiruumis kasutada? Palun tehke seda julgelt!
diff --git a/translations/et/quiz-app/README.md b/translations/et/quiz-app/README.md
index c270ceb5..11aae2da 100644
--- a/translations/et/quiz-app/README.md
+++ b/translations/et/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Viktoriinid
Need viktoriinid on andmeteaduse õppekava eel- ja järelloengute viktoriinid aadressil https://aka.ms/datascience-beginners
diff --git a/translations/et/sketchnotes/README.md b/translations/et/sketchnotes/README.md
index 714ff7f9..c0ae28cf 100644
--- a/translations/et/sketchnotes/README.md
+++ b/translations/et/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Leia kõik visandmärkmed siit!
## Tunnustused
diff --git a/translations/fa/.co-op-translator.json b/translations/fa/.co-op-translator.json
new file mode 100644
index 00000000..d22dbe59
--- /dev/null
+++ b/translations/fa/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:36:48+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "fa"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-24T21:31:09+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "fa"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-24T21:32:10+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "fa"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:03:35+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "fa"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-24T21:25:17+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "fa"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T14:24:17+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "fa"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-24T21:35:43+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "fa"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T12:56:39+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "fa"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-24T21:44:27+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "fa"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-24T21:15:11+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "fa"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T10:34:34+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "fa"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:52:38+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "fa"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T14:10:08+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "fa"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-24T21:13:33+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "fa"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:24:30+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "fa"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-24T21:09:18+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "fa"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T14:12:37+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "fa"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-24T21:02:14+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "fa"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-24T20:52:22+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T14:17:41+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-24T23:03:49+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T14:19:33+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-24T22:38:08+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T14:16:34+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-24T23:07:22+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:28:02+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-24T22:42:10+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T14:18:18+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-24T22:33:33+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-24T22:34:39+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-24T22:34:08+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-24T22:51:04+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-24T22:53:49+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-24T22:43:48+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-24T22:45:26+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-24T22:58:31+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-24T22:47:13+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-24T22:55:31+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "fa"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-24T22:29:18+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "fa"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:22:29+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "fa"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-24T22:17:24+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "fa"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:21:48+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "fa"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-24T22:20:11+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "fa"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:22:52+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "fa"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-24T22:28:10+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "fa"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-24T22:13:57+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "fa"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T14:07:45+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "fa"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-24T22:05:01+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "fa"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T14:06:07+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "fa"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-24T22:01:42+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "fa"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T14:09:05+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "fa"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-24T22:11:38+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "fa"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-24T21:52:46+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "fa"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:14:54+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "fa"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-24T21:51:48+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "fa"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-24T21:45:38+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "fa"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:03:39+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "fa"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-24T20:49:43+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "fa"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:26:29+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "fa"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:15:16+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "fa"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:11:01+00:00",
+ "source_file": "README.md",
+ "language_code": "fa"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-24T20:50:34+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "fa"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-24T20:47:37+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "fa"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:30:55+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "fa"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:53:38+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "fa"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-24T21:14:19+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "fa"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:56:42+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "fa"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:52:26+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "fa"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-24T22:12:46+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "fa"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-24T21:45:08+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "fa"
+ }
+}
\ No newline at end of file
diff --git a/translations/fa/1-Introduction/01-defining-data-science/README.md b/translations/fa/1-Introduction/01-defining-data-science/README.md
index 303f24f5..85e08700 100644
--- a/translations/fa/1-Introduction/01-defining-data-science/README.md
+++ b/translations/fa/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# تعریف علم داده
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/fa/1-Introduction/01-defining-data-science/assignment.md b/translations/fa/1-Introduction/01-defining-data-science/assignment.md
index 58d19ed0..38a6cc98 100644
--- a/translations/fa/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/fa/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# تکلیف: سناریوهای علم داده
در این تکلیف اول، از شما خواسته میشود که به یک فرآیند یا مشکل واقعی در حوزههای مختلف فکر کنید و بررسی کنید که چگونه میتوانید با استفاده از فرآیند علم داده آن را بهبود دهید. به موارد زیر فکر کنید:
diff --git a/translations/fa/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/fa/1-Introduction/01-defining-data-science/solution/assignment.md
index 44845de0..37106956 100644
--- a/translations/fa/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/fa/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# تکلیف: سناریوهای علم داده
در این اولین تکلیف، از شما خواسته میشود که به یک فرآیند یا مشکل واقعی در حوزههای مختلف فکر کنید و بررسی کنید که چگونه میتوانید با استفاده از فرآیند علم داده آن را بهبود دهید. به موارد زیر فکر کنید:
diff --git a/translations/fa/1-Introduction/02-ethics/README.md b/translations/fa/1-Introduction/02-ethics/README.md
index 7f660d27..b191141c 100644
--- a/translations/fa/1-Introduction/02-ethics/README.md
+++ b/translations/fa/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# مقدمهای بر اخلاق داده
|](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/fa/1-Introduction/02-ethics/assignment.md b/translations/fa/1-Introduction/02-ethics/assignment.md
index 5d79f8c1..96321a00 100644
--- a/translations/fa/1-Introduction/02-ethics/assignment.md
+++ b/translations/fa/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## نوشتن مطالعه موردی اخلاق دادهها
## دستورالعملها
diff --git a/translations/fa/1-Introduction/03-defining-data/README.md b/translations/fa/1-Introduction/03-defining-data/README.md
index 92caf942..d2bf34a9 100644
--- a/translations/fa/1-Introduction/03-defining-data/README.md
+++ b/translations/fa/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# تعریف دادهها
|](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/fa/1-Introduction/03-defining-data/assignment.md b/translations/fa/1-Introduction/03-defining-data/assignment.md
index 9b5d92c7..c463fce8 100644
--- a/translations/fa/1-Introduction/03-defining-data/assignment.md
+++ b/translations/fa/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# طبقهبندی مجموعه دادهها
## دستورالعملها
diff --git a/translations/fa/1-Introduction/04-stats-and-probability/README.md b/translations/fa/1-Introduction/04-stats-and-probability/README.md
index 5ba9c25b..653653f5 100644
--- a/translations/fa/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/fa/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# مقدمهای کوتاه بر آمار و احتمال
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
به صورت گرافیکی میتوان رابطه بین میانه و چارکها را در نموداری به نام **جعبهنمودار** نشان داد:
-
+
در اینجا همچنین **دامنه بین چارکی** IQR=Q3-Q1 و مقادیر **دورافتاده** - مقادیری که خارج از مرزهای [Q1-1.5*IQR,Q3+1.5*IQR] قرار دارند - محاسبه میشوند.
diff --git a/translations/fa/1-Introduction/04-stats-and-probability/assignment.md b/translations/fa/1-Introduction/04-stats-and-probability/assignment.md
index e740770f..d3dfdea8 100644
--- a/translations/fa/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/fa/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# مطالعه کوچک دیابت
در این تکلیف، با یک مجموعه داده کوچک از بیماران دیابتی که از [اینجا](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) گرفته شده است، کار خواهیم کرد.
diff --git a/translations/fa/1-Introduction/README.md b/translations/fa/1-Introduction/README.md
index 2863e268..5a860372 100644
--- a/translations/fa/1-Introduction/README.md
+++ b/translations/fa/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# مقدمهای بر علم داده

diff --git a/translations/fa/2-Working-With-Data/05-relational-databases/README.md b/translations/fa/2-Working-With-Data/05-relational-databases/README.md
index 54414d96..fcfe7145 100644
--- a/translations/fa/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/fa/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# کار با دادهها: پایگاههای داده رابطهای
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/fa/2-Working-With-Data/05-relational-databases/assignment.md b/translations/fa/2-Working-With-Data/05-relational-databases/assignment.md
index 2a4454c9..7acc03b0 100644
--- a/translations/fa/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/fa/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# نمایش دادههای فرودگاه
یک [پایگاه داده](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) مبتنی بر [SQLite](https://sqlite.org/index.html) که شامل اطلاعاتی درباره فرودگاهها است، در اختیار شما قرار گرفته است. طرح پایگاه داده در زیر نمایش داده شده است. شما از [افزونه SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) در [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) برای نمایش اطلاعات فرودگاههای شهرهای مختلف استفاده خواهید کرد.
diff --git a/translations/fa/2-Working-With-Data/06-non-relational/README.md b/translations/fa/2-Working-With-Data/06-non-relational/README.md
index e58fc79a..b330f77f 100644
--- a/translations/fa/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/fa/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# کار با دادهها: دادههای غیررابطهای
|](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/fa/2-Working-With-Data/06-non-relational/assignment.md b/translations/fa/2-Working-With-Data/06-non-relational/assignment.md
index f388d96d..edde9f19 100644
--- a/translations/fa/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/fa/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# سود سودا
## دستورالعملها
diff --git a/translations/fa/2-Working-With-Data/07-python/README.md b/translations/fa/2-Working-With-Data/07-python/README.md
index 3f02885a..aa9850d1 100644
--- a/translations/fa/2-Working-With-Data/07-python/README.md
+++ b/translations/fa/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# کار با دادهها: پایتون و کتابخانه Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/fa/2-Working-With-Data/07-python/assignment.md b/translations/fa/2-Working-With-Data/07-python/assignment.md
index 394ef639..6089f8dd 100644
--- a/translations/fa/2-Working-With-Data/07-python/assignment.md
+++ b/translations/fa/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# تکلیف پردازش داده در پایتون
در این تکلیف، از شما خواسته میشود کدی را که در چالشهای قبلی شروع به توسعه آن کردهایم، گسترش دهید. این تکلیف شامل دو بخش است:
diff --git a/translations/fa/2-Working-With-Data/08-data-preparation/README.md b/translations/fa/2-Working-With-Data/08-data-preparation/README.md
index 0c77a7d2..328d76d1 100644
--- a/translations/fa/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/fa/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# کار با دادهها: آمادهسازی دادهها
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/fa/2-Working-With-Data/08-data-preparation/assignment.md b/translations/fa/2-Working-With-Data/08-data-preparation/assignment.md
index 661447f6..a3c98cd6 100644
--- a/translations/fa/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/fa/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# ارزیابی دادههای یک فرم
یک مشتری در حال آزمایش یک [فرم کوچک](../../../../2-Working-With-Data/08-data-preparation/index.html) برای جمعآوری برخی دادههای پایه درباره پایگاه مشتریان خود بوده است. آنها یافتههای خود را برای شما آوردهاند تا دادههایی که جمعآوری کردهاند را اعتبارسنجی کنید. میتوانید صفحه `index.html` را در مرورگر باز کنید تا فرم را مشاهده کنید.
diff --git a/translations/fa/2-Working-With-Data/README.md b/translations/fa/2-Working-With-Data/README.md
index f4d15e3e..bfcde018 100644
--- a/translations/fa/2-Working-With-Data/README.md
+++ b/translations/fa/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# کار با دادهها

diff --git a/translations/fa/3-Data-Visualization/09-visualization-quantities/README.md b/translations/fa/3-Data-Visualization/09-visualization-quantities/README.md
index aca809bb..1ffba1c0 100644
--- a/translations/fa/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/fa/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# تجسم مقادیر
|](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/fa/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/fa/3-Data-Visualization/09-visualization-quantities/assignment.md
index 682fcb88..bf86f579 100644
--- a/translations/fa/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/fa/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# خطوط، نمودارهای پراکندگی و نمودارهای میلهای
## دستورالعملها
diff --git a/translations/fa/3-Data-Visualization/10-visualization-distributions/README.md b/translations/fa/3-Data-Visualization/10-visualization-distributions/README.md
index 0e882a4e..f29cc6a8 100644
--- a/translations/fa/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/fa/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# نمایش توزیعها
|](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/fa/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/fa/3-Data-Visualization/10-visualization-distributions/assignment.md
index 1666e45f..954bbb0c 100644
--- a/translations/fa/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/fa/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# مهارتهای خود را به کار بگیرید
## دستورالعملها
diff --git a/translations/fa/3-Data-Visualization/11-visualization-proportions/README.md b/translations/fa/3-Data-Visualization/11-visualization-proportions/README.md
index 4a25db7e..e8a97fa7 100644
--- a/translations/fa/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/fa/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# تجسم نسبتها
|](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/fa/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/fa/3-Data-Visualization/11-visualization-proportions/assignment.md
index f7e12677..4743d269 100644
--- a/translations/fa/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/fa/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# امتحان کنید در اکسل
## دستورالعملها
diff --git a/translations/fa/3-Data-Visualization/12-visualization-relationships/README.md b/translations/fa/3-Data-Visualization/12-visualization-relationships/README.md
index 123f19d1..200ab921 100644
--- a/translations/fa/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/fa/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# تجسم روابط: همه چیز درباره عسل 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/fa/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/fa/3-Data-Visualization/12-visualization-relationships/assignment.md
index 45e80ff9..5f78f99b 100644
--- a/translations/fa/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/fa/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# شیرجه به کندوی زنبور
## دستورالعملها
diff --git a/translations/fa/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/fa/3-Data-Visualization/13-meaningful-visualizations/README.md
index 4537db7a..a8a77f16 100644
--- a/translations/fa/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/fa/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# ایجاد مصورسازیهای معنادار
|](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/fa/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/fa/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 519be2c4..eae6f808 100644
--- a/translations/fa/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/fa/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# ساخت ویژوالایزیشن سفارشی خودتان
## دستورالعملها
diff --git a/translations/fa/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/fa/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 085e9910..15f64e1c 100644
--- a/translations/fa/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/fa/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# پروژه تجسم دادههای Dangerous Liaisons
برای شروع، باید مطمئن شوید که NPM و Node روی دستگاه شما اجرا میشوند. وابستگیها را نصب کنید (npm install) و سپس پروژه را به صورت محلی اجرا کنید (npm run serve):
diff --git a/translations/fa/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/fa/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index ac4a7d44..bb5b1918 100644
--- a/translations/fa/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/fa/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# پروژه تجسم دادههای Dangerous Liaisons
برای شروع، باید مطمئن شوید که NPM و Node روی دستگاه شما اجرا میشوند. وابستگیها را نصب کنید (npm install) و سپس پروژه را به صورت محلی اجرا کنید (npm run serve):
diff --git a/translations/fa/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/fa/3-Data-Visualization/R/09-visualization-quantities/README.md
index 6033f06d..5498d1b5 100644
--- a/translations/fa/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/fa/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# تجسم مقادیر
|](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/fa/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/fa/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 285a1ebb..b3f5eaa3 100644
--- a/translations/fa/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/fa/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# خطوط، نمودارهای پراکندگی و نمودارهای میلهای
## دستورالعملها
diff --git a/translations/fa/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/fa/3-Data-Visualization/R/10-visualization-distributions/README.md
index 1037770c..9f71c39e 100644
--- a/translations/fa/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/fa/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# تجسم توزیعها
|](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/fa/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/fa/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 9b51bf3e..d511ccad 100644
--- a/translations/fa/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/fa/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# مهارتهای خود را به کار بگیرید
## دستورالعملها
diff --git a/translations/fa/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/fa/3-Data-Visualization/R/11-visualization-proportions/README.md
index 7277cb15..908b648b 100644
--- a/translations/fa/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/fa/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# تجسم نسبتها
|](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/fa/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/fa/3-Data-Visualization/R/12-visualization-relationships/README.md
index 75eb579d..359f90cb 100644
--- a/translations/fa/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/fa/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# تجسم روابط: همه چیز درباره عسل 🍯
|](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/fa/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/fa/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 04fba3cb..e8228e3d 100644
--- a/translations/fa/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/fa/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# ایجاد مصورسازیهای معنادار
|](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/fa/3-Data-Visualization/README.md b/translations/fa/3-Data-Visualization/README.md
index dbec1a51..a7df24f5 100644
--- a/translations/fa/3-Data-Visualization/README.md
+++ b/translations/fa/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# مصورسازیها

diff --git a/translations/fa/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/fa/4-Data-Science-Lifecycle/14-Introduction/README.md
index 2387d9d1..eeef3e08 100644
--- a/translations/fa/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/fa/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# معرفی چرخه عمر علم داده
|](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/fa/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/fa/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 98f8bf36..2a618da8 100644
--- a/translations/fa/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/fa/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# ارزیابی یک مجموعه داده
یک مشتری از تیم شما درخواست کمک کرده است تا عادات فصلی هزینهکرد مشتریان تاکسی در شهر نیویورک را بررسی کند.
diff --git a/translations/fa/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/fa/4-Data-Science-Lifecycle/15-analyzing/README.md
index 6a51b2b9..3836f714 100644
--- a/translations/fa/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/fa/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# چرخه زندگی علم داده: تحلیل
|](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/fa/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/fa/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index f975df88..7dba5590 100644
--- a/translations/fa/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/fa/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# جستجو برای پاسخها
این ادامهی [تکلیف](../14-Introduction/assignment.md) درس قبلی است، جایی که به طور مختصر به مجموعه دادهها نگاه کردیم. اکنون قصد داریم نگاه عمیقتری به دادهها داشته باشیم.
diff --git a/translations/fa/4-Data-Science-Lifecycle/16-communication/README.md b/translations/fa/4-Data-Science-Lifecycle/16-communication/README.md
index 5b6a891b..7e2c59c9 100644
--- a/translations/fa/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/fa/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# چرخه حیات علم داده: ارتباطات
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/fa/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/fa/4-Data-Science-Lifecycle/16-communication/assignment.md
index 3b666677..e421afeb 100644
--- a/translations/fa/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/fa/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# تعریف یک داستان
## دستورالعملها
diff --git a/translations/fa/4-Data-Science-Lifecycle/README.md b/translations/fa/4-Data-Science-Lifecycle/README.md
index 04c7b40a..534c8b88 100644
--- a/translations/fa/4-Data-Science-Lifecycle/README.md
+++ b/translations/fa/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# چرخه حیات علم داده

diff --git a/translations/fa/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/fa/5-Data-Science-In-Cloud/17-Introduction/README.md
index 96676dd8..6afee1af 100644
--- a/translations/fa/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/fa/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# مقدمهای بر علم داده در فضای ابری
|](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/fa/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/fa/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index d9140e6a..203888dc 100644
--- a/translations/fa/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/fa/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# تحقیقات بازار
## دستورالعملها
diff --git a/translations/fa/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/fa/5-Data-Science-In-Cloud/18-Low-Code/README.md
index e5f5aa30..8301ba33 100644
--- a/translations/fa/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/fa/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# علم داده در فضای ابری: روش "کدنویسی کم/بدون کدنویسی"
|](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/fa/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/fa/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 9b411d33..26235eec 100644
--- a/translations/fa/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/fa/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# پروژه علم داده با کدنویسی کم/بدون کدنویسی در Azure ML
## دستورالعملها
diff --git a/translations/fa/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/fa/5-Data-Science-In-Cloud/19-Azure/README.md
index ce9f2150..cc730d3b 100644
--- a/translations/fa/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/fa/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# علم داده در فضای ابری: روش "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/fa/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/fa/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 4181b7dd..92a292eb 100644
--- a/translations/fa/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/fa/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# پروژه علم داده با استفاده از Azure ML SDK
## دستورالعملها
diff --git a/translations/fa/5-Data-Science-In-Cloud/README.md b/translations/fa/5-Data-Science-In-Cloud/README.md
index 7dabbebd..c44ecdaf 100644
--- a/translations/fa/5-Data-Science-In-Cloud/README.md
+++ b/translations/fa/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# علم داده در فضای ابری

diff --git a/translations/fa/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/fa/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 1aedf452..bdcca4fe 100644
--- a/translations/fa/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/fa/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# علم داده در دنیای واقعی
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/fa/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/fa/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index ed0d8037..7f3db3cc 100644
--- a/translations/fa/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/fa/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# بررسی یک مجموعه داده از کامپیوتر سیارهای
## دستورالعملها
diff --git a/translations/fa/6-Data-Science-In-Wild/README.md b/translations/fa/6-Data-Science-In-Wild/README.md
index d9ea6824..4425b8b7 100644
--- a/translations/fa/6-Data-Science-In-Wild/README.md
+++ b/translations/fa/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# علم داده در دنیای واقعی
کاربردهای عملی علم داده در صنایع مختلف.
diff --git a/translations/fa/AGENTS.md b/translations/fa/AGENTS.md
index 459aca93..93ef6395 100644
--- a/translations/fa/AGENTS.md
+++ b/translations/fa/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## نمای کلی پروژه
diff --git a/translations/fa/CODE_OF_CONDUCT.md b/translations/fa/CODE_OF_CONDUCT.md
index f242d6cf..fb3c8b9d 100644
--- a/translations/fa/CODE_OF_CONDUCT.md
+++ b/translations/fa/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# منشور رفتار کد متنباز مایکروسافت
این پروژه منشور رفتار کد متنباز مایکروسافت را پذیرفته است. [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
diff --git a/translations/fa/CONTRIBUTING.md b/translations/fa/CONTRIBUTING.md
index 84fbdb1b..8695e83e 100644
--- a/translations/fa/CONTRIBUTING.md
+++ b/translations/fa/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# مشارکت در آموزش مقدماتی علم داده
از علاقه شما به مشارکت در برنامه آموزشی مقدماتی علم داده سپاسگزاریم! ما از مشارکتهای جامعه استقبال میکنیم.
diff --git a/translations/fa/INSTALLATION.md b/translations/fa/INSTALLATION.md
index b140384a..71a26af7 100644
--- a/translations/fa/INSTALLATION.md
+++ b/translations/fa/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# راهنمای نصب
این راهنما به شما کمک میکند محیط خود را برای کار با دوره آموزشی «علم داده برای مبتدیان» آماده کنید.
diff --git a/translations/fa/README.md b/translations/fa/README.md
index dbb5bee2..ff2a7759 100644
--- a/translations/fa/README.md
+++ b/translations/fa/README.md
@@ -1,256 +1,248 @@
-
-# علم داده برای مبتدیان - یک برنامه درسی
+# علم داده برای مبتدیان - یک برنامه آموزشی
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
+[](http://makeapullrequest.com)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
-[](https://discord.gg/nTYy5BXMWG)
+[](https://discord.gg/nTYy5BXMWG)
[](https://aka.ms/foundry/forum)
-مدافعان ابر آزور در مایکروسافت مفتخرند که یک برنامه درسی ۱۰ هفتهای و شامل ۲۰ درس درباره علم داده ارائه دهند. هر درس شامل آزمونهای قبل و بعد از درس، دستورالعملهای مکتوب برای انجام درس، یک راهحل و یک تکلیف است. روش آموزشی ما مبتنی بر پروژه به شما امکان میدهد همزمان با ساخت پروژهها یاد بگیرید؛ روشی اثباتشده برای تثبیت مهارتهای جدید.
+مدافعان ابری Azure در مایکروسافت مفتخرند که برنامهای ده هفتهای، شامل ۲۰ درس، با موضوع علم داده ارائه دهند. هر درس شامل آزمونهای قبل و بعد از درس، دستورالعملهای مکتوب برای تکمیل درس، راهحل و تمرین است. روش آموزش مبتنی بر پروژه ما به شما اجازه میدهد هنگام ساختن یاد بگیرید، که روشی اثبات شده برای تثبیت مهارتهای جدید است.
-**از نویسندگان عزیزمان صمیمانه تشکر میکنیم:** [Jasmine Greenaway](https://www.twitter.com/paladique)، [Dmitry Soshnikov](http://soshnikov.com)، [Nitya Narasimhan](https://twitter.com/nitya)، [Jalen McGee](https://twitter.com/JalenMcG)، [Jen Looper](https://twitter.com/jenlooper)، [Maud Levy](https://twitter.com/maudstweets)، [Tiffany Souterre](https://twitter.com/TiffanySouterre)، [Christopher Harrison](https://www.twitter.com/geektrainer).
+**تشکر فراوان از نویسندگان ما:** [Jasmine Greenaway](https://www.twitter.com/paladique)، [Dmitry Soshnikov](http://soshnikov.com)، [Nitya Narasimhan](https://twitter.com/nitya)، [Jalen McGee](https://twitter.com/JalenMcG)، [Jen Looper](https://twitter.com/jenlooper)، [Maud Levy](https://twitter.com/maudstweets)، [Tiffany Souterre](https://twitter.com/TiffanySouterre)، [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 تشکر ویژه 🙏 از نویسندگان، بازبینان و مشارکتکنندگان محتوا از [سفیران دانشجویی مایکروسافت](https://studentambassadors.microsoft.com/)،** به ویژه آریان آرورا، [Aditya Garg](https://github.com/AdityaGarg00)، [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/)، [Ankita Singh](https://www.linkedin.com/in/ankitasingh007)، [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/)، [Arpita Das](https://www.linkedin.com/in/arpitadas01/)، ChhailBihari Dubey، [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor)، [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb)، [Majd Safi](https://www.linkedin.com/in/majd-s/)، [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/)، [Miguel Correa](https://www.linkedin.com/in/miguelmque/)، [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119)، [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum)، [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/)، [Rohit Yadav](https://www.linkedin.com/in/rty2423)، Samridhi Sharma، [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)،
-[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/)، [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/)، Yogendrasingh Pawar، [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/)، [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
+**🙏 سپاس ویژه 🙏 از نویسندگان، بازبینان و مشارکتکنندگان محتوا از [سفیران دانشجویی مایکروسافت](https://studentambassadors.microsoft.com/)،** به ویژه آریان آرورا، [Aditya Garg](https://github.com/AdityaGarg00)، [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/)، [Ankita Singh](https://www.linkedin.com/in/ankitasingh007)، [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/)، [Arpita Das](https://www.linkedin.com/in/arpitadas01/)، ChhailBihari Dubey، [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor)، [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb)، [Majd Safi](https://www.linkedin.com/in/majd-s/)، [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/)، [Miguel Correa](https://www.linkedin.com/in/miguelmque/)، [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119)، [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum)، [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/)، [Rohit Yadav](https://www.linkedin.com/in/rty2423)، Samridhi Sharma، [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)،
+[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/)، [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/)، Yogendrasingh Pawar ، [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/)، [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| علم داده برای مبتدیان - _یادداشت دستی توسط [@nitya](https://twitter.com/nitya)_ |
+| علم داده برای مبتدیان - _یادداشت تصویری توسط [@nitya](https://twitter.com/nitya)_ |
-### 🌐 پشتیبانی چندزبانه
+### 🌐 پشتیبانی چندزبان
-#### پشتیبانی شده توسط GitHub Action (خودکار و همیشه بهروز)
+#### پشتیبانی شده از طریق GitHub Action (خودکار و همیشه بهروز)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](./README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[عربی](../ar/README.md) | [بنگالی](../bn/README.md) | [بلغاری](../bg/README.md) | [برمهای (میانمار)](../my/README.md) | [چینی (ساده)](../zh-CN/README.md) | [چینی (سنتی، هنگکنگ)](../zh-HK/README.md) | [چینی (سنتی، ماکائو)](../zh-MO/README.md) | [چینی (سنتی، تایوان)](../zh-TW/README.md) | [کرواتی](../hr/README.md) | [چکی](../cs/README.md) | [دانمارکی](../da/README.md) | [هلندی](../nl/README.md) | [استونیایی](../et/README.md) | [فنلاندی](../fi/README.md) | [فرانسوی](../fr/README.md) | [آلمانی](../de/README.md) | [یونانی](../el/README.md) | [عبری](../he/README.md) | [هندی](../hi/README.md) | [مجارستانی](../hu/README.md) | [اندونزیایی](../id/README.md) | [ایتالیایی](../it/README.md) | [ژاپنی](../ja/README.md) | [کانادا](../kn/README.md) | [کرهای](../ko/README.md) | [لیتوانیایی](../lt/README.md) | [مالایی](../ms/README.md) | [مالایالام](../ml/README.md) | [مراتی](../mr/README.md) | [نپالی](../ne/README.md) | [زبان پیجین نیجریهای](../pcm/README.md) | [نروژی](../no/README.md) | [فارسی (Farsi)](./README.md) | [لهستانی](../pl/README.md) | [پرتغالی (برزیل)](../pt-BR/README.md) | [پرتغالی (پرتغال)](../pt-PT/README.md) | [پنجابی (گورموخی)](../pa/README.md) | [رومانیایی](../ro/README.md) | [روسی](../ru/README.md) | [صربی (سیریلیک)](../sr/README.md) | [اسلواکی](../sk/README.md) | [اسلوونیایی](../sl/README.md) | [اسپانیایی](../es/README.md) | [سواحیلی](../sw/README.md) | [سوئدی](../sv/README.md) | [تاگالوگ (فیلیپینی)](../tl/README.md) | [تامیل](../ta/README.md) | [تلوگو](../te/README.md) | [تایلندی](../th/README.md) | [ترکی](../tr/README.md) | [اوکراینی](../uk/README.md) | [اردو](../ur/README.md) | [ویتنامی](../vi/README.md)
-> **ترجیح میدهید محلی کلون کنید؟**
+> **ترجیح میدهید بهصورت محلی کلون کنید؟**
-> این مخزن شامل بیش از ۵۰ ترجمه زبان است که اندازه دانلود را به طور قابل توجهی افزایش میدهد. برای کلون کردن بدون ترجمهها، از sparse checkout استفاده کنید:
+> این مخزن بیش از ۵۰ ترجمه زبان دارد که به طور قابل توجهی حجم دانلود را افزایش میدهد. برای کلون بدون ترجمه، از sparse checkout استفاده کنید:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> این به شما همه چیز را میدهد تا دوره را کامل کنید با سرعت دانلود بسیار سریعتر.
+> این به شما همه چیز لازم برای تکمیل دوره را با سرعت دانلود بسیار بالاتر میدهد.
-**اگر مایلید زبانهای ترجمه بیشتری پشتیبانی شوند، فهرست آنها در [اینجا](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) موجود است**
+**اگر مایل هستید زبانهای بیشتری پشتیبانی شوند، فهرست آنها را در [اینجا](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) ببینید**
-#### به جامعه ما بپیوندید
-[](https://discord.gg/nTYy5BXMWG)
+#### به جامعه ما بپیوندید
+[](https://discord.gg/nTYy5BXMWG)
-ما یک سری آموزش Discord با موضوع یادگیری با هوش مصنوعی داریم، برای کسب اطلاعات بیشتر و پیوستن به ما به [سری آموزش با هوش مصنوعی](https://aka.ms/learnwithai/discord) از ۱۸ تا ۳۰ سپتامبر ۲۰۲۵ مراجعه کنید. نکات و ترفندهایی برای استفاده از GitHub Copilot در علم داده دریافت خواهید کرد.
+ما سری آموزش یادگیری با هوش مصنوعی در دیسکورد داریم، بیشتر بدانید و از ۱۸ تا ۳۰ سپتامبر ۲۰۲۵ به ما بپیوندید در [سری یادگیری با هوش مصنوعی](https://aka.ms/learnwithai/discord). در این سری نکات و ترفندهای استفاده از GitHub Copilot برای علم داده به شما ارائه میشود.
-
+
# آیا دانشجو هستید؟
-برای شروع از منابع زیر استفاده کنید:
+با منابع زیر شروع کنید:
-- [صفحه مرکز دانشجویی](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) در این صفحه منابع مبتدی، بستههای دانشجویی و حتی روشهایی برای دریافت کوپن رایگان گواهینامه را خواهید یافت. این صفحهای است که میخواهید در نشانهگذاری خود داشته باشید و هر از چندگاهی بررسی کنید زیرا حداقل ماهانه محتوا را بهروزرسانی میکنیم.
-- [سفیران دانشجویی مایکروسافت](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) به یک جامعه جهانی از سفیران دانشجویی بپیوندید؛ این میتواند راه ورود شما به مایکروسافت باشد.
+- [صفحه مرکز دانشجو](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) در این صفحه منابع مبتدی، بستههای دانشجویی و حتی راههایی برای دریافت کوپن رایگان گواهینامه را خواهید یافت. این صفحهای است که میخواهید در مرورگرتان ذخیره کنید و هر از گاهی آن را بررسی کنید چون حداقل ماهی یک بار محتوا بهروزرسانی میشود.
+- [سفیران دانشجویی مایکروسافت](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) به یک جامعه جهانی از سفیران دانشجویی بپیوندید، این میتواند راه شما برای ورود به مایکروسافت باشد.
# شروع به کار
## 📚 مستندات
-- **[راهنمای نصب](INSTALLATION.md)** - دستورالعملهای گام به گام برای راهاندازی برای مبتدیان
-- **[راهنمای استفاده](USAGE.md)** - مثالها و جریانهای کاری رایج
+- **[راهنمای نصب](INSTALLATION.md)** - دستورالعملهای گام به گام نصب برای مبتدیان
+- **[راهنمای استفاده](USAGE.md)** - مثالها و روشهای کاری رایج
- **[عیبیابی](TROUBLESHOOTING.md)** - راهحلهای مشکلات رایج
-- **[راهنمای مشارکت](CONTRIBUTING.md)** - چگونه در این پروژه مشارکت کنید
-- **[برای معلمان](for-teachers.md)** - راهنمای تدریس و منابع کلاسی
+- **[راهنمای مشارکت](CONTRIBUTING.md)** - چگونگی مشارکت در این پروژه
+- **[برای معلمان](for-teachers.md)** - راهنمایی برای تدریس و منابع کلاس درس
## 👨🎓 برای دانشجویان
-> **کاملاً مبتدی:** تازه با علم داده آشنا شدهاید؟ با [مثالهای دوستانه برای مبتدیان](examples/README.md) ما شروع کنید! این مثالهای ساده و دارای توضیح به شما کمک میکند مبانی را درک کنید قبل از اینکه به کل برنامه درسی بپردازید.
-> **[دانشجویان](https://aka.ms/student-page):** برای استفاده از این برنامه درسی به تنهایی، کل مخزن را فورک کنید و تمرینها را به ترتیب انجام دهید، با یک آزمون قبل از درس شروع کنید. سپس درس را بخوانید و بقیه فعالیتها را انجام دهید. تلاش کنید پروژهها را با درک درسها بسازید نه صرفاً کپی کردن کد راهحل؛ هرچند کد راهحل در پوشه /solutions در هر درس مبتنی بر پروژه موجود است. ایده دیگر تشکیل گروه مطالعه با دوستان و طی کردن محتوا با هم است. برای مطالعه بیشتر، [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) را توصیه میکنیم.
+> **مبتدیان کامل**: تازهکار در علم داده هستید؟ با [مثالهای مناسب مبتدیان](examples/README.md) ما شروع کنید! این مثالهای ساده و خوب توضیح داده شده به شما کمک میکنند قبل از ورود کامل به برنامه، مباحث پایه را درک کنید.
+> **[دانشجویان](https://aka.ms/student-page)**: برای استفاده مستقل از این برنامه، کل مخزن را فورک کنید و تمرینها را خودتان انجام دهید، ابتدا با آزمون قبل از درس شروع کنید. سپس درس را بخوانید و بقیه فعالیتها را انجام دهید. سعی کنید پروژهها را با فهم درسها بسازید نه کپی کردن کد راهحل؛ البته کدهای آن در پوشه /solutions هر درس پروژهمحور موجود است. ایده دیگر تشکیل گروه مطالعه با دوستان و مرور همزمان محتواست. برای مطالعه بیشتر، ما [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) را توصیه میکنیم.
**شروع سریع:**
-1. برای راهاندازی محیط خود، [راهنمای نصب](INSTALLATION.md) را بررسی کنید
-2. برای یادگیری نحوه کار با برنامه درسی، [راهنمای استفاده](USAGE.md) را مرور کنید
-3. با درس ۱ شروع کرده و به ترتیب ادامه دهید
-4. برای پشتیبانی به [جامعه Discord ما](https://aka.ms/ds4beginners/discord) بپیوندید
+1. راهنمای [نصب](INSTALLATION.md) را برای تنظیم محیط بررسی کنید
+2. راهنمای [استفاده](USAGE.md) را مطالعه کنید تا نحوه کار با برنامه را یاد بگیرید
+3. از درس ۱ شروع کنید و به ترتیب پیش بروید
+4. به [جامعه دیسکورد ما](https://aka.ms/ds4beginners/discord) برای پشتیبانی بپیوندید
## 👩🏫 برای معلمان
-> **معلمان:** ما [برخی پیشنهادها](for-teachers.md) را درباره چگونگی استفاده از این برنامه درسی ارائه دادهایم. مشتاقانه منتظر بازخورد شما در [انجمن بحث ما](https://github.com/microsoft/Data-Science-For-Beginners/discussions) هستیم!
+> **معلمان**: ما [برخی پیشنهادات](for-teachers.md) برای نحوه استفاده از این برنامه را ارائه دادهایم. خوشحال میشویم بازخورد شما را در [انجمن بحث ما](https://github.com/microsoft/Data-Science-For-Beginners/discussions) بشنویم!
+## ملاقات با تیم
-## تیم را ملاقات کنید
-[](https://youtu.be/8mzavjQSMM4 "ویدئوی تبلیغاتی")
+[](https://youtu.be/8mzavjQSMM4 "ویدیو تبلیغاتی")
-**گیف توسط** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+**گیف از** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 برای مشاهده ویدئویی درباره پروژه و افرادی که آن را ایجاد کردهاند، روی تصویر بالا کلیک کنید!
+> 🎥 برای دیدن ویدیو درباره پروژه و افرادی که آن را ساختهاند، روی تصویر بالا کلیک کنید!
## روش آموزشی
-در ساخت این برنامه درسی دو اصل آموزشی را انتخاب کردهایم: اطمینان از اینکه مبتنی بر پروژه باشد و شامل آزمونهای مکرر باشد. تا پایان این مجموعه، دانشآموزان اصول پایهای علم داده را خواهند آموخت، از جمله مفاهیم اخلاقی، آمادهسازی دادهها، روشهای مختلف کار با داده، تجسم داده، تحلیل داده، موارد کاربرد واقعی علم داده و موارد بیشتر.
+ما در حین ساخت این برنامه درسی، دو اصل آموزش را انتخاب کردیم: اطمینان از پروژهمحور بودن آن و گنجاندن آزمونهای مکرر. تا پایان این سری، دانشآموزان اصول پایهای علم داده، از جمله مفاهیم اخلاقی، آمادهسازی دادهها، روشهای مختلف کار با دادهها، مصورسازی داده، تحلیل داده، موارد کاربرد واقعی علم داده و موارد بیشتر را خواهند آموخت.
-علاوه بر این، یک آزمون کمریسک قبل از کلاس قصد دانشآموز برای یادگیری یک موضوع را تنظیم میکند، در حالی که پس از کلاس آزمون دوم به حفظ بهتر مطالب کمک میکند. این برنامه درسی برای انعطافپذیری و سرگرمی طراحی شده است و میتوان آن را بهصورت کامل یا جزئی گذراند. پروژهها از ساده شروع شده و تا پایان دوره ۱۰ هفتهای پیچیدهتر میشوند.
+علاوه بر این، یک آزمون با ریسک پایین قبل از کلاس، نیت دانشآموز را برای یادگیری موضوعی مشخص میکند، در حالی که آزمون دوم پس از کلاس، حفظ بیشتر اطلاعات را تضمین میکند. این برنامه درسی به گونهای طراحی شده است که انعطافپذیر و سرگرمکننده باشد و میتوان آن را کامل یا بخشی از آن را گذراند. پروژهها از کوچک شروع شده و تا پایان چرخه ۱۰ هفتهای به تدریج پیچیدهتر میشوند.
-> راهنمای [قوانین رفتار](CODE_OF_CONDUCT.md)، [مشارکت](CONTRIBUTING.md)، [ترجمه](TRANSLATIONS.md) ما را بیابید. ما از بازخورد سازنده شما استقبال میکنیم!
+> راهنمای [رفتار ما](CODE_OF_CONDUCT.md)، [مشارکت](CONTRIBUTING.md) و [ترجمه](TRANSLATIONS.md) را بیابید. ما بازخورد سازنده شما را خوشآمد میگوییم!
-## هر درس شامل موارد زیر است:
+## هر درس شامل:
-- یادداشت اسکیچ اختیاری
-- ویدئوی تکمیلی اختیاری
-- آزمون گرمکردن قبل از درس
+- خلاصهنویسی اختیاری
+- ویدیوی تکمیلی اختیاری
+- آزمون گرمکننده قبل از درس
- درس مکتوب
-- در دروس مبتنی بر پروژه، راهنمای مرحله به مرحله برای ساخت پروژه
+- برای درسهای پروژهمحور، راهنماهای گامبهگام برای ساخت پروژه
- بررسی دانش
- یک چالش
-- مطالعات تکمیلی
-- تمرین
+- مطالعه تکمیلی
+- تکلیف
- [آزمون پس از درس](https://ff-quizzes.netlify.app/en/)
-> **یک نکته درباره آزمونها**: همه آزمونها در پوشه Quiz-App قرار دارند، مجموعاً ۴۰ آزمون با سه سوال هر کدام. این آزمونها در داخل دروس لینک شدهاند، اما میتوان برنامه آزمون را به صورت محلی اجرا کرد یا در Azure مستقر نمود؛ دستورالعملها در پوشه `quiz-app` موجود است. این آزمونها به تدریج بومیسازی میشوند.
+> **نکتهای درباره آزمونها**: تمام آزمونها در پوشه Quiz-App قرار دارند، مجموعاً ۴۰ آزمون هرکدام با سه سؤال. آنها از داخل درسها لینک شدهاند، اما اپلیکیشن آزمون را میتوان به صورت محلی اجرا یا روی Azure مستقر کرد؛ دستورالعملهای آن در پوشه `quiz-app` است. آنها به تدریج به زبانهای مختلف بومیسازی میشوند.
-## 🎓 مثالهای مناسب مبتدیان
+## 🎓 نمونههای مناسب مبتدیان
-**تازهکار در علم داده؟** ما یک [دایرکتوری مثالها](examples/README.md) ویژه با کدهای ساده و خوب توضیح داده شده ایجاد کردهایم تا به شما کمک کند شروع کنید:
+**تازهکار در علم داده هستید؟** ما دایرکتوری ویژهای از نمونهها ایجاد کردهایم [examples directory](examples/README.md) با کد ساده و کامنتگذاری شده برای کمک به شروع شما:
- 🌟 **سلام دنیا** - اولین برنامه علم داده شما
-- 📂 **بارگذاری دادهها** - یادگیری خواندن و بررسی مجموعه دادهها
+- 📂 **بارگذاری داده** - یاد بگیرید چگونه دادهها را بخوانید و کاوش کنید
- 📊 **تحلیل ساده** - محاسبه آمار و یافتن الگوها
-- 📈 **تجسم پایهای** - ساخت نمودارها و گرافها
-- 🔬 **پروژه واقعی** - جریان کاری کامل از ابتدا تا پایان
+- 📈 **مصورسازی پایهای** - ساخت نمودارها و گرافها
+- 🔬 **پروژه واقعی** - جریان کاری کامل از شروع تا پایان
-هر مثال شامل توضیحات دقیق برای هر مرحله است، که آن را برای مبتدیان مطلق ایدهآل میکند!
+هر نمونه شامل توضیحات دقیق در مورد هر مرحله است، بنابراین برای مبتدیان مطلق بسیار مناسب است!
-👉 **[شروع با مثالها](examples/README.md)** 👈
+👉 **[شروع با نمونهها](examples/README.md)** 👈
-## دروس
+## درسها
-||
+||
|:---:|
-| علم داده برای مبتدیان: نقشه راه - _یادداشت اسکیچ توسط [@nitya](https://twitter.com/nitya)_ |
+| نقشه راه علم داده برای مبتدیان - _خلاصهنویسی توسط [@nitya](https://twitter.com/nitya)_ |
| شماره درس | موضوع | گروه درس | اهداف یادگیری | درس مرتبط | نویسنده |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| ۰۱ | تعریف علم داده | [مقدمه](1-Introduction/README.md) | آشنایی با مفاهیم پایه علم داده و ارتباط آن با هوش مصنوعی، یادگیری ماشین و دادههای بزرگ. | [درس](1-Introduction/01-defining-data-science/README.md) [ویدئو](https://youtu.be/beZ7Mb_oz9I) | [دیمیترای](http://soshnikov.com) |
-| ۰۲ | اخلاق علم داده | [مقدمه](1-Introduction/README.md) | مفاهیم، چالشها و چارچوبهای اخلاق داده. | [درس](1-Introduction/02-ethics/README.md) | [نیتیا](https://twitter.com/nitya) |
-| ۰۳ | تعریف داده | [مقدمه](1-Introduction/README.md) | چگونه دادهها دستهبندی میشوند و منابع رایج آنها. | [درس](1-Introduction/03-defining-data/README.md) | [جاسمین](https://www.twitter.com/paladique) |
-| ۰۴ | مقدمهای بر آمار و احتمال | [مقدمه](1-Introduction/README.md) | تکنیکهای ریاضی احتمال و آمار برای درک دادهها. | [درس](1-Introduction/04-stats-and-probability/README.md) [ویدئو](https://youtu.be/Z5Zy85g4Yjw) | [دیمیترای](http://soshnikov.com) |
-| ۰۵ | کار با دادههای رابطهای | [کار با داده](2-Working-With-Data/README.md) | مقدمهای بر دادههای رابطهای و اصول کاوش و تحلیل این دادهها با زبان ساختیافته پرسوجو، معروف به SQL ("سیکوئل"). | [درس](2-Working-With-Data/05-relational-databases/README.md) | [کریستوفر](https://www.twitter.com/geektrainer) | | |
-| ۰۶ | کار با دادههای NoSQL | [کار با داده](2-Working-With-Data/README.md) | مقدمهای بر دادههای غیررابطهای، انواع مختلف آن و مبانی کاوش و تحلیل پایگاه دادههای اسنادی. | [درس](2-Working-With-Data/06-non-relational/README.md) | [جاسمین](https://twitter.com/paladique)|
-| ۰۷ | کار با پایتون | [کار با داده](2-Working-With-Data/README.md) | اصول استفاده از پایتون برای کاوش دادهها با کتابخانههایی مانند Pandas. آشنایی پایه با برنامهنویسی پایتون توصیه میشود. | [درس](2-Working-With-Data/07-python/README.md) [ویدئو](https://youtu.be/dZjWOGbsN4Y) | [دیمیترای](http://soshnikov.com) |
-| ۰۸ | آمادهسازی دادهها | [کار با داده](2-Working-With-Data/README.md) | موضوعات مربوط به تکنیکهای پاکسازی و تبدیل داده برای مواجهه با چالشهای دادههای ناقص، نادرست یا کمبود اطلاعات. | [درس](2-Working-With-Data/08-data-preparation/README.md) | [جاسمین](https://www.twitter.com/paladique) |
-| ۰۹ | تجسم مقادیر | [تجسم داده](3-Data-Visualization/README.md) | یادگیری استفاده از Matplotlib برای تجسم دادههای پرندگان 🦆 | [درس](3-Data-Visualization/09-visualization-quantities/README.md) | [جن](https://twitter.com/jenlooper) |
-| ۱۰ | تجسم توزیع دادهها | [تجسم داده](3-Data-Visualization/README.md) | تجسم مشاهدات و روندها در بازهای مشخص. | [درس](3-Data-Visualization/10-visualization-distributions/README.md) | [جن](https://twitter.com/jenlooper) |
-| ۱۱ | تجسم نسبتها | [تجسم داده](3-Data-Visualization/README.md) | تجسم درصدهای گسسته و گروهبندی شده. | [درس](3-Data-Visualization/11-visualization-proportions/README.md) | [جن](https://twitter.com/jenlooper) |
-| ۱۲ | تجسم روابط | [تجسم داده](3-Data-Visualization/README.md) | تجسم ارتباطات و همبستگیها بین مجموعههای داده و متغیرهای آنها. | [درس](3-Data-Visualization/12-visualization-relationships/README.md) | [جن](https://twitter.com/jenlooper) |
-| ۱۳ | تجسمهای معنادار | [تجسم داده](3-Data-Visualization/README.md) | تکنیکها و راهنمایی برای ارزشمند کردن تجسمها جهت حل مؤثر مسائل و کسب بینشها. | [درس](3-Data-Visualization/13-meaningful-visualizations/README.md) | [جن](https://twitter.com/jenlooper) |
-| ۱۴ | مقدمهای بر چرخه زندگی علم داده | [چرخه زندگی](4-Data-Science-Lifecycle/README.md) | معرفی چرخه زندگی علم داده و اولین گام آن یعنی کسب و استخراج داده. | [درس](4-Data-Science-Lifecycle/14-Introduction/README.md) | [جاسمین](https://twitter.com/paladique) |
-| ۱۵ | تحلیل | [چرخه زندگی](4-Data-Science-Lifecycle/README.md) | این مرحله از چرخه زندگی علم داده بر تکنیکهای تحلیل داده متمرکز است. | [درس](4-Data-Science-Lifecycle/15-analyzing/README.md) | [جاسمین](https://twitter.com/paladique) | | |
-| ۱۶ | ارتباطات | [چرخه زندگی](4-Data-Science-Lifecycle/README.md) | این مرحله از چرخه زندگی علم داده بر ارائه بینشهای داده به طریقی که تصمیمگیرندگان به راحتی بفهمند، متمرکز است. | [درس](4-Data-Science-Lifecycle/16-communication/README.md) | [جالن](https://twitter.com/JalenMcG) | | |
-| ۱۷ | علم داده در فضای ابری | [داده ابری](5-Data-Science-In-Cloud/README.md) | این مجموعه درسها علم داده در فضای ابری و مزایای آن را معرفی میکند. | [درس](5-Data-Science-In-Cloud/17-Introduction/README.md) | [تیفانی](https://twitter.com/TiffanySouterre) و [ماود](https://twitter.com/maudstweets) |
-| ۱۸ | علم داده در فضای ابری | [داده ابری](5-Data-Science-In-Cloud/README.md) | آموزش مدلها با استفاده از ابزارهای کد پایین. |[درس](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [تیفانی](https://twitter.com/TiffanySouterre) و [ماود](https://twitter.com/maudstweets) |
-| ۱۹ | علم داده در فضای ابری | [داده ابری](5-Data-Science-In-Cloud/README.md) | استقرار مدلها با استفاده از Azure Machine Learning Studio. | [درس](5-Data-Science-In-Cloud/19-Azure/README.md)| [تیفانی](https://twitter.com/TiffanySouterre) و [ماود](https://twitter.com/maudstweets) |
-| ۲۰ | علم داده در دنیای واقعی | [در دنیای واقعی](6-Data-Science-In-Wild/README.md) | پروژههای مبتنی بر علم داده در دنیای واقعی. | [درس](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [نیتیا](https://twitter.com/nitya) |
-
-## گیتهاب کدسپیس
-
-برای باز کردن این نمونه در یک Codespace مراحل زیر را دنبال کنید:
-۱. منوی کشویی Code را کلیک کنید و گزینه Open with Codespaces را انتخاب کنید.
-۲. در پایین پنل گزینه + New codespace را انتخاب کنید.
-برای اطلاعات بیشتر، مستندات [GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) را بررسی کنید.
+| 01 | تعریف علم داده | [مقدمه](1-Introduction/README.md) | یادگیری مفاهیم پایه علم داده و ارتباط آن با هوش مصنوعی، یادگیری ماشین و دادههای بزرگ. | [درس](1-Introduction/01-defining-data-science/README.md) [ویدیو](https://youtu.be/beZ7Mb_oz9I) | [دیمیتری](http://soshnikov.com) |
+| 02 | اخلاق علم داده | [مقدمه](1-Introduction/README.md) | مفاهیم اخلاق داده، چالشها و چارچوبها. | [درس](1-Introduction/02-ethics/README.md) | [نیتیا](https://twitter.com/nitya) |
+| 03 | تعریف داده | [مقدمه](1-Introduction/README.md) | نحوه طبقهبندی دادهها و منابع رایج آن. | [درس](1-Introduction/03-defining-data/README.md) | [جازمین](https://www.twitter.com/paladique) |
+| 04 | مقدمهای بر آمار و احتمال | [مقدمه](1-Introduction/README.md) | تکنیکهای ریاضی احتمال و آمار برای درک دادهها. | [درس](1-Introduction/04-stats-and-probability/README.md) [ویدیو](https://youtu.be/Z5Zy85g4Yjw) | [دیمیتری](http://soshnikov.com) |
+| 05 | کار با دادههای رابطهای | [کار با داده](2-Working-With-Data/README.md) | معرفی دادههای رابطهای و اصول کاوش و تحلیل آن با زبان ساختیافته پرسوجو، یا همان SQL (خوانده شده "سیکول"). | [درس](2-Working-With-Data/05-relational-databases/README.md) | [کریستوفر](https://www.twitter.com/geektrainer) | | |
+| 06 | کار با دادههای NoSQL | [کار با داده](2-Working-With-Data/README.md) | معرفی دادههای غیررابطهای، انواع مختلف آن و اصول کاوش و تحلیل پایگاههای داده سندی. | [درس](2-Working-With-Data/06-non-relational/README.md) | [جازمین](https://twitter.com/paladique)|
+| 07 | کار با پایتون | [کار با داده](2-Working-With-Data/README.md) | اصول استفاده از پایتون برای کاوش دادهها با کتابخانههایی مانند Pandas. دانش پایهای برنامهنویسی پایتون توصیه میشود. | [درس](2-Working-With-Data/07-python/README.md) [ویدیو](https://youtu.be/dZjWOGbsN4Y) | [دیمیتری](http://soshnikov.com) |
+| 08 | آمادهسازی داده | [کار با داده](2-Working-With-Data/README.md) | موضوعات مربوط به تکنیکهای داده برای پاکسازی و تبدیل دادهها به منظور مقابله با چالشهای دادههای گمشده، نادرست یا ناقص. | [درس](2-Working-With-Data/08-data-preparation/README.md) | [جازمین](https://www.twitter.com/paladique) |
+| 09 | مصورسازی مقادیر | [مصورسازی داده](3-Data-Visualization/README.md) | یادگیری استفاده از Matplotlib برای مصورسازی دادههای پرندگان 🦆 | [درس](3-Data-Visualization/09-visualization-quantities/README.md) | [جن](https://twitter.com/jenlooper) |
+| 10 | مصورسازی توزیع دادهها | [مصورسازی داده](3-Data-Visualization/README.md) | مصورسازی مشاهدات و روندها در یک بازه. | [درس](3-Data-Visualization/10-visualization-distributions/README.md) | [جن](https://twitter.com/jenlooper) |
+| 11 | مصورسازی نسبتها | [مصورسازی داده](3-Data-Visualization/README.md) | مصورسازی درصدهای گسسته و گروهبندی شده. | [درس](3-Data-Visualization/11-visualization-proportions/README.md) | [جن](https://twitter.com/jenlooper) |
+| 12 | مصورسازی روابط | [مصورسازی داده](3-Data-Visualization/README.md) | مصورسازی ارتباطات و همبستگی بین مجموعههای داده و متغیرهای آنها. | [درس](3-Data-Visualization/12-visualization-relationships/README.md) | [جن](https://twitter.com/jenlooper) |
+| 13 | مصورسازیهای معنادار | [مصورسازی داده](3-Data-Visualization/README.md) | تکنیکها و راهنماییهایی برای ارزشمند کردن مصورسازیها جهت حل مؤثر مسئله و کسب بینش. | [درس](3-Data-Visualization/13-meaningful-visualizations/README.md) | [جن](https://twitter.com/jenlooper) |
+| 14 | مقدمهای بر چرخه عمر علم داده | [چرخه عمر](4-Data-Science-Lifecycle/README.md) | مقدمهای بر چرخه عمر علم داده و اولین گام آن یعنی کسب و استخراج داده. | [درس](4-Data-Science-Lifecycle/14-Introduction/README.md) | [جازمین](https://twitter.com/paladique) |
+| 15 | تحلیل | [چرخه عمر](4-Data-Science-Lifecycle/README.md) | این مرحله از چرخه عمر علم داده بر تکنیکهای تحلیل داده متمرکز است. | [درس](4-Data-Science-Lifecycle/15-analyzing/README.md) | [جازمین](https://twitter.com/paladique) | | |
+| 16 | ارتباطات | [چرخه عمر](4-Data-Science-Lifecycle/README.md) | این مرحله از چرخه عمر علم داده بر ارائه بینشهای حاصل از دادهها به گونهای که تصمیمگیرندگان راحتتر درک کنند، تمرکز دارد. | [درس](4-Data-Science-Lifecycle/16-communication/README.md) | [جالن](https://twitter.com/JalenMcG) | | |
+| 17 | علم داده در فضای ابری | [داده ابری](5-Data-Science-In-Cloud/README.md) | این سری از درسها علم داده در فضای ابری و فواید آن را معرفی میکند. | [درس](5-Data-Science-In-Cloud/17-Introduction/README.md) | [تیفانی](https://twitter.com/TiffanySouterre) و [ماود](https://twitter.com/maudstweets) |
+| 18 | علم داده در فضای ابری | [داده ابری](5-Data-Science-In-Cloud/README.md) | آموزش مدلها با استفاده از ابزارهای کد پایین (Low Code). |[درس](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [تیفانی](https://twitter.com/TiffanySouterre) و [ماود](https://twitter.com/maudstweets) |
+| 19 | علم داده در فضای ابری | [داده ابری](5-Data-Science-In-Cloud/README.md) | استقرار مدلها با Azure Machine Learning Studio. | [درس](5-Data-Science-In-Cloud/19-Azure/README.md)| [تیفانی](https://twitter.com/TiffanySouterre) و [ماود](https://twitter.com/maudstweets) |
+| 20 | علم داده در زندگی واقعی | [در محیط واقعی](6-Data-Science-In-Wild/README.md) | پروژههای مبتنی بر علم داده در دنیای واقعی. | [درس](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [نیتیا](https://twitter.com/nitya) |
+
+## کد اسپیسهای گیتهاب
+
+برای باز کردن این نمونه در یک کد اسپیس این مراحل را دنبال کنید:
+1. منوی کشویی Code را بزنید و گزینه Open with Codespaces را انتخاب کنید.
+2. در پایین پنل، گزینه + New codespace را انتخاب کنید.
+برای اطلاعات بیشتر به [مستندات گیتهاب](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) مراجعه کنید.
## VSCode Remote - Containers
-برای باز کردن این مخزن در یک کانتینر با استفاده از دستگاه محلی و VSCode با افزونه VS Code Remote - Containers مراحل زیر را دنبال کنید:
-۱. اگر برای اولین بار است که از یک کانتینر توسعه استفاده میکنید، لطفاً اطمینان حاصل کنید که سیستم شما پیشنیازها را دارد (مثلاً Docker نصب شده باشد) در [مستندات شروع](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+برای باز کردن این مخزن در کانتینر با استفاده از ماشین محلی و VSCode از افزونه VS Code Remote - Containers این مراحل را دنبال کنید:
+
+1. اگر برای اولین بار است که از کانتینر توسعه استفاده میکنید، لطفاً اطمینان حاصل کنید که سیستم شما پیشنیازها را دارد (مثلاً Docker نصب شده است) در [مستندات شروع کار](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-برای استفاده از این مخزن، میتوانید مخزن را در یک volume ایزوله Docker باز کنید:
+برای استفاده از این مخزن، میتوانید یا مخزن را در یک Volume جداگانه Docker باز کنید:
-**توجه**: در پشت صحنه، این از فرمان Remote-Containers: **Clone Repository in Container Volume...** استفاده میکند تا کد منبع را در یک volume داکر کپی کند نه در سیستم فایل محلی. [Volumeها](https://docs.docker.com/storage/volumes/) مکانیزم ترجیحی برای حفظ دادههای کانتینر هستند.
+**توجه**: در پسزمینه این کار از فرمان Remote-Containers: **Clone Repository in Container Volume...** استفاده میکند تا کد منبع را در Volume داکر به جای فایلسیستم محلی کلون کند. [Volumeها](https://docs.docker.com/storage/volumes/) مکانیزم توصیه شده برای حفظ داده کانتینر هستند.
-یا نسخهای که بهصورت محلی کلون یا دانلود شده است را باز کنید:
+یا نسخه کلون شده یا دانلود شده محلی مخزن را باز کنید:
-- این مخزن را در سیستم فایل محلی خود کلون کنید.
-- کلید F1 را فشار دهید و فرمان **Remote-Containers: Open Folder in Container...** را انتخاب کنید.
-- نسخه کلون شده این پوشه را انتخاب کنید، منتظر شروع کانتینر بمانید و همه چیز را امتحان کنید.
+- این مخزن را در فایلسیستم محلی کلون کنید.
+- کلید F1 را بزنید و فرمان **Remote-Containers: Open Folder in Container...** را انتخاب کنید.
+- نسخه کلون شده این پوشه را انتخاب کنید، منتظر شروع کانتینر باشید، و شروع به کار کنید.
## دسترسی آفلاین
-میتوانید این مستندات را به صورت آفلاین با استفاده از [Docsify](https://docsify.js.org/#/) اجرا کنید. این مخزن را فورک کنید، [Docsify را نصب کنید](https://docsify.js.org/#/quickstart) در رایانه محلی خود، سپس در پوشه ریشه این مخزن تایپ کنید `docsify serve`. وبسایت بر روی پورت ۳۰۰۰ در localhost شما سرو خواهد شد: `localhost:3000`.
+میتوانید این مستندات را آفلاین با استفاده از [Docsify](https://docsify.js.org/#/) اجرا کنید. این مخزن را فورک کنید، [Docsify](https://docsify.js.org/#/quickstart) را روی ماشین محلی نصب کنید، سپس در پوشه ریشه این مخزن دستور `docsify serve` را اجرا کنید. وبسایت بر روی پورت ۳۰۰۰ در localhost شما: `localhost:3000` ارائه خواهد شد.
-> توجه، دفترچهها از طریق Docsify رندر نمیشوند، بنابراین هر زمان نیاز به اجرای یک دفترچه یادداشت داشتید، آن را جداگانه در VS Code با اجرای هسته Python انجام دهید.
+> توجه داشته باشید، دفترچههای نوتبوک توسط Docsify رندر نمیشوند، بنابراین هنگام نیاز به اجرای نوتبوک، آن را جداگانه در VS Code با استفاده از کرنل پایتون اجرا کنید.
## برنامههای درسی دیگر
-تیم ما برنامههای درسی دیگری تولید میکند! نگاهی بیندازید به:
+تیم ما برنامههای درسی دیگری نیز تولید میکند! ببینید:
### LangChain
[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
-### Azure / Edge / MCP / Agents
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+### Azure / Edge / MCP / عوامل
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-### سری هوش مصنوعی مولد
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+### سری هوش مصنوعی تولیدی
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
-### یادگیری پایه
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+### یادگیری اصلی
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### سری کاپیلوت
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## دریافت کمک
-**با مشکلات مواجه شدهاید؟** راهنمای [عیبیابی](TROUBLESHOOTING.md) را برای راهحل مشکلات رایج بررسی کنید.
+**با مشکلی مواجه شدهاید؟** راهنمای [رفع اشکال](TROUBLESHOOTING.md) ما را برای یافتن راهحل مشکلات رایج بررسی کنید.
-اگر گیر کردید یا سوالی درباره ساخت برنامههای هوش مصنوعی دارید، به همراه سایر یادگیرندگان و توسعهدهندگان با تجربه در بحثهای مربوط به MCP شرکت کنید. این یک جامعه حمایتی است که سوالات در آن استقبال میشود و دانش به طور آزاد به اشتراک گذاشته میشود.
+اگر گیر کردید یا سوالی درباره ساخت برنامههای هوش مصنوعی دارید، به جمع یادگیرندگان و توسعهدهندگان باتجربه ملحق شوید و در بحثها درباره MCP شرکت کنید. این یک جامعه پشتیبان است که سوالات در آن خوشآمد گفته میشوند و دانش آزادانه به اشتراک گذاشته میشود.
[](https://discord.gg/nTYy5BXMWG)
-اگر بازخورد درباره محصول دارید یا هنگام ساخت با خطا مواجه شدید، به آدرس زیر مراجعه کنید:
+اگر بازخورد محصول دارید یا هنگام ساخت با خطا مواجه شدید به آدرس زیر مراجعه کنید:
[](https://aka.ms/foundry/forum)
@@ -258,5 +250,5 @@ CO_OP_TRANSLATOR_METADATA:
**سلب مسئولیت**:
-این سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما برای دقت تلاش میکنیم، لطفاً توجه داشته باشید که ترجمههای خودکار ممکن است دارای خطاها یا نواقص باشند. سند اصلی به زبان بومی خود باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حیاتی، ترجمه حرفهای انسانی توصیه میشود. ما مسئول هیچ گونه سوءتفاهم یا برداشت نادرستی ناشی از استفاده از این ترجمه نیستیم.
+این سند با استفاده از خدمات ترجمه ماشینی هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. اگرچه ما در تلاش برای دقت هستیم، لطفاً توجه داشته باشید که ترجمههای خودکار ممکن است دارای خطا یا نواقصی باشند. سند اصلی به زبان مادری آن منبع معتبر تلقی میشود. برای اطلاعات حیاتی، استفاده از ترجمه حرفهای انسانی توصیه میشود. ما مسئول هیچ گونه سوءتفاهم یا برداشت نادرست ناشی از استفاده از این ترجمه نیستیم.
\ No newline at end of file
diff --git a/translations/fa/SECURITY.md b/translations/fa/SECURITY.md
index fa952e25..25a75292 100644
--- a/translations/fa/SECURITY.md
+++ b/translations/fa/SECURITY.md
@@ -1,12 +1,3 @@
-
## امنیت
مایکروسافت امنیت محصولات و خدمات نرمافزاری خود را جدی میگیرد، که شامل تمامی مخازن کد منبع مدیریتشده از طریق سازمانهای GitHub ما میشود، از جمله [Microsoft](https://github.com/Microsoft)، [Azure](https://github.com/Azure)، [DotNet](https://github.com/dotnet)، [AspNet](https://github.com/aspnet)، [Xamarin](https://github.com/xamarin) و [سازمانهای GitHub ما](https://opensource.microsoft.com/).
diff --git a/translations/fa/SUPPORT.md b/translations/fa/SUPPORT.md
index 46b2bef6..30abeb2f 100644
--- a/translations/fa/SUPPORT.md
+++ b/translations/fa/SUPPORT.md
@@ -1,12 +1,3 @@
-
# پشتیبانی
## چگونه مشکلات را گزارش دهیم و کمک بگیریم
diff --git a/translations/fa/TROUBLESHOOTING.md b/translations/fa/TROUBLESHOOTING.md
index 04e27cf6..26a37f8c 100644
--- a/translations/fa/TROUBLESHOOTING.md
+++ b/translations/fa/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# راهنمای رفع مشکلات
این راهنما راهحلهایی برای مشکلات رایج که ممکن است هنگام کار با دوره آموزشی «علم داده برای مبتدیان» با آن مواجه شوید ارائه میدهد.
diff --git a/translations/fa/USAGE.md b/translations/fa/USAGE.md
index 31e7fcb9..a6edea64 100644
--- a/translations/fa/USAGE.md
+++ b/translations/fa/USAGE.md
@@ -1,12 +1,3 @@
-
# راهنمای استفاده
این راهنما مثالها و جریانهای کاری رایج برای استفاده از برنامه درسی «علم داده برای مبتدیان» را ارائه میدهد.
diff --git a/translations/fa/docs/_sidebar.md b/translations/fa/docs/_sidebar.md
index b31f3cdf..b5f5068d 100644
--- a/translations/fa/docs/_sidebar.md
+++ b/translations/fa/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- مقدمه
- [تعریف علم داده](../1-Introduction/01-defining-data-science/README.md)
- [اخلاق در علم داده](../1-Introduction/02-ethics/README.md)
diff --git a/translations/fa/examples/README.md b/translations/fa/examples/README.md
index 955c5cb8..38d87171 100644
--- a/translations/fa/examples/README.md
+++ b/translations/fa/examples/README.md
@@ -1,12 +1,3 @@
-
# مثالهای مقدماتی علم داده
به دایرکتوری مثالها خوش آمدید! این مجموعه از مثالهای ساده و با توضیحات کامل طراحی شده است تا به شما کمک کند حتی اگر کاملاً مبتدی هستید، با علم داده شروع کنید.
diff --git a/translations/fa/for-teachers.md b/translations/fa/for-teachers.md
index 81a63b10..e7fb15bf 100644
--- a/translations/fa/for-teachers.md
+++ b/translations/fa/for-teachers.md
@@ -1,12 +1,3 @@
-
## برای آموزگاران
آیا مایلید از این برنامه آموزشی در کلاس خود استفاده کنید؟ لطفاً با خیال راحت این کار را انجام دهید!
diff --git a/translations/fa/quiz-app/README.md b/translations/fa/quiz-app/README.md
index 1619c1fc..6cc9df81 100644
--- a/translations/fa/quiz-app/README.md
+++ b/translations/fa/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# آزمونها
این آزمونها شامل آزمونهای قبل و بعد از جلسات آموزشی برای برنامه درسی علم داده در https://aka.ms/datascience-beginners هستند.
diff --git a/translations/fa/sketchnotes/README.md b/translations/fa/sketchnotes/README.md
index 32b42713..04e0402d 100644
--- a/translations/fa/sketchnotes/README.md
+++ b/translations/fa/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
تمام اسکچنوتها را اینجا پیدا کنید!
## اعتبارها
diff --git a/translations/fi/.co-op-translator.json b/translations/fi/.co-op-translator.json
new file mode 100644
index 00000000..942dea5a
--- /dev/null
+++ b/translations/fi/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:57:10+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "fi"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-26T21:34:55+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "fi"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-26T21:36:08+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "fi"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:40:59+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "fi"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-26T21:27:52+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "fi"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T22:49:52+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "fi"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-26T21:40:07+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "fi"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:43:27+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "fi"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-26T21:48:30+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "fi"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-26T21:14:17+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "fi"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:38:29+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "fi"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:56:23+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "fi"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T22:36:11+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "fi"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-26T21:12:28+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "fi"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:48:25+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "fi"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-26T21:07:48+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "fi"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T22:38:43+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "fi"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-26T20:59:50+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "fi"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-26T20:47:33+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T22:43:25+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-26T23:19:43+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T22:45:13+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-26T22:51:27+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T22:42:54+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-26T23:24:21+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:40:54+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-26T22:55:43+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T22:44:01+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-26T22:46:07+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T22:47:24+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T22:46:47+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-26T23:08:16+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-26T23:09:25+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-26T22:58:42+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-26T22:59:51+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-26T23:15:35+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-26T23:02:59+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-26T23:12:41+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "fi"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-26T22:41:25+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "fi"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:12:50+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "fi"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-26T22:28:28+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "fi"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:12:07+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "fi"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-26T22:31:26+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "fi"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:13:16+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "fi"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-26T22:39:47+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "fi"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-26T22:21:08+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "fi"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T22:33:38+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "fi"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-26T22:11:27+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "fi"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T22:32:27+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "fi"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-26T22:06:18+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "fi"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T22:35:04+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "fi"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-26T22:18:22+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "fi"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-26T21:57:36+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "fi"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:34:27+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "fi"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-26T21:56:37+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "fi"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-26T21:49:37+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "fi"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:27:05+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "fi"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-26T20:44:51+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "fi"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:12:19+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "fi"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:22:04+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "fi"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:00:07+00:00",
+ "source_file": "README.md",
+ "language_code": "fi"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-26T20:45:56+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "fi"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-26T20:42:41+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "fi"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:42:07+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "fi"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:05:09+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "fi"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-26T21:13:28+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "fi"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:04:03+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "fi"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:58:18+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "fi"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-26T22:20:14+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "fi"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-26T21:49:06+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "fi"
+ }
+}
\ No newline at end of file
diff --git a/translations/fi/1-Introduction/01-defining-data-science/README.md b/translations/fi/1-Introduction/01-defining-data-science/README.md
index 4a49af05..2f943d3f 100644
--- a/translations/fi/1-Introduction/01-defining-data-science/README.md
+++ b/translations/fi/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Määritelmä: Tietojenkäsittelytiede
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/fi/1-Introduction/01-defining-data-science/assignment.md b/translations/fi/1-Introduction/01-defining-data-science/assignment.md
index 6bbfb0d4..9245edb8 100644
--- a/translations/fi/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/fi/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Tehtävä: Tieteenalojen skenaariot
Tässä ensimmäisessä tehtävässä pyydämme sinua pohtimaan joitakin tosielämän prosesseja tai ongelmia eri ongelma-alueilla ja sitä, kuinka voit parantaa niitä käyttämällä tieteenalan prosessia. Mieti seuraavia kysymyksiä:
diff --git a/translations/fi/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/fi/1-Introduction/01-defining-data-science/solution/assignment.md
index 5df6558e..0fb038e7 100644
--- a/translations/fi/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/fi/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Tehtävä: Data Science -skenaariot
Tässä ensimmäisessä tehtävässä pyydämme sinua pohtimaan joitakin tosielämän prosesseja tai ongelmia eri ongelma-alueilla ja sitä, miten voit parantaa niitä Data Science -prosessin avulla. Mieti seuraavia kysymyksiä:
diff --git a/translations/fi/1-Introduction/02-ethics/README.md b/translations/fi/1-Introduction/02-ethics/README.md
index fac3aec7..54cb052f 100644
--- a/translations/fi/1-Introduction/02-ethics/README.md
+++ b/translations/fi/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Johdanto datan etiikkaan
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/fi/1-Introduction/02-ethics/assignment.md b/translations/fi/1-Introduction/02-ethics/assignment.md
index 231bae0a..6346cffc 100644
--- a/translations/fi/1-Introduction/02-ethics/assignment.md
+++ b/translations/fi/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Kirjoita Tapaustutkimus Dataetiikasta
## Ohjeet
diff --git a/translations/fi/1-Introduction/03-defining-data/README.md b/translations/fi/1-Introduction/03-defining-data/README.md
index 410c0903..bce3ab87 100644
--- a/translations/fi/1-Introduction/03-defining-data/README.md
+++ b/translations/fi/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Määritellään dataa
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/fi/1-Introduction/03-defining-data/assignment.md b/translations/fi/1-Introduction/03-defining-data/assignment.md
index 2ba1723a..4da3abbc 100644
--- a/translations/fi/1-Introduction/03-defining-data/assignment.md
+++ b/translations/fi/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Datan luokittelu
## Ohjeet
diff --git a/translations/fi/1-Introduction/04-stats-and-probability/README.md b/translations/fi/1-Introduction/04-stats-and-probability/README.md
index c5c4e68a..154be3d0 100644
--- a/translations/fi/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/fi/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Tilastotiede ja todennäköisyys: Lyhyt johdanto
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Datan jakauman ymmärtämiseksi on hyödyllistä puhua **kvartiileista**:
Graafisesti voimme esittää mediaanin ja kvartiilien suhteen diagrammissa, jota kutsutaan **laatikko- ja viiksikaavioksi**:
-
+
Tässä laskemme myös **kvartiilivälin** IQR=Q3-Q1 ja niin sanotut **poikkeamat** – arvot, jotka ovat alueen [Q1-1.5*IQR, Q3+1.5*IQR] ulkopuolella.
diff --git a/translations/fi/1-Introduction/04-stats-and-probability/assignment.md b/translations/fi/1-Introduction/04-stats-and-probability/assignment.md
index e8eac773..246062c1 100644
--- a/translations/fi/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/fi/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Pieni diabetes-tutkimus
Tässä tehtävässä työskentelemme pienen diabetespotilaiden datasetin kanssa, joka on otettu [täältä](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/fi/1-Introduction/README.md b/translations/fi/1-Introduction/README.md
index 23c71588..8b7109e6 100644
--- a/translations/fi/1-Introduction/README.md
+++ b/translations/fi/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Johdatus Data Scienceen

diff --git a/translations/fi/2-Working-With-Data/05-relational-databases/README.md b/translations/fi/2-Working-With-Data/05-relational-databases/README.md
index 4f370dd1..6074b4f3 100644
--- a/translations/fi/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/fi/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Työskentely datan kanssa: Relaatiotietokannat
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/fi/2-Working-With-Data/05-relational-databases/assignment.md b/translations/fi/2-Working-With-Data/05-relational-databases/assignment.md
index 32234d5f..cb87c951 100644
--- a/translations/fi/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/fi/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Lentokenttätietojen näyttäminen
Sinulle on annettu [tietokanta](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db), joka on rakennettu [SQLite](https://sqlite.org/index.html) -alustalle ja sisältää tietoa lentokentistä. Tietokannan rakenne on esitetty alla. Käytät [SQLite-laajennusta](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) -ohjelmassa näyttääksesi tietoa eri kaupunkien lentokentistä.
diff --git a/translations/fi/2-Working-With-Data/06-non-relational/README.md b/translations/fi/2-Working-With-Data/06-non-relational/README.md
index 3c57c937..52ac0497 100644
--- a/translations/fi/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/fi/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Työskentely datan kanssa: Ei-relationaalinen data
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/fi/2-Working-With-Data/06-non-relational/assignment.md b/translations/fi/2-Working-With-Data/06-non-relational/assignment.md
index fed1a776..5e69c78c 100644
--- a/translations/fi/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/fi/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Virvoitusjuomien Voitot
## Ohjeet
diff --git a/translations/fi/2-Working-With-Data/07-python/README.md b/translations/fi/2-Working-With-Data/07-python/README.md
index 71f8bfdd..eab673c4 100644
--- a/translations/fi/2-Working-With-Data/07-python/README.md
+++ b/translations/fi/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Työskentely datan kanssa: Python ja Pandas-kirjasto
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/fi/2-Working-With-Data/07-python/assignment.md b/translations/fi/2-Working-With-Data/07-python/assignment.md
index 75756f7b..3d19a79d 100644
--- a/translations/fi/2-Working-With-Data/07-python/assignment.md
+++ b/translations/fi/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Tehtävä: Datan käsittely Pythonilla
Tässä tehtävässä pyydämme sinua jatkamaan koodin kehittämistä, jota olemme aloittaneet haasteissamme. Tehtävä koostuu kahdesta osasta:
diff --git a/translations/fi/2-Working-With-Data/08-data-preparation/README.md b/translations/fi/2-Working-With-Data/08-data-preparation/README.md
index 5825648e..886e709c 100644
--- a/translations/fi/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/fi/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Työskentely datan kanssa: Datan valmistelu
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/fi/2-Working-With-Data/08-data-preparation/assignment.md b/translations/fi/2-Working-With-Data/08-data-preparation/assignment.md
index eb5d0ffd..1ae980ac 100644
--- a/translations/fi/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/fi/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Lomakkeen tietojen arviointi
Asiakas on testannut [pientä lomaketta](../../../../2-Working-With-Data/08-data-preparation/index.html) kerätäkseen perustietoja asiakaskunnastaan. He ovat tuoneet sinulle keräämänsä tiedot, jotta voit validoida ne. Voit avata `index.html`-sivun selaimessa nähdäksesi lomakkeen.
diff --git a/translations/fi/2-Working-With-Data/README.md b/translations/fi/2-Working-With-Data/README.md
index 45e614c8..eb919481 100644
--- a/translations/fi/2-Working-With-Data/README.md
+++ b/translations/fi/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Työskentely datan kanssa

diff --git a/translations/fi/3-Data-Visualization/09-visualization-quantities/README.md b/translations/fi/3-Data-Visualization/09-visualization-quantities/README.md
index d28f112a..5ee8a08a 100644
--- a/translations/fi/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/fi/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Määrien visualisointi
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/fi/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/fi/3-Data-Visualization/09-visualization-quantities/assignment.md
index 574cf619..ab607a4a 100644
--- a/translations/fi/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/fi/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Viivat, hajontakaaviot ja pylväät
## Ohjeet
diff --git a/translations/fi/3-Data-Visualization/10-visualization-distributions/README.md b/translations/fi/3-Data-Visualization/10-visualization-distributions/README.md
index 0f8f8183..44b876b0 100644
--- a/translations/fi/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/fi/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualisoi jakaumat
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/fi/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/fi/3-Data-Visualization/10-visualization-distributions/assignment.md
index eba15f1b..d7cdadf0 100644
--- a/translations/fi/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/fi/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Käytä taitojasi
## Ohjeet
diff --git a/translations/fi/3-Data-Visualization/11-visualization-proportions/README.md b/translations/fi/3-Data-Visualization/11-visualization-proportions/README.md
index 77c54566..94b7c621 100644
--- a/translations/fi/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/fi/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualisoi osuuksia
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/fi/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/fi/3-Data-Visualization/11-visualization-proportions/assignment.md
index 221063dc..5cd71289 100644
--- a/translations/fi/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/fi/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Kokeile Excelissä
## Ohjeet
diff --git a/translations/fi/3-Data-Visualization/12-visualization-relationships/README.md b/translations/fi/3-Data-Visualization/12-visualization-relationships/README.md
index 59ae0bce..61792715 100644
--- a/translations/fi/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/fi/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Suhteiden visualisointi: Kaikki hunajasta 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/fi/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/fi/3-Data-Visualization/12-visualization-relationships/assignment.md
index 3754fe29..1f1e22af 100644
--- a/translations/fi/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/fi/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Sukellus mehiläispesään
## Ohjeet
diff --git a/translations/fi/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/fi/3-Data-Visualization/13-meaningful-visualizations/README.md
index 00de770a..d2fdfd02 100644
--- a/translations/fi/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/fi/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Merkityksellisten Visualisointien Luominen
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/fi/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/fi/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index b5e68a71..cde2baa4 100644
--- a/translations/fi/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/fi/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Rakenna oma mukautettu visualisointi
## Ohjeet
diff --git a/translations/fi/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/fi/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index a351d68d..5629c088 100644
--- a/translations/fi/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/fi/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Dangerous Liaisons -datavisualisointiprojekti
Aloittaaksesi varmista, että sinulla on NPM ja Node asennettuna koneellesi. Asenna riippuvuudet (npm install) ja aja projekti paikallisesti (npm run serve):
diff --git a/translations/fi/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/fi/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index d1c1ba5f..dec2d119 100644
--- a/translations/fi/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/fi/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Dangerous Liaisons - datavisualisointiprojekti
Aloittaaksesi varmista, että sinulla on NPM ja Node asennettuna koneellesi. Asenna riippuvuudet (npm install) ja aja projekti paikallisesti (npm run serve):
diff --git a/translations/fi/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/fi/3-Data-Visualization/R/09-visualization-quantities/README.md
index 45f11972..48d468cc 100644
--- a/translations/fi/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/fi/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Määrien visualisointi
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/fi/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/fi/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 01627fa1..45af831f 100644
--- a/translations/fi/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/fi/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Viivat, Hajontakaaviot ja Pylväät
## Ohjeet
diff --git a/translations/fi/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/fi/3-Data-Visualization/R/10-visualization-distributions/README.md
index f07a7a9c..59e3cf62 100644
--- a/translations/fi/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/fi/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualisoi jakaumia
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/fi/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/fi/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 77b0d63e..a25101f2 100644
--- a/translations/fi/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/fi/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Käytä taitojasi
## Ohjeet
diff --git a/translations/fi/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/fi/3-Data-Visualization/R/11-visualization-proportions/README.md
index 0c28c970..c1be64a1 100644
--- a/translations/fi/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/fi/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualisoi osuuksia
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/fi/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/fi/3-Data-Visualization/R/12-visualization-relationships/README.md
index ec20cd0b..91d6ecf2 100644
--- a/translations/fi/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/fi/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualisoi suhteita: Kaikki hunajasta 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/fi/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/fi/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 075c2d6d..75381ab9 100644
--- a/translations/fi/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/fi/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Merkityksellisten visualisointien luominen
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/fi/3-Data-Visualization/README.md b/translations/fi/3-Data-Visualization/README.md
index 51f92a25..b9e83f02 100644
--- a/translations/fi/3-Data-Visualization/README.md
+++ b/translations/fi/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Visualisoinnit

diff --git a/translations/fi/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/fi/4-Data-Science-Lifecycle/14-Introduction/README.md
index 50bb1054..e47b2e1e 100644
--- a/translations/fi/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/fi/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Johdatus data-analytiikan elinkaareen
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/fi/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/fi/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 57958108..6b54fe2f 100644
--- a/translations/fi/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/fi/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Arvioidaan datasettiä
Asiakas on lähestynyt tiimiäsi pyytääkseen apua taksiasiakkaiden kausittaisten kulutustottumusten tutkimisessa New York Cityssä.
diff --git a/translations/fi/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/fi/4-Data-Science-Lifecycle/15-analyzing/README.md
index abb2c640..c649851a 100644
--- a/translations/fi/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/fi/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Data Science -elinkaari: Analysointi
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/fi/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/fi/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 7811ecd3..a89d3dbe 100644
--- a/translations/fi/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/fi/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Vastausten etsiminen
Tämä on jatkoa edellisen oppitunnin [tehtävälle](../14-Introduction/assignment.md), jossa tarkastelimme lyhyesti tietojoukkoa. Nyt tarkastelemme dataa syvällisemmin.
diff --git a/translations/fi/4-Data-Science-Lifecycle/16-communication/README.md b/translations/fi/4-Data-Science-Lifecycle/16-communication/README.md
index 7534c736..744d32c8 100644
--- a/translations/fi/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/fi/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Data Science -elinkaaren viestintä
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/fi/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/fi/4-Data-Science-Lifecycle/16-communication/assignment.md
index 28d340d4..2bd6337e 100644
--- a/translations/fi/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/fi/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Kerro tarina
## Ohjeet
diff --git a/translations/fi/4-Data-Science-Lifecycle/README.md b/translations/fi/4-Data-Science-Lifecycle/README.md
index 0b2e01ed..3c442253 100644
--- a/translations/fi/4-Data-Science-Lifecycle/README.md
+++ b/translations/fi/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Tieteen datan elinkaari

diff --git a/translations/fi/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/fi/5-Data-Science-In-Cloud/17-Introduction/README.md
index 69be86a6..62756662 100644
--- a/translations/fi/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/fi/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Johdanto pilvipohjaiseen data-analytiikkaan
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/fi/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/fi/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index cdafb540..4c927593 100644
--- a/translations/fi/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/fi/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Markkinatutkimus
## Ohjeet
diff --git a/translations/fi/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/fi/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 3f926cf7..8fd3fac1 100644
--- a/translations/fi/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/fi/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Data Science pilvessä: "Low code/No code" -lähestymistapa
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/fi/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/fi/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 698441b9..288facd7 100644
--- a/translations/fi/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/fi/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Low code/No code -datatiedeprojekti Azure ML:ssä
## Ohjeet
diff --git a/translations/fi/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/fi/5-Data-Science-In-Cloud/19-Azure/README.md
index 27632046..dce5424f 100644
--- a/translations/fi/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/fi/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Tiedettä pilvessä: "Azure ML SDK" -lähestymistapa
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/fi/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/fi/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 6306efff..d695a4af 100644
--- a/translations/fi/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/fi/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Data Science -projekti Azure ML SDK:lla
## Ohjeet
diff --git a/translations/fi/5-Data-Science-In-Cloud/README.md b/translations/fi/5-Data-Science-In-Cloud/README.md
index 09b7b9f9..c1001bc6 100644
--- a/translations/fi/5-Data-Science-In-Cloud/README.md
+++ b/translations/fi/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Pilvilaskenta ja Data Science

diff --git a/translations/fi/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/fi/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 565245be..99cf2878 100644
--- a/translations/fi/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/fi/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Data Science tosielämässä
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/fi/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/fi/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index a0dfc78a..0f6f9838 100644
--- a/translations/fi/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/fi/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Tutustu Planetary Computer -tietoaineistoon
## Ohjeet
diff --git a/translations/fi/6-Data-Science-In-Wild/README.md b/translations/fi/6-Data-Science-In-Wild/README.md
index 824eb762..30371ee6 100644
--- a/translations/fi/6-Data-Science-In-Wild/README.md
+++ b/translations/fi/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Data Science luonnossa
Data sciencen todelliset sovellukset eri toimialoilla.
diff --git a/translations/fi/AGENTS.md b/translations/fi/AGENTS.md
index fdd0fa67..bf75fb36 100644
--- a/translations/fi/AGENTS.md
+++ b/translations/fi/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Projektin yleiskatsaus
diff --git a/translations/fi/CODE_OF_CONDUCT.md b/translations/fi/CODE_OF_CONDUCT.md
index 0b6df505..bead33ea 100644
--- a/translations/fi/CODE_OF_CONDUCT.md
+++ b/translations/fi/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoftin avoimen lähdekoodin toimintaohjeet
Tämä projekti on ottanut käyttöön [Microsoftin avoimen lähdekoodin toimintaohjeet](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/fi/CONTRIBUTING.md b/translations/fi/CONTRIBUTING.md
index 8697b4bd..822a396b 100644
--- a/translations/fi/CONTRIBUTING.md
+++ b/translations/fi/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Osallistuminen Data Science for Beginners -projektiin
Kiitos kiinnostuksestasi osallistua Data Science for Beginners -opetussuunnitelmaan! Otamme mielellämme vastaan yhteisön panoksia.
diff --git a/translations/fi/INSTALLATION.md b/translations/fi/INSTALLATION.md
index 8f83409e..757d887d 100644
--- a/translations/fi/INSTALLATION.md
+++ b/translations/fi/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Asennusopas
Tämä opas auttaa sinua ympäristön asennuksessa, jotta voit työskennellä Data Science for Beginners -opetussuunnitelman parissa.
diff --git a/translations/fi/README.md b/translations/fi/README.md
index 72e69cba..9a096101 100644
--- a/translations/fi/README.md
+++ b/translations/fi/README.md
@@ -1,256 +1,246 @@
-
# Data Science aloittelijoille - Opetussuunnitelma
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
[](https://aka.ms/foundry/forum)
-Microsoftin Azure Cloud Advocates ovat iloisia voidessaan tarjota 10-viikkoisen, 20-opintojakson opetussuunnitelman, joka käsittelee datatiedettä. Jokainen opintojakso sisältää ennakko- ja jälkitestit, kirjalliset ohjeet opintojakson suorittamiseksi, ratkaisun ja harjoituksen. Projektipohjainen opetusmenetelmämme mahdollistaa oppimisen samalla, kun rakennat jotain, mikä on todistettu tapa uusien taitojen jäämiseen mieleen.
+Microsoftin Azure Cloud Advocates tarjoaa 10 viikon, 20 oppitunnin opetussuunnitelman, joka käsittelee data sciencea. Jokainen oppitunti sisältää esikurssi- ja jälkikurssikyselyt, kirjalliset ohjeet oppitunnin suorittamiseen, ratkaisun ja tehtävän. Projektipohjainen opetustapamme mahdollistaa oppimisen rakentamisen ohessa, mikä on todistettu tapa uusien taitojen omaksumiselle.
-**Sydämellinen kiitos kirjoittajillemme:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Sydämelliset kiitokset kirjoittajillemme:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Erityiskiitokset 🙏 [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) -kirjoittajillemme, arvostelijoille ja sisällöntuottajille,** erityisesti Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
-[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
+**🙏 Erityiskiitokset 🙏 [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) kirjoittajille, arvioijille ja sisällöntuottajille,** erityisesti Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), [Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)**
-||
+||
|:---:|
-| Data Science aloittelijoille - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
+| Data Science aloittelijoille - _Luonnos tekijältä [@nitya](https://twitter.com/nitya)_ |
-### 🌐 Monikielinen tuki
+### 🌐 Monikielituki
-#### Tuettu GitHub Actionin kautta (automaattinen & aina ajan tasalla)
+#### Tuettu GitHub Actionin kautta (Automaattinen & aina ajan tasalla)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](./README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](./README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **Haluatko mieluummin kloonata paikallisesti?**
+> **Haluatko kloonata paikallisesti?**
-> Tämä repositorio sisältää yli 50 kieliversiota, mikä lisää lataustiedoston kokoa merkittävästi. Jotta voit kloonata ilman käännöksiä, käytä sparse checkoutia:
+> Tämä repositorio sisältää yli 50 kielellä käännettyjä tiedostoja, mikä lisää merkittävästi latauskokoa. Jotta voit kloonata ilman käännöksiä, käytä sparse checkout -menetelmää:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Tämä antaa sinulle kaiken tarvittavan kurssin suorittamiseen huomattavasti nopeammalla latauksella.
+> Tämä antaa sinulle kaiken, mitä tarvitset kurssin suorittamiseen paljon nopeammin ladaten.
-**Jos haluat saada lisäkielitukea, tuetut kielet ovat lueteltu [tässä](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Jos haluat lisää tukikielivaihtoehtoja, ne löytyvät täältä [here](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Liity yhteisöömme
+#### Liity yhteisöömme
[](https://discord.gg/nTYy5BXMWG)
-Discordillamme on menossa opiskelu AI:n kanssa -sarja, lue lisää ja liity meihin osoitteessa [Learn with AI Series](https://aka.ms/learnwithai/discord) ajalla 18. - 30. syyskuuta 2025. Saat vinkkejä ja niksejä GitHub Copilotin käyttämiseen datatieteessä.
+Meillä on käynnissä Discordilla Learn with AI -sarja, lue lisää ja liity mukaan osoitteessa [Learn with AI Series](https://aka.ms/learnwithai/discord) ajalla 18. - 30. syyskuuta 2025. Saat vinkkejä ja temppuja GitHub Copilotin käyttöön Data Science -tarkoituksiin.
-
+
# Oletko opiskelija?
Aloita seuraavista resursseista:
-- [Student Hub -sivu](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Tältä sivulta löydät aloittelijoille sopivia resursseja, opiskelijapaketteja ja jopa tapoja saada ilmainen sertifikaattikuponki. Tämä on sivu, jonka haluat tallentaa kirjanmerkkeihin ja tarkistaa säännöllisesti, sillä vaihdamme sisältöä vähintään kerran kuukaudessa.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Liity globaaliin opiskelijalähettiläiden yhteisöön, tämä voi olla sinun tiesi Microsoftille.
+- [Student Hub -sivu](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Tältä sivulta löydät aloittelijoille sopivia materiaaleja, opiskelijapaketteja ja jopa tapoja saada ilmainen sertifikaattihinnoittelu. Tämä on sivu, jonka haluat lisätä kirjanmerkkeihin ja tarkistaa säännöllisesti, sillä päivitämme sisältöä vähintään kuukausittain.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Liity globaaliin opiskelijoiden lähettiläiden yhteisöön – tämä voi olla sinun polkusi Microsoftille.
-# Aloitus
+# Aloittaminen
## 📚 Dokumentaatio
-- **[Asennusohje](INSTALLATION.md)** - Yksityiskohtaiset asennusohjeet aloittelijoille
-- **[Käyttöohje](USAGE.md)** - Esimerkkejä ja yleisiä työnkulkuja
+- **[Asennusohje](INSTALLATION.md)** - Vaiheittaiset asennusohjeet aloittelijoille
+- **[Käyttöopas](USAGE.md)** - Esimerkkejä ja yleisiä työskentelyprosesseja
- **[Vianetsintä](TROUBLESHOOTING.md)** - Ratkaisuja yleisiin ongelmiin
-- **[Osallistumisohje](CONTRIBUTING.md)** - Kuinka osallistua tähän projektiin
-- **[Opettajille](for-teachers.md)** - Opetusohjeita ja luokkahuoneen resursseja
+- **[Osallistumisopas](CONTRIBUTING.md)** - Kuinka osallistua tähän projektiin
+- **[Opettajille](for-teachers.md)** - Ohjeita opettamiseen ja luokkahuoneen resursseja
## 👨🎓 Opiskelijoille
-> **Täysin aloittelijoille**: Uutena datatieteen parissa? Aloita [aloittelijaystävällisillä esimerkeillämme](examples/README.md)! Nämä yksinkertaiset, hyvin kommentoidut esimerkit auttavat sinua ymmärtämään perusteet ennen kuin sukellat koko opetussuunnitelmaan.
-> **[Opiskelijat](https://aka.ms/student-page)**: Voit käyttää tätä opetussuunnitelmaa itseksesi, haaroita koko repo ja tee harjoitukset itse aloittaen ennakkokyselyllä. Sitten lue luento ja suorita loput tehtävistä. Yritä rakentaa projektit ymmärtämällä oppitunnit sen sijaan, että kopioit ratkaisukoodin; kuitenkin tämä koodi on saatavilla kukin projektikohtaisen oppitunnin /solutions-kansiossa. Toinen idea on muodostaa opintoryhmä ystävien kanssa ja käydä sisältö yhdessä läpi. Tarkempaan opiskeluun suosittelemme [Microsoft Learnia](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Täysin aloittelijat**: Uusi data sciencen maailmassa? Aloita meidän [aloittelijaystävällisistä esimerkeistä](examples/README.md)! Nämä yksinkertaiset, hyvin kommentoidut esimerkit auttavat sinua ymmärtämään perusteet ennen kuin sukellat koko opetussuunnitelmaan.
+> **[Opiskelijat](https://aka.ms/student-page)**: Voit käyttää tätä opetussuunnitelmaa itsenäisesti, haaroita koko repositorio ja suorita harjoitukset itsenäisesti aloittaen ennakkokyselyllä. Lue sitten oppitunti ja täytä loput tehtävistä. Yritä luoda projektit oppitunnin sisällön ymmärtämisen pohjalta sen sijaan, että kopioisit ratkaisukoodia; koodin löydät kuitenkin /solutions-kansioista jokaisessa projektiin keskittyvässä oppitunnissa. Toinen idea on muodostaa opiskeluryhmä ystävien kanssa ja käydä sisältö yhdessä läpi. Lisäopiskelua varten suosittelemme [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Nopea aloitus:**
-1. Tutustu [Asennusohjeeseen](INSTALLATION.md) ympäristön määrittämiseksi
-2. Käy läpi [Käyttöohje](USAGE.md) oppiaksesi miten opetussuunnitelmaa käytetään
+1. Tarkista [Asennusohje](INSTALLATION.md) ympäristön määrittämiseksi
+2. Tutustu [Käyttöoppaaseen](USAGE.md) ja opi työskentelemään opetussuunnitelman kanssa
3. Aloita Oppitunnista 1 ja etene järjestyksessä
-4. Liity [Discord-yhteisöömme](https://aka.ms/ds4beginners/discord) tukea varten
+4. Liity yhteisöömme [Discordissa](https://aka.ms/ds4beginners/discord) saadaksesi tukea
## 👩🏫 Opettajille
-> **Opettajille**: olemme [sisällyttäneet joitakin ehdotuksia](for-teachers.md) siitä, miten tätä opetussuunnitelmaa voi käyttää. Haluaisimme kuulla palautetta [keskustelufoorumillamme](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+> **Opettajat**: olemme [lisänneet joitakin ehdotuksia](for-teachers.md) tämän opetussuunnitelman käyttöön. Haluaisimme kuulla palautteesi [keskustelufoorumissamme](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## Tutustu tiimiin
-## Tapaamme tiimin
-[](https://youtu.be/8mzavjQSMM4 "Promo video")
+[](https://youtu.be/8mzavjQSMM4 "Promo-video")
-**Gif** tekijä [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+**Gifin tekijä** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Klikkaa yllä olevaa kuvaa nähdäksesi videon projektista ja sen tekijöistä!
+> 🎥 Klikkaa yllä olevaa kuvaa katsoaksesi videon projektista ja sen tekijöistä!
## Pedagogiikka
-Olemme valinneet kaksi pedagogista periaatetta tämän opetussuunnitelman rakentamisessa: varmistaa, että se perustuu projekteihin ja että siihen sisältyy usein kyselyitä. Tämän sarjan lopussa opiskelijat ovat oppineet datatieteen perusperiaatteet, mukaan lukien eettiset käsitteet, datan valmistelun, erilaiset tavat työskennellä datan kanssa, datan visualisoinnin, datan analysoinnin, datatieteen käytännön sovellukset ja paljon muuta.
+Olemme valinneet kaksi pedagogista periaatetta tämän opetussuunnitelman rakentamiseen: sen pitäminen projektilähtöisenä ja säännöllisten tietovisojen sisällyttäminen. Tämän sarjan lopussa opiskelijat ovat oppineet datatieteen perusperiaatteet, mukaan lukien eettiset käsitteet, datan valmistelun, erilaiset tavat työskennellä datan kanssa, datan visualisoinnin, data-analyysin, datatieteen käytännön esimerkit ja paljon muuta.
-Lisäksi matalan panoksen kysely ennen luentoa asettaa opiskelijan aikomuksen oppia aihe, kun taas toinen kysely luennon jälkeen varmistaa aiheen paremman muistamisen. Tämä opetussuunnitelma on suunniteltu joustavaksi ja hauskaksi, ja sen voi suorittaa kokonaan tai osittain. Projektit alkavat pieninä ja muuttuvat yhä monimutkaisemmiksi 10 viikon sykliä kohti.
+Lisäksi kevyt tietovisa ennen tuntia ohjaa opiskelijan asennetta aiheen oppimiseen, ja toinen tietovisa tunnin jälkeen varmistaa tiedon pysyvyyden. Tämä opetussuunnitelma on suunniteltu joustavaksi ja hauskaksi, ja sen voi suorittaa kokonaisuudessaan tai osittain. Projektit alkavat pieninä ja kasvavat yhä monimutkaisemmiksi 10 viikon jakson loppua kohti.
-> Löydät ohjeistuksemme [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md). Otamme mielellämme vastaan rakentavaa palautetta!
+> Löydät meidän [Toimintakoodistomme](CODE_OF_CONDUCT.md), [Osallistumisohjeet](CONTRIBUTING.md) ja [Käännösohjeet](TRANSLATIONS.md). Otamme mielellämme vastaan rakentavaa palautetta!
## Jokainen oppitunti sisältää:
-- Valinnainen sketchnote
-- Valinnainen lisävideo
-- Ennen oppituntia tehtävä lämmittelykysely
-- Kirjallinen oppitunti
+- Valinnainen luonnosmuistiinpano
+- Valinnainen lisävideon
+- Ennen oppituntia tehtävän lämmittelytietovisan
+- Kirjallisen oppitunnin
- Projektipohjaisissa oppitunneissa vaiheittaiset ohjeet projektin rakentamiseen
-- Tietotarkistukset
-- Haaste
+- Tieto-mittauksia
+- Haasteen
- Lisälukemista
-- Tehtävänanto
-- [Oppitunnin jälkeinen kysely](https://ff-quizzes.netlify.app/en/)
+- Tehtävän
+- [Oppitunnin jälkeisen tietovisan](https://ff-quizzes.netlify.app/en/)
-> **Huomio kyselyistä**: Kaikki kyselyt ovat Quiz-App-kansiossa, yhteensä 40 kyselyä, joissa jokaisessa on kolme kysymystä. Ne on linkitetty oppitunneissa, mutta kyselysovelluksen voi ajaa paikallisesti tai ottaa käyttöön Azureen; seuraa ohjeita `quiz-app` -kansiossa. Kyselyitä ollaan asteittain lokalisoimassa.
+> **Tietovisoista:** Kaikki tietovisat löytyvät Quiz-App kansiosta, yhteensä 40 viitteen kolmeen kysymykseen. Ne on linkitetty oppitunneilta, mutta tietovisasovelluksen voi ajaa paikallisesti tai julkaista Azureen; seuraa ohjeita `quiz-app` kansiossa. Ne käännetään asteittain myös muille kielille.
## 🎓 Aloittelijaystävälliset esimerkit
-**Uusi datatieteessä?** Olemme luoneet erillisen [esimerkkejä sisältävän kansion](examples/README.md), jossa on yksinkertaista, hyvin kommentoitua koodia auttamaan sinua alkuun:
+**Uusi datatieteessä?** Olemme luoneet erityisen [esimerkkikansion](examples/README.md), jossa on yksinkertaisia ja hyvin kommentoituja koodeja auttamaan sinua alkuun:
-- 🌟 **Hello World** - Ensimmäinen datatieteen ohjelmasi
-- 📂 **Datan lataus** - Opettele lukemaan ja tutkimaan datasettejä
-- 📊 **Yksinkertainen analyysi** - Laske tilastoja ja löydä kuvioita
-- 📈 **Perusvisualisointi** - Luo kaavioita ja graafeja
-- 🔬 **Todellinen projekti** - Täydellinen työnkulku alusta loppuun
+- 🌟 **Hello World** – Ensimmäinen datatieteen ohjelmasi
+- 📂 **Datan lataaminen** – Opettele lukemaan ja tutkimaan datasetit
+- 📊 **Yksinkertainen analyysi** – Laske tilastoja ja löydä malleja
+- 📈 **Perusvisualisointi** – Luo diagrammeja ja kaavioita
+- 🔬 **Todellinen projekti** – Täysi työnkulku alusta loppuun
-Jokaisessa esimerkissä on yksityiskohtaiset kommentit, jotka selittävät jokaisen vaiheen, mikä tekee niistä täydellisiä aivan aloittelijoille!
+Jokainen esimerkki sisältää yksityiskohtaiset kommentit, jotka selittävät jokaisen vaiheen, joten ne sopivat täydellisesti aivan aloittelijoille!
👉 **[Aloita esimerkeistä](examples/README.md)** 👈
## Oppitunnit
-||
+||
|:---:|
-| Data Science For Beginners: Roadmap - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
+| Data Science For Beginners: Roadmap - _Luonnosmuistio tekijältä [@nitya](https://twitter.com/nitya)_ |
| Oppitunnin numero | Aihe | Oppitunnin ryhmittely | Oppimistavoitteet | Linkitetty oppitunti | Tekijä |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Datatieteen määrittely | [Johdanto](1-Introduction/README.md) | Opiskele datatieteen peruskäsitteitä ja sen yhteyttä tekoälyyn, koneoppimiseen ja big dataan. | [oppitunti](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Datatieteen etiikka | [Johdanto](1-Introduction/README.md) | Dataetiikan käsitteet, haasteet ja viitekehykset. | [oppitunti](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Datan määrittely | [Johdanto](1-Introduction/README.md) | Kuinka data luokitellaan ja sen yleisimmät lähteet. | [oppitunti](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Johdatus tilastotieteeseen ja todennäköisyyksiin | [Johdanto](1-Introduction/README.md) | Todennäköisyys- ja tilastolliset matemaattiset tekniikat datan ymmärtämiseen. | [oppitunti](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Relatiivisen datan käsittely | [Datan kanssa työskentely](2-Working-With-Data/README.md) | Johdatus relaatiodataan ja perustiedot relaatiodatan tutkimisesta ja analysoinnista SQL:llä (lausutaan "see-quell"). | [oppitunti](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | NoSQL-datan käsittely | [Datan kanssa työskentely](2-Working-With-Data/README.md) | Johdatus ei-relaatiodataan, sen erilaisiin tyyppeihin ja dokumenttitietokantojen tutkimisen ja analysoinnin perusteisiin. | [oppitunti](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Pythonin käyttö | [Datan kanssa työskentely](2-Working-With-Data/README.md) | Perusteet Pythonin käytöstä datan tutkimiseen kirjastoilla kuten Pandas. Perustason Python-ohjelmointitaito suositeltava. | [oppitunti](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Datan valmistelu | [Datan kanssa työskentely](2-Working-With-Data/README.md) | Datan puhdistus- ja muuntamistekniikat puuttuvien, virheellisten tai epä täydellisten tietojen käsittelyyn. | [oppitunti](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Määrien visualisointi | [Datan visualisointi](3-Data-Visualization/README.md) | Opettele käyttämään Matplotlibia lintudatan visualisointiin 🦆 | [oppitunti](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Datan jakaumien visualisointi | [Datan visualisointi](3-Data-Visualization/README.md) | Havainnointien ja trendien visualisointi tietyllä väli alueella. | [oppitunti](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Prosenttiosuuksien visualisointi | [Datan visualisointi](3-Data-Visualization/README.md) | Diskreettien ja ryhmiteltyjen prosenttiosuuksien visualisointi. | [oppitunti](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Suhteiden visualisointi | [Datan visualisointi](3-Data-Visualization/README.md) | Yhdistysten ja korrelaatioiden visualisointi datan joukkojen ja niiden muuttujien välillä. | [oppitunti](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Merkitykselliset visualisoinnit | [Datan visualisointi](3-Data-Visualization/README.md) | Tekniikoita ja ohjeita visualisointien arvokkaaksi tekemiseen tehokkaassa ongelmanratkaisussa ja oivalluksissa. | [oppitunti](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Johdatus datatieteen elinkaareen | [Elinkaarimalli](4-Data-Science-Lifecycle/README.md) | Johdatus datatieteen elinkaareen ja sen ensimmäiseen vaiheeseen eli datan hankintaan ja poimintaan. | [oppitunti](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analysointi | [Elinkaarimalli](4-Data-Science-Lifecycle/README.md) | Tämä vaihe keskittyy datan analysointitekniikoihin datatieteen elinkaaressa. | [oppitunti](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Viestintä | [Elinkaarimalli](4-Data-Science-Lifecycle/README.md) | Tämä vaihe keskittyy datasta saatujen oivallusten esittämiseen tavalla, joka auttaa päätöksentekijöitä ymmärtämään ne helpommin. | [oppitunti](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Datatiede pilvessä | [Pilvidata](5-Data-Science-In-Cloud/README.md) | Tämä oppituntosarja esittelee datatiedettä pilvessä ja sen hyötyjä. | [oppitunti](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ja [Maud](https://twitter.com/maudstweets) |
+| 01 | Datatieteen määrittely | [Johdanto](1-Introduction/README.md) | Opettele datatieteen peruskäsitteet ja sen yhteys tekoälyyn, koneoppimiseen ja big dataan. | [oppitunti](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Datatieteen etiikka | [Johdanto](1-Introduction/README.md) | Datan etiikka, haasteet ja viitekehykset. | [oppitunti](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Datan määrittely | [Johdanto](1-Introduction/README.md) | Miten data luokitellaan ja sen yleiset lähteet. | [oppitunti](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Johdatus tilastotieteeseen ja todennäköisyyksiin | [Johdanto](1-Introduction/README.md) | Todennäköisyys- ja tilastomenetelmät datan ymmärtämiseksi. | [oppitunti](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Relaatiodatan käsittely | [Datatyöskentely](2-Working-With-Data/README.md) | Johdatus relaatio-tietokantoihin ja perusasiat relaatio-datan tutkimisesta ja analysoinnista Structured Query Languagella eli SQL:llä (lausutaan "see-quell"). | [oppitunti](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | NoSQL-datan käsittely | [Datatyöskentely](2-Working-With-Data/README.md) | Johdatus ei-relaatio-dataan, sen eri tyyppeihin ja dokumenttitietokantojen tutkimiseen ja analysointiin. | [oppitunti](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Pythonin käyttö | [Datatyöskentely](2-Working-With-Data/README.md) | Pythonin perusteet datan tutkimiseen Pandas-kirjastoja käyttäen. Python-ohjelmoinnin perustuntemus suositeltavaa. | [oppitunti](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Datavalmistelu | [Datatyöskentely](2-Working-With-Data/README.md) | Datan puhdistus- ja muunnostekniikat puuttuvan, epätarkan tai keskeneräisen datan käsittelemiseksi. | [oppitunti](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Määrien visualisointi | [Datavisualisointi](3-Data-Visualization/README.md) | Opettele käyttämään Matplotlibia lintudatan visualisointiin 🦆 | [oppitunti](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Datan jakaumien visualisointi | [Datavisualisointi](3-Data-Visualization/README.md) | Havainnointien ja trendien visualisointi ajanjaksolla. | [oppitunti](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Osuuksien visualisointi | [Datavisualisointi](3-Data-Visualization/README.md) | Diskreettien ja ryhmiteltyjen prosenttiosuuksien visualisointi. | [oppitunti](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Suhteiden visualisointi | [Datavisualisointi](3-Data-Visualization/README.md) | Yhteyksien ja korrelaatioiden visualisointi datan ja muuttujien välillä. | [oppitunti](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Merkitykselliset visualisoinnit | [Datavisualisointi](3-Data-Visualization/README.md) | Tekniikoita ja ohjeita visualisointien arvon lisäämiseksi tehokkaan ongelmanratkaisun ja oivallusten tueksi. | [oppitunti](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Johdatus datatieteen elinkaareen | [Elinkaari](4-Data-Science-Lifecycle/README.md) | Johdatus datatieteen elinkaareen ja sen ensimmäiseen vaiheeseen: datan hankintaan ja louhintaan. | [oppitunti](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Analysointi | [Elinkaari](4-Data-Science-Lifecycle/README.md) | Tämä vaihe keskittyy datan analysointitekniikoihin. | [oppitunti](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Viestintä | [Elinkaari](4-Data-Science-Lifecycle/README.md) | Tämä vaihe keskittyy datasta saatujen oivallusten esittämiseen siten, että päätöksentekijöiden on helpompi ymmärtää ne. | [oppitunti](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Datatiede pilvessä | [Pilvidata](5-Data-Science-In-Cloud/README.md) | Tämä oppituntisarja esittelee datatieteen pilvessä ja sen hyödyt. | [oppitunti](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ja [Maud](https://twitter.com/maudstweets) |
| 18 | Datatiede pilvessä | [Pilvidata](5-Data-Science-In-Cloud/README.md) | Mallien kouluttaminen Low Code -työkaluilla. |[oppitunti](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ja [Maud](https://twitter.com/maudstweets) |
-| 19 | Datatiede pilvessä | [Pilvidata](5-Data-Science-In-Cloud/README.md) | Mallien käyttöönotto Azure Machine Learning Studiossa. | [oppitunti](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ja [Maud](https://twitter.com/maudstweets) |
-| 20 | Datatiede luonnossa | [Luonnossa](6-Data-Science-In-Wild/README.md) | Datatieteen ohjaamat projektit käytännön vuorovaikutuksessa todellisuuden kanssa. | [oppitunti](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 19 | Datatiede pilvessä | [Pilvidata](5-Data-Science-In-Cloud/README.md) | Mallien käyttöönotto Azure Machine Learning Studiolla. | [oppitunti](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ja [Maud](https://twitter.com/maudstweets) |
+| 20 | Datatieteen sovelluksia arjessa | [Arjessa](6-Data-Science-In-Wild/README.md) | Datatieteeseen perustuvat projektit todellisessa maailmassa. | [oppitunti](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Seuraa näitä ohjeita avataksesi tämän esimerkin Codespacessa:
1. Klikkaa Code-pudotusvalikkoa ja valitse Open with Codespaces -vaihtoehto.
-2. Valitse + New codespace näkymän alalaidasta.
-Lisätietoja on [GitHub-dokumentaatiossa](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+2. Valitse + New codespace ikkunan alareunasta.
+Lisätietoja löydät [GitHubin ohjeista](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Seuraa näitä ohjeita avataksesi tämän repositorion kontissa paikallisella koneellasi VSCodea käyttäen VS Code Remote - Containers -laajennuksen avulla:
+Seuraa näitä ohjeita avataksesi tämän repositorion kontissa paikallisella koneellasi ja VSCodea käyttäen VS Code Remote - Containers -laajennuksella:
-1. Jos käytät kehityskonttia ensimmäistä kertaa, varmista järjestelmäsi vaatimusten täyttyminen (esim. Docker on asennettu) [aloitusohjeista](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Jos käytät kehityskonttia ensimmäistä kertaa, varmista että järjestelmäsi täyttää esivaatimukset (kuten Dockerin asennuksen) [aloitusdokumentaatiosta](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Tätä repositoriota voi käyttää joko avaamalla sen eristettyyn Docker-volyymiin:
+Tätä repositoriota voi käyttää avaamalla se eristettynä Docker-volumeen:
-**Huom:** Taustalla tämä käyttää Remote-Containers: **Clone Repository in Container Volume...** -komentoa kloonaamaan lähdekoodin Docker-volyymiin paikallisen tiedostojärjestelmän sijaan. [Volyymit](https://docs.docker.com/storage/volumes/) ovat suositeltuja säilyttämään konttien dataa.
+**Huom:** Tämän komennon alla käytetään Remote-Containers: **Clone Repository in Container Volume...** -komentoa, jolla lähdekoodi kloonataan Docker-volumeen paikallisen tiedostojärjestelmän sijaan. [Voluumit](https://docs.docker.com/storage/volumes/) ovat suositeltu tapa säilyttää konttitietoja.
-Tai avaamalla paikallisesti kloonatun tai ladatun version repositoriosta:
+Tai avaa paikallisesti kloonattu tai ladattu versio repositorista:
-- Kloonaa tämä repositorio paikalliselle tiedostojärjestelmällesi.
+- Kloonaa tämä repository paikalliselle tiedostojärjestelmällesi.
- Paina F1 ja valitse **Remote-Containers: Open Folder in Container...** -komento.
-- Valitse kloonattu kansio, odota kontin käynnistymistä ja kokeile.
+- Valitse kloonattu kansio, odota konttien käynnistymistä ja aloita käyttö.
## Offline-käyttö
-Voit käyttää tätä dokumentaatiota offline-tilassa Docsifyn avulla ([Docsify](https://docsify.js.org/#/)). Forkkaa tämä repo, asenna Docsify ([Install Docsify](https://docsify.js.org/#/quickstart)) paikalliselle koneellesi, ja samoimmassa repositorion juurikansiossa aja komento `docsify serve`. Sivusto aukeaa porttiin 3000 paikallisessa koneessasi: `localhost:3000`.
+Voit käyttää tätä dokumentaatiota offline-tilassa käyttäen [Docsifya](https://docsify.js.org/#/). Haarauta tämä repo, [asenna Docsify](https://docsify.js.org/#/quickstart) paikalliselle koneellesi ja repo-kansion juuressa aja `docsify serve`. Sivusto tarjotaan portissa 3000 paikallisessa osoitteessasi: `localhost:3000`.
-> Huomioi, että vihkokirjoja (notebook) ei renderöidä Docsifyssa, joten jos sinun täytyy ajaa vihkokirja, tee se erikseen VS Codessa Python-ytimen avulla.
+> Huomioi, että muistikirjat eivät renderöidy Docsifylla, joten kun tarvitset muistikirjan ajamista, tee se erikseen VS Codessa Python-ytimellä.
-## Muita opetussuunnitelmia
+## Muut opetussuunnitelmat
-Tiimimme tuottaa myös muita opetussuunnitelmia! Tutustu:
+Tiimimme tuottaa muitakin opetussuunnitelmia! Tutustu:
### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
### Azure / Edge / MCP / Agentit
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-### Generatiivinen AI -sarja
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+### Generatiivisen tekoälyn sarja
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
-### Perusopetus
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+### Perusoppiminen
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### Copilot-sarja
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Apua saatavilla
-**Koetko ongelmia?** Katso [Vianmääritysohje](TROUBLESHOOTING.md) yleisimpien ongelmien ratkaisuihin.
+**Koetko ongelmia?** Katso [Vianmääritysohjeemme](TROUBLESHOOTING.md) yleisiin ongelmiin ratkaisuja.
-Jos jäät jumiin tai sinulla on kysymyksiä tekoälysovellusten rakentamisesta, liity muiden oppijoiden ja kokeneiden kehittäjien keskusteluihin MCP:stä. Se on tukeva yhteisö, jossa kysymykset ovat tervetulleita ja tieto jaetaan avoimesti.
+Jos jäät jumiin tai sinulla on kysyttävää tekoälysovellusten rakentamisesta, liity muiden oppijoiden ja kokeneiden kehittäjien keskusteluihin MCP:stä. Se on kannustava yhteisö, jossa kysymyksiä voi esittää ja tietoa jaetaan vapaasti.
[](https://discord.gg/nTYy5BXMWG)
-Jos sinulla on palautetta tuotteesta tai kohtaat virheitä rakentamisen aikana, käy:
+Jos sinulla on tuotepalautetta tai kohtaat virheitä rakentamisen aikana, käy:
[](https://aka.ms/foundry/forum)
@@ -258,5 +248,5 @@ Jos sinulla on palautetta tuotteesta tai kohtaat virheitä rakentamisen aikana,
**Vastuuvapauslauseke**:
-Tämä asiakirja on käännetty tekoälykäännöspalvelulla [Co-op Translator](https://github.com/Azure/co-op-translator). Vaikka pyrimme tarkkuuteen, on hyvä huomioida, että automaattisissa käännöksissä saattaa esiintyä virheitä tai epätarkkuuksia. Alkuperäistä asiakirjaa sen omalla kielellä tulee pitää virallisena lähteenä. Tärkeiden tietojen osalta suositellaan ammattimaista ihmiskäännöstä. Emme ole vastuussa tämän käännöksen käytöstä mahdollisesti aiheutuvista väärinymmärryksistä tai tulkinnoista.
+Tämä asiakirja on käännetty käyttämällä tekoälypohjaista käännöspalvelua [Co-op Translator](https://github.com/Azure/co-op-translator). Pyrimme tarkkuuteen, mutta ole hyvä ja huomioi, että automaattikäännöksissä voi esiintyä virheitä tai epätarkkuuksia. Alkuperäinen asiakirja sen omalla kielellä on virallinen lähde. Tärkeiden tietojen osalta suositellaan ammattimaista ihmiskäännöstä. Emme ota vastuuta tämän käännöksen käytöstä johtuvista väärinkäsityksistä tai tulkinnoista.
\ No newline at end of file
diff --git a/translations/fi/SECURITY.md b/translations/fi/SECURITY.md
index 5945d79e..54330835 100644
--- a/translations/fi/SECURITY.md
+++ b/translations/fi/SECURITY.md
@@ -1,12 +1,3 @@
-
## Tietoturva
Microsoft suhtautuu vakavasti ohjelmistotuotteidensa ja palveluidensa tietoturvaan, mukaan lukien kaikki lähdekoodivarastot, joita hallinnoidaan GitHub-organisaatioidemme kautta, kuten [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) ja [GitHub-organisaatiomme](https://opensource.microsoft.com/).
diff --git a/translations/fi/SUPPORT.md b/translations/fi/SUPPORT.md
index 2758bfcd..3bdaac24 100644
--- a/translations/fi/SUPPORT.md
+++ b/translations/fi/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Tuki
## Kuinka raportoida ongelmia ja saada apua
diff --git a/translations/fi/TROUBLESHOOTING.md b/translations/fi/TROUBLESHOOTING.md
index d546f59e..f6b2e35b 100644
--- a/translations/fi/TROUBLESHOOTING.md
+++ b/translations/fi/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Vianmääritysopas
Tämä opas tarjoaa ratkaisuja yleisiin ongelmiin, joita saatat kohdata työskennellessäsi Data Science for Beginners -opetussuunnitelman parissa.
diff --git a/translations/fi/USAGE.md b/translations/fi/USAGE.md
index d0ab2642..b3915fe5 100644
--- a/translations/fi/USAGE.md
+++ b/translations/fi/USAGE.md
@@ -1,12 +1,3 @@
-
# Käyttöopas
Tämä opas tarjoaa esimerkkejä ja yleisiä työnkulkuja Data Science for Beginners -opetussuunnitelman käyttöön.
diff --git a/translations/fi/docs/_sidebar.md b/translations/fi/docs/_sidebar.md
index 5b9e8620..7721df25 100644
--- a/translations/fi/docs/_sidebar.md
+++ b/translations/fi/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Johdanto
- [Määritellään datatiede](../1-Introduction/01-defining-data-science/README.md)
- [Datatieteen etiikka](../1-Introduction/02-ethics/README.md)
diff --git a/translations/fi/examples/README.md b/translations/fi/examples/README.md
index dcf2f3f7..c29cb952 100644
--- a/translations/fi/examples/README.md
+++ b/translations/fi/examples/README.md
@@ -1,12 +1,3 @@
-
# Aloittelijaystävällisiä Data Science -esimerkkejä
Tervetuloa esimerkkikansioon! Tämä kokoelma yksinkertaisia ja hyvin kommentoituja esimerkkejä on suunniteltu auttamaan sinua aloittamaan data science -opiskelun, vaikka olisit täysin aloittelija.
diff --git a/translations/fi/for-teachers.md b/translations/fi/for-teachers.md
index ce6ee9e8..c08e1186 100644
--- a/translations/fi/for-teachers.md
+++ b/translations/fi/for-teachers.md
@@ -1,12 +1,3 @@
-
## Opettajille
Haluaisitko käyttää tätä opetusohjelmaa luokassasi? Ole hyvä ja käytä vapaasti!
diff --git a/translations/fi/quiz-app/README.md b/translations/fi/quiz-app/README.md
index 4ae99b09..b5abbafb 100644
--- a/translations/fi/quiz-app/README.md
+++ b/translations/fi/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Visailut
Nämä visailut ovat data-analytiikan opetussuunnitelman ennen ja jälkeen luentojen tehtäviä osoitteessa https://aka.ms/datascience-beginners
diff --git a/translations/fi/sketchnotes/README.md b/translations/fi/sketchnotes/README.md
index bdcf5ebc..a1c41943 100644
--- a/translations/fi/sketchnotes/README.md
+++ b/translations/fi/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Löydä kaikki sketchnotet täältä!
## Tekijät
diff --git a/translations/fr/.co-op-translator.json b/translations/fr/.co-op-translator.json
new file mode 100644
index 00000000..aa281171
--- /dev/null
+++ b/translations/fr/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:33:03+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "fr"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-25T16:56:28+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "fr"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-25T16:57:35+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "fr"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T15:57:16+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "fr"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-25T16:49:46+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "fr"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T12:32:04+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "fr"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-25T17:01:25+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "fr"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T12:46:11+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "fr"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-25T17:10:49+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "fr"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-25T16:38:21+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "fr"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T10:21:54+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "fr"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:51:54+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "fr"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T12:20:31+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "fr"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-25T16:36:32+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "fr"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:19:48+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "fr"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-25T16:31:32+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "fr"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T12:22:36+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "fr"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-25T16:23:53+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "fr"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-25T16:12:52+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T12:26:09+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-25T18:39:35+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T12:27:54+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-25T18:08:09+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T12:25:42+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-25T18:43:19+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:25:35+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-25T18:12:27+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T12:26:39+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-25T18:02:59+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-25T18:04:18+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-25T18:03:39+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-25T18:23:10+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-25T18:26:09+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-25T18:14:17+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-25T18:16:20+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-25T18:31:54+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-25T18:18:08+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-25T18:28:36+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "fr"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-25T17:57:43+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "fr"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:12:27+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "fr"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-25T17:45:01+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "fr"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:11:46+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "fr"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-25T17:48:09+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "fr"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:12:49+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "fr"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-25T17:56:30+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "fr"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-25T17:41:03+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "fr"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T12:18:33+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "fr"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-25T17:31:45+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "fr"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T12:16:52+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "fr"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-25T17:27:11+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "fr"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T12:19:45+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "fr"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-25T17:38:41+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "fr"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-25T17:19:43+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "fr"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:11:16+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "fr"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-25T17:18:37+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "fr"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-25T17:12:10+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "fr"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T10:58:33+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "fr"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-25T16:10:23+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "fr"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:17:17+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "fr"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:13:41+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "fr"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:00:40+00:00",
+ "source_file": "README.md",
+ "language_code": "fr"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-25T16:11:15+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "fr"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-25T16:08:23+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "fr"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:28:33+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "fr"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:51:41+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "fr"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-25T16:37:25+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "fr"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:55:12+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "fr"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:51:23+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "fr"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-25T17:39:51+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "fr"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-25T17:11:36+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "fr"
+ }
+}
\ No newline at end of file
diff --git a/translations/fr/1-Introduction/01-defining-data-science/README.md b/translations/fr/1-Introduction/01-defining-data-science/README.md
index e2eef0ce..57d183f2 100644
--- a/translations/fr/1-Introduction/01-defining-data-science/README.md
+++ b/translations/fr/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Définir la Science des Données
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/fr/1-Introduction/01-defining-data-science/assignment.md b/translations/fr/1-Introduction/01-defining-data-science/assignment.md
index c992726f..edd59bc7 100644
--- a/translations/fr/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/fr/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Devoir : Scénarios en Science des Données
Dans ce premier devoir, nous vous demandons de réfléchir à un processus ou un problème réel dans différents domaines, et comment vous pourriez l'améliorer en utilisant le processus de la Science des Données. Pensez aux points suivants :
diff --git a/translations/fr/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/fr/1-Introduction/01-defining-data-science/solution/assignment.md
index f9d86351..86640ef9 100644
--- a/translations/fr/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/fr/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Devoir : Scénarios en Science des Données
Dans ce premier devoir, nous vous demandons de réfléchir à un processus ou un problème réel dans différents domaines, et comment vous pourriez l'améliorer en utilisant le processus de la Science des Données. Pensez aux points suivants :
diff --git a/translations/fr/1-Introduction/02-ethics/README.md b/translations/fr/1-Introduction/02-ethics/README.md
index a05b9b84..43720c16 100644
--- a/translations/fr/1-Introduction/02-ethics/README.md
+++ b/translations/fr/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Introduction à l'éthique des données
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/fr/1-Introduction/02-ethics/assignment.md b/translations/fr/1-Introduction/02-ethics/assignment.md
index bb5acc69..bae7d41e 100644
--- a/translations/fr/1-Introduction/02-ethics/assignment.md
+++ b/translations/fr/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Rédiger une étude de cas sur l'éthique des données
## Instructions
diff --git a/translations/fr/1-Introduction/03-defining-data/README.md b/translations/fr/1-Introduction/03-defining-data/README.md
index c986c58c..4b914479 100644
--- a/translations/fr/1-Introduction/03-defining-data/README.md
+++ b/translations/fr/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Définir les données
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/fr/1-Introduction/03-defining-data/assignment.md b/translations/fr/1-Introduction/03-defining-data/assignment.md
index 8fdf91f7..c4f9547e 100644
--- a/translations/fr/1-Introduction/03-defining-data/assignment.md
+++ b/translations/fr/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Classification des ensembles de données
## Instructions
diff --git a/translations/fr/1-Introduction/04-stats-and-probability/README.md b/translations/fr/1-Introduction/04-stats-and-probability/README.md
index 732efb84..5686915f 100644
--- a/translations/fr/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/fr/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Une brève introduction aux statistiques et probabilités
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Pour nous aider à comprendre la distribution des données, il est utile de parl
Graphiquement, nous pouvons représenter la relation entre la médiane et les quartiles dans un diagramme appelé **boîte à moustaches** :
-
+
Ici, nous calculons également l'**étendue interquartile** IQR=Q3-Q1, et les **valeurs aberrantes** - des valeurs qui se situent en dehors des limites [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/fr/1-Introduction/04-stats-and-probability/assignment.md b/translations/fr/1-Introduction/04-stats-and-probability/assignment.md
index d84c2220..f54d3842 100644
--- a/translations/fr/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/fr/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Petite étude sur le diabète
Dans cet exercice, nous travaillerons avec un petit ensemble de données de patients atteints de diabète, disponible [ici](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/fr/1-Introduction/README.md b/translations/fr/1-Introduction/README.md
index 1b4e943a..f93bce5d 100644
--- a/translations/fr/1-Introduction/README.md
+++ b/translations/fr/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduction à la Science des Données

diff --git a/translations/fr/2-Working-With-Data/05-relational-databases/README.md b/translations/fr/2-Working-With-Data/05-relational-databases/README.md
index dd64bb88..68da7f6c 100644
--- a/translations/fr/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/fr/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Travailler avec les données : bases de données relationnelles
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/fr/2-Working-With-Data/05-relational-databases/assignment.md b/translations/fr/2-Working-With-Data/05-relational-databases/assignment.md
index ef86c9ce..6e47f24a 100644
--- a/translations/fr/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/fr/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Affichage des données des aéroports
On vous a fourni une [base de données](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) construite sur [SQLite](https://sqlite.org/index.html) contenant des informations sur les aéroports. Le schéma est affiché ci-dessous. Vous utiliserez l'[extension SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) dans [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) pour afficher des informations sur les aéroports de différentes villes.
diff --git a/translations/fr/2-Working-With-Data/06-non-relational/README.md b/translations/fr/2-Working-With-Data/06-non-relational/README.md
index 427673f8..7d144d18 100644
--- a/translations/fr/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/fr/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Travailler avec les données : données non relationnelles
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/fr/2-Working-With-Data/06-non-relational/assignment.md b/translations/fr/2-Working-With-Data/06-non-relational/assignment.md
index 4ff4a438..c4b95130 100644
--- a/translations/fr/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/fr/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Profits de Soda
## Instructions
diff --git a/translations/fr/2-Working-With-Data/07-python/README.md b/translations/fr/2-Working-With-Data/07-python/README.md
index 51934958..8297c1f2 100644
--- a/translations/fr/2-Working-With-Data/07-python/README.md
+++ b/translations/fr/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Travailler avec des données : Python et la bibliothèque Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/fr/2-Working-With-Data/07-python/assignment.md b/translations/fr/2-Working-With-Data/07-python/assignment.md
index ff0655e1..318b46a4 100644
--- a/translations/fr/2-Working-With-Data/07-python/assignment.md
+++ b/translations/fr/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Devoir sur le traitement des données en Python
Dans ce devoir, nous vous demandons d'approfondir le code que nous avons commencé à développer dans nos défis. Le devoir se compose de deux parties :
diff --git a/translations/fr/2-Working-With-Data/08-data-preparation/README.md b/translations/fr/2-Working-With-Data/08-data-preparation/README.md
index 8355504b..97c1da85 100644
--- a/translations/fr/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/fr/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Travailler avec les données : Préparation des données
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/fr/2-Working-With-Data/08-data-preparation/assignment.md b/translations/fr/2-Working-With-Data/08-data-preparation/assignment.md
index a0e30c7c..1e32fd26 100644
--- a/translations/fr/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/fr/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Évaluation des données d'un formulaire
Un client a testé un [petit formulaire](../../../../2-Working-With-Data/08-data-preparation/index.html) pour recueillir des données de base sur sa clientèle. Il vous a transmis ses résultats pour valider les données collectées. Vous pouvez ouvrir la page `index.html` dans le navigateur pour examiner le formulaire.
diff --git a/translations/fr/2-Working-With-Data/README.md b/translations/fr/2-Working-With-Data/README.md
index 3726a049..aac735bc 100644
--- a/translations/fr/2-Working-With-Data/README.md
+++ b/translations/fr/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Travailler avec les données

diff --git a/translations/fr/3-Data-Visualization/09-visualization-quantities/README.md b/translations/fr/3-Data-Visualization/09-visualization-quantities/README.md
index dd635d5d..cf3e3e3e 100644
--- a/translations/fr/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/fr/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualiser des quantités
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/fr/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/fr/3-Data-Visualization/09-visualization-quantities/assignment.md
index 5de509f1..e2e27c90 100644
--- a/translations/fr/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/fr/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Lignes, Nuages de points et Barres
## Instructions
diff --git a/translations/fr/3-Data-Visualization/10-visualization-distributions/README.md b/translations/fr/3-Data-Visualization/10-visualization-distributions/README.md
index 2f2826f2..523b121f 100644
--- a/translations/fr/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/fr/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualiser les distributions
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/fr/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/fr/3-Data-Visualization/10-visualization-distributions/assignment.md
index 8fb9ecc7..ef5a0e5d 100644
--- a/translations/fr/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/fr/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Appliquez vos compétences
## Instructions
diff --git a/translations/fr/3-Data-Visualization/11-visualization-proportions/README.md b/translations/fr/3-Data-Visualization/11-visualization-proportions/README.md
index 9aa8c0a6..eaaae88a 100644
--- a/translations/fr/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/fr/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualiser les proportions
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/fr/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/fr/3-Data-Visualization/11-visualization-proportions/assignment.md
index 93c32309..c9ce11ca 100644
--- a/translations/fr/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/fr/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Essayez-le dans Excel
## Instructions
diff --git a/translations/fr/3-Data-Visualization/12-visualization-relationships/README.md b/translations/fr/3-Data-Visualization/12-visualization-relationships/README.md
index 6bb048fb..e8eaff75 100644
--- a/translations/fr/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/fr/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualiser les relations : Tout sur le miel 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/fr/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/fr/3-Data-Visualization/12-visualization-relationships/assignment.md
index 5fd70248..1b7286a1 100644
--- a/translations/fr/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/fr/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Plongez dans la ruche
## Instructions
diff --git a/translations/fr/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/fr/3-Data-Visualization/13-meaningful-visualizations/README.md
index 540961f5..4847a1e6 100644
--- a/translations/fr/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/fr/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Créer des visualisations significatives
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/fr/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/fr/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 2b6d56f0..4006b5b8 100644
--- a/translations/fr/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/fr/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Créez votre propre visualisation personnalisée
## Instructions
diff --git a/translations/fr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/fr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 7c2a5d63..d20b5104 100644
--- a/translations/fr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/fr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Projet de visualisation des données Dangerous Liaisons
Pour commencer, assurez-vous que NPM et Node sont installés et fonctionnent sur votre machine. Installez les dépendances (npm install) puis exécutez le projet en local (npm run serve) :
diff --git a/translations/fr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/fr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index b0697c00..724cbb36 100644
--- a/translations/fr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/fr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Projet de visualisation des données Dangerous Liaisons
Pour commencer, assurez-vous que NPM et Node sont installés et fonctionnent sur votre machine. Installez les dépendances (npm install), puis exécutez le projet en local (npm run serve) :
diff --git a/translations/fr/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/fr/3-Data-Visualization/R/09-visualization-quantities/README.md
index 74630ac0..cb696e37 100644
--- a/translations/fr/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/fr/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualiser des quantités
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/fr/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/fr/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index dcfbb11e..f329ef08 100644
--- a/translations/fr/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/fr/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Lignes, Nuages de points et Barres
## Instructions
diff --git a/translations/fr/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/fr/3-Data-Visualization/R/10-visualization-distributions/README.md
index c00b88d8..78cc4122 100644
--- a/translations/fr/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/fr/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualiser les distributions
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/fr/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/fr/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index d4917517..a2b070ae 100644
--- a/translations/fr/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/fr/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Mettez vos compétences en pratique
## Instructions
diff --git a/translations/fr/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/fr/3-Data-Visualization/R/11-visualization-proportions/README.md
index 6af86f84..9e96efd0 100644
--- a/translations/fr/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/fr/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualiser les proportions
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/fr/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/fr/3-Data-Visualization/R/12-visualization-relationships/README.md
index d2a1b910..9713bb61 100644
--- a/translations/fr/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/fr/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualiser les relations : Tout sur le miel 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/fr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/fr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 71a47464..7161369e 100644
--- a/translations/fr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/fr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Créer des Visualisations Significatives
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/fr/3-Data-Visualization/README.md b/translations/fr/3-Data-Visualization/README.md
index c23beb3c..97f4164f 100644
--- a/translations/fr/3-Data-Visualization/README.md
+++ b/translations/fr/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Visualisations

diff --git a/translations/fr/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/fr/4-Data-Science-Lifecycle/14-Introduction/README.md
index f43eb9e0..147deb71 100644
--- a/translations/fr/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/fr/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduction au cycle de vie de la science des données
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/fr/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/fr/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 688c9498..42c4dcec 100644
--- a/translations/fr/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/fr/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Évaluation d'un ensemble de données
Un client a sollicité votre équipe pour l'aider à analyser les habitudes de dépenses saisonnières des clients de taxis à New York.
diff --git a/translations/fr/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/fr/4-Data-Science-Lifecycle/15-analyzing/README.md
index 4c61d852..a7f0c41f 100644
--- a/translations/fr/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/fr/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Le cycle de vie de la science des données : Analyse
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/fr/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/fr/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 129af41f..fbdf3e70 100644
--- a/translations/fr/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/fr/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Exploration des réponses
Ceci est une continuation de [l'exercice](../14-Introduction/assignment.md) de la leçon précédente, où nous avons brièvement examiné l'ensemble de données. Maintenant, nous allons examiner les données de manière plus approfondie.
diff --git a/translations/fr/4-Data-Science-Lifecycle/16-communication/README.md b/translations/fr/4-Data-Science-Lifecycle/16-communication/README.md
index 2b7105ae..e0308630 100644
--- a/translations/fr/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/fr/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Le cycle de vie de la science des données : Communication
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/fr/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/fr/4-Data-Science-Lifecycle/16-communication/assignment.md
index 41bdd677..279973dc 100644
--- a/translations/fr/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/fr/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Racontez une histoire
## Instructions
diff --git a/translations/fr/4-Data-Science-Lifecycle/README.md b/translations/fr/4-Data-Science-Lifecycle/README.md
index 0f6b76d2..bb5f55bc 100644
--- a/translations/fr/4-Data-Science-Lifecycle/README.md
+++ b/translations/fr/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Le cycle de vie de la science des données

diff --git a/translations/fr/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/fr/5-Data-Science-In-Cloud/17-Introduction/README.md
index f3d2bec6..3e8692a2 100644
--- a/translations/fr/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/fr/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduction à la Science des Données dans le Cloud
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/fr/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/fr/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index b97b3d6d..2f1f7188 100644
--- a/translations/fr/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/fr/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Recherche de Marché
## Instructions
diff --git a/translations/fr/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/fr/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 79dedb5c..afa9eb5c 100644
--- a/translations/fr/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/fr/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# La science des données dans le cloud : La méthode "Low code/No code"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/fr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/fr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 25552b5f..eb9827ae 100644
--- a/translations/fr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/fr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Projet de Data Science Low code/No code sur Azure ML
## Instructions
diff --git a/translations/fr/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/fr/5-Data-Science-In-Cloud/19-Azure/README.md
index 1f55146e..868f1246 100644
--- a/translations/fr/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/fr/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# La Science des Données dans le Cloud : La méthode "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/fr/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/fr/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 1c321c68..2743b5b3 100644
--- a/translations/fr/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/fr/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Projet de Data Science avec Azure ML SDK
## Instructions
diff --git a/translations/fr/5-Data-Science-In-Cloud/README.md b/translations/fr/5-Data-Science-In-Cloud/README.md
index 5e159e14..d016b606 100644
--- a/translations/fr/5-Data-Science-In-Cloud/README.md
+++ b/translations/fr/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# La Data Science dans le Cloud

diff --git a/translations/fr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/fr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 9e235b00..c8695dc7 100644
--- a/translations/fr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/fr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# La science des données dans le monde réel
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/fr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/fr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 96693492..72744e57 100644
--- a/translations/fr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/fr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Explorer un Jeu de Données du Planetary Computer
## Instructions
diff --git a/translations/fr/6-Data-Science-In-Wild/README.md b/translations/fr/6-Data-Science-In-Wild/README.md
index bc0d2583..dc8765eb 100644
--- a/translations/fr/6-Data-Science-In-Wild/README.md
+++ b/translations/fr/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# La Data Science dans la Nature
Applications concrètes de la data science dans divers secteurs.
diff --git a/translations/fr/AGENTS.md b/translations/fr/AGENTS.md
index 526918f5..d66fcd1a 100644
--- a/translations/fr/AGENTS.md
+++ b/translations/fr/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Aperçu du projet
diff --git a/translations/fr/CODE_OF_CONDUCT.md b/translations/fr/CODE_OF_CONDUCT.md
index 81cd4e6c..9d28d140 100644
--- a/translations/fr/CODE_OF_CONDUCT.md
+++ b/translations/fr/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Code de conduite Open Source de Microsoft
Ce projet a adopté le [Code de conduite Open Source de Microsoft](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/fr/CONTRIBUTING.md b/translations/fr/CONTRIBUTING.md
index 1ba08a4b..56838434 100644
--- a/translations/fr/CONTRIBUTING.md
+++ b/translations/fr/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Contribuer à Data Science pour les Débutants
Merci de votre intérêt pour contribuer au programme Data Science pour les Débutants ! Nous accueillons les contributions de la communauté.
diff --git a/translations/fr/INSTALLATION.md b/translations/fr/INSTALLATION.md
index 4ca41f49..f5d2000d 100644
--- a/translations/fr/INSTALLATION.md
+++ b/translations/fr/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Guide d'installation
Ce guide vous aidera à configurer votre environnement pour travailler avec le programme "Data Science for Beginners".
diff --git a/translations/fr/README.md b/translations/fr/README.md
index 2a5e5418..2f775964 100644
--- a/translations/fr/README.md
+++ b/translations/fr/README.md
@@ -1,52 +1,43 @@
-
-# Data Science pour débutants - Un programme
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+# Science des données pour débutants - Un programme
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
-Les Azure Cloud Advocates chez Microsoft sont heureux de proposer un programme de 10 semaines et 20 leçons entièrement consacré à la science des données. Chaque leçon comprend des quiz avant et après la leçon, des instructions écrites pour compléter la leçon, une solution, et un devoir. Notre pédagogie basée sur les projets vous permet d'apprendre en construisant, une méthode éprouvée pour que les nouvelles compétences « collent ».
+Les Azure Cloud Advocates de Microsoft sont heureux de proposer un programme de 10 semaines, 20 leçons, entièrement dédié à la science des données. Chaque leçon inclut des quiz avant et après la leçon, des instructions écrites pour compléter la leçon, une solution, et un exercice. Notre pédagogie basée sur des projets vous permet d’apprendre tout en construisant, une méthode éprouvée pour que les nouvelles compétences restent bien ancrées.
**Un grand merci à nos auteurs :** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Remerciements particuliers 🙏 à nos auteurs, relecteurs et contributeurs de contenu [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** notamment Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Remerciements spéciaux 🙏 à nos auteurs, réviseurs et contributeurs de contenu [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** notamment Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Data Science Pour Débutants - _Sketchnote par [@nitya](https://twitter.com/nitya)_ |
+| Science des données pour débutants - _Note visuelle par [@nitya](https://twitter.com/nitya)_ |
### 🌐 Support multilingue
#### Pris en charge via GitHub Action (Automatisé & Toujours à jour)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](./README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabe](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgare](../bg/README.md) | [Birman (Myanmar)](../my/README.md) | [Chinois (Simplifié)](../zh-CN/README.md) | [Chinois (Traditionnel, Hong Kong)](../zh-HK/README.md) | [Chinois (Traditionnel, Macao)](../zh-MO/README.md) | [Chinois (Traditionnel, Taïwan)](../zh-TW/README.md) | [Croate](../hr/README.md) | [Tchèque](../cs/README.md) | [Danois](../da/README.md) | [Néerlandais](../nl/README.md) | [Estonien](../et/README.md) | [Finnois](../fi/README.md) | [Français](./README.md) | [Allemand](../de/README.md) | [Grec](../el/README.md) | [Hébreu](../he/README.md) | [Hindi](../hi/README.md) | [Hongrois](../hu/README.md) | [Indonésien](../id/README.md) | [Italien](../it/README.md) | [Japonais](../ja/README.md) | [Kannada](../kn/README.md) | [Coréen](../ko/README.md) | [Lituanien](../lt/README.md) | [Malais](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Népalais](../ne/README.md) | [Pidgin nigérian](../pcm/README.md) | [Norvégien](../no/README.md) | [Persan (Farsi)](../fa/README.md) | [Polonais](../pl/README.md) | [Portugais (Brésil)](../pt-BR/README.md) | [Portugais (Portugal)](../pt-PT/README.md) | [Pendjabi (Gurmukhi)](../pa/README.md) | [Roumain](../ro/README.md) | [Russe](../ru/README.md) | [Serbe (Cyrillique)](../sr/README.md) | [Slovaque](../sk/README.md) | [Slovène](../sl/README.md) | [Espagnol](../es/README.md) | [Swahili](../sw/README.md) | [Suédois](../sv/README.md) | [Tagalog (Philippin)](../tl/README.md) | [Tamoul](../ta/README.md) | [Télougou](../te/README.md) | [Thaï](../th/README.md) | [Turc](../tr/README.md) | [Ukrainien](../uk/README.md) | [Ourdou](../ur/README.md) | [Vietnamien](../vi/README.md)
-> **Vous préférez cloner localement ?**
+> **Préférez cloner localement ?**
-> Ce dépôt inclut plus de 50 traductions, ce qui augmente considérablement la taille du téléchargement. Pour cloner sans les traductions, utilisez le sparse checkout :
+> Ce dépôt comprend plus de 50 traductions linguistiques ce qui augmente significativement la taille du téléchargement. Pour cloner sans les traductions, utilisez le sparse checkout :
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
@@ -55,47 +46,47 @@ Les Azure Cloud Advocates chez Microsoft sont heureux de proposer un programme d
> Cela vous donne tout ce dont vous avez besoin pour suivre le cours avec un téléchargement beaucoup plus rapide.
-**Si vous souhaitez que d’autres langues de traduction soient prises en charge, la liste est disponible [ici](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Si vous souhaitez que d’autres langues de traduction soient prises en charge, elles sont listées [ici](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Rejoignez notre communauté
[](https://discord.gg/nTYy5BXMWG)
-Nous avons une série Discord Apprenez avec l’IA en cours, apprenez-en plus et rejoignez-nous sur [Learn with AI Series](https://aka.ms/learnwithai/discord) du 18 au 30 septembre 2025. Vous y découvrirez des astuces pour utiliser GitHub Copilot en science des données.
+Nous avons une série Discord « apprendre avec l’IA » en cours, apprenez-en plus et rejoignez-nous sur [Série Apprendre avec l’IA](https://aka.ms/learnwithai/discord) du 18 au 30 septembre 2025. Vous recevrez des astuces pour utiliser GitHub Copilot en science des données.
-
+
# Êtes-vous étudiant ?
Commencez avec les ressources suivantes :
-- [Page du Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Sur cette page, vous trouverez des ressources pour débutants, des packs étudiants et même des moyens d’obtenir un bon pour une certification gratuite. C’est une page à mettre en favori et à consulter régulièrement, car le contenu y est renouvelé au moins chaque mois.
+- [Page du hub étudiant](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Sur cette page, vous trouverez des ressources pour débutants, des packs étudiants et même des moyens d’obtenir un voucher de certification gratuit. C’est une page que vous voudrez mettre en favori et consulter régulièrement car le contenu est renouvelé au moins chaque mois.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Rejoignez une communauté mondiale d’ambassadeurs étudiants, cela pourrait être votre porte d’entrée chez Microsoft.
-# Premiers pas
+# Pour commencer
## 📚 Documentation
-- **[Guide d’installation](INSTALLATION.md)** - Instructions de configuration étape par étape pour débutants
+- **[Guide d’installation](INSTALLATION.md)** - Instructions pas à pas pour débutants
- **[Guide d’utilisation](USAGE.md)** - Exemples et flux de travail courants
- **[Dépannage](TROUBLESHOOTING.md)** - Solutions aux problèmes fréquents
- **[Guide de contribution](CONTRIBUTING.md)** - Comment contribuer à ce projet
- **[Pour les enseignants](for-teachers.md)** - Conseils pédagogiques et ressources pour la classe
## 👨🎓 Pour les étudiants
-> **Débutants complets** : Nouveau en science des données ? Commencez avec nos [exemples pour débutants](examples/README.md) ! Ces exemples simples et bien commentés vous aideront à comprendre les bases avant de vous plonger dans le programme complet.
-> **[Étudiants](https://aka.ms/student-page)** : pour utiliser ce programme de façon autonome, créez un fork complet du dépôt et faites les exercices seul(e), en commençant par un quiz pré-conférence. Puis lisez la conférence et complétez les activités restantes. Essayez de réaliser les projets en comprenant les leçons plutôt qu’en copiant le code solution ; cependant, ce code est disponible dans les dossiers /solutions de chaque leçon centrée sur un projet. Une autre idée serait de former un groupe d’étude avec des amis et de parcourir le contenu ensemble. Pour approfondir, nous recommandons [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Débutants complets** : Nouveau en science des données ? Commencez avec nos [exemples adaptés aux débutants](examples/README.md) ! Ces exemples simples et bien commentés vous aideront à comprendre les bases avant de plonger dans le programme complet.
+> **[Étudiants](https://aka.ms/student-page)** : pour utiliser ce programme de manière autonome, forkez l’ensemble du dépôt et complétez les exercices par vous-même, en commençant par un quiz avant la leçon. Puis lisez la leçon et terminez les autres activités. Essayez de créer les projets en comprenant les leçons plutôt qu’en copiant le code solution ; cependant, ce code est disponible dans les dossiers /solutions de chaque leçon orientée projet. Une autre idée serait de former un groupe d’étude avec des amis et de parcourir le contenu ensemble. Pour approfondir, nous recommandons [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Démarrage rapide :**
1. Consultez le [Guide d’installation](INSTALLATION.md) pour configurer votre environnement
-2. Parcourez le [Guide d’utilisation](USAGE.md) pour apprendre à travailler avec le programme
+2. Revoyez le [Guide d’utilisation](USAGE.md) pour apprendre à travailler avec le programme
3. Commencez par la leçon 1 et suivez-les dans l’ordre
4. Rejoignez notre [communauté Discord](https://aka.ms/ds4beginners/discord) pour obtenir de l’aide
## 👩🏫 Pour les enseignants
-> **Enseignants** : nous avons [inclus quelques suggestions](for-teachers.md) sur la manière d’utiliser ce programme. Vos retours nous intéressent [dans notre forum de discussion](https://github.com/microsoft/Data-Science-For-Beginners/discussions) !
+> **Enseignants** : nous avons [inclus quelques suggestions](for-teachers.md) sur la manière d’utiliser ce programme. Nous serions ravis de votre retour [dans notre forum de discussion](https://github.com/microsoft/Data-Science-For-Beginners/discussions) !
+## Rencontrez l'équipe
-## Rencontrez l’équipe
[](https://youtu.be/8mzavjQSMM4 "Vidéo promo")
**Gif par** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
@@ -104,159 +95,159 @@ Commencez avec les ressources suivantes :
## Pédagogie
-Nous avons choisi deux principes pédagogiques lors de la construction de ce cursus : s'assurer qu'il soit basé sur des projets et qu'il inclue des quiz fréquents. À la fin de cette série, les étudiants auront appris les principes de base de la science des données, y compris les concepts éthiques, la préparation des données, différentes manières de travailler avec les données, la visualisation des données, l'analyse des données, des cas d'usage réels de la science des données, et plus encore.
+Nous avons choisi deux principes pédagogiques lors de la construction de ce programme : garantir qu'il soit basé sur des projets et qu'il inclue des quiz fréquents. À la fin de cette série, les étudiants auront appris les principes de base de la science des données, y compris des concepts éthiques, la préparation des données, différentes façons de travailler avec les données, la visualisation des données, l'analyse des données, des cas d'utilisation réels de la science des données, et plus encore.
-De plus, un quiz à faible enjeu avant un cours oriente l'intention de l'étudiant vers l'apprentissage d'un sujet, tandis qu'un second quiz après la classe assure une meilleure rétention. Ce cursus a été conçu pour être flexible et ludique et peut être suivi dans son intégralité ou en partie. Les projets commencent petits et deviennent de plus en plus complexes à la fin du cycle de 10 semaines.
+De plus, un quiz à enjeu faible avant un cours fixe l'intention de l'étudiant envers l'apprentissage d'un sujet, tandis qu'un second quiz après le cours assure une meilleure rétention. Ce programme a été conçu pour être flexible et amusant et peut être suivi en totalité ou en partie. Les projets commencent petits et deviennent de plus en plus complexes à la fin du cycle de 10 semaines.
-> Retrouvez notre [Code de conduite](CODE_OF_CONDUCT.md), [Contributions](CONTRIBUTING.md), [Traduction](TRANSLATIONS.md). Nous accueillons vos retours constructifs !
+> Trouvez notre [Code de Conduite](CODE_OF_CONDUCT.md), [Contribuer](CONTRIBUTING.md), [Traduction](TRANSLATIONS.md) directives. Nous accueillons vos retours constructifs !
## Chaque leçon inclut :
- Sketchnote optionnel
- Vidéo complémentaire optionnelle
-- Quiz d’échauffement avant la leçon
+- Quiz d'échauffement avant la leçon
- Leçon écrite
-- Pour les leçons basées sur un projet, des guides étape par étape pour construire le projet
+- Pour les leçons basées sur des projets, des guides étape par étape pour construire le projet
- Vérifications des connaissances
- Un défi
-- Lectures complémentaires
-- Devoirs
+- Lecture complémentaire
+- Devoir
- [Quiz post-leçon](https://ff-quizzes.netlify.app/en/)
-> **Une note sur les quiz** : Tous les quiz se trouvent dans le dossier Quiz-App, pour un total de 40 quiz de trois questions chacun. Ils sont liés depuis les leçons, mais l'application de quiz peut être exécutée localement ou déployée sur Azure ; suivez les instructions dans le dossier `quiz-app`. Ils sont progressivement localisés.
+> **Une note sur les quiz** : Tous les quiz sont contenus dans le dossier Quiz-App, pour un total de 40 quiz de trois questions chacun. Ils sont liés depuis les leçons, mais l'application de quiz peut être exécutée localement ou déployée sur Azure ; suivez les instructions dans le dossier `quiz-app`. Ils sont progressivement localisés.
-## 🎓 Exemples pour débutants
+## 🎓 Exemples adaptés aux débutants
-**Nouveau en science des données ?** Nous avons créé un répertoire spécial [exemples](examples/README.md) avec des codes simples et bien commentés pour vous aider à démarrer :
+**Nouveau en science des données ?** Nous avons créé un [répertoire d'exemples](examples/README.md) spécial avec du code simple et bien commenté pour vous aider à démarrer :
- 🌟 **Hello World** - Votre premier programme de science des données
-- 📂 **Chargement de données** - Apprenez à lire et explorer des jeux de données
-- 📊 **Analyse simple** - Calculer des statistiques et trouver des motifs
-- 📈 **Visualisation basique** - Créer des graphiques et des diagrammes
+- 📂 **Chargement des données** - Apprenez à lire et explorer des ensembles de données
+- 📊 **Analyse simple** - Calculez des statistiques et trouvez des motifs
+- 📈 **Visualisation de base** - Créez des graphiques et des diagrammes
- 🔬 **Projet réel** - Flux de travail complet du début à la fin
-Chaque exemple inclut des commentaires détaillés expliquant chaque étape, parfait pour les débutants absolus !
+Chaque exemple inclut des commentaires détaillés expliquant chaque étape, parfaitement adapté aux débutants absolus !
-👉 **[Commencez par les exemples](examples/README.md)** 👈
+👉 **[Commencez avec les exemples](examples/README.md)** 👈
## Leçons
-||
+||
|:---:|
| Science des données pour débutants : feuille de route - _Sketchnote par [@nitya](https://twitter.com/nitya)_ |
-| Numéro de leçon | Sujet | Groupe de leçons | Objectifs d'apprentissage | Leçon liée | Auteur |
+| Numéro de leçon | Sujet | Regroupement de leçon | Objectifs d’apprentissage | Leçon liée | Auteur |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Définir la science des données | [Introduction](1-Introduction/README.md) | Apprendre les concepts de base derrière la science des données et comment elle est liée à l'intelligence artificielle, au machine learning et au big data. | [leçon](1-Introduction/01-defining-data-science/README.md) [vidéo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Éthique en science des données | [Introduction](1-Introduction/README.md) | Concepts, défis et cadres éthiques des données. | [leçon](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Définir les données | [Introduction](1-Introduction/README.md) | Comment les données sont classifiées et leurs sources communes. | [leçon](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Introduction aux statistiques & probabilités | [Introduction](1-Introduction/README.md) | Techniques mathématiques de la probabilité et des statistiques pour comprendre les données. | [leçon](1-Introduction/04-stats-and-probability/README.md) [vidéo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Travailler avec des données relationnelles | [Working With Data](2-Working-With-Data/README.md) | Introduction aux données relationnelles et aux bases de l'exploration et de l'analyse avec le langage de requête structurée, également appelé SQL (prononcé « see-quell »). | [leçon](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Travailler avec des données NoSQL | [Working With Data](2-Working-With-Data/README.md) | Introduction aux données non relationnelles, leurs différents types et les bases de l'exploration et de l'analyse des bases de données documentaires. | [leçon](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Travailler avec Python | [Working With Data](2-Working-With-Data/README.md) | Bases de l'utilisation de Python pour explorer les données avec des bibliothèques comme Pandas. Une compréhension de base de la programmation Python est recommandée. | [leçon](2-Working-With-Data/07-python/README.md) [vidéo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Préparation des données | [Working With Data](2-Working-With-Data/README.md) | Techniques pour nettoyer et transformer les données afin de gérer les défis des données manquantes, inexactes ou incomplètes. | [leçon](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Visualiser les quantités | [Data Visualization](3-Data-Visualization/README.md) | Apprenez à utiliser Matplotlib pour visualiser les données d'oiseaux 🦆 | [leçon](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Visualiser les distributions de données | [Data Visualization](3-Data-Visualization/README.md) | Visualiser les observations et tendances au sein d'un intervalle. | [leçon](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Visualiser les proportions | [Data Visualization](3-Data-Visualization/README.md) | Visualiser des pourcentages discrets et groupés. | [leçon](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 01 | Définir la science des données | [Introduction](1-Introduction/README.md) | Apprenez les concepts de base de la science des données et comment elle est liée à l’intelligence artificielle, l’apprentissage automatique et le Big Data. | [leçon](1-Introduction/01-defining-data-science/README.md) [vidéo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Éthique de la science des données | [Introduction](1-Introduction/README.md) | Concepts, défis et cadres éthiques des données. | [leçon](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Définir les données | [Introduction](1-Introduction/README.md) | Comment les données sont classifiées et leurs sources courantes. | [leçon](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Introduction aux statistiques & probabilités | [Introduction](1-Introduction/README.md) | Les techniques mathématiques des probabilités et des statistiques pour comprendre les données. | [leçon](1-Introduction/04-stats-and-probability/README.md) [vidéo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Travailler avec des données relationnelles | [Working With Data](2-Working-With-Data/README.md) | Introduction aux données relationnelles et bases de l’exploration et de l’analyse des données relationnelles avec le langage SQL (prononcé « see-quell »). | [leçon](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Travailler avec des données NoSQL | [Working With Data](2-Working-With-Data/README.md) | Introduction aux données non relationnelles, leurs différents types et bases de l’exploration et de l’analyse des bases de données documentaires. | [leçon](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Travailler avec Python | [Working With Data](2-Working-With-Data/README.md) | Bases de l’utilisation de Python pour l’exploration des données avec des bibliothèques telles que Pandas. Une compréhension fondationnelle de la programmation Python est recommandée. | [leçon](2-Working-With-Data/07-python/README.md) [vidéo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Préparation des données | [Working With Data](2-Working-With-Data/README.md) | Sujets sur les techniques de nettoyage et de transformation des données pour gérer les défis des données manquantes, inexactes ou incomplètes. | [leçon](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Visualiser les quantités | [Data Visualization](3-Data-Visualization/README.md) | Apprenez à utiliser Matplotlib pour visualiser les données sur les oiseaux 🦆 | [leçon](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Visualiser les distributions des données | [Data Visualization](3-Data-Visualization/README.md) | Visualiser les observations et les tendances dans un intervalle. | [leçon](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Visualiser les proportions | [Data Visualization](3-Data-Visualization/README.md) | Visualiser les pourcentages discrets et groupés. | [leçon](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualiser les relations | [Data Visualization](3-Data-Visualization/README.md) | Visualiser les connexions et corrélations entre ensembles de données et leurs variables. | [leçon](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Visualisations significatives | [Data Visualization](3-Data-Visualization/README.md) | Techniques et conseils pour rendre vos visualisations utiles pour une résolution efficace des problèmes et des insights. | [leçon](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Introduction au cycle de vie de la science des données | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Introduction au cycle de vie de la science des données et à sa première étape d’acquisition et d’extraction des données. | [leçon](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analyser | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Cette phase du cycle de vie de la science des données se concentre sur les techniques d'analyse des données. | [leçon](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Communication | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Cette phase du cycle de vie de la science des données se concentre sur la présentation des insights extraits des données d'une manière qui facilite la compréhension par les décideurs. | [leçon](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 13 | Visualisations significatives | [Data Visualization](3-Data-Visualization/README.md) | Techniques et conseils pour rendre vos visualisations précieuses pour une résolution efficace de problèmes et des insights. | [leçon](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Introduction au cycle de vie de la science des données | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Introduction au cycle de vie de la science des données et sa première étape d’acquisition et d’extraction des données. | [leçon](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Analyse | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Cette phase du cycle de vie de la science des données se concentre sur des techniques d’analyse des données. | [leçon](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Communication | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Cette phase du cycle de vie de la science des données met l’accent sur la présentation des insights des données de manière à faciliter la compréhension aux décideurs. | [leçon](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Science des données dans le cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Cette série de leçons introduit la science des données dans le cloud et ses avantages. | [leçon](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) et [Maud](https://twitter.com/maudstweets) |
| 18 | Science des données dans le cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Entraînement de modèles avec des outils Low Code. |[leçon](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) et [Maud](https://twitter.com/maudstweets) |
| 19 | Science des données dans le cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Déploiement de modèles avec Azure Machine Learning Studio. | [leçon](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) et [Maud](https://twitter.com/maudstweets) |
-| 20 | Science des données sur le terrain | [In the Wild](6-Data-Science-In-Wild/README.md) | Projets de science des données appliqués dans le monde réel. | [leçon](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 20 | Science des données en pratique | [In the Wild](6-Data-Science-In-Wild/README.md) | Projets drivés par la science des données dans le monde réel. | [leçon](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
-## Codespaces GitHub
+## GitHub Codespaces
Suivez ces étapes pour ouvrir cet exemple dans un Codespace :
-1. Cliquez sur le menu déroulant Code et sélectionnez l'option Open with Codespaces.
-2. Sélectionnez + New codespace en bas du panneau.
-Pour plus d'informations, consultez la [documentation GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+1. Cliquez sur le menu déroulant Code et sélectionnez l’option Ouvrir avec Codespaces.
+2. Sélectionnez + Nouveau codespace en bas du panneau.
+Pour plus d’informations, consultez la [documentation GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Suivez ces étapes pour ouvrir ce dépôt dans un conteneur en utilisant votre machine locale et VSCode avec l’extension VS Code Remote - Containers :
-1. Si c’est votre première fois à utiliser un conteneur de développement, assurez-vous que votre système répond aux prérequis (c’est-à-dire avoir Docker installé) dans [la documentation de démarrage](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Si c’est la première fois que vous utilisez un conteneur de développement, assurez-vous que votre système respecte les prérequis (par exemple avoir Docker installé) dans [la documentation de démarrage](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Pour utiliser ce dépôt, vous pouvez soit ouvrir le dépôt dans un volume Docker isolé :
-**Note** : Sous le capot, cela utilisera la commande Remote-Containers : **Clone Repository in Container Volume...** pour cloner le code source dans un volume Docker plutôt que sur le système de fichiers local. Les [volumes](https://docs.docker.com/storage/volumes/) sont le mécanisme préféré pour la persistance des données des conteneurs.
+**Note** : En coulisses, cela utilisera la commande Remote-Containers : **Clone Repository in Container Volume...** pour cloner le code source dans un volume Docker au lieu du système de fichiers local. Les [volumes](https://docs.docker.com/storage/volumes/) sont le mécanisme préféré pour la persistance des données du conteneur.
-Ou ouvrez une version localement clonée ou téléchargée du dépôt :
+Ou ouvrir une version clonée ou téléchargée localement du dépôt :
-- Cloner ce dépôt sur votre système de fichiers local.
-- Appuyez sur F1 et sélectionnez la commande **Remote-Containers: Open Folder in Container...**.
-- Sélectionnez la copie clonée de ce dossier, attendez que le conteneur démarre, puis essayez.
+- Clonez ce dépôt sur votre système de fichiers local.
+- Appuyez sur F1 et sélectionnez la commande **Remote-Containers : Open Folder in Container...**.
+- Sélectionnez la copie clonée de ce dossier, attendez que le conteneur démarre et essayez.
## Accès hors ligne
-Vous pouvez consulter cette documentation hors ligne en utilisant [Docsify](https://docsify.js.org/#/). Forkez ce dépôt, [installez Docsify](https://docsify.js.org/#/quickstart) sur votre machine locale, puis dans le dossier racine de ce dépôt, tapez `docsify serve`. Le site web sera servi sur le port 3000 de votre localhost : `localhost:3000`.
+Vous pouvez consulter cette documentation hors ligne en utilisant [Docsify](https://docsify.js.org/#/). Forkez ce dépôt, [installez Docsify](https://docsify.js.org/#/quickstart) sur votre machine locale, puis dans le dossier racine de ce dépôt, tapez `docsify serve`. Le site sera servi sur le port 3000 sur votre localhost : `localhost:3000`.
-> Note, les notebooks ne seront pas rendus via Docsify, donc quand vous avez besoin d'exécuter un notebook, faites-le séparément dans VS Code avec un kernel Python.
+> Note, les notebooks ne seront pas rendus via Docsify, donc lorsque vous devez exécuter un notebook, faites-le séparément dans VS Code avec un noyau Python.
-## Autres cursus
+## Autres programmes
-Notre équipe produit d’autres cursus ! Découvrez :
+Notre équipe produit d'autres programmes ! Découvrez :
### LangChain
[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
### Azure / Edge / MCP / Agents
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-
-### Série IA Générative
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+
+### Série Intelligence Artificielle Générative
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
-
+
### Apprentissage Fondamental
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-
+
### Série Copilot
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-## Obtenir de l'aide
+## Obtenir de l'Aide
-**Des problèmes rencontrés ?** Consultez notre [Guide de dépannage](TROUBLESHOOTING.md) pour des solutions aux problèmes courants.
+**Vous rencontrez des problèmes ?** Consultez notre [Guide de dépannage](TROUBLESHOOTING.md) pour des solutions aux problèmes courants.
-Si vous êtes bloqué ou avez des questions sur la création d'applications IA. Rejoignez d'autres apprenants et développeurs expérimentés dans des discussions sur MCP. C'est une communauté bienveillante où les questions sont les bienvenues et où le savoir est partagé librement.
+Si vous êtes bloqué ou avez des questions sur la création d'applications IA, rejoignez les autres apprenants et développeurs expérimentés pour des discussions autour de MCP. C'est une communauté bienveillante où les questions sont les bienvenues et les connaissances partagées librement.
[](https://discord.gg/nTYy5BXMWG)
-Si vous avez des retours sur le produit ou des erreurs lors du développement, rendez-vous sur :
+Si vous avez des retours produit ou rencontrez des erreurs lors de la création, visitez :
[](https://aka.ms/foundry/forum)
---
-**Clause de non-responsabilité** :
-Ce document a été traduit à l’aide du service de traduction IA [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d’assurer l’exactitude, veuillez noter que les traductions automatiques peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d’origine doit être considéré comme la source faisant foi. Pour les informations critiques, une traduction professionnelle réalisée par un humain est recommandée. Nous déclinons toute responsabilité en cas de malentendus ou de mauvaises interprétations résultant de l’utilisation de cette traduction.
+**Avertissement** :
+Ce document a été traduit à l’aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d’assurer l’exactitude, veuillez noter que les traductions automatiques peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue natale doit être considéré comme la source faisant foi. Pour des informations cruciales, une traduction professionnelle réalisée par un humain est recommandée. Nous déclinons toute responsabilité en cas de malentendus ou d’interprétations erronées résultant de l’utilisation de cette traduction.
\ No newline at end of file
diff --git a/translations/fr/SECURITY.md b/translations/fr/SECURITY.md
index 549fde8f..fd7f63d0 100644
--- a/translations/fr/SECURITY.md
+++ b/translations/fr/SECURITY.md
@@ -1,12 +1,3 @@
-
## Sécurité
Microsoft prend très au sérieux la sécurité de ses produits logiciels et services, y compris tous les dépôts de code source gérés via nos organisations GitHub, qui incluent [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), et [nos organisations GitHub](https://opensource.microsoft.com/).
diff --git a/translations/fr/SUPPORT.md b/translations/fr/SUPPORT.md
index 95508525..42ec9e12 100644
--- a/translations/fr/SUPPORT.md
+++ b/translations/fr/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Support
## Comment signaler des problèmes et obtenir de l'aide
diff --git a/translations/fr/TROUBLESHOOTING.md b/translations/fr/TROUBLESHOOTING.md
index ccf58889..54489fe7 100644
--- a/translations/fr/TROUBLESHOOTING.md
+++ b/translations/fr/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Guide de dépannage
Ce guide propose des solutions aux problèmes courants que vous pourriez rencontrer en travaillant avec le programme Data Science for Beginners.
diff --git a/translations/fr/USAGE.md b/translations/fr/USAGE.md
index a8e71a8a..7be792cc 100644
--- a/translations/fr/USAGE.md
+++ b/translations/fr/USAGE.md
@@ -1,12 +1,3 @@
-
# Guide d'utilisation
Ce guide fournit des exemples et des workflows courants pour utiliser le programme "Data Science for Beginners".
diff --git a/translations/fr/docs/_sidebar.md b/translations/fr/docs/_sidebar.md
index ebf19592..b5e67c71 100644
--- a/translations/fr/docs/_sidebar.md
+++ b/translations/fr/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Introduction
- [Définir la science des données](../1-Introduction/01-defining-data-science/README.md)
- [Éthique de la science des données](../1-Introduction/02-ethics/README.md)
diff --git a/translations/fr/examples/README.md b/translations/fr/examples/README.md
index fd8d4673..ec0b72ff 100644
--- a/translations/fr/examples/README.md
+++ b/translations/fr/examples/README.md
@@ -1,12 +1,3 @@
-
# Exemples de Data Science pour Débutants
Bienvenue dans le répertoire des exemples ! Cette collection d'exemples simples et bien commentés est conçue pour vous aider à débuter en data science, même si vous êtes complètement novice.
diff --git a/translations/fr/for-teachers.md b/translations/fr/for-teachers.md
index 6e2fac5b..aac0009f 100644
--- a/translations/fr/for-teachers.md
+++ b/translations/fr/for-teachers.md
@@ -1,12 +1,3 @@
-
## Pour les enseignants
Souhaitez-vous utiliser ce programme dans votre classe ? N'hésitez pas !
diff --git a/translations/fr/quiz-app/README.md b/translations/fr/quiz-app/README.md
index 3a326628..7844ac1e 100644
--- a/translations/fr/quiz-app/README.md
+++ b/translations/fr/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Quiz
Ces quiz sont les quiz avant et après les cours du programme de science des données disponible sur https://aka.ms/datascience-beginners
diff --git a/translations/fr/sketchnotes/README.md b/translations/fr/sketchnotes/README.md
index 0a7b0384..48458555 100644
--- a/translations/fr/sketchnotes/README.md
+++ b/translations/fr/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Retrouvez toutes les sketchnotes ici !
## Crédits
diff --git a/translations/he/.co-op-translator.json b/translations/he/.co-op-translator.json
new file mode 100644
index 00000000..18020a8c
--- /dev/null
+++ b/translations/he/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:58:52+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "he"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-28T15:51:44+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "he"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-28T15:52:14+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "he"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:43:24+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "he"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-28T15:57:16+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "he"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T23:27:16+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "he"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-28T15:53:43+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "he"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:48:00+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "he"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-28T15:48:39+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "he"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-28T15:45:30+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "he"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:43:35+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "he"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:56:41+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "he"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T23:13:00+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "he"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-28T15:14:39+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "he"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:50:14+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "he"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-28T15:17:27+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "he"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T23:15:31+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "he"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-28T15:21:47+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "he"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-28T15:12:34+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T23:21:33+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-28T15:40:04+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T23:23:22+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-28T15:45:14+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T23:21:03+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-28T15:38:34+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:41:54+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-28T15:43:46+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T23:22:15+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-28T15:41:35+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-28T15:41:49+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-28T15:42:03+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-28T15:30:53+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-28T15:31:57+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-28T15:34:55+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-28T15:35:39+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-28T15:29:47+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-28T15:32:49+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-28T15:36:30+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "he"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-28T15:28:53+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "he"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:16:49+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "he"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-28T15:25:52+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "he"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:16:31+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "he"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-28T15:23:32+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "he"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:17:12+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "he"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-28T15:28:28+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "he"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-28T15:22:24+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "he"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T23:10:58+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "he"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-28T15:10:25+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "he"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T23:09:51+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "he"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-28T15:08:41+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "he"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T23:12:19+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "he"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-28T15:12:17+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "he"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-28T15:03:40+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "he"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:36:01+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "he"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-28T16:01:13+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "he"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-28T15:58:37+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "he"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:28:59+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "he"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-28T15:03:23+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "he"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:15:47+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "he"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:22:36+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "he"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:04:22+00:00",
+ "source_file": "README.md",
+ "language_code": "he"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-28T15:02:28+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "he"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-28T15:01:51+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "he"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:42:55+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "he"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:05:57+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "he"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-28T15:22:06+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "he"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:04:35+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "he"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:58:44+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "he"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-28T15:58:09+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "he"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-28T16:01:34+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "he"
+ }
+}
\ No newline at end of file
diff --git a/translations/he/1-Introduction/01-defining-data-science/README.md b/translations/he/1-Introduction/01-defining-data-science/README.md
index bc5d6879..85223442 100644
--- a/translations/he/1-Introduction/01-defining-data-science/README.md
+++ b/translations/he/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# הגדרת מדע הנתונים
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/he/1-Introduction/01-defining-data-science/assignment.md b/translations/he/1-Introduction/01-defining-data-science/assignment.md
index 9ac4cb76..e865f097 100644
--- a/translations/he/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/he/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# משימה: תרחישים במדעי הנתונים
במשימה הראשונה הזו, אנו מבקשים ממך לחשוב על תהליך או בעיה אמיתית בתחומים שונים, וכיצד ניתן לשפר אותה באמצעות תהליך מדעי הנתונים. חשוב על הדברים הבאים:
diff --git a/translations/he/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/he/1-Introduction/01-defining-data-science/solution/assignment.md
index 8fa565c2..11856511 100644
--- a/translations/he/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/he/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# משימה: תרחישים במדעי הנתונים
במשימה הראשונה הזו, אנו מבקשים מכם לחשוב על תהליך או בעיה מהחיים האמיתיים בתחומים שונים, וכיצד ניתן לשפר אותם באמצעות תהליך מדעי הנתונים. חשבו על הדברים הבאים:
diff --git a/translations/he/1-Introduction/02-ethics/README.md b/translations/he/1-Introduction/02-ethics/README.md
index 89d4075d..c2eab042 100644
--- a/translations/he/1-Introduction/02-ethics/README.md
+++ b/translations/he/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# מבוא לאתיקה של נתונים
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/he/1-Introduction/02-ethics/assignment.md b/translations/he/1-Introduction/02-ethics/assignment.md
index 15bac700..2e38e497 100644
--- a/translations/he/1-Introduction/02-ethics/assignment.md
+++ b/translations/he/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## כתיבת מחקר מקרה על אתיקה בנתונים
## הוראות
diff --git a/translations/he/1-Introduction/03-defining-data/README.md b/translations/he/1-Introduction/03-defining-data/README.md
index 78284cb9..fb399b5a 100644
--- a/translations/he/1-Introduction/03-defining-data/README.md
+++ b/translations/he/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# הגדרת נתונים
|](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/he/1-Introduction/03-defining-data/assignment.md b/translations/he/1-Introduction/03-defining-data/assignment.md
index 76f24430..68e2005a 100644
--- a/translations/he/1-Introduction/03-defining-data/assignment.md
+++ b/translations/he/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# סיווג מערכי נתונים
## הוראות
diff --git a/translations/he/1-Introduction/04-stats-and-probability/README.md b/translations/he/1-Introduction/04-stats-and-probability/README.md
index 08dcc59c..15775f8f 100644
--- a/translations/he/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/he/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# מבוא קצר לסטטיסטיקה ותורת ההסתברות
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
ניתן לייצג באופן גרפי את הקשר בין החציון לרבעונים בדיאגרמה שנקראת **תיבת נתונים**:
-
+
כאן אנו גם מחשבים את **טווח הרבעונים** IQR=Q3-Q1, ואת מה שנקרא **ערכים חריגים** - ערכים שנמצאים מחוץ לגבולות [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/he/1-Introduction/04-stats-and-probability/assignment.md b/translations/he/1-Introduction/04-stats-and-probability/assignment.md
index 2311818a..757467c1 100644
--- a/translations/he/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/he/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# מחקר קטן על סוכרת
במטלה זו נעבוד עם מערך נתונים קטן של חולי סוכרת שנלקח מ-[כאן](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/he/1-Introduction/README.md b/translations/he/1-Introduction/README.md
index 866e8e03..19f036ad 100644
--- a/translations/he/1-Introduction/README.md
+++ b/translations/he/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# מבוא למדעי הנתונים

diff --git a/translations/he/2-Working-With-Data/05-relational-databases/README.md b/translations/he/2-Working-With-Data/05-relational-databases/README.md
index 40af846f..539b599a 100644
--- a/translations/he/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/he/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# עבודה עם נתונים: מסדי נתונים יחסיים
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/he/2-Working-With-Data/05-relational-databases/assignment.md b/translations/he/2-Working-With-Data/05-relational-databases/assignment.md
index 836dcc7c..fca1d7a4 100644
--- a/translations/he/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/he/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# הצגת נתוני שדות תעופה
סופקה לכם [מסד נתונים](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) המבוסס על [SQLite](https://sqlite.org/index.html) שמכיל מידע על שדות תעופה. הסכימה מוצגת למטה. תשתמשו ב-[הרחבת SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) ב-[Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) כדי להציג מידע על שדות תעופה בערים שונות.
diff --git a/translations/he/2-Working-With-Data/06-non-relational/README.md b/translations/he/2-Working-With-Data/06-non-relational/README.md
index 0df257cf..e050b7fc 100644
--- a/translations/he/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/he/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# עבודה עם נתונים: נתונים לא-רלציוניים
|](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/he/2-Working-With-Data/06-non-relational/assignment.md b/translations/he/2-Working-With-Data/06-non-relational/assignment.md
index a0f59766..e035ddc0 100644
--- a/translations/he/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/he/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# רווחי סודה
## הוראות
diff --git a/translations/he/2-Working-With-Data/07-python/README.md b/translations/he/2-Working-With-Data/07-python/README.md
index 17acea44..9308bd2c 100644
--- a/translations/he/2-Working-With-Data/07-python/README.md
+++ b/translations/he/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# עבודה עם נתונים: Python וספריית Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/he/2-Working-With-Data/07-python/assignment.md b/translations/he/2-Working-With-Data/07-python/assignment.md
index 24afb34e..b4ff4121 100644
--- a/translations/he/2-Working-With-Data/07-python/assignment.md
+++ b/translations/he/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# משימה לעיבוד נתונים בפייתון
במשימה זו, נבקש מכם להרחיב את הקוד שהתחלנו לפתח באתגרים שלנו. המשימה מורכבת משני חלקים:
diff --git a/translations/he/2-Working-With-Data/08-data-preparation/README.md b/translations/he/2-Working-With-Data/08-data-preparation/README.md
index 96cb49ce..1b172c6e 100644
--- a/translations/he/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/he/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# עבודה עם נתונים: הכנת נתונים
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/he/2-Working-With-Data/08-data-preparation/assignment.md b/translations/he/2-Working-With-Data/08-data-preparation/assignment.md
index 3f928221..484bfedd 100644
--- a/translations/he/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/he/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# הערכת נתונים מטופס
לקוח בדק [טופס קטן](../../../../2-Working-With-Data/08-data-preparation/index.html) כדי לאסוף נתונים בסיסיים על בסיס הלקוחות שלו. הם הביאו את הממצאים שלהם אליך כדי לאמת את הנתונים שהם אספו. ניתן לפתוח את דף `index.html` בדפדפן כדי להסתכל על הטופס.
diff --git a/translations/he/2-Working-With-Data/README.md b/translations/he/2-Working-With-Data/README.md
index 7bfdaa64..a9bb1730 100644
--- a/translations/he/2-Working-With-Data/README.md
+++ b/translations/he/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# עבודה עם נתונים

diff --git a/translations/he/3-Data-Visualization/09-visualization-quantities/README.md b/translations/he/3-Data-Visualization/09-visualization-quantities/README.md
index 039c0625..feb2eb65 100644
--- a/translations/he/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/he/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# הצגת כמויות
|](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/he/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/he/3-Data-Visualization/09-visualization-quantities/assignment.md
index 5d5d3e99..5793210e 100644
--- a/translations/he/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/he/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# קווים, פיזורים ועמודות
## הוראות
diff --git a/translations/he/3-Data-Visualization/10-visualization-distributions/README.md b/translations/he/3-Data-Visualization/10-visualization-distributions/README.md
index f6b32a00..6c5c9f02 100644
--- a/translations/he/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/he/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# ויזואליזציה של התפלגויות
|](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/he/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/he/3-Data-Visualization/10-visualization-distributions/assignment.md
index 72d45990..1bedf643 100644
--- a/translations/he/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/he/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# יישום הכישורים שלך
## הוראות
diff --git a/translations/he/3-Data-Visualization/11-visualization-proportions/README.md b/translations/he/3-Data-Visualization/11-visualization-proportions/README.md
index ac6a6004..766de9f3 100644
--- a/translations/he/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/he/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# הצגת פרופורציות
|](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/he/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/he/3-Data-Visualization/11-visualization-proportions/assignment.md
index cbbd1bbe..6eca1f19 100644
--- a/translations/he/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/he/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# נסה את זה ב-Excel
## הוראות
diff --git a/translations/he/3-Data-Visualization/12-visualization-relationships/README.md b/translations/he/3-Data-Visualization/12-visualization-relationships/README.md
index 24a9bbae..b2732d59 100644
--- a/translations/he/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/he/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# ויזואליזציה של קשרים: הכל על דבש 🍯
|](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/he/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/he/3-Data-Visualization/12-visualization-relationships/assignment.md
index 30c55d07..dc409120 100644
--- a/translations/he/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/he/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# צלילה אל תוך הכוורת
## הוראות
diff --git a/translations/he/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/he/3-Data-Visualization/13-meaningful-visualizations/README.md
index 246ac6ac..8b6af99b 100644
--- a/translations/he/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/he/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# יצירת ויזואליזציות משמעותיות
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/he/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/he/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index df211f61..a5011143 100644
--- a/translations/he/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/he/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# בנה ויזואליזציה מותאמת אישית משלך
## הוראות
diff --git a/translations/he/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/he/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 8ee9fddc..b30ebacc 100644
--- a/translations/he/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/he/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# פרויקט ויזואליזציה של נתונים - Dangerous Liaisons
כדי להתחיל, יש לוודא ש-NPM ו-Node מותקנים ופועלים על המחשב שלך. התקן את התלויות (npm install) ולאחר מכן הרץ את הפרויקט באופן מקומי (npm run serve):
diff --git a/translations/he/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/he/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 08170a62..e36169d0 100644
--- a/translations/he/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/he/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# פרויקט ויזואליזציה של נתונים - Dangerous Liaisons
כדי להתחיל, עליך לוודא ש-NPM ו-Node פועלים על המחשב שלך. התקן את התלויות (npm install) ולאחר מכן הרץ את הפרויקט באופן מקומי (npm run serve):
diff --git a/translations/he/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/he/3-Data-Visualization/R/09-visualization-quantities/README.md
index 7dea7e6a..646a4957 100644
--- a/translations/he/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/he/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# ויזואליזציה של כמויות
|](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/he/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/he/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 9f269ce7..e1f2e0f4 100644
--- a/translations/he/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/he/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# קווים, פיזורים ועמודות
## הוראות
diff --git a/translations/he/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/he/3-Data-Visualization/R/10-visualization-distributions/README.md
index b1ff5345..93c76eee 100644
--- a/translations/he/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/he/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# ויזואליזציה של התפלגויות
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/he/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/he/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 392dcdc7..3a2f12d2 100644
--- a/translations/he/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/he/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# יישום הכישורים שלך
## הוראות
diff --git a/translations/he/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/he/3-Data-Visualization/R/11-visualization-proportions/README.md
index d1093314..911914b9 100644
--- a/translations/he/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/he/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# חזות יחסית
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/he/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/he/3-Data-Visualization/R/12-visualization-relationships/README.md
index 52f44173..7dd88756 100644
--- a/translations/he/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/he/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# חזות קשרים: הכל על דבש 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/he/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/he/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index ebd3c97a..b689fe41 100644
--- a/translations/he/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/he/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# יצירת ויזואליזציות משמעותיות
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/he/3-Data-Visualization/README.md b/translations/he/3-Data-Visualization/README.md
index 65101dc9..118d6fad 100644
--- a/translations/he/3-Data-Visualization/README.md
+++ b/translations/he/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# ויזואליזציות

diff --git a/translations/he/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/he/4-Data-Science-Lifecycle/14-Introduction/README.md
index 8e1daeaf..2a3aea77 100644
--- a/translations/he/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/he/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# מבוא למחזור החיים של מדעי הנתונים
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/he/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/he/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index ad6c291a..dd1ec9bc 100644
--- a/translations/he/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/he/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# הערכת מערך נתונים
לקוח פנה לצוות שלכם בבקשה לעזרה בחקירת הרגלי ההוצאה העונתיים של נוסעי מוניות בניו יורק.
diff --git a/translations/he/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/he/4-Data-Science-Lifecycle/15-analyzing/README.md
index c8a5d0ad..cadf794d 100644
--- a/translations/he/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/he/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# מחזור החיים של מדעי הנתונים: ניתוח
|](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/he/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/he/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 06fae853..d8ba010e 100644
--- a/translations/he/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/he/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# חיפוש תשובות
זהו המשך למשימה מהשיעור הקודם [assignment](../14-Introduction/assignment.md), שבו הסתכלנו בקצרה על מערך הנתונים. עכשיו נעמיק יותר במערך הנתונים.
diff --git a/translations/he/4-Data-Science-Lifecycle/16-communication/README.md b/translations/he/4-Data-Science-Lifecycle/16-communication/README.md
index 1e888c06..14d1775a 100644
--- a/translations/he/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/he/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# מחזור החיים של מדעי הנתונים: תקשורת
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/he/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/he/4-Data-Science-Lifecycle/16-communication/assignment.md
index 540f5da7..a431c5a1 100644
--- a/translations/he/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/he/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# ספר סיפור
## הוראות
diff --git a/translations/he/4-Data-Science-Lifecycle/README.md b/translations/he/4-Data-Science-Lifecycle/README.md
index 96a2bc25..ca5f2d22 100644
--- a/translations/he/4-Data-Science-Lifecycle/README.md
+++ b/translations/he/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# מחזור החיים של מדע הנתונים

diff --git a/translations/he/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/he/5-Data-Science-In-Cloud/17-Introduction/README.md
index 0d5be1aa..54646586 100644
--- a/translations/he/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/he/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# מבוא למדעי הנתונים בענן
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/he/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/he/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 65ad4eae..b46015a4 100644
--- a/translations/he/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/he/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# מחקר שוק
## הוראות
diff --git a/translations/he/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/he/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 944615e7..7dd82940 100644
--- a/translations/he/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/he/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# מדע הנתונים בענן: הדרך של "קוד נמוך/ללא קוד"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/he/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/he/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index a7db117d..305a57c6 100644
--- a/translations/he/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/he/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# פרויקט מדעי נתונים בקוד נמוך/ללא קוד על Azure ML
## הוראות
diff --git a/translations/he/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/he/5-Data-Science-In-Cloud/19-Azure/README.md
index 9c0c3dea..fb1da736 100644
--- a/translations/he/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/he/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# מדע הנתונים בענן: הדרך של "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/he/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/he/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 634fd7e8..5a68fb84 100644
--- a/translations/he/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/he/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# פרויקט מדע נתונים באמצעות Azure ML SDK
## הוראות
diff --git a/translations/he/5-Data-Science-In-Cloud/README.md b/translations/he/5-Data-Science-In-Cloud/README.md
index 4fbe5c96..07174d09 100644
--- a/translations/he/5-Data-Science-In-Cloud/README.md
+++ b/translations/he/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# מדע הנתונים בענן

diff --git a/translations/he/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/he/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 847fb609..a77074d8 100644
--- a/translations/he/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/he/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# מדע הנתונים בעולם האמיתי
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/he/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/he/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 599f7fb4..f8bf3c48 100644
--- a/translations/he/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/he/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# חקור מערך נתונים של מחשב פלנטרי
## הוראות
diff --git a/translations/he/6-Data-Science-In-Wild/README.md b/translations/he/6-Data-Science-In-Wild/README.md
index 8bd3ef5e..fea70f2f 100644
--- a/translations/he/6-Data-Science-In-Wild/README.md
+++ b/translations/he/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# מדע הנתונים בשטח
יישומים מעשיים של מדע הנתונים בתעשיות שונות.
diff --git a/translations/he/AGENTS.md b/translations/he/AGENTS.md
index 24a72392..6e486e55 100644
--- a/translations/he/AGENTS.md
+++ b/translations/he/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## סקירת הפרויקט
diff --git a/translations/he/CODE_OF_CONDUCT.md b/translations/he/CODE_OF_CONDUCT.md
index 2bca04fd..d4b68b53 100644
--- a/translations/he/CODE_OF_CONDUCT.md
+++ b/translations/he/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# קוד ההתנהגות של קוד פתוח של מיקרוסופט
הפרויקט הזה אימץ את [קוד ההתנהגות של קוד פתוח של מיקרוסופט](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/he/CONTRIBUTING.md b/translations/he/CONTRIBUTING.md
index 377a83b9..cfed0720 100644
--- a/translations/he/CONTRIBUTING.md
+++ b/translations/he/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# תרומה למדעי הנתונים למתחילים
תודה על התעניינותך בתרומה לתוכנית הלימודים של מדעי הנתונים למתחילים! אנו מקבלים בברכה תרומות מהקהילה.
diff --git a/translations/he/INSTALLATION.md b/translations/he/INSTALLATION.md
index 50981099..9d70916e 100644
--- a/translations/he/INSTALLATION.md
+++ b/translations/he/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# מדריך התקנה
מדריך זה יעזור לך להגדיר את סביבת העבודה שלך כדי לעבוד עם תוכנית הלימודים של מדעי הנתונים למתחילים.
diff --git a/translations/he/README.md b/translations/he/README.md
index 6ffe6ce4..7de9b06a 100644
--- a/translations/he/README.md
+++ b/translations/he/README.md
@@ -1,13 +1,4 @@
-
-# מדעי הנתונים למתחילים - תוכנית לימודים
+# מדע נתונים למתחילים - תוכנית לימודים
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,181 +17,181 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-השותפים לקידום ענן Azure במיקרוסופט שמחים להציע תוכנית לימודים בת 10 שבועות, הכוללת 20 שיעורים, הכל בנושא מדעי הנתונים. כל שיעור כולל חידונים לפני ואחרי השיעור, הוראות כתובות להשלמת השיעור, פתרון ומשימה. הפדגוגיה המבוססת על פרויקטים שלנו מאפשרת לכם ללמוד תוך כדי בנייה, דרך מוכחת שבה מיומנויות חדשות "נשארות".
+סוכני ענן אזור Azure במיקרוסופט שמחים להציע תוכנית לימודים בת 10 שבועות ו-20 שיעורים הכוללת מדע נתונים. כל שיעור כולל מבחני קדם-שיעור ומבחני לאחר השיעור, הוראות כתובות להשלמת השיעור, פתרון ומשימה. שיטת ההוראה שלנו מבוססת פרויקטים מאפשרת לכם ללמוד תוך כדי בנייה, שיטה מוכחת להטמעת מיומנויות חדשות.
-**תודה ענקית למחברים שלנו:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**תודה ענקית למחברינו:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 תודה מיוחדת 🙏 למחברי, מבקרים ותורמי התוכן שלנו מ[שגרירי הסטודנטים של מיקרוסופט](https://studentambassadors.microsoft.com/),** ובעיקר ל- Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 תודה מיוחדת 🙏 למחברי, המבקרים ותורמי התוכן שלנו מ-[Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** במיוחד Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| מדעי הנתונים למתחילים - _סקצ'נוט מאת [@nitya](https://twitter.com/nitya)_ |
+| מדע נתונים למתחילים - _סקצ’נוט מאת [@nitya](https://twitter.com/nitya)_ |
### 🌐 תמיכה בריבוי שפות
-#### נתמך באמצעות GitHub Action (אוטומטי ותמיד מעודכן)
+#### נתמך באמצעות GitHub Action (אוטומטי ומתעדכן תמיד)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](./README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](./README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
> **מעדיפים לשכפל מקומית?**
-> מאגר זה כולל 50+ תרגומים בשפות, מה שמגדיל משמעותית את גודל ההורדה. כדי לשכפל בלי תרגומים, השתמשו ב-sparse checkout:
+> מאגר זה כולל מעל 50 תרגומים בשפות שמגדילים משמעותית את גודל ההורדה. כדי לשכפל ללא התרגומים, השתמשו ב-sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> זה נותן לכם את כל מה שצריך כדי להשלים את הקורס בהורדה מהירה הרבה יותר.
+> זה נותן לכם את כל מה שצריך כדי להשלים את הקורס במהירות הורדה גבוהה בהרבה.
-**אם אתם מעוניינים בתמיכה בשפות נוספות, רשימת השפות הנתמכות נמצאת [כאן](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**אם ברצונכם לתמוך בשפות תרגום נוספות הרשומות [כאן](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### הצטרפו לקהילה שלנו
+#### הצטרפו לקהילה שלנו
[](https://discord.gg/nTYy5BXMWG)
-יש לנו סדרת למידה ב-Discord עם AI שמתמשכת, למדו עוד והצטרפו אלינו ב-[Learn with AI Series](https://aka.ms/learnwithai/discord) מ-18 עד 30 בספטמבר 2025. תקבלו טיפים וטריקים לשימוש ב-GitHub Copilot למדעי הנתונים.
+יש לנו סדרת לימוד ב-Discord בנושא AI רציפה, למדו עוד והצטרפו אלינו ב-[Learn with AI Series](https://aka.ms/learnwithai/discord) בין 18 ל-30 בספטמבר 2025. תקבלו טיפים וטריקים לשימוש ב-GitHub Copilot עבור מדע הנתונים.
-
+
-# אתה סטודנט?
+# האם אתה סטודנט?
התחל עם המשאבים הבאים:
-- [דף מרכז הסטודנטים](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) בדף זה תמצאו משאבים למתחילים, ערכות לסטודנטים ואפילו דרכים לקבל שובר לתעודה חינמית. זוהי דף שתרצו לסמן ולעקוב אחריו מעת לעת כי אנו מחליפים תוכן לפחות פעם בחודש.
-- [שגרירי הסטודנטים של מיקרוסופט](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) הצטרפו לקהילה עולמית של שגרירי סטודנטים, זו יכולה להיות הדרך שלכם למיקרוסופט.
+- [דף מרכז הסטודנטים](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) בדף זה תמצאו משאבים למתחילים, חבילות סטודנטים ואפילו דרכים לקבל שובר הסמכה חינמי. זהו דף שכדאי לכם לשמור כסימנייה ולבדוק מדי פעם, שכן אנו מחליפים תוכן לפחות פעם בחודש.
+- [שגרירי הסטודנטים של מיקרוסופט](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) הצטרפו לקהילה עולמית של שגרירי סטודנטים, זו עשויה להיות דרככם למיקרוסופט.
-# להתחלה
+# התחלת עבודה
## 📚 תיעוד
-- **[מדריך התקנה](INSTALLATION.md)** - הוראות שלב אחר שלב להקמה עבור מתחילים
+- **[מדריך התקנה](INSTALLATION.md)** - הוראות הגדרה שלב אחר שלב למתחילים
- **[מדריך שימוש](USAGE.md)** - דוגמאות וזרימות עבודה נפוצות
-- **[פתרון בעיות](TROUBLESHOOTING.md)** - פתרונות לבעיות נפוצות
-- **[מדריך לתרומה](CONTRIBUTING.md)** - איך לתרום לפרויקט הזה
-- **[למחנכים](for-teachers.md)** - הנחיות הוראה ומשאבים לכיתה
+- **[פתרון תקלות](TROUBLESHOOTING.md)** - פתרונות לבעיות נפוצות
+- **[מדריך לתרומה](CONTRIBUTING.md)** - כיצד לתרום לפרויקט זה
+- **[למורים](for-teachers.md)** - הנחיות הוראה ומשאבי כיתה
## 👨🎓 לסטודנטים
-> **למתחילים מוחלטים**: חדשים במדעי הנתונים? התחילו עם [דוגמאות ידידותיות למתחילים](examples/README.md)! הדוגמאות הפשוטות והמוסברות היטב הללו יעזרו לכם להבין את הבסיס לפני שקופצים לתוכנית המלאה.
-> **[סטודנטים](https://aka.ms/student-page)**: כדי להשתמש בתוכנית זו בעצמכם, פתחו פרויקט חדש מכל המאגר ושלימו את התרגילים בעצמכם, החל מחידון טרום-הרצאה. לאחר מכן קראו את ההרצאה והשלימו את שאר הפעילויות. נסו ליצור את הפרויקטים תוך הבנת השיעורים ולא בהעתקת קוד הפתרון; עם זאת, הקוד זמין בתיקיות /solutions בכל שיעור המתמקד בפרויקטים. רעיון נוסף הוא להקים קבוצת לימוד עם חברים ולעבור יחד על התוכן. ללימודים נוספים אנו ממליצים על [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **בעלי ניסיון מועט מאוד**: חדשים במדע נתונים? התחילו עם [הדוגמאות הידידותיות למתחילים שלנו](examples/README.md)! דוגמאות פשוטות ומוסברות היטב אלו יסייעו לכם להבין את הבסיס לפני שתתקדמו לתוכנית לימודים מלאה.
+> **[סטודנטים](https://aka.ms/student-page)**: כדי להשתמש בתוכנית זו באופן עצמאי, פתחו כפילה של כל המאגר והשלימו את התרגילים בעצמכם, התחילו במבחן קדם-הרצאה. לאחר מכן קראו את ההרצאה והשלימו את שאר הפעילויות. נסו ליצור את הפרויקטים על ידי הבנת השיעורים במקום להעתיק את קוד הפתרון; עם זאת, הקוד זמין בתיקיות /solutions בכל שיעור מכוון פרויקט. רעיון נוסף הוא להקים קבוצת לימוד עם חברים ולעבור יחד על התוכן. ללימוד נוסף, אנו ממליצים על [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**התחלה מהירה:**
-1. עיינו ב[מדריך ההתקנה](INSTALLATION.md) כדי להגדיר את הסביבה שלכם
-2. עברו על [מדריך השימוש](USAGE.md) כדי ללמוד איך לעבוד עם התוכנית
-3. התחילו מהשיעור הראשון ועבדו לפי הסדר
-4. הצטרפו ל[קהילת הדיסקורד שלנו](https://aka.ms/ds4beginners/discord) לתמיכה
+1. בדקו את [מדריך ההתקנה](INSTALLATION.md) להקמת הסביבה שלכם
+2. עברו על [מדריך השימוש](USAGE.md) כדי ללמוד כיצד לעבוד עם תוכנית הלימודים
+3. התחילו עם שיעור 1 ועבדו באופן סדרתי
+4. הצטרפו ל-[קהילת הדיסקורד שלנו](https://aka.ms/ds4beginners/discord) לקבלת תמיכה
-## 👩🏫 למחנכים
-
-> **למחנכים**: כללנו [כמה הצעות](for-teachers.md) כיצד להשתמש בתוכנית זו. נשמח לקבל את המשוב שלכם [בפורום הדיונים שלנו](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## 👩🏫 למורים
+> **למורים**: כללנו [הצעות](for-teachers.md) כיצד להשתמש בתוכנית זו. נשמח למשוב שלכם [בפורום הדיונים שלנו](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## הכירו את הצוות
-[](https://youtu.be/8mzavjQSMM4 "סרטון פרומו")
+
+[](https://youtu.be/8mzavjQSMM4 "וידאו פרומו")
**גיף מאת** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 הקלק על התמונה למעלה לסרטון אודות הפרויקט והאנשים שיצרו אותו!
+> 🎥 לחצו על התמונה למעלה כדי לצפות בסרטון על הפרויקט והאנשים שיצרו אותו!
## פדגוגיה
-בחרנו שני עקרונות פדגוגיים בעת בניית סילבוס זה: לוודא שהוא מבוסס פרויקט וכולל חידונים תכופים. בסיום הסדרה הזו, התלמידים ילמדו עקרונות בסיסיים במדעי הנתונים, כולל מושגים אתיים, הכנת נתונים, דרכים שונות לעבודה עם נתונים, ויזואליזציה של נתונים, ניתוח נתונים, מקרי שימוש אמיתיים במדעי הנתונים ועוד.
+בחרנו שני עקרונות פדגוגיים בעת בניית תוכנית הלימודים הזו: הבטחה שהיא מבוססת פרויקטים ושכוללת מבחנים תכופים. עד לסיום הסדרה, הסטודנטים ילמדו עקרונות בסיסיים במדעי הנתונים, כולל מושגים אתיים, הכנת נתונים, דרכים שונות לעבודה עם נתונים, ויזואליזציה של נתונים, ניתוח נתונים, דוגמאות ממקרי העולם האמיתי של מדעי הנתונים, ועוד.
-בנוסף, חידון בעל סיכון נמוך לפני השיעור קובע את כוונת הלומד כלפי לימוד הנושא, בעוד חידון שני אחרי השיעור מבטיח שימור נוסף. סילבוס זה עוצב להיות גמיש ומהנה וניתן לקחת אותו בשלמותו או בחלקו. הפרויקטים מתחילים קטנים והופכים למורכבים יותר עד סוף מחזור של 10 שבועות.
+בנוסף, מבחן בעל סיכון נמוך לפני שיעור קובע את כוונת הסטודנט ללמידת נושא, בעוד שמבחן שני לאחר השיעור מבטיח שימור נוסף. תוכנית הלימודים הזו עוצבה להיות גמישה ומהנה וניתן לקחת אותה בשלמותה או בחלקה. הפרויקטים מתחילים קטנים והופכים למורכבים יותר בסיום מחזור של 10 שבועות.
-> מצא את [קוד ההתנהגות שלנו](CODE_OF_CONDUCT.md), [הנחיות לתרומה](CONTRIBUTING.md), [הנחיות לתרגום](TRANSLATIONS.md). נשמח לקבל את המשוב הבונה שלך!
+> מצאו את [קוד ההתנהגות שלנו](CODE_OF_CONDUCT.md), [כללי התרומה](CONTRIBUTING.md), [הנחיות לתרגום](TRANSLATIONS.md). נשמח לקבל משוב בונה מכם!
## כל שיעור כולל:
-- שרטוט אופציונלי
+- שרטוט סקצ׳נות אופציונלי
- וידאו נוסף אופציונלי
-- חידון חימום לפני השיעור
+- מבחן חימום לפני השיעור
- שיעור כתוב
-- לשיעורים מבוססי פרויקטים, מדריכים שלב אחר שלב לבניית הפרויקט
+- לשיעורים מבוססי פרויקט, מדריכים שלב-אחר-שלב לבניית הפרויקט
- בדיקות ידע
- אתגר
- קריאה נוספת
- משימה
-- [חידון לאחר השיעור](https://ff-quizzes.netlify.app/en/)
+- [מבחן לאחר השיעור](https://ff-quizzes.netlify.app/en/)
-> **הערה לגבי חידונים**: כל החידונים נמצאים בתיקיית Quiz-App, עם סך הכל 40 חידונים של שלוש שאלות כל אחד. הם מקושרים מתוך השיעורים, אך אפליקציית החידונים ניתן להריץ מקומית או לפרוס ב-Azure; עקוב אחר ההוראות בתיקיית `quiz-app`. החידונים מתורגמים בהדרגה.
+> **הערה לגבי המבחנים**: כל המבחנים נמצאים בתיקיית Quiz-App, עם סך של 40 מבחנים, כל אחד עם שלוש שאלות. הם מקושרים מתוך השיעורים, אך אפליקציית המבחן ניתנת להרצה מקומית או לפריסה ב-Azure; עקבו אחר ההוראות בתיקיית `quiz-app`. הם מתורגמים בהדרגה.
-## 🎓 דוגמאות ידידותיות למתחילים
+## 🎓 דוגמאות מתאימות למתחילים
-**חדש במדעי הנתונים?** יצרנו ספריית [דוגמאות מיוחדת](examples/README.md) עם קוד פשוט ומוסבר היטב שיעזור לך להתחיל:
+**חדש במדעי הנתונים?** יצרנו תיקיית [דוגמאות מיוחדת](examples/README.md) עם קוד פשוט וממוקם היטב שיעזור לכם להתחיל:
-- 🌟 **שלום עולם** - תוכנית מדעי הנתונים הראשונה שלך
-- 📂 **טעינת נתונים** - למידת קריאה וחקירת מערכי נתונים
-- 📊 **ניתוח פשוט** - חישוב סטטיסטיקות ומציאת תבניות
-- 📈 **ויזואליזציה בסיסית** - יצירת דיאגרמות וגרפים
-- 🔬 **פרויקט מהעולם האמיתי** - זרימת עבודה מלאה מתחילת לסיום
+- 🌟 **שלום עולם** - תוכנית מדעי הנתונים הראשונה שלכם
+- 📂 **טעינת נתונים** - למדו לקרוא ולחקור מערכי נתונים
+- 📊 **ניתוח פשוט** - חשבו סטטיסטיקות ומצאו דפוסים
+- 📈 **ויזואליזציה בסיסית** - צרו תרשימים וגרפים
+- 🔬 **פרויקט מהעולם האמיתי** - זרימת עבודה מלאה מההתחלה ועד הסוף
-כל דוגמה כוללת הערות מפורטות שמסבירות כל שלב, מה שהופך אותה למושלמת למתחילים מוחלטים!
+כל דוגמה כוללת הסברים מפורטים של כל שלב, מה שהופך אותה למושלמת למתחילים מוחלטים!
-👉 **[התחל עם הדוגמאות](examples/README.md)** 👈
+👉 **[התחילו עם הדוגמאות](examples/README.md)** 👈
## שיעורים
-||
+||
|:---:|
-| מדעי הנתונים למתחילים: מפת דרכים - _שרטוט מאת [@nitya](https://twitter.com/nitya)_ |
+| מדעי הנתונים למתחילים: מפת דרך - _סקצ׳נות מאת [@nitya](https://twitter.com/nitya)_ |
-| מספר שיעור | נושא | קבוצת שיעור | מטרות למידה | שיעור מקושר | מחבר |
+| מספר שיעור | נושא | חיבור לשיעור | יעדי למידה | שיעור מקושר | מחבר |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | הגדרת מדעי הנתונים | [הקדמה](1-Introduction/README.md) | למידת המושגים הבסיסיים מאחורי מדעי הנתונים וכיצד הם קשורים לבינה מלאכותית, למידת מכונה ונתונים גדולים. | [שיעור](1-Introduction/01-defining-data-science/README.md) [וידאו](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | אתיקה במדעי הנתונים | [הקדמה](1-Introduction/README.md) | מושגים, אתגרים ומסגרות אתיות במדעי הנתונים. | [שיעור](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | הגדרת נתונים | [הקדמה](1-Introduction/README.md) | איך נתונים מסווגים ומקורותיהם הנפוצים. | [שיעור](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | מבוא לסטטיסטיקה והסתברות | [הקדמה](1-Introduction/README.md) | טכניקות מתמטיות של הסתברות וסטטיסטיקה להבנת נתונים. | [שיעור](1-Introduction/04-stats-and-probability/README.md) [וידאו](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | עבודה עם נתונים יחסיים | [עבודה עם נתונים](2-Working-With-Data/README.md) | מבוא לנתונים יחסיים והבסיס לחקירה וניתוח נתונים יחסיים באמצעות שפת השאילתות המובנית, המכונה גם SQL (מנוצח "סי-קול"). | [שיעור](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | עבודה עם נתוני NoSQL | [עבודה עם נתונים](2-Working-With-Data/README.md) | מבוא לנתוני NoSQL, סוגיהם השונים והבסיס לחקירה וניתוח מסמכי נתונים. | [שיעור](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | עבודה עם פייתון | [עבודה עם נתונים](2-Working-With-Data/README.md) | יסודות השימוש בפייתון לחקירת נתונים עם ספריות כגון Pandas. מומלץ ידע בסיסי בתכנות בפייתון. | [שיעור](2-Working-With-Data/07-python/README.md) [וידאו](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | הכנת נתונים | [עבודה עם נתונים](2-Working-With-Data/README.md) | נושאים בטכניקות לניקוי והמרת נתונים להתמודדות עם אתגרים של נתונים חסרים, לא מדויקים או לא שלמים. | [שיעור](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | ויזואליזציה של כמויות | [ויזואליזציה של נתונים](3-Data-Visualization/README.md) | ללמוד כיצד להשתמש ב-Matplotlib להצגת נתוני ציפורים 🦆 | [שיעור](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | ויזואליזציה של התפלגויות של נתונים | [ויזואליזציה של נתונים](3-Data-Visualization/README.md) | ויזואליזציה של תצפיות ומגמות בתוך טווח. | [שיעור](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | ויזואליזציה של יחסים | [ויזואליזציה של נתונים](3-Data-Visualization/README.md) | ויזואליזציה של אחוזים בדידים ומקובצים. | [שיעור](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | ויזואליזציה של קשרים | [ויזואליזציה של נתונים](3-Data-Visualization/README.md) | ויזואליזציה של קשרים וקורלציות בין קבוצות נתונים ומשתנים שלהם. | [שיעור](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | ויזואליזציות משמעותיות | [ויזואליזציה של נתונים](3-Data-Visualization/README.md) | טכניקות והנחיות להפיכת הוויזואליזציות שלך ליעילות לפתרון בעיות ותובנות. | [שיעור](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | מבוא למחזור החיים של מדעי הנתונים | [מחזור חיים](4-Data-Science-Lifecycle/README.md) | מבוא למחזור החיים של מדעי הנתונים והשלב הראשון של רכישה וחילוץ נתונים. | [שיעור](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | ניתוח | [מחזור חיים](4-Data-Science-Lifecycle/README.md) | שלב זה במחזור החיים של מדעי הנתונים מתמקד בטכניקות לניתוח נתונים. | [שיעור](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | תקשורת | [מחזור חיים](4-Data-Science-Lifecycle/README.md) | שלב זה במחזור החיים של מדעי הנתונים מתמקד בהצגת התובנות מהנתונים בצורה שמאפשרת למקבלי ההחלטות להבין טוב יותר. | [שיעור](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | מדעי הנתונים בענן | [נתונים בענן](5-Data-Science-In-Cloud/README.md) | סדרת שיעורים זו מציגה את מדעי הנתונים בענן ואת יתרונותיהם. | [שיעור](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ו-[Maud](https://twitter.com/maudstweets) |
-| 18 | מדעי הנתונים בענן | [נתונים בענן](5-Data-Science-In-Cloud/README.md) | אימון מודלים באמצעות כלים בהם משתמשים בקוד נמוך. |[שיעור](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ו-[Maud](https://twitter.com/maudstweets) |
-| 19 | מדעי הנתונים בענן | [נתונים בענן](5-Data-Science-In-Cloud/README.md) | פריסת מודלים עם Azure Machine Learning Studio. | [שיעור](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ו-[Maud](https://twitter.com/maudstweets) |
-| 20 | מדעי הנתונים בשטח | [בשדה](6-Data-Science-In-Wild/README.md) | פרויקטים מונעי מדעי נתונים בעולם האמיתי. | [שיעור](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | הגדרת מדעי הנתונים | [הקדמה](1-Introduction/README.md) | למידת העקרונות הבסיסיים של מדעי הנתונים וכיצד הם קשורים לבינה מלאכותית, למידת מכונה ונתונים גדולים. | [שיעור](1-Introduction/01-defining-data-science/README.md) [וידאו](https://youtu.be/beZ7Mb_oz9I) | [דמיטרי](http://soshnikov.com) |
+| 02 | אתיקה במדעי הנתונים | [הקדמה](1-Introduction/README.md) | מושגי אתיקה, אתגרים ומסגרות עבודה. | [שיעור](1-Introduction/02-ethics/README.md) | [ניטיה](https://twitter.com/nitya) |
+| 03 | הגדרת נתונים | [הקדמה](1-Introduction/README.md) | כיצד הנתונים מסווגים ומהם המקורות השכיחים שלהם. | [שיעור](1-Introduction/03-defining-data/README.md) | [ג׳אזמין](https://www.twitter.com/paladique) |
+| 04 | מבוא לסטטיסטיקה והסתברות | [הקדמה](1-Introduction/README.md) | הטכניקות המתמטיות של הסתברות וסטטיסטיקה להבנת נתונים. | [שיעור](1-Introduction/04-stats-and-probability/README.md) [וידאו](https://youtu.be/Z5Zy85g4Yjw) | [דמיטרי](http://soshnikov.com) |
+| 05 | עבודה עם נתונים יחסיים | [עבודה עם נתונים](2-Working-With-Data/README.md) | מבוא לנתונים יחסיים והיסודות של חקירה וניתוח נתונים יחסיים בשפת השאילתות המבנית, הידועה גם כ-SQL (מבוטאת "סי-קואל"). | [שיעור](2-Working-With-Data/05-relational-databases/README.md) | [כריסטופר](https://www.twitter.com/geektrainer) | | |
+| 06 | עבודה עם נתוני NoSQL | [עבודה עם נתונים](2-Working-With-Data/README.md) | מבוא לנתונים לא יחסיים, הסוגים השונים שלהם והיסודות של חקירה וניתוח מאגרי מסמכים. | [שיעור](2-Working-With-Data/06-non-relational/README.md) | [ג׳אזמין](https://twitter.com/paladique)|
+| 07 | עבודה עם Python | [עבודה עם נתונים](2-Working-With-Data/README.md) | יסודות השימוש בפייתון לחקירת נתונים עם ספריות כמו Pandas. מומלץ הבנה בסיסית בתכנות פייתון. | [שיעור](2-Working-With-Data/07-python/README.md) [וידאו](https://youtu.be/dZjWOGbsN4Y) | [דמיטרי](http://soshnikov.com) |
+| 08 | הכנת נתונים | [עבודה עם נתונים](2-Working-With-Data/README.md) | נושאים בטכניקות לניקוי והמרת נתונים כדי להתמודד עם אתגרים של נתונים חסרים, שגויים או לא מלאים. | [שיעור](2-Working-With-Data/08-data-preparation/README.md) | [ג׳אזמין](https://www.twitter.com/paladique) |
+| 09 | ויזואליזציה של כמויות | [ויזואליזציית נתונים](3-Data-Visualization/README.md) | למדו כיצד להשתמש ב-Matplotlib כדי להראות נתוני ציפורים 🦆 | [שיעור](3-Data-Visualization/09-visualization-quantities/README.md) | [ג׳ן](https://twitter.com/jenlooper) |
+| 10 | ויזואליזציה של התפלגויות נתונים | [ויזואליזציית נתונים](3-Data-Visualization/README.md) | ויזואליזציה של תצפיות ומגמות בתוך טווח. | [שיעור](3-Data-Visualization/10-visualization-distributions/README.md) | [ג׳ן](https://twitter.com/jenlooper) |
+| 11 | ויזואליזציה של פרופורציות | [ויזואליזציית נתונים](3-Data-Visualization/README.md) | ויזואליזציה של אחוזים בדידים ומקובצים. | [שיעור](3-Data-Visualization/11-visualization-proportions/README.md) | [ג׳ן](https://twitter.com/jenlooper) |
+| 12 | ויזואליזציה של קשרים | [ויזואליזציית נתונים](3-Data-Visualization/README.md) | ויזואליזציה של חיבורים וקורלציות בין קבוצות נתונים ומשתנים שלהם. | [שיעור](3-Data-Visualization/12-visualization-relationships/README.md) | [ג׳ן](https://twitter.com/jenlooper) |
+| 13 | ויזואליזציות משמעותיות | [ויזואליזציית נתונים](3-Data-Visualization/README.md) | טכניקות והדרכה ליצירת ויזואליזציות בעלות ערך לפתרון יעיל של בעיות ותובנות. | [שיעור](3-Data-Visualization/13-meaningful-visualizations/README.md) | [ג׳ן](https://twitter.com/jenlooper) |
+| 14 | מבוא למחזור החיים של מדעי הנתונים | [מחזור חיים](4-Data-Science-Lifecycle/README.md) | מבוא למחזור החיים של מדעי הנתונים והשלב הראשון של רכישה וחילוץ נתונים. | [שיעור](4-Data-Science-Lifecycle/14-Introduction/README.md) | [ג׳אזמין](https://twitter.com/paladique) |
+| 15 | ניתוח | [מחזור חיים](4-Data-Science-Lifecycle/README.md) | שלב זה במחזור החיים של מדעי הנתונים מתמקד בטכניקות לניתוח נתונים. | [שיעור](4-Data-Science-Lifecycle/15-analyzing/README.md) | [ג׳אזמין](https://twitter.com/paladique) | | |
+| 16 | תקשורת | [מחזור חיים](4-Data-Science-Lifecycle/README.md) | שלב זה במחזור החיים של מדעי הנתונים מתמקד בהצגת התובנות מהנתונים בצורה שמקלה על מקבלי ההחלטות להבין. | [שיעור](4-Data-Science-Lifecycle/16-communication/README.md) | [ג׳יילן](https://twitter.com/JalenMcG) | | |
+| 17 | מדעי הנתונים בענן | [נתוני ענן](5-Data-Science-In-Cloud/README.md) | סדרת שיעורים זו מציגה את מדעי הנתונים בענן ואת היתרונות שלו. | [שיעור](5-Data-Science-In-Cloud/17-Introduction/README.md) | [טיפאני](https://twitter.com/TiffanySouterre) ו-[מוד](https://twitter.com/maudstweets) |
+| 18 | מדעי הנתונים בענן | [נתוני ענן](5-Data-Science-In-Cloud/README.md) | אימון מודלים באמצעות כלים של Low Code. |[שיעור](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [טיפאני](https://twitter.com/TiffanySouterre) ו-[מוד](https://twitter.com/maudstweets) |
+| 19 | מדעי הנתונים בענן | [נתוני ענן](5-Data-Science-In-Cloud/README.md) | פריסת מודלים עם Azure Machine Learning Studio. | [שיעור](5-Data-Science-In-Cloud/19-Azure/README.md)| [טיפאני](https://twitter.com/TiffanySouterre) ו-[מוד](https://twitter.com/maudstweets) |
+| 20 | מדעי הנתונים בשטח | [בשדה](6-Data-Science-In-Wild/README.md) | פרויקטים מונחי מדעי הנתונים בעולם האמיתי. | [שיעור](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [ניטיה](https://twitter.com/nitya) |
## GitHub Codespaces
-עקוב אחר השלבים הבאים לפתיחת דוגמה זו ב-Codespace:
-1. לחץ על תפריט הנפתח של הקוד ובחר באפשרות Open with Codespaces.
-2. בחר + New codespace בתחתית החלון.
-למידע נוסף, עיין ב-[תיעוד GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+עקבו אחר הצעדים הללו כדי לפתוח דוגמה זו ב-Codespace:
+1. לחצו על תפריט הנפתח של Code ובחרו באפשרות Open with Codespaces.
+2. בחרו + New codespace בתחתית החלונית.
+למידע נוסף, עיינו ב-[תיעוד GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-עקוב אחר השלבים לפתיחת מאגר זה במיכל באמצעות המחשב המקומי שלך ו-VSCode באמצעות הרחבת VS Code Remote - Containers:
+עקבו אחר הצעדים האלה כדי לפתוח את המאגר הזה במכולה באמצעות המחשב המקומי ו-VSCode עם תוסף VS Code Remote - Containers:
-1. אם זו הפעם הראשונה שלך להשתמש במיכל פיתוח, וודא שהמערכת שלך עומדת בדרישות המקדימות (למשל, התקנת Docker) במדריך [התחלת עבודה](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. אם זו הפעם הראשונה שלכם שמשתמשים במכולת פיתוח, וודאו שהמערכת שלכם עומדת בדרישות המקדימות (למשל, שיש Docker מותקן) בתיעוד [התחלה מהירה](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-כדי להשתמש במאגר זה, ניתן לפתוח את המאגר בנפח Docker מבודד:
+כדי להשתמש במאגר זה, ניתן לפתוח את המאגר בנפח docker מבודד:
-**הערה**: מתחת לפני השטח, הפקודה Remote-Containers: **Clone Repository in Container Volume...** תשמש לשכפול קוד המקור בנפח Docker במקום במערכת הקבצים המקומית. [נפחים](https://docs.docker.com/storage/volumes/) הם המנגנון המועדף לשמירת נתוני מיכל.
+**הערה**: מתחת למכסה המנוע, זה ישתמש בפקודה Remote-Containers: **Clone Repository in Container Volume...** כדי לשכפל את קוד המקור בנפח Docker במקום במערכת הקבצים המקומית. [נפחים](https://docs.docker.com/storage/volumes/) הם המנגנון המועדף לשמירת נתוני מכולות.
-או לפתוח עותק ששוכפל או הורד מקומית:
+או לפתוח עותק משוכפל או מורד מקומית של המאגר:
-- שכפל מאגר זה למערכת הקבצים המקומית שלך.
-- לחץ F1 ובחר את הפקודה **Remote-Containers: Open Folder in Container...**.
-- בחר את העותק ששוכפל של התיקייה הזו, המתן שהמיכל יתחיל, ונסה להשתמש.
+- שכפלו את המאגר הזה למערכת הקבצים המקומית שלכם.
+- לחצו F1 ובחרו את הפקודה **Remote-Containers: Open Folder in Container...**.
+- בחרו את העותק המשוכפל של תיקיה זו, המתינו שהמכולה תתחיל, ונסו להפעיל.
## גישה לא מקוונת
-ניתן להריץ את התיעוד הזה באופן לא מקוון באמצעות [Docsify](https://docsify.js.org/#/). הסתעף מהמאגר הזה, [התקן את Docsify](https://docsify.js.org/#/quickstart) במחשב המקומי שלך, ואז בתיקיית השורש של מאגר זה, הקלד `docsify serve`. האתר ישרת בפורט 3000 בכתובת הלוקל שלך: `localhost:3000`.
+ניתן להפעיל תיעוד זה במצב לא מקוון בעזרת [Docsify](https://docsify.js.org/#/). פתחו את המאגר הזה, [התקינו את Docsify](https://docsify.js.org/#/quickstart) במחשב המקומי שלכם, ואז בספריית השורש של המאגר, הקלידו `docsify serve`. האתר יהיה זמין ביציאה 3000 במחשב המקומי שלכם: `localhost:3000`.
-> שים לב, מחברות לא יוצגו דרך Docsify, לכן כשאתה צריך להריץ מחברת, עשה זאת בנפרד ב-VS Code עם ליבת פייתון.
+> שימו לב, פנקסי רשימות לא יוצגו דרך Docsify, לכן כשאתם צריכים להריץ פנקס רשימות, עשו זאת בנפרד ב-VS Code עם ליבת Python.
-## סילבוסים אחרים
+## תוכניות לימוד נוספות
-הצוות שלנו מייצר סילבוסים נוספים! בדוק:
+הצוות שלנו מייצר תוכניות לימוד נוספות! בדקו את:
### LangChain
@@ -213,50 +204,50 @@ CO_OP_TRANSLATOR_METADATA:
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-
-### סדרת AI יוצרת
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+
+### סדרת AI מחולל
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
-
-### ליבת הלמידה
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+
+### למידה בסיסית
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-
-### סדרת קופיילוט
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+
+### סדרת Copilot
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## קבלת עזרה
-**נתקעת?** עיין במדריך [פתרון בעיות](TROUBLESHOOTING.md) שלנו לפתרונות לבעיות נפוצות.
+**נתקלים בבעיות?** עיינו ב-[מדריך פתרון בעיות](TROUBLESHOOTING.md) שלנו לפתרונות לבעיות נפוצות.
-אם נתקלת בקשיים או יש לך שאלות לגבי בניית אפליקציות AI. הצטרף ללומדים ומפתחים מנוסים בדיונים על MCP. זוהי קהילה תומכת שבה שאלות מתקבלות בברכה והידע משותף בחופשיות.
+אם אתם תקועים או יש לכם שאלות לגבי בניית אפליקציות AI. הצטרפו ללומדים ולמפתחים מנוסים בדיונים על MCP. זו קהילה תומכת שבה שאלות מתקבלות בברכה והידע משותף בחופשיות.
[](https://discord.gg/nTYy5BXMWG)
-אם יש לך משוב על מוצר או שגיאות בזמן הבנייה, בקר:
+אם יש לכם משוב על המוצר או שגיאות במהלך הבנייה, בקרו:
[](https://aka.ms/foundry/forum)
---
-**כתב ויתור**:
-מסמך זה תורגם באמצעות שירות תרגום מבוסס בינה מלאכותית [Co-op Translator](https://github.com/Azure/co-op-translator). למרות שאנו שואפים לדיוק, יש לקחת בחשבון שתרגומים אוטומטיים עלולים להכיל שגיאות או אי דיוקים. המסמך המקורי בשפת המקור שלו יש להחשב למקור הסמכותי. למידע קריטי, מומלץ להיעזר בתרגום מקצועי על ידי מתרגם אנושי. אנו מצהירים כי איננו אחראים לכל אי הבנות או פרשנויות שגויות הנובעות מהשימוש בתרגום זה.
+**כתב ויתור**:
+מסמך זה תורגם באמצעות שירות תרגום מבוסס בינה מלאכותית [Co-op Translator](https://github.com/Azure/co-op-translator). בעוד שאנו שואפים לדייק, יש לקחת בחשבון כי תרגומים אוטומטיים עשויים להכיל טעויות או אי-דיוקים. יש להתייחס למסמך המקורי בשפת המקור כמקור הסמכותי. למידע קריטי מומלץ להשתמש בתרגום מקצועי שנעשה על ידי בני אדם. אנו לא נושאים באחריות לכל אי-הבנה או פרשנות שגויה הנובעים מהשימוש בתרגום זה.
\ No newline at end of file
diff --git a/translations/he/SECURITY.md b/translations/he/SECURITY.md
index 530d875e..4f3ce946 100644
--- a/translations/he/SECURITY.md
+++ b/translations/he/SECURITY.md
@@ -1,12 +1,3 @@
-
## אבטחה
מיקרוסופט מתייחסת ברצינות לאבטחת מוצרי התוכנה והשירותים שלה, כולל כל מאגרי הקוד המקוריים המנוהלים דרך הארגונים שלנו ב-GitHub, הכוללים [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), ו-[ארגוני GitHub שלנו](https://opensource.microsoft.com/).
diff --git a/translations/he/SUPPORT.md b/translations/he/SUPPORT.md
index bc210d54..22bf3ce6 100644
--- a/translations/he/SUPPORT.md
+++ b/translations/he/SUPPORT.md
@@ -1,12 +1,3 @@
-
# תמיכה
## כיצד לדווח על בעיות ולקבל עזרה
diff --git a/translations/he/TROUBLESHOOTING.md b/translations/he/TROUBLESHOOTING.md
index adf5f1aa..9ea63fe8 100644
--- a/translations/he/TROUBLESHOOTING.md
+++ b/translations/he/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# מדריך לפתרון בעיות
מדריך זה מספק פתרונות לבעיות נפוצות שעשויות להתרחש בעת עבודה עם תוכנית הלימודים "מדעי הנתונים למתחילים".
diff --git a/translations/he/USAGE.md b/translations/he/USAGE.md
index cf5f9596..3fa4870f 100644
--- a/translations/he/USAGE.md
+++ b/translations/he/USAGE.md
@@ -1,12 +1,3 @@
-
# מדריך שימוש
מדריך זה מספק דוגמאות ותהליכי עבודה נפוצים לשימוש בתוכנית הלימודים "מדעי הנתונים למתחילים".
diff --git a/translations/he/docs/_sidebar.md b/translations/he/docs/_sidebar.md
index bcce9f71..858c021d 100644
--- a/translations/he/docs/_sidebar.md
+++ b/translations/he/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- הקדמה
- [הגדרת מדע הנתונים](../1-Introduction/01-defining-data-science/README.md)
- [אתיקה במדע הנתונים](../1-Introduction/02-ethics/README.md)
diff --git a/translations/he/examples/README.md b/translations/he/examples/README.md
index c510a5d7..72fd21c8 100644
--- a/translations/he/examples/README.md
+++ b/translations/he/examples/README.md
@@ -1,12 +1,3 @@
-
# דוגמאות ידידותיות למתחילים במדעי הנתונים
ברוכים הבאים לתיקיית הדוגמאות! אוסף זה של דוגמאות פשוטות ומלוות בהסברים נועד לעזור לכם להתחיל עם מדעי הנתונים, גם אם אתם מתחילים לגמרי.
diff --git a/translations/he/for-teachers.md b/translations/he/for-teachers.md
index 836dc04b..ecf85fda 100644
--- a/translations/he/for-teachers.md
+++ b/translations/he/for-teachers.md
@@ -1,12 +1,3 @@
-
## למורים
האם תרצו להשתמש בתוכנית הלימודים הזו בכיתה שלכם? אתם מוזמנים!
diff --git a/translations/he/quiz-app/README.md b/translations/he/quiz-app/README.md
index 2c8094e7..cacc48c9 100644
--- a/translations/he/quiz-app/README.md
+++ b/translations/he/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# חידונים
החידונים האלה הם חידוני טרום ואחרי הרצאה עבור תוכנית הלימודים למדעי הנתונים בכתובת https://aka.ms/datascience-beginners
diff --git a/translations/he/sketchnotes/README.md b/translations/he/sketchnotes/README.md
index 33e8550a..71e9b34c 100644
--- a/translations/he/sketchnotes/README.md
+++ b/translations/he/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
מצא את כל הסקצ'נוטים כאן!
## קרדיטים
diff --git a/translations/hi/.co-op-translator.json b/translations/hi/.co-op-translator.json
new file mode 100644
index 00000000..adc4d3d3
--- /dev/null
+++ b/translations/hi/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:43:32+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "hi"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-24T21:31:28+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "hi"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-24T21:32:36+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "hi"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:15:02+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "hi"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-24T21:25:40+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "hi"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T15:05:08+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "hi"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-24T21:36:02+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "hi"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:14:40+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "hi"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-24T21:44:44+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "hi"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-24T21:15:27+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "hi"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T10:56:10+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "hi"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:53:55+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "hi"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T14:52:25+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "hi"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-24T21:13:46+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "hi"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:32:04+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "hi"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-24T21:09:41+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "hi"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T14:55:08+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "hi"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-24T21:02:28+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "hi"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-24T20:52:37+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T14:59:28+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-24T23:04:02+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T15:01:22+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-24T22:38:21+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T14:58:55+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-24T23:07:34+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:32:22+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-24T22:42:22+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T15:00:06+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-24T22:33:46+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-24T22:34:50+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-24T22:34:18+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-24T22:52:57+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-24T22:54:02+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-24T22:44:42+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-24T22:45:39+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-24T22:59:22+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-24T22:48:14+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-24T22:56:42+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "hi"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-24T22:29:55+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "hi"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:37:11+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "hi"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-24T22:17:43+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "hi"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:36:23+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "hi"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-24T22:20:31+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "hi"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:38:14+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "hi"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-24T22:28:22+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "hi"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-24T22:14:11+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "hi"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T14:50:12+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "hi"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-24T22:05:14+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "hi"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T14:48:23+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "hi"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-24T22:01:57+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "hi"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T14:51:36+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "hi"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-24T22:11:52+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "hi"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-24T21:53:03+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "hi"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:20:49+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "hi"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-24T21:52:10+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "hi"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-24T21:45:48+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "hi"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:11:12+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "hi"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-24T20:49:55+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "hi"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:39:40+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "hi"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:17:38+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "hi"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:27:01+00:00",
+ "source_file": "README.md",
+ "language_code": "hi"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-24T20:50:59+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "hi"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-24T20:47:48+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "hi"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:34:45+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "hi"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:57:53+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "hi"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-24T21:14:38+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "hi"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:59:10+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "hi"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:54:21+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "hi"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-24T22:13:19+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "hi"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-24T21:45:19+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "hi"
+ }
+}
\ No newline at end of file
diff --git a/translations/hi/1-Introduction/01-defining-data-science/README.md b/translations/hi/1-Introduction/01-defining-data-science/README.md
index 8d2cdbba..49058a85 100644
--- a/translations/hi/1-Introduction/01-defining-data-science/README.md
+++ b/translations/hi/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# डेटा साइंस की परिभाषा
|  द्वारा ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/hi/1-Introduction/01-defining-data-science/assignment.md b/translations/hi/1-Introduction/01-defining-data-science/assignment.md
index 83967835..26a7901e 100644
--- a/translations/hi/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/hi/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# असाइनमेंट: डेटा साइंस परिदृश्य
इस पहले असाइनमेंट में, हम आपसे यह सोचने के लिए कहते हैं कि विभिन्न समस्या क्षेत्रों में किसी वास्तविक जीवन की प्रक्रिया या समस्या को कैसे बेहतर बनाया जा सकता है, और इसे डेटा साइंस प्रक्रिया का उपयोग करके कैसे सुधार सकते हैं। निम्नलिखित पर विचार करें:
diff --git a/translations/hi/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/hi/1-Introduction/01-defining-data-science/solution/assignment.md
index c6b50816..ce250d63 100644
--- a/translations/hi/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/hi/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# असाइनमेंट: डेटा साइंस परिदृश्य
इस पहले असाइनमेंट में, हम आपसे यह सोचने के लिए कहते हैं कि वास्तविक जीवन की किसी प्रक्रिया या समस्या को विभिन्न समस्या क्षेत्रों में कैसे बेहतर बनाया जा सकता है, और डेटा साइंस प्रक्रिया का उपयोग करके इसे कैसे सुधार सकते हैं। निम्नलिखित पर विचार करें:
diff --git a/translations/hi/1-Introduction/02-ethics/README.md b/translations/hi/1-Introduction/02-ethics/README.md
index 14717ac2..35de530e 100644
--- a/translations/hi/1-Introduction/02-ethics/README.md
+++ b/translations/hi/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# डेटा नैतिकता का परिचय
| द्वारा ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/hi/1-Introduction/02-ethics/assignment.md b/translations/hi/1-Introduction/02-ethics/assignment.md
index d8594fea..15d84095 100644
--- a/translations/hi/1-Introduction/02-ethics/assignment.md
+++ b/translations/hi/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## डेटा एथिक्स केस स्टडी लिखें
## निर्देश
diff --git a/translations/hi/1-Introduction/03-defining-data/README.md b/translations/hi/1-Introduction/03-defining-data/README.md
index e2ad8bec..fbab976c 100644
--- a/translations/hi/1-Introduction/03-defining-data/README.md
+++ b/translations/hi/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# डेटा को परिभाषित करना
| द्वारा ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/hi/1-Introduction/03-defining-data/assignment.md b/translations/hi/1-Introduction/03-defining-data/assignment.md
index fbdded4e..de1f4ca0 100644
--- a/translations/hi/1-Introduction/03-defining-data/assignment.md
+++ b/translations/hi/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# डेटा सेट वर्गीकृत करना
## निर्देश
diff --git a/translations/hi/1-Introduction/04-stats-and-probability/README.md b/translations/hi/1-Introduction/04-stats-and-probability/README.md
index f08ed51a..a49a7ad5 100644
--- a/translations/hi/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/hi/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# सांख्यिकी और संभाव्यता का संक्षिप्त परिचय
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
ग्राफ़िक रूप से हम माध्यिका और क्वारटाइल्स के बीच संबंध को **बॉक्स प्लॉट** नामक आरेख में प्रस्तुत कर सकते हैं:
-
+
यहां हम **इंटर-क्वारटाइल रेंज** IQR=Q3-Q1 और तथाकथित **आउटलायर्स** - मान जो [Q1-1.5*IQR,Q3+1.5*IQR] की सीमाओं के बाहर होते हैं, की भी गणना करते हैं।
diff --git a/translations/hi/1-Introduction/04-stats-and-probability/assignment.md b/translations/hi/1-Introduction/04-stats-and-probability/assignment.md
index e75d80e7..f3e2b822 100644
--- a/translations/hi/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/hi/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# छोटे डायबिटीज अध्ययन
इस असाइनमेंट में, हम डायबिटीज मरीजों के एक छोटे डेटा सेट के साथ काम करेंगे, जो [यहां](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) से लिया गया है।
diff --git a/translations/hi/1-Introduction/README.md b/translations/hi/1-Introduction/README.md
index aa08c5b0..4e43cc61 100644
--- a/translations/hi/1-Introduction/README.md
+++ b/translations/hi/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# डेटा साइंस का परिचय

diff --git a/translations/hi/2-Working-With-Data/05-relational-databases/README.md b/translations/hi/2-Working-With-Data/05-relational-databases/README.md
index afc2e516..5a045a13 100644
--- a/translations/hi/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/hi/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# डेटा के साथ काम करना: रिलेशनल डेटाबेस
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/hi/2-Working-With-Data/05-relational-databases/assignment.md b/translations/hi/2-Working-With-Data/05-relational-databases/assignment.md
index 3b60fcc8..741c348b 100644
--- a/translations/hi/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/hi/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# हवाई अड्डे का डेटा प्रदर्शित करना
आपको [SQLite](https://sqlite.org/index.html) पर आधारित एक [डेटाबेस](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) प्रदान किया गया है, जिसमें हवाई अड्डों की जानकारी है। नीचे स्कीमा प्रदर्शित किया गया है। आप [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) में [SQLite एक्सटेंशन](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) का उपयोग करके विभिन्न शहरों के हवाई अड्डों की जानकारी प्रदर्शित करेंगे।
diff --git a/translations/hi/2-Working-With-Data/06-non-relational/README.md b/translations/hi/2-Working-With-Data/06-non-relational/README.md
index 01440be9..bf8d33f2 100644
--- a/translations/hi/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/hi/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# डेटा के साथ काम करना: गैर-संबंधात्मक डेटा
| द्वारा ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/hi/2-Working-With-Data/06-non-relational/assignment.md b/translations/hi/2-Working-With-Data/06-non-relational/assignment.md
index 5464a3f7..f31365ea 100644
--- a/translations/hi/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/hi/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# सोडा मुनाफा
## निर्देश
diff --git a/translations/hi/2-Working-With-Data/07-python/README.md b/translations/hi/2-Working-With-Data/07-python/README.md
index b5aab07e..e7125161 100644
--- a/translations/hi/2-Working-With-Data/07-python/README.md
+++ b/translations/hi/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# डेटा के साथ काम करना: Python और Pandas लाइब्रेरी
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/hi/2-Working-With-Data/07-python/assignment.md b/translations/hi/2-Working-With-Data/07-python/assignment.md
index 01adf71c..e0259db1 100644
--- a/translations/hi/2-Working-With-Data/07-python/assignment.md
+++ b/translations/hi/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# पायथन में डेटा प्रोसेसिंग के लिए असाइनमेंट
इस असाइनमेंट में, हम आपसे उन कोड्स को विस्तार से समझाने के लिए कहेंगे, जिन्हें हमने अपने चैलेंजेस में विकसित करना शुरू किया है। असाइनमेंट दो भागों में विभाजित है:
diff --git a/translations/hi/2-Working-With-Data/08-data-preparation/README.md b/translations/hi/2-Working-With-Data/08-data-preparation/README.md
index 73a7d8cc..11a6d81b 100644
--- a/translations/hi/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/hi/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# डेटा के साथ काम करना: डेटा तैयारी
| द्वारा ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/hi/2-Working-With-Data/08-data-preparation/assignment.md b/translations/hi/2-Working-With-Data/08-data-preparation/assignment.md
index 143561f6..7886e73f 100644
--- a/translations/hi/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/hi/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# फॉर्म से डेटा का मूल्यांकन
एक क्लाइंट ने अपने ग्राहक आधार के बारे में कुछ बुनियादी डेटा इकट्ठा करने के लिए [छोटा फॉर्म](../../../../2-Working-With-Data/08-data-preparation/index.html) का परीक्षण किया है। उन्होंने अपने निष्कर्ष आपके पास लाए हैं ताकि आप उनके द्वारा इकट्ठा किए गए डेटा को मान्य कर सकें। आप ब्राउज़र में `index.html` पेज खोलकर फॉर्म देख सकते हैं।
diff --git a/translations/hi/2-Working-With-Data/README.md b/translations/hi/2-Working-With-Data/README.md
index ae95cabc..764638a1 100644
--- a/translations/hi/2-Working-With-Data/README.md
+++ b/translations/hi/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# डेटा के साथ काम करना

diff --git a/translations/hi/3-Data-Visualization/09-visualization-quantities/README.md b/translations/hi/3-Data-Visualization/09-visualization-quantities/README.md
index ecc7163e..0c902ebd 100644
--- a/translations/hi/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/hi/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# मात्राओं का विज़ुअलाइज़ेशन
| द्वारा ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/hi/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/hi/3-Data-Visualization/09-visualization-quantities/assignment.md
index 959ca77b..1f277630 100644
--- a/translations/hi/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/hi/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# रेखाएं, बिखराव और बार
## निर्देश
diff --git a/translations/hi/3-Data-Visualization/10-visualization-distributions/README.md b/translations/hi/3-Data-Visualization/10-visualization-distributions/README.md
index 2e75bc32..eb1a8e4a 100644
--- a/translations/hi/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/hi/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# वितरणों का विज़ुअलाइज़ेशन
| द्वारा ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/hi/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/hi/3-Data-Visualization/10-visualization-distributions/assignment.md
index 0dc3d9b9..4bf5e27f 100644
--- a/translations/hi/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/hi/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# अपने कौशल का उपयोग करें
## निर्देश
diff --git a/translations/hi/3-Data-Visualization/11-visualization-proportions/README.md b/translations/hi/3-Data-Visualization/11-visualization-proportions/README.md
index a5ce1a3e..5cbece1e 100644
--- a/translations/hi/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/hi/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# अनुपातों का दृश्यांकन
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/hi/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/hi/3-Data-Visualization/11-visualization-proportions/assignment.md
index 1fb3b31f..e3a6b07f 100644
--- a/translations/hi/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/hi/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# इसे Excel में आज़माएं
## निर्देश
diff --git a/translations/hi/3-Data-Visualization/12-visualization-relationships/README.md b/translations/hi/3-Data-Visualization/12-visualization-relationships/README.md
index 0b5b3202..a89bbf0f 100644
--- a/translations/hi/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/hi/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# संबंधों का चित्रण: शहद के बारे में सब कुछ 🍯
| द्वारा ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/hi/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/hi/3-Data-Visualization/12-visualization-relationships/assignment.md
index 3d83dd94..dd66975b 100644
--- a/translations/hi/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/hi/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# मधुमक्खी के छत्ते में गोता लगाएं
## निर्देश
diff --git a/translations/hi/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/hi/3-Data-Visualization/13-meaningful-visualizations/README.md
index eff7d422..06a4a588 100644
--- a/translations/hi/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/hi/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# सार्थक डेटा विज़ुअलाइज़ेशन बनाना
| द्वारा ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/hi/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/hi/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 9702a45d..989b9947 100644
--- a/translations/hi/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/hi/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# अपना खुद का कस्टम विज़ुअलाइज़ेशन बनाएं
## निर्देश
diff --git a/translations/hi/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/hi/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 0f27755f..e2ed83f1 100644
--- a/translations/hi/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/hi/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# डेंजरस लिआज़ॉन्स डेटा विज़ुअलाइज़ेशन प्रोजेक्ट
शुरू करने के लिए, सुनिश्चित करें कि आपके सिस्टम पर NPM और Node चल रहे हैं। डिपेंडेंसीज़ इंस्टॉल करें (npm install) और फिर प्रोजेक्ट को लोकली चलाएं (npm run serve):
diff --git a/translations/hi/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/hi/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 6d7b659f..ab1d6de3 100644
--- a/translations/hi/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/hi/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# डेंजरस लिआज़ॉन्स डेटा विज़ुअलाइज़ेशन प्रोजेक्ट
शुरू करने के लिए, सुनिश्चित करें कि आपके सिस्टम पर NPM और Node चल रहे हैं। डिपेंडेंसीज़ इंस्टॉल करें (npm install) और फिर प्रोजेक्ट को लोकल रूप से चलाएं (npm run serve):
diff --git a/translations/hi/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/hi/3-Data-Visualization/R/09-visualization-quantities/README.md
index 25a5e429..01d7045c 100644
--- a/translations/hi/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/hi/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# मात्राओं का विज़ुअलाइज़ेशन
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/hi/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/hi/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 10de6bf6..f342581b 100644
--- a/translations/hi/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/hi/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# रेखाएं, बिखराव और बार्स
## निर्देश
diff --git a/translations/hi/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/hi/3-Data-Visualization/R/10-visualization-distributions/README.md
index 832a6dd1..0a2572f6 100644
--- a/translations/hi/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/hi/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# वितरणों का विज़ुअलाइज़ेशन
| द्वारा ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/hi/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/hi/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 69d743ac..292804ca 100644
--- a/translations/hi/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/hi/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# अपने कौशल का उपयोग करें
## निर्देश
diff --git a/translations/hi/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/hi/3-Data-Visualization/R/11-visualization-proportions/README.md
index 27aa6766..969aebbc 100644
--- a/translations/hi/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/hi/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# अनुपातों का विज़ुअलाइज़ेशन
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/hi/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/hi/3-Data-Visualization/R/12-visualization-relationships/README.md
index 77e2a6e2..b84a0e5b 100644
--- a/translations/hi/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/hi/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# संबंधों का चित्रण: शहद के बारे में सब कुछ 🍯
| द्वारा ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/hi/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/hi/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 70a1418a..19d43f6d 100644
--- a/translations/hi/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/hi/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# सार्थक विज़ुअलाइज़ेशन बनाना
| द्वारा ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/hi/3-Data-Visualization/README.md b/translations/hi/3-Data-Visualization/README.md
index f6c64204..e6c89118 100644
--- a/translations/hi/3-Data-Visualization/README.md
+++ b/translations/hi/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# विज़ुअलाइज़ेशन

diff --git a/translations/hi/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/hi/4-Data-Science-Lifecycle/14-Introduction/README.md
index 06430696..f4df9a07 100644
--- a/translations/hi/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/hi/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# डेटा साइंस जीवनचक्र का परिचय
| द्वारा ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/hi/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/hi/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index e950a631..00d0b133 100644
--- a/translations/hi/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/hi/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# डेटासेट का मूल्यांकन
एक क्लाइंट ने आपकी टीम से न्यूयॉर्क सिटी में टैक्सी ग्राहकों की मौसमी खर्च करने की आदतों की जांच में मदद मांगी है।
diff --git a/translations/hi/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/hi/4-Data-Science-Lifecycle/15-analyzing/README.md
index 98c36995..7491fcb4 100644
--- a/translations/hi/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/hi/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# डेटा साइंस जीवनचक्र: विश्लेषण
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/hi/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/hi/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 4dd24112..5f624a9b 100644
--- a/translations/hi/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/hi/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# उत्तरों की खोज
यह पिछले पाठ के [असाइनमेंट](../14-Introduction/assignment.md) का विस्तार है, जहां हमने डेटा सेट पर एक संक्षिप्त नज़र डाली थी। अब हम डेटा को और गहराई से समझने की कोशिश करेंगे।
diff --git a/translations/hi/4-Data-Science-Lifecycle/16-communication/README.md b/translations/hi/4-Data-Science-Lifecycle/16-communication/README.md
index a58019ae..a6c15a96 100644
--- a/translations/hi/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/hi/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# डेटा साइंस जीवनचक्र: संचार
| द्वारा](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/hi/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/hi/4-Data-Science-Lifecycle/16-communication/assignment.md
index 245a1ce3..298747ca 100644
--- a/translations/hi/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/hi/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# एक कहानी सुनाएं
## निर्देश
diff --git a/translations/hi/4-Data-Science-Lifecycle/README.md b/translations/hi/4-Data-Science-Lifecycle/README.md
index 74b86677..9c75a259 100644
--- a/translations/hi/4-Data-Science-Lifecycle/README.md
+++ b/translations/hi/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# डेटा साइंस जीवनचक्र

diff --git a/translations/hi/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/hi/5-Data-Science-In-Cloud/17-Introduction/README.md
index 23bae8c0..44f2ea05 100644
--- a/translations/hi/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/hi/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# क्लाउड में डेटा साइंस का परिचय
| द्वारा ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/hi/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/hi/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 2ea8154f..9a21b7f2 100644
--- a/translations/hi/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/hi/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# बाजार अनुसंधान
## निर्देश
diff --git a/translations/hi/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/hi/5-Data-Science-In-Cloud/18-Low-Code/README.md
index cc95d749..2a636cf1 100644
--- a/translations/hi/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/hi/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# क्लाउड में डेटा साइंस: "लो कोड/नो कोड" तरीका
| द्वारा ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/hi/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/hi/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 120bf1f4..59192707 100644
--- a/translations/hi/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/hi/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML पर लो कोड/नो कोड डेटा साइंस प्रोजेक्ट
## निर्देश
diff --git a/translations/hi/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/hi/5-Data-Science-In-Cloud/19-Azure/README.md
index 0e75fbbb..00301cd1 100644
--- a/translations/hi/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/hi/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# क्लाउड में डेटा साइंस: "Azure ML SDK" का तरीका
| द्वारा ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/hi/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/hi/5-Data-Science-In-Cloud/19-Azure/assignment.md
index fa8d776f..93fe0fc7 100644
--- a/translations/hi/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/hi/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML SDK का उपयोग करके डेटा साइंस प्रोजेक्ट
## निर्देश
diff --git a/translations/hi/5-Data-Science-In-Cloud/README.md b/translations/hi/5-Data-Science-In-Cloud/README.md
index d3a50182..cfcc6062 100644
--- a/translations/hi/5-Data-Science-In-Cloud/README.md
+++ b/translations/hi/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# क्लाउड में डेटा साइंस

diff --git a/translations/hi/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/hi/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index a7e893f6..fb5c3cc5 100644
--- a/translations/hi/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/hi/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# वास्तविक दुनिया में डेटा विज्ञान
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/hi/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/hi/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index aba775bf..be327e1d 100644
--- a/translations/hi/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/hi/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# ग्रह कंप्यूटर डेटा सेट का अन्वेषण करें
## निर्देश
diff --git a/translations/hi/6-Data-Science-In-Wild/README.md b/translations/hi/6-Data-Science-In-Wild/README.md
index ca3f1082..0c1ad730 100644
--- a/translations/hi/6-Data-Science-In-Wild/README.md
+++ b/translations/hi/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# जंगली में डेटा साइंस
विभिन्न उद्योगों में डेटा साइंस के वास्तविक दुनिया में उपयोग।
diff --git a/translations/hi/AGENTS.md b/translations/hi/AGENTS.md
index d9cc81d9..920efe0a 100644
--- a/translations/hi/AGENTS.md
+++ b/translations/hi/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## परियोजना का अवलोकन
diff --git a/translations/hi/CODE_OF_CONDUCT.md b/translations/hi/CODE_OF_CONDUCT.md
index c87a3b2f..6049399d 100644
--- a/translations/hi/CODE_OF_CONDUCT.md
+++ b/translations/hi/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft ओपन सोर्स आचार संहिता
इस प्रोजेक्ट ने [Microsoft ओपन सोर्स आचार संहिता](https://opensource.microsoft.com/codeofconduct/) को अपनाया है।
diff --git a/translations/hi/CONTRIBUTING.md b/translations/hi/CONTRIBUTING.md
index 1d2b14aa..97dae914 100644
--- a/translations/hi/CONTRIBUTING.md
+++ b/translations/hi/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# शुरुआती डेटा साइंस में योगदान करें
डेटा साइंस फॉर बिगिनर्स पाठ्यक्रम में योगदान करने में आपकी रुचि के लिए धन्यवाद! हम समुदाय से योगदान का स्वागत करते हैं।
diff --git a/translations/hi/INSTALLATION.md b/translations/hi/INSTALLATION.md
index baafe52b..e256f1f7 100644
--- a/translations/hi/INSTALLATION.md
+++ b/translations/hi/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# इंस्टॉलेशन गाइड
यह गाइड आपको Data Science for Beginners पाठ्यक्रम के साथ काम करने के लिए अपना वातावरण सेट करने में मदद करेगा।
diff --git a/translations/hi/README.md b/translations/hi/README.md
index c79d7985..c07bffd3 100644
--- a/translations/hi/README.md
+++ b/translations/hi/README.md
@@ -1,202 +1,193 @@
-
-# शुरुआत के लिए डेटा साइंस - एक पाठ्यक्रम
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+# शुरुआती के लिए डेटा साइंस - एक पाठ्यक्रम
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
-Microsoft में Azure क्लाउड एडवोकेट्स एक 10-सप्ताह, 20-पाठ्यक्रम की योजना लेकर आए हैं जो पूरी तरह से डेटा साइंस के बारे में है। प्रत्येक पाठ में प्री-लेसन और पोस्ट-लेसन क्विज़, पढ़ाई पूरी करने के लिए लिखित निर्देश, एक समाधान और एक असाइनमेंट शामिल होता है। हमारा परियोजना-आधारित शिक्षण तरीका आपको निर्माण करते हुए सीखने की अनुमति देता है, जो नए कौशल को 'अटकने' का एक प्रमाणित तरीका है।
+Microsoft में Azure Cloud Advocates को डेटा साइंस के बारे में 10 सप्ताह, 20-पाठों का पूरा पाठ्यक्रम प्रस्तुत करते हुए खुशी हो रही है। प्रत्येक पाठ में पाठ से पहले और बाद में क्विज, पाठ पूरा करने के लिए लिखित निर्देश, समाधान और असाइनमेंट शामिल हैं। हमारी परियोजना-आधारित शिक्षण पद्धति आपको निर्माण करते हुए सीखने की अनुमति देती है, जो नई क्षमताओं को स्थायी रूप से सीखने का एक प्रमाणित तरीका है।
-**हमारे लेखकों को हार्दिक धन्यवाद:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer)।
+**हमारे लेखकों को हार्दिक धन्यवाद:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 हमारे [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) लेखकों, समीक्षकों और कंटेंट योगदानकर्ताओं को विशेष धन्यवाद 🙏,** विशेष रूप से Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
-[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
+**🙏 हमारे [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) लेखकों, समीक्षकों और सामग्री योगदानकर्ताओं को विशेष धन्यवाद,** विशेष रूप से आर्यन अरोड़ा, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [अंकिता सिंह](https://www.linkedin.com/in/ankitasingh007), [अनुपम मिश्रा](https://www.linkedin.com/in/anupam--mishra/), [अर्पिता दास](https://www.linkedin.com/in/arpitadas01/), छैल बिहारी दुबे, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), समृद्धि शर्मा, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), योगेंद्रसिंह पवार , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| शुरुआत के लिए डेटा साइंस - _स्केचनोट [@nitya](https://twitter.com/nitya) द्वारा_ |
+| शुरुआती के लिए डेटा साइंस - _स्केचनोट [@nitya](https://twitter.com/nitya) द्वारा_ |
### 🌐 बहुभाषी समर्थन
#### GitHub Action के माध्यम से समर्थित (स्वचालित और हमेशा अद्यतित)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](./README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](./README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **स्थानीय रूप से क्लोन करना पसंद करें?**
+> **स्थानीय तौर पर क्लोन करना पसंद करें?**
-> इस रिपोजिटरी में 50+ भाषा के अनुवाद शामिल हैं जो डाउनलोड के आकार को काफी बढ़ाते हैं। अनुवादों के बिना क्लोन करने के लिए, sparse checkout का उपयोग करें:
+> इस रिपॉजिटरी में 50+ भाषा के अनुवाद शामिल हैं जो डाउनलोड साइज को काफी बढ़ाते हैं। बिना अनुवाद के क्लोन करने के लिए sparse checkout का उपयोग करें:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> यह आपको पाठ्यक्रम पूरा करने के लिए आवश्यक सब कुछ बहुत तेज़ डाउनलोड के साथ देगा।
+> यह आपको बहुत तेज़ डाउनलोड के साथ पाठ्यक्रम पूरा करने के लिए आवश्यक सभी कुछ देता है।
-**यदि आप अतिरिक्त भाषाओं का समर्थन चाहते हैं तो वे [यहाँ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) सूचीबद्ध हैं**
+**यदि आप अतिरिक्त अनुवाद भाषाओं का समर्थन चाहते हैं तो वे यहाँ सूचीबद्ध हैं [यहाँ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### हमारे समुदाय में शामिल हों
[](https://discord.gg/nTYy5BXMWG)
-हमारे पास Discord पर सीखने के लिए AI श्रृंखला जारी है, इसके बारे में अधिक जानें और 18 - 30 सितंबर, 2025 में [Learn with AI Series](https://aka.ms/learnwithai/discord) में शामिल हों। आपको GitHub Copilot का उपयोग करके डेटा साइंस के टिप्स और ट्रिक्स मिलेंगे।
+हमारी Discord पर AI के साथ सीखने की एक श्रृंखला चल रही है, इसके बारे में अधिक जानने और शामिल होने के लिए [Learn with AI Series](https://aka.ms/learnwithai/discord) पर 18 - 30 सितंबर, 2025 आएं। आपको GitHub Copilot के Data Science उपयोग के टिप्स और ट्रिक्स मिलेंगे।
-
+
-# क्या आप छात्र हैं?
+# क्या आप एक छात्र हैं?
-निम्न संसाधनों के साथ शुरुआत करें:
+निम्नलिखित संसाधनों से शुरुआत करें:
-- [Student Hub पेज](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) इस पेज में आपको शुरुआती संसाधन, Student पैक और यहां तक कि फ्री सर्टिफिकेट वाउचर पाने के तरीके मिलेंगे। यह एक ऐसा पेज है जिसे आप बुकमार्क करना चाहेंगे और समय-समय पर देखना चाहेंगे क्योंकि हम कम से कम मासिक रूप से सामग्री को बदला करते हैं।
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ग्लोबल छात्रों के दूतों के समुदाय में शामिल हों, यह Microsoft में आपका मार्ग हो सकता है।
+- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) इस पेज में, आपको शुरुआती संसाधन, छात्र पैक और मुफ्त प्रमाणन वाउचर प्राप्त करने के तरीके मिलेंगे। यह एक ऐसा पेज है जिसे आप बुकमार्क करना चाहेंगे और समय-समय पर जांचते रहना चाहिए क्योंकि हम कम से कम मासिक रूप से सामग्री बदलते रहते हैं।
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) एक वैश्विक छात्र एम्बेसडर समुदाय में शामिल हों, यह Microsoft में आपका रास्ता हो सकता है।
-# शुरू करना
+# शुरूआत
## 📚 दस्तावेज़ीकरण
-- **[इंस्टॉलेशन गाइड](INSTALLATION.md)** - शुरुआती लोगों के लिए चरण-दर-चरण सेटअप निर्देश
+- **[इंस्टॉलेशन गाइड](INSTALLATION.md)** - शुरुआती के लिए चरण-दर-चरण सेटअप निर्देश
- **[उपयोग गाइड](USAGE.md)** - उदाहरण और सामान्य कार्यप्रवाह
-- **[ट्रबलशूटिंग](TROUBLESHOOTING.md)** - सामान्य समस्याओं के समाधान
-- **[योगदान देने का गाइड](CONTRIBUTING.md)** - इस परियोजना में योगदान कैसे करें
+- **[समस्या निवारण](TROUBLESHOOTING.md)** - सामान्य समस्याओं के समाधान
+- **[योगदान गाइड](CONTRIBUTING.md)** - इस प्रोजेक्ट में योगदान कैसे करें
- **[शिक्षकों के लिए](for-teachers.md)** - शिक्षण मार्गदर्शन और कक्षा संसाधन
## 👨🎓 छात्रों के लिए
-> **पूरी तरह से शुरुआती**: डेटा साइंस में नए हैं? हमारी [शुरुआती अनुकूल उदाहरण](examples/README.md) से शुरू करें! ये सरल, अच्छी तरह से कॉमेंट किए गए उदाहरण आपको पूरी पाठ्यक्रम में उतरने से पहले मूल बातें समझने में मदद करेंगे।
-> **[छात्र](https://aka.ms/student-page)**: इस पाठ्यक्रम को स्वयं उपयोग करने के लिए, पूरे रिपो को फोर्क करें और स्वयं अभ्यास पूरा करें, प्री-लेक्चर क्विज़ से शुरू करें। फिर लेक्चर पढ़ें और बाकी गतिविधियाँ पूरी करें। समाधान कोड की नकल करने के बजाय पाठों को समझकर परियोजनाएँ बनाने का प्रयास करें; हालांकि, वह कोड प्रत्येक परियोजना-उन्मुख पाठ में /solutions फोल्डर में उपलब्ध है। एक और विचार यह हो सकता है कि दोस्तों के साथ अध्ययन समूह बनाकर सामग्री को एक साथ देखें। और अधिक अध्ययन के लिए, हम [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) की सलाह देते हैं।
+> **पूर्ण शुरुआती**: डेटा साइंस में नए हैं? हमारे [शुरुआती-फ्रेंडली उदाहरणों](examples/README.md) से शुरुआत करें! ये सरल, अच्छी तरह से कमेंट किए गए उदाहरण आपको पूरा पाठ्यक्रम शुरू करने से पहले बुनियादी बातें समझने में मदद करेंगे।
+> **[छात्र](https://aka.ms/student-page)**: इस पाठ्यक्रम का उपयोग अपने आप करने के लिए, पूरा रिपॉजिटरी फोर्क करें और अपनी ओर से अभ्यास पूरा करें, प्री-लेक्चर क्विज से शुरू करें। फिर व्याख्यान पढ़ें और बाकी गतिविधियां पूरी करें। परियोजनाओं को समाधान कोड की नकल करने के बजाय पाठों को समझकर बनाने की कोशिश करें; हालांकि, वह कोड प्रत्येक परियोजना-उन्मुख पाठ के /solutions फोल्डरों में उपलब्ध है। एक और विचार यह हो सकता है कि दोस्तों के साथ एक अध्ययन समूह बनाएं और सामग्री एक साथ पढ़ें। आगे अध्ययन के लिए, हम [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) की सलाह देते हैं।
**त्वरित शुरुआत:**
-1. अपना पर्यावरण सेटअप करने के लिए [इंस्टॉलेशन गाइड](INSTALLATION.md) देखें
-2. पाठ्यक्रम के साथ काम करने के लिए [उपयोग गाइड](USAGE.md) देखें
-3. पाठ 1 से शुरू करें और क्रमशः पूरा करें
-4. सहायता के लिए हमारे [Discord समुदाय](https://aka.ms/ds4beginners/discord) में शामिल हों
+1. अपनी पर्यावरण सेटअप के लिए [इंस्टॉलेशन गाइड](INSTALLATION.md) देखें
+2. पाठ्यक्रम के साथ काम करने के लिए [उपयोग गाइड](USAGE.md) पढ़ें
+3. पाठ 1 से शुरू करें और क्रमबद्ध रूप से कार्य करें
+4. समर्थन के लिए हमारे [Discord समुदाय](https://aka.ms/ds4beginners/discord) में शामिल हों
## 👩🏫 शिक्षकों के लिए
-> **शिक्षक**: हमने [इस पाठ्यक्रम का उपयोग कैसे करें](for-teachers.md) पर कुछ सुझाव शामिल किए हैं। हम आपकी प्रतिक्रिया [हमारे चर्चा मंच पर](https://github.com/microsoft/Data-Science-For-Beginners/discussions) सुनना चाहेंगे!
-
+> **शिक्षक**: हमने इस पाठ्यक्रम का उपयोग कैसे किया जाए इसके बारे में [कुछ सुझाव](for-teachers.md) शामिल किए हैं। हम आपकी प्रतिक्रियाओं के लिए उत्सुक हैं [हमारे चर्चा मंच में](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## टीम से मिलें
-[](https://youtu.be/8mzavjQSMM4 "Promo video")
-**Gif द्वारा** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+[](https://youtu.be/8mzavjQSMM4 "प्रोमो वीडियो")
+
+**गिफ़ द्वारा** [मोहित जैसल](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 ऊपर दी गई छवि पर क्लिक करें एक वीडियो के लिए जो इस परियोजना और इसे निर्माण करने वालों के बारे में है!
+> 🎥 परियोजना और इसे बनाने वाले लोगों के बारे में वीडियो के लिए ऊपर की छवि पर क्लिक करें!
-## शिक्षा शास्त्र
+## शिक्षाशास्त्र
-हमने इस पाठ्यक्रम को बनाते समय दो शैक्षिक सिद्धांतों को चुना है: यह सुनिश्चित करना कि यह परियोजना-आधारित हो और इसमें बार-बार क्विज़ शामिल हों। इस श्रृंखला के अंत तक, छात्र डेटा विज्ञान के मूलभूत सिद्धांतों को सीख चुके होंगे, जिसमें नैतिक अवधारणाएँ, डेटा तैयारी, डेटा के साथ काम करने के विभिन्न तरीके, डेटा विजुअलाइज़ेशन, डेटा विश्लेषण, डेटा विज्ञान के वास्तविक दुनिया के उपयोग मामले, और अधिक शामिल हैं।
+हमने इस पाठ्यक्रम को बनाते समय दो शिक्षाशास्त्रीय सिद्धांत चुने हैं: यह सुनिश्चित करना कि यह परियोजना-आधारित हो और इसमें अक्सर क्विज़ शामिल हों। इस श्रृंखला के अंत तक, छात्र डेटा विज्ञान के मूल सिद्धांतों को सीखेंगे, जिनमें नैतिक अवधारणाएं, डेटा तैयारी, डेटा के साथ काम करने के विभिन्न तरीके, डेटा विज़ुअलाइज़ेशन, डेटा विश्लेषण, डेटा विज्ञान के वास्तविक दुनिया उपयोग के मामले, और अधिक शामिल हैं।
-इसके अलावा, कक्षा से पहले एक कम दबाव वाला क्विज़ छात्र के विषय सीखने की इच्छा को सेट करता है, जबकि कक्षा के बाद दूसरा क्विज़ और अधिक अवधारण सुनिश्चित करता है। यह पाठ्यक्रम लचीला और मजेदार बनाने के लिए डिज़ाइन किया गया है और इसे पूरी तरह या आंशिक रूप से लिया जा सकता है। परियोजनाएँ छोटी शुरू होती हैं और 10 सप्ताह के चक्र के अंत तक बढ़ती जटिल होती जाती हैं।
+इसके अलावा, कक्षा से पहले एक कम-जिम्मेदारी वाला क्विज़ छात्र के सीखने के इरादे को सेट करता है, जबकि कक्षा के बाद दूसरा क्विज़ और अधिक अवधारण सुनिश्चित करता है। यह पाठ्यक्रम लचीला और मजेदार बनाया गया है और इसे पूरी तरह या आंशिक रूप से लिया जा सकता है। परियोजनाएं छोटी से शुरू होती हैं और 10 सप्ताह के चक्र के अंत तक क्रमिक रूप से जटिल हो जाती हैं।
-> हमारा [आचरण संहिता](CODE_OF_CONDUCT.md), [योगदान](CONTRIBUTING.md), [अनुवाद](TRANSLATIONS.md) दिशानिर्देश देखें। हम आपकी रचनात्मक प्रतिक्रिया का स्वागत करते हैं!
+> हमारे [आचार संहिता](CODE_OF_CONDUCT.md), [योगदान](CONTRIBUTING.md), [अनुवाद](TRANSLATIONS.md) दिशानिर्देश देखें। हम आपकी रचनात्मक प्रतिक्रिया का स्वागत करते हैं!
-## प्रत्येक पाठ में शामिल हैं:
+## प्रत्येक पाठ में शामिल है:
- वैकल्पिक स्केचनोट
- वैकल्पिक सहायक वीडियो
-- कक्षा से पहले वार्मअप क्विज़
-- लिखित पाठ
-- परियोजना-आधारित पाठों के लिए परियोजना बनाने के चरण-दर-चरण मार्गदर्शक
+- प्री-लेसन वार्मअप क्विज़
+- लेखित पाठ
+- परियोजना-आधारित पाठों के लिए, परियोजना बनाने के चरण-दर-चरण मार्गदर्शिकाएँ
- ज्ञान जांच
- एक चुनौती
-- सहायक पठन सामग्री
+- सहायक पठन
- असाइनमेंट
- [पाठ के बाद क्विज़](https://ff-quizzes.netlify.app/en/)
-> **क्विज़ के बारे में एक नोट**: सभी क्विज़ क्विज-एप फोल्डर में संग्रहीत हैं, कुल 40 क्विज़ जिसमें प्रत्येक में तीन प्रश्न हैं। इन्हें पाठों से लिंक किया गया है, लेकिन क्विज ऐप को स्थानीय रूप से चलाया जा सकता है या Azure पर तैनात किया जा सकता है; इसके लिए `quiz-app` फोल्डर में निर्देश देखें। इन्हें धीरे-धीरे स्थानीयकृत किया जा रहा है।
+> **क्विज़ के बारे में एक नोट**: सभी क्विज़ क्विज़-एप फ़ोल्डर में संग्रहीत हैं, जिसमें तीन प्रश्नों के 40 कुल क्विज़ शामिल हैं। ये पाठों के अंदर लिंक किए गए हैं, लेकिन क्विज़ ऐप को स्थानीय रूप से चलाया जा सकता है या Azure पर तैनात किया जा सकता है; निर्देशों के लिए `quiz-app` फ़ोल्डर देखें। इन्हें धीरे-धीरे स्थानीयकृत किया जा रहा है।
-## 🎓 शुरुआती के लिए सहायक उदाहरण
+## 🎓 शुरुआती-अनुकूल उदाहरण
-**डेटा विज्ञान में नए हैं?** हमने एक विशेष [examples directory](examples/README.md) बनाया है जिसमें सरल, अच्छी तरह से टिप्पणी किया गया कोड है ताकि आप शुरू कर सकें:
+**डेटा साइंस में नए हैं?** हमने एक विशेष [उदाहरण निर्देशिका](examples/README.md) बनाई है जिसमें सरल, अच्छी तरह से टिप्पणीकृत कोड है जो आपको शुरुआत करने में मदद करता है:
-- 🌟 **Hello World** - आपका पहला डेटा विज्ञान प्रोग्राम
-- 📂 **डेटा लोड करना** - डेटा सेट पढ़ना और अन्वेषण करना सीखें
-- 📊 **सरल विश्लेषण** - सांख्यिकी की गणना करें और पैटर्न खोजें
-- 📈 **मूल विज़ुअलाइज़ेशन** - चार्ट और ग्राफ बनाएं
-- 🔬 **वास्तविक परियोजना** - शुरुआत से अंत तक पूरा वर्कफ़्लो
+- 🌟 **हैलो वर्ल्ड** - आपका पहला डेटा विज्ञान प्रोग्राम
+- 📂 **लोडिंग डेटा** - डेटासेट पढ़ना और एक्सप्लोर करना सीखें
+- 📊 **सरल विश्लेषण** - सांख्यिकीय गणना करें और पैटर्न खोजें
+- 📈 **मूल विज़ुअलाइज़ेशन** - चार्ट और ग्राफ़ बनाएं
+- 🔬 **वास्तविक-दुनिया परियोजना** - शुरुआत से अंत तक पूरा कार्यप्रवाह
-प्रत्येक उदाहरण में विस्तृत टिप्पणियाँ शामिल हैं जो हर कदम को समझाती हैं, जिससे यह पूर्ण शुरुआती लोगों के लिए आदर्श है!
+प्रत्येक उदाहरण में हर चरण को समझाने वाली विस्तृत टिप्पणियाँ शामिल हैं, जो इसे पूर्ण शुरुआती के लिए उपयुक्त बनाती हैं!
-👉 **[उदाहरणों के साथ शुरुआत करें](examples/README.md)** 👈
+👉 **[उदाहरणों से शुरू करें](examples/README.md)** 👈
## पाठ
-||
+||
|:---:|
-| डेटा विज्ञान के लिए शुरुआती: रोडमैप - _स्केचनोट द्वारा [@nitya](https://twitter.com/nitya)_ |
+| डेटा साइंस फॉर बिगिनर्स: रोडमैप - _स्केचनोट द्वारा [@nitya](https://twitter.com/nitya)_ |
-| पाठ संख्या | विषय | पाठ समूह | शिक्षण उद्देश्य | लिंक्ड पाठ | लेखक |
+| पाठ संख्या | विषय | पाठ समूह | सीखने के उद्देश्य | लिंक्ड पाठ | लेखक |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | डेटा विज्ञान की परिभाषा | [परिचय](1-Introduction/README.md) | डेटा विज्ञान के मूलभूत सिद्धांत सीखें और यह कैसे कृत्रिम बुद्धिमत्ता, मशीन लर्निंग, और बिग डेटा से जुड़ा है। | [पाठ](1-Introduction/01-defining-data-science/README.md) [वीडियो](https://youtu.be/beZ7Mb_oz9I) | [दिमित्री](http://soshnikov.com) |
-| 02 | डेटा विज्ञान नैतिकता | [परिचय](1-Introduction/README.md) | डेटा नैतिकता अवधारणाएँ, चुनौतियाँ और फ्रेमवर्क। | [पाठ](1-Introduction/02-ethics/README.md) | [नित्या](https://twitter.com/nitya) |
+| 01 | डेटा साइंस की परिभाषा | [परिचय](1-Introduction/README.md) | डेटा विज्ञान के पीछे के मूल सिद्धांतों को जानें और यह कृत्रिम बुद्धिमत्ता, मशीन लर्निंग, और बड़े डेटा से कैसे जुड़ा है। | [पाठ](1-Introduction/01-defining-data-science/README.md) [विडियो](https://youtu.be/beZ7Mb_oz9I) | [द्मित्री](http://soshnikov.com) |
+| 02 | डेटा साइंस नैतिकता | [परिचय](1-Introduction/README.md) | डेटा नैतिकता के संकल्पनाएँ, चुनौतियाँ और ढाँचे। | [पाठ](1-Introduction/02-ethics/README.md) | [नित्य](https://twitter.com/nitya) |
| 03 | डेटा की परिभाषा | [परिचय](1-Introduction/README.md) | डेटा कैसे वर्गीकृत किया जाता है और इसके सामान्य स्रोत। | [पाठ](1-Introduction/03-defining-data/README.md) | [जैस्मिन](https://www.twitter.com/paladique) |
-| 04 | सांख्यिकी और प्रायिकता परिचय | [परिचय](1-Introduction/README.md) | डेटा को समझने के लिए प्रायिकता और सांख्यिकी की गणितीय तकनीकें। | [पाठ](1-Introduction/04-stats-and-probability/README.md) [वीडियो](https://youtu.be/Z5Zy85g4Yjw) | [दिमित्री](http://soshnikov.com) |
-| 05 | रिलेशनल डेटा के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | रिलेशनल डेटा का परिचय और SQL (जिसे “सी-क्वेल” कहा जाता है) के साथ रिलेशनल डेटा का अन्वेषण और विश्लेषण करने की मूल बातें। | [पाठ](2-Working-With-Data/05-relational-databases/README.md) | [क्रिस्टोफर](https://www.twitter.com/geektrainer) | | |
-| 06 | NoSQL डेटा के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | अप्रासंगिक डेटा का परिचय, इसके विभिन्न प्रकार और दस्तावेज़ डेटाबेस का अन्वेषण और विश्लेषण करने के मूल बातें। | [पाठ](2-Working-With-Data/06-non-relational/README.md) | [जैस्मिन](https://twitter.com/paladique)|
-| 07 | पायथन के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | डेटा अन्वेषण के लिए पायथन का उपयोग करने की मूल बातें जैसे Pandas. पायथन प्रोग्रामिंग की मूल समझ की सिफारिश की जाती है। | [पाठ](2-Working-With-Data/07-python/README.md) [वीडियो](https://youtu.be/dZjWOGbsN4Y) | [दिमित्री](http://soshnikov.com) |
-| 08 | डेटा तैयारी | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | डेटा की सफाई और रूपांतरण के लिए तकनीकों पर विषय जो गुम, गलत या अधूरा डेटा संभालने की चुनौतियों को हल करते हैं। | [पाठ](2-Working-With-Data/08-data-preparation/README.md) | [जैस्मिन](https://www.twitter.com/paladique) |
-| 09 | परिमाणों का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | Matplotlib का उपयोग कर पक्षी डेटा को विज़ुअलाइज़ करना सीखें 🦆 | [पाठ](3-Data-Visualization/09-visualization-quantities/README.md) | [जेन](https://twitter.com/jenlooper) |
-| 10 | डेटा वितरण का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | किसी अंतराल के भीतर अवलोकनों और रुझानों का विज़ुअलाइज़ेशन। | [पाठ](3-Data-Visualization/10-visualization-distributions/README.md) | [जेन](https://twitter.com/jenlooper) |
-| 11 | अनुपात का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | भिन्न और समूहित प्रतिशत का विज़ुअलाइज़ेशन। | [पाठ](3-Data-Visualization/11-visualization-proportions/README.md) | [जेन](https://twitter.com/jenlooper) |
-| 12 | संबंधों का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | डेटा सेटों और उनके वेरिएबल्स के बीच कनेक्शन और सहसंबंध का विज़ुअलाइज़ेशन। | [पाठ](3-Data-Visualization/12-visualization-relationships/README.md) | [जेन](https://twitter.com/jenlooper) |
-| 13 | सार्थक विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | प्रभावी समस्या समाधान और अंतर्दृष्टि के लिए अपने विज़ुअलाइज़ेशन को मूल्यवान बनाने के लिए तकनीकें और मार्गदर्शन। | [पाठ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [जेन](https://twitter.com/jenlooper) |
-| 14 | डेटा विज्ञान जीवन चक्र परिचय | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा विज्ञान जीवन चक्र का परिचय और डेटा प्राप्त करने व निकालने का पहला चरण। | [पाठ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [जैस्मिन](https://twitter.com/paladique) |
-| 15 | विश्लेषण | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा विज्ञान जीवन चक्र का यह चरण डेटा का विश्लेषण करने तकनीकों पर केंद्रित है। | [पाठ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [जैस्मिन](https://twitter.com/paladique) | | |
-| 16 | संचार | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | इस चरण में डेटा से मिली अंतर्दृष्टि को इस तरह प्रस्तुत करना होता है कि निर्णय निर्माताओं के लिए समझना आसान हो। | [पाठ](4-Data-Science-Lifecycle/16-communication/README.md) | [जालेन](https://twitter.com/JalenMcG) | | |
-| 17 | क्लाउड में डेटा विज्ञान | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | क्लाउड में डेटा विज्ञान और इसके लाभों का परिचय। | [पाठ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [टिफ़नी](https://twitter.com/TiffanySouterre) और [मॉड](https://twitter.com/maudstweets) |
-| 18 | क्लाउड में डेटा विज्ञान | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | लो कोड टूल्स का उपयोग कर मॉडल का प्रशिक्षण। |[पाठ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [टिफ़नी](https://twitter.com/TiffanySouterre) और [मॉड](https://twitter.com/maudstweets) |
-| 19 | क्लाउड में डेटा विज्ञान | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | Azure मशीन लर्निंग स्टूडियो के साथ मॉडल तैनात करना। | [पाठ](5-Data-Science-In-Cloud/19-Azure/README.md)| [टिफ़नी](https://twitter.com/TiffanySouterre) और [मॉड](https://twitter.com/maudstweets) |
-| 20 | डेटा विज्ञान जंगली में | [जंगली में](6-Data-Science-In-Wild/README.md) | वास्तविक दुनिया में डेटा विज्ञान संचालित परियोजनाएं। | [पाठ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [नित्या](https://twitter.com/nitya) |
+| 04 | सांख्यिकी और प्रायिकता का परिचय | [परिचय](1-Introduction/README.md) | डेटा को समझने के लिए प्रायिकता और सांख्यिकी की गणितीय तकनीकें। | [पाठ](1-Introduction/04-stats-and-probability/README.md) [विडियो](https://youtu.be/Z5Zy85g4Yjw) | [द्मित्री](http://soshnikov.com) |
+| 05 | रिलेशनल डेटा के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | रिलेशनल डेटा का परिचय और संरचित क्वेरी भाषा (SQL) के साथ डेटाबेस को एक्सप्लोर और विश्लेषण के मूल बातें। | [पाठ](2-Working-With-Data/05-relational-databases/README.md) | [क्रिस्टोफर](https://www.twitter.com/geektrainer) | | |
+| 06 | नोSQL डेटा के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | गैर-रिलेशनल डेटा का परिचय, इसके विभिन्न प्रकार और दस्तावेज़ डेटाबेस का अन्वेषण और विश्लेषण। | [पाठ](2-Working-With-Data/06-non-relational/README.md) | [जैस्मिन](https://twitter.com/paladique)|
+| 07 | पाइथन के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | पांडा जैसी लाइब्रेरीज़ के साथ डेटा अन्वेषण के लिए पाइथन का उपयोग करना। पाइथन प्रोग्रामिंग की आधारभूत समझ की सिफारिश की जाती है। | [पाठ](2-Working-With-Data/07-python/README.md) [विडियो](https://youtu.be/dZjWOGbsN4Y) | [द्मित्री](http://soshnikov.com) |
+| 08 | डेटा तैयारी | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | गायब, गलत या अपूर्ण डेटा से निपटने के लिए डेटा की सफाई और रूपांतरण की तकनीकें। | [पाठ](2-Working-With-Data/08-data-preparation/README.md) | [जैस्मिन](https://www.twitter.com/paladique) |
+| 09 | मात्राओं का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | मैटलैब का उपयोग करके पक्षी डेटा का विज़ुअलाइज़ेशन सीखें 🦆 | [पाठ](3-Data-Visualization/09-visualization-quantities/README.md) | [जेन](https://twitter.com/jenlooper) |
+| 10 | डेटा के वितरण का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | एक अंतराल के भीतर अवलोकनों और रुझानों का विज़ुअलाइज़ेशन। | [पाठ](3-Data-Visualization/10-visualization-distributions/README.md) | [जेन](https://twitter.com/jenlooper) |
+| 11 | अनुपातों का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | भिन्न और समूहबद्ध प्रतिशत का विज़ुअलाइज़ेशन। | [पाठ](3-Data-Visualization/11-visualization-proportions/README.md) | [जेन](https://twitter.com/jenlooper) |
+| 12 | संबंधों का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | डेटा सेट और उनके वेरिएबल्स के बीच कनेक्शन और सहसंबंध का विज़ुअलाइज़ेशन। | [पाठ](3-Data-Visualization/12-visualization-relationships/README.md) | [जेन](https://twitter.com/jenlooper) |
+| 13 | अर्थपूर्ण विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | आपकी विज़ुअलाइज़ेशन को प्रभावी समस्या समाधान और अंतर्दृष्टि के लिए मूल्यवान बनाने की तकनीकें और मार्गदर्शन। | [पाठ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [जेन](https://twitter.com/jenlooper) |
+| 14 | डेटा साइंस जीवनचक्र का परिचय | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइंस जीवनचक्र का परिचय और पहला चरण डेटा अधिग्रहण और निष्कर्षण। | [पाठ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [जैस्मिन](https://twitter.com/paladique) |
+| 15 | विश्लेषण करना | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइंस जीवनचक्र का यह चरण डेटा का विश्लेषण करने की तकनीकों पर केंद्रित है। | [पाठ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [जैस्मिन](https://twitter.com/paladique) | | |
+| 16 | संचार | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा के निष्कर्षों को इस तरह प्रस्तुत करना ताकि निर्णय लेने वालों के लिए समझना आसान हो। | [पाठ](4-Data-Science-Lifecycle/16-communication/README.md) | [जालेन](https://twitter.com/JalenMcG) | | |
+| 17 | क्लाउड में डेटा साइंस | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | क्लाउड में डेटा साइंस और इसके लाभों का परिचय। | [पाठ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [टिफ़नी](https://twitter.com/TiffanySouterre) और [मौड](https://twitter.com/maudstweets) |
+| 18 | क्लाउड में डेटा साइंस | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | लो कोड टूल्स का उपयोग कर मॉडल प्रशिक्षण। |[पाठ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [टिफ़नी](https://twitter.com/TiffanySouterre) और [मौड](https://twitter.com/maudstweets) |
+| 19 | क्लाउड में डेटा साइंस | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | Azure मशीन लर्निंग स्टूडियो के साथ मॉडल तैनात करना। | [पाठ](5-Data-Science-In-Cloud/19-Azure/README.md)| [टिफ़नी](https://twitter.com/TiffanySouterre) और [मौड](https://twitter.com/maudstweets) |
+| 20 | वाइल्ड में डेटा साइंस | [वाइल्ड में](6-Data-Science-In-Wild/README.md) | वास्तविक दुनिया में डेटा साइंस संचालित परियोजनाएं। | [पाठ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [नित्य](https://twitter.com/nitya) |
## GitHub Codespaces
-इस नमूने को एक Codespace में खोलने के लिए ये कदम अपनाएं:
+इस नमूने को Codespace में खोलने के लिए ये कदम उठाएं:
1. कोड ड्रॉप-डाउन मेनू पर क्लिक करें और Open with Codespaces विकल्प चुनें।
-2. पैन के नीचे + New codespace चुनें।
-अधिक जानकारी के लिए, [GitHub डाक्यूमेंटेशन](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) देखें।
+2. पैनल के नीचे + New codespace चुनें।
+अधिक जानकारी के लिए, [GitHub दस्तावेज़ीकरण](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) देखें।
## VSCode Remote - Containers
-अपनी स्थानीय मशीन और VSCode का उपयोग करके इस रिपॉजिटरी को कंटेनर में खोलने के लिए ये कदम अपनाएं, VS Code Remote - Containers एक्सटेंशन के साथ:
+VSCode Remote - Containers एक्सटेंशन का उपयोग करके अपने स्थानीय मशीन पर कंटेनर में इस रिपॉजिटरी को खोलने के लिए निम्नलिखित करें:
-1. यदि यह आपका पहला बार है जब आप विकास कंटेनर का उपयोग कर रहे हैं, तो कृपया सुनिश्चित करें कि आपकी सिस्टम प्री-रिक्विसिट्स को पूरा करती है (जैसे Docker इंस्टॉल हो) [शुरुआत करने की डाक्यूमेंटेशन](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) में।
+1. यदि यह आपका पहला बार है कंटेनर विकास का उपयोग करने का, तो कृपया सुनिश्चित करें कि आपकी प्रणाली आवश्यक शर्तें (जैसे Docker स्थापित है) पूरी करती है [प्रारंभिक दस्तावेज़](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) में।
इस रिपॉजिटरी का उपयोग करने के लिए, आप या तो रिपॉजिटरी को एक अलग Docker वॉल्यूम में खोल सकते हैं:
-**नोट**: यह वास्तव में Remote-Containers: **Clone Repository in Container Volume...** कमांड का उपयोग करेगा ताकि स्रोत कोड लोकल फाइल सिस्टम में न बल्कि Docker वॉल्यूम में क्लोन हो। [वॉल्यूम](https://docs.docker.com/storage/volumes/) कंटेनर डेटा को सुरक्षित रखने के लिए प्राथमिक तरीका हैं।
+**ध्यान दें**: इसके अंतर्गत, Remote-Containers: **Clone Repository in Container Volume...** कमांड का उपयोग करके सोर्स कोड को लोकल फाइल सिस्टम के बजाय Docker वॉल्यूम में क्लोन किया जाएगा। [वॉल्यूम](https://docs.docker.com/storage/volumes/) कंटेनर डेटा को बनाए रखने के लिए प्राथमिक उपाय हैं।
-या रिपॉजिटरी की स्थानीय रूप से क्लोन की हुई या डाउनलोड की हुई कॉपी खोलें:
+या एक स्थानीय क्लोन की गई या डाउनलोड की गई प्रति खोलें:
-- इस रिपॉजिटरी को अपनी स्थानीय फ़ाइल प्रणाली में क्लोन करें।
-- F1 दबाएँ और **Remote-Containers: Open Folder in Container...** कमांड चुनें।
-- इस फ़ोल्डर की क्लोन की गई कॉपी चुनें, कंटेनर शुरू होने तक प्रतीक्षा करें, और प्रयोग करें।
+- इस रिपॉजिटरी को अपनी स्थानीय फाइल सिस्टम पर क्लोन करें।
+- F1 दबाएं और **Remote-Containers: Open Folder in Container...** कमांड चुनें।
+- इस फोल्डर की क्लोन की गई प्रति चुनें, कंटेनर के शुरू होने तक प्रतीक्षा करें, और प्रयोग करें।
-## ऑफ़लाइन पहुँच
+## ऑफ़लाइन एक्सेस
-आप इस दस्तावेज़ को ऑफ़लाइन [Docsify](https://docsify.js.org/#/) का उपयोग करके चला सकते हैं। इस रिपॉजिटरी को फोर्क करें, अपनी स्थानीय मशीन पर [Docsify इंस्टॉल करें](https://docsify.js.org/#/quickstart), फिर इस रिपॉजिटरी के रूट फ़ोल्डर में `docsify serve` टाइप करें। वेबसाइट आपके लोकलहोस्ट के पोर्ट 3000 पर सेवा प्रदत्त होगी: `localhost:3000`.
+आप इस प्रलेखन को ऑफ़लाइन [Docsify](https://docsify.js.org/#/) का उपयोग करके चला सकते हैं। इस रिपॉजिटरी को फोर्क करें, अपने स्थानीय मशीन पर [Docsify इंस्टॉल करें](https://docsify.js.org/#/quickstart), फिर इस रिपॉजिटरी के रूट फ़ोल्डर में `docsify serve` टाइप करें। वेबसाइट स्थानीयहोस्ट पर पोर्ट 3000 पर सर्व की जाएगी: `localhost:3000`.
-> ध्यान दें, नोटबुक Docsify के माध्यम से प्रस्तुत नहीं होंगे, इसलिए जब आपको नोटबुक चलाने की आवश्यकता हो, तो उसे अलग से VS Code में Python कर्नेल चलाकर करें।
+> ध्यान दें, नोटबुक Docsify द्वारा रेंडर नहीं होंगे, इसलिए जब आपको कोई नोटबुक चलानी हो, तो वह अलग से VS Code में पाइथन कर्नेल के साथ करें।
## अन्य पाठ्यक्रम
@@ -204,7 +195,7 @@ Microsoft में Azure क्लाउड एडवोकेट्स एक
### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchain4j-for-beginners)
[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
@@ -217,7 +208,7 @@ Microsoft में Azure क्लाउड एडवोकेट्स एक
---
-### जनरेटिव AI श्रृंखला
+### जेनरेटिव AI सीरीज़
[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
@@ -225,7 +216,7 @@ Microsoft में Azure क्लाउड एडवोकेट्स एक
---
-### कोर शिक्षण
+### कोर लर्निंग
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
@@ -236,7 +227,7 @@ Microsoft में Azure क्लाउड एडवोकेट्स एक
---
-### कोपिलट श्रृंखला
+### कॉपिलट सीरीज़
[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
@@ -244,13 +235,13 @@ Microsoft में Azure क्लाउड एडवोकेट्स एक
## सहायता प्राप्त करना
-**समस्याओं का सामना कर रहे हैं?** सामान्य समस्याओं के समाधान के लिए हमारी [समस्या निवारण गाइड](TROUBLESHOOTING.md) देखें।
+**समस्याओं का सामना कर रहे हैं?** सामान्य समस्याओं के समाधान के लिए हमारी [ट्रबलशूटिंग गाइड](TROUBLESHOOTING.md) देखें।
-यदि आप अटक गए हैं या AI ऐप बनाने के बारे में कोई प्रश्न है, तो MCP पर चर्चा में सीखने वालों और अनुभवी डेवलपर्स से जुड़ें। यह एक सहायक समुदाय है जहाँ प्रश्न स्वागत योग्य हैं और ज्ञान स्वतंत्र रूप से साझा किया जाता है।
+यदि आप अटक जाते हैं या AI ऐप्स बनाने के बारे में कोई प्रश्न है। MCP के बारे में चर्चा में अन्य सीखने वालों और अनुभवी डेवलपर्स के साथ शामिल हों। यह एक सहायक समुदाय है जहाँ प्रश्न स्वागत योग्य होते हैं और ज्ञान स्वतंत्र रूप से साझा किया जाता है।
[](https://discord.gg/nTYy5BXMWG)
-यदि आपके पास उत्पाद प्रतिक्रिया है या निर्माण के दौरान त्रुटियाँ हैं, तो यहाँ जाएँ:
+यदि आपके पास उत्पाद प्रतिक्रिया या निर्माण के दौरान त्रुटियाँ हैं तो यहां जाएँ:
[](https://aka.ms/foundry/forum)
@@ -258,5 +249,5 @@ Microsoft में Azure क्लाउड एडवोकेट्स एक
**अस्वीकरण**:
-यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियाँ या असमानताएँ हो सकती हैं। मूल दस्तावेज़ अपनी मूल भाषा में ही प्राधिकृत स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या ग़लत व्याख्या के लिए हम जिम्मेदार नहीं हैं।
+यह दस्तावेज़ एआई अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान रखें कि स्वचालित अनुवाद में त्रुटियाँ या असामयिकताएँ हो सकती हैं। मूल दस्तावेज़ अपनी मूल भाषा में प्रमाणित स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम जिम्मेदार नहीं हैं।
\ No newline at end of file
diff --git a/translations/hi/SECURITY.md b/translations/hi/SECURITY.md
index 44780fb5..e9e32924 100644
--- a/translations/hi/SECURITY.md
+++ b/translations/hi/SECURITY.md
@@ -1,12 +1,3 @@
-
## सुरक्षा
Microsoft हमारे सॉफ़्टवेयर उत्पादों और सेवाओं की सुरक्षा को गंभीरता से लेता है, जिसमें हमारे GitHub संगठनों के माध्यम से प्रबंधित सभी स्रोत कोड रिपॉजिटरी शामिल हैं, जैसे [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), और [हमारे GitHub संगठन](https://opensource.microsoft.com/)।
diff --git a/translations/hi/SUPPORT.md b/translations/hi/SUPPORT.md
index 1a2f3a50..79ba7c68 100644
--- a/translations/hi/SUPPORT.md
+++ b/translations/hi/SUPPORT.md
@@ -1,12 +1,3 @@
-
# समर्थन
## समस्याएँ दर्ज करने और सहायता प्राप्त करने का तरीका
diff --git a/translations/hi/TROUBLESHOOTING.md b/translations/hi/TROUBLESHOOTING.md
index abb5b427..d8b8787a 100644
--- a/translations/hi/TROUBLESHOOTING.md
+++ b/translations/hi/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# समस्या निवारण गाइड
यह गाइड आपको Data Science for Beginners पाठ्यक्रम के दौरान आने वाली सामान्य समस्याओं के समाधान प्रदान करता है।
diff --git a/translations/hi/USAGE.md b/translations/hi/USAGE.md
index f8044543..77ddb47e 100644
--- a/translations/hi/USAGE.md
+++ b/translations/hi/USAGE.md
@@ -1,12 +1,3 @@
-
# उपयोग गाइड
यह गाइड शुरुआती डेटा साइंस पाठ्यक्रम का उपयोग करने के उदाहरण और सामान्य कार्यप्रवाह प्रदान करता है।
diff --git a/translations/hi/docs/_sidebar.md b/translations/hi/docs/_sidebar.md
index efbcd664..74253220 100644
--- a/translations/hi/docs/_sidebar.md
+++ b/translations/hi/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- परिचय
- [डेटा साइंस की परिभाषा](../1-Introduction/01-defining-data-science/README.md)
- [डेटा साइंस के नैतिक पहलू](../1-Introduction/02-ethics/README.md)
diff --git a/translations/hi/examples/README.md b/translations/hi/examples/README.md
index c8e45f2a..24438e9f 100644
--- a/translations/hi/examples/README.md
+++ b/translations/hi/examples/README.md
@@ -1,12 +1,3 @@
-
# शुरुआती लोगों के लिए डेटा साइंस के उदाहरण
उदाहरण निर्देशिका में आपका स्वागत है! यह सरल और अच्छी तरह से टिप्पणी किए गए उदाहरणों का संग्रह आपको डेटा साइंस शुरू करने में मदद करने के लिए डिज़ाइन किया गया है, भले ही आप पूरी तरह से नए हों।
diff --git a/translations/hi/for-teachers.md b/translations/hi/for-teachers.md
index 5964aec8..231a7b27 100644
--- a/translations/hi/for-teachers.md
+++ b/translations/hi/for-teachers.md
@@ -1,12 +1,3 @@
-
## शिक्षकों के लिए
क्या आप इस पाठ्यक्रम का उपयोग अपनी कक्षा में करना चाहेंगे? कृपया इसे स्वतंत्र रूप से उपयोग करें!
diff --git a/translations/hi/quiz-app/README.md b/translations/hi/quiz-app/README.md
index e13305e0..61681d8a 100644
--- a/translations/hi/quiz-app/README.md
+++ b/translations/hi/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# क्विज़
ये क्विज़ डेटा साइंस पाठ्यक्रम के लिए प्री- और पोस्ट-लेक्चर क्विज़ हैं, जो https://aka.ms/datascience-beginners पर उपलब्ध है।
diff --git a/translations/hi/sketchnotes/README.md b/translations/hi/sketchnotes/README.md
index 8744f8ce..54b5584a 100644
--- a/translations/hi/sketchnotes/README.md
+++ b/translations/hi/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
सभी स्केच नोट्स यहां देखें!
## क्रेडिट्स
diff --git a/translations/hk/README.md b/translations/hk/README.md
deleted file mode 100644
index 25f639d9..00000000
--- a/translations/hk/README.md
+++ /dev/null
@@ -1,261 +0,0 @@
-
-# 初學者數據科學課程大綱
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
-
-
-[](https://discord.gg/nTYy5BXMWG)
-
-[](https://aka.ms/foundry/forum)
-
-微軟 Azure Cloud Advocates 很高興能提供一個長達 10 週、包含 20 課的完整數據科學課程。每個課程包含課前和課後的小測驗、完成課程的書面指示、解答方案及作業。我們的專案導向教學法讓你在實作中學習,是一種證明能讓新技能更易吸收的學習方式。
-
-**衷心感謝我們的作者:** [Jasmine Greenaway](https://www.twitter.com/paladique)、[Dmitry Soshnikov](http://soshnikov.com)、[Nitya Narasimhan](https://twitter.com/nitya)、[Jalen McGee](https://twitter.com/JalenMcG)、[Jen Looper](https://twitter.com/jenlooper)、[Maud Levy](https://twitter.com/maudstweets)、[Tiffany Souterre](https://twitter.com/TiffanySouterre)、[Christopher Harrison](https://www.twitter.com/geektrainer)。
-
-**🙏 特別感謝 🙏 我們的 [Microsoft 學生大使](https://studentambassadors.microsoft.com/) 作者、審查者及內容貢獻者,** 包括 Aaryan Arora、[Aditya Garg](https://github.com/AdityaGarg00)、[Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/)、[Ankita Singh](https://www.linkedin.com/in/ankitasingh007)、[Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/)、[Arpita Das](https://www.linkedin.com/in/arpitadas01/)、ChhailBihari Dubey、[Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor)、[Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb)、[Majd Safi](https://www.linkedin.com/in/majd-s/)、[Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/)、[Miguel Correa](https://www.linkedin.com/in/miguelmque/)、[Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119)、[Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum)、[Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/)、[Rohit Yadav](https://www.linkedin.com/in/rty2423)、Samridhi Sharma、[Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)、[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/)、[Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/)、Yogendrasingh Pawar、[Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/)、[Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-
-||
-|:---:|
-| 初學者數據科學 - _筆記速寫由 [@nitya](https://twitter.com/nitya) 製作_ |
-
-### 🌐 多語言支援
-
-#### 透過 GitHub Action 支援(自動且保持最新)
-
-
-[阿拉伯文](../ar/README.md) | [孟加拉文](../bn/README.md) | [保加利亞文](../bg/README.md) | [緬甸語](../my/README.md) | [中文 (簡體)](../zh/README.md) | [中文 (繁體, 香港)](./README.md) | [中文 (繁體, 澳門)](../mo/README.md) | [中文 (繁體, 台灣)](../tw/README.md) | [克羅地亞文](../hr/README.md) | [捷克文](../cs/README.md) | [丹麥文](../da/README.md) | [荷蘭文](../nl/README.md) | [愛沙尼亞文](../et/README.md) | [芬蘭文](../fi/README.md) | [法文](../fr/README.md) | [德文](../de/README.md) | [希臘文](../el/README.md) | [希伯來文](../he/README.md) | [印地文](../hi/README.md) | [匈牙利文](../hu/README.md) | [印尼文](../id/README.md) | [義大利文](../it/README.md) | [日文](../ja/README.md) | [卡納達語](../kn/README.md) | [韓文](../ko/README.md) | [立陶宛文](../lt/README.md) | [馬來文](../ms/README.md) | [馬拉雅拉姆語](../ml/README.md) | [馬拉地語](../mr/README.md) | [尼泊爾語](../ne/README.md) | [尼日利亞皮欽語](../pcm/README.md) | [挪威文](../no/README.md) | [波斯文 (法爾西語)](../fa/README.md) | [波蘭文](../pl/README.md) | [葡萄牙文 (巴西)](../br/README.md) | [葡萄牙文 (葡萄牙)](../pt/README.md) | [旁遮普文 (古魯穆奇)](../pa/README.md) | [羅馬尼亞文](../ro/README.md) | [俄文](../ru/README.md) | [塞爾維亞文 (西里爾字母)](../sr/README.md) | [斯洛伐克文](../sk/README.md) | [斯洛維尼亞文](../sl/README.md) | [西班牙文](../es/README.md) | [斯瓦希里語](../sw/README.md) | [瑞典文](../sv/README.md) | [他加祿語 (菲律賓語)](../tl/README.md) | [泰米爾語](../ta/README.md) | [泰盧固語](../te/README.md) | [泰文](../th/README.md) | [土耳其文](../tr/README.md) | [烏克蘭文](../uk/README.md) | [烏爾都語](../ur/README.md) | [越南文](../vi/README.md)
-
-> **偏好本地克隆?**
-
-> 本倉庫包含超過 50 種語言的翻譯,這會大幅增加下載大小。若想不包含翻譯檔案克隆,請使用 sparse checkout:
-> ```bash
-> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
-> cd Data-Science-For-Beginners
-> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
-> ```
-> 如此,你將擁有完成課程所需的一切,且下載速度更快。
-
-
-**如果你希望我們支援更多翻譯語言,請參閱 [這裡](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-
-#### 加入我們的社群
-[](https://discord.gg/nTYy5BXMWG)
-
-我們正在 Discord 舉辦 Learn with AI 系列活動,詳情及加入請見 [Learn with AI 系列](https://aka.ms/learnwithai/discord)。活動期間為 2025 年 9 月 18 日至 30 日。你將學到如何使用 GitHub Copilot 進行數據科學的技巧。
-
-
-
-# 你是學生嗎?
-
-開始使用以下資源:
-
-- [學生中心頁面](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) 此頁面包含初學者資源、學生套裝,甚至取得免費認證憑證的方法。這是一個你應該加到書籤並不時瀏覽的頁面,因為我們至少每月會更新內容。
-- [Microsoft Learn 學生大使](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) 加入全球學生大使社群,這或許是你踏入微軟的途徑。
-
-# 快速入門
-
-## 📚 文件資料
-
-- **[安裝指南](INSTALLATION.md)** — 適合初學者的逐步安裝說明
-- **[使用指南](USAGE.md)** — 範例與常見工作流程
-- **[疑難排解](TROUBLESHOOTING.md)** — 常見問題解決方案
-- **[貢獻指南](CONTRIBUTING.md)** — 如何為此專案做出貢獻
-- **[給老師的資源](for-teachers.md)** — 教學指導與教室資源
-
-## 👨🎓 學生專區
-> **完全初學者**:不熟悉數據科學?可從我們的[初學者友善範例](examples/README.md)開始!這些簡單且有充分註解的範例幫助你理解基礎,然後再投入完整課程。
-> **[學生](https://aka.ms/student-page)**:若想自己使用此課程,請 fork 全部資源,自行完成練習,先從課前測驗開始,再閱讀課程並完成剩餘活動。嘗試透過理解課程內容自行建立專案,而非直接複製解答代碼;不過這些解答代碼在每個專案導向課程的 /solutions 資料夾中可查閱。另一個方法是與朋友組成讀書會,共同學習。進階學習我們推薦 [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)。
-
-**快速開始:**
-1. 查閱[安裝指南](INSTALLATION.md),設置你的環境
-2. 參考[使用指南](USAGE.md),瞭解課程操作方式
-3. 從第一課開始,依序完成
-4. 加入我們的[Discord 社群](https://aka.ms/ds4beginners/discord)尋求支援
-
-## 👩🏫 老師專區
-
-> **老師們**:我們提供了[使用建議](for-teachers.md)參考。期待你在[討論論壇](https://github.com/microsoft/Data-Science-For-Beginners/discussions)分享回饋!
-
-## 認識團隊
-[](https://youtu.be/8mzavjQSMM4 "Promo video")
-
-**動圖作者** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-
-> 🎥 點擊上方圖片觀看關於此專案及創作者的影片!
-
-## 教學法
-
-我們在建立此課程時選擇了兩個教學原則:確保課程以專案為基礎並包含頻繁的測驗。完成此系列後,學生將學習到資料科學的基本原理,包括倫理概念、資料準備、不同的資料處理方式、資料視覺化、資料分析、資料科學的實際應用案例等。
-
-此外,課前的低壓力測驗能設定學生學習主題的意向,課後的第二次測驗則確保學習的鞏固。此課程設計靈活且有趣,可以完整或部分學習。專案從簡單開始,並在十週週期結束時變得越來越複雜。
-
-> 查看我們的 [行為守則](CODE_OF_CONDUCT.md)、[貢獻指南](CONTRIBUTING.md)、[翻譯指南](TRANSLATIONS.md)。歡迎您提供建設性回饋!
-
-## 每堂課包括:
-
-- 非必需的草圖筆記
-- 非必需的補充影片
-- 課前熱身測驗
-- 書面課程內容
-- 專案課程附帶專案建立的逐步指南
-- 知識檢查
-- 挑戰任務
-- 補充閱讀資料
-- 作業
-- [課後測驗](https://ff-quizzes.netlify.app/en/)
-
-> **關於測驗的說明**:全部測驗都包含在 Quiz-App 資料夾中,共有 40 個測驗,每個測驗三個問題。測驗在課程內有連結,但該測驗應用程式可在本地執行或部署到 Azure;請依照 `quiz-app` 資料夾內的說明操作。測驗正在逐步在地化。
-
-## 🎓 初學者友善範例
-
-**資料科學新手?** 我們創建了特別的[範例目錄](examples/README.md),提供簡單、註解詳盡的程式碼,助你入門:
-
-- 🌟 **Hello World** - 你的第一個資料科學程式
-- 📂 **載入資料** - 學習讀取與探索資料集
-- 📊 **簡單分析** - 計算統計數據並找出模式
-- 📈 **基礎視覺化** - 製作圖表和曲線圖
-- 🔬 **真實專案** - 從頭到尾完成工作流程
-
-每個範例都包含詳細註解,解釋每一步,適合完全沒有經驗的初學者!
-
-👉 **[從範例開始](examples/README.md)** 👈
-
-## 課程列表
-
-
-||
-|:---:|
-| 資料科學初學者路線圖 - _草圖筆記由 [@nitya](https://twitter.com/nitya) 製作_ |
-
-
-| 課程編號 | 主題 | 課程分組 | 學習目標 | 連結課程 | 作者 |
-| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | 定義資料科學 | [介紹](1-Introduction/README.md) | 了解資料科學背後的基本概念,以及它如何與人工智慧、機器學習和大數據相關。 | [課程](1-Introduction/01-defining-data-science/README.md) [影片](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | 資料科學倫理 | [介紹](1-Introduction/README.md) | 資料倫理概念、挑戰與框架。 | [課程](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | 定義資料 | [介紹](1-Introduction/README.md) | 資料如何分類及其常見來源。 | [課程](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | 統計與機率入門 | [介紹](1-Introduction/README.md) | 了解機率與統計的數學技術以理解資料。 | [課程](1-Introduction/04-stats-and-probability/README.md) [影片](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | 處理關聯式資料 | [資料處理](2-Working-With-Data/README.md) | 介紹關聯式資料,並使用結構化查詢語言(SQL,發音為“see-quell”)探究與分析關聯式資料的基礎。 | [課程](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | 處理 NoSQL 資料 | [資料處理](2-Working-With-Data/README.md) | 介紹非關聯式資料及其不同種類,並介紹探索與分析文件型資料庫的基礎。 | [課程](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | 使用 Python | [資料處理](2-Working-With-Data/README.md) | 使用 Python 進行資料探索的基礎,涵蓋 Pandas 等程式庫。建議具備基礎的 Python 程式設計知識。 | [課程](2-Working-With-Data/07-python/README.md) [影片](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | 資料準備 | [資料處理](2-Working-With-Data/README.md) | 介紹清理與轉換資料的技術,應對缺失、不準確或不完整資料的挑戰。 | [課程](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | 視覺化數量 | [資料視覺化](3-Data-Visualization/README.md) | 學習使用 Matplotlib 視覺化鳥類資料 🦆 | [課程](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | 視覺化資料分佈 | [資料視覺化](3-Data-Visualization/README.md) | 視覺化觀察值及區間內趨勢。 | [課程](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | 視覺化比例 | [資料視覺化](3-Data-Visualization/README.md) | 視覺化離散值與分組百分比。 | [課程](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | 視覺化關係 | [資料視覺化](3-Data-Visualization/README.md) | 視覺化資料集合與其變數間的連結與相關關係。 | [課程](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | 有意義的視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 製作有效解決問題並獲得洞察的視覺化技巧與指導。 | [課程](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | 資料科學生命週期入門 | [生命週期](4-Data-Science-Lifecycle/README.md) | 介紹資料科學生命週期及其第一步:取得與擷取資料。 | [課程](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | 分析階段 | [生命週期](4-Data-Science-Lifecycle/README.md) | 資料科學生命週期中專注於資料分析的階段。 | [課程](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | 溝通階段 | [生命週期](4-Data-Science-Lifecycle/README.md) | 專注於用易於決策者理解的方式呈現資料洞察的生命週期階段。 | [課程](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | 雲端資料科學 | [雲端資料](5-Data-Science-In-Cloud/README.md) | 介紹雲端資料科學及其優勢的系列課程。 | [課程](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
-| 18 | 雲端資料科學 | [雲端資料](5-Data-Science-In-Cloud/README.md) | 使用低程式碼工具訓練模型。 |[課程](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
-| 19 | 雲端資料科學 | [雲端資料](5-Data-Science-In-Cloud/README.md) | 使用 Azure Machine Learning Studio 部署模型。 | [課程](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
-| 20 | 實務資料科學 | [實務](6-Data-Science-In-Wild/README.md) | 資料科學驅動的真實世界專案。 | [課程](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
-
-## GitHub Codespaces
-
-按照以下步驟在 Codespace 中開啟此範例:
-1. 點擊 Code 下拉選單並選擇 Open with Codespaces 選項。
-2. 在面板底部點選 + New codespace。
-欲了解更多資訊,請參考 [GitHub 文件](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace)。
-
-## VSCode Remote - Containers
-按照以下步驟使用本地機器及 VSCode 的 VS Code Remote - Containers 擴充套件,在容器中開啟此專案庫:
-
-1. 如果您是第一次使用開發容器,請先確保系統符合前置需求(例如安裝 Docker),詳見[入門文件](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)。
-
-您可以選擇在獨立 Docker 卷中開啟此專案庫:
-
-**注意**:這會使用 Remote-Containers 的 **Clone Repository in Container Volume...** 命令,將原始碼克隆到 Docker 卷中,而非本機檔案系統。[卷](https://docs.docker.com/storage/volumes/)是持久化容器資料的推薦機制。
-
-或者開啟已本地克隆或下載的專案庫版本:
-
-- 將此專案庫克隆到本機檔案系統。
-- 按 F1 並選擇 **Remote-Containers: Open Folder in Container...** 命令。
-- 選擇本機克隆的資料夾,等待容器啟動後開始使用。
-
-## 離線存取
-
-您可以使用 [Docsify](https://docsify.js.org/#/) 離線運行此文件。先 Fork 此倉庫,於本機安裝 [Docsify](https://docsify.js.org/#/quickstart),接著在本專案根目錄輸入 `docsify serve`。網站將在本地主機的 3000 埠運行:`localhost:3000`。
-
-> 注意,筆記本不會被 Docsify 呈現,若需要運行筆記本,請在 VS Code 以 Python 核心單獨運行。
-
-## 其他課程
-
-我們團隊還製作其他課程!請參考:
-
-
-### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
-
----
-
-### Azure / Edge / MCP / Agents
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
-
----
-
-### 生成式 AI 系列
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
-
----
-
-### 核心學習
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
-
----
-
-### Copilot 系列
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-
-
-## 尋求協助
-
-**遇到問題?** 請查看我們的[疑難解答指南](TROUBLESHOOTING.md),了解常見問題的解決方法。
-
-如果你卡住了或對構建 AI 應用有任何疑問,歡迎加入 MCP 的學習者與經驗豐富的開發者討論社群。這是一個支持性的社區,歡迎提出問題並自由分享知識。
-
-[](https://discord.gg/nTYy5BXMWG)
-
-如果你在構建過程中有產品反饋或錯誤,請造訪:
-
-[](https://aka.ms/foundry/forum)
-
----
-
-
-**免責聲明**:
-本文件由 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。雖然我們力求準確,但請注意自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應視為權威來源。對於重要資訊,建議採用專業人工作翻譯。因使用本翻譯而產生的任何誤解或誤釋,本公司概不負責。
-
\ No newline at end of file
diff --git a/translations/hr/.co-op-translator.json b/translations/hr/.co-op-translator.json
new file mode 100644
index 00000000..31c5b4ea
--- /dev/null
+++ b/translations/hr/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:09:26+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "hr"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-30T19:32:20+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "hr"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-30T19:33:20+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "hr"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T17:03:32+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "hr"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-30T19:48:54+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "hr"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T19:28:34+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "hr"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-30T19:36:55+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "hr"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T14:14:51+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "hr"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-30T19:26:15+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "hr"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-30T19:17:47+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "hr"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T12:17:54+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "hr"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:58:42+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "hr"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T19:17:49+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "hr"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-30T18:03:55+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "hr"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T16:01:59+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "hr"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-30T18:10:15+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "hr"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T19:19:55+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "hr"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-30T18:20:54+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "hr"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-30T17:59:58+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T19:23:17+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-30T19:04:31+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T19:24:55+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-30T19:17:10+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T19:22:48+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-30T18:59:59+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:48:36+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-30T19:13:35+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T19:23:48+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-30T19:08:38+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-30T19:09:13+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-30T19:09:46+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-30T18:43:06+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-30T18:46:33+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-30T18:50:44+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-30T18:53:38+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-30T18:40:34+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-30T18:47:37+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-30T18:54:43+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "hr"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-30T18:38:47+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "hr"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:43:45+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "hr"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-30T18:30:55+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "hr"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:43:03+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "hr"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-30T18:25:13+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "hr"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:44:10+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "hr"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-30T18:37:48+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "hr"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-30T18:22:21+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "hr"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T19:16:33+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "hr"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-30T17:50:22+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "hr"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T19:14:51+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "hr"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-30T17:44:50+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "hr"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T19:17:00+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "hr"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-30T17:59:13+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "hr"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-30T17:37:18+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "hr"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:46:09+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "hr"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-30T19:56:43+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "hr"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-30T19:51:22+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "hr"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:42:38+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "hr"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-30T17:36:46+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "hr"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:41:49+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "hr"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:26:19+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "hr"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:30:27+00:00",
+ "source_file": "README.md",
+ "language_code": "hr"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-30T17:34:23+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "hr"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-30T17:33:04+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "hr"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:48:31+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "hr"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:10:43+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "hr"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-30T18:21:33+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "hr"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:08:27+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "hr"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T20:01:50+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "hr"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-30T19:49:58+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "hr"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-30T19:57:44+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "hr"
+ }
+}
\ No newline at end of file
diff --git a/translations/hr/1-Introduction/01-defining-data-science/README.md b/translations/hr/1-Introduction/01-defining-data-science/README.md
index 971c1786..740378d2 100644
--- a/translations/hr/1-Introduction/01-defining-data-science/README.md
+++ b/translations/hr/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Definiranje podatkovne znanosti
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/hr/1-Introduction/01-defining-data-science/assignment.md b/translations/hr/1-Introduction/01-defining-data-science/assignment.md
index 71f47f5f..8f141eec 100644
--- a/translations/hr/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/hr/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Zadatak: Scenariji za Data Science
U ovom prvom zadatku tražimo od vas da razmislite o nekom stvarnom procesu ili problemu u različitim domenama problema i kako ga možete poboljšati koristeći Data Science proces. Razmislite o sljedećem:
diff --git a/translations/hr/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/hr/1-Introduction/01-defining-data-science/solution/assignment.md
index 2666c05e..483de481 100644
--- a/translations/hr/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/hr/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Zadatak: Scenariji za Data Science
U ovom prvom zadatku tražimo od vas da razmislite o nekom stvarnom procesu ili problemu u različitim domenama problema i kako ga možete poboljšati koristeći Data Science proces. Razmislite o sljedećem:
diff --git a/translations/hr/1-Introduction/02-ethics/README.md b/translations/hr/1-Introduction/02-ethics/README.md
index d9e21160..be3f793a 100644
--- a/translations/hr/1-Introduction/02-ethics/README.md
+++ b/translations/hr/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Uvod u etiku podataka
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/hr/1-Introduction/02-ethics/assignment.md b/translations/hr/1-Introduction/02-ethics/assignment.md
index dc8c6cc9..871d60fb 100644
--- a/translations/hr/1-Introduction/02-ethics/assignment.md
+++ b/translations/hr/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Napišite studiju slučaja o etici podataka
## Upute
diff --git a/translations/hr/1-Introduction/03-defining-data/README.md b/translations/hr/1-Introduction/03-defining-data/README.md
index 756381a8..9f063470 100644
--- a/translations/hr/1-Introduction/03-defining-data/README.md
+++ b/translations/hr/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Definiranje Podataka
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/hr/1-Introduction/03-defining-data/assignment.md b/translations/hr/1-Introduction/03-defining-data/assignment.md
index f3faf004..861bd200 100644
--- a/translations/hr/1-Introduction/03-defining-data/assignment.md
+++ b/translations/hr/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Klasifikacija Skupova Podataka
## Upute
diff --git a/translations/hr/1-Introduction/04-stats-and-probability/README.md b/translations/hr/1-Introduction/04-stats-and-probability/README.md
index c70a75aa..68f079eb 100644
--- a/translations/hr/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/hr/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Kratki uvod u statistiku i teoriju vjerojatnosti
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Kako bismo bolje razumjeli raspodjelu podataka, korisno je govoriti o **kvartili
Grafički možemo prikazati odnos između medijana i kvartila u dijagramu zvanom **box plot**:
-
+
Ovdje također izračunavamo **međukvartilni raspon** IQR=Q3-Q1 i tzv. **outliere** - vrijednosti koje leže izvan granica [Q1-1.5*IQR, Q3+1.5*IQR].
diff --git a/translations/hr/1-Introduction/04-stats-and-probability/assignment.md b/translations/hr/1-Introduction/04-stats-and-probability/assignment.md
index 831214fb..c280583d 100644
--- a/translations/hr/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/hr/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Mala studija o dijabetesu
U ovom zadatku radit ćemo s malim skupom podataka o pacijentima s dijabetesom preuzetim s [ovdje](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/hr/1-Introduction/README.md b/translations/hr/1-Introduction/README.md
index 46ca9443..597cdf9c 100644
--- a/translations/hr/1-Introduction/README.md
+++ b/translations/hr/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Uvod u podatkovnu znanost

diff --git a/translations/hr/2-Working-With-Data/05-relational-databases/README.md b/translations/hr/2-Working-With-Data/05-relational-databases/README.md
index 120d1854..a123daf5 100644
--- a/translations/hr/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/hr/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Rad s podacima: Relacijske baze podataka
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/hr/2-Working-With-Data/05-relational-databases/assignment.md b/translations/hr/2-Working-With-Data/05-relational-databases/assignment.md
index b5b2bee0..2f91ca90 100644
--- a/translations/hr/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/hr/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Prikaz podataka o zračnim lukama
Dobili ste [bazu podataka](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) izgrađenu na [SQLite](https://sqlite.org/index.html) koja sadrži informacije o zračnim lukama. Shema baze podataka prikazana je dolje. Koristit ćete [SQLite ekstenziju](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) u [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) za prikaz informacija o zračnim lukama u različitim gradovima.
diff --git a/translations/hr/2-Working-With-Data/06-non-relational/README.md b/translations/hr/2-Working-With-Data/06-non-relational/README.md
index 1d342b9a..2a5dfb0e 100644
--- a/translations/hr/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/hr/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Rad s podacima: Nerelacijski podaci
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/hr/2-Working-With-Data/06-non-relational/assignment.md b/translations/hr/2-Working-With-Data/06-non-relational/assignment.md
index ca233ea3..33c414fd 100644
--- a/translations/hr/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/hr/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Dobit od sode
## Upute
diff --git a/translations/hr/2-Working-With-Data/07-python/README.md b/translations/hr/2-Working-With-Data/07-python/README.md
index 4149fe8a..90dc2b76 100644
--- a/translations/hr/2-Working-With-Data/07-python/README.md
+++ b/translations/hr/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Rad s Podacima: Python i Pandas Biblioteka
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/hr/2-Working-With-Data/07-python/assignment.md b/translations/hr/2-Working-With-Data/07-python/assignment.md
index e68a14ca..404c273b 100644
--- a/translations/hr/2-Working-With-Data/07-python/assignment.md
+++ b/translations/hr/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Zadatak za obradu podataka u Pythonu
U ovom zadatku tražimo od vas da razradite kod koji smo započeli razvijati u našim izazovima. Zadatak se sastoji od dva dijela:
diff --git a/translations/hr/2-Working-With-Data/08-data-preparation/README.md b/translations/hr/2-Working-With-Data/08-data-preparation/README.md
index 7ef79340..9ec65b20 100644
--- a/translations/hr/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/hr/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Rad s podacima: Priprema podataka
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/hr/2-Working-With-Data/08-data-preparation/assignment.md b/translations/hr/2-Working-With-Data/08-data-preparation/assignment.md
index 9f4ac9d0..8cbb992d 100644
--- a/translations/hr/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/hr/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Procjena podataka iz obrasca
Klijent je testirao [mali obrazac](../../../../2-Working-With-Data/08-data-preparation/index.html) za prikupljanje osnovnih podataka o svojoj bazi klijenata. Donijeli su vam svoje nalaze kako biste provjerili podatke koje su prikupili. Možete otvoriti stranicu `index.html` u pregledniku kako biste pogledali obrazac.
diff --git a/translations/hr/2-Working-With-Data/README.md b/translations/hr/2-Working-With-Data/README.md
index f26c2a07..f814eda2 100644
--- a/translations/hr/2-Working-With-Data/README.md
+++ b/translations/hr/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Rad s podacima

diff --git a/translations/hr/3-Data-Visualization/09-visualization-quantities/README.md b/translations/hr/3-Data-Visualization/09-visualization-quantities/README.md
index bb5bd7ae..8da37e08 100644
--- a/translations/hr/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/hr/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija količina
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/hr/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/hr/3-Data-Visualization/09-visualization-quantities/assignment.md
index d536e7da..f561b2da 100644
--- a/translations/hr/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/hr/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linije, Raspršenja i Stupci
## Upute
diff --git a/translations/hr/3-Data-Visualization/10-visualization-distributions/README.md b/translations/hr/3-Data-Visualization/10-visualization-distributions/README.md
index d122082b..ddccfbdc 100644
--- a/translations/hr/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/hr/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija distribucija
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/hr/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/hr/3-Data-Visualization/10-visualization-distributions/assignment.md
index 166d7251..5454c939 100644
--- a/translations/hr/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/hr/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Primijenite svoje vještine
## Upute
diff --git a/translations/hr/3-Data-Visualization/11-visualization-proportions/README.md b/translations/hr/3-Data-Visualization/11-visualization-proportions/README.md
index f885380d..064b390a 100644
--- a/translations/hr/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/hr/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija proporcija
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/hr/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/hr/3-Data-Visualization/11-visualization-proportions/assignment.md
index d548a5c2..a981b2c0 100644
--- a/translations/hr/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/hr/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Isprobajte u Excelu
## Upute
diff --git a/translations/hr/3-Data-Visualization/12-visualization-relationships/README.md b/translations/hr/3-Data-Visualization/12-visualization-relationships/README.md
index e28dbf07..edea45d7 100644
--- a/translations/hr/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/hr/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija odnosa: Sve o medu 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/hr/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/hr/3-Data-Visualization/12-visualization-relationships/assignment.md
index 48340efd..ba2d81f6 100644
--- a/translations/hr/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/hr/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Zaronite u košnicu
## Upute
diff --git a/translations/hr/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/hr/3-Data-Visualization/13-meaningful-visualizations/README.md
index 5eae75a0..d575f971 100644
--- a/translations/hr/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/hr/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Izrada Smislenih Vizualizacija
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/hr/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/hr/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 2bdaa29d..4a71f5e4 100644
--- a/translations/hr/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/hr/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Izradite vlastiti prilagođeni vizualizator
## Upute
diff --git a/translations/hr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/hr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 9fba3b18..8be87f89 100644
--- a/translations/hr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/hr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Projekt vizualizacije podataka Dangerous Liaisons
Za početak, potrebno je osigurati da imate NPM i Node instalirane na svom računalu. Instalirajte ovisnosti (npm install) i zatim pokrenite projekt lokalno (npm run serve):
diff --git a/translations/hr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/hr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index acea108e..49897baa 100644
--- a/translations/hr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/hr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Projekt vizualizacije podataka Dangerous Liaisons
Za početak, potrebno je osigurati da imate instalirane NPM i Node na svom računalu. Instalirajte ovisnosti (npm install) i zatim pokrenite projekt lokalno (npm run serve):
diff --git a/translations/hr/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/hr/3-Data-Visualization/R/09-visualization-quantities/README.md
index f4a246cc..b9a1b840 100644
--- a/translations/hr/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/hr/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija Količina
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/hr/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/hr/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 43d1e5be..800474f9 100644
--- a/translations/hr/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/hr/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linije, Raspršeni Grafovi i Stupčasti Grafovi
## Upute
diff --git a/translations/hr/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/hr/3-Data-Visualization/R/10-visualization-distributions/README.md
index 2eb2c00b..254995b5 100644
--- a/translations/hr/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/hr/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija distribucija
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/hr/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/hr/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 5bf82cee..3d3a0fa4 100644
--- a/translations/hr/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/hr/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Primijenite svoje vještine
## Upute
diff --git a/translations/hr/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/hr/3-Data-Visualization/R/11-visualization-proportions/README.md
index 5d6f8cd2..2079fb79 100644
--- a/translations/hr/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/hr/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija proporcija
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/hr/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/hr/3-Data-Visualization/R/12-visualization-relationships/README.md
index 9925d03e..a3c4e659 100644
--- a/translations/hr/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/hr/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija odnosa: Sve o medu 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/hr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/hr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 01c7f8cd..d3eb5d84 100644
--- a/translations/hr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/hr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Izrada Smislenih Vizualizacija
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/hr/3-Data-Visualization/README.md b/translations/hr/3-Data-Visualization/README.md
index 93e4914e..62dc1f07 100644
--- a/translations/hr/3-Data-Visualization/README.md
+++ b/translations/hr/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacije

diff --git a/translations/hr/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/hr/4-Data-Science-Lifecycle/14-Introduction/README.md
index 4189ec4f..f2db26d9 100644
--- a/translations/hr/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/hr/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Uvod u životni ciklus podatkovne znanosti
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/hr/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/hr/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 2f671b7b..23dd6c05 100644
--- a/translations/hr/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/hr/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Procjena skupa podataka
Klijent se obratio vašem timu za pomoć u istraživanju sezonskih potrošačkih navika taksi korisnika u New Yorku.
diff --git a/translations/hr/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/hr/4-Data-Science-Lifecycle/15-analyzing/README.md
index 5b3906c5..3880d276 100644
--- a/translations/hr/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/hr/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Životni ciklus podatkovne znanosti: Analiza
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/hr/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/hr/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 35757610..da7dfe1f 100644
--- a/translations/hr/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/hr/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Istraživanje odgovora
Ovo je nastavak [zadatka](../14-Introduction/assignment.md) iz prethodne lekcije, gdje smo ukratko pregledali skup podataka. Sada ćemo detaljnije analizirati podatke.
diff --git a/translations/hr/4-Data-Science-Lifecycle/16-communication/README.md b/translations/hr/4-Data-Science-Lifecycle/16-communication/README.md
index fe824ed7..28f9e14f 100644
--- a/translations/hr/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/hr/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Životni ciklus podatkovne znanosti: Komunikacija
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/hr/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/hr/4-Data-Science-Lifecycle/16-communication/assignment.md
index bc7f249a..74ee12bf 100644
--- a/translations/hr/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/hr/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Ispričajte priču
## Upute
diff --git a/translations/hr/4-Data-Science-Lifecycle/README.md b/translations/hr/4-Data-Science-Lifecycle/README.md
index e0b8fcbe..78d5f8b9 100644
--- a/translations/hr/4-Data-Science-Lifecycle/README.md
+++ b/translations/hr/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Životni ciklus podatkovne znanosti

diff --git a/translations/hr/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/hr/5-Data-Science-In-Cloud/17-Introduction/README.md
index 019187b9..43f745e3 100644
--- a/translations/hr/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/hr/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Uvod u podatkovnu znanost u oblaku
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/hr/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/hr/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index ff53d886..7ae1dea2 100644
--- a/translations/hr/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/hr/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Istraživanje Tržišta
## Upute
diff --git a/translations/hr/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/hr/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 032c9c3b..42722ca2 100644
--- a/translations/hr/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/hr/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Data Science u oblaku: "Low code/No code" pristup
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/hr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/hr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 369d63fd..d9cf0109 100644
--- a/translations/hr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/hr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Projekt znanosti o podacima s malo ili bez kodiranja na Azure ML
## Upute
diff --git a/translations/hr/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/hr/5-Data-Science-In-Cloud/19-Azure/README.md
index c6eeed14..59fa670d 100644
--- a/translations/hr/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/hr/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Data Science u oblaku: Put "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/hr/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/hr/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 1819fe32..1be4d6b5 100644
--- a/translations/hr/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/hr/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Projekt Data Science koristeći Azure ML SDK
## Upute
diff --git a/translations/hr/5-Data-Science-In-Cloud/README.md b/translations/hr/5-Data-Science-In-Cloud/README.md
index 20cafdc6..abe99472 100644
--- a/translations/hr/5-Data-Science-In-Cloud/README.md
+++ b/translations/hr/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Data Science u oblaku

diff --git a/translations/hr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/hr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 96d2b1f5..dce84d28 100644
--- a/translations/hr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/hr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Data Science u stvarnom svijetu
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/hr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/hr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 4198b9a1..86653d1f 100644
--- a/translations/hr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/hr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Istražite skup podataka Planetary Computer
## Upute
diff --git a/translations/hr/6-Data-Science-In-Wild/README.md b/translations/hr/6-Data-Science-In-Wild/README.md
index 69829778..862afd5e 100644
--- a/translations/hr/6-Data-Science-In-Wild/README.md
+++ b/translations/hr/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Data znanost u divljini
Primjene podatkovne znanosti u stvarnom svijetu kroz različite industrije.
diff --git a/translations/hr/AGENTS.md b/translations/hr/AGENTS.md
index 21d9e9b2..9c21a48b 100644
--- a/translations/hr/AGENTS.md
+++ b/translations/hr/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Pregled projekta
diff --git a/translations/hr/CODE_OF_CONDUCT.md b/translations/hr/CODE_OF_CONDUCT.md
index 39cc9e62..98296f54 100644
--- a/translations/hr/CODE_OF_CONDUCT.md
+++ b/translations/hr/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoftov Kodeks ponašanja za otvoreni izvor
Ovaj projekt je usvojio [Microsoftov Kodeks ponašanja za otvoreni izvor](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/hr/CONTRIBUTING.md b/translations/hr/CONTRIBUTING.md
index 7c72f426..1d565704 100644
--- a/translations/hr/CONTRIBUTING.md
+++ b/translations/hr/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Doprinos Data Science for Beginners
Hvala vam na interesu za doprinos kurikulumu Data Science for Beginners! Pozdravljamo doprinose iz zajednice.
diff --git a/translations/hr/INSTALLATION.md b/translations/hr/INSTALLATION.md
index 4cc0f102..4743e2a6 100644
--- a/translations/hr/INSTALLATION.md
+++ b/translations/hr/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Vodič za instalaciju
Ovaj vodič pomoći će vam da postavite svoje okruženje za rad s kurikulumom "Data Science for Beginners".
diff --git a/translations/hr/README.md b/translations/hr/README.md
index 963f095c..89486668 100644
--- a/translations/hr/README.md
+++ b/translations/hr/README.md
@@ -1,206 +1,197 @@
-
-# Data Science za početnike - Nastavni program
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+# Data Science za početnike - nastavni plan
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
+[](http://makeapullrequest.com)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
[](https://aka.ms/foundry/forum)
-Advokati za Azure Cloud u Microsoftu s veseljem nude 10-tjedni nastavni program s 20 lekcija potpuno o Data Science. Svaka lekcija uključuje kviz prije i nakon lekcije, pisane upute za dovršetak lekcije, rješenje i zadatak. Naša pedagoška metoda temelji se na projektima koji vam omogućuju učenje kroz izgradnju, što je dokazani način da nove vještine “začvršćuju”.
+Azure Cloud Advocates u Microsoftu s veseljem vam nude 10-tjedni, 20-lekcijski nastavni plan posvećen Data Scienceu. Svaka lekcija uključuje kviz prije i nakon lekcije, pisane upute za dovršetak lekcije, rješenje i zadatak. Naša projektno-orijentirana pedagogija omogućuje vam učenje kroz praktičan rad, što je dokazani način da nove vještine zaista uđju u upotrebu.
-**Srdačna zahvala našim autorima:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Iskrene zahvalnosti našim autorima:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Posebna zahvala 🙏 našim autorima, recenzentima i suradnicima sadržaja iz [Microsoft Student Ambassador programa](https://studentambassadors.microsoft.com/),** posebno Aaryanu Arori, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Posebna hvala 🙏 našim [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) autorima, recenzentima i suradnicima,** s posebnim isticanjem Aaryana Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Data Science Za Početnike - _Sketchnote autora [@nitya](https://twitter.com/nitya)_ |
+| Data Science za početnike - _Sketchnote autora [@nitya](https://twitter.com/nitya)_ |
### 🌐 Podrška za više jezika
-#### Podržano putem GitHub Action (Automatski i uvijek ažurno)
+#### Podržano putem GitHub Action (automatski i uvijek ažurno)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](./README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](./README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **Radije klonirati lokalno?**
+> **Preferirate klonirati lokalno?**
-> Ovaj repozitorij uključuje 50+ prijevoda na razne jezike što znatno povećava veličinu preuzimanja. Za kloniranje bez prijevoda, koristite sparse checkout:
+> Ovaj repozitorij sadrži 50+ jezičnih prijevoda što znatno povećava veličinu preuzimanja. Za kloniranje bez prijevoda, koristite sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Ovo vam daje sve što vam je potrebno za dovršetak tečaja s mnogo bržim preuzimanjem.
+> Ovo vam daje sve što vam je potrebno da dovršite tečaj s puno bržim preuzimanjem.
-**Ako želite da se podrže dodatni jezici za prijevod, oni su navedeni [ovdje](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Ako želite da se podrže dodatni jezici prijevoda, popis je dostupan [ovdje](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Pridružite se našoj zajednici
+#### Pridružite se našoj zajednici
[](https://discord.gg/nTYy5BXMWG)
-Trenutno imamo aktivan Discord serijal o učenju uz AI, saznajte više i pridružite nam se na [Learn with AI Series](https://aka.ms/learnwithai/discord) od 18. do 30. rujna 2025. Dobit ćete savjete i trikove za korištenje GitHub Copilota za Data Science.
+Imamo seriju učenja s AI na Discordu koja je u tijeku, saznajte više i pridružite nam se na [Learn with AI Series](https://aka.ms/learnwithai/discord) od 18. do 30. rujna 2025. godine. Dobit ćete savjete i trikove za korištenje GitHub Copilot za Data Science.
-
+
# Jeste li student?
-Započnite s ovim resursima:
+Započnite s sljedećim resursima:
-- [Student Hub stranica](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na ovoj stranici pronaći ćete resurse za početnike, studentske pakete, pa čak i načine kako dobiti besplatni certifikacijski vaučer. Ovo je stranica koju želite spremiti u omiljene i povremeno provjeravati jer redovito mijenjamo sadržaj.
+- [Student Hub stranica](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na ovoj stranici pronaći ćete resurse za početnike, studentske pakete i čak načine za dobivanje besplatnog certifikacijskog vaučera. Ovo je jedna stranica koju želite dodati u favorite i povremeno provjeravati jer periodično mijenjamo sadržaj, barem mjesečno.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Pridružite se globalnoj zajednici studentskih ambasadora, ovo može biti vaš put u Microsoft.
-# Početak
+# Početak rada
## 📚 Dokumentacija
-- **[Vodič za instalaciju](INSTALLATION.md)** - Korak-po-korak upute za početnike
-- **[Vodič za korištenje](USAGE.md)** - Primjeri i uobičajeni radni protokovi
-- **[Rješavanje problema](TROUBLESHOOTING.md)** - Rješenja za česte probleme
-- **[Vodič za doprinos](CONTRIBUTING.md)** - Kako doprinijeti ovom projektu
-- **[Za nastavnike](for-teachers.md)** - Upute za podučavanje i resursi za učionicu
+- **[Vodič za instalaciju](INSTALLATION.md)** - korak-po-korak upute za postavljanje za početnike
+- **[Vodič za korištenje](USAGE.md)** - primjeri i uobičajeni radni tijekovi
+- **[Rješavanje problema](TROUBLESHOOTING.md)** - rješenja za česte probleme
+- **[Vodič za doprinos](CONTRIBUTING.md)** - kako doprinijeti ovom projektu
+- **[Za nastavnike](for-teachers.md)** - smjernice i resursi za nastavu
## 👨🎓 Za studente
-> **Potpuni početnici**: Novi ste u data science? Počnite s našim [primjerima za početnike](examples/README.md)! Ovi jednostavni, dobro komentirani primjeri pomoći će vam da razumijete osnove prije nego što započnete s cijelim nastavnim programom.
-> **[Studenti](https://aka.ms/student-page)**: za samostalno korištenje ovog nastavnog programa, forkajte cijeli repozitorij i samostalno riješite vježbe, počevši s kvizom prije lekcije. Zatim pročitajte lekciju i dovršite ostale aktivnosti. Pokušajte stvarati projekte razumijevanjem lekcija, a ne kopiranjem rješenja; međutim, rješenja su dostupna u /solutions mapama unutar svake lekcije orijentirane na projekte. Druga ideja je formirati studijsku grupu s prijateljima i zajedno proći sadržaj. Za daljnje učenje preporučujemo [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Potpuni početnici**: Novi ste u data scienceu? Počnite s našim [primjerima prilagođenima početnicima](examples/README.md)! Ovi jednostavni, dobro komentirani primjeri pomoći će vam razumjeti osnove prije nego što krenete u cjeloviti nastavni plan.
+> **[Studenti](https://aka.ms/student-page)**: da biste koristili ovaj nastavni plan sami, napravite fork kompletnog repozitorija i dovršite zadatke samostalno, počevši s kvizom prije predavanja. Potom pročitajte predavanje i dovršite preostale aktivnosti. Pokušajte napraviti projekte razumijevanjem lekcija, a ne samo kopiranjem koda rješenja; ipak, taj kod dostupan je u mapama /solutions u svakoj lekciji usmjerenoj na projekte. Još jedna ideja je da se formira grupa za učenje s prijateljima i zajedno prođete sadržaj. Za daljnje učenje preporučujemo [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Brzi početak:**
-1. Pogledajte [Vodič za instalaciju](INSTALLATION.md) da postavite svoje okruženje
-2. Pregledajte [Vodič za korištenje](USAGE.md) da naučite kako raditi s nastavnim programom
+1. Provjerite [Vodič za instalaciju](INSTALLATION.md) za postavljanje okruženja
+2. Pregledajte [Vodič za korištenje](USAGE.md) da naučite kako raditi s nastavnim planom
3. Počnite s Lekcijom 1 i radite redom
4. Pridružite se našoj [Discord zajednici](https://aka.ms/ds4beginners/discord) za podršku
## 👩🏫 Za nastavnike
-> **Nastavnici**: pripremili smo [neke prijedloge](for-teachers.md) kako koristiti ovaj nastavni program. Voljeli bismo vaše povratne informacije [u našem forumu za raspravu](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
+> **Nastavnici**: uključili smo [neke prijedloge](for-teachers.md) o tome kako koristiti ovaj nastavni plan. Veselimo se vašim povratnim informacijama [u našem diskusionom forumu](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Upoznajte tim
+
[](https://youtu.be/8mzavjQSMM4 "Promo video")
-**Gif by** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+**Gif autora** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Kliknite na sliku iznad za video o projektu i ljudima koji su ga stvorili!
+> 🎥 Kliknite gornju sliku za video o projektu i ljudima koji su ga stvorili!
## Pedagogija
-Odabrali smo dva pedagoška načela prilikom izrade ovog kurikuluma: osigurati da je projektno orijentiran i da uključuje česte kvizove. Na kraju ove serije, studenti će naučiti osnovne principe znanosti o podacima, uključujući etičke koncepte, pripremu podataka, različite načine rada s podacima, vizualizaciju podataka, analizu podataka, stvarne primjere primjene znanosti o podacima i još mnogo toga.
+Odabrali smo dva pedagoška načela pri izradi ovog kurikuluma: osigurati da je projektno orijentiran i da uključuje česte kvizove. Do kraja ove serije, studenti će naučiti osnovne principe znanosti o podacima, uključujući etičke pojmove, pripremu podataka, različite načine rada s podacima, vizualizaciju podataka, analizu podataka, stvarne primjere primjene znanosti o podacima i više.
-Osim toga, kviz s malim ulozima prije nastave postavlja namjeru učenika prema učenju teme, dok kviz nakon nastave osigurava dodatno zadržavanje znanja. Ovaj kurikulum je osmišljen da bude fleksibilan i zabavan, i može se pohađati u cijelosti ili djelomično. Projekti započinju malim koracima i postaju sve složeniji do kraja desetotjednog ciklusa.
+Uz to, kviz s malim ulogom prije nastave postavlja namjeru studenta za učenje teme, dok drugi kviz nakon nastave osigurava daljnju zadržavanje znanja. Ovaj kurikulum dizajniran je da bude fleksibilan i zabavan te se može proći u cijelosti ili djelomično. Projekti počinju jednostavni i postaju sve složeniji do kraja ciklusa od 10 tjedana.
-> Pronađite naš [Kodeks ponašanja](CODE_OF_CONDUCT.md), smjernice za [Doprinos](CONTRIBUTING.md), [Prevoditelje](TRANSLATIONS.md). Dobrodošli su vaši konstruktivni prijedlozi!
+> Pronađite naše [Pravila ponašanja](CODE_OF_CONDUCT.md), upute za [Doprinos](CONTRIBUTING.md), [Prevođenje](TRANSLATIONS.md). Dobrodošle su vaše konstruktivne povratne informacije!
## Svaka lekcija uključuje:
-- Opcionalnu skicu bilješke
-- Opcionalni dodatni video
+- Neobaveznu skicu
+- Neobavezni dodatni video
- Kviz za zagrijavanje prije lekcije
- Pisanu lekciju
-- Za lekcije temeljene na projektima, vodiče korak po korak kako izgraditi projekt
+- Za lekcije temeljene na projektima, korak-po-korak upute kako izraditi projekt
- Provjere znanja
- Izazov
-- Dopunsko čitanje
+- Dodatno čitanje
- Zadatak
- [Kviz nakon lekcije](https://ff-quizzes.netlify.app/en/)
-> **Napomena o kvizovima**: Svi kvizovi nalaze se u mapi Quiz-App, ukupno 40 kvizova od po tri pitanja. Povezani su unutar lekcija, ali quiz aplikaciju možete pokrenuti lokalno ili je implementirati u Azure; pratite upute u mapi `quiz-app`. Postupno se prevode.
+> **Napomena o kvizovima**: Svi kvizovi nalaze se u mapi Quiz-App, ukupno 40 kvizova s po tri pitanja. Povezani su iz lekcija, ali se aplikacija za kviz može pokrenuti lokalno ili implementirati na Azure; slijedite upute u mapi `quiz-app`. Postupno se lokaliziraju.
-## 🎓 Primjerci prilagođeni početnicima
+## 🎓 Primjeri prilagođeni početnicima
-**Novi ste u znanosti o podacima?** Stvorili smo posebni [direktorij primjera](examples/README.md) s jednostavnim, dobro komentiranim kodom koji će vam pomoći da započnete:
+**Novi u znanosti o podacima?** Stvorili smo poseban [direktorij primjera](examples/README.md) s jednostavnim, dobro komentiranim kodom kako bismo vam pomogli da započnete:
-- 🌟 **Hello World** - Vaš prvi programski projekt o znanosti o podacima
+- 🌟 **Hello World** - Vaš prvi program iz znanosti o podacima
- 📂 **Učitavanje podataka** - Naučite čitati i istraživati skupove podataka
- 📊 **Jednostavna analiza** - Izračunajte statistike i pronađite obrasce
-- 📈 **Osnovna vizualizacija** - Kreirajte grafikone i dijagrame
-- 🔬 **Stvarni projekt** - Potpuni tijek rada od početka do kraja
+- 📈 **Osnovna vizualizacija** - Izradite grafikone i dijagrame
+- 🔬 **Projekt iz stvarnog svijeta** - Cjelokupan tijek rada od početka do kraja
-Svaki primjer uključuje detaljne komentare koji objašnjavaju svaki korak, što ih čini savršenim za apsolutne početnike!
+Svaki primjer uključuje detaljne komentare koji objašnjavaju svaki korak, što ga čini savršenim za apsolutne početnike!
👉 **[Započnite s primjerima](examples/README.md)** 👈
## Lekcije
-||
+||
|:---:|
-| Data Science For Beginners: Karta puta - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
+| Data Science For Beginners: Roadmap - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
-| Broj lekcije | Tema | Grupa lekcija | Ciljevi učenja | Povezana lekcija | Autor |
+| Broj lekcije | Tema | Grupa lekcije | Ciljevi učenja | Povezana lekcija | Autor |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Definiranje znanosti o podacima | [Uvod](1-Introduction/README.md) | Naučite osnovne koncepte znanosti o podacima i kako su povezani s umjetnom inteligencijom, strojnim učenjem i velikim podacima. | [lekcija](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Etika u znanosti o podacima | [Uvod](1-Introduction/README.md) | Pojmovi etike u podacima, izazovi i okviri. | [lekcija](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | Definiranje znanosti o podacima | [Uvod](1-Introduction/README.md) | Naučite osnovne pojmove iza znanosti o podacima i kako je povezana s umjetnom inteligencijom, strojnim učenjem i velikim podacima. | [lekcija](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Etika u znanosti o podacima | [Uvod](1-Introduction/README.md) | Pojmovi, izazovi i okviri etike u podacima. | [lekcija](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definiranje podataka | [Uvod](1-Introduction/README.md) | Kako se podaci klasificiraju i njihovi uobičajeni izvori. | [lekcija](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Uvod u statistiku i vjerojatnost | [Uvod](1-Introduction/README.md) | Matematičke tehnike vjerojatnosti i statistike za razumijevanje podataka. | [lekcija](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Rad s relacijskim podacima | [Rad s podacima](2-Working-With-Data/README.md) | Uvod u relacijske podatke i osnovne načine istraživanja i analize relacijskih podataka pomoću strukturiranog upitnog jezika poznatog kao SQL (izgovara se "es-kju-el"). | [lekcija](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Rad s NoSQL podacima | [Rad s podacima](2-Working-With-Data/README.md) | Uvod u nerelacijske podatke, njihove različite tipove i osnovne načine istraživanja i analize dokumenata unutar baza podataka. | [lekcija](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Rad s Pythonom | [Rad s podacima](2-Working-With-Data/README.md) | Osnove korištenja Pythona za istraživanje podataka pomoću biblioteka poput Pandas. Preporučuje se osnovno poznavanje programiranja u Pythonu. | [lekcija](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Priprema podataka | [Rad s podacima](2-Working-With-Data/README.md) | Tehnike čišćenja i transformacije podataka za rješavanje izazova poput nedostajućih, netočnih ili nepotpunih podataka. | [lekcija](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 05 | Rad s relacijskim podacima | [Rad s podacima](2-Working-With-Data/README.md) | Uvod u relacijske podatke i osnove istraživanja i analize relacijskih podataka pomoću Strukturiranog upitnog jezika, poznatog kao SQL (izgovara se "es-kju-el"). | [lekcija](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Rad s NoSQL podacima | [Rad s podacima](2-Working-With-Data/README.md) | Uvod u nerelacijske podatke, njihove različite vrste i osnove istraživanja i analize baza podataka dokumenata. | [lekcija](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Rad s Pythonom | [Rad s podacima](2-Working-With-Data/README.md) | Osnove korištenja Pythona za istraživanje podataka s bibliotekama poput Pandas. Preporuča se temeljno razumijevanje programiranja u Pythonu. | [lekcija](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Priprema podataka | [Rad s podacima](2-Working-With-Data/README.md) | Tema o tehnikama čišćenja i transformacije podataka za rješavanje izazova nepotpunih, netočnih ili manjkavih podataka. | [lekcija](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Vizualizacija količina | [Vizualizacija podataka](3-Data-Visualization/README.md) | Naučite kako koristiti Matplotlib za vizualizaciju podataka o pticama 🦆 | [lekcija](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Vizualizacija distribucije podataka | [Vizualizacija podataka](3-Data-Visualization/README.md) | Vizualizacija opažanja i trendova unutar intervala. | [lekcija](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Vizualizacija proporcija | [Vizualizacija podataka](3-Data-Visualization/README.md) | Vizualizacija diskretnih i grupiranih postotaka. | [lekcija](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Vizualizacija odnosa | [Vizualizacija podataka](3-Data-Visualization/README.md) | Vizualizacija povezanosti i korelacija između skupina podataka i njihovih varijabli. | [lekcija](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Smislene vizualizacije | [Vizualizacija podataka](3-Data-Visualization/README.md) | Tehnike i smjernice za izradu vrijednih vizualizacija za učinkovito rješavanje problema i dobivanje uvida. | [lekcija](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Uvod u životni ciklus znanosti o podacima | [Životni ciklus](4-Data-Science-Lifecycle/README.md) | Uvod u životni ciklus znanosti o podacima i njegov prvi korak - prikupljanje i izdvajanje podataka. | [lekcija](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analiza | [Životni ciklus](4-Data-Science-Lifecycle/README.md) | Ova faza životnog ciklusa usredotočuje se na tehnike za analizu podataka. | [lekcija](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Komunikacija | [Životni ciklus](4-Data-Science-Lifecycle/README.md) | Ova faza životnog ciklusa usredotočuje se na predstavljanje uvida iz podataka na način koji olakšava donošenje odluka. | [lekcija](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Znanost o podacima u oblaku | [Oblak podataka](5-Data-Science-In-Cloud/README.md) | Ova serija lekcija uvodi znanost o podacima u oblaku i njene prednosti. | [lekcija](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
-| 18 | Znanost o podacima u oblaku | [Oblak podataka](5-Data-Science-In-Cloud/README.md) | Treniranje modela pomoću Low Code alata. |[lekcija](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
-| 19 | Znanost o podacima u oblaku | [Oblak podataka](5-Data-Science-In-Cloud/README.md) | Implementacija modela s Azure Machine Learning Studio. | [lekcija](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
-| 20 | Znanost o podacima u prirodi | [U prirodi](6-Data-Science-In-Wild/README.md) | Projekti u stvarnom svijetu vođeni znanošću o podacima. | [lekcija](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 11 | Vizualizacija omjera | [Vizualizacija podataka](3-Data-Visualization/README.md) | Vizualizacija diskretnih i grupiranih postotaka. | [lekcija](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Vizualizacija odnosa | [Vizualizacija podataka](3-Data-Visualization/README.md) | Vizualizacija veza i korelacija između skupova podataka i njihovih varijabli. | [lekcija](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Smislene vizualizacije | [Vizualizacija podataka](3-Data-Visualization/README.md) | Tehnike i smjernice za vrijedne vizualizacije za učinkovito rješavanje problema i uvide. | [lekcija](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Uvod u životni ciklus znanosti o podacima | [Životni ciklus](4-Data-Science-Lifecycle/README.md) | Uvod u životni ciklus znanosti o podacima i njegov prvi korak – prikupljanje i izdvajanje podataka. | [lekcija](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Analiza | [Životni ciklus](4-Data-Science-Lifecycle/README.md) | Ova faza životnog ciklusa znanosti o podacima fokusira se na tehnike analize podataka. | [lekcija](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Komunikacija | [Životni ciklus](4-Data-Science-Lifecycle/README.md) | Ova faza životnog ciklusa znanosti o podacima fokusira se na predstavljanje uvida iz podataka na način koji olakšava razumijevanje donosiocima odluka. | [lekcija](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Znanost o podacima u oblaku | [Podaci u oblaku](5-Data-Science-In-Cloud/README.md) | Ova serija lekcija uvodi znanost o podacima u oblaku i njezine prednosti. | [lekcija](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
+| 18 | Znanost o podacima u oblaku | [Podaci u oblaku](5-Data-Science-In-Cloud/README.md) | Treniranje modela pomoću Low Code alata. |[lekcija](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
+| 19 | Znanost o podacima u oblaku | [Podaci u oblaku](5-Data-Science-In-Cloud/README.md) | Postavljanje modela pomoću Azure Machine Learning Studio. | [lekcija](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
+| 20 | Znanost o podacima u stvarnom svijetu | [U stvarnom svijetu](6-Data-Science-In-Wild/README.md) | Projekti iz stvarnog svijeta vođeni znanošću o podacima. | [lekcija](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Slijedite ove korake za otvaranje ovog primjera u Codespace-u:
-1. Kliknite na padajući izbornik Code i odaberite opciju Open with Codespaces.
+Slijedite ove korake za otvaranje ovog primjera u Codespaceu:
+1. Kliknite izbornik Code i odaberite opciju Open with Codespaces.
2. Odaberite + New codespace na dnu panela.
Za više informacija pogledajte [GitHub dokumentaciju](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Slijedite ove korake za otvaranje ovog repozitorija u kontejneru koristeći vašu lokalnu mašinu i VSCode s ekstenzijom VS Code Remote - Containers:
+Slijedite ove korake za otvaranje ovog spremišta u kontejneru koristeći svoje lokalno računalo i VSCode koristeći ekstenziju VS Code Remote - Containers:
-1. Ako prvi put koristite razvojni kontejner, provjerite zadovoljava li vaš sustav preduvjete (npr. instaliran Docker) u [dokumentaciji za početak](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Ako ovo prvi put koristite razvojni kontejner, molimo osigurajte da vaš sustav ispunjava preduvjete (npr. da imate instaliran Docker) u [dokumentaciji za početak](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Za korištenje ovog repozitorija možete otvoriti repozitorij u izoliranom Docker volumenu:
+Da biste koristili ovo spremište, možete otvoriti spremište u izoliranom Docker volumenu:
-**Napomena**: Iza kulisa, koristi se naredba Remote-Containers: **Clone Repository in Container Volume...** za kloniranje izvornog koda u Docker volumen umjesto lokalnog datotečnog sustava. [Volumeni](https://docs.docker.com/storage/volumes/) su preporučeni mehanizam za trajno spremanje podataka unutar kontejnera.
+**Napomena**: Ispod haube, ovo će koristiti Remote-Containers: **Clone Repository in Container Volume...** naredbu za kloniranje izvornih kodova u Docker volumen umjesto lokalnog file sustava. [Volumeni](https://docs.docker.com/storage/volumes/) su preporučeni mehanizam za trajno pohranjivanje podataka kontejnera.
-Ili otvorite lokalno kloniranu ili preuzetu verziju repozitorija:
+Ili otvorite lokalno kloniranu ili preuzetu verziju spremišta:
-- Klonirajte ovaj repozitorij na lokalni datotečni sustav.
+- Klonirajte ovo spremište na svoj lokalni file sustav.
- Pritisnite F1 i odaberite naredbu **Remote-Containers: Open Folder in Container...**.
-- Odaberite kloniranu kopiju ove mape, pričekajte da se kontejner pokrene i isprobajte.
+- Odaberite kloniranu kopiju ove mape, pričekajte da kontejner počne te isprobajte.
-## Pristup bez mreže
+## Pristup bez interneta
-Možete pokretati ovu dokumentaciju izvan mreže koristeći [Docsify](https://docsify.js.org/#/). Razgranajte ovaj repozitorij, [instalirajte Docsify](https://docsify.js.org/#/quickstart) na lokalnoj mašini, zatim u korijenskoj mapi ovog repozitorija upišite `docsify serve`. Web stranica bit će dostupna na portu 3000 na vašem localhostu: `localhost:3000`.
+Možete pokrenuti ovu dokumentaciju offline koristeći [Docsify](https://docsify.js.org/#/). Forkajte ovo spremište, [instalirajte Docsify](https://docsify.js.org/#/quickstart) na svoje lokalno računalo, zatim u korijenskoj mapi ovog spremišta upišite `docsify serve`. Web stranica će biti poslužena na portu 3000 na vašem localhostu: `localhost:3000`.
-> Napomena, bilježnice (notebooks) neće biti prikazane putem Docsify, stoga ih pokrenite zasebno u VS Code-u s aktiviranim Python jezgrom (kernelom).
+> Napomena, bilježnice neće biti prikazane putem Docsifyja, pa ih je potrebno pokrenuti zasebno u VS Codeu s Python jezgrom.
## Ostali kurikulumi
-Naš tim proizvodi i druge kurikulume! Pogledajte:
+Naš tim stvara i druge kurikulume! Pogledajte:
### LangChain
@@ -209,14 +200,14 @@ Naš tim proizvodi i druge kurikulume! Pogledajte:
---
-### Azure / Edge / MCP / Agent
+### Azure / Edge / MCP / Agenti
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-
+
### Serija Generativne AI
[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
@@ -224,7 +215,7 @@ Naš tim proizvodi i druge kurikulume! Pogledajte:
[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
-
+
### Osnovno učenje
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
@@ -235,22 +226,22 @@ Naš tim proizvodi i druge kurikulume! Pogledajte:
[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-
+
### Serija Copilot
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Dobivanje pomoći
-**Imate problema?** Pogledajte naš [Vodič za rješavanje problema](TROUBLESHOOTING.md) za rješenja čestih problema.
+**Imate problema?** Pogledajte naš [Vodič za rješavanje problema](TROUBLESHOOTING.md) za rješenja uobičajenih problema.
-Ako zapnete ili imate pitanja o izradi AI aplikacija, pridružite se drugim učenicima i iskusnim programerima u raspravama o MCP-u. To je podržavajuća zajednica u kojoj su pitanja dobrodošla, a znanje se slobodno dijeli.
+Ako zapnete ili imate pitanja o izradi AI aplikacija, pridružite se ostalim učenicima i iskusnim programerima u raspravama o MCP-u. To je podržavajuća zajednica u kojoj su pitanja dobrodošla, a znanje se slobodno dijeli.
[](https://discord.gg/nTYy5BXMWG)
-Ako imate povratne informacije o proizvodu ili naiđete na pogreške tijekom izrade, posjetite:
+Ako imate povratnu informaciju o proizvodu ili primijetite pogreške tijekom izrade, posjetite:
[](https://aka.ms/foundry/forum)
@@ -258,5 +249,5 @@ Ako imate povratne informacije o proizvodu ili naiđete na pogreške tijekom izr
**Izjava o odricanju od odgovornosti**:
-Ovaj je dokument preveden korištenjem AI usluge za prevođenje [Co-op Translator](https://github.com/Azure/co-op-translator). Iako težimo točnosti, imajte na umu da automatski prijevodi mogu sadržavati pogreške ili netočnosti. Izvorni dokument na njegovom izvornom jeziku smatra se službenim izvorom. Za kritične informacije preporučuje se profesionalni prijevod od strane ljudskog prevoditelja. Ne snosimo odgovornost za bilo kakva nesporazuma ili pogrešna tumačenja koja proizlaze iz uporabe ovog prijevoda.
+Ovaj dokument preveden je korištenjem AI prevoditeljskog servisa [Co-op Translator](https://github.com/Azure/co-op-translator). Iako težimo točnosti, imajte na umu da automatski prijevodi mogu sadržavati pogreške ili netočnosti. Izvorni dokument na izvornom jeziku treba smatrati autoritativnim izvorom. Za kritične informacije preporučuje se stručni ljudski prijevod. Nismo odgovorni za bilo kakve nesporazume ili kriva tumačenja koja proizlaze iz korištenja ovog prijevoda.
\ No newline at end of file
diff --git a/translations/hr/SECURITY.md b/translations/hr/SECURITY.md
index 8f3dfab8..9514dc1f 100644
--- a/translations/hr/SECURITY.md
+++ b/translations/hr/SECURITY.md
@@ -1,12 +1,3 @@
-
## Sigurnost
Microsoft ozbiljno pristupa sigurnosti svojih softverskih proizvoda i usluga, uključujući sve repozitorije izvornog koda kojima upravljamo putem naših GitHub organizacija, kao što su [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) i [naše GitHub organizacije](https://opensource.microsoft.com/).
diff --git a/translations/hr/SUPPORT.md b/translations/hr/SUPPORT.md
index 24601656..5be90340 100644
--- a/translations/hr/SUPPORT.md
+++ b/translations/hr/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Podrška
## Kako prijaviti probleme i dobiti pomoć
diff --git a/translations/hr/TROUBLESHOOTING.md b/translations/hr/TROUBLESHOOTING.md
index 6cc4369e..7e5b1036 100644
--- a/translations/hr/TROUBLESHOOTING.md
+++ b/translations/hr/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Vodič za rješavanje problema
Ovaj vodič pruža rješenja za uobičajene probleme na koje možete naići dok radite s kurikulumom "Data Science for Beginners".
diff --git a/translations/hr/USAGE.md b/translations/hr/USAGE.md
index f470059f..229ebe85 100644
--- a/translations/hr/USAGE.md
+++ b/translations/hr/USAGE.md
@@ -1,12 +1,3 @@
-
# Vodič za korištenje
Ovaj vodič pruža primjere i uobičajene radne procese za korištenje kurikuluma "Data Science for Beginners".
diff --git a/translations/hr/docs/_sidebar.md b/translations/hr/docs/_sidebar.md
index 27f5666f..2cfd5aa6 100644
--- a/translations/hr/docs/_sidebar.md
+++ b/translations/hr/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Uvod
- [Definiranje podatkovne znanosti](../1-Introduction/01-defining-data-science/README.md)
- [Etika podatkovne znanosti](../1-Introduction/02-ethics/README.md)
diff --git a/translations/hr/examples/README.md b/translations/hr/examples/README.md
index 617c835e..adf65753 100644
--- a/translations/hr/examples/README.md
+++ b/translations/hr/examples/README.md
@@ -1,12 +1,3 @@
-
# Primjeri za početnike u znanosti o podacima
Dobrodošli u direktorij s primjerima! Ova zbirka jednostavnih, dobro komentiranih primjera osmišljena je kako bi vam pomogla započeti sa znanošću o podacima, čak i ako ste potpuni početnik.
diff --git a/translations/hr/for-teachers.md b/translations/hr/for-teachers.md
index 7affadd4..846f621b 100644
--- a/translations/hr/for-teachers.md
+++ b/translations/hr/for-teachers.md
@@ -1,12 +1,3 @@
-
## Za edukatore
Želite li koristiti ovaj kurikulum u svojoj učionici? Slobodno ga iskoristite!
diff --git a/translations/hr/quiz-app/README.md b/translations/hr/quiz-app/README.md
index 89a957e1..cf387f21 100644
--- a/translations/hr/quiz-app/README.md
+++ b/translations/hr/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Kvizovi
Ovi kvizovi su uvodni i završni kvizovi za kurikulum znanosti o podacima na https://aka.ms/datascience-beginners
diff --git a/translations/hr/sketchnotes/README.md b/translations/hr/sketchnotes/README.md
index e876e4ad..3ae6a497 100644
--- a/translations/hr/sketchnotes/README.md
+++ b/translations/hr/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Pronađite sve sketchnoteove ovdje!
## Zasluge
diff --git a/translations/hu/.co-op-translator.json b/translations/hu/.co-op-translator.json
new file mode 100644
index 00000000..476ee6d5
--- /dev/null
+++ b/translations/hu/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:04:00+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "hu"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-26T15:24:33+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "hu"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-26T15:26:04+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "hu"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:53:07+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "hu"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-26T15:16:47+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "hu"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T17:37:52+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "hu"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-26T15:31:10+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "hu"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T14:00:01+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "hu"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-26T15:42:18+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "hu"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-26T14:59:40+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "hu"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T12:00:50+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "hu"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:57:37+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "hu"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T17:26:09+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "hu"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-26T14:57:40+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "hu"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:55:52+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "hu"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-26T14:51:17+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "hu"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T17:28:40+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "hu"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-26T14:41:31+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "hu"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-26T14:27:26+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T17:32:57+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-26T17:26:48+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T17:34:58+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-26T16:52:40+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T17:32:24+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-26T17:30:45+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:45:02+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-26T16:57:29+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T17:33:37+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-26T16:47:04+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T16:48:26+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T16:47:48+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-26T17:07:45+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-26T17:13:34+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-26T16:59:09+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-26T17:02:07+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-26T17:19:17+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-26T17:03:15+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-26T17:14:59+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "hu"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-26T16:41:01+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "hu"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:29:06+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "hu"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-26T16:27:37+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "hu"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:28:18+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "hu"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-26T16:31:21+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "hu"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:29:34+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "hu"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-26T16:40:03+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "hu"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-26T16:20:42+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "hu"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T17:23:29+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "hu"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-26T16:09:50+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "hu"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T17:22:05+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "hu"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-26T16:04:16+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "hu"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T17:24:56+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "hu"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-26T16:17:07+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "hu"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-26T15:52:48+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "hu"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:40:54+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "hu"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-26T15:51:31+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "hu"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-26T15:43:59+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "hu"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:35:23+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "hu"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-26T14:23:48+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "hu"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:28:37+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "hu"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:24:22+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "hu"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:16:48+00:00",
+ "source_file": "README.md",
+ "language_code": "hu"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-26T14:24:36+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "hu"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-26T14:21:10+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "hu"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:45:32+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "hu"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:08:16+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "hu"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-26T14:58:32+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "hu"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:06:24+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "hu"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T20:00:14+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "hu"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-26T16:18:15+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "hu"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-26T15:43:25+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "hu"
+ }
+}
\ No newline at end of file
diff --git a/translations/hu/1-Introduction/01-defining-data-science/README.md b/translations/hu/1-Introduction/01-defining-data-science/README.md
index 7bd5f722..2498c388 100644
--- a/translations/hu/1-Introduction/01-defining-data-science/README.md
+++ b/translations/hu/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Az adattudomány meghatározása
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/hu/1-Introduction/01-defining-data-science/assignment.md b/translations/hu/1-Introduction/01-defining-data-science/assignment.md
index 8962caf7..f7f85fb2 100644
--- a/translations/hu/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/hu/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Feladat: Adattudományi Forgatókönyvek
Ebben az első feladatban arra kérünk, hogy gondolj át néhány valós életbeli folyamatot vagy problémát különböző problématerületeken, és hogy hogyan tudnád ezeket javítani az adattudományi folyamat segítségével. Gondolj az alábbiakra:
diff --git a/translations/hu/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/hu/1-Introduction/01-defining-data-science/solution/assignment.md
index 4eead6f8..4bc5bcb5 100644
--- a/translations/hu/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/hu/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Feladat: Adattudományi Szenáriók
Ebben az első feladatban arra kérünk, hogy gondolj egy valós életbeli folyamatra vagy problémára különböző problématerületeken, és hogyan tudnád javítani azt az adattudományi folyamat segítségével. Gondolj az alábbiakra:
diff --git a/translations/hu/1-Introduction/02-ethics/README.md b/translations/hu/1-Introduction/02-ethics/README.md
index e8b2f1e3..cf124bf0 100644
--- a/translations/hu/1-Introduction/02-ethics/README.md
+++ b/translations/hu/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Bevezetés az adatetikába
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/hu/1-Introduction/02-ethics/assignment.md b/translations/hu/1-Introduction/02-ethics/assignment.md
index 30038e89..233d5119 100644
--- a/translations/hu/1-Introduction/02-ethics/assignment.md
+++ b/translations/hu/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Írj egy adatetikai esettanulmányt
## Útmutató
diff --git a/translations/hu/1-Introduction/03-defining-data/README.md b/translations/hu/1-Introduction/03-defining-data/README.md
index d0b29d17..0e04aee3 100644
--- a/translations/hu/1-Introduction/03-defining-data/README.md
+++ b/translations/hu/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Adatok meghatározása
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/hu/1-Introduction/03-defining-data/assignment.md b/translations/hu/1-Introduction/03-defining-data/assignment.md
index ffe3db11..617ad4ff 100644
--- a/translations/hu/1-Introduction/03-defining-data/assignment.md
+++ b/translations/hu/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Adatkészletek osztályozása
## Útmutató
diff --git a/translations/hu/1-Introduction/04-stats-and-probability/README.md b/translations/hu/1-Introduction/04-stats-and-probability/README.md
index 0ea21822..7f79cd69 100644
--- a/translations/hu/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/hu/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# A statisztika és a valószínűség rövid bemutatása
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Az adatok eloszlásának megértéséhez hasznos a **kvartilisekről** beszélni
Grafikusan a medián és a kvartilisek kapcsolatát egy **dobozdiagramon** (box plot) ábrázolhatjuk:
-
+
Itt kiszámítjuk az **interkvartilis tartományt** (IQR=Q3-Q1), valamint az úgynevezett **kiugró értékeket** - azokat az értékeket, amelyek a [Q1-1,5*IQR, Q3+1,5*IQR] határokon kívül esnek.
diff --git a/translations/hu/1-Introduction/04-stats-and-probability/assignment.md b/translations/hu/1-Introduction/04-stats-and-probability/assignment.md
index fc24ce81..03dd489e 100644
--- a/translations/hu/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/hu/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Kis Diabétesz Tanulmány
Ebben a feladatban egy kis diabéteszes betegek adatállományával fogunk dolgozni, amely innen származik: [here](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/hu/1-Introduction/README.md b/translations/hu/1-Introduction/README.md
index 3b29f56a..05b87a55 100644
--- a/translations/hu/1-Introduction/README.md
+++ b/translations/hu/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Bevezetés az adattudományba

diff --git a/translations/hu/2-Working-With-Data/05-relational-databases/README.md b/translations/hu/2-Working-With-Data/05-relational-databases/README.md
index 09ccaad2..40f14cd3 100644
--- a/translations/hu/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/hu/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Adatkezelés: Relációs adatbázisok
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/hu/2-Working-With-Data/05-relational-databases/assignment.md b/translations/hu/2-Working-With-Data/05-relational-databases/assignment.md
index 6b78fc09..79d3b740 100644
--- a/translations/hu/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/hu/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Repülőtéri adatok megjelenítése
Egy [adatbázist](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) kaptál, amelyet [SQLite](https://sqlite.org/index.html) alapokra építettek, és repülőterekről tartalmaz információkat. Az adatbázis sémája az alábbiakban látható. A [SQLite kiterjesztést](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) fogod használni a [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) programban, hogy különböző városok repülőtereiről jeleníts meg információkat.
diff --git a/translations/hu/2-Working-With-Data/06-non-relational/README.md b/translations/hu/2-Working-With-Data/06-non-relational/README.md
index 0822b50a..83011487 100644
--- a/translations/hu/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/hu/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Adatok kezelése: Nem-relációs adatok
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/hu/2-Working-With-Data/06-non-relational/assignment.md b/translations/hu/2-Working-With-Data/06-non-relational/assignment.md
index a43e97bb..0be791ff 100644
--- a/translations/hu/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/hu/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Üdítőital Nyereségek
## Útmutató
diff --git a/translations/hu/2-Working-With-Data/07-python/README.md b/translations/hu/2-Working-With-Data/07-python/README.md
index fb1bbf3b..2d78b829 100644
--- a/translations/hu/2-Working-With-Data/07-python/README.md
+++ b/translations/hu/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Adatok kezelése: Python és a Pandas könyvtár
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/hu/2-Working-With-Data/07-python/assignment.md b/translations/hu/2-Working-With-Data/07-python/assignment.md
index f8e18eac..269a8216 100644
--- a/translations/hu/2-Working-With-Data/07-python/assignment.md
+++ b/translations/hu/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Feladat Pythonban történő adatfeldolgozáshoz
Ebben a feladatban arra kérünk, hogy dolgozd ki a kódot, amelyet a kihívásaink során elkezdtünk fejleszteni. A feladat két részből áll:
diff --git a/translations/hu/2-Working-With-Data/08-data-preparation/README.md b/translations/hu/2-Working-With-Data/08-data-preparation/README.md
index 50787de9..54cc9f19 100644
--- a/translations/hu/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/hu/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Adatokkal való munka: Adatelőkészítés
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/hu/2-Working-With-Data/08-data-preparation/assignment.md b/translations/hu/2-Working-With-Data/08-data-preparation/assignment.md
index 3bc86b08..d3b125ab 100644
--- a/translations/hu/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/hu/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Adatok értékelése egy űrlapról
Egy ügyfél egy [kis űrlapot](../../../../2-Working-With-Data/08-data-preparation/index.html) tesztelt, hogy alapvető adatokat gyűjtsön ügyfélköréről. Az összegyűjtött adatokat elhozta hozzád, hogy érvényesítsd azokat. Megnyithatod az `index.html` oldalt a böngészőben, hogy megnézd az űrlapot.
diff --git a/translations/hu/2-Working-With-Data/README.md b/translations/hu/2-Working-With-Data/README.md
index 3861cef8..336b1e5b 100644
--- a/translations/hu/2-Working-With-Data/README.md
+++ b/translations/hu/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Adatokkal való munka

diff --git a/translations/hu/3-Data-Visualization/09-visualization-quantities/README.md b/translations/hu/3-Data-Visualization/09-visualization-quantities/README.md
index 554cae67..451dda7e 100644
--- a/translations/hu/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/hu/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Mennyiségek vizualizálása
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/hu/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/hu/3-Data-Visualization/09-visualization-quantities/assignment.md
index 6cb895f9..d804debf 100644
--- a/translations/hu/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/hu/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Vonalak, Szórások és Oszlopok
## Útmutató
diff --git a/translations/hu/3-Data-Visualization/10-visualization-distributions/README.md b/translations/hu/3-Data-Visualization/10-visualization-distributions/README.md
index b8797b95..9ec68b1b 100644
--- a/translations/hu/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/hu/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Az eloszlások vizualizálása
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/hu/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/hu/3-Data-Visualization/10-visualization-distributions/assignment.md
index 5a94bd5a..a3ab8ed7 100644
--- a/translations/hu/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/hu/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Alkalmazd a képességeidet
## Útmutató
diff --git a/translations/hu/3-Data-Visualization/11-visualization-proportions/README.md b/translations/hu/3-Data-Visualization/11-visualization-proportions/README.md
index b63a87ee..c8795af4 100644
--- a/translations/hu/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/hu/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Arányok vizualizálása
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/hu/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/hu/3-Data-Visualization/11-visualization-proportions/assignment.md
index 1892ef71..ddbf7795 100644
--- a/translations/hu/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/hu/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Próbáld ki az Excelben
## Útmutató
diff --git a/translations/hu/3-Data-Visualization/12-visualization-relationships/README.md b/translations/hu/3-Data-Visualization/12-visualization-relationships/README.md
index 3a034088..1c3aad96 100644
--- a/translations/hu/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/hu/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Kapcsolatok vizualizálása: Minden a mézről 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/hu/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/hu/3-Data-Visualization/12-visualization-relationships/assignment.md
index 60f086fd..ab1be8c1 100644
--- a/translations/hu/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/hu/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Merülj el a méhkasban
## Útmutató
diff --git a/translations/hu/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/hu/3-Data-Visualization/13-meaningful-visualizations/README.md
index c871e88b..eb31de92 100644
--- a/translations/hu/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/hu/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Jelentőségteljes vizualizációk készítése
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/hu/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/hu/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 19dde006..12f0a4fd 100644
--- a/translations/hu/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/hu/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Készítsd el saját egyedi vizualizációdat
## Útmutató
diff --git a/translations/hu/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/hu/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 5a11cfc5..293e7495 100644
--- a/translations/hu/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/hu/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Veszélyes viszonyok adatvizualizációs projekt
A kezdéshez győződj meg róla, hogy az NPM és a Node telepítve van a gépeden. Telepítsd a függőségeket (npm install), majd futtasd a projektet helyben (npm run serve):
diff --git a/translations/hu/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/hu/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index c3e00169..8323e92b 100644
--- a/translations/hu/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/hu/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Veszélyes viszonyok adatvizualizációs projekt
A kezdéshez győződj meg róla, hogy az NPM és a Node telepítve van a gépeden. Telepítsd a függőségeket (npm install), majd futtasd a projektet helyben (npm run serve):
diff --git a/translations/hu/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/hu/3-Data-Visualization/R/09-visualization-quantities/README.md
index 757cc2dc..c1460ac7 100644
--- a/translations/hu/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/hu/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Mennyiségek vizualizálása
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/hu/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/hu/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 6bd24c76..2a7a24f9 100644
--- a/translations/hu/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/hu/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Vonalak, Szórások és Oszlopok
## Útmutató
diff --git a/translations/hu/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/hu/3-Data-Visualization/R/10-visualization-distributions/README.md
index c8bcf498..076cd366 100644
--- a/translations/hu/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/hu/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Az eloszlások vizualizálása
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/hu/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/hu/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 726e2744..15726fbd 100644
--- a/translations/hu/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/hu/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Alkalmazd a tudásodat
## Útmutató
diff --git a/translations/hu/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/hu/3-Data-Visualization/R/11-visualization-proportions/README.md
index 74b3c2aa..5b8de4d0 100644
--- a/translations/hu/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/hu/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Arányok vizualizálása
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/hu/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/hu/3-Data-Visualization/R/12-visualization-relationships/README.md
index 15c64bec..91d1eac6 100644
--- a/translations/hu/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/hu/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Kapcsolatok vizualizálása: Minden a mézről 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/hu/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/hu/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index fb810eac..71f86894 100644
--- a/translations/hu/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/hu/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Jelentőségteljes vizualizációk készítése
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/hu/3-Data-Visualization/README.md b/translations/hu/3-Data-Visualization/README.md
index fea8bdb0..3ea7ba1b 100644
--- a/translations/hu/3-Data-Visualization/README.md
+++ b/translations/hu/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Vizualizációk

diff --git a/translations/hu/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/hu/4-Data-Science-Lifecycle/14-Introduction/README.md
index ff37f98b..a86b4ca5 100644
--- a/translations/hu/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/hu/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Bevezetés az adattudomány életciklusába
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/hu/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/hu/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 7fafc311..af6ea1ad 100644
--- a/translations/hu/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/hu/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Adatállomány értékelése
Egy ügyfél megkereste a csapatot, hogy segítsen a New York-i taxi utasok szezonális költési szokásainak vizsgálatában.
diff --git a/translations/hu/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/hu/4-Data-Science-Lifecycle/15-analyzing/README.md
index c86255c3..faf41415 100644
--- a/translations/hu/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/hu/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Az adattudomány életciklusa: Elemzés
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/hu/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/hu/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index a40d0f51..87a0a1b5 100644
--- a/translations/hu/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/hu/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Válaszok keresése
Ez a korábbi leckében található [feladat](../14-Introduction/assignment.md) folytatása, ahol röviden megvizsgáltuk az adatállományt. Most mélyebben fogjuk elemezni az adatokat.
diff --git a/translations/hu/4-Data-Science-Lifecycle/16-communication/README.md b/translations/hu/4-Data-Science-Lifecycle/16-communication/README.md
index c585039e..fb279194 100644
--- a/translations/hu/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/hu/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Adatelemzési életciklus: Kommunikáció
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/hu/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/hu/4-Data-Science-Lifecycle/16-communication/assignment.md
index d04a9e13..d731dd00 100644
--- a/translations/hu/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/hu/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Mesélj egy történetet
## Útmutató
diff --git a/translations/hu/4-Data-Science-Lifecycle/README.md b/translations/hu/4-Data-Science-Lifecycle/README.md
index 96c6d0cf..b9461390 100644
--- a/translations/hu/4-Data-Science-Lifecycle/README.md
+++ b/translations/hu/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Az Adattudomány Életciklusa

diff --git a/translations/hu/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/hu/5-Data-Science-In-Cloud/17-Introduction/README.md
index 60f716ac..0def6719 100644
--- a/translations/hu/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/hu/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Bevezetés az adatkutatásba a felhőben
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/hu/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/hu/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 847217fd..f8b9db23 100644
--- a/translations/hu/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/hu/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Piackutatás
## Útmutató
diff --git a/translations/hu/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/hu/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 11c82fc6..038337cf 100644
--- a/translations/hu/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/hu/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Adattudomány a felhőben: A "Low code/No code" megközelítés
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/hu/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/hu/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index d4f223eb..d3828d2f 100644
--- a/translations/hu/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/hu/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Low code/No code Data Science projekt az Azure ML-en
## Útmutató
diff --git a/translations/hu/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/hu/5-Data-Science-In-Cloud/19-Azure/README.md
index b0cbe2b0..fe590add 100644
--- a/translations/hu/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/hu/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Adattudomány a felhőben: Az "Azure ML SDK" módszer
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/hu/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/hu/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 51fb16be..4e379286 100644
--- a/translations/hu/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/hu/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Adattudományi projekt Azure ML SDK használatával
## Útmutató
diff --git a/translations/hu/5-Data-Science-In-Cloud/README.md b/translations/hu/5-Data-Science-In-Cloud/README.md
index 32bd32d7..a24bbb46 100644
--- a/translations/hu/5-Data-Science-In-Cloud/README.md
+++ b/translations/hu/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Adattudomány a felhőben

diff --git a/translations/hu/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/hu/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 9f2d984d..f49a8484 100644
--- a/translations/hu/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/hu/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Adattudomány a való világban
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/hu/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/hu/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index ab171e01..18b1cf5d 100644
--- a/translations/hu/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/hu/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Fedezz fel egy Planetary Computer adatállományt
## Útmutató
diff --git a/translations/hu/6-Data-Science-In-Wild/README.md b/translations/hu/6-Data-Science-In-Wild/README.md
index 0be0baa7..e720d673 100644
--- a/translations/hu/6-Data-Science-In-Wild/README.md
+++ b/translations/hu/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Adattudomány a gyakorlatban
Az adattudomány valós alkalmazásai különböző iparágakban.
diff --git a/translations/hu/AGENTS.md b/translations/hu/AGENTS.md
index c9a8a17c..e294477f 100644
--- a/translations/hu/AGENTS.md
+++ b/translations/hu/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Projekt áttekintése
diff --git a/translations/hu/CODE_OF_CONDUCT.md b/translations/hu/CODE_OF_CONDUCT.md
index a439c50b..1b929c94 100644
--- a/translations/hu/CODE_OF_CONDUCT.md
+++ b/translations/hu/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft Nyílt Forráskódú Magatartási Kódex
Ez a projekt a [Microsoft Nyílt Forráskódú Magatartási Kódexét](https://opensource.microsoft.com/codeofconduct/) fogadta el.
diff --git a/translations/hu/CONTRIBUTING.md b/translations/hu/CONTRIBUTING.md
index 61950fcd..45c529a5 100644
--- a/translations/hu/CONTRIBUTING.md
+++ b/translations/hu/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Hozzájárulás az Adattudomány Kezdőknek programhoz
Köszönjük, hogy érdeklődsz az Adattudomány Kezdőknek tananyaghoz való hozzájárulás iránt! Örömmel fogadjuk a közösség hozzájárulásait.
diff --git a/translations/hu/INSTALLATION.md b/translations/hu/INSTALLATION.md
index 06a49528..71443a5e 100644
--- a/translations/hu/INSTALLATION.md
+++ b/translations/hu/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Telepítési útmutató
Ez az útmutató segít beállítani a környezetet a Data Science for Beginners tananyag használatához.
diff --git a/translations/hu/README.md b/translations/hu/README.md
index b66360bb..58126672 100644
--- a/translations/hu/README.md
+++ b/translations/hu/README.md
@@ -1,206 +1,197 @@
-
-# Data Science kezdőknek – Tanterv
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+# Adattudomány kezdőknek - Tananyag
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
-A Microsoft Azure Cloud Advocates örömmel kínál 10 hetes, 20 leckéből álló tananyagot, amely teljes egészében az adatelemzésről szól. Minden lecke tartalmaz elő- és utóteszteket, írásos útmutatót a feladat elvégzéséhez, megoldást és házi feladatot. Projekt-alapú tanítási módszerünk lehetővé teszi, hogy építés közben tanulj, amely bevált módszer az új készségek elsajátítására.
+A Microsoft Azure Cloud Advocates örömmel kínál egy 10 hetes, 20 leckéből álló tananyagot az adattudomány témakörében. Minden lecke tartalmaz elő- és utóteszteket, írott útmutatót a lecke elvégzéséhez, megoldást és feladatot. Projekt-alapú tanítási módszerünknek köszönhetően építés közben tanulsz, ami bizonyítottan hatékony módja az új készségek elsajátításának.
-**Szívből köszönjük szerzőinknek:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Szívből köszönet szerzőinknek:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Külön köszönet 🙏 Microsoft Diák Nagykövet** [https://studentambassadors.microsoft.com/](https://studentambassadors.microsoft.com/) szerzőinknek, lektorainknak és tartalomközreműködőinknek, különösen Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Külön köszönet 🙏 a [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) szerzőinknek, lektorainknak és tartalomközreműködőinknek,** különösen Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Data Science kezdőknek - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
+| Adattudomány Kezdőknek - _Sketchnote [@nitya](https://twitter.com/nitya) által_ |
### 🌐 Többnyelvű támogatás
-#### GitHub Action által támogatott (Automatikus és mindig naprakész)
+#### GitHub Action segítségével támogatott (Automatikus és mindig naprakész)
-[arab](../ar/README.md) | [bengáli](../bn/README.md) | [bolgár](../bg/README.md) | [burmai (Mianmar)](../my/README.md) | [kínai (egyszerűsített)](../zh/README.md) | [kínai (hagyományos, Hongkong)](../hk/README.md) | [kínai (hagyományos, Makaó)](../mo/README.md) | [kínai (hagyományos, Tajvan)](../tw/README.md) | [horvát](../hr/README.md) | [cseh](../cs/README.md) | [dán](../da/README.md) | [holland](../nl/README.md) | [észt](../et/README.md) | [finn](../fi/README.md) | [francia](../fr/README.md) | [német](../de/README.md) | [görög](../el/README.md) | [héber](../he/README.md) | [hindi](../hi/README.md) | [magyar](./README.md) | [indonéz](../id/README.md) | [olasz](../it/README.md) | [japán](../ja/README.md) | [kannada](../kn/README.md) | [koreai](../ko/README.md) | [litván](../lt/README.md) | [maláj](../ms/README.md) | [malajálam](../ml/README.md) | [maráthi](../mr/README.md) | [nepáli](../ne/README.md) | [nigériai pidzsin](../pcm/README.md) | [norvég](../no/README.md) | [perzsa (fárszi)](../fa/README.md) | [lengyel](../pl/README.md) | [portugál (brazil)](../br/README.md) | [portugál (portugál)](../pt/README.md) | [pandzsábi (Gurmukhi)](../pa/README.md) | [román](../ro/README.md) | [orosz](../ru/README.md) | [szerb (cirill)](../sr/README.md) | [szlovák](../sk/README.md) | [szlovén](../sl/README.md) | [spanyol](../es/README.md) | [szwahili](../sw/README.md) | [svéd](../sv/README.md) | [tagalog (filippínó)](../tl/README.md) | [tamil](../ta/README.md) | [telugu](../te/README.md) | [thai](../th/README.md) | [török](../tr/README.md) | [ukrán](../uk/README.md) | [urdu](../ur/README.md) | [vietnami](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](./README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **Szeretnél helyben klónozni?**
+> **Szeretnéd helyben klónozni?**
-> Ez a tárház több mint 50 nyelvi fordítást tartalmaz, ami jelentősen megnöveli a letöltési méretet. Ha fordítások nélkül szeretnéd klónozni, használj ritkított kimenti (sparse checkout) opciót:
+> Ez a tároló több mint 50 nyelvi fordítást tartalmaz, ami jelentősen megnöveli a letöltési méretet. A fordítások nélkül klónozáshoz használd a sparse checkout-ot:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Ezzel megkapod mindazt, amire szükséged van a tanfolyam elvégzéséhez, lényegesen gyorsabb letöltéssel.
+> Ez mindent megad, ami a tanfolyam elvégzéséhez kell, sokkal gyorsabb letöltéssel.
-**Ha további fordítási nyelveket szeretnél támogatni, azok listája megtalálható [itt](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Ha további fordítási nyelveket szeretnél támogatni, azokat itt találod [listázva](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Csatlakozz közösségünkhöz
+#### Csatlakozz Közösségünkhöz
[](https://discord.gg/nTYy5BXMWG)
-Discordon folyamatosan fut az AI-val való tanulás sorozat, további információ és csatlakozás itt: [Learn with AI Series](https://aka.ms/learnwithai/discord) 2025. szeptember 18-30 között. Tippeket és trükköket kapsz arról, hogyan használd a GitHub Copilotot az adatelemzéshez.
+Jelenleg is fut egy Discord „Tanulj az AI segítségével” sorozatunk, többet megtudhatsz és csatlakozhatsz hozzánk a [Learn with AI Series](https://aka.ms/learnwithai/discord) eseménysorozatban 2025. szeptember 18-30. között. Itt megtanulhatod a GitHub Copilot adattudományi használatának tippeit és trükkjeit.
-
+
# Diák vagy?
-Kezdd az alábbi forrásokkal:
+Kezdj az alábbi forrásokkal:
-- [Student Hub oldal](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Ezen az oldalon kezdőknek szóló forrásokat, diákcsomagokat és akár ingyenes tanúsítvány kuponokat találsz. Mentd el könyvjelzőként, és időről időre nézd meg, mert legalább havonta cseréljük a tartalmat.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Csatlakozz egy globális diák nagykövet közösséghez, amely egy remek út a Microsoftnál való elhelyezkedéshez.
+- [Student Hub oldal](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Itt megtalálod a kezdő erőforrásokat, diákcsomagokat és még lehetőséget is egy ingyenes vizsga kupont szerezni. Ezt az oldalt érdemes könyvjelzőzni és időnként ellenőrizni, hiszen havonta cseréljük a tartalmat.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Csatlakozz egy globális diák nagykövet közösséghez, ez lehet a kapud a Microsoft-hoz.
-# Kezdés
+# Kezdő lépések
## 📚 Dokumentáció
-- **[Telepítési útmutató](INSTALLATION.md)** – Lépésről lépésre kezdőknek az előkészítés
-- **[Használati útmutató](USAGE.md)** – Példák és gyakori munkafolyamatok
-- **[Hibaelhárítás](TROUBLESHOOTING.md)** – Gyakori problémák megoldásai
-- **[Hozzájárulási útmutató](CONTRIBUTING.md)** – Hogyan járulhatsz hozzá ehhez a projekthez
-- **[Tanárnak](for-teachers.md)** – Oktatási útmutató és osztálytermi források
+- **[Telepítési útmutató](INSTALLATION.md)** - Lépésről lépésre útmutató kezdőknek
+- **[Használati útmutató](USAGE.md)** - Példák és gyakori munkafolyamatok
+- **[Hibaelhárítás](TROUBLESHOOTING.md)** - Gyakori problémák megoldásai
+- **[Közreműködési útmutató](CONTRIBUTING.md)** - Hogyan járulhatsz hozzá a projekthez
+- **[Tanároknak](for-teachers.md)** - Oktatási útmutató és osztálytermi források
## 👨🎓 Diákoknak
-> **Teljesen kezdők**: Még új vagy az adatelemzésben? Kezdd [kezdőbarát példáinkkal](examples/README.md)! Ezek az egyszerű, jól kommentált példák segítenek megérteni az alapokat, mielőtt teljes tananyagot tanulnál.
-> **[Diákok](https://aka.ms/student-page)**: ha magad akarod használni a tananyagot, forkold le a teljes repót, és önállóan csináld meg a feladatokat, kezdve az előadás előtti quiz-el. Olvasd el az előadást, majd végezd el a további tevékenységeket. Próbáld meg a projekteket úgy elkészíteni, hogy megérted a leckéket, ne csak kimásold a megoldás kódját; az viszont megtalálható a /solutions mappákban minden projektorientált leckénél. Egy másik ötlet, hogy barátokkal tanulócsoportot alakítotok, és együtt dolgoztok át a tartalmakat. További tanuláshoz javasoljuk a [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) platformot.
+> **Teljesen kezdők:** Új vagy az adattudományban? Kezdd el a [kezdőbarát példáinkkal](examples/README.md)! Ezek az egyszerű, jól kommentált példák segítenek megérteni az alapokat, mielőtt belevágnál a teljes tananyagba.
+> **[Diákok](https://aka.ms/student-page):** ha önállóan szeretnéd használni ezt a tananyagot, forkolj le az egész repót, és önállóan végezd el a feladatokat, kezdve egy előadás előtti teszttel. Ezután olvasd el az előadást és végezd el a további tevékenységeket. Próbáld meg a projekteket megérteni és létrehozni, ne csak a megoldás kódját másold; ez a kód megtalálható a /solutions mappákban minden projektorientált leckénél. Egy másik ötlet, hogy barátokkal tanulócsoportot alkotva közösen haladjatok át a tartalmon. További tanuláshoz ajánljuk a [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) oldalait.
-**Gyors kezdés:**
-1. Nézd meg a [Telepítési útmutatót](INSTALLATION.md) a környezet beállításához
-2. Tekintsd át a [Használati útmutatót](USAGE.md) a tananyag használatának elsajátításához
-3. Kezdd az 1. leckével, és haladj sorban
-4. Csatlakozz [Discord közösségünkhöz](https://aka.ms/ds4beginners/discord) a támogatásért
+**Gyorskezdés:**
+1. Tekintsd meg a [Telepítési útmutatót](INSTALLATION.md) a környezet beállításához
+2. Nézd át a [Használati útmutatót](USAGE.md), hogy megismerd a tananyag használatát
+3. Kezdj az 1. leckével és haladj sorban
+4. Csatlakozz Discord közösségünkhöz a támaszért: [https://aka.ms/ds4beginners/discord](https://aka.ms/ds4beginners/discord)
## 👩🏫 Tanároknak
-> **Tanárként**: [belefoglaltunk néhány javaslatot](for-teachers.md) arra, hogyan használd ezt a tananyagot. Nagyon örülnénk visszajelzésednek [vita fórumunkon](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+> **Tanárok:** tartalmazunk [néhány javaslatot](for-teachers.md) a tananyag használatára. Szeretnénk hallani véleményedet [a fórumunkon](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## Ismerkedj meg a Csapattal
-## Ismerd meg a csapatot
-[](https://youtu.be/8mzavjQSMM4 "Promo video")
+[](https://youtu.be/8mzavjQSMM4 "Promóciós videó")
**Gif készítője:** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Kattints a fenti képre egy videóért a projektről és az azt létrehozó emberekről!
+> 🎥 Kattints a fenti képre, hogy megnézz egy videót a projektről és az alkotóiról!
## Pedagógia
-Két pedagógiai alapelvet választottunk ennek a tantervnek az összeállításakor: azt, hogy projektalapú legyen, és hogy gyakori kvízeket tartalmazzon. A sorozat végére a tanulók elsajátítják az adatelemzés alapelveit, beleértve az etikai fogalmakat, az adatelőkészítést, az adatkezelés különböző módjait, az adatvizualizációt, az adatelemzést, az adatelemzés valós példáit és még sok mást.
+Két pedagógiai alapelvet választottunk a tananyag kidolgozásakor: biztosítani, hogy projekt-alapú legyen, és hogy gyakori kvízeket tartalmazzon. A sorozat végére a tanulók megismerik az adattudomány alapelveit, beleértve az etikai konceptusokat, adat-előkészítést, az adatokkal való különböző munkamódokat, adat vizualizációt, adat elemzést, az adattudomány valós világban való alkalmazásait és még sok mást.
-Ezen túlmenően egy alacsony tétű kvíz az óra előtt beállítja a tanulók tanulási szándékát egy adott témakör iránt, míg egy második kvíz az óra után biztosítja a mélyebb megértést. Ez a tanterv rugalmas és szórakoztató, és teljes egészében vagy részben is végezhető. A projektek kicsiként kezdődnek, és a 10 hetes ciklus végére egyre összetettebbek lesznek.
+Emellett egy alacsony téttel bíró kvíz az óra előtt segít a tanulót ráhangolni az adott témára, míg egy második kvíz az óra után elősegíti a tudás tartósságát. Ez a tananyag rugalmas és szórakoztató, egészben vagy részleteiben is elvégezhető. A projektek kis léptékben kezdődnek és egyre bonyolultabbak lesznek a 10 hetes ciklus végére.
-> Találd meg irányelveinket a [Viselkedési kódexben](CODE_OF_CONDUCT.md), [Hozzájárulásról](CONTRIBUTING.md), [Fordításról](TRANSLATIONS.md). Örömmel fogadjuk építő visszajelzéseidet!
+> Találd meg a [Magatartási Kódexünket](CODE_OF_CONDUCT.md), [Hozzájárulási](CONTRIBUTING.md), [Fordítási](TRANSLATIONS.md) útmutatóinkat. Várjuk építő jellegű visszajelzéseidet!
-## Minden lecke tartalmaz:
+## Minden leckében szerepel:
-- Opcionális sketchnote-ot
-- Opcionális kiegészítő videót
-- Óra előtti bemelegítő kvízt
-- Írott leckét
-- Projektalapú leckéknél lépésről lépésre útmutatót a projekt összeállításához
-- Tudásellenőrzéseket
-- Egy kihívást
-- Kiegészítő olvasnivalót
-- Feladatot
+- Opcionális vázlatjegyzet
+- Opcionális kiegészítő videó
+- Óra előtti bemelegítő kvíz
+- Írott lecke
+- Projekt-alapú leckéknél lépésről lépésre útmutatók a projekt elkészítéséhez
+- Tudásellenőrzés
+- Egy kihívás
+- Kiegészítő olvasmány
+- Feladat
- [Óra utáni kvíz](https://ff-quizzes.netlify.app/en/)
-> **Megjegyzés a kvízekről**: Az összes kvíz a Quiz-App mappában található, összesen 40 kvíz három-három kérdéssel. A leckékből linkelve vannak, de a kvízalkalmazás helyben is futtatható, vagy telepíthető Azure-ba; kövesd az útmutatót a `quiz-app` mappában. Folyamatosan lokalizálják őket.
+> **Megjegyzés a kvízekről**: Minden kvíz a Quiz-App mappában van, összesen 40 kvíz három kérdéssel. A leckékből vannak linkelve, de a kvíz alkalmazás helyileg futtatható vagy telepíthető Azure-ra; kövesd az utasításokat a `quiz-app` mappában. Fokozatosan lokalizálják őket.
-## 🎓 Kezdőknek Szánt Példák
+## 🎓 Kezdőknek szóló példák
-**Új vagy az Adatelemzésben?** Külön [példakönyvtárat](examples/README.md) hoztunk létre egyszerű, jól kommentált kódokkal, hogy segítsünk a kezdésben:
+**Új vagy az adattudományban?** Különleges [példakönyvtárat](examples/README.md) hoztunk létre egyszerű, jól kommentált kódokkal, hogy segítsünk elindulni:
-- 🌟 **Hello World** – Az első adatelemző programod
-- 📂 **Adatok betöltése** – Tanuld meg az adatkészletek beolvasását és felfedezését
-- 📊 **Egyszerű elemzés** – Számíts statisztikákat és találj mintákat
-- 📈 **Alapvető vizualizáció** – Készíts diagramokat és grafikonokat
-- 🔬 **Valós világ projekt** – Teljes munkafolyamat a kezdetektől a végéig
+- 🌟 **Hello World** - Az első adattudományi programod
+- 📂 **Adatok betöltése** - Tanuld meg beolvasni és felfedezni az adatállományokat
+- 📊 **Egyszerű elemzés** - Számíts statisztikákat és találj mintázatokat
+- 📈 **Alapvető vizualizáció** - Készíts diagramokat és grafikonokat
+- 🔬 **Valódi világ projektje** - Teljes munkafolyamat az elejétől a végéig
-Minden példa részletes kommentárokat tartalmaz, amelyek elmagyarázzák a lépéseket, így tökéletes az abszolút kezdőknek!
+Minden példa részletes kommenteket tartalmaz, amelyek minden lépést magyaráznak, így tökéletes az abszolút kezdőknek!
👉 **[Kezdd a példákkal](examples/README.md)** 👈
## Leckék
-||
+||
|:---:|
-| Adatelemzés kezdőknek: Útvonalterv - _Sketchnote készítette [@nitya](https://twitter.com/nitya)_ |
+| Adattudomány kezdőknek: Ütemterv - _Vázlatjegyzet [@nitya](https://twitter.com/nitya) munkája_ |
-| Lecke sorszáma | Téma | Lecke csoportosítás | Tanulási célok | Linked lecke | Szerző |
+| Lecke száma | Téma | Lecke csoportosítás | Tanulási célok | Linkelt lecke | Szerző |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Az adatelemzés meghatározása | [Bevezetés](1-Introduction/README.md) | Ismerd meg az adatelemzés alapfogalmait és kapcsolatát a mesterséges intelligenciával, gépi tanulással és a nagy adatokkal. | [lecke](1-Introduction/01-defining-data-science/README.md) [videó](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Adatelemzés etikája | [Bevezetés](1-Introduction/README.md) | Adatazetika fogalmak, kihívások és keretrendszerek. | [lecke](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Az adatok meghatározása | [Bevezetés](1-Introduction/README.md) | Hogyan osztályozzuk az adatokat és milyen gyakori forrásai vannak. | [lecke](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Bevezetés a statisztikába és a valószínűségbe | [Bevezetés](1-Introduction/README.md) | Valószínűségszámítási és statisztikai matematikai technikák az adatok megértéséhez. | [lecke](1-Introduction/04-stats-and-probability/README.md) [videó](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Relációs adatok kezelése | [Munka az adatokkal](2-Working-With-Data/README.md) | Bevezetés a relációs adatokba és a relációs adatok SQL (Structured Query Language) alapú feltérképezésének és elemzésének alapjai. | [lecke](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | NoSQL adatok kezelése | [Munka az adatokkal](2-Working-With-Data/README.md) | Bevezetés a nem-relációs adatokba, különböző típusaikba és a dokumentum adatbázisok alapfokú feltérképezésébe és elemzésébe. | [lecke](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Python használata | [Munka az adatokkal](2-Working-With-Data/README.md) | A Python alapjai adatfeltérképezéshez, olyan könyvtárak használatával, mint a Pandas. Alap szintű Python programozási ismeretek ajánlottak. | [lecke](2-Working-With-Data/07-python/README.md) [videó](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Adatelőkészítés | [Munka az adatokkal](2-Working-With-Data/README.md) | Az adattisztítás és átalakítás módszerei az adathiány, pontatlanság vagy hiányosságok kezelésére. | [lecke](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Mennyiségek vizualizálása | [Adatvizualizáció](3-Data-Visualization/README.md) | Tanuld meg a Matplotlib használatát madáradataid vizualizálásához 🦆 | [lecke](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Adatok eloszlásának vizualizálása | [Adatvizualizáció](3-Data-Visualization/README.md) | Megfigyelések és trendek vizualizálása egy adott időintervallumon belül. | [lecke](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Arányok vizualizálása | [Adatvizualizáció](3-Data-Visualization/README.md) | Diszkrét és csoportosított százalékok vizualizálása. | [lecke](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Kapcsolatok vizualizálása | [Adatvizualizáció](3-Data-Visualization/README.md) | Kapcsolatok és korrelációk vizualizálása adat- és változóhalmazok között. | [lecke](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Értelmes vizualizációk | [Adatvizualizáció](3-Data-Visualization/README.md) | Technikák és útmutatás az értékes vizualizációk készítéséhez a hatékony problémamegoldás és betekintés érdekében. | [lecke](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Bevezetés az adatelemzés életciklusába | [Életciklus](4-Data-Science-Lifecycle/README.md) | Bevezetés az adatelemzés életciklusába és első lépése az adatok beszerzése és kinyerése. | [lecke](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Elemzés | [Életciklus](4-Data-Science-Lifecycle/README.md) | Az adatelemzés életciklusának ezen fázisa az adatok elemzésére fókuszál. | [lecke](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Kommunikáció | [Életciklus](4-Data-Science-Lifecycle/README.md) | Az adatelemzés életciklusának ezen fázisa a végkövetkeztetések bemutatására fókuszál, hogy a döntéshozók számára könnyebben érthető legyen. | [lecke](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Adatelemzés a felhőben | [Felhőadatok](5-Data-Science-In-Cloud/README.md) | Ez a leckesorozat bemutatja az adatelemzést a felhőben és annak előnyeit. | [lecke](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) és [Maud](https://twitter.com/maudstweets) |
-| 18 | Adatelemzés a felhőben | [Felhőadatok](5-Data-Science-In-Cloud/README.md) | Modellek tréningje alacsony kódolású eszközökkel. |[lecke](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) és [Maud](https://twitter.com/maudstweets) |
-| 19 | Adatelemzés a felhőben | [Felhőadatok](5-Data-Science-In-Cloud/README.md) | Modellek telepítése az Azure Machine Learning Studio használatával. | [lecke](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) és [Maud](https://twitter.com/maudstweets) |
-| 20 | Adatelemzés a valós világban | [A természetben](6-Data-Science-In-Wild/README.md) | Adatalapú projektek a való életben. | [lecke](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | Az adattudomány meghatározása | [Bevezetés](1-Introduction/README.md) | Megtanulni az adattudomány alapvető fogalmait, és hogy miként kapcsolódik a mesterséges intelligenciához, gépi tanuláshoz és a big data-hoz. | [lecke](1-Introduction/01-defining-data-science/README.md) [videó](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Adat etika | [Bevezetés](1-Introduction/README.md) | Az adat etika fogalmai, kihívásai és keretrendszerei. | [lecke](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Az adat meghatározása | [Bevezetés](1-Introduction/README.md) | Hogyan osztályozzák az adatokat, és mi a gyakori forrásaik. | [lecke](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Statisztika és valószínűség bevezetése | [Bevezetés](1-Introduction/README.md) | A valószínűség és statisztika matematikai módszerei az adatok megértéséhez. | [lecke](1-Introduction/04-stats-and-probability/README.md) [videó](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Munkavégzés relációs adatbázisokkal | [Adatokkal való munka](2-Working-With-Data/README.md) | Bevezetés a relációs adatokba és az alapok a relációs adatok feltárásához és elemzéséhez a Strukturált Lekérdező Nyelvvel, azaz SQL-lel (kiejtve „szí-kel”). | [lecke](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Munkavégzés NoSQL adatokkal | [Adatokkal való munka](2-Working-With-Data/README.md) | Bevezetés a nem relációs adatokba, azok típusai és bevezetés a dokumentum adatbázisok feltárásába és elemzésébe. | [lecke](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Munkavégzés Pythonnal | [Adatokkal való munka](2-Working-With-Data/README.md) | Alapok a Python használatáról adatfeltáráshoz Pandas könyvtárak segítségével. Alapvető Python programozási ismeretek ajánlottak. | [lecke](2-Working-With-Data/07-python/README.md) [videó](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Adat-előkészítés | [Adatokkal való munka](2-Working-With-Data/README.md) | Témák az adattisztításról és adatok átalakításáról, az elveszett, pontatlan vagy hiányos adatok kezelésének kihívásaihoz. | [lecke](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Mennyiségek vizualizálása | [Adat vizualizáció](3-Data-Visualization/README.md) | Tanuld meg, hogyan használhatod a Matplotlib-et madarak adatainak vizualizálására 🦆 | [lecke](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Adateloszlások vizualizálása | [Adat vizualizáció](3-Data-Visualization/README.md) | Megfigyelések és tendenciák vizualizálása egy intervallumban. | [lecke](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Arányok vizualizálása | [Adat vizualizáció](3-Data-Visualization/README.md) | Diszkrét és csoportosított százalékok vizualizálása. | [lecke](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Kapcsolatok vizualizálása | [Adat vizualizáció](3-Data-Visualization/README.md) | Kapcsolatok és korrelációk vizualizálása adathalmazok és változóik között. | [lecke](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Értelmes vizualizációk | [Adat vizualizáció](3-Data-Visualization/README.md) | Technikák és útmutatás arra, hogyan tegyük vizualizációinkat hasznossá a hatékony problémamegoldáshoz és felismerésekhez. | [lecke](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Az adattudomány életciklusának bevezetése | [Életciklus](4-Data-Science-Lifecycle/README.md) | Bevezetés az adattudomány életciklusába és az adat megszerzésének első lépésébe. | [lecke](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Elemzés | [Életciklus](4-Data-Science-Lifecycle/README.md) | Az életciklus azon szakasza, amely az adatok elemzési technikáira fókuszál. | [lecke](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Kommunikáció | [Életciklus](4-Data-Science-Lifecycle/README.md) | Az életciklus azon szakasza, amely az adatból származó felismerések hatékony bemutatására fókuszál, hogy az döntéshozók számára érthetőbb legyen. | [lecke](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Az adattudomány a felhőben | [Felhőadatok](5-Data-Science-In-Cloud/README.md) | Ez a leckesorozat bevezeti az adattudományt a felhőben és annak előnyeit. | [lecke](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) és [Maud](https://twitter.com/maudstweets) |
+| 18 | Az adattudomány a felhőben | [Felhőadatok](5-Data-Science-In-Cloud/README.md) | Modellek betanítása Low Code eszközökkel. |[lecke](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) és [Maud](https://twitter.com/maudstweets) |
+| 19 | Az adattudomány a felhőben | [Felhőadatok](5-Data-Science-In-Cloud/README.md) | Modellek telepítése az Azure Machine Learning Studio-val. | [lecke](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) és [Maud](https://twitter.com/maudstweets) |
+| 20 | Az adattudomány a valós életben | [A valós világban](6-Data-Science-In-Wild/README.md) | Valós világban zajló adattudományi projektek. | [lecke](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Kövesd ezeket a lépéseket, hogy megnyisd ezt a mintát egy Codespace-ben:
1. Kattints a Code legördülő menüre, és válaszd az Open with Codespaces opciót.
-2. Válaszd a + New codespace-t az alján.
-További információért nézd meg a [GitHub dokumentációt](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+2. Válaszd az + New codespace az ablak alján.
+További információkért tekintsd meg a [GitHub dokumentációját](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Konténerek
-Kövesd az alábbi lépéseket, hogy ezt a tárolót helyben, a VSCode Remote - Containers bővítmény segítségével egy konténerben nyisd meg:
+Kövesd ezt a lépést, hogy ezt a repót megnyisd egy konténerben a helyi géped és a VSCode segítségével a VS Code Remote - Containers kiterjesztéssel:
-1. Ha először használsz fejlesztői konténert, győződj meg arról, hogy a rendszered megfelel-e az előfeltételeknek (pl. Docker telepítve van) a [kezdő dokumentációban](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Ha először használsz fejlesztői konténert, győződj meg róla, hogy rendszered megfelel a követelményeknek (pl. legyen telepítve Docker) a [kezdő dokumentációban](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Ehhez a tárolóhoz megnyithatod a repót egy különálló Docker kötetben:
+Ehhez a repóhoz megnyithatod a tárolót egy izolált Docker volume-ban:
-**Megjegyzés**: Alatta a Remote-Containers: **Clone Repository in Container Volume...** parancs használatos a forráskód Docker kötetbe történő klónozására a helyi fájlrendszer helyett. A [kötetek](https://docs.docker.com/storage/volumes/) a preferált mechanizmus a konténer-adatok megőrzésére.
+**Megjegyzés:** Alatta a Remote-Containers: **Clone Repository in Container Volume...** parancsot fogja használni, hogy a forráskódot Docker volume-ba klónozza ahelyett, hogy a helyi fájlrendszert használná. [A volume-ok](https://docs.docker.com/storage/volumes/) ajánlott mechanizmusok a konténer adatainak megőrzésére.
-Vagy megnyithatsz egy helyileg klónozott vagy letöltött verziót:
+Vagy megnyithatod a repó egy helyben klónozott vagy letöltött példányát:
-- Klónozd ezt a tárolót a helyi fájlrendszeredre.
-- Nyomd meg az F1-et, és válaszd a **Remote-Containers: Open Folder in Container...** parancsot.
-- Válaszd ki a klónozott mappát, várd meg, míg a konténer elindul, majd próbáld ki a funkciókat.
+- Klónozd ezt a repót a helyi fájlrendszeredre.
+- Nyomd meg az F1-et és válaszd a **Remote-Containers: Open Folder in Container...** parancsot.
+- Válaszd ki a klónozott mappát, várd meg, míg elindul a konténer, és próbálj ki dolgokat.
## Offline hozzáférés
-Ezt a dokumentációt offline is futtathatod a [Docsify](https://docsify.js.org/#/) használatával. Forkold ezt a repo-t, [telepítsd a Docsify-t](https://docsify.js.org/#/quickstart) a helyi gépedre, majd a repo gyökér mappájában írd be: `docsify serve`. A weboldal a localhoston, a 3000-es porton lesz elérhető: `localhost:3000`.
+Ezt a dokumentációt offline is futtathatod a [Docsify](https://docsify.js.org/#/) használatával. Forkold ezt a repót, [telepítsd a Docsify-t](https://docsify.js.org/#/quickstart) a helyi gépedre, majd a repó gyökérmappájában futtasd a `docsify serve` parancsot. A weboldal a 3000-es porton lesz elérhető a localhoston: `localhost:3000`.
-> Megjegyzés: a jegyzetfüzetek nem jelennek meg Docsify alatt, így ha futtatnod kell egy jegyzetfüzetet, tedd azt külön a VS Code-ban, Python kernel használatával.
+> Megjegyzés: a jegyzetfüzeteket (notebooks) a Docsify nem fogja megjeleníteni, így amikor notebookot kell futtatnod, tedd azt külön VS Code-ban Python kernel használatával.
-## Egyéb tantervek
+## Egyéb Tananyagok
-Csapatunk más tanterveket is készít! Nézd meg:
+Csapatunk egyéb tananyagokat is készít! Nézd meg:
### LangChain
@@ -217,18 +208,18 @@ Csapatunk más tanterveket is készít! Nézd meg:
---
-### Generatív AI Sorozat
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+### Generatív MI sorozat
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
-### Alapvető Tanulás
+### Alapvető tanulás
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
@@ -236,27 +227,27 @@ Csapatunk más tanterveket is készít! Nézd meg:
---
-### Copilot Sorozat
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+### Copilot sorozat
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Segítségkérés
-**Problémába ütközött?** Tekintse meg [Hibaelhárítási útmutatónkat](TROUBLESHOOTING.md) a gyakori problémák megoldásaiért.
+**Problémákba ütköztél?** Nézd meg [Hibaelhárítási útmutatónkat](TROUBLESHOOTING.md) a gyakori problémák megoldásához.
-Ha elakad vagy bármilyen kérdése van az AI alkalmazások fejlesztésével kapcsolatban, csatlakozzon tanulótársaihoz és tapasztalt fejlesztőkhöz az MCP körüli beszélgetésekben. Ez egy támogató közösség, ahol a kérdések szívesen fogadottak, és a tudás szabadon megosztott.
+Ha elakadsz vagy kérdésed van az MI-alkalmazások fejlesztésével kapcsolatban, csatlakozz a tanulótársaidhoz és tapasztalt fejlesztőkhöz, hogy megvitassátok az MCP-t. Ez egy támogató közösség, ahol a kérdések szívesen látottak, és a tudás szabadon megosztott.
[](https://discord.gg/nTYy5BXMWG)
-Ha termék visszajelzése vagy hibák merülnek fel fejlesztés közben, látogasson el ide:
+Ha termék-visszajelzésed vagy hibákat találsz fejlesztés közben, látogass el ide:
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
---
-**Jogi nyilatkozat**:
-Ezt a dokumentumot az AI fordító szolgáltatás [Co-op Translator](https://github.com/Azure/co-op-translator) használatával fordítottuk le. Bár igyekszünk a pontosságra, kérjük, vegye figyelembe, hogy az automatikus fordítások hibákat vagy pontatlanságokat tartalmazhatnak. Az eredeti dokumentum a saját nyelvén tekintendő hivatalos forrásnak. Kritikus információk esetén szakmai emberi fordítást javaslunk. Nem vállalunk felelősséget a fordítás használatából eredő félreértésekért vagy téves értelmezésekért.
+**Jogi Nyilatkozat**:
+Ez a dokumentum az AI fordítószolgáltatás, a [Co-op Translator](https://github.com/Azure/co-op-translator) segítségével készült. Bár az pontosságra törekszünk, kérjük, vegye figyelembe, hogy az automatikus fordítások hibákat vagy pontatlanságokat tartalmazhatnak. Az eredeti dokumentum a saját nyelvén tekintendő hivatalos forrásnak. Fontos információk esetén szakember által végzett emberi fordítást javaslunk. Nem vállalunk felelősséget az ebből az automatikus fordításból eredő félreértésekért vagy téves értelmezésekért.
\ No newline at end of file
diff --git a/translations/hu/SECURITY.md b/translations/hu/SECURITY.md
index 01d9225a..6da747e4 100644
--- a/translations/hu/SECURITY.md
+++ b/translations/hu/SECURITY.md
@@ -1,12 +1,3 @@
-
## Biztonság
A Microsoft komolyan veszi szoftvertermékei és szolgáltatásai biztonságát, beleértve az összes forráskód-tárházat, amelyeket GitHub szervezeteinken keresztül kezelünk, például a [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) és [további GitHub szervezeteink](https://opensource.microsoft.com/).
diff --git a/translations/hu/SUPPORT.md b/translations/hu/SUPPORT.md
index ec7c528d..e34e80b5 100644
--- a/translations/hu/SUPPORT.md
+++ b/translations/hu/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Támogatás
## Hogyan lehet hibákat jelenteni és segítséget kérni
diff --git a/translations/hu/TROUBLESHOOTING.md b/translations/hu/TROUBLESHOOTING.md
index 68e4ec64..c4c31f11 100644
--- a/translations/hu/TROUBLESHOOTING.md
+++ b/translations/hu/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Hibakeresési útmutató
Ez az útmutató megoldásokat kínál a Data Science for Beginners tananyag használata során felmerülő gyakori problémákra.
diff --git a/translations/hu/USAGE.md b/translations/hu/USAGE.md
index b291189d..8c324449 100644
--- a/translations/hu/USAGE.md
+++ b/translations/hu/USAGE.md
@@ -1,12 +1,3 @@
-
# Használati útmutató
Ez az útmutató példákat és gyakori munkafolyamatokat mutat be a "Data Science for Beginners" tananyag használatához.
diff --git a/translations/hu/docs/_sidebar.md b/translations/hu/docs/_sidebar.md
index 12be2fe8..39bc67c7 100644
--- a/translations/hu/docs/_sidebar.md
+++ b/translations/hu/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Bevezetés
- [Adattudomány meghatározása](../1-Introduction/01-defining-data-science/README.md)
- [Az adattudomány etikája](../1-Introduction/02-ethics/README.md)
diff --git a/translations/hu/examples/README.md b/translations/hu/examples/README.md
index 3ba32ba4..9ef449fb 100644
--- a/translations/hu/examples/README.md
+++ b/translations/hu/examples/README.md
@@ -1,12 +1,3 @@
-
# Kezdőbarát Adattudományi Példák
Üdvözlünk a példák könyvtárában! Ez a gyűjtemény egyszerű, jól kommentált példákat tartalmaz, amelyek segítenek elkezdeni az adattudományt, még akkor is, ha teljesen kezdő vagy.
diff --git a/translations/hu/for-teachers.md b/translations/hu/for-teachers.md
index 9b34fd5c..e9b560b9 100644
--- a/translations/hu/for-teachers.md
+++ b/translations/hu/for-teachers.md
@@ -1,12 +1,3 @@
-
## Oktatóknak
Szeretné használni ezt a tananyagot az osztályában? Nyugodtan tegye meg!
diff --git a/translations/hu/quiz-app/README.md b/translations/hu/quiz-app/README.md
index b5b5a2bb..370c4471 100644
--- a/translations/hu/quiz-app/README.md
+++ b/translations/hu/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Kvízek
Ezek a kvízek a data science tananyag előtti és utáni kvízei, amely elérhető itt: https://aka.ms/datascience-beginners
diff --git a/translations/hu/sketchnotes/README.md b/translations/hu/sketchnotes/README.md
index 2782fb19..142abf89 100644
--- a/translations/hu/sketchnotes/README.md
+++ b/translations/hu/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Találd meg az összes sketchnote-ot itt!
## Köszönetnyilvánítás
diff --git a/translations/id/.co-op-translator.json b/translations/id/.co-op-translator.json
new file mode 100644
index 00000000..74e9bb85
--- /dev/null
+++ b/translations/id/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:00:32+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "id"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-28T18:57:41+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "id"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-28T18:58:13+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "id"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:46:09+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "id"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-28T19:05:47+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "id"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T23:59:07+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "id"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-28T19:00:37+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "id"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:52:13+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "id"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-28T18:54:06+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "id"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-28T18:49:46+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "id"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:48:51+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "id"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:57:00+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "id"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T23:49:25+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "id"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-28T18:07:28+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "id"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:52:03+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "id"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-28T18:11:50+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "id"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T23:51:25+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "id"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-28T18:18:17+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "id"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-28T18:05:14+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T23:54:11+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-28T18:42:49+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T23:55:46+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-28T18:49:23+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T23:53:45+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-28T18:40:52+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:43:00+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-28T18:47:32+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T23:54:40+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-28T18:44:56+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-28T18:45:16+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-28T18:45:34+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-28T18:31:26+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-28T18:32:51+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-28T18:35:48+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-28T18:36:49+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-28T18:29:40+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-28T18:33:40+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-28T18:37:47+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "id"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-28T18:28:43+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "id"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:20:44+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "id"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-28T18:24:09+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "id"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:20:06+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "id"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-28T18:20:32+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "id"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:21:09+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "id"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-28T18:28:14+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "id"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-28T18:19:11+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "id"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T23:48:15+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "id"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-28T18:00:57+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "id"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T23:47:15+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "id"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-28T17:58:51+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "id"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T23:48:41+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "id"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-28T18:04:43+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "id"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-28T17:54:02+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "id"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:37:37+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "id"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-28T19:10:04+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "id"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-28T19:07:05+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "id"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:30:52+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "id"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-28T17:53:37+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "id"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:19:44+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "id"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:23:10+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "id"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:08:52+00:00",
+ "source_file": "README.md",
+ "language_code": "id"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-28T17:52:24+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "id"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-28T17:51:28+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "id"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:43:50+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "id"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:06:44+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "id"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-28T18:18:42+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "id"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:05:08+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "id"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:59:18+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "id"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-28T19:06:29+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "id"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-28T19:10:35+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "id"
+ }
+}
\ No newline at end of file
diff --git a/translations/id/1-Introduction/01-defining-data-science/README.md b/translations/id/1-Introduction/01-defining-data-science/README.md
index b0879d99..ef056d1d 100644
--- a/translations/id/1-Introduction/01-defining-data-science/README.md
+++ b/translations/id/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Mendefinisikan Ilmu Data
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/id/1-Introduction/01-defining-data-science/assignment.md b/translations/id/1-Introduction/01-defining-data-science/assignment.md
index 9bf65dbd..21d27c88 100644
--- a/translations/id/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/id/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Tugas: Skenario Data Science
Dalam tugas pertama ini, kami meminta Anda untuk memikirkan beberapa proses atau masalah kehidupan nyata di berbagai domain masalah, dan bagaimana Anda dapat meningkatkannya menggunakan proses Data Science. Pertimbangkan hal-hal berikut:
diff --git a/translations/id/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/id/1-Introduction/01-defining-data-science/solution/assignment.md
index c20a7c9b..79ffdb22 100644
--- a/translations/id/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/id/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Tugas: Skenario Data Science
Dalam tugas pertama ini, kami meminta Anda untuk memikirkan beberapa proses atau masalah kehidupan nyata di berbagai domain masalah, dan bagaimana Anda dapat meningkatkannya menggunakan proses Data Science. Pikirkan hal-hal berikut:
diff --git a/translations/id/1-Introduction/02-ethics/README.md b/translations/id/1-Introduction/02-ethics/README.md
index 451ae7dd..9fe4786a 100644
--- a/translations/id/1-Introduction/02-ethics/README.md
+++ b/translations/id/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Pengantar Etika Data
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/id/1-Introduction/02-ethics/assignment.md b/translations/id/1-Introduction/02-ethics/assignment.md
index 98ea7489..8c2a4f8e 100644
--- a/translations/id/1-Introduction/02-ethics/assignment.md
+++ b/translations/id/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Menulis Studi Kasus Etika Data
## Instruksi
diff --git a/translations/id/1-Introduction/03-defining-data/README.md b/translations/id/1-Introduction/03-defining-data/README.md
index dcbe751a..8bf23652 100644
--- a/translations/id/1-Introduction/03-defining-data/README.md
+++ b/translations/id/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Mendefinisikan Data
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/id/1-Introduction/03-defining-data/assignment.md b/translations/id/1-Introduction/03-defining-data/assignment.md
index 1b9aad6b..5d98afd4 100644
--- a/translations/id/1-Introduction/03-defining-data/assignment.md
+++ b/translations/id/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Mengklasifikasikan Dataset
## Instruksi
diff --git a/translations/id/1-Introduction/04-stats-and-probability/README.md b/translations/id/1-Introduction/04-stats-and-probability/README.md
index c3777b76..98c53678 100644
--- a/translations/id/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/id/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Pengantar Singkat tentang Statistik dan Probabilitas
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Untuk membantu kita memahami distribusi data, berguna untuk berbicara tentang **
Secara grafis, kita dapat menggambarkan hubungan antara median dan kuartil dalam diagram yang disebut **box plot**:
-
+
Di sini kita juga menghitung **rentang antar-kuartil** IQR=Q3-Q1, dan yang disebut **outlier** - nilai-nilai yang berada di luar batas [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/id/1-Introduction/04-stats-and-probability/assignment.md b/translations/id/1-Introduction/04-stats-and-probability/assignment.md
index d568a615..156ec457 100644
--- a/translations/id/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/id/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Studi Kecil tentang Diabetes
Dalam tugas ini, kita akan bekerja dengan dataset kecil pasien diabetes yang diambil dari [sini](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/id/1-Introduction/README.md b/translations/id/1-Introduction/README.md
index 186b361b..4a4d1442 100644
--- a/translations/id/1-Introduction/README.md
+++ b/translations/id/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Pengantar Ilmu Data

diff --git a/translations/id/2-Working-With-Data/05-relational-databases/README.md b/translations/id/2-Working-With-Data/05-relational-databases/README.md
index e666ece7..7fc29c41 100644
--- a/translations/id/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/id/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Bekerja dengan Data: Basis Data Relasional
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/id/2-Working-With-Data/05-relational-databases/assignment.md b/translations/id/2-Working-With-Data/05-relational-databases/assignment.md
index 10b9005e..9c76a39a 100644
--- a/translations/id/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/id/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Menampilkan Data Bandara
Anda telah diberikan [database](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) yang dibangun menggunakan [SQLite](https://sqlite.org/index.html) yang berisi informasi tentang bandara. Skema database ditampilkan di bawah ini. Anda akan menggunakan [ekstensi SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) di [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) untuk menampilkan informasi tentang bandara di berbagai kota.
diff --git a/translations/id/2-Working-With-Data/06-non-relational/README.md b/translations/id/2-Working-With-Data/06-non-relational/README.md
index 6106efc9..1b7cb347 100644
--- a/translations/id/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/id/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Bekerja dengan Data: Data Non-Relasional
|](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/id/2-Working-With-Data/06-non-relational/assignment.md b/translations/id/2-Working-With-Data/06-non-relational/assignment.md
index 67dc2c69..bee46703 100644
--- a/translations/id/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/id/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Keuntungan Soda
## Instruksi
diff --git a/translations/id/2-Working-With-Data/07-python/README.md b/translations/id/2-Working-With-Data/07-python/README.md
index 570add9c..8c6c179d 100644
--- a/translations/id/2-Working-With-Data/07-python/README.md
+++ b/translations/id/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Bekerja dengan Data: Python dan Pustaka Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/id/2-Working-With-Data/07-python/assignment.md b/translations/id/2-Working-With-Data/07-python/assignment.md
index ae131aa3..dace35bd 100644
--- a/translations/id/2-Working-With-Data/07-python/assignment.md
+++ b/translations/id/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Tugas Pemrosesan Data dalam Python
Dalam tugas ini, kami meminta Anda untuk mengembangkan lebih lanjut kode yang telah kita mulai dalam tantangan sebelumnya. Tugas ini terdiri dari dua bagian:
diff --git a/translations/id/2-Working-With-Data/08-data-preparation/README.md b/translations/id/2-Working-With-Data/08-data-preparation/README.md
index 9174b818..8507b4b8 100644
--- a/translations/id/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/id/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Bekerja dengan Data: Persiapan Data
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/id/2-Working-With-Data/08-data-preparation/assignment.md b/translations/id/2-Working-With-Data/08-data-preparation/assignment.md
index 81cc6029..3b39aeb7 100644
--- a/translations/id/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/id/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Mengevaluasi Data dari Formulir
Seorang klien telah menguji [formulir kecil](../../../../2-Working-With-Data/08-data-preparation/index.html) untuk mengumpulkan beberapa data dasar tentang basis klien mereka. Mereka telah membawa temuan mereka kepada Anda untuk memvalidasi data yang telah mereka kumpulkan. Anda dapat membuka halaman `index.html` di browser untuk melihat formulir tersebut.
diff --git a/translations/id/2-Working-With-Data/README.md b/translations/id/2-Working-With-Data/README.md
index 83554fb0..9f529c85 100644
--- a/translations/id/2-Working-With-Data/README.md
+++ b/translations/id/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Bekerja dengan Data

diff --git a/translations/id/3-Data-Visualization/09-visualization-quantities/README.md b/translations/id/3-Data-Visualization/09-visualization-quantities/README.md
index 8b03d37c..86cec334 100644
--- a/translations/id/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/id/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Memvisualisasikan Kuantitas
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/id/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/id/3-Data-Visualization/09-visualization-quantities/assignment.md
index 85ef58db..0b90edb9 100644
--- a/translations/id/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/id/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Garis, Scatter, dan Batang
## Instruksi
diff --git a/translations/id/3-Data-Visualization/10-visualization-distributions/README.md b/translations/id/3-Data-Visualization/10-visualization-distributions/README.md
index 6ae9cf83..8fd8a502 100644
--- a/translations/id/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/id/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Memvisualisasikan Distribusi
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/id/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/id/3-Data-Visualization/10-visualization-distributions/assignment.md
index 1b5b2129..66823688 100644
--- a/translations/id/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/id/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Terapkan Keahlian Anda
## Instruksi
diff --git a/translations/id/3-Data-Visualization/11-visualization-proportions/README.md b/translations/id/3-Data-Visualization/11-visualization-proportions/README.md
index e070059d..fe585179 100644
--- a/translations/id/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/id/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Memvisualisasikan Proporsi
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/id/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/id/3-Data-Visualization/11-visualization-proportions/assignment.md
index 0acdbc71..758b5521 100644
--- a/translations/id/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/id/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Coba di Excel
## Petunjuk
diff --git a/translations/id/3-Data-Visualization/12-visualization-relationships/README.md b/translations/id/3-Data-Visualization/12-visualization-relationships/README.md
index fbe02c5a..29d60016 100644
--- a/translations/id/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/id/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualisasi Hubungan: Semua Tentang Madu 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/id/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/id/3-Data-Visualization/12-visualization-relationships/assignment.md
index c03758fe..96534f77 100644
--- a/translations/id/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/id/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Menyelami Sarang Lebah
## Instruksi
diff --git a/translations/id/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/id/3-Data-Visualization/13-meaningful-visualizations/README.md
index 84ddec57..332537c5 100644
--- a/translations/id/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/id/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Membuat Visualisasi yang Bermakna
|](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/id/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/id/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index c7e3652d..2f752494 100644
--- a/translations/id/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/id/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Bangun Visualisasi Kustom Anda Sendiri
## Instruksi
diff --git a/translations/id/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/id/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 9f6e5165..b1d505ba 100644
--- a/translations/id/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/id/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Proyek visualisasi data Dangerous Liaisons
Untuk memulai, pastikan Anda sudah memiliki NPM dan Node yang berjalan di mesin Anda. Instal dependensi (npm install) dan kemudian jalankan proyek secara lokal (npm run serve):
diff --git a/translations/id/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/id/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 888387bb..bc87dd2b 100644
--- a/translations/id/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/id/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Proyek visualisasi data Dangerous Liaisons
Untuk memulai, pastikan Anda memiliki NPM dan Node yang berjalan di mesin Anda. Instal dependensi (npm install) dan kemudian jalankan proyek secara lokal (npm run serve):
diff --git a/translations/id/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/id/3-Data-Visualization/R/09-visualization-quantities/README.md
index eee480f7..87fca925 100644
--- a/translations/id/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/id/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualisasi Kuantitas
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/id/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/id/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 3118faba..06891717 100644
--- a/translations/id/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/id/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Garis, Scatter, dan Batang
## Instruksi
diff --git a/translations/id/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/id/3-Data-Visualization/R/10-visualization-distributions/README.md
index 38bbdb3f..02c7cd96 100644
--- a/translations/id/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/id/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualisasi Distribusi
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/id/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/id/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 6cc964a3..a3c1d212 100644
--- a/translations/id/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/id/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Terapkan keterampilan Anda
## Instruksi
diff --git a/translations/id/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/id/3-Data-Visualization/R/11-visualization-proportions/README.md
index 8429a1da..4a2e5aa4 100644
--- a/translations/id/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/id/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualisasi Proporsi
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/id/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/id/3-Data-Visualization/R/12-visualization-relationships/README.md
index 453baf71..330eb748 100644
--- a/translations/id/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/id/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualisasi Hubungan: Semua Tentang Madu 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/id/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/id/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 704bd165..6b308918 100644
--- a/translations/id/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/id/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Membuat Visualisasi yang Bermakna
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/id/3-Data-Visualization/README.md b/translations/id/3-Data-Visualization/README.md
index 14cef6b0..4755daa1 100644
--- a/translations/id/3-Data-Visualization/README.md
+++ b/translations/id/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Visualisasi

diff --git a/translations/id/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/id/4-Data-Science-Lifecycle/14-Introduction/README.md
index 9fc4abf8..4b1bb800 100644
--- a/translations/id/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/id/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Pengantar Siklus Hidup Data Science
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/id/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/id/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 7679c083..4c618b4d 100644
--- a/translations/id/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/id/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Menilai Dataset
Seorang klien telah mendekati tim Anda untuk meminta bantuan dalam menyelidiki kebiasaan pengeluaran musiman pelanggan taksi di New York City.
diff --git a/translations/id/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/id/4-Data-Science-Lifecycle/15-analyzing/README.md
index de602a98..45a923ff 100644
--- a/translations/id/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/id/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Siklus Data Science: Menganalisis
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/id/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/id/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index f854e948..74bc5a7f 100644
--- a/translations/id/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/id/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Menjelajahi untuk Jawaban
Ini adalah kelanjutan dari [tugas](../14-Introduction/assignment.md) pelajaran sebelumnya, di mana kita secara singkat melihat sekilas data set. Sekarang kita akan melihat data tersebut lebih mendalam.
diff --git a/translations/id/4-Data-Science-Lifecycle/16-communication/README.md b/translations/id/4-Data-Science-Lifecycle/16-communication/README.md
index 35d30a5d..863e715d 100644
--- a/translations/id/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/id/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Siklus Hidup Data Science: Komunikasi
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/id/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/id/4-Data-Science-Lifecycle/16-communication/assignment.md
index fbd65b42..e4b583ae 100644
--- a/translations/id/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/id/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Ceritakan sebuah kisah
## Instruksi
diff --git a/translations/id/4-Data-Science-Lifecycle/README.md b/translations/id/4-Data-Science-Lifecycle/README.md
index 0c3ca685..181c9e98 100644
--- a/translations/id/4-Data-Science-Lifecycle/README.md
+++ b/translations/id/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Siklus Data Science

diff --git a/translations/id/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/id/5-Data-Science-In-Cloud/17-Introduction/README.md
index ffcabf21..c06d7b01 100644
--- a/translations/id/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/id/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Pengantar Data Science di Cloud
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/id/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/id/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 8fb62b2c..ad84ba5c 100644
--- a/translations/id/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/id/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Riset Pasar
## Instruksi
diff --git a/translations/id/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/id/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 9b55752b..e0bf6807 100644
--- a/translations/id/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/id/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Data Science di Cloud: Cara "Low code/No code"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/id/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/id/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 1d11f35e..15e1673c 100644
--- a/translations/id/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/id/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Proyek Data Science Low code/No code di Azure ML
## Instruksi
diff --git a/translations/id/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/id/5-Data-Science-In-Cloud/19-Azure/README.md
index b9954c9e..296ad7fc 100644
--- a/translations/id/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/id/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Data Science di Cloud: Cara "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/id/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/id/5-Data-Science-In-Cloud/19-Azure/assignment.md
index f3e4e2f4..a1713349 100644
--- a/translations/id/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/id/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Proyek Data Science menggunakan Azure ML SDK
## Instruksi
diff --git a/translations/id/5-Data-Science-In-Cloud/README.md b/translations/id/5-Data-Science-In-Cloud/README.md
index d804c875..9a5cae61 100644
--- a/translations/id/5-Data-Science-In-Cloud/README.md
+++ b/translations/id/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Data Science di Cloud

diff --git a/translations/id/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/id/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index c2fb8704..22393d56 100644
--- a/translations/id/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/id/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Ilmu Data di Dunia Nyata
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/id/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/id/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index cdae53c5..6177d1a3 100644
--- a/translations/id/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/id/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Jelajahi Dataset Planetary Computer
## Instruksi
diff --git a/translations/id/6-Data-Science-In-Wild/README.md b/translations/id/6-Data-Science-In-Wild/README.md
index f2088039..1c9b4e07 100644
--- a/translations/id/6-Data-Science-In-Wild/README.md
+++ b/translations/id/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Data Science di Dunia Nyata
Penerapan ilmu data di berbagai industri.
diff --git a/translations/id/AGENTS.md b/translations/id/AGENTS.md
index 4fbbdb9d..cf28449a 100644
--- a/translations/id/AGENTS.md
+++ b/translations/id/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Gambaran Proyek
diff --git a/translations/id/CODE_OF_CONDUCT.md b/translations/id/CODE_OF_CONDUCT.md
index 3b1b3bd2..848a8937 100644
--- a/translations/id/CODE_OF_CONDUCT.md
+++ b/translations/id/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Kode Etik Sumber Terbuka Microsoft
Proyek ini telah mengadopsi [Kode Etik Sumber Terbuka Microsoft](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/id/CONTRIBUTING.md b/translations/id/CONTRIBUTING.md
index 5becf7d8..2f214cfe 100644
--- a/translations/id/CONTRIBUTING.md
+++ b/translations/id/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Berkontribusi pada Data Science untuk Pemula
Terima kasih atas minat Anda untuk berkontribusi pada kurikulum Data Science untuk Pemula! Kami menyambut kontribusi dari komunitas.
diff --git a/translations/id/INSTALLATION.md b/translations/id/INSTALLATION.md
index 81d2a296..999adf82 100644
--- a/translations/id/INSTALLATION.md
+++ b/translations/id/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Panduan Instalasi
Panduan ini akan membantu Anda menyiapkan lingkungan untuk bekerja dengan kurikulum Data Science untuk Pemula.
diff --git a/translations/id/README.md b/translations/id/README.md
index cc2ad4b5..46eb2091 100644
--- a/translations/id/README.md
+++ b/translations/id/README.md
@@ -1,12 +1,3 @@
-
# Data Science untuk Pemula - Kurikulum
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,27 +17,27 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Azure Cloud Advocates di Microsoft dengan senang hati menawarkan kurikulum 10-minggu, 20-pelajaran yang membahas tentang Data Science. Setiap pelajaran mencakup kuis sebelum dan sesudah pelajaran, instruksi tertulis untuk menyelesaikan pelajaran, solusi, dan tugas. Pendekatan berbasis proyek kami memungkinkan Anda belajar sambil membangun, cara yang terbukti efektif agar keterampilan baru dapat 'melekat'.
+Azure Cloud Advocates di Microsoft dengan senang hati menawarkan kurikulum 10 minggu, 20 pelajaran yang seluruhnya mengenai Data Science. Setiap pelajaran mencakup kuis pra-pelajaran dan pasca-pelajaran, instruksi tertulis untuk menyelesaikan pelajaran, solusi, dan tugas. Pedagogi berbasis proyek kami memungkinkan Anda belajar sambil membangun, cara terbukti agar keterampilan baru 'menempel'.
-**Terima kasih hangat kepada para penulis kami:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Terima kasih yang sebesar-besarnya kepada para penulis kami:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Terima kasih khusus 🙏 kepada para penulis, peninjau, dan kontributor konten dari [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** terutama Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Terima kasih khusus 🙏 kepada para penulis, pengulas, dan kontributor konten [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** terutama Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Data Science Untuk Pemula - _Sketchnote oleh [@nitya](https://twitter.com/nitya)_ |
+| Data Science untuk Pemula - _Sketchnote oleh [@nitya](https://twitter.com/nitya)_ |
### 🌐 Dukungan Multi-Bahasa
-#### Didukung melalui GitHub Action (Otomatis & Selalu Terbaru)
+#### Didukung via GitHub Action (Otomatis & Selalu Terbaru)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](./README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](./README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **Lebih suka Mengkloning Secara Lokal?**
+> **Lebih Suka Clone Secara Lokal?**
-> Repositori ini menyertakan lebih dari 50 terjemahan bahasa yang secara signifikan meningkatkan ukuran unduhan. Untuk mengkloning tanpa terjemahan, gunakan sparse checkout:
+> Repositori ini termasuk lebih dari 50 terjemahan bahasa yang secara signifikan meningkatkan ukuran unduhan. Untuk melakukan clone tanpa terjemahan, gunakan sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
@@ -55,48 +46,48 @@ Azure Cloud Advocates di Microsoft dengan senang hati menawarkan kurikulum 10-mi
> Ini memberi Anda semua yang Anda butuhkan untuk menyelesaikan kursus dengan unduhan yang jauh lebih cepat.
-**Jika Anda ingin mendukung bahasa terjemahan tambahan yang didukung tercantum [di sini](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Jika Anda ingin agar bahasa tambahan didukung, daftar bahasa yang didukung ada [di sini](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Bergabung dengan Komunitas Kami
[](https://discord.gg/nTYy5BXMWG)
-Kami memiliki seri belajar Discord bersama AI yang sedang berlangsung, pelajari lebih lanjut dan bergabunglah dengan kami di [Seri Belajar dengan AI](https://aka.ms/learnwithai/discord) dari 18 - 30 September, 2025. Anda akan mendapatkan tips dan trik menggunakan GitHub Copilot untuk Data Science.
+Kami memiliki seri belajar Discord dengan AI yang sedang berlangsung, pelajari lebih lanjut dan bergabunglah dengan kami di [Seri Belajar dengan AI](https://aka.ms/learnwithai/discord) dari 18 - 30 September, 2025. Anda akan mendapatkan tips dan trik menggunakan GitHub Copilot untuk Data Science.
-
+
-# Apakah Anda seorang pelajar?
+# Apakah Anda seorang mahasiswa?
-Mulai dengan sumber daya berikut:
+Mulailah dengan sumber daya berikut:
-- [Halaman Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Di halaman ini, Anda akan menemukan sumber daya untuk pemula, paket pelajar, dan bahkan cara mendapatkan voucher sertifikasi gratis. Ini adalah halaman yang ingin Anda simpan sebagai bookmark dan periksa dari waktu ke waktu karena konten kami ubah setidaknya setiap bulan.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Bergabunglah dengan komunitas global duta pelajar, ini bisa menjadi jalan Anda ke Microsoft.
+- [Halaman Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Di halaman ini, Anda akan menemukan sumber daya untuk pemula, paket Mahasiswa, dan bahkan cara mendapatkan voucher sertifikat gratis. Ini adalah halaman yang ingin Anda tandai dan periksa dari waktu ke waktu karena kami mengganti konten setidaknya setiap bulan.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Bergabung dengan komunitas global duta mahasiswa, ini bisa menjadi jalan Anda ke Microsoft.
# Memulai
## 📚 Dokumentasi
-- **[Panduan Instalasi](INSTALLATION.md)** - Instruksi pengaturan langkah demi langkah untuk pemula
+- **[Panduan Instalasi](INSTALLATION.md)** - Instruksi setup langkah demi langkah untuk pemula
- **[Panduan Penggunaan](USAGE.md)** - Contoh dan alur kerja umum
- **[Pemecahan Masalah](TROUBLESHOOTING.md)** - Solusi untuk masalah umum
- **[Panduan Kontribusi](CONTRIBUTING.md)** - Cara berkontribusi pada proyek ini
-- **[Untuk Guru](for-teachers.md)** - Panduan pengajaran dan sumber kelas
+- **[Untuk Guru](for-teachers.md)** - Panduan mengajar dan sumber daya kelas
-## 👨🎓 Untuk Pelajar
-> **Pemula Lengkap**: Baru mengenal data science? Mulailah dengan [contoh ramah pemula kami](examples/README.md)! Contoh sederhana dan berkomentar baik ini akan membantu Anda memahami dasar-dasar sebelum mendalami seluruh kurikulum.
-> **[Pelajar](https://aka.ms/student-page)**: untuk menggunakan kurikulum ini sendiri, fork seluruh repo dan selesaikan latihan sendiri, mulai dengan kuis sebelum kuliah. Kemudian baca kuliah dan selesaikan kegiatan lainnya. Cobalah membuat proyek dengan memahami pelajaran daripada menyalin kode solusi; meskipun kode tersebut tersedia di folder /solutions pada setiap pelajaran berorientasi proyek. Ide lain adalah membentuk kelompok belajar dengan teman dan mempelajari konten bersama-sama. Untuk studi lebih lanjut, kami merekomendasikan [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+## 👨🎓 Untuk Mahasiswa
+> **Pemula Total**: Baru dalam data science? Mulailah dengan [contoh ramah pemula kami](examples/README.md)! Contoh sederhana dan diberi komentar ini akan membantu Anda memahami dasar-dasarnya sebelum masuk ke seluruh kurikulum.
+> **[Mahasiswa](https://aka.ms/student-page)**: untuk menggunakan kurikulum ini secara mandiri, fork seluruh repo dan selesaikan latihan sendiri, mulai dengan kuis pra-ceramah. Kemudian baca ceramah dan selesaikan sisa aktivitas. Cobalah buat proyek dengan memahami pelajaran daripada menyalin kode solusi; namun, kode itu tersedia di folder /solutions di setiap pelajaran yang berorientasi proyek. Ide lain adalah membentuk kelompok belajar dengan teman dan melewati konten bersama. Untuk studi lebih lanjut, kami merekomendasikan [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Mulai Cepat:**
-1. Periksa [Panduan Instalasi](INSTALLATION.md) untuk mengatur lingkungan Anda
+1. Cek [Panduan Instalasi](INSTALLATION.md) untuk menyiapkan lingkungan Anda
2. Tinjau [Panduan Penggunaan](USAGE.md) untuk belajar cara bekerja dengan kurikulum
-3. Mulai dengan Pelajaran 1 dan kerjakan secara berurutan
+3. Mulailah dengan Pelajaran 1 dan kerjakan secara berurutan
4. Bergabunglah dengan [komunitas Discord kami](https://aka.ms/ds4beginners/discord) untuk dukungan
## 👩🏫 Untuk Guru
-> **Guru**: kami telah [menyertakan beberapa saran](for-teachers.md) tentang cara menggunakan kurikulum ini. Kami sangat menghargai masukan Anda [di forum diskusi kami](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+> **Guru**: kami telah [menyertakan beberapa saran](for-teachers.md) tentang cara menggunakan kurikulum ini. Kami sangat menghargai umpan balik Anda [di forum diskusi kami](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## Kenalan dengan Tim
-## Bertemu Tim
-[](https://youtu.be/8mzavjQSMM4 "Video Promo")
+[](https://youtu.be/8mzavjQSMM4 "Video promo")
**Gif oleh** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
@@ -104,103 +95,103 @@ Mulai dengan sumber daya berikut:
## Pedagogi
-Kami telah memilih dua prinsip pedagogis saat membangun kurikulum ini: memastikan bahwa kurikulum berbasis proyek dan mencakup kuis yang sering. Pada akhir seri ini, siswa akan mempelajari prinsip dasar ilmu data, termasuk konsep etika, persiapan data, berbagai cara bekerja dengan data, visualisasi data, analisis data, contoh penggunaan ilmu data di dunia nyata, dan lainnya.
+Kami telah memilih dua prinsip pedagogis saat membangun kurikulum ini: memastikan bahwa kurikulum ini berbasis proyek dan menyertakan kuis secara berkala. Pada akhir seri ini, siswa akan mempelajari prinsip dasar ilmu data, termasuk konsep etika, persiapan data, berbagai cara bekerja dengan data, visualisasi data, analisis data, penggunaan ilmu data di dunia nyata, dan lainnya.
-Selain itu, kuis dengan tingkat tekanan rendah sebelum kelas memfokuskan niat siswa untuk mempelajari topik, sementara kuis kedua setelah kelas memastikan daya ingat lebih lanjut. Kurikulum ini dirancang untuk fleksibel dan menyenangkan serta dapat diikuti secara keseluruhan atau sebagian. Proyek dimulai dari yang kecil dan menjadi semakin kompleks pada akhir siklus 10 minggu.
+Selain itu, kuis ringan sebelum kelas menetapkan niat siswa untuk belajar sebuah topik, sementara kuis kedua setelah kelas memastikan penyerapan materi lebih lanjut. Kurikulum ini dirancang agar fleksibel dan menyenangkan dan dapat diikuti secara keseluruhan atau sebagian. Proyek-proyek dimulai dari yang kecil dan menjadi semakin kompleks pada akhir siklus 10 minggu.
-> Temukan [Kode Etik](CODE_OF_CONDUCT.md), [Kontribusi](CONTRIBUTING.md), [Panduan Terjemahan](TRANSLATIONS.md) kami. Kami menyambut umpan balik konstruktif Anda!
+> Temukan [Kode Etik](CODE_OF_CONDUCT.md), panduan [Kontribusi](CONTRIBUTING.md), [Terjemahan](TRANSLATIONS.md) kami. Kami menyambut masukan konstruktif Anda!
## Setiap pelajaran mencakup:
- Sketchnote opsional
-- Video tambahan opsional
+- Video pelengkap opsional
- Kuis pemanasan sebelum pelajaran
- Pelajaran tertulis
-- Untuk pelajaran berbasis proyek, panduan langkah demi langkah tentang cara membangun proyek
+- Untuk pelajaran berbasis proyek, panduan langkah-demi-langkah membangun proyek
- Pemeriksaan pengetahuan
- Tantangan
-- Bacaan tambahan
+- Bacaan pelengkap
- Tugas
-- [Kuis pasca-pelajaran](https://ff-quizzes.netlify.app/en/)
+- [Kuis setelah pelajaran](https://ff-quizzes.netlify.app/en/)
-> **Catatan tentang kuis**: Semua kuis terdapat dalam folder Quiz-App, dengan total 40 kuis berisi masing-masing tiga pertanyaan. Mereka terhubung dari dalam pelajaran, tetapi aplikasi kuis dapat dijalankan secara lokal atau dideploy ke Azure; ikuti petunjuk di folder `quiz-app`. Mereka sedang secara bertahap diterjemahkan.
+> **Catatan tentang kuis**: Semua kuis terdapat di folder Quiz-App, dengan total 40 kuis masing-masing berisi tiga pertanyaan. Mereka dihubungkan dari dalam pelajaran, tetapi aplikasi kuis dapat dijalankan secara lokal atau dideploy ke Azure; ikuti instruksi di folder `quiz-app`. Kuis sedang dalam proses pelokalan secara bertahap.
## 🎓 Contoh Ramah Pemula
-**Baru di Ilmu Data?** Kami telah membuat [direktori contoh](examples/README.md) khusus dengan kode sederhana dan komentarnya yang jelas untuk membantu Anda memulai:
+**Baru dalam Ilmu Data?** Kami telah membuat direktori [contoh](examples/README.md) khusus dengan kode sederhana dan berkomentar jelas untuk membantu Anda memulai:
-- 🌟 **Hello World** - Program ilmu data pertamamu
-- 📂 **Memuat Data** - Pelajari cara membaca dan menjelajahi dataset
-- 📊 **Analisis Sederhana** - Hitung statistik dan cari pola
+- 🌟 **Hello World** - Program ilmu data pertama Anda
+- 📂 **Memuat Data** - Pelajari cara membaca dan mengeksplorasi dataset
+- 📊 **Analisis Sederhana** - Hitung statistik dan temukan pola
- 📈 **Visualisasi Dasar** - Buat grafik dan diagram
-- 🔬 **Proyek Dunia Nyata** - Alur kerja lengkap dari awal hingga selesai
+- 🔬 **Proyek Dunia Nyata** - Alur kerja lengkap dari awal hingga akhir
-Setiap contoh menyertakan komentar rinci yang menjelaskan setiap langkah, sangat cocok untuk pemula mutlak!
+Setiap contoh dilengkapi komentar terperinci yang menjelaskan setiap langkah, sangat cocok untuk pemula mutlak!
-👉 **[Mulai dengan contoh-contoh](examples/README.md)** 👈
+👉 **[Mulai dengan contoh](examples/README.md)** 👈
## Pelajaran
-||
+||
|:---:|
-| Ilmu Data Untuk Pemula: Peta Jalan - _Sketchnote oleh [@nitya](https://twitter.com/nitya)_ |
+| Ilmu Data untuk Pemula: Peta Jalan - _Sketchnote oleh [@nitya](https://twitter.com/nitya)_ |
| Nomor Pelajaran | Topik | Kelompok Pelajaran | Tujuan Pembelajaran | Pelajaran Terkait | Penulis |
-| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Mendefinisikan Ilmu Data | [Pengantar](1-Introduction/README.md) | Pelajari konsep dasar ilmu data dan hubungannya dengan kecerdasan buatan, pembelajaran mesin, dan big data. | [pelajaran](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| :-------------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
+| 01 | Mendefinisikan Ilmu Data | [Pengantar](1-Introduction/README.md) | Pelajari konsep dasar di balik ilmu data dan bagaimana kaitannya dengan kecerdasan buatan, pembelajaran mesin, dan big data. | [pelajaran](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Etika Ilmu Data | [Pengantar](1-Introduction/README.md) | Konsep Etika Data, Tantangan & Kerangka Kerja. | [pelajaran](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Mendefinisikan Data | [Pengantar](1-Introduction/README.md) | Cara data diklasifikasikan dan sumber umum data. | [pelajaran](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Pengantar Statistik & Probabilitas | [Pengantar](1-Introduction/README.md) | Teknik matematis probabilitas dan statistik untuk memahami data. | [pelajaran](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Bekerja dengan Data Relasional | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Pengenalan data relasional dan dasar-dasar menjelajah serta menganalisis data relasional dengan Structured Query Language, juga dikenal sebagai SQL (diucapkan “see-quell”). | [pelajaran](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Bekerja dengan Data NoSQL | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Pengenalan data non-relasional, berbagai jenisnya dan dasar-dasar menjelajah serta menganalisis database dokumen. | [pelajaran](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Bekerja dengan Python | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Dasar menggunakan Python untuk eksplorasi data dengan pustaka seperti Pandas. Pemahaman dasar pemrograman Python direkomendasikan. | [pelajaran](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Persiapan Data | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Topik teknik data untuk membersihkan dan mengubah data agar dapat menangani tantangan data yang hilang, tidak akurat, atau tidak lengkap. | [pelajaran](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 03 | Mendefinisikan Data | [Pengantar](1-Introduction/README.md) | Bagaimana data diklasifikasikan dan sumber umumnya. | [pelajaran](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Pengantar Statistik & Probabilitas | [Pengantar](1-Introduction/README.md) | Teknik matematika probabilitas dan statistik untuk memahami data. | [pelajaran](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Bekerja dengan Data Relasional | [Bekerja dengan Data](2-Working-With-Data/README.md) | Pengantar data relasional dan dasar eksplorasi serta analisis data relasional dengan Structured Query Language, yang dikenal dengan SQL (dibaca “see-quell”). | [pelajaran](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Bekerja dengan Data NoSQL | [Bekerja dengan Data](2-Working-With-Data/README.md) | Pengantar data non-relasional, berbagai tipenya dan dasar eksplorasi serta analisis database dokumen. | [pelajaran](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Bekerja dengan Python | [Bekerja dengan Data](2-Working-With-Data/README.md) | Dasar menggunakan Python untuk eksplorasi data dengan pustaka seperti Pandas. Disarankan memiliki pemahaman dasar tentang pemrograman Python. | [pelajaran](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Persiapan Data | [Bekerja dengan Data](2-Working-With-Data/README.md) | Topik tentang teknik data untuk membersihkan dan mengubah data guna mengatasi tantangan data yang hilang, tidak akurat, atau tidak lengkap. | [pelajaran](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualisasi Kuantitas | [Visualisasi Data](3-Data-Visualization/README.md) | Pelajari cara menggunakan Matplotlib untuk memvisualisasikan data burung 🦆 | [pelajaran](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Visualisasi Distribusi Data | [Visualisasi Data](3-Data-Visualization/README.md) | Memvisualisasikan pengamatan dan tren dalam sebuah interval. | [pelajaran](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Visualisasi Proporsi | [Visualisasi Data](3-Data-Visualization/README.md) | Memvisualisasikan persentase diskret dan berkelompok. | [pelajaran](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Visualisasi Hubungan | [Visualisasi Data](3-Data-Visualization/README.md) | Memvisualisasikan koneksi dan korelasi antara set data dan variabelnya. | [pelajaran](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Visualisasi Bermakna | [Visualisasi Data](3-Data-Visualization/README.md) | Teknik dan panduan untuk membuat visualisasi Anda bernilai guna untuk pemecahan masalah dan wawasan yang efektif. | [pelajaran](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Pengantar siklus hidup Ilmu Data | [Siklus Hidup](4-Data-Science-Lifecycle/README.md) | Pengantar siklus hidup ilmu data dan langkah pertama mengakuisisi serta mengekstrak data. | [pelajaran](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Menganalisis | [Siklus Hidup](4-Data-Science-Lifecycle/README.md) | Fase siklus hidup ilmu data ini berfokus pada teknik menganalisis data. | [pelajaran](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Komunikasi | [Siklus Hidup](4-Data-Science-Lifecycle/README.md) | Fase siklus hidup ilmu data ini berfokus pada menyampaikan wawasan dari data dengan cara yang memudahkan pengambil keputusan untuk memahami. | [pelajaran](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 10 | Visualisasi Distribusi Data | [Visualisasi Data](3-Data-Visualization/README.md) | Visualisasi observasi dan tren dalam sebuah interval. | [pelajaran](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Visualisasi Proporsi | [Visualisasi Data](3-Data-Visualization/README.md) | Visualisasi persentase diskrit dan berkelompok. | [pelajaran](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Visualisasi Hubungan | [Visualisasi Data](3-Data-Visualization/README.md) | Visualisasi koneksi dan korelasi antar set data dan variabelnya. | [pelajaran](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Visualisasi yang Bermakna | [Visualisasi Data](3-Data-Visualization/README.md) | Teknik dan panduan untuk membuat visualisasi Anda berharga untuk pemecahan masalah dan wawasan yang efektif. | [pelajaran](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Pengantar Siklus Hidup Ilmu Data | [Siklus Hidup](4-Data-Science-Lifecycle/README.md) | Pengantar siklus hidup ilmu data dan langkah pertama yaitu memperoleh dan mengekstrak data. | [pelajaran](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Menganalisis | [Siklus Hidup](4-Data-Science-Lifecycle/README.md) | Fase siklus hidup ilmu data yang berfokus pada teknik analisis data. | [pelajaran](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Komunikasi | [Siklus Hidup](4-Data-Science-Lifecycle/README.md) | Fase siklus hidup ilmu data yang berfokus pada penyajian wawasan dari data dengan cara yang memudahkan pengambil keputusan untuk memahami. | [pelajaran](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Ilmu Data di Cloud | [Data Cloud](5-Data-Science-In-Cloud/README.md) | Seri pelajaran ini memperkenalkan ilmu data di cloud dan manfaatnya. | [pelajaran](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) dan [Maud](https://twitter.com/maudstweets) |
| 18 | Ilmu Data di Cloud | [Data Cloud](5-Data-Science-In-Cloud/README.md) | Melatih model menggunakan alat Low Code. |[pelajaran](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) dan [Maud](https://twitter.com/maudstweets) |
-| 19 | Ilmu Data di Cloud | [Data Cloud](5-Data-Science-In-Cloud/README.md) | Mendeploy model dengan Azure Machine Learning Studio. | [pelajaran](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) dan [Maud](https://twitter.com/maudstweets) |
-| 20 | Ilmu Data di Dunia Nyata | [Di Dunia Nyata](6-Data-Science-In-Wild/README.md) | Proyek-proyek berbasis ilmu data di dunia nyata. | [pelajaran](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 19 | Ilmu Data di Cloud | [Data Cloud](5-Data-Science-In-Cloud/README.md) | Mendistribusikan model dengan Azure Machine Learning Studio. | [pelajaran](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) dan [Maud](https://twitter.com/maudstweets) |
+| 20 | Ilmu Data di Lapangan | [Di Lapangan](6-Data-Science-In-Wild/README.md) | Proyek-proyek ilmu data di dunia nyata. | [pelajaran](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Ikuti langkah-langkah ini untuk membuka contoh ini dalam Codespace:
-1. Klik menu drop-down Kode dan pilih opsi Buka dengan Codespaces.
-2. Pilih + Codespace baru di bagian bawah panel.
-Untuk informasi lebih lanjut, lihat [dokumentasi GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+Ikuti langkah berikut untuk membuka contoh ini di Codespace:
+1. Klik menu tarik turun Code dan pilih opsi Open with Codespaces.
+2. Pilih + New codespace di bagian bawah panel.
+Untuk info lebih lanjut, lihat [dokumentasi GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Ikuti langkah-langkah ini untuk membuka repo ini dalam container menggunakan mesin lokal dan VSCode dengan ekstensi VS Code Remote - Containers:
+Ikuti langkah berikut untuk membuka repo ini dalam container menggunakan mesin lokal dan VSCode dengan ekstensi VS Code Remote - Containers:
-1. Jika ini adalah pertama kalinya Anda menggunakan container pengembangan, pastikan sistem Anda memenuhi prasyarat (misalnya sudah memasang Docker) dalam [dokumentasi memulai](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Jika ini pertama kali Anda menggunakan container pengembangan, pastikan sistem Anda memenuhi prasyarat (misalnya telah menginstal Docker) dalam [dokumentasi memulai](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Untuk menggunakan repositori ini, Anda bisa membuka repositori dalam volume Docker terisolasi:
+Untuk menggunakan repositori ini, Anda dapat membuka repositori di volume Docker terisolasi:
-**Catatan**: Di balik layar, ini akan menggunakan perintah Remote-Containers: **Clone Repository in Container Volume...** untuk mengkloning kode sumber dalam volume Docker, bukan di filesystem lokal. [Volume](https://docs.docker.com/storage/volumes/) adalah mekanisme yang disarankan untuk menyimpan data container.
+**Catatan**: Secara teknis, ini akan menggunakan perintah Remote-Containers: **Clone Repository in Container Volume...** untuk mengkloning kode sumber di volume Docker alih-alih sistem file lokal. [Volumes](https://docs.docker.com/storage/volumes/) adalah mekanisme yang disarankan untuk menyimpan data container.
-Atau buka salinan repositori yang sudah dikloning atau diunduh secara lokal:
+Atau buka versi lokal yang sudah diklon atau diunduh dari repositori:
-- Kloning repositori ini ke filesystem lokal Anda.
+- Kloning repositori ini ke sistem file lokal Anda.
- Tekan F1 dan pilih perintah **Remote-Containers: Open Folder in Container...**.
-- Pilih salinan folder yang sudah dikloning, tunggu container mulai, dan coba gunakan.
+- Pilih salinan folder yang sudah diklon, tunggu kontainer mulai, dan coba gunakan.
## Akses Offline
-Anda dapat menjalankan dokumentasi ini secara offline dengan menggunakan [Docsify](https://docsify.js.org/#/). Fork repositori ini, [pasang Docsify](https://docsify.js.org/#/quickstart) di mesin lokal Anda, kemudian di folder root repositori ini, ketik `docsify serve`. Situs web akan dilayani di port 3000 pada localhost Anda: `localhost:3000`.
+Anda dapat menjalankan dokumentasi ini secara offline dengan menggunakan [Docsify](https://docsify.js.org/#/). Fork repo ini, [instal Docsify](https://docsify.js.org/#/quickstart) di mesin lokal Anda, lalu di folder root repo ini, ketik `docsify serve`. Situs web akan dilayani di port 3000 pada localhost Anda: `localhost:3000`.
> Catatan, notebook tidak akan dirender melalui Docsify, jadi saat Anda perlu menjalankan notebook, lakukan secara terpisah di VS Code yang menjalankan kernel Python.
-## Kurikulum Lain
+## Kurikulum Lainnya
-Tim kami juga membuat kurikulum lain! Cek:
+Tim kami juga memproduksi kurikulum lain! Lihat:
### LangChain
@@ -246,11 +237,11 @@ Tim kami juga membuat kurikulum lain! Cek:
**Mengalami masalah?** Periksa [Panduan Pemecahan Masalah](TROUBLESHOOTING.md) kami untuk solusi atas masalah umum.
-Jika Anda mengalami kesulitan atau memiliki pertanyaan tentang membangun aplikasi AI. Bergabunglah dengan sesama pembelajar dan pengembang berpengalaman dalam diskusi tentang MCP. Ini adalah komunitas yang mendukung di mana pertanyaan diterima dan pengetahuan dibagikan dengan bebas.
+Jika Anda mengalami kebuntuan atau memiliki pertanyaan tentang membangun aplikasi AI. Bergabunglah dengan sesama pelajar dan pengembang berpengalaman dalam diskusi tentang MCP. Ini adalah komunitas yang mendukung di mana pertanyaan dipersilakan dan pengetahuan dibagikan secara bebas.
[](https://discord.gg/nTYy5BXMWG)
-Jika Anda memiliki umpan balik produk atau mengalami kesalahan saat membangun kunjungi:
+Jika Anda memiliki masukan produk atau menemukan kesalahan saat membangun kunjungi:
[](https://aka.ms/foundry/forum)
@@ -258,5 +249,5 @@ Jika Anda memiliki umpan balik produk atau mengalami kesalahan saat membangun ku
**Penafian**:
-Dokumen ini telah diterjemahkan menggunakan layanan terjemahan AI [Co-op Translator](https://github.com/Azure/co-op-translator). Meskipun kami berupaya untuk mencapai ketepatan, harap dicatat bahwa terjemahan otomatis mungkin mengandung kesalahan atau ketidakakuratan. Dokumen asli dalam bahasa aslinya harus dianggap sebagai sumber yang berwenang. Untuk informasi penting, disarankan menggunakan terjemahan profesional oleh penerjemah manusia. Kami tidak bertanggung jawab atas kesalahpahaman atau salah tafsir yang timbul dari penggunaan terjemahan ini.
+Dokumen ini telah diterjemahkan menggunakan layanan penerjemahan AI [Co-op Translator](https://github.com/Azure/co-op-translator). Meskipun kami berupaya mencapai akurasi, harap ketahui bahwa terjemahan otomatis mungkin mengandung kesalahan atau ketidakakuratan. Dokumen asli dalam bahasa aslinya harus dianggap sebagai sumber yang sah dan utama. Untuk informasi penting, disarankan menggunakan penerjemahan profesional oleh manusia. Kami tidak bertanggung jawab atas kesalahpahaman atau penafsiran yang keliru yang timbul dari penggunaan terjemahan ini.
\ No newline at end of file
diff --git a/translations/id/SECURITY.md b/translations/id/SECURITY.md
index 7445ff6c..f35aca81 100644
--- a/translations/id/SECURITY.md
+++ b/translations/id/SECURITY.md
@@ -1,12 +1,3 @@
-
## Keamanan
Microsoft sangat memperhatikan keamanan produk dan layanan perangkat lunaknya, termasuk semua repositori kode sumber yang dikelola melalui organisasi GitHub kami, seperti [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), dan [organisasi GitHub kami lainnya](https://opensource.microsoft.com/).
diff --git a/translations/id/SUPPORT.md b/translations/id/SUPPORT.md
index e79e8bb1..09a69193 100644
--- a/translations/id/SUPPORT.md
+++ b/translations/id/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Dukungan
## Cara melaporkan masalah dan mendapatkan bantuan
diff --git a/translations/id/TROUBLESHOOTING.md b/translations/id/TROUBLESHOOTING.md
index ebf5fdcf..80b75c30 100644
--- a/translations/id/TROUBLESHOOTING.md
+++ b/translations/id/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Panduan Pemecahan Masalah
Panduan ini memberikan solusi untuk masalah umum yang mungkin Anda temui saat bekerja dengan kurikulum Data Science untuk Pemula.
diff --git a/translations/id/USAGE.md b/translations/id/USAGE.md
index 7293dfcf..9ee410b5 100644
--- a/translations/id/USAGE.md
+++ b/translations/id/USAGE.md
@@ -1,12 +1,3 @@
-
# Panduan Penggunaan
Panduan ini menyediakan contoh dan alur kerja umum untuk menggunakan kurikulum Data Science untuk Pemula.
diff --git a/translations/id/docs/_sidebar.md b/translations/id/docs/_sidebar.md
index 0ad5f437..da72820b 100644
--- a/translations/id/docs/_sidebar.md
+++ b/translations/id/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Pendahuluan
- [Mendefinisikan Data Science](../1-Introduction/01-defining-data-science/README.md)
- [Etika Data Science](../1-Introduction/02-ethics/README.md)
diff --git a/translations/id/examples/README.md b/translations/id/examples/README.md
index 9151b784..4e6cf956 100644
--- a/translations/id/examples/README.md
+++ b/translations/id/examples/README.md
@@ -1,12 +1,3 @@
-
# Contoh Data Science untuk Pemula
Selamat datang di direktori contoh! Koleksi contoh sederhana dengan komentar yang jelas ini dirancang untuk membantu Anda memulai dengan data science, bahkan jika Anda benar-benar pemula.
diff --git a/translations/id/for-teachers.md b/translations/id/for-teachers.md
index 8455d1c0..6394bea0 100644
--- a/translations/id/for-teachers.md
+++ b/translations/id/for-teachers.md
@@ -1,12 +1,3 @@
-
## Untuk Pendidik
Apakah Anda ingin menggunakan kurikulum ini di kelas Anda? Silakan saja!
diff --git a/translations/id/quiz-app/README.md b/translations/id/quiz-app/README.md
index 6a81683f..0d331b9c 100644
--- a/translations/id/quiz-app/README.md
+++ b/translations/id/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Kuis
Kuis-kuis ini adalah kuis sebelum dan sesudah pelajaran untuk kurikulum data science di https://aka.ms/datascience-beginners
diff --git a/translations/id/sketchnotes/README.md b/translations/id/sketchnotes/README.md
index 32950255..d4e54dd7 100644
--- a/translations/id/sketchnotes/README.md
+++ b/translations/id/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Temukan semua sketchnote di sini!
## Kredit
diff --git a/translations/it/.co-op-translator.json b/translations/it/.co-op-translator.json
new file mode 100644
index 00000000..1b14092a
--- /dev/null
+++ b/translations/it/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:50:24+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "it"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-28T11:24:13+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "it"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-28T11:24:38+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "it"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:26:44+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "it"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-28T11:29:33+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "it"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-06T08:51:32+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "it"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-28T11:26:00+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "it"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:28:05+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "it"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-28T11:21:55+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "it"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-28T11:18:33+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "it"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:17:02+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "it"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:55:08+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "it"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-06T08:41:23+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "it"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-28T10:47:57+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "it"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:40:37+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "it"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-28T10:50:40+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "it"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-06T08:43:17+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "it"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-28T10:55:12+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "it"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-28T10:45:52+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-06T08:46:34+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-28T11:13:09+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-06T08:48:01+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-28T11:18:20+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-06T08:46:05+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-28T11:11:34+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:36:14+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-28T11:16:48+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-06T08:47:02+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-28T11:14:43+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-28T11:14:56+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-28T11:15:09+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-28T11:04:42+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-28T11:06:17+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-28T11:07:56+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-28T11:09:01+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-28T11:03:18+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-28T11:06:39+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-28T11:09:16+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "it"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-28T11:02:41+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "it"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:53:19+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "it"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-28T10:59:35+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "it"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:52:39+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "it"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-28T10:56:54+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "it"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:53:49+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "it"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-28T11:02:26+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "it"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-28T10:55:49+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "it"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-06T08:40:19+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "it"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-28T10:42:29+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "it"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-06T08:39:17+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "it"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-28T10:40:16+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "it"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-06T08:40:45+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "it"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-28T10:45:31+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "it"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-28T10:36:49+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "it"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:27:46+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "it"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-28T11:32:45+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "it"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-28T11:30:34+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "it"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:18:00+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "it"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-28T10:36:36+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "it"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:55:29+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "it"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:19:47+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "it"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:43:16+00:00",
+ "source_file": "README.md",
+ "language_code": "it"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-28T10:35:24+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "it"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-28T10:34:52+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "it"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:38:14+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "it"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:01:37+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "it"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-28T10:55:27+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "it"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:01:21+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "it"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:56:17+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "it"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-28T11:29:57+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "it"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-28T11:33:15+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "it"
+ }
+}
\ No newline at end of file
diff --git a/translations/it/1-Introduction/01-defining-data-science/README.md b/translations/it/1-Introduction/01-defining-data-science/README.md
index 54cff481..1ffa570a 100644
--- a/translations/it/1-Introduction/01-defining-data-science/README.md
+++ b/translations/it/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Definizione di Data Science
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/it/1-Introduction/01-defining-data-science/assignment.md b/translations/it/1-Introduction/01-defining-data-science/assignment.md
index a139d84d..d4f61a70 100644
--- a/translations/it/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/it/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Compito: Scenari di Data Science
In questo primo compito, ti chiediamo di riflettere su alcuni processi o problemi reali in diversi ambiti e su come puoi migliorarli utilizzando il processo di Data Science. Pensa ai seguenti punti:
diff --git a/translations/it/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/it/1-Introduction/01-defining-data-science/solution/assignment.md
index 7a60a5b3..fd6b3624 100644
--- a/translations/it/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/it/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Assegnazione: Scenari di Data Science
In questo primo compito, ti chiediamo di riflettere su un processo o problema reale in diversi ambiti e su come puoi migliorarlo utilizzando il processo di Data Science. Pensa ai seguenti punti:
diff --git a/translations/it/1-Introduction/02-ethics/README.md b/translations/it/1-Introduction/02-ethics/README.md
index 65c0ffc9..ea6fc377 100644
--- a/translations/it/1-Introduction/02-ethics/README.md
+++ b/translations/it/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Introduzione all'etica dei dati
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/it/1-Introduction/02-ethics/assignment.md b/translations/it/1-Introduction/02-ethics/assignment.md
index 1566a3d5..59c7539a 100644
--- a/translations/it/1-Introduction/02-ethics/assignment.md
+++ b/translations/it/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Scrivi un Caso di Studio sull'Etica dei Dati
## Istruzioni
diff --git a/translations/it/1-Introduction/03-defining-data/README.md b/translations/it/1-Introduction/03-defining-data/README.md
index 04864530..3c926b43 100644
--- a/translations/it/1-Introduction/03-defining-data/README.md
+++ b/translations/it/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Definizione dei Dati
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/it/1-Introduction/03-defining-data/assignment.md b/translations/it/1-Introduction/03-defining-data/assignment.md
index a1f080d9..a57dace1 100644
--- a/translations/it/1-Introduction/03-defining-data/assignment.md
+++ b/translations/it/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Classificazione dei Dataset
## Istruzioni
diff --git a/translations/it/1-Introduction/04-stats-and-probability/README.md b/translations/it/1-Introduction/04-stats-and-probability/README.md
index 2f061931..ada9dc2b 100644
--- a/translations/it/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/it/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Una Breve Introduzione alla Statistica e alla Probabilità
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Per aiutarci a comprendere la distribuzione dei dati, è utile parlare di **quar
Graficamente possiamo rappresentare la relazione tra mediana e quartili in un diagramma chiamato **box plot**:
-
+
Qui calcoliamo anche l'**intervallo interquartile** IQR=Q3-Q1 e i cosiddetti **outlier** - valori che si trovano al di fuori dei limiti [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/it/1-Introduction/04-stats-and-probability/assignment.md b/translations/it/1-Introduction/04-stats-and-probability/assignment.md
index e01b677c..1df44ec2 100644
--- a/translations/it/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/it/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Piccolo Studio sul Diabete
In questo compito, lavoreremo con un piccolo dataset di pazienti diabetici preso da [qui](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/it/1-Introduction/README.md b/translations/it/1-Introduction/README.md
index 16b01c0f..5fca8784 100644
--- a/translations/it/1-Introduction/README.md
+++ b/translations/it/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduzione alla Scienza dei Dati

diff --git a/translations/it/2-Working-With-Data/05-relational-databases/README.md b/translations/it/2-Working-With-Data/05-relational-databases/README.md
index 0d5c6cd3..9d453bf0 100644
--- a/translations/it/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/it/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Lavorare con i dati: database relazionali
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/it/2-Working-With-Data/05-relational-databases/assignment.md b/translations/it/2-Working-With-Data/05-relational-databases/assignment.md
index 3e2b2919..4e960dcb 100644
--- a/translations/it/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/it/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Visualizzazione dei dati sugli aeroporti
Ti è stato fornito un [database](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) basato su [SQLite](https://sqlite.org/index.html) che contiene informazioni sugli aeroporti. Lo schema è mostrato di seguito. Utilizzerai l'[estensione SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) in [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) per visualizzare informazioni sugli aeroporti di diverse città.
diff --git a/translations/it/2-Working-With-Data/06-non-relational/README.md b/translations/it/2-Working-With-Data/06-non-relational/README.md
index 0251b3fb..7b66eb8a 100644
--- a/translations/it/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/it/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Lavorare con i dati: Dati non relazionali
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/it/2-Working-With-Data/06-non-relational/assignment.md b/translations/it/2-Working-With-Data/06-non-relational/assignment.md
index be0087f9..ba34d97b 100644
--- a/translations/it/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/it/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Profitti della Soda
## Istruzioni
diff --git a/translations/it/2-Working-With-Data/07-python/README.md b/translations/it/2-Working-With-Data/07-python/README.md
index 61b7f00a..34073bb6 100644
--- a/translations/it/2-Working-With-Data/07-python/README.md
+++ b/translations/it/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Lavorare con i Dati: Python e la Libreria Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/it/2-Working-With-Data/07-python/assignment.md b/translations/it/2-Working-With-Data/07-python/assignment.md
index 6a7f8728..c40c1d9d 100644
--- a/translations/it/2-Working-With-Data/07-python/assignment.md
+++ b/translations/it/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Compito per l'elaborazione dei dati in Python
In questo compito, ti chiederemo di approfondire il codice che abbiamo iniziato a sviluppare nelle nostre sfide. Il compito è suddiviso in due parti:
diff --git a/translations/it/2-Working-With-Data/08-data-preparation/README.md b/translations/it/2-Working-With-Data/08-data-preparation/README.md
index 2a5e3a93..fbf5b21a 100644
--- a/translations/it/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/it/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Lavorare con i dati: Preparazione dei dati
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/it/2-Working-With-Data/08-data-preparation/assignment.md b/translations/it/2-Working-With-Data/08-data-preparation/assignment.md
index 963eae52..7ad87815 100644
--- a/translations/it/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/it/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Valutazione dei dati di un modulo
Un cliente ha testato un [piccolo modulo](../../../../2-Working-With-Data/08-data-preparation/index.html) per raccogliere alcuni dati di base sulla propria clientela. Ha portato i risultati a te per validare i dati raccolti. Puoi aprire la pagina `index.html` nel browser per dare un'occhiata al modulo.
diff --git a/translations/it/2-Working-With-Data/README.md b/translations/it/2-Working-With-Data/README.md
index 0e57ad2b..34e5ef85 100644
--- a/translations/it/2-Working-With-Data/README.md
+++ b/translations/it/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Lavorare con i Dati

diff --git a/translations/it/3-Data-Visualization/09-visualization-quantities/README.md b/translations/it/3-Data-Visualization/09-visualization-quantities/README.md
index f754649c..c224ce17 100644
--- a/translations/it/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/it/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualizzare le quantità
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/it/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/it/3-Data-Visualization/09-visualization-quantities/assignment.md
index f11343ea..ac70da03 100644
--- a/translations/it/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/it/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linee, Dispersioni e Barre
## Istruzioni
diff --git a/translations/it/3-Data-Visualization/10-visualization-distributions/README.md b/translations/it/3-Data-Visualization/10-visualization-distributions/README.md
index 3a07521c..7bb20757 100644
--- a/translations/it/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/it/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualizzare le Distribuzioni
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/it/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/it/3-Data-Visualization/10-visualization-distributions/assignment.md
index 3e9fafdd..711f1459 100644
--- a/translations/it/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/it/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Applica le tue competenze
## Istruzioni
diff --git a/translations/it/3-Data-Visualization/11-visualization-proportions/README.md b/translations/it/3-Data-Visualization/11-visualization-proportions/README.md
index 2287da4b..f8c2f9f6 100644
--- a/translations/it/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/it/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualizzare le Proporzioni
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/it/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/it/3-Data-Visualization/11-visualization-proportions/assignment.md
index a05c899a..f9262635 100644
--- a/translations/it/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/it/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Provalo in Excel
## Istruzioni
diff --git a/translations/it/3-Data-Visualization/12-visualization-relationships/README.md b/translations/it/3-Data-Visualization/12-visualization-relationships/README.md
index afd9bf84..30dca934 100644
--- a/translations/it/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/it/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualizzare le Relazioni: Tutto sul Miele 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/it/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/it/3-Data-Visualization/12-visualization-relationships/assignment.md
index 8047e929..06ef78e6 100644
--- a/translations/it/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/it/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Esplora l'alveare
## Istruzioni
diff --git a/translations/it/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/it/3-Data-Visualization/13-meaningful-visualizations/README.md
index 06d96bf2..9085f825 100644
--- a/translations/it/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/it/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Creare Visualizzazioni Significative
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/it/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/it/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index b960050b..1194162f 100644
--- a/translations/it/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/it/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Crea la tua visualizzazione personalizzata
## Istruzioni
diff --git a/translations/it/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/it/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index bea40b99..58907bf0 100644
--- a/translations/it/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/it/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Progetto di visualizzazione dati Dangerous Liaisons
Per iniziare, assicurati di avere NPM e Node installati e funzionanti sulla tua macchina. Installa le dipendenze (npm install) e poi esegui il progetto localmente (npm run serve):
diff --git a/translations/it/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/it/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 68ffcf49..350b5ff9 100644
--- a/translations/it/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/it/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Progetto di visualizzazione dati Dangerous Liaisons
Per iniziare, assicurati di avere NPM e Node installati e funzionanti sulla tua macchina. Installa le dipendenze (npm install) e poi esegui il progetto localmente (npm run serve):
diff --git a/translations/it/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/it/3-Data-Visualization/R/09-visualization-quantities/README.md
index a3bffc4e..2b4f2b53 100644
--- a/translations/it/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/it/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualizzare le Quantità
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/it/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/it/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 8c41d346..61efd067 100644
--- a/translations/it/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/it/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linee, Dispersioni e Barre
## Istruzioni
diff --git a/translations/it/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/it/3-Data-Visualization/R/10-visualization-distributions/README.md
index 5b40c8ae..56c74461 100644
--- a/translations/it/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/it/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualizzare le distribuzioni
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/it/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/it/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index a6df8e18..92b13724 100644
--- a/translations/it/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/it/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Applica le tue competenze
## Istruzioni
diff --git a/translations/it/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/it/3-Data-Visualization/R/11-visualization-proportions/README.md
index 36d69350..b9eb271b 100644
--- a/translations/it/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/it/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualizzare le Proporzioni
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/it/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/it/3-Data-Visualization/R/12-visualization-relationships/README.md
index 7604c7df..326470c2 100644
--- a/translations/it/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/it/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualizzare le Relazioni: Tutto sul Miele 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/it/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/it/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index dd5ddcb8..760c141b 100644
--- a/translations/it/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/it/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Creare Visualizzazioni Significative
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/it/3-Data-Visualization/README.md b/translations/it/3-Data-Visualization/README.md
index e88c1d29..99656afc 100644
--- a/translations/it/3-Data-Visualization/README.md
+++ b/translations/it/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Visualizzazioni

diff --git a/translations/it/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/it/4-Data-Science-Lifecycle/14-Introduction/README.md
index b8f817ef..5d6e6589 100644
--- a/translations/it/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/it/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduzione al Ciclo di Vita della Data Science
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/it/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/it/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 224940d2..3c5b1030 100644
--- a/translations/it/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/it/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Valutare un Dataset
Un cliente si è rivolto al tuo team per ricevere aiuto nell'analisi delle abitudini stagionali di spesa dei clienti dei taxi a New York City.
diff --git a/translations/it/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/it/4-Data-Science-Lifecycle/15-analyzing/README.md
index d71d5e22..06b38f35 100644
--- a/translations/it/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/it/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Il ciclo di vita della Data Science: Analisi
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/it/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/it/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index be787cee..0137adbf 100644
--- a/translations/it/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/it/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Esplorare per trovare risposte
Questa è una continuazione del [compito](../14-Introduction/assignment.md) della lezione precedente, in cui abbiamo dato un'occhiata veloce al set di dati. Ora esamineremo i dati in modo più approfondito.
diff --git a/translations/it/4-Data-Science-Lifecycle/16-communication/README.md b/translations/it/4-Data-Science-Lifecycle/16-communication/README.md
index 377a3401..3a948945 100644
--- a/translations/it/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/it/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Il Ciclo di Vita della Data Science: Comunicazione
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/it/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/it/4-Data-Science-Lifecycle/16-communication/assignment.md
index 80d4be73..6e4b4584 100644
--- a/translations/it/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/it/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Racconta una storia
## Istruzioni
diff --git a/translations/it/4-Data-Science-Lifecycle/README.md b/translations/it/4-Data-Science-Lifecycle/README.md
index 3ae81bdd..3bf2e098 100644
--- a/translations/it/4-Data-Science-Lifecycle/README.md
+++ b/translations/it/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Il ciclo di vita della Data Science

diff --git a/translations/it/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/it/5-Data-Science-In-Cloud/17-Introduction/README.md
index 17c3aaeb..e9ff0863 100644
--- a/translations/it/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/it/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduzione alla Data Science nel Cloud
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/it/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/it/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index e8f60d16..6d3fbd80 100644
--- a/translations/it/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/it/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Ricerca di Mercato
## Istruzioni
diff --git a/translations/it/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/it/5-Data-Science-In-Cloud/18-Low-Code/README.md
index a2acd3be..fcadcaeb 100644
--- a/translations/it/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/it/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Data Science nel Cloud: Il metodo "Low code/No code"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/it/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/it/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 2694a89e..14f8cf59 100644
--- a/translations/it/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/it/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Progetto di Data Science Low code/No code su Azure ML
## Istruzioni
diff --git a/translations/it/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/it/5-Data-Science-In-Cloud/19-Azure/README.md
index 02a333b3..2a67f71b 100644
--- a/translations/it/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/it/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Data Science nel Cloud: Il metodo "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/it/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/it/5-Data-Science-In-Cloud/19-Azure/assignment.md
index f3574313..b38664f7 100644
--- a/translations/it/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/it/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Progetto di Data Science con Azure ML SDK
## Istruzioni
diff --git a/translations/it/5-Data-Science-In-Cloud/README.md b/translations/it/5-Data-Science-In-Cloud/README.md
index 47928a95..25751e0d 100644
--- a/translations/it/5-Data-Science-In-Cloud/README.md
+++ b/translations/it/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Data Science nel Cloud

diff --git a/translations/it/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/it/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 2735ad03..1e76537e 100644
--- a/translations/it/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/it/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Data Science nel Mondo Reale
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/it/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/it/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 829f1ff4..ac272c1f 100644
--- a/translations/it/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/it/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Esplora un Dataset del Planetary Computer
## Istruzioni
diff --git a/translations/it/6-Data-Science-In-Wild/README.md b/translations/it/6-Data-Science-In-Wild/README.md
index f318dde0..bf9dbcc7 100644
--- a/translations/it/6-Data-Science-In-Wild/README.md
+++ b/translations/it/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Data Science nel Mondo Reale
Applicazioni pratiche della data science in diversi settori.
diff --git a/translations/it/AGENTS.md b/translations/it/AGENTS.md
index 6a586a3a..6cc77334 100644
--- a/translations/it/AGENTS.md
+++ b/translations/it/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Panoramica del Progetto
diff --git a/translations/it/CODE_OF_CONDUCT.md b/translations/it/CODE_OF_CONDUCT.md
index d74e8ddd..a7b62e17 100644
--- a/translations/it/CODE_OF_CONDUCT.md
+++ b/translations/it/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Codice di Condotta per l'Open Source di Microsoft
Questo progetto ha adottato il [Codice di Condotta per l'Open Source di Microsoft](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/it/CONTRIBUTING.md b/translations/it/CONTRIBUTING.md
index 0f04c464..33de730a 100644
--- a/translations/it/CONTRIBUTING.md
+++ b/translations/it/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Contribuire a Data Science for Beginners
Grazie per il tuo interesse nel contribuire al curriculum di Data Science for Beginners! Accogliamo con piacere i contributi della comunità.
diff --git a/translations/it/INSTALLATION.md b/translations/it/INSTALLATION.md
index e1cd28a5..3d2bf37a 100644
--- a/translations/it/INSTALLATION.md
+++ b/translations/it/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Guida all'Installazione
Questa guida ti aiuterà a configurare l'ambiente per lavorare con il curriculum "Data Science for Beginners".
diff --git a/translations/it/README.md b/translations/it/README.md
index f3541804..923a61ac 100644
--- a/translations/it/README.md
+++ b/translations/it/README.md
@@ -1,12 +1,3 @@
-
# Data Science per Principianti - Un Curriculum
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,76 +17,76 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Gli Azure Cloud Advocates di Microsoft sono lieti di offrire un curriculum di 10 settimane, con 20 lezioni, tutto dedicato alla Data Science. Ogni lezione include quiz pre-lezione e post-lezione, istruzioni scritte per completare la lezione, una soluzione e un compito. La nostra pedagogia basata su progetti permette di imparare costruendo, un modo comprovato per far 'assorbire' nuove competenze.
+Gli Azure Cloud Advocates di Microsoft sono lieti di offrire un curriculum di 10 settimane, 20 lezioni tutto dedicato alla Data Science. Ogni lezione include quiz pre-lezione e post-lezione, istruzioni scritte per completare la lezione, una soluzione e un compito. La nostra pedagogia basata su progetti permette di imparare costruendo, un modo provato per far sì che le nuove competenze "rimangano".
-**Un sentito ringraziamento ai nostri autori:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Un sentito grazie ai nostri autori:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Ringraziamenti speciali 🙏 ai nostri autori, revisori e contributori di contenuti, [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** in particolare Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Ringraziamenti speciali 🙏 ai nostri autori, revisori e contributori di contenuti [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** in particolare Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Data Science Per Principianti - _Sketchnote di [@nitya](https://twitter.com/nitya)_ |
+| Data Science per Principianti - _Sketchnote di [@nitya](https://twitter.com/nitya)_ |
### 🌐 Supporto Multilingue
-#### Supportato tramite GitHub Action (Automatico e Sempre Aggiornato)
+#### Supportato tramite GitHub Action (Automatizzato e Sempre Aggiornato)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](./README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](./README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **Preferisci Clonare Localmente?**
+> **Preferisci clonare localmente?**
-> Questo repository include più di 50 traduzioni linguistiche che aumentano significativamente la dimensione del download. Per clonare senza traduzioni, usa sparse checkout:
+> Questo repository include più di 50 traduzioni che aumentano significativamente la dimensione del download. Per clonare senza traduzioni, usa sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Questo ti dà tutto il necessario per completare il corso con un download molto più veloce.
+> Questo ti dà tutto il necessario per completare il corso con un download molto più rapido.
-**Se desideri avere supporto per ulteriori lingue, quelle supportate sono elencate [qui](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Se desideri avere supporto per ulteriori lingue di traduzione, le lingue supportate sono elencate [qui](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Unisciti alla nostra Comunità
+#### Unisciti alla nostra comunità
[](https://discord.gg/nTYy5BXMWG)
-Abbiamo in corso una serie Discord "Impara con l'AI", scopri di più e unisciti a noi su [Learn with AI Series](https://aka.ms/learnwithai/discord) dal 18 al 30 settembre 2025. Riceverai consigli e trucchi per usare GitHub Copilot per la Data Science.
+Abbiamo in corso una serie su Discord "impara con l'AI", scopri di più e unisciti a noi su [Learn with AI Series](https://aka.ms/learnwithai/discord) dal 18 al 30 settembre 2025. Riceverai suggerimenti e trucchi sull'uso di GitHub Copilot per la Data Science.
-
+
# Sei uno studente?
Inizia con le seguenti risorse:
-- [Pagina Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) In questa pagina troverai risorse per principianti, pacchetti per studenti e anche modi per ottenere un voucher gratuito per la certificazione. Questa è una pagina che vorrai aggiungere ai preferiti e controllare di tanto in tanto poiché cambiamo il contenuto almeno mensilmente.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Unisciti a una comunità globale di ambasciatori studenteschi, questo potrebbe essere il tuo modo per entrare in Microsoft.
+- [Pagina Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) In questa pagina troverai risorse per principianti, pacchetti per studenti e persino modi per ottenere un voucher per la certificazione gratuito. Questa è una pagina che vuoi aggiungere ai preferiti e controllare di tanto in tanto, poiché aggiorniamo i contenuti almeno mensilmente.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Unisciti a una comunità globale di ambasciatori studenti, questo potrebbe essere il tuo modo per entrare in Microsoft.
-# Iniziare
+# Come iniziare
## 📚 Documentazione
-- **[Guida all'Installazione](INSTALLATION.md)** - Istruzioni passo dopo passo per configurare l'ambiente per principianti
-- **[Guida all'Uso](USAGE.md)** - Esempi e flussi di lavoro comuni
-- **[Risoluzione Problemi](TROUBLESHOOTING.md)** - Soluzioni ai problemi comuni
-- **[Guida alla Contribuzione](CONTRIBUTING.md)** - Come contribuire a questo progetto
-- **[Per Insegnanti](for-teachers.md)** - Indicazioni didattiche e risorse per la classe
+- **[Guida all'installazione](INSTALLATION.md)** - Istruzioni passo-passo per principianti
+- **[Guida all'uso](USAGE.md)** - Esempi e flussi di lavoro comuni
+- **[Risoluzione dei problemi](TROUBLESHOOTING.md)** - Soluzioni ai problemi comuni
+- **[Guida alla contribuzione](CONTRIBUTING.md)** - Come contribuire a questo progetto
+- **[Per insegnanti](for-teachers.md)** - Indicazioni didattiche e risorse per la classe
-## 👨🎓 Per gli Studenti
-> **Principianti Completi**: Nuovo nel campo della data science? Inizia con i nostri [esempi per principianti](examples/README.md)! Questi esempi semplici e ben commentati ti aiuteranno a comprendere le basi prima di affrontare l'intero curriculum.
-> **[Studenti](https://aka.ms/student-page)**: per usare questo curriculum autonomamente, fai il fork dell'intero repository e completa gli esercizi da solo, iniziando con un quiz pre-lezione. Poi leggi la lezione e completa il resto delle attività. Cerca di creare i progetti comprendendo le lezioni piuttosto che copiando il codice della soluzione; tuttavia, questo codice è disponibile nelle cartelle /solutions in ogni lezione orientata al progetto. Un'altra idea potrebbe essere formare un gruppo di studio con amici e affrontare i contenuti insieme. Per ulteriori studi, raccomandiamo [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+## 👨🎓 Per studenti
+> **Principianti assoluti**: Nuovo alla data science? Inizia con i nostri [esempi per principianti](examples/README.md)! Questi esempi semplici e ben commentati ti aiuteranno a comprendere le basi prima di immergerti nel curriculum completo.
+> **[Studenti](https://aka.ms/student-page)**: per usare questo curriculum da soli, fai il fork del repository completo e completa gli esercizi in autonomia, iniziando con un quiz pre-lezione. Poi leggi la lezione e completa il resto delle attività. Cerca di creare i progetti comprendendo le lezioni più che copiando il codice soluzione; comunque quel codice è disponibile nelle cartelle /solutions di ogni lezione orientata al progetto. Un’altra idea potrebbe essere formare un gruppo di studio con amici e affrontare insieme i contenuti. Per ulteriori approfondimenti, consigliamo [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Avvio rapido:**
-1. Consulta la [Guida all'Installazione](INSTALLATION.md) per configurare il tuo ambiente
-2. Rivedi la [Guida all'Uso](USAGE.md) per imparare a lavorare con il curriculum
-3. Inizia dalla Lezione 1 e procedi in ordine
-4. Unisciti alla nostra [community Discord](https://aka.ms/ds4beginners/discord) per supporto
+1. Consulta la [Guida all'installazione](INSTALLATION.md) per configurare l'ambiente
+2. Revisione della [Guida all'uso](USAGE.md) per imparare come lavorare con il curriculum
+3. Inizia con la Lezione 1 e procedi sequenzialmente
+4. Unisciti alla nostra [comunità Discord](https://aka.ms/ds4beginners/discord) per supporto
-## 👩🏫 Per gli Insegnanti
-
-> **Insegnanti**: abbiamo [incluso alcuni suggerimenti](for-teachers.md) su come utilizzare questo curriculum. Ci piacerebbe ricevere il vostro feedback [nel nostro forum di discussione](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## 👩🏫 Per insegnanti
+> **Insegnanti**: abbiamo [incluso alcuni suggerimenti](for-teachers.md) su come usare questo curriculum. Ci piacerebbe ricevere il tuo feedback [nel nostro forum di discussione](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Incontra il Team
+
[](https://youtu.be/8mzavjQSMM4 "Video promozionale")
**Gif di** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
@@ -104,11 +95,11 @@ Inizia con le seguenti risorse:
## Pedagogia
-Abbiamo scelto due principi pedagogici durante la creazione di questo curriculum: assicurare che sia basato su progetti e che includa quiz frequenti. Al termine di questa serie, gli studenti avranno appreso i principi base della data science, compresi i concetti etici, la preparazione dei dati, diversi modi di lavorare con i dati, la visualizzazione dei dati, l'analisi dei dati, casi d'uso reali della data science e altro ancora.
+Abbiamo scelto due principi pedagogici durante la costruzione di questo curriculum: assicurare che sia basato su progetti e che includa quiz frequenti. Alla fine di questa serie, gli studenti avranno appreso i principi base della scienza dei dati, inclusi concetti etici, preparazione dei dati, diversi modi di lavorare con i dati, visualizzazione dei dati, analisi dei dati, casi d'uso reali della scienza dei dati e altro.
-Inoltre, un quiz a basso rischio prima della lezione permette allo studente di orientarsi verso l'apprendimento di un argomento, mentre un secondo quiz dopo la lezione ne garantisce una ulteriore ritenzione. Questo curriculum è stato progettato per essere flessibile e divertente e può essere seguito integralmente o in parte. I progetti iniziano con esempi semplici e diventano sempre più complessi entro la fine del ciclo di 10 settimane.
+Inoltre, un quiz a basso impatto prima di una lezione stabilisce l'intenzione dello studente verso l'apprendimento di un argomento, mentre un secondo quiz dopo la lezione assicura una maggiore ritenzione. Questo curriculum è stato progettato per essere flessibile e divertente e può essere seguito interamente o parzialmente. I progetti partono da livelli semplici e diventano sempre più complessi entro la fine del ciclo di 10 settimane.
-> Trova il nostro [Codice di Condotta](CODE_OF_CONDUCT.md), le linee guida per [Contributi](CONTRIBUTING.md), [Traduzioni](TRANSLATIONS.md). Accogliamo volentieri i tuoi feedback costruttivi!
+> Trova il nostro [Codice di Condotta](CODE_OF_CONDUCT.md), le linee guida per il [Contributo](CONTRIBUTING.md), la [Traduzione](TRANSLATIONS.md). Accogliamo con piacere i tuoi feedback costruttivi!
## Ogni lezione include:
@@ -116,23 +107,23 @@ Inoltre, un quiz a basso rischio prima della lezione permette allo studente di o
- Video supplementare opzionale
- Quiz di riscaldamento pre-lezione
- Lezione scritta
-- Per le lezioni basate su progetti, guide passo-passo su come costruire il progetto
+- Per le lezioni basate su progetti, guide passo passo su come costruire il progetto
- Verifiche di conoscenza
- Una sfida
-- Letture supplementari
+- Lettura supplementare
- Compito
- [Quiz post-lezione](https://ff-quizzes.netlify.app/en/)
-> **Una nota sui quiz**: Tutti i quiz sono contenuti nella cartella Quiz-App, per un totale di 40 quiz con tre domande ciascuno. Sono linkati all'interno delle lezioni, ma l'app quiz può essere eseguita localmente o distribuita su Azure; segui le istruzioni nella cartella `quiz-app`. Stanno venendo progressivamente localizzati.
+> **Una nota sui quiz**: Tutti i quiz si trovano nella cartella Quiz-App, per un totale di 40 quiz da tre domande ciascuno. Sono collegati all’interno delle lezioni, ma l’app quiz può essere eseguita localmente o distribuita su Azure; segui le istruzioni nella cartella `quiz-app`. Sono progressivamente localizzati.
-## 🎓 Esempi per principianti
+## 🎓 Esempi per Principianti
-**Nuovo nella Data Science?** Abbiamo creato una speciale [cartella di esempi](examples/README.md) con codice semplice e ben commentato per aiutarti a iniziare:
+**Nuovo nella Scienza dei Dati?** Abbiamo creato una speciale [directory di esempi](examples/README.md) con codice semplice e ben commentato per aiutarti a iniziare:
-- 🌟 **Hello World** - Il tuo primo programma di data science
-- 📂 **Caricamento dei Dati** - Impara a leggere e esplorare i dataset
-- 📊 **Analisi Semplice** - Calcola statistiche e scopri modelli
-- 📈 **Visualizzazione Base** - Crea grafici e diagrammi
+- 🌟 **Hello World** - Il tuo primo programma di scienza dei dati
+- 📂 **Caricamento Dati** - Impara a leggere ed esplorare dataset
+- 📊 **Analisi Semplice** - Calcola statistiche e trova modelli
+- 📈 **Visualizzazione Base** - Crea grafici e tabelle
- 🔬 **Progetto Reale** - Workflow completo dall'inizio alla fine
Ogni esempio include commenti dettagliati che spiegano ogni passaggio, perfetto per principianti assoluti!
@@ -142,78 +133,78 @@ Ogni esempio include commenti dettagliati che spiegano ogni passaggio, perfetto
## Lezioni
-||
+||
|:---:|
-| Data Science Per Principianti: Roadmap - _Sketchnote di [@nitya](https://twitter.com/nitya)_ |
+| Scienza dei Dati per Principianti: Roadmap - _Sketchnote di [@nitya](https://twitter.com/nitya)_ |
| Numero Lezione | Argomento | Raggruppamento Lezione | Obiettivi di Apprendimento | Lezione Collegata | Autore |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Definire la Data Science | [Introduzione](1-Introduction/README.md) | Impara i concetti base dietro la data science e come è correlata all'intelligenza artificiale, al machine learning e ai big data. | [lezione](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Etica nella Data Science | [Introduzione](1-Introduction/README.md) | Concetti, sfide e framework di etica dei dati. | [lezione](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Definire i Dati | [Introduzione](1-Introduction/README.md) | Come i dati sono classificati e le loro fonti comuni. | [lezione](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Introduzione a Statistica e Probabilità | [Introduzione](1-Introduction/README.md) | Le tecniche matematiche di probabilità e statistica per comprendere i dati. | [lezione](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Lavorare con Dati Relazionali | [Lavorare con i Dati](2-Working-With-Data/README.md) | Introduzione ai dati relazionali e le basi dell'esplorazione e analisi di dati relazionali con il Structured Query Language, noto anche come SQL (pronunciato “see-quell”). | [lezione](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Lavorare con Dati NoSQL | [Lavorare con i Dati](2-Working-With-Data/README.md) | Introduzione ai dati non relazionali, i loro vari tipi e le basi per esplorare e analizzare database di documenti. | [lezione](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Lavorare con Python | [Lavorare con i Dati](2-Working-With-Data/README.md) | Nozioni base sull'uso di Python per l'esplorazione dei dati con librerie come Pandas. Si raccomanda una conoscenza di base della programmazione Python. | [lezione](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Preparazione dei Dati | [Lavorare con i Dati](2-Working-With-Data/README.md) | Argomenti su tecniche di pulizia e trasformazione dei dati per gestire sfide di dati mancanti, inaccurati o incompleti. | [lezione](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Visualizzazione delle Quantità | [Visualizzazione dei Dati](3-Data-Visualization/README.md) | Impara come usare Matplotlib per visualizzare dati sugli uccelli 🦆 | [lezione](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Visualizzazione delle Distribuzioni di Dati | [Visualizzazione dei Dati](3-Data-Visualization/README.md) | Visualizzazione di osservazioni e tendenze all'interno di un intervallo. | [lezione](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Visualizzazione delle Proporzioni | [Visualizzazione dei Dati](3-Data-Visualization/README.md) | Visualizzazione di percentuali discrete e raggruppate. | [lezione](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Visualizzazione delle Relazioni | [Visualizzazione dei Dati](3-Data-Visualization/README.md) | Visualizzazione di connessioni e correlazioni tra insiemi di dati e delle loro variabili. | [lezione](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Visualizzazioni Significative | [Visualizzazione dei Dati](3-Data-Visualization/README.md) | Tecniche e indicazioni per rendere le tue visualizzazioni preziose per una risoluzione efficace dei problemi e per ottenere insight. | [lezione](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Introduzione al ciclo di vita della Data Science | [Ciclo di vita](4-Data-Science-Lifecycle/README.md) | Introduzione al ciclo di vita della data science e al suo primo passo di acquisizione ed estrazione dei dati. | [lezione](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analisi | [Ciclo di vita](4-Data-Science-Lifecycle/README.md) | Questa fase del ciclo di vita della data science si concentra sulle tecniche per analizzare i dati. | [lezione](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Comunicazione | [Ciclo di vita](4-Data-Science-Lifecycle/README.md) | Questa fase del ciclo di vita della data science si concentra sulla presentazione degli insight dai dati in modo che sia più facile per i decisori comprenderli. | [lezione](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Data Science nel Cloud | [Dati Cloud](5-Data-Science-In-Cloud/README.md) | Questa serie di lezioni introduce la data science nel cloud e i suoi benefici. | [lezione](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
-| 18 | Data Science nel Cloud | [Dati Cloud](5-Data-Science-In-Cloud/README.md) | Addestrare modelli usando strumenti Low Code. |[lezione](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
-| 19 | Data Science nel Cloud | [Dati Cloud](5-Data-Science-In-Cloud/README.md) | Distribuzione di modelli con Azure Machine Learning Studio. | [lezione](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
-| 20 | Data Science sul campo | [Nel campo](6-Data-Science-In-Wild/README.md) | Progetti guidati dalla data science nel mondo reale. | [lezione](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | Definizione di Scienza dei Dati | [Introduzione](1-Introduction/README.md) | Impara i concetti base della scienza dei dati e come si relaziona con intelligenza artificiale, machine learning e big data. | [lezione](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Etica nella Scienza dei Dati | [Introduzione](1-Introduction/README.md) | Concetti, sfide e framework dell’etica dei dati. | [lezione](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Definizione di Dati | [Introduzione](1-Introduction/README.md) | Come i dati sono classificati e le loro fonti comuni. | [lezione](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Introduzione a Statistica e Probabilità | [Introduzione](1-Introduction/README.md) | Le tecniche matematiche della probabilità e della statistica per comprendere i dati. | [lezione](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Lavorare con Dati Relazionali | [Lavorare con i Dati](2-Working-With-Data/README.md) | Introduzione ai dati relazionali e le basi dell'esplorazione e analisi con il Structured Query Language, noto come SQL (pronunciato “see-quell”). | [lezione](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Lavorare con Dati NoSQL | [Lavorare con i Dati](2-Working-With-Data/README.md) | Introduzione ai dati non relazionali, i suoi vari tipi e le basi dell'esplorazione e analisi di database di documenti. | [lezione](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Lavorare con Python | [Lavorare con i Dati](2-Working-With-Data/README.md) | Basi dell'uso di Python per l'esplorazione dei dati con librerie come Pandas. Si raccomanda una comprensione base della programmazione Python. | [lezione](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Preparazione dei Dati | [Lavorare con i Dati](2-Working-With-Data/README.md) | Temi relativi a tecniche di pulizia e trasformazione dei dati per affrontare sfide di dati mancanti, inaccurati o incompleti. | [lezione](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Visualizzazione di Quantità | [Data Visualization](3-Data-Visualization/README.md) | Impara a usare Matplotlib per visualizzare dati ornitologici 🦆 | [lezione](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Visualizzare Distribuzioni di Dati | [Data Visualization](3-Data-Visualization/README.md) | Visualizzare osservazioni e tendenze all’interno di un intervallo. | [lezione](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Visualizzare Proporzioni | [Data Visualization](3-Data-Visualization/README.md) | Visualizzare percentuali discrete e raggruppate. | [lezione](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Visualizzare Relazioni | [Data Visualization](3-Data-Visualization/README.md) | Visualizzare connessioni e correlazioni tra insiemi di dati e variabili. | [lezione](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Visualizzazioni Significative | [Data Visualization](3-Data-Visualization/README.md) | Tecniche e indicazioni per rendere le tue visualizzazioni preziose per una risoluzione efficace dei problemi e approfondimenti. | [lezione](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Introduzione al ciclo di vita della Scienza dei Dati | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Introduzione al ciclo di vita della scienza dei dati e il suo primo passo di acquisizione ed estrazione dei dati. | [lezione](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Analisi | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Questa fase del ciclo di vita della scienza dei dati si concentra sulle tecniche per analizzare i dati. | [lezione](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Comunicazione | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Questa fase del ciclo di vita della scienza dei dati si concentra sul presentare gli insight dai dati in modo che sia più facile per i decisori comprendere. | [lezione](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Scienza dei Dati nel Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Questa serie di lezioni introduce la scienza dei dati nel cloud e i suoi vantaggi. | [lezione](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
+| 18 | Scienza dei Dati nel Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Addestramento modelli usando strumenti Low Code. |[lezione](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
+| 19 | Scienza dei Dati nel Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Distribuzione dei modelli con Azure Machine Learning Studio. | [lezione](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
+| 20 | Scienza dei Dati nel Mondo Reale | [In the Wild](6-Data-Science-In-Wild/README.md) | Progetti di scienza dei dati nel mondo reale. | [lezione](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Segui questi passaggi per aprire questo esempio in un Codespace:
-1. Clicca sul menu a discesa Code e seleziona l'opzione Open with Codespaces.
+1. Clicca sul menu a tendina Code e seleziona l'opzione Open with Codespaces.
2. Seleziona + New codespace in fondo al pannello.
-Per maggiori informazioni, consulta la [documentazione GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+Per ulteriori informazioni, consulta la [documentazione GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Segui questi passaggi per aprire questo repo in un container usando la tua macchina locale e VSCode con l'estensione VS Code Remote - Containers:
+Segui questi passaggi per aprire questo repo in un container usando la tua macchina locale e VSCode con l’estensione VS Code Remote - Containers:
-1. Se è la prima volta che usi un container di sviluppo, assicurati che il tuo sistema soddisfi i prerequisiti (ad esempio, avere Docker installato) nella [documentazione di avvio](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Se è la prima volta che usi un container di sviluppo, assicurati che il sistema soddisfi i prerequisiti (cioè avere Docker installato) nella [documentazione per iniziare](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Per usare questo repository, puoi aprirlo in un volume Docker isolato:
+Per usare questo repository, puoi o aprire il repository in un volume Docker isolato:
-**Nota**: Sotto il cofano, questo userà il comando Remote-Containers: **Clone Repository in Container Volume...** per clonare il codice sorgente in un volume Docker anziché nel filesystem locale. I [volumi](https://docs.docker.com/storage/volumes/) sono il meccanismo preferito per persistere dati del container.
+**Nota**: Dietro le quinte, questo userà il comando Remote-Containers: **Clone Repository in Container Volume...** per clonare il codice sorgente in un volume Docker invece che nel filesystem locale. I [volumi](https://docs.docker.com/storage/volumes/) sono il meccanismo preferito per persistere dati del container.
Oppure apri una copia clonata o scaricata localmente del repository:
-- Clona questo repository sul tuo filesystem locale.
+- Clona questo repository nel tuo filesystem locale.
- Premi F1 e seleziona il comando **Remote-Containers: Open Folder in Container...**.
-- Seleziona la copia clonata di questa cartella, aspetta che il container si avvii e inizia a usarlo.
+- Seleziona la copia clonata di questa cartella, attendi l’avvio del container e prova.
-## Accesso offline
+## Accesso Offline
-Puoi eseguire questa documentazione offline usando [Docsify](https://docsify.js.org/#/). Forka questo repo, [installa Docsify](https://docsify.js.org/#/quickstart) sulla tua macchina locale, poi nella cartella radice di questo repo, digita `docsify serve`. Il sito sarà servito sulla porta 3000 sul tuo localhost: `localhost:3000`.
+Puoi eseguire questa documentazione offline usando [Docsify](https://docsify.js.org/#/). Fai il fork di questo repo, [installa Docsify](https://docsify.js.org/#/quickstart) sulla tua macchina locale, quindi nella cartella principale di questo repo, digita `docsify serve`. Il sito sarà servito sulla porta 3000 in locale: `localhost:3000`.
-> Nota, i notebook non saranno renderizzati tramite Docsify, quindi quando devi eseguire un notebook, fallo separatamente in VS Code con un kernel Python.
+> Nota, i notebook non saranno resi via Docsify, quindi quando devi eseguire un notebook, fallo separatamente in VS Code con un kernel Python attivo.
## Altri Curricula
-Il nostro team produce altri curricula! Dai un'occhiata a:
+Il nostro team produce altri curricula! Dai un’occhiata:
### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchain4j-for-beginners)
[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
-### Azure / Edge / MCP / Agenti
+### Azure / Edge / MCP / Agent
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
@@ -225,38 +216,38 @@ Il nostro team produce altri curricula! Dai un'occhiata a:
---
-### Apprendimento Fondamentale
+### Apprendimento di Base
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### Serie Copilot
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-## Ottenere Aiuto
+## Ottieni Aiuto
**Hai problemi?** Consulta la nostra [Guida alla Risoluzione dei Problemi](TROUBLESHOOTING.md) per soluzioni ai problemi comuni.
-Se rimani bloccato o hai domande sulla creazione di app AI, unisciti a altri studenti e sviluppatori esperti nelle discussioni su MCP. È una comunità di supporto dove le domande sono benvenute e la conoscenza viene condivisa liberamente.
+Se rimani bloccato o hai domande sulla creazione di app AI. Unisciti ad altri studenti e sviluppatori esperti nelle discussioni su MCP. È una comunità di supporto dove le domande sono benvenute e la conoscenza viene condivisa liberamente.
[](https://discord.gg/nTYy5BXMWG)
-Se hai feedback sul prodotto o errori durante lo sviluppo visita:
+Se hai feedback sul prodotto o errori durante la creazione visita:
[](https://aka.ms/foundry/forum)
---
-**Disclaimer**:
-Questo documento è stato tradotto utilizzando il servizio di traduzione automatica [Co-op Translator](https://github.com/Azure/co-op-translator). Pur impegnandoci per garantire la precisione, si prega di considerare che le traduzioni automatiche potrebbero contenere errori o imprecisioni. Il documento originale nella sua lingua nativa deve essere considerato la fonte autorevole. Per informazioni critiche, si raccomanda una traduzione professionale effettuata da un esperto umano. Non siamo responsabili per eventuali incomprensioni o interpretazioni errate derivanti dall’uso di questa traduzione.
+**Avvertenza**:
+Questo documento è stato tradotto utilizzando il servizio di traduzione automatica [Co-op Translator](https://github.com/Azure/co-op-translator). Pur impegnandoci per garantire accuratezza, si prega di notare che le traduzioni automatiche possono contenere errori o imprecisioni. Il documento originale nella sua lingua originale deve essere considerato la fonte autorevole. Per informazioni critiche, si raccomanda una traduzione professionale effettuata da un umano. Non ci assumiamo alcuna responsabilità per incomprensioni o interpretazioni errate derivanti dall’uso di questa traduzione.
\ No newline at end of file
diff --git a/translations/it/SECURITY.md b/translations/it/SECURITY.md
index 9a580fa2..e1179a63 100644
--- a/translations/it/SECURITY.md
+++ b/translations/it/SECURITY.md
@@ -1,12 +1,3 @@
-
## Sicurezza
Microsoft prende molto seriamente la sicurezza dei propri prodotti software e servizi, inclusi tutti i repository di codice sorgente gestiti attraverso le nostre organizzazioni GitHub, che includono [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) e [le nostre organizzazioni GitHub](https://opensource.microsoft.com/).
diff --git a/translations/it/SUPPORT.md b/translations/it/SUPPORT.md
index 2b311448..b0729d4d 100644
--- a/translations/it/SUPPORT.md
+++ b/translations/it/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Supporto
## Come segnalare problemi e ottenere assistenza
diff --git a/translations/it/TROUBLESHOOTING.md b/translations/it/TROUBLESHOOTING.md
index 474cc7e9..511c26fa 100644
--- a/translations/it/TROUBLESHOOTING.md
+++ b/translations/it/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Guida alla Risoluzione dei Problemi
Questa guida fornisce soluzioni ai problemi comuni che potresti incontrare mentre lavori con il curriculum "Data Science for Beginners".
diff --git a/translations/it/USAGE.md b/translations/it/USAGE.md
index 2966490c..f9479409 100644
--- a/translations/it/USAGE.md
+++ b/translations/it/USAGE.md
@@ -1,12 +1,3 @@
-
# Guida all'Uso
Questa guida fornisce esempi e flussi di lavoro comuni per utilizzare il curriculum "Data Science for Beginners".
diff --git a/translations/it/docs/_sidebar.md b/translations/it/docs/_sidebar.md
index b725ca2e..c4ddbab7 100644
--- a/translations/it/docs/_sidebar.md
+++ b/translations/it/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Introduzione
- [Definire la Data Science](../1-Introduction/01-defining-data-science/README.md)
- [Etica della Data Science](../1-Introduction/02-ethics/README.md)
diff --git a/translations/it/examples/README.md b/translations/it/examples/README.md
index 843a96d2..020d7f86 100644
--- a/translations/it/examples/README.md
+++ b/translations/it/examples/README.md
@@ -1,12 +1,3 @@
-
# Esempi di Data Science per Principianti
Benvenuto nella directory degli esempi! Questa raccolta di esempi semplici e ben commentati è pensata per aiutarti a iniziare con la data science, anche se sei un principiante assoluto.
diff --git a/translations/it/for-teachers.md b/translations/it/for-teachers.md
index eed9c31f..7af32cb1 100644
--- a/translations/it/for-teachers.md
+++ b/translations/it/for-teachers.md
@@ -1,12 +1,3 @@
-
## Per Educatori
Vorresti utilizzare questo curriculum nella tua classe? Sentiti libero di farlo!
diff --git a/translations/it/quiz-app/README.md b/translations/it/quiz-app/README.md
index eb513177..cdf0da23 100644
--- a/translations/it/quiz-app/README.md
+++ b/translations/it/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Quiz
Questi quiz sono i quiz pre- e post-lezione per il curriculum di data science disponibile su https://aka.ms/datascience-beginners
diff --git a/translations/it/sketchnotes/README.md b/translations/it/sketchnotes/README.md
index 92b42423..94857b31 100644
--- a/translations/it/sketchnotes/README.md
+++ b/translations/it/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Trova tutte le sketchnote qui!
## Crediti
diff --git a/translations/ja/.co-op-translator.json b/translations/ja/.co-op-translator.json
new file mode 100644
index 00000000..cc85023c
--- /dev/null
+++ b/translations/ja/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:41:49+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "ja"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-25T16:56:42+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "ja"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-25T16:57:47+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "ja"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:11:22+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "ja"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-25T16:49:55+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "ja"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T12:52:04+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "ja"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-25T17:01:34+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "ja"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:10:10+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "ja"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-25T17:10:58+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "ja"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-25T16:38:29+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "ja"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T10:51:06+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "ja"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:53:35+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "ja"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T12:38:33+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "ja"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-25T16:36:40+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "ja"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:30:09+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "ja"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-25T16:31:43+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "ja"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T12:41:03+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "ja"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-25T16:24:00+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "ja"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-25T16:13:00+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T12:45:26+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-25T18:39:41+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T12:47:23+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-25T18:08:16+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T12:44:15+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-25T18:43:25+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:31:16+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-25T18:12:34+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T12:46:02+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-25T18:03:06+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-25T18:04:26+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-25T18:03:45+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-25T18:24:31+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-25T18:26:15+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-25T18:14:49+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-25T18:16:26+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-25T18:32:27+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-25T18:18:47+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-25T18:29:17+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "ja"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-25T17:58:01+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "ja"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:33:24+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "ja"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-25T17:45:09+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "ja"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:33:04+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "ja"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-25T17:48:18+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "ja"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:33:50+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "ja"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-25T17:56:37+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "ja"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-25T17:41:12+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "ja"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T12:36:13+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "ja"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-25T17:31:51+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "ja"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T12:34:55+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "ja"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-25T17:27:23+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "ja"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T12:37:41+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "ja"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-25T17:38:48+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "ja"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-25T17:19:53+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "ja"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:19:18+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "ja"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-25T17:18:50+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "ja"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-25T17:12:16+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "ja"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:09:03+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "ja"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-25T16:10:29+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "ja"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:35:59+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "ja"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:17:06+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "ja"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:23:38+00:00",
+ "source_file": "README.md",
+ "language_code": "ja"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-25T16:11:25+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "ja"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-25T16:08:29+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "ja"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:33:38+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "ja"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:57:14+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "ja"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-25T16:37:36+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "ja"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:58:29+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "ja"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:53:47+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "ja"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-25T17:40:08+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "ja"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-25T17:11:41+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "ja"
+ }
+}
\ No newline at end of file
diff --git a/translations/ja/1-Introduction/01-defining-data-science/README.md b/translations/ja/1-Introduction/01-defining-data-science/README.md
index e44b9042..ad476bcc 100644
--- a/translations/ja/1-Introduction/01-defining-data-science/README.md
+++ b/translations/ja/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# データサイエンスの定義
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/ja/1-Introduction/01-defining-data-science/assignment.md b/translations/ja/1-Introduction/01-defining-data-science/assignment.md
index a2d5ff8a..58cd24c9 100644
--- a/translations/ja/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/ja/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# 課題: データサイエンスのシナリオ
この最初の課題では、現実のプロセスや問題について考え、それをデータサイエンスのプロセスを使ってどのように改善できるかを考えてもらいます。以下の点について考えてみてください:
diff --git a/translations/ja/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/ja/1-Introduction/01-defining-data-science/solution/assignment.md
index 378a390e..5a0fcffd 100644
--- a/translations/ja/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/ja/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# 課題: データサイエンスのシナリオ
この最初の課題では、現実のプロセスや問題について考え、それをデータサイエンスのプロセスを使ってどのように改善できるかを考えてもらいます。以下の点について考えてみてください:
diff --git a/translations/ja/1-Introduction/02-ethics/README.md b/translations/ja/1-Introduction/02-ethics/README.md
index 1f89ba6f..f1819346 100644
--- a/translations/ja/1-Introduction/02-ethics/README.md
+++ b/translations/ja/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# データ倫理の概要
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/ja/1-Introduction/02-ethics/assignment.md b/translations/ja/1-Introduction/02-ethics/assignment.md
index f0e6dc54..0020198a 100644
--- a/translations/ja/1-Introduction/02-ethics/assignment.md
+++ b/translations/ja/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## データ倫理のケーススタディを書く
## 指示
diff --git a/translations/ja/1-Introduction/03-defining-data/README.md b/translations/ja/1-Introduction/03-defining-data/README.md
index a304ee14..8cebb7e0 100644
--- a/translations/ja/1-Introduction/03-defining-data/README.md
+++ b/translations/ja/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# データの定義
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/ja/1-Introduction/03-defining-data/assignment.md b/translations/ja/1-Introduction/03-defining-data/assignment.md
index e919af2c..1c69d47b 100644
--- a/translations/ja/1-Introduction/03-defining-data/assignment.md
+++ b/translations/ja/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# データセットの分類
## 指示
diff --git a/translations/ja/1-Introduction/04-stats-and-probability/README.md b/translations/ja/1-Introduction/04-stats-and-probability/README.md
index 07793be6..a1350db1 100644
--- a/translations/ja/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/ja/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# 統計学と確率論の簡単な紹介
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
中央値と四分位数の関係を図示するために、**箱ひげ図**と呼ばれる図を使用します:
-
+
ここでは**四分位範囲**IQR=Q3-Q1を計算し、**外れ値**と呼ばれる値を特定します。これらは[Q1-1.5*IQR,Q3+1.5*IQR]の範囲外にある値です。
diff --git a/translations/ja/1-Introduction/04-stats-and-probability/assignment.md b/translations/ja/1-Introduction/04-stats-and-probability/assignment.md
index 0d4bcecc..b513307f 100644
--- a/translations/ja/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/ja/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# 小規模な糖尿病研究
この課題では、[こちら](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)から取得した糖尿病患者の小規模なデータセットを使用します。
diff --git a/translations/ja/1-Introduction/README.md b/translations/ja/1-Introduction/README.md
index d26c2721..479d1153 100644
--- a/translations/ja/1-Introduction/README.md
+++ b/translations/ja/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# データサイエンス入門

diff --git a/translations/ja/2-Working-With-Data/05-relational-databases/README.md b/translations/ja/2-Working-With-Data/05-relational-databases/README.md
index 8b83052d..16df7c26 100644
--- a/translations/ja/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/ja/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# データ操作:リレーショナルデータベース
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/ja/2-Working-With-Data/05-relational-databases/assignment.md b/translations/ja/2-Working-With-Data/05-relational-databases/assignment.md
index c4b52ca8..2c511abe 100644
--- a/translations/ja/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/ja/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# 空港データの表示
[SQLite](https://sqlite.org/index.html)を基盤とした[データベース](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db)が提供されています。このデータベースには空港に関する情報が含まれています。以下にスキーマが表示されています。[Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum)の[SQLite拡張機能](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum)を使用して、さまざまな都市の空港情報を表示します。
diff --git a/translations/ja/2-Working-With-Data/06-non-relational/README.md b/translations/ja/2-Working-With-Data/06-non-relational/README.md
index 7ae838ae..8c3a27e2 100644
--- a/translations/ja/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/ja/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# データの操作: 非リレーショナルデータ
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/ja/2-Working-With-Data/06-non-relational/assignment.md b/translations/ja/2-Working-With-Data/06-non-relational/assignment.md
index b6661ed6..d95d54bb 100644
--- a/translations/ja/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/ja/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# ソーダの利益
## 指示
diff --git a/translations/ja/2-Working-With-Data/07-python/README.md b/translations/ja/2-Working-With-Data/07-python/README.md
index 71a6ea80..8d421987 100644
--- a/translations/ja/2-Working-With-Data/07-python/README.md
+++ b/translations/ja/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# データの操作: PythonとPandasライブラリ
|  によるスケッチノート ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/ja/2-Working-With-Data/07-python/assignment.md b/translations/ja/2-Working-With-Data/07-python/assignment.md
index c571d647..3ed76be1 100644
--- a/translations/ja/2-Working-With-Data/07-python/assignment.md
+++ b/translations/ja/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Pythonによるデータ処理課題
この課題では、これまでのチャレンジで開発を始めたコードをさらに詳しく説明していただきます。課題は以下の2つの部分で構成されています。
diff --git a/translations/ja/2-Working-With-Data/08-data-preparation/README.md b/translations/ja/2-Working-With-Data/08-data-preparation/README.md
index f30b1e2e..55620bdd 100644
--- a/translations/ja/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/ja/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# データの取り扱い: データ準備
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/ja/2-Working-With-Data/08-data-preparation/assignment.md b/translations/ja/2-Working-With-Data/08-data-preparation/assignment.md
index b8a5bf51..7552afe5 100644
--- a/translations/ja/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/ja/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# フォームからのデータ評価
クライアントは、顧客層に関する基本的なデータを収集するための[小さなフォーム](../../../../2-Working-With-Data/08-data-preparation/index.html)をテストしてきました。彼らは収集したデータを検証するためにその結果を持ってきました。ブラウザで`index.html`ページを開いてフォームを確認することができます。
diff --git a/translations/ja/2-Working-With-Data/README.md b/translations/ja/2-Working-With-Data/README.md
index 7cf40c8e..2f5dd9bc 100644
--- a/translations/ja/2-Working-With-Data/README.md
+++ b/translations/ja/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# データの活用

diff --git a/translations/ja/3-Data-Visualization/09-visualization-quantities/README.md b/translations/ja/3-Data-Visualization/09-visualization-quantities/README.md
index 9d10edc7..bc2de120 100644
--- a/translations/ja/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/ja/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# 数量の可視化
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/ja/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/ja/3-Data-Visualization/09-visualization-quantities/assignment.md
index 7180575b..1ebe0e17 100644
--- a/translations/ja/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/ja/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# 線グラフ、散布図、棒グラフ
## 手順
diff --git a/translations/ja/3-Data-Visualization/10-visualization-distributions/README.md b/translations/ja/3-Data-Visualization/10-visualization-distributions/README.md
index bffa2604..7863bba0 100644
--- a/translations/ja/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/ja/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# 分布の可視化
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ja/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/ja/3-Data-Visualization/10-visualization-distributions/assignment.md
index 0b5130ea..6ea8f575 100644
--- a/translations/ja/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/ja/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# スキルを活用しよう
## 手順
diff --git a/translations/ja/3-Data-Visualization/11-visualization-proportions/README.md b/translations/ja/3-Data-Visualization/11-visualization-proportions/README.md
index 63b710cb..d32ae1d3 100644
--- a/translations/ja/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/ja/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# 比率の可視化
| によるスケッチノート ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ja/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/ja/3-Data-Visualization/11-visualization-proportions/assignment.md
index cf2d10ac..ab0e2b87 100644
--- a/translations/ja/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/ja/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Excelで試してみよう
## 手順
diff --git a/translations/ja/3-Data-Visualization/12-visualization-relationships/README.md b/translations/ja/3-Data-Visualization/12-visualization-relationships/README.md
index 52900b10..8ae69716 100644
--- a/translations/ja/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/ja/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# 関係の可視化: ハチミツについて 🍯
| によるスケッチノート ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ja/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/ja/3-Data-Visualization/12-visualization-relationships/assignment.md
index b8db0039..b7dc1a60 100644
--- a/translations/ja/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/ja/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# 蜂の巣を探る
## 手順
diff --git a/translations/ja/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/ja/3-Data-Visualization/13-meaningful-visualizations/README.md
index 4424cc7a..4aa6c586 100644
--- a/translations/ja/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/ja/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# 意味のあるデータビジュアライゼーションを作る
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ja/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/ja/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 615f1616..cd82b3a3 100644
--- a/translations/ja/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/ja/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# 独自のカスタムビジュアルを作成しよう
## 手順
diff --git a/translations/ja/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/ja/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 23f035b0..73d79fa7 100644
--- a/translations/ja/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/ja/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# 危険な関係 データビジュアライゼーションプロジェクト
始めるには、マシンにNPMとNodeがインストールされていることを確認してください。依存関係をインストール(npm install)し、プロジェクトをローカルで実行します(npm run serve):
diff --git a/translations/ja/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/ja/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 5efb6b74..2fe1204d 100644
--- a/translations/ja/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/ja/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# 危険な関係 データビジュアライゼーションプロジェクト
始めるには、マシンにNPMとNodeがインストールされていることを確認してください。依存関係をインストール(npm install)し、その後プロジェクトをローカルで実行してください(npm run serve):
diff --git a/translations/ja/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/ja/3-Data-Visualization/R/09-visualization-quantities/README.md
index f509cb48..02ac1831 100644
--- a/translations/ja/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/ja/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# 量を視覚化する
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/ja/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/ja/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 1416eeb0..8bee3e0f 100644
--- a/translations/ja/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/ja/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# 線グラフ、散布図、棒グラフ
## 課題
diff --git a/translations/ja/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/ja/3-Data-Visualization/R/10-visualization-distributions/README.md
index d06736cd..f693d045 100644
--- a/translations/ja/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/ja/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# 分布の可視化
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ja/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/ja/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 563f32bd..c51ea05c 100644
--- a/translations/ja/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/ja/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# スキルを活用しよう
## 手順
diff --git a/translations/ja/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/ja/3-Data-Visualization/R/11-visualization-proportions/README.md
index dffa111d..e7eb8ade 100644
--- a/translations/ja/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/ja/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# 比率の可視化
| によるスケッチノート ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ja/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/ja/3-Data-Visualization/R/12-visualization-relationships/README.md
index 61f5efc5..5723e3fc 100644
--- a/translations/ja/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/ja/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# 関係の可視化: ハチミツについて 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ja/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/ja/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 1960c196..cb703e81 100644
--- a/translations/ja/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/ja/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# 意味のあるデータビジュアライゼーションを作る
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ja/3-Data-Visualization/README.md b/translations/ja/3-Data-Visualization/README.md
index dc85a519..11701aa1 100644
--- a/translations/ja/3-Data-Visualization/README.md
+++ b/translations/ja/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# ビジュアライゼーション

diff --git a/translations/ja/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/ja/4-Data-Science-Lifecycle/14-Introduction/README.md
index 722c04b7..835c0189 100644
--- a/translations/ja/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/ja/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# データサイエンスライフサイクルの紹介
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/ja/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/ja/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index a4e1b42d..aa7d1fa0 100644
--- a/translations/ja/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/ja/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# データセットの評価
クライアントが、ニューヨーク市のタクシー利用者の季節ごとの支出傾向を調査するための支援を求めています。
diff --git a/translations/ja/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/ja/4-Data-Science-Lifecycle/15-analyzing/README.md
index 16955e9f..dfe3823c 100644
--- a/translations/ja/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/ja/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# データサイエンスライフサイクル: 分析
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/ja/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/ja/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index d4a4fecb..d12bcfc7 100644
--- a/translations/ja/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/ja/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# 答えを探る
これは前回のレッスンの[課題](../14-Introduction/assignment.md)の続きで、データセットを簡単に見たところから始まります。今回はデータをさらに深く掘り下げていきます。
diff --git a/translations/ja/4-Data-Science-Lifecycle/16-communication/README.md b/translations/ja/4-Data-Science-Lifecycle/16-communication/README.md
index cf5a877b..dc9dc9e8 100644
--- a/translations/ja/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/ja/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# データサイエンスライフサイクル: コミュニケーション
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/ja/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/ja/4-Data-Science-Lifecycle/16-communication/assignment.md
index 3bdc4d61..9e83f2cb 100644
--- a/translations/ja/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/ja/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# 物語を語る
## 指示
diff --git a/translations/ja/4-Data-Science-Lifecycle/README.md b/translations/ja/4-Data-Science-Lifecycle/README.md
index 64d85c8a..3f827cba 100644
--- a/translations/ja/4-Data-Science-Lifecycle/README.md
+++ b/translations/ja/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# データサイエンスライフサイクル

diff --git a/translations/ja/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/ja/5-Data-Science-In-Cloud/17-Introduction/README.md
index 0e0a45a0..ef753790 100644
--- a/translations/ja/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/ja/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# クラウドにおけるデータサイエンス入門
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/ja/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/ja/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 56de6198..bfb3a70e 100644
--- a/translations/ja/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/ja/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# 市場調査
## 指示
diff --git a/translations/ja/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/ja/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 78806e9f..43b6d6ab 100644
--- a/translations/ja/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/ja/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# クラウドでのデータサイエンス: 「ローコード/ノーコード」アプローチ
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/ja/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/ja/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index b1e499d4..18ba1c89 100644
--- a/translations/ja/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/ja/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Azure MLでのローコード/ノーコード データサイエンスプロジェクト
## 手順
diff --git a/translations/ja/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/ja/5-Data-Science-In-Cloud/19-Azure/README.md
index 29e2c9b8..a215bbc1 100644
--- a/translations/ja/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/ja/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# クラウドでのデータサイエンス: "Azure ML SDK" の方法
| によるスケッチノート](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/ja/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/ja/5-Data-Science-In-Cloud/19-Azure/assignment.md
index b08fbcf1..a4648d38 100644
--- a/translations/ja/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/ja/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML SDK を使用したデータサイエンスプロジェクト
## 手順
diff --git a/translations/ja/5-Data-Science-In-Cloud/README.md b/translations/ja/5-Data-Science-In-Cloud/README.md
index c789e8e6..acd1fa03 100644
--- a/translations/ja/5-Data-Science-In-Cloud/README.md
+++ b/translations/ja/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# クラウドでのデータサイエンス

diff --git a/translations/ja/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/ja/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 880ecb6b..9ca7b1ad 100644
--- a/translations/ja/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/ja/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# 現実世界のデータサイエンス
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/ja/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/ja/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 02946cef..8b772d26 100644
--- a/translations/ja/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/ja/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# 惑星コンピューターのデータセットを探る
## 手順
diff --git a/translations/ja/6-Data-Science-In-Wild/README.md b/translations/ja/6-Data-Science-In-Wild/README.md
index 7b9293a7..359d891d 100644
--- a/translations/ja/6-Data-Science-In-Wild/README.md
+++ b/translations/ja/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# 実社会でのデータサイエンス
業界全体におけるデータサイエンスの実際の応用例。
diff --git a/translations/ja/AGENTS.md b/translations/ja/AGENTS.md
index 05550959..907fcd75 100644
--- a/translations/ja/AGENTS.md
+++ b/translations/ja/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## プロジェクト概要
diff --git a/translations/ja/CODE_OF_CONDUCT.md b/translations/ja/CODE_OF_CONDUCT.md
index ad2ba015..40c71ca5 100644
--- a/translations/ja/CODE_OF_CONDUCT.md
+++ b/translations/ja/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# マイクロソフト オープンソース行動規範
このプロジェクトは、[マイクロソフト オープンソース行動規範](https://opensource.microsoft.com/codeofconduct/)を採用しています。
diff --git a/translations/ja/CONTRIBUTING.md b/translations/ja/CONTRIBUTING.md
index dfa6ffb2..67bb71ee 100644
--- a/translations/ja/CONTRIBUTING.md
+++ b/translations/ja/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# 初心者向けデータサイエンスへの貢献
初心者向けデータサイエンスカリキュラムへの貢献に興味を持っていただきありがとうございます!コミュニティからの貢献を歓迎します。
diff --git a/translations/ja/INSTALLATION.md b/translations/ja/INSTALLATION.md
index fff70218..ebd9ead9 100644
--- a/translations/ja/INSTALLATION.md
+++ b/translations/ja/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# インストールガイド
このガイドでは、Data Science for Beginners カリキュラムを使用するための環境設定方法を説明します。
diff --git a/translations/ja/README.md b/translations/ja/README.md
index 538bb8b8..d52dcaa0 100644
--- a/translations/ja/README.md
+++ b/translations/ja/README.md
@@ -1,13 +1,4 @@
-
-# データサイエンス入門 - カリキュラム
+# 初心者のためのデータサイエンス - カリキュラム
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,180 +17,183 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-マイクロソフトのAzure Cloud Advocatesは、データサイエンスに関する10週間、全20レッスンのカリキュラムを提供しています。各レッスンには、事前・事後のクイズ、レッスンを完了するための文章による指示、解答例、課題が含まれています。プロジェクトベースの教授法により、学びながら実践でき、新しいスキルを確実に身につけることができます。
+MicrosoftのAzure Cloud Advocatesは、データサイエンスに関する全10週間、20レッスンのカリキュラムを提供しています。各レッスンには、レッスン前とレッスン後のクイズ、レッスンを完了するための文書化された指示、解答例、および課題が含まれています。プロジェクトベースの教授法により、実際に作りながら学ぶことで、新しいスキルが「定着」しやすくなります。
-**著者の皆様に心からの感謝を:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer)。
+**著者の皆様に心より感謝いたします:** [Jasmine Greenaway](https://www.twitter.com/paladique)、[Dmitry Soshnikov](http://soshnikov.com)、[Nitya Narasimhan](https://twitter.com/nitya)、[Jalen McGee](https://twitter.com/JalenMcG)、[Jen Looper](https://twitter.com/jenlooper)、[Maud Levy](https://twitter.com/maudstweets)、[Tiffany Souterre](https://twitter.com/TiffanySouterre)、[Christopher Harrison](https://www.twitter.com/geektrainer)。
-**🙏 特別な感謝を [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) の著者、レビュアー、コンテンツ貢献者の皆様へ🙏**、特に Aaryan Arora、[Aditya Garg](https://github.com/AdityaGarg00)、[Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/)、[Ankita Singh](https://www.linkedin.com/in/ankitasingh007)、[Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/)、[Arpita Das](https://www.linkedin.com/in/arpitadas01/)、ChhailBihari Dubey、[Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor)、[Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb)、[Majd Safi](https://www.linkedin.com/in/majd-s/)、[Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/)、[Miguel Correa](https://www.linkedin.com/in/miguelmque/)、[Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119)、[Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum)、[Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/)、[Rohit Yadav](https://www.linkedin.com/in/rty2423)、Samridhi Sharma、[Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)、[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/)、[Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/)、Yogendrasingh Pawar、[Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/)、[Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
+**🙏 特別な感謝を [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) の著者、レビュアー、コンテンツ提供者の皆様に🙏** 特にAaryan Arora、[Aditya Garg](https://github.com/AdityaGarg00)、[Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/)、[Ankita Singh](https://www.linkedin.com/in/ankitasingh007)、[Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/)、[Arpita Das](https://www.linkedin.com/in/arpitadas01/)、ChhailBihari Dubey、[Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor)、[Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb)、[Majd Safi](https://www.linkedin.com/in/majd-s/)、[Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/)、[Miguel Correa](https://www.linkedin.com/in/miguelmque/)、[Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119)、[Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum)、[Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/)、[Rohit Yadav](https://www.linkedin.com/in/rty2423)、Samridhi Sharma、[Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)、[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/)、[Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/)、Yogendrasingh Pawar、[Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/)、[Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| データサイエンス入門 - _スケッチノート:[@nitya](https://twitter.com/nitya)_ |
+| 初心者のためのデータサイエンス - _スケッチノート by [@nitya](https://twitter.com/nitya)_ |
### 🌐 多言語サポート
-#### GitHub Actionによるサポート(自動かつ常に最新)
+#### GitHub Action によるサポート(自動化&常に最新)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](./README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](./README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **ローカルでのクローンを希望しますか?**
+> **ローカルでクローンしたいですか?**
-> このリポジトリには50以上の言語翻訳が含まれており、ダウンロードサイズが大きくなっています。翻訳を含めずクローンするには、sparse checkoutを使用してください:
+> このリポジトリは50以上の言語翻訳を含んでおり、ダウンロードサイズが大きくなります。翻訳なしでクローンするにはスパースチェックアウトを使ってください:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> これにより、コースを完了するために必要なすべてをより高速にダウンロードできます。
+> これにより、このコースの完了に必要なすべてが、より高速にダウンロードできます。
-**追加の翻訳言語のサポートを希望される場合は、[こちら](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)をご覧ください**
+**追加の翻訳言語をご希望の場合は、[こちら](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)をご覧ください。**
-#### コミュニティに参加しましょう
+#### コミュニティに参加しよう
[](https://discord.gg/nTYy5BXMWG)
-Discordで進行中の「AIと学ぶシリーズ」について詳しくは、[Learn with AI Series](https://aka.ms/learnwithai/discord) をご覧ください。2025年9月18日から30日まで開催。GitHub Copilotのデータサイエンスでの活用に関するコツも得られます。
+Discordでの「AIと学ぶシリーズ」が開催中です。詳細および参加はこちらから:[Learn with AI Series](https://aka.ms/learnwithai/discord) 2025年9月18日〜30日。GitHub Copilotをデータサイエンスで活用するコツやヒントが得られます。
-
+
-# あなたは学生ですか?
+# 学生のあなたへ
-以下のリソースから始めましょう:
+以下のリソースから始めましょう:
-- [学生ハブページ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) このページには初心者向けリソース、学生パック、さらには無料認定バウチャーを取得する方法が記載されています。コンテンツは月に一度以上更新されるため、時々ブックマークしてチェックすることをお勧めします。
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) グローバルな学生アンバサダーのコミュニティに参加しましょう。マイクロソフトへの道が開かれます。
+- [Student Hub ページ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) このページでは、初心者向けリソース、学生パック、無料認定バウチャーの取得方法などが見つかります。最低でも月1回はブックマークして内容をチェックするとよいでしょう。
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) グローバルな学生大使コミュニティに参加できます。Microsoftへの道を開くかもしれません。
# はじめに
## 📚 ドキュメント
-- **[インストールガイド](INSTALLATION.md)** - 初心者向けのステップバイステップセットアップ手順
-- **[使い方ガイド](USAGE.md)** - 例と一般的なワークフロー
-- **[トラブルシューティング](TROUBLESHOOTING.md)** - よくある問題の解決策
-- **[コントリビュートガイド](CONTRIBUTING.md)** - プロジェクトへの貢献方法
-- **[先生向け](for-teachers.md)** - 授業指導と教室リソース
+- **[インストールガイド](INSTALLATION.md)** — 初心者向けのステップバイステップのセットアップ手順
+- **[使い方ガイド](USAGE.md)** — 例とよくあるワークフロー
+- **[トラブルシューティング](TROUBLESHOOTING.md)** — よくある問題の解決策
+- **[貢献ガイド](CONTRIBUTING.md)** — このプロジェクトへの貢献方法
+- **[教師用](for-teachers.md)** — 教育指導と授業用リソース
## 👨🎓 学生向け
-> **完全初心者向け**:データサイエンスが初めての方は、[初心者向けの例](examples/README.md)から始めましょう!シンプルでコメント付きの例が基本を理解するのに役立ちます。
-> **[学生向け](https://aka.ms/student-page)**: このカリキュラムを独自に利用する場合は、リポジトリ全体をフォークし、事前講義クイズから始めて課題を進めてください。講義を読んだら残りの活動を完了しましょう。解答コードをコピーするのではなく、内容を理解してプロジェクトを作成するよう心がけてください。解答コードは各プロジェクト指向レッスンの/solutionsフォルダーにあります。また、友人と勉強グループを作って一緒に学習するのも良いでしょう。さらに学習したい場合は [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) をお勧めします。
+> **完全初心者の方へ**:データサイエンスが初めてですか?まずは[初心者向けの例](examples/README.md)から始めてください!これらのシンプルでコメント付きの例は、カリキュラムの全体に取り掛かる前に基礎を理解するのに役立ちます。
+> **[学生](https://aka.ms/student-page)**:このカリキュラムを自分で使うには、リポジトリ全体をフォークして、レッスン前のクイズから始めて演習を進めてください。その後、講義を読み、残りの活動を完了します。解答コードを単にコピーするのではなく、レッスン内容を理解してプロジェクトを作成することを推奨します。解答コードは各プロジェクト指向レッスンの /solutions フォルダーに用意されています。友人と学習グループを作り、一緒に内容を学ぶのも良い方法です。さらなる学習には、[Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) をお勧めします。
-**クイックスタート:**
-1. [インストールガイド](INSTALLATION.md) を確認し環境をセットアップしてください
-2. [使い方ガイド](USAGE.md) に目を通し、カリキュラムの利用方法を学びましょう
-3. レッスン1から順に進めてください
-4. サポートが必要なら[Discordコミュニティ](https://aka.ms/ds4beginners/discord)に参加しましょう
+**クイックスタート:**
+1. 環境構築は [インストールガイド](INSTALLATION.md) を確認
+2. カリキュラムの使い方は [使い方ガイド](USAGE.md) を参照
+3. レッスン1から順に進める
+4. サポートが必要なら [Discordコミュニティ](https://aka.ms/ds4beginners/discord) に参加
## 👩🏫 教師向け
-> **先生方へ**:このカリキュラムの活用方法について[いくつかの提案](for-teachers.md)を含めています。ご意見は[ディスカッションフォーラム](https://github.com/microsoft/Data-Science-For-Beginners/discussions)でお待ちしています!
-
+> **教師の皆様へ**:[このカリキュラムの活用方法についての提案](for-teachers.md)を含めています。ぜひ [ディスカッションフォーラム](https://github.com/microsoft/Data-Science-For-Beginners/discussions) にてご意見をお寄せください!
## チーム紹介
-[](https://youtu.be/8mzavjQSMM4 "Promo video")
-**Gif by** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+[](https://youtu.be/8mzavjQSMM4 "プロモーションビデオ")
+
+**Gif作成者** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 上の画像をクリックすると、このプロジェクトとそれを作成した人たちについてのビデオがご覧いただけます!
+> 🎥 上の画像をクリックすると、このプロジェクトとそれを作成した人々についてのビデオをご覧いただけます!
## 教育方針
-このカリキュラムを作成する際、私たちは2つの教育の原則を選びました:プロジェクトベースであることと、頻繁なクイズを含むこと。シリーズの最後には、学生はデータサイエンスの基本原則を学びます。これには倫理的な概念、データ準備、データのさまざまな扱い方、データ可視化、データ分析、データサイエンスの実世界の活用例などが含まれます。
+このカリキュラムを構築する際に、私たちは2つの教育の原則を選びました:プロジェクトベースであることと、頻繁にクイズを含めることです。このシリーズを終える頃には、学生はデータサイエンスの基本原則、倫理的概念、データ準備、さまざまなデータの扱い方、データビジュアライゼーション、データ分析、データサイエンスの実例などを学んでいることでしょう。
-さらに、授業前の低リスクのクイズは学生の学習意欲を高め、授業後の2回目のクイズは理解の定着を助けます。このカリキュラムは柔軟で楽しく学べるよう設計されており、全体または一部だけ取り組むことも可能です。プロジェクトは小さなものから始まり、10週間のサイクルの終わりにはより複雑になります。
+また、授業の前に行う低負荷のクイズは、学生が特定のトピックの学習に集中する意図を設定し、授業後のクイズがさらに記憶の定着を助けます。このカリキュラムは柔軟で楽しく設計されており、全体または一部だけでも受講できます。プロジェクトは小さく始まり、10週間のサイクルの終わりまでに徐々に複雑になります。
-> [行動規範](CODE_OF_CONDUCT.md)、[貢献ガイド](CONTRIBUTING.md)、[翻訳ガイド](TRANSLATIONS.md)をご覧ください。建設的なフィードバックを歓迎します!
+> 私たちの[行動規範](CODE_OF_CONDUCT.md)、[貢献ガイドライン](CONTRIBUTING.md)、[翻訳ガイドライン](TRANSLATIONS.md)もご覧ください。建設的なフィードバックをお待ちしています!
-## 各レッスンに含まれるもの:
+## 各レッスンには以下が含まれます:
- 任意のスケッチノート
-- 任意の補足動画
-- 授業前ウォームアップクイズ
-- 書かれたレッスン内容
-- プロジェクトベースのレッスンには、プロジェクトを作成するためのステップバイステップガイド
-- 知識チェック
+- 任意の補足ビデオ
+- 授業前のウォームアップクイズ
+- 文章によるレッスン
+- プロジェクトベースのレッスンの場合、プロジェクトの段階的な作成ガイド
+- 知識確認
- チャレンジ
-- 補足読書
+- 補助読書
- 課題
-- [授業後クイズ](https://ff-quizzes.netlify.app/en/)
+- [授業後のクイズ](https://ff-quizzes.netlify.app/en/)
-> **クイズについての注意**:すべてのクイズはQuiz-Appフォルダーにあり、合計40回分の3問ずつのクイズです。レッスン内からリンクされていますが、クイズアプリはローカルでも起動でき、Azureに展開も可能です。`quiz-app`フォルダーの指示に従ってください。現在、順次ローカライズ中です。
+> **クイズについての注意**: 全てのクイズはQuiz-Appフォルダーに収められており、計40回のクイズで各回3問ずつあります。クイズはレッスン内からリンクされていますが、クイズアプリはローカルで実行したりAzureにデプロイすることも可能です。`quiz-app`フォルダーの指示に従ってください。現在、順次ローカライズが進められています。
-## 🎓 初心者向けの例
+## 🎓 初心者に優しい例
-**データサイエンスが初めてですか?** スタートアップに役立つシンプルでコメント付きのコードを集めた特別な[examplesディレクトリ](examples/README.md)を作成しました:
+**データサイエンスが初めてですか?** 簡単で丁寧にコメントされたコードを揃えた特別な[examplesディレクトリ](examples/README.md)をご用意しています:
-- 🌟 **Hello World** - 最初のデータサイエンスプログラム
-- 📂 **データの読み込み** - データセットの読み込みと探索を学ぶ
-- 📊 **シンプルな分析** - 統計計算とパターンの発見
-- 📈 **基本的な可視化** - チャートとグラフの作成
-- 🔬 **実世界プロジェクト** - 最初から最後までのワークフロー
+- 🌟 **Hello World** - あなたの最初のデータサイエンスプログラム
+- 📂 **データの読み込み** - データセットを読み込み、探索する方法を学びます
+- 📊 **簡単な分析** - 統計を計算しパターンを見つけます
+- 📈 **基本的なビジュアライゼーション** - チャートやグラフを作成します
+- 🔬 **実世界プロジェクト** - 初めから完成までのワークフローを体験します
-各例には詳細なコメントがあり、全ステップを説明しているため、完全な初心者にも最適です!
+各例には細かいコメントが全手順について説明されており、完全な初心者に最適です!
👉 **[例から始める](examples/README.md)** 👈
## レッスン
-||
+||
|:---:|
-| Data Science For Beginners: ロードマップ - _スケッチノート [@nitya](https://twitter.com/nitya)_ |
+| データサイエンス入門: ロードマップ - _[@nitya](https://twitter.com/nitya)によるスケッチノート_ |
-| レッスン番号 | トピック | レッスングループ | 学習目標 | 関連レッスン | 著者 |
+| レッスン番号 | トピック | レッスングループ | 学習目標 | リンクされたレッスン | 著者 |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | データサイエンスの定義 | [イントロダクション](1-Introduction/README.md) | データサイエンスの基本概念、人工知能、機械学習、ビッグデータとの関連性を学びます。 | [lesson](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | データサイエンス倫理 | [イントロダクション](1-Introduction/README.md) | データ倫理の概念、課題とフレームワーク。 | [lesson](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | データの定義 | [イントロダクション](1-Introduction/README.md) | データの分類と一般的なデータソース。 | [lesson](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | 統計学と確率の入門 | [イントロダクション](1-Introduction/README.md) | データを理解するための確率と統計の数学的手法。 | [lesson](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | リレーショナルデータの扱い | [データ操作](2-Working-With-Data/README.md) | リレーショナルデータの紹介と、SQL(シーケル)を使った探索と分析の基本。 | [lesson](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | NoSQLデータの取り扱い | [データ操作](2-Working-With-Data/README.md) | 非リレーショナルデータの紹介、その種類とドキュメントデータベースの基本的な探索と分析。 | [lesson](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Pythonでの操作 | [データ操作](2-Working-With-Data/README.md) | Pandasなどのライブラリを使ったPythonによるデータ探索の基礎。Pythonの基礎知識が推奨されます。 | [lesson](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | データ準備 | [データ操作](2-Working-With-Data/README.md) | 欠損、不正確、不完全なデータの課題に対応するためのデータのクリーニングと変換技術。 | [lesson](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | 量の可視化 | [データ可視化](3-Data-Visualization/README.md) | Matplotlibを使って鳥データを可視化する方法 🦆 | [lesson](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | データ分布の可視化 | [データ可視化](3-Data-Visualization/README.md) | 観測値と傾向を区間内で可視化。 | [lesson](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | 割合の可視化 | [データ可視化](3-Data-Visualization/README.md) | 離散的かつグループ化されたパーセンテージの可視化。 | [lesson](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | 関係性の可視化 | [データ可視化](3-Data-Visualization/README.md) | データや変数の集合間のつながりや相関を可視化。 | [lesson](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | 意義のある可視化 | [データ可視化](3-Data-Visualization/README.md) | 有効な問題解決や洞察を得るための可視化の技術と指針。 | [lesson](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | データサイエンスライフサイクル入門 | [ライフサイクル](4-Data-Science-Lifecycle/README.md) | データサイエンスライフサイクルと最初のステップであるデータの取得と抽出についての紹介。 | [lesson](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | 分析 | [ライフサイクル](4-Data-Science-Lifecycle/README.md) | データサイエンスライフサイクルのこの段階では、データ分析手法に焦点を当てる。 | [lesson](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | コミュニケーション | [ライフサイクル](4-Data-Science-Lifecycle/README.md) | データからの洞察を意思決定者が理解しやすい形で伝えることに集中する段階。 | [lesson](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | クラウドにおけるデータサイエンス | [クラウドデータ](5-Data-Science-In-Cloud/README.md) | クラウドのデータサイエンスとその利点を紹介する一連のレッスン。 | [lesson](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
-| 18 | クラウドにおけるデータサイエンス | [クラウドデータ](5-Data-Science-In-Cloud/README.md) | ローコードツールを使ったモデルのトレーニング。 |[lesson](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
-| 19 | クラウドにおけるデータサイエンス | [クラウドデータ](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studioを使ったモデルのデプロイ。 | [lesson](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
-| 20 | 実世界のデータサイエンス | [実世界](6-Data-Science-In-Wild/README.md) | 実世界でのデータサイエンスに基づくプロジェクト。 | [lesson](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | データサイエンスの定義 | [Introduction](1-Introduction/README.md) | データサイエンスの基礎概念と、それが人工知能、機械学習、ビッグデータとどう関連するかを学ぶ。 | [lesson](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | データサイエンス倫理 | [Introduction](1-Introduction/README.md) | データ倫理の概念、課題、フレームワーク。 | [lesson](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | データの定義 | [Introduction](1-Introduction/README.md) | データの分類方法とその一般的なソース。 | [lesson](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | 統計学と確率の入門 | [Introduction](1-Introduction/README.md) | データを理解するための確率と統計の数学的手法。 | [lesson](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | リレーショナルデータの扱い方 | [Working With Data](2-Working-With-Data/README.md) | リレーショナルデータの入門と、構造化問い合わせ言語(SQL)を使った基本的な探索・分析の方法。 | [lesson](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | NoSQLデータの扱い方 | [Working With Data](2-Working-With-Data/README.md) | 非リレーショナルデータの入門、その多様なタイプ、ドキュメントデータベースの基本的な探索と解析方法。 | [lesson](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Pythonでのデータ操作 | [Working With Data](2-Working-With-Data/README.md) | Pandasなどのライブラリを使ったPythonによるデータ探索の基礎。Pythonプログラミングの基礎理解が推奨されます。 | [lesson](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | データ準備 | [Working With Data](2-Working-With-Data/README.md) | 欠損、不正確、不完全なデータの課題に対処するためのクリーニングや変換の技術。 | [lesson](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | 量の可視化 | [Data Visualization](3-Data-Visualization/README.md) | Matplotlibを使った鳥データの可視化を学びます 🦆 | [lesson](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | データ分布の可視化 | [Data Visualization](3-Data-Visualization/README.md) | 観測値や傾向を一定範囲内で視覚化。 | [lesson](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | 割合の可視化 | [Data Visualization](3-Data-Visualization/README.md) | 離散的およびグループ化されたパーセンテージの可視化。 | [lesson](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | 関係性の可視化 | [Data Visualization](3-Data-Visualization/README.md) | データセットとその変数間の関係性と相関の可視化。 | [lesson](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | 意味のあるビジュアライゼーション | [Data Visualization](3-Data-Visualization/README.md) | 効果的な問題解決と洞察のために価値あるビジュアライゼーションを作成するテクニックと指針。 | [lesson](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | データサイエンスのライフサイクル入門 | [Lifecycle](4-Data-Science-Lifecycle/README.md) | データサイエンスのライフサイクルと、最初のステップであるデータ獲得と抽出の紹介。 | [lesson](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | 分析 | [Lifecycle](4-Data-Science-Lifecycle/README.md) | データサイエンスのライフサイクルのこのフェーズは、データを分析する技術に焦点を当てます。 | [lesson](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | コミュニケーション | [Lifecycle](4-Data-Science-Lifecycle/README.md) | データサイエンスのライフサイクルのこのフェーズは、意思決定者が理解しやすい形でデータから得られた洞察を伝えることに重点を置きます。 | [lesson](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | クラウドにおけるデータサイエンス | [Cloud Data](5-Data-Science-In-Cloud/README.md) | クラウドにおけるデータサイエンスとその利点の紹介。 | [lesson](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) と [Maud](https://twitter.com/maudstweets) |
+| 18 | クラウドにおけるデータサイエンス | [Cloud Data](5-Data-Science-In-Cloud/README.md) | ローコードツールを使用したモデルのトレーニング。 |[lesson](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) と [Maud](https://twitter.com/maudstweets) |
+| 19 | クラウドにおけるデータサイエンス | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studioを用いたモデルのデプロイ。 | [lesson](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) と [Maud](https://twitter.com/maudstweets) |
+| 20 | 現実世界のデータサイエンス | [In the Wild](6-Data-Science-In-Wild/README.md) | 現実世界で行われるデータサイエンス駆動のプロジェクト。 | [lesson](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-このサンプルをCodespaceで開くには以下の手順を実行してください:
-1. Codeのドロップダウンメニューをクリックし、「Open with Codespaces」オプションを選択します。
-2. ペインの下部で「+ New codespace」を選択します。
+このサンプルをCodespaceで開くには、以下の手順を実行してください:
+1. Codeドロップダウンメニューをクリックし、「Open with Codespaces」オプションを選択します。
+2. ペイン下部の「+ New codespace」を選択します。
詳細は[GitHubのドキュメント](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace)をご覧ください。
## VSCode Remote - Containers
-このリポジトリをローカルマシンとVSCodeを使い、VS Code Remote - Containers拡張機能を利用してコンテナ内で開く手順:
-1. 開発用コンテナを初めて使う場合、[動作環境準備のドキュメント](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)にある必要条件(例:Dockerのインストールなど)を満たしているか確認してください。
+ローカルマシンとVSCodeのRemote - Containers拡張機能を使って、このリポジトリをコンテナ内で開くには以下の手順:
+
+1. 開発コンテナを初めて使う場合は、システムが[はじめにドキュメント](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)に記載の前提条件(例:Dockerのインストール)を満たしていることを確認してください。
+
+このリポジトリを使用するには、以下のいずれかを行います:
-このリポジトリを使うには、リポジトリを隔離されたDockerボリューム内で開く方法があります:
+ローカルのファイルシステムではなくDockerボリューム内でリポジトリを開く:
-**メモ**:内部的には、ソースコードをローカルファイルシステムではなくDockerボリュームにクローンする「Remote-Containers: Clone Repository in Container Volume...」コマンドを使用します。[ボリューム](https://docs.docker.com/storage/volumes/)はコンテナデータの永続化に適しています。
+**注意**:内部的には、Remote-Containersの「Clone Repository in Container Volume...」コマンドを使ってリポジトリのソースコードをDockerボリュームにクローンします。[ボリューム](https://docs.docker.com/storage/volumes/)はコンテナデータの永続化に推奨される方法です。
-またはローカルにクローンまたはダウンロードしたリポジトリを開く方法:
+またはローカルにクローンまたはダウンロードしたリポジトリを開く:
-- このリポジトリをローカルファイルシステムにクローンします。
-- F1キーを押して「Remote-Containers: Open Folder in Container...」コマンドを選択します。
-- クローンしたフォルダーを選び、コンテナの起動を待ち、試してみてください。
+- このリポジトリをローカルのファイルシステムにクローンします。
+- F1を押して「Remote-Containers: Open Folder in Container...」コマンドを選択します。
+- クローンしたフォルダーを選択し、コンテナの起動を待ってから試してみてください。
## オフラインアクセス
-[Docsify](https://docsify.js.org/#/)を使って、このドキュメントをオフラインで閲覧できます。リポジトリをフォークし、[Docsifyをローカルにインストール](https://docsify.js.org/#/quickstart)してから、このリポジトリのルートフォルダーで `docsify serve` と入力してください。ウェブサイトはlocalhostの3000ポートで提供されます:`localhost:3000`。
+[Docsify](https://docsify.js.org/#/)を使用してこのドキュメントをオフラインで閲覧可能です。このリポジトリをフォークし、ローカルマシンに[Docsifyをインストール](https://docsify.js.org/#/quickstart)してから、このリポジトリのルートフォルダで `docsify serve` を実行してください。ウェブサイトはローカルホストの3000番ポート(`localhost:3000`)でサーブされます。
-> 注意:ノートブックはDocsifyでレンダリングされないため、ノートブックを実行する場合はVS CodeのPythonカーネルで別途行ってください。
+> 注意:ノートブックはDocsifyではレンダリングされないため、ノートブックを実行する必要がある場合はPythonカーネルを動かすVS Code内で別途実行してください。
## その他のカリキュラム
-私たちのチームは他のカリキュラムも提供しています!ぜひご覧ください:
+私たちのチームは他のカリキュラムも提供しています!ご覧ください:
### LangChain
@@ -216,7 +210,7 @@ Discordで進行中の「AIと学ぶシリーズ」について詳しくは、[L
---
-### 生成AIシリーズ
+### 生成系AIシリーズ
[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
@@ -224,7 +218,7 @@ Discordで進行中の「AIと学ぶシリーズ」について詳しくは、[L
---
-### コア学習
+### コアラーニング
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
@@ -243,13 +237,13 @@ Discordで進行中の「AIと学ぶシリーズ」について詳しくは、[L
## ヘルプを得る
-**問題に直面していますか?** よくある問題の解決策については、[トラブルシューティングガイド](TROUBLESHOOTING.md)を確認してください。
+**問題が発生しましたか?** 一般的な問題の解決策については、[トラブルシューティングガイド](TROUBLESHOOTING.md)を参照してください。
-AIアプリの構築で詰まったり質問がある場合は、学習者や経験豊富な開発者と一緒にMCPについて話し合うコミュニティに参加してください。ここは質問が歓迎され、知識が自由に共有される支援的なコミュニティです。
+AIアプリの構築で立ち止まったり質問がある場合は、MCPに関する議論に参加してください。質問が歓迎され、知識が自由に共有されるサポートコミュニティです。
[](https://discord.gg/nTYy5BXMWG)
-製品フィードバックや開発中のエラーについては、以下を訪問してください:
+製品のフィードバックや構築中のエラーがある場合は、こちらをご利用ください:
[](https://aka.ms/foundry/forum)
@@ -257,5 +251,5 @@ AIアプリの構築で詰まったり質問がある場合は、学習者や経
**免責事項**:
-本書類はAI翻訳サービス[Co-op Translator](https://github.com/Azure/co-op-translator)を使用して翻訳されています。正確性には努めておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。原文の言語によるオリジナル資料が正本として取り扱われるべきです。重要な情報については、専門の翻訳者による翻訳をお勧めします。本翻訳の使用に起因するいかなる誤解や解釈の相違についても、当方は一切の責任を負いかねます。
+本書類はAI翻訳サービス「[Co-op Translator](https://github.com/Azure/co-op-translator)」を使用して翻訳されています。正確さには努めておりますが、自動翻訳には誤りや不正確な部分が含まれる場合があります。原文(原言語版)が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。本翻訳の使用により生じた誤解や解釈の相違について、当社は一切の責任を負いかねます。
\ No newline at end of file
diff --git a/translations/ja/SECURITY.md b/translations/ja/SECURITY.md
index c681fe73..9a4d5b7d 100644
--- a/translations/ja/SECURITY.md
+++ b/translations/ja/SECURITY.md
@@ -1,12 +1,3 @@
-
## セキュリティ
Microsoftは、ソフトウェア製品やサービスのセキュリティを非常に重視しています。これには、[Microsoft](https://github.com/Microsoft)、[Azure](https://github.com/Azure)、[DotNet](https://github.com/dotnet)、[AspNet](https://github.com/aspnet)、[Xamarin](https://github.com/xamarin)、および[弊社のGitHub組織](https://opensource.microsoft.com/)で管理されているすべてのソースコードリポジトリが含まれます。
diff --git a/translations/ja/SUPPORT.md b/translations/ja/SUPPORT.md
index 17726bb9..f950a840 100644
--- a/translations/ja/SUPPORT.md
+++ b/translations/ja/SUPPORT.md
@@ -1,12 +1,3 @@
-
# サポート
## 問題の報告方法とヘルプの取得
diff --git a/translations/ja/TROUBLESHOOTING.md b/translations/ja/TROUBLESHOOTING.md
index 3ea558fa..b29f4ec9 100644
--- a/translations/ja/TROUBLESHOOTING.md
+++ b/translations/ja/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# トラブルシューティングガイド
このガイドでは、Data Science for Beginners カリキュラムを使用する際に遭遇する可能性のある一般的な問題の解決策を提供します。
diff --git a/translations/ja/USAGE.md b/translations/ja/USAGE.md
index afe959ca..e6f005a1 100644
--- a/translations/ja/USAGE.md
+++ b/translations/ja/USAGE.md
@@ -1,12 +1,3 @@
-
# 使用ガイド
このガイドでは、「初心者のためのデータサイエンス」カリキュラムの使用例と一般的なワークフローを紹介します。
diff --git a/translations/ja/docs/_sidebar.md b/translations/ja/docs/_sidebar.md
index 99e7136e..465063a4 100644
--- a/translations/ja/docs/_sidebar.md
+++ b/translations/ja/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- はじめに
- [データサイエンスの定義](../1-Introduction/01-defining-data-science/README.md)
- [データサイエンスの倫理](../1-Introduction/02-ethics/README.md)
diff --git a/translations/ja/examples/README.md b/translations/ja/examples/README.md
index 2868e476..4fbf6dc1 100644
--- a/translations/ja/examples/README.md
+++ b/translations/ja/examples/README.md
@@ -1,12 +1,3 @@
-
# 初心者向けデータサイエンスの例
例のディレクトリへようこそ!このコレクションは、シンプルでコメントが充実した例を集めたもので、データサイエンスを始めたい初心者の方に最適です。
diff --git a/translations/ja/for-teachers.md b/translations/ja/for-teachers.md
index 011f24cf..653e6549 100644
--- a/translations/ja/for-teachers.md
+++ b/translations/ja/for-teachers.md
@@ -1,12 +1,3 @@
-
## 教育者の皆様へ
このカリキュラムを教室で使用してみませんか?ぜひご活用ください!
diff --git a/translations/ja/quiz-app/README.md b/translations/ja/quiz-app/README.md
index ee4d1f4a..39f4a2ef 100644
--- a/translations/ja/quiz-app/README.md
+++ b/translations/ja/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# クイズ
これらのクイズは、データサイエンスカリキュラム(https://aka.ms/datascience-beginners)の講義前後に行うクイズです。
diff --git a/translations/ja/sketchnotes/README.md b/translations/ja/sketchnotes/README.md
index 2fc59772..0dc3c15b 100644
--- a/translations/ja/sketchnotes/README.md
+++ b/translations/ja/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
すべてのスケッチノートはこちらで見つけることができます!
## クレジット
diff --git a/translations/kn/.co-op-translator.json b/translations/kn/.co-op-translator.json
new file mode 100644
index 00000000..7fe91d8c
--- /dev/null
+++ b/translations/kn/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-12-19T13:39:07+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "kn"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-12-19T13:46:19+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "kn"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-12-19T14:40:03+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "kn"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-12-19T14:22:03+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "kn"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-12-19T14:28:52+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "kn"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-12-19T14:00:15+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "kn"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-12-19T14:01:59+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "kn"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-12-19T13:54:48+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "kn"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-12-19T13:57:31+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "kn"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-12-19T13:23:24+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "kn"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T15:49:38+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "kn"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-12-19T15:52:02+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "kn"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-12-19T15:39:41+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "kn"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-12-19T15:41:16+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "kn"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-12-19T15:34:55+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "kn"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-12-19T15:37:42+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "kn"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-12-19T15:43:47+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "kn"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-12-19T15:45:50+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "kn"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-12-19T13:29:56+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-12-19T16:15:58+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-12-19T16:17:36+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-12-19T15:55:45+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-12-19T15:57:18+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-12-19T16:03:58+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-12-19T16:05:27+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-12-19T15:58:52+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-12-19T16:00:21+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-12-19T16:10:02+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-12-19T16:11:44+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-12-19T16:19:08+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-12-19T16:18:22+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-12-19T16:33:36+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-12-19T16:35:04+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-12-19T16:22:32+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-12-19T16:23:54+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-12-19T16:29:36+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-12-19T16:25:43+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-12-19T16:39:52+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "kn"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-12-19T13:36:00+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "kn"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-12-19T15:27:40+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "kn"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-12-19T15:29:05+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "kn"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-12-19T15:25:24+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "kn"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-12-19T15:26:15+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "kn"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-12-19T15:21:08+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "kn"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-12-19T15:23:15+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "kn"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-12-19T13:24:49+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "kn"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-12-19T15:16:46+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "kn"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-12-19T15:18:09+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "kn"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-12-19T15:01:15+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "kn"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-12-19T15:04:10+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "kn"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-12-19T14:45:41+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "kn"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-12-19T14:47:52+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "kn"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-12-19T13:23:55+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "kn"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-12-19T16:57:54+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "kn"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-12-19T16:59:35+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "kn"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-12-19T13:36:52+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "kn"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-12-19T13:07:24+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "kn"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-12-19T13:09:19+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "kn"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-12-19T12:50:17+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "kn"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-12-19T13:13:01+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "kn"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:53:57+00:00",
+ "source_file": "README.md",
+ "language_code": "kn"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-12-19T13:14:12+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "kn"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-12-19T12:48:40+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "kn"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-12-19T12:59:04+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "kn"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-12-19T12:47:17+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "kn"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-12-19T13:31:12+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "kn"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-12-19T13:28:44+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "kn"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-12-19T12:41:35+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "kn"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-12-19T13:26:21+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "kn"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-12-19T13:32:13+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "kn"
+ }
+}
\ No newline at end of file
diff --git a/translations/kn/1-Introduction/01-defining-data-science/README.md b/translations/kn/1-Introduction/01-defining-data-science/README.md
index 0d85d201..f698e87f 100644
--- a/translations/kn/1-Introduction/01-defining-data-science/README.md
+++ b/translations/kn/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# ಡೇಟಾ ಸೈನ್ಸ್ ಅನ್ನು ವ್ಯಾಖ್ಯಾನಿಸುವುದು
|  ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/kn/1-Introduction/01-defining-data-science/assignment.md b/translations/kn/1-Introduction/01-defining-data-science/assignment.md
index 448d22d3..8cd83b52 100644
--- a/translations/kn/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/kn/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# ನಿಯೋಜನೆ: ಡೇಟಾ ಸೈನ್ಸ್ ದೃಶ್ಯಗಳು
ಈ ಮೊದಲ ನಿಯೋಜನೆಯಲ್ಲಿ, ನಾವು ನಿಮಗೆ ವಿವಿಧ ಸಮಸ್ಯಾ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ಕೆಲವು ನೈಜ ಜೀವನ ಪ್ರಕ್ರಿಯೆ ಅಥವಾ ಸಮಸ್ಯೆಯನ್ನು ಕುರಿತು ಯೋಚಿಸಲು ಕೇಳುತ್ತೇವೆ, ಮತ್ತು ನೀವು ಡೇಟಾ ಸೈನ್ಸ್ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅದನ್ನು ಹೇಗೆ ಸುಧಾರಿಸಬಹುದು ಎಂದು. ಕೆಳಗಿನ ವಿಷಯಗಳನ್ನು ಯೋಚಿಸಿ:
diff --git a/translations/kn/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/kn/1-Introduction/01-defining-data-science/solution/assignment.md
index 46effb8f..5fc68e29 100644
--- a/translations/kn/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/kn/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# ನಿಯೋಜನೆ: ಡೇಟಾ ಸೈನ್ಸ್ ದೃಶ್ಯಗಳು
ಈ ಮೊದಲ ನಿಯೋಜನೆಯಲ್ಲಿ, ನಾವು ನಿಮಗೆ ವಿವಿಧ ಸಮಸ್ಯಾ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ಕೆಲವು ನೈಜ ಜೀವನ ಪ್ರಕ್ರಿಯೆ ಅಥವಾ ಸಮಸ್ಯೆಯನ್ನು ಕುರಿತು ಯೋಚಿಸಲು ಕೇಳುತ್ತೇವೆ, ಮತ್ತು ನೀವು ಡೇಟಾ ಸೈನ್ಸ್ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅದನ್ನು ಹೇಗೆ ಸುಧಾರಿಸಬಹುದು ಎಂದು. ಕೆಳಗಿನ ವಿಷಯಗಳನ್ನು ಯೋಚಿಸಿ:
diff --git a/translations/kn/1-Introduction/02-ethics/README.md b/translations/kn/1-Introduction/02-ethics/README.md
index 31e64764..6478cc97 100644
--- a/translations/kn/1-Introduction/02-ethics/README.md
+++ b/translations/kn/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
Translation for chunk 1 of 'README.md' skipped due to timeout.
* ಮಾಹಿತಿ ವಾಸ್ತವಿಕತೆಯನ್ನು ಪ್ರತಿಬಿಂಬಿಸುವಲ್ಲಿ _ನಿಖರವಾಗಿ_ ಸೆರೆಹಿಡಿದಿದೆಯೇ?
diff --git a/translations/kn/1-Introduction/02-ethics/assignment.md b/translations/kn/1-Introduction/02-ethics/assignment.md
index 09c55500..9bd05617 100644
--- a/translations/kn/1-Introduction/02-ethics/assignment.md
+++ b/translations/kn/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## ಡೇಟಾ ನೈತಿಕತೆ ಪ್ರಕರಣ ಅಧ್ಯಯನವನ್ನು ಬರೆಯಿರಿ
## ಸೂಚನೆಗಳು
diff --git a/translations/kn/1-Introduction/03-defining-data/README.md b/translations/kn/1-Introduction/03-defining-data/README.md
index 9d070fe6..da19b334 100644
--- a/translations/kn/1-Introduction/03-defining-data/README.md
+++ b/translations/kn/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# ಡೇಟಾ ವ್ಯಾಖ್ಯಾನ
| ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/kn/1-Introduction/03-defining-data/assignment.md b/translations/kn/1-Introduction/03-defining-data/assignment.md
index adeb343b..521fef7f 100644
--- a/translations/kn/1-Introduction/03-defining-data/assignment.md
+++ b/translations/kn/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# ಡೇಟಾಸೆಟ್ಗಳನ್ನು ವರ್ಗೀಕರಿಸುವುದು
## ಸೂಚನೆಗಳು
diff --git a/translations/kn/1-Introduction/04-stats-and-probability/README.md b/translations/kn/1-Introduction/04-stats-and-probability/README.md
index d01f0db5..58ce8063 100644
--- a/translations/kn/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/kn/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# ಅಂಕಿಅಂಶಗಳು ಮತ್ತು ಸಂಭವನೀಯತೆಯ ಸಂಕ್ಷಿಪ್ತ ಪರಿಚಯ
| ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/04-Statistics-Probability.png)|
diff --git a/translations/kn/1-Introduction/04-stats-and-probability/assignment.md b/translations/kn/1-Introduction/04-stats-and-probability/assignment.md
index 42c40be6..24b97e2d 100644
--- a/translations/kn/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/kn/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# ಸಣ್ಣ ಮಧುಮೇಹ ಅಧ್ಯಯನ
ಈ ನಿಯೋಜನೆಯಲ್ಲಿ, ನಾವು [ಇಲ್ಲಿ](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) ತೆಗೆದುಕೊಂಡಿರುವ ಮಧುಮೇಹ ರೋಗಿಗಳ ಸಣ್ಣ ಡೇಟಾಸೆಟ್ನೊಂದಿಗೆ ಕೆಲಸ ಮಾಡುತ್ತೇವೆ.
diff --git a/translations/kn/1-Introduction/README.md b/translations/kn/1-Introduction/README.md
index 640a2cf9..fdae055e 100644
--- a/translations/kn/1-Introduction/README.md
+++ b/translations/kn/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# ಡೇಟಾ ಸೈನ್ಸ್ ಪರಿಚಯ

diff --git a/translations/kn/2-Working-With-Data/05-relational-databases/README.md b/translations/kn/2-Working-With-Data/05-relational-databases/README.md
index b55da652..79113918 100644
--- a/translations/kn/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/kn/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# ಡೇಟಾ ಜೊತೆಗೆ ಕೆಲಸ ಮಾಡುವುದು: ಸಂಬಂಧಿತ ಡೇಟಾಬೇಸ್ಗಳು
| ಅವರ ಸ್ಕೆಚ್ನೋಟ್ ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/kn/2-Working-With-Data/05-relational-databases/assignment.md b/translations/kn/2-Working-With-Data/05-relational-databases/assignment.md
index 3ddfd129..05b1b836 100644
--- a/translations/kn/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/kn/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# ವಿಮಾನ ನಿಲ್ದಾಣದ ಡೇಟಾ ಪ್ರದರ್ಶನ
ನೀವು ವಿಮಾನ ನಿಲ್ದಾಣಗಳ ಬಗ್ಗೆ ಮಾಹಿತಿಯನ್ನು ಹೊಂದಿರುವ [ಡೇಟಾಬೇಸ್](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) ಅನ್ನು [SQLite](https://sqlite.org/index.html) ಆಧಾರಿತವಾಗಿ ಒದಗಿಸಲಾಗಿದೆ. ಕೆಳಗಿನಂತೆ ಸ್ಕೀಮಾ ಪ್ರದರ್ಶಿಸಲಾಗಿದೆ. ನೀವು [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) ನಲ್ಲಿ [SQLite ವಿಸ್ತರಣೆ](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) ಬಳಸಿ ವಿವಿಧ ನಗರಗಳ ವಿಮಾನ ನಿಲ್ದಾಣಗಳ ಬಗ್ಗೆ ಮಾಹಿತಿಯನ್ನು ಪ್ರದರ್ಶಿಸುವಿರಿ.
diff --git a/translations/kn/2-Working-With-Data/06-non-relational/README.md b/translations/kn/2-Working-With-Data/06-non-relational/README.md
index a7bcfc9f..0a5530b5 100644
--- a/translations/kn/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/kn/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# ಡೇಟಾ ಜೊತೆಗೆ ಕೆಲಸ ಮಾಡುವುದು: ಅಸಂಬಂಧಿತ ಡೇಟಾ
| ಅವರಿಂದ ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/kn/2-Working-With-Data/06-non-relational/assignment.md b/translations/kn/2-Working-With-Data/06-non-relational/assignment.md
index 904e8236..7f167fb6 100644
--- a/translations/kn/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/kn/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# ಸೋಡಾ ಲಾಭಗಳು
## ಸೂಚನೆಗಳು
diff --git a/translations/kn/2-Working-With-Data/07-python/README.md b/translations/kn/2-Working-With-Data/07-python/README.md
index 08211e30..ae1f3d21 100644
--- a/translations/kn/2-Working-With-Data/07-python/README.md
+++ b/translations/kn/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# ಡೇಟಾ ಜೊತೆ ಕೆಲಸ ಮಾಡುವುದು: ಪೈಥಾನ್ ಮತ್ತು ಪಾಂಡಾಸ್ ಲೈಬ್ರರಿ
|  ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/kn/2-Working-With-Data/07-python/assignment.md b/translations/kn/2-Working-With-Data/07-python/assignment.md
index b0fe768e..6feaa638 100644
--- a/translations/kn/2-Working-With-Data/07-python/assignment.md
+++ b/translations/kn/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# ಪೈಥಾನ್ನಲ್ಲಿ ಡೇಟಾ ಪ್ರೊಸೆಸಿಂಗ್ಗಾಗಿ ಅಸೈನ್ಮೆಂಟ್
ಈ ಅಸೈನ್ಮೆಂಟ್ನಲ್ಲಿ, ನಾವು ನಮ್ಮ ಚಾಲೆಂಜ್ಗಳಲ್ಲಿ ಅಭಿವೃದ್ಧಿಪಡಿಸಲು ಪ್ರಾರಂಭಿಸಿದ ಕೋಡ್ ಬಗ್ಗೆ ನೀವು ವಿವರಿಸಲು ಕೇಳುತ್ತೇವೆ. ಅಸೈನ್ಮೆಂಟ್ ಎರಡು ಭಾಗಗಳಿಂದ ಕೂಡಿದೆ:
diff --git a/translations/kn/2-Working-With-Data/08-data-preparation/README.md b/translations/kn/2-Working-With-Data/08-data-preparation/README.md
index 2f5998aa..98f50a1a 100644
--- a/translations/kn/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/kn/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# ಡೇಟಾ ಜೊತೆಗೆ ಕೆಲಸ ಮಾಡುವುದು: ಡೇಟಾ ತಯಾರಿ
| ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/kn/2-Working-With-Data/08-data-preparation/assignment.md b/translations/kn/2-Working-With-Data/08-data-preparation/assignment.md
index 752046b1..cda1aa24 100644
--- a/translations/kn/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/kn/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# ಫಾರ್ಮ್ನಿಂದ ಡೇಟಾವನ್ನು ಮೌಲ್ಯಮಾಪನ ಮಾಡುವುದು
ಒಂದು ಗ್ರಾಹಕರು ತಮ್ಮ ಗ್ರಾಹಕ ಆಧಾರದ ಬಗ್ಗೆ ಕೆಲವು ಮೂಲಭೂತ ಡೇಟಾವನ್ನು ಸಂಗ್ರಹಿಸಲು [ಸಣ್ಣ ಫಾರ್ಮ್](../../../../2-Working-With-Data/08-data-preparation/index.html) ಅನ್ನು ಪರೀಕ್ಷಿಸುತ್ತಿದ್ದಾರೆ. ಅವರು ಸಂಗ್ರಹಿಸಿದ ಡೇಟಾವನ್ನು ಮಾನ್ಯಗೊಳಿಸಲು ತಮ್ಮ ಕಂಡುಹಿಡಿದಿರುವುದನ್ನು ನಿಮಗೆ ತಂದುಕೊಟ್ಟಿದ್ದಾರೆ. ಫಾರ್ಮ್ ಅನ್ನು ನೋಡಲು ನೀವು ಬ್ರೌಸರ್ನಲ್ಲಿ `index.html` ಪುಟವನ್ನು ತೆರೆಯಬಹುದು.
diff --git a/translations/kn/2-Working-With-Data/README.md b/translations/kn/2-Working-With-Data/README.md
index 78b9cdfb..eea8b14c 100644
--- a/translations/kn/2-Working-With-Data/README.md
+++ b/translations/kn/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# ಡೇಟಾ ಜೊತೆಗೆ ಕೆಲಸ ಮಾಡುವುದು

diff --git a/translations/kn/3-Data-Visualization/09-visualization-quantities/README.md b/translations/kn/3-Data-Visualization/09-visualization-quantities/README.md
index f9dab517..7484a9d9 100644
--- a/translations/kn/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/kn/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# ಪ್ರಮಾಣಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು
| ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/kn/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/kn/3-Data-Visualization/09-visualization-quantities/assignment.md
index 07c8bc98..dcdfe459 100644
--- a/translations/kn/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/kn/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# ರೇಖೆಗಳು, ಚಿತ್ತಾರಗಳು ಮತ್ತು ಬಾರ್ಗಳು
## ಸೂಚನೆಗಳು
diff --git a/translations/kn/3-Data-Visualization/10-visualization-distributions/README.md b/translations/kn/3-Data-Visualization/10-visualization-distributions/README.md
index 666e70ca..3a6c7fb6 100644
--- a/translations/kn/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/kn/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# ವಿತರಣೆಯನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು
| ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/kn/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/kn/3-Data-Visualization/10-visualization-distributions/assignment.md
index 6972c669..a82b9593 100644
--- a/translations/kn/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/kn/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# ನಿಮ್ಮ ಕೌಶಲ್ಯಗಳನ್ನು ಅನ್ವಯಿಸಿ
## ಸೂಚನೆಗಳು
diff --git a/translations/kn/3-Data-Visualization/11-visualization-proportions/README.md b/translations/kn/3-Data-Visualization/11-visualization-proportions/README.md
index d6d0845b..0ae1b0ad 100644
--- a/translations/kn/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/kn/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# ಪ್ರಮಾಣಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು
| ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/kn/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/kn/3-Data-Visualization/11-visualization-proportions/assignment.md
index a90d9d91..d4050dab 100644
--- a/translations/kn/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/kn/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Excel ನಲ್ಲಿ ಪ್ರಯತ್ನಿಸಿ
## ಸೂಚನೆಗಳು
diff --git a/translations/kn/3-Data-Visualization/12-visualization-relationships/README.md b/translations/kn/3-Data-Visualization/12-visualization-relationships/README.md
index 533c8fdb..4c48e49d 100644
--- a/translations/kn/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/kn/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# ಸಂಬಂಧಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು: ಜೇನುತುಪ್ಪ ಬಗ್ಗೆ ಎಲ್ಲವೂ 🍯
| ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/kn/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/kn/3-Data-Visualization/12-visualization-relationships/assignment.md
index 0985db54..6cfaa01e 100644
--- a/translations/kn/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/kn/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# ಜೇನುಮಡಿಗೆಗೆ ಡೈವ್ ಮಾಡಿ
## ಸೂಚನೆಗಳು
diff --git a/translations/kn/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/kn/3-Data-Visualization/13-meaningful-visualizations/README.md
index 29ee3575..dab3dcee 100644
--- a/translations/kn/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/kn/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# ಅರ್ಥಪೂರ್ಣ ದೃಶ್ಯೀಕರಣಗಳನ್ನು ಮಾಡುವುದು
| ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/kn/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/kn/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index c7d6a331..d55f37f9 100644
--- a/translations/kn/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/kn/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# ನಿಮ್ಮ ಸ್ವಂತ ಕಸ್ಟಮ್ ವಿಸ್ನ್ನು ನಿರ್ಮಿಸಿ
## ಸೂಚನೆಗಳು
diff --git a/translations/kn/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/kn/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 7d0d874e..0c5e79b3 100644
--- a/translations/kn/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/kn/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# ಡೇಂಜರಸ್ ಲಿಯಾಜನ್ಸ್ ಡೇಟಾ ವಿಸುಯಲೈಜೆಷನ್ ಪ್ರಾಜೆಕ್ಟ್
ಪ್ರಾರಂಭಿಸಲು, ನಿಮ್ಮ ಯಂತ್ರದಲ್ಲಿ NPM ಮತ್ತು Node ಚಾಲನೆಯಲ್ಲಿರುವುದನ್ನು ಖಚಿತಪಡಿಸಿಕೊಳ್ಳಬೇಕು. ಅವಲಂಬನೆಗಳನ್ನು ಸ್ಥಾಪಿಸಿ (npm install) ಮತ್ತು ನಂತರ ಪ್ರಾಜೆಕ್ಟ್ ಅನ್ನು ಸ್ಥಳೀಯವಾಗಿ ಚಾಲನೆ ಮಾಡಿ (npm run serve):
diff --git a/translations/kn/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/kn/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 8fa0c8e6..f96a88ee 100644
--- a/translations/kn/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/kn/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# ಡೇಂಜರಸ್ ಲಿಯಾಜನ್ಸ್ ಡೇಟಾ ವಿಸುಯಲೈಜೆಷನ್ ಪ್ರಾಜೆಕ್ಟ್
ಪ್ರಾರಂಭಿಸಲು, ನಿಮ್ಮ ಯಂತ್ರದಲ್ಲಿ NPM ಮತ್ತು Node ಚಾಲನೆಯಲ್ಲಿರುವುದನ್ನು ಖಚಿತಪಡಿಸಿಕೊಳ್ಳಬೇಕು. ಅವಲಂಬನೆಗಳನ್ನು ಸ್ಥಾಪಿಸಿ (npm install) ಮತ್ತು ನಂತರ ಪ್ರಾಜೆಕ್ಟ್ ಅನ್ನು ಸ್ಥಳೀಯವಾಗಿ ಚಾಲನೆ ಮಾಡಿ (npm run serve):
diff --git a/translations/kn/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/kn/3-Data-Visualization/R/09-visualization-quantities/README.md
index d8410463..222c1b53 100644
--- a/translations/kn/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/kn/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# ಪ್ರಮಾಣಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು
| ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/kn/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/kn/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 31fa2f71..7dc10819 100644
--- a/translations/kn/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/kn/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# ರೇಖೆಗಳು, ಚಿತ್ತಾರಗಳು ಮತ್ತು ಬಾರ್ಗಳು
## ಸೂಚನೆಗಳು
diff --git a/translations/kn/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/kn/3-Data-Visualization/R/10-visualization-distributions/README.md
index d3d474e8..4ce2b04b 100644
--- a/translations/kn/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/kn/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# ವಿತರಣೆಯ ದೃಶ್ಯೀಕರಣ
| ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/kn/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/kn/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index e7153cca..20016389 100644
--- a/translations/kn/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/kn/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# ನಿಮ್ಮ ಕೌಶಲ್ಯಗಳನ್ನು ಅನ್ವಯಿಸಿ
## ಸೂಚನೆಗಳು
diff --git a/translations/kn/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/kn/3-Data-Visualization/R/11-visualization-proportions/README.md
index ae3c2f58..42cbbbcc 100644
--- a/translations/kn/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/kn/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# ಪ್ರಮಾಣಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು
| ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/kn/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/kn/3-Data-Visualization/R/12-visualization-relationships/README.md
index 8a73a25a..19efc92c 100644
--- a/translations/kn/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/kn/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# ಸಂಬಂಧಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು: ಜೇನುತುಪ್ಪ ಬಗ್ಗೆ ಎಲ್ಲವೂ 🍯
| ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/kn/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/kn/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 2e6a1608..8ab74420 100644
--- a/translations/kn/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/kn/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# ಅರ್ಥಪೂರ್ಣ ದೃಶ್ಯೀಕರಣಗಳನ್ನು ಮಾಡುವುದು
| ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/kn/3-Data-Visualization/README.md b/translations/kn/3-Data-Visualization/README.md
index e692a19b..9aa51b7b 100644
--- a/translations/kn/3-Data-Visualization/README.md
+++ b/translations/kn/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# ದೃಶ್ಯೀಕರಣಗಳು

diff --git a/translations/kn/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/kn/4-Data-Science-Lifecycle/14-Introduction/README.md
index 8cec84c1..204e1d3b 100644
--- a/translations/kn/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/kn/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# ಡೇಟಾ ಸೈನ್ಸ್ ಜೀವನಚಕ್ರಕ್ಕೆ ಪರಿಚಯ
| ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/kn/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/kn/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index b8e88b8f..772b03ba 100644
--- a/translations/kn/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/kn/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# ಡೇಟಾಸೆಟ್ ಅನ್ನು ಅಂದಾಜಿಸುವುದು
ನಿಮ್ಮ ತಂಡಕ್ಕೆ ನ್ಯೂಯಾರ್ಕ್ ನಗರದಲ್ಲಿ ಟ್ಯಾಕ್ಸಿ ಗ್ರಾಹಕರ ಋತುಮಾನ ಖರ್ಚು عادತಗಳನ್ನು ಪರಿಶೀಲಿಸಲು ಸಹಾಯ ಮಾಡಲು ಒಂದು ಗ್ರಾಹಕ ಸಂಪರ್ಕಿಸಿದ್ದಾರೆ.
diff --git a/translations/kn/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/kn/4-Data-Science-Lifecycle/15-analyzing/README.md
index 495837ad..dc7b7155 100644
--- a/translations/kn/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/kn/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# ಡೇಟಾ ಸೈನ್ಸ್ ಜೀವನಚಕ್ರ: ವಿಶ್ಲೇಷಣೆ
| ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/kn/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/kn/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index a4d1a72c..0d4431b7 100644
--- a/translations/kn/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/kn/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# ಉತ್ತರಗಳನ್ನು ಅನ್ವೇಷಿಸುವುದು
ಇದು ಹಿಂದಿನ ಪಾಠದ [ಕಾರ್ಯ](../14-Introduction/assignment.md)ನ ಮುಂದುವರಿದ ಭಾಗವಾಗಿದ್ದು, ಅಲ್ಲಿ ನಾವು ಡೇಟಾ ಸೆಟ್ ಅನ್ನು ಸಂಕ್ಷಿಪ್ತವಾಗಿ ನೋಡಿದ್ದೇವೆ. ಈಗ ನಾವು ಡೇಟಾವನ್ನು ಹೆಚ್ಚು ಆಳವಾಗಿ ಪರಿಶೀಲಿಸುವೆವು.
diff --git a/translations/kn/4-Data-Science-Lifecycle/16-communication/README.md b/translations/kn/4-Data-Science-Lifecycle/16-communication/README.md
index abdc8fa3..e413c26c 100644
--- a/translations/kn/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/kn/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# ಡೇಟಾ ಸೈನ್ಸ್ ಜೀವನಚಕ್ರ: ಸಂವಹನ
| ಅವರಿಂದ ](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/kn/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/kn/4-Data-Science-Lifecycle/16-communication/assignment.md
index 2d85baed..823e5772 100644
--- a/translations/kn/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/kn/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# ಕಥೆಯನ್ನು ಹೇಳಿ
## ಸೂಚನೆಗಳು
diff --git a/translations/kn/4-Data-Science-Lifecycle/README.md b/translations/kn/4-Data-Science-Lifecycle/README.md
index d1e9a0d9..c3ac6ff9 100644
--- a/translations/kn/4-Data-Science-Lifecycle/README.md
+++ b/translations/kn/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# ಡೇಟಾ ಸೈನ್ಸ್ ಜೀವನಚಕ್ರ

diff --git a/translations/kn/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/kn/5-Data-Science-In-Cloud/17-Introduction/README.md
index 4979aeb2..37431204 100644
--- a/translations/kn/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/kn/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# ಕ್ಲೌಡ್ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ಗೆ ಪರಿಚಯ
| ಅವರಿಂದ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/kn/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/kn/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 09ddafc5..ff5cbdbf 100644
--- a/translations/kn/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/kn/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# ಮಾರುಕಟ್ಟೆ ಸಂಶೋಧನೆ
## ಸೂಚನೆಗಳು
diff --git a/translations/kn/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/kn/5-Data-Science-In-Cloud/18-Low-Code/README.md
index de3972e4..b0bef456 100644
--- a/translations/kn/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/kn/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# ಕ್ಲೌಡ್ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್: "ಲೋ ಕೋಡ್/ನೋ ಕೋಡ್" ವಿಧಾನ
| ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/kn/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/kn/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 66e68845..71f3cccb 100644
--- a/translations/kn/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/kn/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# ಕಡಿಮೆ ಕೋಡ್/ಕೋಡ್ ಇಲ್ಲದ ಡೇಟಾ ಸೈನ್ಸ್ ಪ್ರಾಜೆಕ್ಟ್ ಆನ್ ಅಜೂರ್ ಎಂಎಲ್
## ಸೂಚನೆಗಳು
diff --git a/translations/kn/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/kn/5-Data-Science-In-Cloud/19-Azure/README.md
index 3e71924e..7c8c92a2 100644
--- a/translations/kn/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/kn/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# ಕ್ಲೌಡ್ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್: "ಅಜೂರ್ ಎಂಎಲ್ ಎಸ್ಡಿಕೆ" ವಿಧಾನ
| ಅವರಿಂದ ಸ್ಕೆಚ್ನೋಟ್ ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/kn/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/kn/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 71948bf2..d70f9bed 100644
--- a/translations/kn/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/kn/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# ಅಜೂರ್ ಎಂಎಲ್ ಎಸ್ಡಿಕೆ ಬಳಸಿ ಡೇಟಾ ಸೈನ್ಸ್ ಪ್ರಾಜೆಕ್ಟ್
## ಸೂಚನೆಗಳು
diff --git a/translations/kn/5-Data-Science-In-Cloud/README.md b/translations/kn/5-Data-Science-In-Cloud/README.md
index 1d600e6c..fae44f35 100644
--- a/translations/kn/5-Data-Science-In-Cloud/README.md
+++ b/translations/kn/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# ಕ್ಲೌಡ್ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್

diff --git a/translations/kn/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/kn/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 6d33d80f..c748d65a 100644
--- a/translations/kn/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/kn/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# ನಿಜಜೀವನದಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್
|  ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/kn/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/kn/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 5660214d..b2b0dc49 100644
--- a/translations/kn/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/kn/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# ಗ್ರಹಣ ಕಂಪ್ಯೂಟರ್ ಡೇಟಾಸೆಟ್ ಅನ್ನು ಅನ್ವೇಷಿಸಿ
## ಸೂಚನೆಗಳು
diff --git a/translations/kn/6-Data-Science-In-Wild/README.md b/translations/kn/6-Data-Science-In-Wild/README.md
index 2738aeba..6e61805f 100644
--- a/translations/kn/6-Data-Science-In-Wild/README.md
+++ b/translations/kn/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# ಕಾಡಿನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್
ವ್ಯವಸ್ಥೆಗಳಾದ್ಯಂತ ಡೇಟಾ ಸೈನ್ಸ್ನ ನೈಜ ಜಗತ್ತಿನ ಅನ್ವಯಿಕೆಗಳು.
diff --git a/translations/kn/AGENTS.md b/translations/kn/AGENTS.md
index 73a85e0a..8e0dd175 100644
--- a/translations/kn/AGENTS.md
+++ b/translations/kn/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## ಪ್ರಾಜೆಕ್ಟ್ ಅವಲೋಕನ
diff --git a/translations/kn/CODE_OF_CONDUCT.md b/translations/kn/CODE_OF_CONDUCT.md
index f72b75bb..dd660f81 100644
--- a/translations/kn/CODE_OF_CONDUCT.md
+++ b/translations/kn/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# ಮೈಕ್ರೋಸಾಫ್ಟ್ ಓಪನ್ ಸೋರ್ಸ್ ಕೋಡ್ ಆಫ್ ಕಂಡಕ್ಟ್
ಈ ಯೋಜನೆ [ಮೈಕ್ರೋಸಾಫ್ಟ್ ಓಪನ್ ಸೋರ್ಸ್ ಕೋಡ್ ಆಫ್ ಕಂಡಕ್ಟ್](https://opensource.microsoft.com/codeofconduct/) ಅನ್ನು ಅಂಗೀಕರಿಸಿದೆ.
diff --git a/translations/kn/CONTRIBUTING.md b/translations/kn/CONTRIBUTING.md
index 70ea56bf..ae2f3544 100644
--- a/translations/kn/CONTRIBUTING.md
+++ b/translations/kn/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# ಆರಂಭಿಕರಿಗಾಗಿ ಡೇಟಾ ಸೈನ್ಸ್ಗೆ ಕೊಡುಗೆ ನೀಡುವುದು
ಡೇಟಾ ಸೈನ್ಸ್ ಫಾರ್ ಬಿಗಿನರ್ಸ್ ಪಠ್ಯಕ್ರಮಕ್ಕೆ ಕೊಡುಗೆ ನೀಡಲು ನಿಮ್ಮ ಆಸಕ್ತಿಗೆ ಧನ್ಯವಾದಗಳು! ನಾವು ಸಮುದಾಯದಿಂದ ಕೊಡುಗೆಗಳನ್ನು ಸ್ವಾಗತಿಸುತ್ತೇವೆ.
diff --git a/translations/kn/INSTALLATION.md b/translations/kn/INSTALLATION.md
index 914910c7..e423c1e6 100644
--- a/translations/kn/INSTALLATION.md
+++ b/translations/kn/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# ಸ್ಥಾಪನೆ ಮಾರ್ಗದರ್ಶಿ
ಈ ಮಾರ್ಗದರ್ಶಿ ನಿಮಗೆ Data Science for Beginners ಪಠ್ಯಕ್ರಮದೊಂದಿಗೆ ಕೆಲಸ ಮಾಡಲು ನಿಮ್ಮ ಪರಿಸರವನ್ನು ಸೆಟ್ ಅಪ್ ಮಾಡಲು ಸಹಾಯ ಮಾಡುತ್ತದೆ.
diff --git a/translations/kn/README.md b/translations/kn/README.md
index 26ce0045..7ecb8f1c 100644
--- a/translations/kn/README.md
+++ b/translations/kn/README.md
@@ -1,262 +1,253 @@
-
-# ಆರಂಭಿಕರಿಗಾಗಿ ಡೇಟಾ ಸೈನ್ಸ್ - ಪಠ್ಯಕ್ರಮ
+# ಆರಂಭಿಕರಿಗಾಗಿ ಡೇಟಾ ವಿಜ್ಞಾನ - ಪಾಠ್ಯಕ್ರಮ
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
-Microsoft ನ Azure Cloud Advocates ಡೇಟಾ ಸೈನ್ಸ್ ಬಗ್ಗೆ 10 ವಾರಗಳ, 20 ಪಾಠಗಳ ಪಠ್ಯಕ್ರಮವನ್ನು ಸಂತೋಷದಿಂದ ನೀಡುತ್ತಿದ್ದೇವೆ. ಪ್ರತಿಯೊಬ್ಬ ಪಾಠವು ಪೂರ್ವ ಪಾಠ ಮತ್ತು ನಂತರದ ಪಾಠ ಕ್ವಿಜ್ಗಳನ್ನು ಒಳಗೊಂಡಿದೆ, ಪಾಠವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು ಬರಹದ ಸೂಚನೆಗಳು, ಪರಿಹಾರ ಮತ್ತು ನಿಯುಕ್ತಿ ಹೊಂದಿದೆ. ನಮ್ಮ ಯೋಜನೆ ಆಧಾರಿತ ಪಠ್ಯಪದ್ಧತಿ ನಿಮಗೆ ಕಲಿಯುವಾಗ ನಿರ್ಮಿಸಲು ಅನುಮತಿಸುತ್ತದೆ, ಇದು ಹೊಸ ಕೌಶಲ್ಯಗಳ ಸಂಯೋಜನೆಗೆ ಪರಿಶೀಲಿತ ಮಾರ್ಗವಾಗಿದೆ.
+Microsoft ನ Azure ಕ್ಲೌಡ್ ವಕೀಲರು ಡೇಟಾ ವಿಜ್ಞಾನ ಕುರಿತು 10 ವಾರಗಳ, 20 ಪಾಠಗಳ ಪಾಠ್ಯಕ್ರಮವನ್ನು ನೀಡಲು ಸಂತೋಷಪಡುತ್ತಾರೆ. ಪ್ರತಿ ಪಾಠದಲ್ಲಿ ಪಾಠ ಮೊದಲು ಮತ್ತು ನಂತರದ ಕ್ವಿಜ್ಗಳು, ಪಾಠವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು ಬರಹದ ಸೂಚನೆಗಳು, ಪರಿಹಾರ ಮತ್ತು ಕಾರ್ಯನಿರ್ವಹಣೆಯ ಅಸೈನ್ಮೆಂಟ್ಗಳಿವೆ. ನಮ್ಮ ಪ್ರಾಜೆಕ್ಟ್ ಆಧಾರಿತ ಪಠ್ಯದ ವಿಧಾನವು ನೀವು ನಿರ್ಮಾಣ ಮಾಡುವಾಗ ಕಲಿಯಲು ಅವಕಾಶ ನೀಡುತ್ತದೆ, ಇದು ಹೊಸ ಕೌಶಲ್ಯಗಳನ್ನ "ಇಟ್ಟುಕೊಳ್ಳಲು" ಸಾಬೀತಾದ ವಿಧಾನವಾಗಿದೆ.
**ನಮ್ಮ ಲೇಖಕರಿಗೆ ಹೃದಯಪೂರ್ವಕ ಧನ್ಯವಾದಗಳು:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 ವಿಶೇಷ ಧನ್ಯವಾದಗಳು 🙏 ನಮ್ಮ [Microsoft ವಿದ್ಯಾರ್ಥಿ தூತ](https://studentambassadors.microsoft.com/) ಲೇಖಕರು, ವಿಮರ್ಶಕರು ಮತ್ತು ವಿಷಯದ ದಾನಿಗಳು,** ವಿಶೇಷವಾಗಿ Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 ವಿಶೇಷ ಧನ್ಯವಾದಗಳು 🙏 ನಮ್ಮ [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) ಲೇಖಕರಿಗೆ, ವಿಮರ್ಶಕರಿಗೆ ಮತ್ತು ವಿಷಯದ ತೊಡಕುಗಳವರಿಗೆ,** ವಿಶೇಷವಾಗಿ Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| ಆರಂಭಿಕರಿಗಾಗಿ ಡೇಟಾ ಸೈನ್ಸ್ - _ಸ್ಕೆಚ್ ನೋಟ್ [@nitya](https://twitter.com/nitya) tərəfindən_ |
+| ಆರಂಭಿಕರಿಗಾಗಿ ಡೇಟಾ ವಿಜ್ಞಾನ - _[^nitya](https://twitter.com/nitya) ಅವರ ಸ್ಕೆಚ್ಡೋಕ್_ |
### 🌐 ಬಹುಭಾಷಾ ಬೆಂಬಲ
-#### GitHub ಕ್ರಿಯೆಯಿಂದ ಬೆಂಬಲಿಸಲಾಗುತ್ತಿದೆ (ಸ್ವಯಂ ಚಲಿತ ಮತ್ತು ಅಗತ್ಯಕ್ಕೆ ತಕ್ಕಂತೆ ನವೀಕರಿಸುವ)
+#### GitHub ಕ್ರಿಯೆಗೇಟ್ ಮೂಲಕ ಬೆಂಬಲಿತ (ಸ್ವಯಂಚಾಲಿತ ಮತ್ತು ಸದಾ ನವೀಕರಿಸುವ)
-[ಅರಬೆ](../ar/README.md) | [ಬೆಂಗಾಳಿ](../bn/README.md) | [ಬಲ್ಗೇರಿಯನ್](../bg/README.md) | [ಬರ್ಮೀಸ್ (ಮ್ಯಿನ್ಮಾರ್)](../my/README.md) | [ಚೀನಾ (ಸರಳೀಕೃತ)](../zh/README.md) | [ಚೀನಾ (ಪಾರಂಪರಿಕ, ಹಾಂಗ್ ಕಾಂಗ್)](../hk/README.md) | [ಚೀನಾ (ಪಾರಂಪರಿಕ, ಮಾಕಾವ್)](../mo/README.md) | [ಚೀನಾ (ಪಾರಂಪರಿಕ, ತೈವಾನ್)](../tw/README.md) | [ಕ್ರೊಯೆಷಿಯನ್](../hr/README.md) | [ಚೆಕ್](../cs/README.md) | [ಡ್ಯಾನಿಷ್](../da/README.md) | [ಡಚ್](../nl/README.md) | [ಎಸ್ಟೋನಿಯನ್](../et/README.md) | [ಫಿನ್ನಿಷ್](../fi/README.md) | [ಫ್ರೆಂಚ್](../fr/README.md) | [ಜರ್ಮನ್](../de/README.md) | [ಗ್ರೀಕ್](../el/README.md) | [ಹೀಬ್ರೂ](../he/README.md) | [ಹಿಂदी](../hi/README.md) | [ಹಂಗೇರಿಯನ್](../hu/README.md) | [ಇಂಡೋನೇಶಿಯನ್](../id/README.md) | [ಇಟಾಲಿಯನ್](../it/README.md) | [ಜಪಾನೀಸ್](../ja/README.md) | [ಕನ್ನಡ](./README.md) | [ಕೊರಿಯನ್](../ko/README.md) | [ಲಿಥುವೇನಿಯನ್](../lt/README.md) | [ಮಲಯ್](../ms/README.md) | [ಮಲಯಾಳಂ](../ml/README.md) | [ಮರಾಠಿ](../mr/README.md) | [ನепಾಳಿ](../ne/README.md) | [ನೈಜೀರಿಯನ್ ಪಿಡಿಜೆನ್](../pcm/README.md) | [ನಾರ್ವೇಜಿಯನ್](../no/README.md) | [ಪರ್ಸಿಯನ್ (ಫಾರ್ಸಿ)](../fa/README.md) | [ಪೋಲಿಷ್](../pl/README.md) | [ಪೋರ್ಟ್ಗೆಜೀಸ್ (ಬ್ರೆಜಿಲ್)](../br/README.md) | [ಪೋರ್ಟ್ಗೆಜೀಸ್ (ಪೋರ್ಚುಗಲ್)](../pt/README.md) | [ಪುಂಜಾಬಿ (ಗುರ್ಮುಖಿ)](../pa/README.md) | [ರೋಮಾನಿಯನ್](../ro/README.md) | [ರಷ್ಯನ್](../ru/README.md) | [ಸರ್ಬಿಯನ್ (ಸಿರಿಲಿಕ್)](../sr/README.md) | [ಸ್ಲೊವಾಕ್](../sk/README.md) | [ಸ್ಲೊವೇನಿಯನ್](../sl/README.md) | [ಸ್ಪ್ಯಾನಿಷ್](../es/README.md) | [ಸ್ವಾಹಿಲಿ](../sw/README.md) | [ಸ್ವೀಡಿಷ್](../sv/README.md) | [ಟಾಗಾಲೋಗ್ (ಫಿಲಿಪಿನೋ)](../tl/README.md) | [ತಮಿಳು](../ta/README.md) | [ತೆಲುಗು](../te/README.md) | [ಥಾಯಿ](../th/README.md) | [ಟರ್ಕಿಶ್](../tr/README.md) | [ಯುಕ್ರೇನಿಯನ್](../uk/README.md) | [ಉರ್ದು](../ur/README.md) | [ವಿಯೆಟ್ನಾಮೀಸ್](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](./README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
> **ಸ್ಥಳೀಯವಾಗಿ ಕ್ಲೋನ್ ಮಾಡಬೇಕೆ?**
-> ಈ ರೆಪೊದಲ್ಲಿ 50+ ಭಾಷಾ ಅನುವಾದಗಳು ಸೇರಿವೆ, ಇದು ಡೌನ್ಲೋಡ್ ಗಾತ್ರವನ್ನು ಬಹಳಷ್ಟು ಹೆಚ್ಚಿಸುತ್ತದೆ. ಅನುವಾದಗಳನ್ನು ಇಲ್ಲದೆ ಕ್ಲೋನ್ ಮಾಡಲು sparse checkout ಬಳಸಿ:
+> ಈ ರೆಪೋಸಿಟರಿಗೆ 50+ ಭಾಷಾ ಅನುವಾದಗಳಿವೆ, ಇದು ಡೌನ್ಲೋಡ್ ಗಾತ್ರವನ್ನು ಬಹಳ ಹೆಚ್ಚಿಸುತ್ತದೆ. ಅನುವಾದಗಳಿಲ್ಲದೆ ಕ್ಲೋನ್ ಮಾಡಲು, ಸ್ಪಾರ್ಸ್ ಚೆಕ್ಔಟ್ ಬಳಸಿ:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> ಇದು ಪಾಠವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು ನಿಮಗೆ ಬೇಕಾದ ಎಲ್ಲ ವಸ್ತುಗಳನ್ನು ತುಂಬಾ ವೇಗವಾಗಿ ಡೌನ್ಲೋಡ್ ಮಾಡುವ ಅವಕಾಶ ನೀಡುತ್ತದೆ.
+> ಇದರಿಂದ ನಿಮ್ಮ ಪಾಠ ನಡಿಸುವಿಕೆಗೆ ಬೇಕಾದ ಎಲ್ಲವೂ ಸಿಗುತ್ತದೆ ಮತ್ತು ಡೌನ್ಲೋಡ್ ವೇಗವಾಗಿರುತ್ತದೆ.
-**ನಿಮಗೆ ಹೆಚ್ಚುವರಿ ಅನುವಾದ ಭಾಷೆಗಳ ಬೆಂಬಲ ಬೇಕಾದರೆ ಅವುಗಳನ್ನು ಇಲ್ಲಿ ಪಟ್ಟಿಮಾಡಲಾಗಿದೆ [ಇಲ್ಲಿ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**ನೀವು ಹೆಚ್ಚುವರಿ ಭಾಷಾ ಅನುವಾದಗಳನ್ನು ಬೆಂಬಲಿಸಲು ಇಚ್ಛಿಸಿದರೆ ಅವುಗಳು [ಇಲ್ಲಿ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) ಪಟ್ಟಿಮಾಡಲಾಗಿದೆ**
-#### ನಮ್ಮ ಸಮುದಾಯದಲ್ಲಿ ಸೇರಿ
+#### ನಮ್ಮ ಸಮುದಾಯಕ್ಕೆ ಸೇರಿ
[](https://discord.gg/nTYy5BXMWG)
-ನಾವು Discord ನಲ್ಲಿ AI ಸಿರೀಸ್ ನೊಂದಿಗೆ ಕಲಿಕೆಯ ಕಾರ್ಯಕ್ರಮ ನಡೆಸುತ್ತಿದ್ದೇವೆ, ಇನ್ನಷ್ಟು ತಿಳಿದುಕೊಳ್ಳಿ ಮತ್ತು ನಮಗೂ ಸೇರಿಕೊಳ್ಳಿ [Learn with AI Series](https://aka.ms/learnwithai/discord) 18 - 30 ಸೆಪ್ಟೆಂಬರ್, 2025 ರವರೆಗೆ. ನೀವು GitHub Copilot ಅನ್ನು ಡೇಟಾ ಸೈನ್ಸ್ ಗಾಗಿ ಬಳಸುವ ಉಪಾಯ ಮತ್ತು ಸಲಹೆಗಳನ್ನು ಪಡೆಯುತ್ತೀರಿ.
+ನಮ್ಮ ಬಳಿ ಡಿಸ್ಕಾರ್ಡ್ನಲ್ಲಿ AI ಸಹಿತ ಕಲಿಯುವುದು ಸರಣಿ ಪ್ರವಾಹವಾಗಿ ಇದೆ, ಹೆಚ್ಚು ತಿಳಿದುಕೊಳ್ಳಿ ಮತ್ತು ನಮ್ಮೊಂದಿಗೆ ಸೇರಿಕೊಳ್ಳಿ [Learn with AI Series](https://aka.ms/learnwithai/discord) 2025ರ ಸೆಪ್ಟೆಂಬರ್ 18 - 30 ರವರೆಗೆ. ನೀವು GitHub Copilot ಅನ್ನು ಡೇಟಾ ಸೈನ್ಸ್ಗೆ ಬಳಸುವ ಸಲಹೆಗಳು ಮತ್ತು ತಂತ್ರಗಳನ್ನು ಪಡೆಯುತ್ತೀರಿ.
-
+
-# ನೀವು ವಿದ್ಯಾರ್ಥಿಯರಾ?
+# ನೀವು ವಿದ್ಯಾರ್ಥಿಗಳಾದೀರಾ?
ಕೆಳಗಿನ ಸಂಪನ್ಮೂಲಗಳಿಂದ ಪ್ರಾರಂಭಿಸಿ:
-- [ವಿದ್ಯಾರ್ಥಿ ಹಬ್ ಪುಟ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ಈ ಪುಟದಲ್ಲಿ ನೀವು ಆರಂಭಿಕರಿಗಾಗಿ ಸಂಪನ್ಮೂಲಗಳು, ವಿದ್ಯಾರ್ಥಿ ಪ್ಯಾಕ್ಗಳು ಮತ್ತು ಉಚಿತ ಪ್ರಮಾಣಪತ್ರ ಚವಟೆಯುಳ್ಳ ಮಾರ್ಗಗಳನ್ನು ಕಂಡು ಹಿಡಿಯಬಹುದು. ಇದು ಒಂದು ಪುಟವನ್ನು ಬುಕ್ಮಾರ್ಕ್ ಮಾಡಿ ಮತ್ತು ಕಾಲಕಾಲಕ್ಕೆ ಪರಿಶೀಲಿಸಿ, ಏಕೆಂದರೆ ನಾವು ವಿಷಯವನ್ನು ಸುದೀರ್ಘಾವಧಿಯಂತೆ ಪ್ರತಿಮಾಸವೂ ಬದಲಿಸುತ್ತೇವೆ.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ವಿಶ್ವದಾದ್ಯಾಂತ ವಿದ್ಯಾರ್ಥಿ தூತ ಸಮುದಾಯಕ್ಕೆ ಸೇರಿ, ಇದು ನಿಮಗೆ Microsoft ನಲ್ಲಿ ಅವಕಾಶ ನೀಡಬಹುದು.
+- [ವಿದ್ಯಾರ್ಥಿ ಕೇಂದ್ರ ಪುಟ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ಈ ಪುಟದಲ್ಲಿ ಆರಂಭಿಕರಿಗೆ ಸಂಪನ್ಮೂಲಗಳು, ವಿದ್ಯಾರ್ಥಿ ಪ್ಯಾಕ್ಗಳು ಮತ್ತು ಉಚಿತ ಪ್ರಮಾಣಿ ಸರ್ಟಿಫಿಕೇಟ್ ವಚರ್ ಪಡೆಯುವ ಮಾರ್ಗಗಳಿವೆ. ಇದು ನೀವು ಸಮಯಕ್ಕೆ ಸಮಯಕ್ಕೆ ಪರಿಶೀಲಿಸಲು ಬುಕ್ಮಾರ್ಕ್ ಮಾಡಬೇಕಾದ ಒಂದು ಪುಟ.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ಜಾಗತಿಕ ವಿದ್ಯಾರ್ಥಿ ಅಂಬಾಸಡರ್ ಸಮುದಾಯವನ್ನು ಸೇರಿ, ಇದು Microsoft ಗೆ ನಿಮ್ಮ ಪ್ರವೇಶವಾಗಬಹುದು.
# ಪ್ರಾರಂಭಿಸುವುದು
-## 📚 ದಾಖಲಾತಿಗಳು
+## 📚 ಡೋಕ್ಯುಮೆಂಟೇಶನ್
-- **[ಸ್ಥಾಪನೆ ಗೈಡ್](INSTALLATION.md)** - ಆರಂಭಿಕರಿಗಾಗಿ ಹಂತ ಹಂತದ ಸೆಟ್ಅಪ್ ಸೂಚನೆಗಳು
-- **[ಬಳಕೆ ಗೈಡ್](USAGE.md)** - ಉದಾಹರಣೆಗಳು ಮತ್ತು ಸಾಮಾನ್ಯ ಕೆಲಸಗಳು
-- **[ಸಮಸ್ಯೆ ಪರಿಹಾರ](TROUBLESHOOTING.md)** - ಸಾಮಾನ್ಯ ಸಮಸ್ಯೆಗಳ ಪರಿಹಾರ
-- **[ಯೋಗદાન ಗೈಡ್](CONTRIBUTING.md)** - ಈ ಯೋಜನೆಗೆ ಯಾವಾಗ ಮತ್ತು ಹೇಗೆ ಸಹಕರಿಸುವುದು
+- **[ಸೆಟ್ ಅಪ್ ಮಾರ್ಗದರ್ಶಿ](INSTALLATION.md)** - ಆರಂಭಿಕರಿಗಾಗಿ ಹಂತ ಹಂತದ ಸ್ಥಾಪನೆ ಸೂಚನೆಗಳು
+- **[ಬಳಕೆ ಮಾರ್ಗದರ್ಶಿ](USAGE.md)** - ಉದಾಹರಣೆಗಳು ಮತ್ತು ಸಾಮಾನ್ಯ ಕಾರ್ಯವೃಂದ
+- **[ಸamas್ಯೆಗಳ ಪರಿಹಾರ](TROUBLESHOOTING.md)** - ಸಾಮಾನ್ಯ ಸಮಸ್ಯೆಗಳಿಗೆ ಪರಿಹಾರಗಳು
+- **[ ಕೊಡುಗೆ ಮಾರ್ಗದರ್ಶಿ](CONTRIBUTING.md)** - ಈ ಯೋಜನೆಗೆ ಹೇಗೆ ಕೊಡುಗೆ ನೀಡುವುದು
- **[ಶಿಕ್ಷಕರಿಗಾಗಿ](for-teachers.md)** - ಬೋಧನೆ ಮಾರ್ಗದರ್ಶನ ಮತ್ತು ತರಗತಿ ಸಂಪನ್ಮೂಲಗಳು
-## 👨🎓 ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ
-> **ಪೂರ್ಣ ಆರಂಭಿಕರು**: ಡೇಟಾ ಸೈನ್ಸ್ನಲ್ಲಿ ಹೊಸವರು? ನಮ್ಮ [ಆರಂಭಿಕ ಸ್ನೇಹಿ ಉದಾಹರಣೆಗಳು](examples/README.md)ದಿಂದ ಪ್ರಾರಂಭಿಸಿ! ಈ ಸರಳ ಮತ್ತು ಚೆನ್ನಾಗಿ ಟಿಪ್ಪಣಿಸಲಾದ ಉದಾಹರಣೆಗಳು ನೀವು ಪಾಠಕ್ರಮದ ಪೂರ್ಣ ಸಹಿತಕ್ಕೆ ಮುಂದುಹೋಗುವ ಮೊದಲು ಮೂಲಭೂತಗಳನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಸಹಾಯ ಮಾಡುತ್ತವೆ.
-> **[ವಿದ್ಯಾರ್ಥಿಗಳು](https://aka.ms/student-page)**: ಈ ಪಠ್ಯಕ್ರಮವನ್ನು ಸ್ವತಃ ಬಳಸಲು, ಸಂಪೂರ್ಣ ರೆಪೋವನ್ನು ಫೋರ್ಕ್ ಮಾಡಿ ಮತ್ತು ಸ್ವತಃ ವ್ಯಾಯಾಮಗಳನ್ನು ಪೂರ್ಣಗೊಳಿಸಿ, ಪೂರ್ವ ಭಾಷಣ ಕ್ವಿಜ್ನೊಂದಿಗೆ ಪ್ರಾರಂಭಿಸಿ. ನಂತರ ಭಾಷಣವನ್ನು ಓದಿ ಮತ್ತು ಇತರ ಚಟುವಟಿಕೆಗಳನ್ನು ಪೂರ್ಣಗೊಳಿಸಿ. ಪರಿಹಾರ ಕೋಡ್ ನಕಲು ಮಾಡುವುದಕ್ಕಿಂತ ಪಾಠಗಳನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವ ಮೂಲಕ ಯೋಜನೆಗಳನ್ನು ನಿರ್ಮಿಸಲು ಪ್ರಯತ್ನಿಸಿ; ಆದಾಗ್ಯೂ, ಆ ಕೋಡ್ ಪ್ರತಿ ಪ್ರಾಜೆಕ್ಟ್-ಕೇಂದ್ರಿತ ಪಾಠದ /solutions ಫೋಲ್ಡರ್ಗಳಲ್ಲಿ ಲಭ್ಯವಿದೆ. ಇನ್ನೊಂದು ಆಯ್ಕೆ ಸುಧಾರಿತ ಅಧ್ಯಯನಕ್ಕಾಗಿ ಸ್ನೇಹಿತರೊಂದಿಗೆ ಅಧ್ಯಯನ ಗುಂಪು ರೂಪಿಸಿ ಮತ್ತು ವಿಷಯವನ್ನು ಒಂದಾಗಿ ಓದಿ. ನಮ್ಮ ಶಿಫಾರಸು [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ಮೇಲೆ ಅಧ್ಯಯನಕ್ಕೆ.
+## 👨🎓 ವಿದ್ಯಾರ್ಥಿಗಳಿಗಾಗಿ
+> **ಪೂರ್ಣ ನವೀಕರು**: ಡೇಟಾ ವಿಜ್ಞಾನಕ್ಕೆ ಹೊಸದಾದರೆ? ನಮ್ಮ [ಶುರುಆತಿಗೆ ಸೂಕ್ತ ಉದಾಹರಣೆಗಳು](examples/README.md) ಅಲ್ಲಿ ಪ್ರಾರಂಭಿಸಿ! ಈ ಸರಳ, ಚೆನ್ನಾಗಿ ಟಿಪ್ಪಣಿಗಳು ಮಾಡಿದ ಉದಾಹರಣೆಗಳು ನೀವು ಪೂರ್ಣ ಪಾಠ್ಯಕ್ರಮಕ್ಕೆ ಮುಂದಾಗುವ ಮುಂಚೆ ಮೂಲಭೂತಗಳನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಸಹಾಯಮಾಡುತ್ತವೆ.
+> **[ವಿದ್ಯಾರ್ಥಿಗಳು](https://aka.ms/student-page)**: ಈ ಪಾಠ್ಯಕ್ರಮವನ್ನು ಸ್ವತಂತ್ರವಾಗಿ ಬಳಸಲು, ಸಂಪೂರ್ಣ ರೆಪೋವನ್ನು ಫೋರ್ಕ್ ಮಾಡಿ ಮತ್ತು ಮುಂಚಿನ ಉಪನ್ಯಾಸ ಕ್ವಿಜಿನಿಂದ ಪ್ರಾರಂಭಿಸಿ ವ್ಯಾಯಾಮಗಳನ್ನು ಸ್ವತಃ ಸಂಪೂರ್ಣಗೊಳಿಸಿ. ನಂತರ ಉಪನ್ಯಾಸವನ್ನು ಓದಿ ಉಳಿದ ಚಟುವಟಿಕೆಗಳನ್ನು ಮಾಡಿರಿ. ಪರಿಹಾರಕೋಡ್ ನಕಲಿಸುವ ಬದಲು ಪಾಠಗಳನ್ನು ಅರ್ಥಮಾಡಿಕೊಂಡು ಪ್ರಾಜೆಕ್ಟ್ಗಳನ್ನು ನಿರ್ಮಿಸಲು ಪ್ರಯತ್ನಿಸಿ; ಈ ಕೋಡ್ ಪ್ರತಿ ಪ್ರಾಜೆಕ್ಟ್ ಆಧಾರಿತ ಪಾಠದಲ್ಲಿನ /solutions ಫೋಲ್ಡರ್ಗಳಲ್ಲಿ ಲಭ್ಯವಿದೆ. ಇನ್ನೊಂದು ಆಲೋಚನೆ ಎಂದರೆ ಸ್ನೇಹಿತರೊಂದಿಗೆ ಅಧ್ಯಯನ ಗುಂಪು ರಚಿಸಿ ಮತ್ತು ವಿಷಯವನ್ನು ಒಂದೇಗೂಹಾಗಿ ಓದಿಕೊಳ್ಳುವುದು. ಮುಂದುವರಿದ ಅಧ್ಯಯನಕ್ಕೆ, ನಾವು [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ಅನ್ನು ಶಿಫಾರಸು ಮಾಡುತ್ತೇವೆ.
**ತ್ವರಿತ ಪ್ರಾರಂಭ:**
-1. ನಿಮ್ಮ ಪರಿಸರವನ್ನು ಸೆಟ್ಅಪ್ ಮಾಡಲು [ಸ್ಥಾಪನಾ ಗೈಡ್](INSTALLATION.md) ಪರಿಶೀಲಿಸಿ
-2. ಪಠ್ಯಕ್ರಮದ ಸಹಾಯಕ್ಕಾಗಿ [ಬಳಕೆ ಗೈಡ್](USAGE.md) ಪರಿಶೀಲಿಸಿ
-3. ಪಾಠ 1ರಿಂದ ಪ್ರಾರಂಭಿಸಿ ಕ್ರಮೇಣ ಕೆಲಸ ಮಾಡಿ
-4. ಬೆಂಬಲಕ್ಕೆ ನಮ್ಮ [ಡಿಸ್ಕಾರ್ಡ್ ಸಮುದಾಯ](https://aka.ms/ds4beginners/discord) ಸೇರಿ
+1. ನಿಮ್ಮ ಪರಿಸರವನ್ನು ಸೆಟ್ ಅಪ್ ಮಾಡಲು [ಸೆಟ್ ಅಪ್ ಮಾರ್ಗದರ್ಶಿ](INSTALLATION.md) ಪರಿಶೀಲಿಸಿ
+2. ಪಾಠ್ಯಕ್ರಮದೊಂದಿಗೆ ಹೇಗೆ ಕೆಲಸಮಾಡುವುದು ಎಂದು ತಿಳಿಯಲು [ಬಳಕೆ ಮಾರ್ಗದರ್ಶಿ](USAGE.md) ಪರಿಶೀಲಿಸಿ
+3. ಪಾಠ 1 ರಿಂದ ಪ್ರಾರಂಭಿಸಿ ಮತ್ತು ಕ್ರಮೇಣ ಮುಂದುವರಿಯಿರಿ
+4. ಬೆಂಬಲಕ್ಕಾಗಿ ನಮ್ಮ [Discord ಸಮುದಾಯ](https://aka.ms/ds4beginners/discord)ದಲ್ಲಿ ಸೇರಿ
-## 👩🏫 ಶಿಕ್ಷಕರಿಗೆ
-
-> **ಶಿಕ್ಷಕರು**: ಈ ಪಠ್ಯಕ್ರಮವನ್ನು ಹೇಗೆ ಬಳಸಬಹುದು ಎಂಬುದರ ಬಗ್ಗೆ ನಾವು ಕೆಲ ಸಲಹೆಗಳನ್ನು [ಸೇರಿಸಲಾಗಿದೆ](for-teachers.md). ನಿಮ್ಮ ಪ್ರತಿಕ್ರಿಯೆಯನ್ನು ನಾವು [ನಮ್ಮ ಚರ್ಚಾ ವೇದಿಕೆಯಲ್ಲಿ](https://github.com/microsoft/Data-Science-For-Beginners/discussions) ಸ್ವಾಗತಿಸುತ್ತೇವೆ!
+## 👩🏫 ಶಿಕ್ಷಕರಿಗಾಗಿ
+> **ಶಿಕ್ಷಕರು**: ಈ ಪಾಠ್ಯಕ್ರಮವನ್ನು ಹೇಗೆ ಬಳಸಬೇಕು ಎಂಬ ಕೆಲವು ಸಲಹೆಗಳನ್ನು [ನಾವು ಸೇರಿಸಿರುವೆವು](for-teachers.md). ದಯವಿಟ್ಟು ನಿಮ್ಮ ಪ್ರತಿಕ್ರಿಯೆಯನ್ನು ನಮ್ಮ [ಚರ್ಚಾ ವೇದಿಕೆ](https://github.com/microsoft/Data-Science-For-Beginners/discussions) ನಲ್ಲಿ ವಂಚಿಸಬೇಡಿ!
## ತಂಡವನ್ನು ಭೇಟಿ ಮಾಡಿ
-[](https://youtu.be/8mzavjQSMM4 "ಪ್ರಚಾರ ವೀಡಿಯೊ")
-**ಗಿಫ್** [ಮೊಹಿತ್ ಜೈಸಾಲ್](https://www.linkedin.com/in/mohitjaisal)
+[](https://youtu.be/8mzavjQSMM4 "ಪ್ರಚಾರ ವೀಡಿಯೋ")
+
+**ಗಿಫ್ ಮಾಡಿದ್ದು** [ಮೊಹಿತ್ ಜೈಸಲ್](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 ಅದರ ಸೃಷ್ಟಿಕರ್ತರು ಮಾಡಿದ ಪ್ರಾಜೆಕ್ಟ್ ಬಗ್ಗೆ ವೀಡಿಯೊವನ್ನು ನೋಡಲು ಮೇಲಿನ ಚಿತ್ರವನ್ನು ಕ್ಲಿಕ್ ಮಾಡಿ!
+> 🎥 ಮೇಲಿನ ಚಿತ್ರವನ್ನು ಕ್ಲಿಕ್ ಮಾಡಿ ಯೋಜನೆ ಮತ್ತು ಅದನ್ನು ರಚಿಸಿದ ಅಧಿಕಾರಿಗಳ ಕುರಿತು ವೀಡಿಯೋ ವೀಕ್ಷಿಸಲು!
-## ಪಠ್ಯವಿಧಾನ
+## ಶಿಕ್ಷಣಶಾಸ್ತ್ರ
-ನಾವು ಈ ಪಠ್ಯಕ್ರಮವನ್ನು ನಿರ್ಮಿಸುವಾಗ ಎರಡು ಪಠ್ಯವಿಧಾನದ ತತ್ವಗಳನ್ನು ಆಯ್ಕೆಮಾಡಿಕೊಂಡಿದ್ದೇವೆ: ಇದು ಪ್ರಾಜೆಕ್ಟ್ ಆಧಾರಿತವಾಗಿರಬೇಕು ಮತ್ತು ಅದರಲ್ಲಿ ನಿಯಮಿತವಾಗಿ ಪ್ರಶ್ನೋತ್ತರಗಳು ಇದಾಗಿರಬೇಕು. ಈ ಸರಣಿಯ ಅಂತ್ಯದಲ್ಲಿ, ವಿದ್ಯಾರ್ಥಿಗಳು ಮೂಲಭೂತ ಡೇಟಾ ವಿಜ್ಞಾನ ತತ್ವಗಳನ್ನು ಕಲಿತಿರುತ್ತಾರೆ, ಇದರಲ್ಲಿ ನೈತಿಕ ಸಂಶೋಧನೆಗಳು, ಡೇಟಾ ತಯಾರಿಕೆ, ಡೇಟಾವಿನೊಂದಿಗೆ ಕಾರ್ಯನಿರ್ವಹಿಸುವ ವಿಭಿನ್ನ ರೀತಿಗಳು, ಡೇಟಾ ದೃಶ್ಯೀಕರಣ, ಡೇಟಾ ವಿಶ್ಲೇಷಣೆ, ಡೇಟಾ ವಿಜ್ಞಾನದ ನೈಜ ಜಗತ್ತಿನ ಬಳಕೆ ಪ್ರಕರಣಗಳು ಮತ್ತು ಇನ್ನೂ ಅನೇಕ ವಿಷಯಗಳು ಸೇರಿವೆ.
+ಈ ಪಠ್ಯಕ್ರಮವನ್ನು ನಿರ್ಮಿಸುವ ವೇಳೆ ನಾವು ಎರಡು ಶಿಕ್ಷಣದ ತತ್ವಗಳನ್ನು ಆಯ್ಕೆ ಮಾಡಿಕೊಂಡಿದ್ದೇವೆ: ಇದು ಯೋಜನೆ ಆಧಾರಿತವಾಗಿರಬೇಕು ಮತ್ತು ಇದರಲ್ಲಿ ನಿಯಮಿತ ಪ್ರಶ್ನೋತ್ತರಗಳು ಇರಬೇಕು ಎಂಬುದನ್ನು ಖಚಿತಪಡಿಸುವುದು. ಈ ಸರಣಿಯ ಕೊನೆಯಲ್ಲಿ, ವಿದ್ಯಾರ್ಥಿಗಳು ಡೇಟಾ ಸೈನ್ಸ್ನ ಮೂಲಭೂತ ಸಿದ್ಧಾಂತಗಳನ್ನು, ಅದರ ಒಳಗೊಂಡ ನೈತಿಕ ವಿಚಾರಗಳನ್ನು, ಡೇಟಾ ಸಿದ್ಧತೆ, ಡೇಟಾ ಜೊತೆಗೆ ಕೆಲಸ ಮಾಡುವ ವಿವಿಧ ಮಾರ್ಗಗಳು, ಡೇಟಾ ದೃಷ್ಯೀಕರಣ, ಡೇಟಾ ವಿಶ್ಲೇಷಣೆ, ಡೇಟಾ ಸೈನ್ಸ್ನ ನೈಜ ಜಾಗತಿಕ ಬಳಕೆ ಉದಾಹರಣೆಗಳು ಮತ್ತು ಇನ್ನಷ್ಟು ಕಲಿಯುತ್ತಾರೆ.
-ಇದಕ್ಕೂ ಜೊತೆಗೆ, ತರಗತಿಗೆ ಮುಂಚಿತವಾಗಿ ಕಡಿಮೆ ಒತ್ತಡದ ಪ್ರಶ್ನೋತ್ತರವು ವಿದ್ಯಾರ್ಥಿಯ ಕಲಿಕೆಗೆ ಉದ್ದೇಶವನ್ನು ಸ್ಥಾಪಿಸುತ್ತದೆ, ಮತ್ತು ತರಗತಿಯ ನಂತರದ ಎರಡನೆಯ ಪ್ರಶ್ನೋತ್ತರವು ಮುಂದಿನ ನೆನಪು ಹೆಚ್ಚಿಸುತ್ತದೆ. ಈ ಪಠ್ಯಕ್ರಮವನ್ನು ಲಚೀಲ ಮತ್ತು ಮನರಂಜನೆಯಾಗಿಯೂ ವಿನ್ಯಾಸಗೊಳ್ಳಿಸಿದ್ದು, ಸಂಪೂರ್ಣವಾಗಿ ಅಥವಾ ಭಾಗವಾಗಿ ಪಠ್ಯಕ್ರಮವನ್ನು ಪೂರ್ಣಗೊಳಿಸಬಹುದು. ಪ್ರಾಜೆಕ್ಟುಗಳು ಚಿಕ್ಕದಾಗಿ ಆರಂಭಿಸಿ 10 ವಾರಗಳ ಸೈಕಲ್ ನಲ್ಲಿ ಹಂತ ಹಂತವಾಗಿ ಕೋಷ್ಟಕ್ಯವಾಗಿ ಆಗಿದೆ.
+ಅದರಲ್ಲೂ, ತರಗತಿಗೆ ಮುನ್ನ ಒಂದು ಕಡಿಮ್ಮ ಹಂತದ ಪ್ರಶ್ನೋತ್ತರವು ವಿದ್ಯಾರ್ಥಿಯು ವಿಷಯವನ್ನು ಕಲಿಯಲು ಉದ್ದೇಶ ಹೊಂದಿದ್ದಂತೆ ಮಾಡುತ್ತದೆ, ಟ್ರಿಗರ್ ನಂತರದ ಪ್ರಶ್ನೋತ್ತರವು ಹೆಚ್ಚು ಪಟುವಿಕೆಯನ್ನು ಖಚಿತಪಡಿಸುತ್ತದೆ. ಈ ಪಠ್ಯಕ್ರಮವು ಲವಚಿಕವಾದ ಮತ್ತು ಮನರಂಜನೆಯಾಗಿದೆ, ಸಂಪೂರ್ಣವಾಗಿ ಅಥವಾ ಭಾಗವಾಗಿ ತೆಗೆದುಕೊಳ್ಳಬಹುದು. ಯೋಜನೆಗಳು ಸಣ್ಣದು ಪ್ರಾರಂಭವಾಗಿ 10 ವಾರಗಳ ಚಕ್ರದ ಕೊನೆಯಲ್ಲಿ ಹೆಚ್ಚು ಸಂಕೀರ್ಣವಾಗುತ್ತವೆ.
-> ನಮ್ಮ [ನಡವಳಿಕೆ ಸಂಹಿತೆಯನ್ನು](CODE_OF_CONDUCT.md), [योगदान](CONTRIBUTING.md), [ಭಾಷಾಂತರಿಸುವಿಕೆ](TRANSLATIONS.md) ನಿಯಮಾವಳಿಗಳನ್ನು ತಿಳಿದುಕೊಳ್ಳಿ. ನಿಮ್ಮ ನಿರ್ಮಾಣಕಾರಿ ಪ್ರತಿಕ್ರಿಯೆಗೆ ಸ್ವಾಗತ!
+> ನಮ್ಮ [ನಡವಳಿಕೆ ನಿಯಮಾವಳಿ](CODE_OF_CONDUCT.md), [ಹೊಂದಾಣಿಕೆ](CONTRIBUTING.md), [ಭಾಷಾಂತರ](TRANSLATIONS.md) ಮಾರ್ಗಸೂಚಿಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ. ನಿಮ್ಮ ರಚನೆಯಾತ್ಮಕ ಪ್ರತಿಕ್ರಿಯೆಯನ್ನು ನಾವು ಸ್ವಾಗತಿಸುತ್ತೇವೆ!
-## ಪ್ರತಿ ಪಾಠದಲ್ಲಿ ಒಳಗೊಂಡಿರುತ್ತವೆ:
+## ಪ್ರತಿ ಪಾಠದಲ್ಲಿ ಸೇರಿವೆ:
-- ಐಚ್ಛಿಕ ಸ್ಕೆಚ್ನೋಟ್
-- ಐಚ್ಛಿಕ ಸಹಾಯಕ ವೀಡಿಯೊ
-- ಪಾಠದ ಮುಂಚಿನ ಸಿದ್ದತೆ ಪ್ರಶ್ನೋತ್ತರ
-- ಬರಹ ಬೋಧನೆ
-- ಪ್ರಾಜೆಕ್ಟ್ ಆಧಾರಿತ ಪಾಠಗಳಿಗೆ ಪ್ರಾಜೆಕ್ಟ್ ನಿರ್ಮಾಣದ ಹಂತ ಹಂತ ಮಾರ್ಗದರ್ಶಿಗಳು
+- ಐಚ್ಛಿಕ ಸ್ಕೆಚ್ ನೋಟ್
+- ಐಚ್ಛಿಕ ಪೂರಕ ವೀಡಿಯೋ
+- ಪಾಠ ಮುಂಚಿನ ತಯಾರಿ ಪ್ರಶ್ನೋತ್ತರ
+- ಬರೆಯಲಾದ ಪಾಠ
+- ಯೋಜನೆ ಆಧಾರಿತ ಪಾಠಗಳಿಗಾಗಿ, ಯೋಜನೆಯನ್ನು ನಿರ್ಮಿಸುವ ಕುರಿತು ಹಂತ-ಬಂದಿ ಮಾರ್ಗದರ್ಶನ
- ಜ್ಞಾನ ಪರಿಶೀಲನೆಗಳು
- ಒಂದು ಸವಾಲು
-- ಸಹಾಯಕ ಓದು
-- ನಿಬಂಧನೆ
-- [ಪಾಠದ ನಂತರ ಪ್ರಶ್ನೋತ್ತರ](https://ff-quizzes.netlify.app/en/)
+- ಪೂರಕ ಓದು
+- ನಿಯೋಜನೆ
+- [ಪಾಠದ ನಂತರದ ಪ್ರಶ್ನೋತ್ತರ](https://ff-quizzes.netlify.app/en/)
-> **ಪ್ರಶ್ನೋತ್ತರಗಳ ಬಗ್ಗೆ ಟಿಪ್ಪಣಿ**: ಎಲ್ಲಾ ಪ್ರಶ್ನೋತ್ತರಗಳು Quiz-App ಫೋಲ್ಡರ್ನಲ್ಲಿ ಇವೆ, ಮೂರೂ ಪ್ರಶ್ನೆಗಳ 40 ಒಟ್ಟು ಕ್ವಿಜ್ಗಳಿವೆ. ಅವು ಪಾಠಗಳಲ್ಲಿ ಲಿಂಕ್ ಆಗಿವೆ, ಆದರೆ ಕ್ವಿಜ್ ಅಪ್ಲಿಕೇಶನ್ ಅನ್ನು ಸ್ಥಳೀಯವಾಗಿ ನಡೆಯಿಸಲು ಅಥವಾ ಆಜುರ್ಗೆ ನಿಯೋಜಿಸಲು ಸಾಧ್ಯ; `quiz-app` ಫೋಲ್ಡರ್ನ ಸೂಚನೆಗಳನ್ನು ಅನುಸರಿಸಿ. ಅವು ಕ್ರಮೇಣ ಸ್ಥಳೀಯ ಭಾಷೆಗಳಲ್ಲಿಗೂ ಅನುವಾದಗೊಳ್ಳುತ್ತಿವೆ.
+> **ಪ್ರಶ್ನೋತ್ತರಗಳ ಕುರಿತು ಒಂದು ಟಿಪ್ಪಣಿ**: ಎಲ್ಲಾ ಪ್ರಶ್ನೋತ್ತರಗಳು Quiz-App ಫೋಲ್ಡರ್ನಲ್ಲಿ ಇರುತ್ತವೆ, 40 ಒಟ್ಟು ಪ್ರಶ್ನೋತ್ತರಗಳು ಪ್ರತಿ 3 ಪ್ರಶ್ನೆಗಳೊಂದಿಗೆ. ಅವು ಪಾಠಗಳಲ್ಲಿ ಲಿಂಕ್ ಆಗಿವೆ, ಆದರೆ ಪ್ರಶ್ನೋತ್ತರ ಆಪ್ ಅನ್ನು ಸ್ಥಳೀಯವಾಗಿ ಚಾಲನೆ ಮಾಡಬಹುದು ಅಥವಾ ಅಜ್ಯೂರ್ಗೆ ಸ್ಥಾಪಿಸಬಹುದು; `quiz-app` ಫೋಲ್ಡರ್ನ ಸೂಚನೆಗಳನ್ನು ಅನುಸರಿಸಿ. ಅವು ಕ್ರಮೇಣ ಸ್ಥಳೀಯಗೊಳ್ಳುತ್ತಿರುವುವು.
-## 🎓 ಪ್ರಾರಂಭಿಕರಿಗೆ ಅನುಕೂಲವಾಗುವ ಉದಾಹರಣೆಗಳು
+## 🎓 ಆರಂಭಿಕ ಸ್ನೇಹಿ ಉದಾಹರಣೆಗಳು
-**ಡೇಟಾ ವಿಜ್ಞಾನಕ್ಕೆ ಹೊಸವೋ?** ನಾವು ಪ್ರಾರಂಭಿಸಲು ಸರಳ ಮತ್ತು ಸಮರ್ಥನೆಗೊಂಡ ಕೋಡ್ನೊಂದಿಗೆ ವಿಶಿಷ್ಟ [ಉದಾಹರಣೆ ಡೈರೆಕ್ಟರಿ](examples/README.md) ರಚಿಸಿದ್ದೇವೆ:
+**ಡೇಟಾ ಸೈನ್ಸ್ಗೆ ಹೊಸವರೇ?** ನಾವು ವಿಶೇಷ [ಉದಾಹರಣೆ ಫೋಲ್ಡರ್](examples/README.md) ರಚಿಸಿದ್ದೇವೆ, ಸರಳ, ಸುಸ್ಪಷ್ಟ ಟಿಪ್ಪಣಿಗಳನ್ನೊಳಗೊಂಡ ಕೋಡ್ ಸಹಿತ ನಿಮ್ಮ ಆರಂಭಕ್ಕೆ ಸಹಾಯವಾಗುತ್ತದೆ:
-- 🌟 **ಹೆಲೋ ವರ್ಲ್ಡ್** - ನಿಮ್ಮ ಮೊದಲ ಡೇಟಾ ವಿಜ್ಞಾನ ಕಾರ್ಯಕ್ರಮ
-- 📂 **ಡೇಟಾ ಲೋಡಿಂಗ್** - ಡೇಟಾಸೆಟ್ಗಳನ್ನು ಓದಿ ಅನ್ವೇಷಣೆ ಮಾಡಲು ಕಲಿಯಿರಿ
-- 📊 **ಸರಳ ವಿಶ್ಲೇಷಣೆ** - ಅಂಕಿಅಂಶಗಳನ್ನು ಗಣನೆಮಾಡಿ, ಮಾದರಿಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ
-- 📈 **ಮೂಲಭೂತ ದೃಶ್ಯೀಕರಣ** - ಚಾರ್ಟ್ಗಳು ಮತ್ತು ಗ್ರಾಫ್ಗಳನ್ನು ರಚಿಸಿ
-- 🔬 **ನೈಜ ಜಗತ್ತಿನ ಪ್ರಾಜೆಕ್ಟ್** - ಪ್ರಾರಂಭದಿಂದ ಅಂತ್ಯವರೆಗಿನ ಸಂಪೂರ್ಣ ಕಾರ್ಯಪ್ರವಾಹ
+- 🌟 **ಹೇಲ್\u200cಲೋ ವರ್ಲ್ಡ್** - ನಿಮ್ಮ ಮೊದಲ ಡೇಟಾ ಸೈನ್ಸ್ ಪ್ರೋಗ್ರಾಂ
+- 📂 **ಡೇಟಾ ಲೋಡ್ ಮಾಡುವುದು** - ಡೇಟಾಗುಚ್ಛಗಳನ್ನು ಓದಿ ಅನ್ವೇಷಿಸಲು ಕಲಿಯಿರಿ
+- 📊 **ಸರಳ ವಿಶ್ಲೇಷಣೆ** - ಅಂಕಿ ಅಂಶಗಳನ್ನು ಗಣನೆ ಮಾಡಿ ಮಾದರಿಗಳನ್ನು ಹುಡುಕಿ
+- 📈 **ಮೂಲಭೂತ ದೃಷ್ಯೀಕರಣ** - ಚಾರ್ಟ್ ಮತ್ತು ಗ್ರಾಫ್ ರಚಿಸಿ
+- 🔬 **ನೈಜ ಜಾಗತಿಕ ಯೋಜನೆ** - ಪ್ರಾರಂಭದಿಂದ ಕೊನೆವರೆಗೆ ಪೂರ್ಣ ಕಾರ್ಯಪ್ರವಾಹ
-ಪ್ರತಿ ಉದಾಹರಣೆಲ್ಲೂ ಪ್ರತಿ ಹಂತವನ್ನು ವಿವರಿಸುವ ಸಮಗ್ರ ಟಿಪ್ಪಣಿಗಳು ಇವೆ, ಇದು ಸಂಪೂರ್ಣ ಪ್ರಾರಂಭಿಕರಿಗೆ ಸೂಕ್ತವಾಗಿದೆ!
+ಪ್ರತಿಯೊಂದು ಉದಾಹರಣೆಯೂ ಪ್ರತಿಯೊಂದು ಹಂತವನ್ನು ವಿವರಿಸುವ ಸ್ತರವಾದ ಟಿಪ್ಪಣಿಗಳನ್ನು ಒಳಗೊಂಡಿದೆ, ಇದು ಸಂಪೂರ್ಣ ಆರಂಭಿಕರಿಗೆ ಅತ್ಯುತ್ತಮ!
-👉 **[ಉದಾಹರಣೆಗಳಿಂದ ಪ್ರಾರಂಭಿಸಿ](examples/README.md)** 👈
+👉 **[ಉದಾಹರಣೆಗಳೊಂದಿಗೆ ಪ್ರಾರಂಭಿಸಿ](examples/README.md)** 👈
## ಪಾಠಗಳು
-||
+||
|:---:|
-| ಡೇಟಾ ಸਾਇನ್ಸ್ ಫಾರ್ ಬೆಗಿನ್ರ್ಸ್: ರಸ್ತೆ ಮಹಡಿಯ ಚಿತ್ತಾರ - _ಸ್ಕೆಚ್ನೋಟ್ [@nitya](https://twitter.com/nitya) ಅವರಿಂದ_ |
+| ಡೇಟಾ ಸೈನ್ಸ್ ಆರಂಭಿಕರಿಗಾಗಿ: ರಸ್ತೆನಕ್ಷೆ - _ಸ್ಕೆಚ್ನೋಟ್ [@nitya](https://twitter.com/nitya) ರಚನೆ_ |
-| ಪಾಠ ಸಂಖ್ಯೆ | ವಿಷಯ | ಪಾಠ ಗುಂಪು | ಕಲಿಕೆಯ ಗುರಿಗಳು | ಲಿಂಕ್ ಪಾಠ | ಲೇಖಕ |
+| ಪಾಠ ಸಂಖ್ಯೆ | ವಿಷಯ | ಪಾಠ ಗುಂಪು | ಕಲಿಕೆ ಗುರಿಗಳು | ಲಿಂಕ್ ಪಾಠ | ಲೇಖಕ |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | ಡೇಟಾ ವಿಜ್ಞಾನವನ್ನು ವ್ಯಾಖ್ಯಾನಿಸುವುದು | [ಪರಿಚಯ](1-Introduction/README.md) | ಡೇಟಾ ವಿಜ್ಞಾನ ಹಾಗೂ ಇದರ ಕೃತಕ ಬುದ್ಧಿಮತ್ತೆ, ಯಂತ್ರಾಭ್ಯಾಸ ಮತ್ತು ದೊಡ್ಡ ಡೇಟಾ ಜೊತೆಗಿನ ಸಂಬಂಧದ ಮೂಲಭೂತ ತತ್ವಗಳನ್ನು ಕಲಿಯಿರಿ. | [ಪಾಠ](1-Introduction/01-defining-data-science/README.md) [ವೀಡಿಯೊ](https://youtu.be/beZ7Mb_oz9I) | [ಡಿಮಿಟ್ರಿ](http://soshnikov.com) |
-| 02 | ಡೇಟಾ ವಿಜ್ಞಾನ ನೈತಿಕತೆ | [ಪರಿಚಯ](1-Introduction/README.md) | ಡೇಟಾ ನೈತಿಕತೆ ತತ್ವಗಳು, ಸವಾಲುಗಳು ಮತ್ತು ರೂಪರೆಖೆಗಳು. | [ಪಾಠ](1-Introduction/02-ethics/README.md) | [ನಿತ್ಯ](https://twitter.com/nitya) |
-| 03 | ಡೇಟಾ ವ್ಯಾಖ್ಯಾನ | [ಪರಿಚಯ](1-Introduction/README.md) | ಡೇಟಾ ಹೇಗೆ ವರ್ಗೀಕರಿಸಲಾಗುತ್ತದೆ ಮತ್ತು ಅದರ ಸಾಮಾನ್ಯ ಮೂಲಗಳನ್ನು ತಿಳಿದುಕೊಳ್ಳಿ. | [ಪಾಠ](1-Introduction/03-defining-data/README.md) | [ಜasmine](https://www.twitter.com/paladique) |
-| 04 | ಸಂಖ್ಯಾಶಾಸ್ತ್ರ ಮತ್ತು ಸಾದೃಶ್ಯತೆಯ ಪರಿಚಯ | [ಪರಿಚಯ](1-Introduction/README.md) | ಡೇಟಾವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಸಂಖ್ಯಾಶಾಸ್ತ್ರ ಮತ್ತು ಸಾದೃಶ್ಯತೆಯ ಗಣಿತೀಯ ತಂತ್ರಗಳನ್ನು ಕಲಿಯಿರಿ. | [ಪಾಠ](1-Introduction/04-stats-and-probability/README.md) [ವೀಡಿಯೊ](https://youtu.be/Z5Zy85g4Yjw) | [ಡಿಮಿಟ್ರಿ](http://soshnikov.com) |
-| 05 | ಸಂಬಂಧಿತ ಡೇಟಾದೊಂದಿಗೆ ಕೆಲಸ | [ಡೇಟಾದೊಂದಿಗೆ ಕೆಲಸ](2-Working-With-Data/README.md) | ಸಂಬಂಧಿತ ಡೇಟಾ ಪರಿಚಯ ಮತ್ತು ರಚನಾತ್ಮಕ ಪ್ರಶ್ನಾ ಭಾಷೆ (SQL) ಬಳಸಿ ಸಂಬಂಧಿತ ಡೇಟಾ ಅನ್ವೇಷಣೆ ಮತ್ತು ವಿಶ್ಲೇಷಣೆ ಕುರಿತ ಮೂಲಭೂತಗಳು. | [ಪಾಠ](2-Working-With-Data/05-relational-databases/README.md) | [ಕ್ರಿಸ್ಟೊಫರ್](https://www.twitter.com/geektrainer) | | |
-| 06 | ನೋನ್ಎಸ್ಕ್ಯೂಎಲ್ ಡೇಟಾದೊಂದಿಗೆ ಕೆಲಸ | [ಡೇಟಾದೊಂದಿಗೆ ಕೆಲಸ](2-Working-With-Data/README.md) | ಅಸಂಬದ್ಧ ಡೇಟಾಗಳ ಪರಿಚಯ, ಅದರ ವಿವಿಧ ಪ್ರಕಾರಗಳು ಮತ್ತು ಡಾಕ್ಯುಮೆಂಟ್ ಡೇಟಾಬೇಸ್ ಅನ್ನು ಅನ್ವೇಷಿಸುವ ಮತ್ತು ವಿಶ್ಲೇಷಿಸುವ ಮೂಲಗಳು. | [ಪಾಠ](2-Working-With-Data/06-non-relational/README.md) | [ಜasmine](https://twitter.com/paladique) |
-| 07 | ಪೈಥಾನ್ ಬಳಸಿ ಕೆಲಸ | [ಡೇಟಾದೊಂದಿಗೆ ಕೆಲಸ](2-Working-With-Data/README.md) | ಪ್ಯಾಂಡಾಸ್ ಮುಂತಾದ ಲೈಬ್ರರಿಗಳೊಂದಿಗೆ ಡೇಟಾ ಅನ್ವೇಷಣೆಗೆ ಪೈಥಾನ್ ಬಳಸಲು ಮೂಲಭೂತಗಳು. ಪೈಥಾನ್ ಪ್ರೋಗ್ರಾಮಿಂಗ್ ಆಧಾರದ ಅರಿವು ಶಿಫಾರಸು ಮಾಡಲ್ಪಟ್ಟಿದೆ. | [ಪಾಠ](2-Working-With-Data/07-python/README.md) [ವೀಡಿಯೊ](https://youtu.be/dZjWOGbsN4Y) | [ಡಿಮಿಟ್ರಿ](http://soshnikov.com) |
-| 08 | ಡೇಟಾ ತಯಾರಿಕೆ | [ಡೇಟಾದೊಂದಿಗೆ ಕೆಲಸ](2-Working-With-Data/README.md) | ಕಳೆದುಹೋಗಿದ, ತಪ್ಪು ಅಥವಾ ಅಪೂರ್ಣ ಡೇಟಾ ಸಮಸ್ಯೆಗಳನ್ನು ಪರಿಹರಿಸಲು ಡೇಟಾ ತೊಳೆದು ಸುಧಾರಿಸುವ ತಂತ್ರಗಳು. | [ಪಾಠ](2-Working-With-Data/08-data-preparation/README.md) | [ಜasmine](https://www.twitter.com/paladique) |
-| 09 | ಪ್ರಮಾಣಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | ಮ್ಯಾಟ್ಪ್ಲಾಟ್ಲಿಬ್ ಬಳಸಿ ಹಕ್ಕಿಗಳ ಡೇಟಾವನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು ಕಲಿಯಿರಿ 🦆 | [ಪಾಠ](3-Data-Visualization/09-visualization-quantities/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) |
-| 10 | ಡೇಟಾದ ವಿತರಣೆಗಳ ದೃಶ್ಯೀಕರಣ | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | ಅವಧಿಯೊಳಗಿನ পর্যವಕ್ಷಣಗಳು ಮತ್ತು ಪ್ರವರ್ತನೆಗಳ ದೃಶ್ಯೀಕರಣ. | [ಪಾಠ](3-Data-Visualization/10-visualization-distributions/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) |
-| 11 | ಅನುಪಾತದ ದೃಶ್ಯೀಕರಣ | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | ವಿಭಾಗೀಕೃತ ಮತ್ತು ಗುಂಪುಗೊಂಡ ಶೇಕಡಾವಾರುಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು. | [ಪಾಠ](3-Data-Visualization/11-visualization-proportions/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) |
-| 12 | ಸಂಬಂಧಗಳ ದೃಶ್ಯೀಕರಣ | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | ಡೇಟಾ ಸೆಟ್ಗಳು ಮತ್ತು ಅವುಗಳ ಚರಗಳ ನಡುವಿನ ಸಂಪರ್ಕ ಮತ್ತು ಸಂಬಂಧಗಳ ದೃಶ್ಯೀಕರಣ. | [ಪಾಠ](3-Data-Visualization/12-visualization-relationships/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) |
-| 13 | ಅರ್ಥಪೂರ್ಣ ದೃಶ್ಯೀಕರಣಗಳು | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | ಪರಿಣಾಮಕಾರಿಯಾದ ಸಮಸ್ಯಾ ಪರಿಹಾರ ಮತ್ತು ಅರಿವಿಗಾಗಿ ನಿಮ್ಮ ದೃಶ್ಯೀಕರಣಗಳನ್ನು ಮೌಲ್ಯಮಯವಾಗಿಸುವ ತಂತ್ರಗಳು ಮತ್ತು ಮಾರ್ಗದರ್ಶನ. | [ಪಾಠ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) |
-| 14 | ಡೇಟಾ ವಿಜ್ಞಾನ ಜೀವನಚಕ್ರಕ್ಕೆ ಪರಿಚಯ | [ಜೀವನಚಕ್ರ](4-Data-Science-Lifecycle/README.md) | ಡೇಟಾ ವಿಜ್ಞಾನ ಜೀವನಚಕ್ರ ಹಾಗೂ ಡೇಟಾ ಪಡೆಯುವ ಮತ್ತು ಹೊರತೆಗೆದುಕೊಳ್ಳುವ ಮೊದಲ ಹಂತಕ್ಕೆ ಪರಿಚಯ. | [ಪಾಠ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [ಜasmine](https://twitter.com/paladique) |
-| 15 | ವಿಶ್ಲೇಷಣೆ | [ಜೀವನಚಕ್ರ](4-Data-Science-Lifecycle/README.md) | ಈ ಹಂತವು ಡೇಟಾ ವಿಶ್ಲೇಷಣೆಗೆ ಸಂಬಂಧಪಟ್ಟ ತಂತ್ರಗಳನ್ನು ಮಾರುಕಟ್ಟೆಗೆ ತರುತ್ತದೆ. | [ಪಾಠ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [ಜasmine](https://twitter.com/paladique) | | |
-| 16 | ಸಂವಹನ | [ಜೀವನಚಕ್ರ](4-Data-Science-Lifecycle/README.md) | ಈ ಹಂತದಲ್ಲಿ ಡೇಟಾದಿಂದ ಪಡೆದ ಅರಿವನ್ನು ನಿರ್ಧಾರ ಕೈಗೊಳ್ಳುವವರು ಸುಲಭವಾಗಿ ಅರ್ಥಮಾಡಿಕೊಳ್ಳಬಹುದಾದ ರೀತಿಯಲ್ಲಿ ಪ್ರಸ್ತುತಪಡಿಸುವುದು ಮುಖ್ಯವಾಗಿದೆ. | [ಪಾಠ](4-Data-Science-Lifecycle/16-communication/README.md) | [ಜಲೇನ್](https://twitter.com/JalenMcG) | | |
-| 17 | ಕ್ಲೌಡ್ನಲ್ಲಿ ಡೇಟಾ ವಿಜ್ಞಾನ | [ಕ್ಲೌಡ್ ಡೇಟಾ](5-Data-Science-In-Cloud/README.md) | ಈ ಪಾಠ ಸರಣಿಯಿಂದ ಕ್ಲೌಡ್ನಲ್ಲಿ ಡೇಟಾ ವಿಜ್ಞಾನ ಮತ್ತು ಅದರ ಪ್ರಯೋಜನಗಳು ಪರಿಚಯವಾಗುತ್ತವೆ. | [ಪಾಠ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [ಟಿಫಾನಿ](https://twitter.com/TiffanySouterre) ಮತ್ತು [ಮೌಡ್](https://twitter.com/maudstweets) |
-| 18 | ಕ್ಲೌಡ್ನಲ್ಲಿ ಡೇಟಾ ವಿಜ್ಞಾನ | [ಕ್ಲೌಡ್ ಡೇಟಾ](5-Data-Science-In-Cloud/README.md) | ಕಡಿಮೆ ಕೋಡ್ ಉಪಕರಣಗಳಿಂದ ಮಾದರಿಗಳನ್ನು ತರಬೇತುಗೊಳಿಸುವುದು. | [ಪಾಠ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [ಟಿಫಾನಿ](https://twitter.com/TiffanySouterre) ಮತ್ತು [ಮೌಡ್](https://twitter.com/maudstweets) |
-| 19 | ಕ್ಲೌಡ್ನಲ್ಲಿ ಡೇಟಾ ವಿಜ್ಞಾನ | [ಕ್ಲೌಡ್ ಡೇಟಾ](5-Data-Science-In-Cloud/README.md) | ಅಜುರ್ ಮಷಿನ್ ಲರ್ನಿಂಗ್ ಸ್ಟುಡಿಯೋ ಬಳಸಿ ಮಾದರಿಗಳನ್ನು ನಿಯೋಜಿಸುವುದು. | [ಪಾಠ](5-Data-Science-In-Cloud/19-Azure/README.md) | [ಟಿಫಾನಿ](https://twitter.com/TiffanySouterre) ಮತ್ತು [ಮೌಡ್](https://twitter.com/maudstweets) |
-| 20 | ಪ್ರಾಕೃತಿಕ ಪರಿಸರದಲ್ಲಿ ಡೇಟಾ ವಿಜ್ಞಾನ | [ಜೀವಂತಿರುವಲ್ಲಿ](6-Data-Science-In-Wild/README.md) | ನೈಜ ಜಗತ್ತಿನ ಡೇಟಾ ವಿಜ್ಞಾನ ಚಾಲಿತ ಪ್ರಾಜೆಕ್ಟುಗಳು. | [ಪಾಠ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [ನಿತ್ಯ](https://twitter.com/nitya) |
+| 01 | ಡೇಟಾ ಸೈನ್ಸ್ ವ್ಯಾಖ್ಯಾನ | [ಪರಿಚಯ](1-Introduction/README.md) | ಡೇಟಾ ಸೈನ್ಸ್ ಹಿನ್ನಡೆಯ ಮೂಲಭೂತ ಆಲೋಚನೆಗಳನ್ನು ಮತ್ತು ಕೃತಕ ಬುದ್ಧಿಮತ್ತೆ, ಯಂತ್ರ ಅಭ್ಯಾಸ ಮತ್ತು ದೊಡ್ಡ ಡೇಟಾ ಜೊತೆಗೆ ಅದರ ಸಂಬಂಧವನ್ನು ಕಲಿಯಿರಿ. | [ಪಾಠ](1-Introduction/01-defining-data-science/README.md) [ವೀಡಿಯೋ](https://youtu.be/beZ7Mb_oz9I) | [ಡ್ಮಿಟ್ರಿ](http://soshnikov.com) |
+| 02 | ಡೇಟಾ ಸೈನ್ಸ್ ನೈತಿಕತೆ | [ಪರಿಚಯ](1-Introduction/README.md) | ಡೇಟಾ ನೈತಿಕತೆಯ ಆಲೋಚನೆಗಳು, ಸವಾಲುಗಳು ಮತ್ತು ಸಂರಚನೆಗಳು. | [ಪಾಠ](1-Introduction/02-ethics/README.md) | [ನಿತ್ಯ](https://twitter.com/nitya) |
+| 03 | ಡೇಟಾ ವ್ಯಾಖ್ಯಾನ | [ಪರಿಚಯ](1-Introduction/README.md) | ಡೇಟಾ ఎలా ವರ್ಗೀಕರಿಸಲಾಗಿದೆ ಮತ್ತು ಅದರೂ ಸಾಮಾನ್ಯ ಮೂಲಗಳು. | [ಪಾಠ](1-Introduction/03-defining-data/README.md) | [ಜಾಸ್ಮಿನ್](https://www.twitter.com/paladique) |
+| 04 | ಸಂಖ್ಯಾಶಾಸ್ತ್ರ ಮತ್ತು ಸಾಧ್ಯತೆಗಳ ಪರಿಚಯ | [ಪರಿಚಯ](1-Introduction/README.md) | ಡೇಟಾವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಸಾಧ್ಯತೆ ಮತ್ತು ಸಂಖ್ಯಾಶಾಸ್ತ್ರದ ಗಣಿತೀಯ ತಂತ್ರಗಳನ್ನು ತಿಳಿಯಿರಿ. | [ಪಾಠ](1-Introduction/04-stats-and-probability/README.md) [ವೀಡಿಯೋ](https://youtu.be/Z5Zy85g4Yjw) | [ಡ್ಮಿಟ್ರಿ](http://soshnikov.com) |
+| 05 | ಸಂಬಂಧಿತ ಡೇಟಾ ಜೊತೆಗೆ ಕೆಲಸ | [ಡೇಟಾ ಜೊತೆಯಾಗಿ ಕೆಲಸ](2-Working-With-Data/README.md) | ಸಂಬಂಧಿತ ಡೇಟಾಗೆ ಪರಿಚಯ ಮತ್ತು ವಿಷಯಮಾಡಿರುವ, ಸಂಧರ್ಭದಲ್ಲಿರುವ, ಮತ್ತು ಅರ್ಹ ಡೇಟಾಗೆ ಜಾನುವಾರು ವಿವರಣೆ ಮಾಡಲು ಮೂಲತಃ ಸ್ಕ್ಯೂಎಲ್ (SQL) ಅನ್ನು ಉಪಯೋಗಿಸುವ ಮೂಲಭೂತಗಳು. | [ಪಾಠ](2-Working-With-Data/05-relational-databases/README.md) | [ಕ್ರಿಸ್ಥೋಫರ್](https://www.twitter.com/geektrainer) |
+| 06 | ನೋSQL ಡೇಟಾ ಜೊತೆಗೆ ಕೆಲಸ | [ಡೇಟಾ ಜೊತೆಯಾಗಿ ಕೆಲಸ](2-Working-With-Data/README.md) | ಸಂಬಂಧಹೀನ ಡೇಟಾಗೆ ಪರಿಚಯ, ಅದರ ವಿವಿಧ ಪ್ರಕಾರಗಳು ಮತ್ತು ಡಾಕ್ಯುಮೆಂಟ್ ಡೇಟಾಬೇಸ್ಗಳನ್ನು ಅನ್ವೇಷಿಸಲು ಮತ್ತು ವಿಶ್ಲೇಷಿಸಲು ಮೂಲಭೂತಗಳು. | [ಪಾಠ](2-Working-With-Data/06-non-relational/README.md) | [ಜಾಸ್ಮಿನ್](https://twitter.com/paladique)|
+| 07 | ಪೈಥಾನ್ ಜೊತೆಗೆ ಕೆಲಸ | [ಡೇಟಾ ಜೊತೆಯಾಗಿ ಕೆಲಸ](2-Working-With-Data/README.md) | Pandas ಮುಂತಾದ ಗ್ರಂಥಾಲಯಗಳೊಂದಿಗೆ ಡೇಟಾ ಅನ್ವೇಷಣೆಯಿಗಾಗಿ ಪೈಥಾನ್ ಬಳಕೆಯ ಮೂಲಭೂತಗಳು. ಪೈಥಾನ್ ಪ್ರೋಗ್ರಾಮಿಂಗ್ ಆಧಾರಭೂತ ಅರ್ಥಪೂರ್ಣತೆಯನ್ನು ಶಿಫಾರಸು ಮಾಡಲಾಗಿದೆ. | [ಪಾಠ](2-Working-With-Data/07-python/README.md) [ವೀಡಿಯೋ](https://youtu.be/dZjWOGbsN4Y) | [ಡ್ಮಿಟ್ರಿ](http://soshnikov.com) |
+| 08 | ಡೇಟಾ ಸಿದ್ಧತೆ | [ಡೇಟಾ ಜೊತೆಯಾಗಿ ಕೆಲಸ](2-Working-With-Data/README.md) | ಇರುವ ಡೇಟಾದ ಅಭಾವ, ತಪ್ಪು ಅಥವಾ ಅಪೂರ್ಣತೆ ಸವಾಲುಗಳನ್ನು ನಿಭಾಯಿಸಲು ಡೇಟಾ ಶುಚಿಗೊಳಿಸುವಿಕೆ ಮತ್ತು ಪರಿವರ್ತನೆ ತಂತ್ರಗಳು. | [ಪಾಠ](2-Working-With-Data/08-data-preparation/README.md) | [ಜಾಸ್ಮಿನ್](https://www.twitter.com/paladique) |
+| 09 | ಪ್ರಮಾಣಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | Matplotlib ಬಳಸಿಕೊಂಡು ಹಕ್ಕಿಗಳ ಡೇಟಾವನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು ಕಲಿಯಿರಿ 🦆 | [ಪಾಠ](3-Data-Visualization/09-visualization-quantities/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) |
+| 10 | ಡೇಟಾ ವಿತರಣೆಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | engu observations ಮತ್ತು ಪ್ರವೃತ್ತಿಗಳನ್ನು ಒಂದು ಅಂತರ್ಜಾಲದಲ್ಲಿ ದೃಶ್ಯೀಕರಿಸುವುದು. | [ಪಾಠ](3-Data-Visualization/10-visualization-distributions/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) |
+| 11 | ಅನುಪಾತಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | ವಿಚಿತ್ರ ಮತ್ತು ಗುಂಪು ಶೇಕಡಾವಾರುಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು. | [ಪಾಠ](3-Data-Visualization/11-visualization-proportions/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) |
+| 12 | ಸಂಬಂಧಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | ಡೇಟಾ ಮತ್ತು ಅದರ ಬದಲಾಗುವ ಬದಲಾವಣೆಗಳ ನಡುವಿನ ಸಂಪರ್ಕ ಮತ್ತು ಸಹಸಂಬಂಧಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು. | [ಪಾಠ](3-Data-Visualization/12-visualization-relationships/README.md) | [ಜೆನ್](https://twitter.com/jenlooper) |
+| 13 | ಅರ್ಥಪೂರ್ಣ ದೃಶ್ಯೀಕರಣಗಳು | [ಡೇಟಾ ದೃಶ್ಯೀಕರಣ](3-Data-Visualization/README.md) | ಪರಿಣಾಮಕಾರಿ ಸಮಸ್ಯೆ ಪರಿಹಾರ ಮತ್ತು ಒಳನೋಟಗಳಿಗಾಗಿ ನಿಮ್ಮ ದೃಶ್ಯೀಕರಣಗಳನ್ನು ಮೌಲ್ಯಯುತವಾಗಿಸಲು ತಂತ್ರಗಳು ಮತ್ತು ಮಾರ್ಗದರ್ಶನ. | [ಪಾಠ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [ ಜೆನ್](https://twitter.com/jenlooper) |
+| 14 | ಡೇಟಾ ಸೈನ್ಸ್ ಜೀವನಚರಿತ್ರೆಯ ಪರಿಚಯ | [ಜೀವನಚರಿತ್ರೆ](4-Data-Science-Lifecycle/README.md) | ಡೇಟಾ ಸೈನ್ಸ್ ಜೀವನಚರಿತ್ರೆಗೆ ಪರಿಚಯ ಮತ್ತು ಅದರ ಮೊದಲ ಹಂತವಾದ ಡೇಟಾ ಸಂಗ್ರಹಣೆ ಮತ್ತು ತೆಗೆಯುವಿಕೆ. | [ಪಾಠ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [ಜಾಸ್ಮಿನ್](https://twitter.com/paladique) |
+| 15 | ವಿಶ್ಲೇಷಣೆ | [ಜೀವನಚರಿತ್ರೆ](4-Data-Science-Lifecycle/README.md) | ಡೇಟಾ ವಿಶ್ಲೇಷಣೆಗೆ ಈ ಹಂತದಲ್ಲಿ ಕೇಂದ್ರೀಕರಿಸಲಾಗುವುದು. | [ಪಾಠ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [ಜಾಸ್ಮಿನ್](https://twitter.com/paladique) |
+| 16 | ಸಂವಹನ | [ಜೀವನಚರಿತ್ರೆ](4-Data-Science-Lifecycle/README.md) | ನಿರ್ದೇಶಕರಿಗೆ ಸುಲಭವಾಗಿ ಅರ್ಥವಾಗುವ ರೀತಿಯಲ್ಲಿ ಡೇಟಾದೊಳಗಿನ ತಿಳಿವಳಿಕೆಯನ್ನು ಪ್ರಸ್ತುತಪಡಿಸುವ ಹಂತ. | [ಪಾಠ](4-Data-Science-Lifecycle/16-communication/README.md) | [ಜೆಲೆನ್](https://twitter.com/JalenMcG) |
+| 17 | ಕ್ಲೌಡ್ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ | [ಕ್ಲೌಡ್ ಡೇಟಾ](5-Data-Science-In-Cloud/README.md) | ಕ್ಲೌಡ್ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ ಮತ್ತು ಅದರ ಪ್ರಯೋಜನಗಳ ಪರಿಚಯ. | [ಪಾಠ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [ಟಿಫಾನಿ](https://twitter.com/TiffanySouterre) ಮತ್ತು [ಮಾಡ್](https://twitter.com/maudstweets) |
+| 18 | ಕ್ಲೌಡ್ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ | [ಕ್ಲೌಡ್ ಡೇಟಾ](5-Data-Science-In-Cloud/README.md) | Low Code ಉಪಕರಣಗಳನ್ನು ಬಳಸಿ ಮಾದರಿಗಳನ್ನು ತರಬೇತು ಮಾಡುವುದು. | [ಪಾಠ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [ಟಿಫಾನಿ](https://twitter.com/TiffanySouterre) ಮತ್ತು [ಮಾಡ್](https://twitter.com/maudstweets) |
+| 19 | ಕ್ಲೌಡ್ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ | [ಕ್ಲೌಡ್ ಡೇಟಾ](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio ಬಳಸಿ ಮಾದರಿಗಳನ್ನು разಸ್ತಿಸಲು. | [ಪಾಠ](5-Data-Science-In-Cloud/19-Azure/README.md) | [ಟಿಫಾನಿ](https://twitter.com/TiffanySouterre) ಮತ್ತು [ಮಾಡ್](https://twitter.com/maudstweets) |
+| 20 | ವಲೆಗಳಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ | [ವೈಲ್ಡ್ನಲ್ಲಿ](6-Data-Science-In-Wild/README.md) | ನೈಜ ಜಾಗತಿಕದಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ ಚಾಲಿತ ಯೋಜನೆಗಳು. | [ಪಾಠ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [ನಿತ್ಯ](https://twitter.com/nitya) |
-## GitHub ಕೋಡ್ಸ್ಪೇಸಸ್
+## GitHub ಕೋಡ್ಸ್ಪೇಸ್ಗಳು
-ಈ ಮಾದರಿಯನ್ನು ಕೋಡ್ಸ್ಪೇಸ್ನಲ್ಲಿ ತೆರೆಯಲು ಈ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ:
-1. ಕೋಡ್ ಡ್ರಾಪ್-ಡೌನ್ ಮেনುವನ್ನು ಕ್ಲಿಕ್ ಮಾಡಿ ಮತ್ತು Open with Codespaces ಆಯ್ಕೆಮಾಡಿ.
-2. ತಲುಪುವ ಫಲೇನಿನಲ್ಲಿ ಕೆಳಗಿನ + New codespace ಆಯ್ಕೆಮಾಡಿ.
-ಹೆಚ್ಚಿನ ಮಾಹಿತಿಗಾಗಿ, [GitHub ಡಾಕ್ಯುಮೆಂಟೇಶನ್](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) ನೋಡಿ.
+ಈ ಮಾದರಿಯನ್ನು ಕೋಡ್ಸ್ಪೇಸ್ನಲ್ಲಿ ತೆಗೆಯಲು ಈ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ:
+1. ಕೋಡ್ ಡ್ರಾಪ್-ಡೌನ್ ಮೆನು ಕ್ಲಿಕ್ ಮಾಡಿ ಮತ್ತು Open with Codespaces ಆಯ್ಕೆ ಮಾಡಿ.
+2. ಪೇನೆಲ್ ಬಾಟಮ್ನಲ್ಲಿ + New codespace ಆಯ್ಕೆಮಾಡಿ.
+ಮತ್ತಷ್ಟು ಮಾಹಿತಿಗೆ, [GitHub ಡಾಕ್ಯುಮೆಂಟೇಷನ್](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) ನೋಡಿ.
-## VSCode ರಿಮೋಟ್ - ಕಂಟೇನರ್ಗಳು
-ನಿಮ್ಮ ಸ್ಥಳೀಯ ಯಂತ್ರ ಮತ್ತು VSCode ಬಳಸಿ ಈ റെಪೋವನ್ನು ಕಂಟೇನರ್ನಲ್ಲಿ ತೆರೆಯಲು ಕೆಳಗಿನ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ `VS Code Remote - Containers` ವಿಸ್ತರಣೆ ಬಳಸಿ:
+## VSCode ರಿಮೋಟ್ - ಕಂಟೈನರ್ಸ್
+ನಿಮ್ಮ ಸ್ಥಳೀಯ ಯಂತ್ರದಲ್ಲಿಯೂ ಮತ್ತು VSCode ನಲ್ಲಿ VS Code Remote - Containers ವಿಸ್ತರಣೆ ಬಳಸಿಕೊಂಡು ಈ ರೆಪೋವನ್ನು ಕಂಟೈನರ್ನಲ್ಲಿ ತೆಗೆಯಲು ಈ ಹಂತಗಳನ್ನು ಅನುಸರಿಸಿ:
-1. ಡೆವಲಪ್ಮೆಂಟ್ ಕಂಟೇನರ್ ಬಳಕೆಯಲ್ಲಿದ್ದರೆ, ನಿಮ್ಮ ಸಿಸ್ಟಮ್ ಮೂಲಭೂತ ಅಗತ್ಯಗಳನ್ನು ಹೊಂದಿರುವುದನ್ನು ಖಚಿತಪಡಿಸಿಕೊಳ್ಳಿ (ಅಂದರೆ ಡಾಕರ್ ಸ್ಥಾಪಿಸಲಾಗಿದೆ) [Getting Started ಡಾಕ್ಯುಮೆಂಟೇಶನ್](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) ನಲ್ಲಿ ತಿಳಿದೆ.
+1. ನೀವು ಡೆವಲಪ್ಮೆಂಟ್ ಕಂಟೈನರ್ ಮೊದಲ ಬಾರಿಗೆ ಬಳಸುತ್ತಿದ್ದರೆ, ನಿಮ್ಮ ವ್ಯವಸ್ಥೆಗೆ ಮೊದಲು ಅಗತ್ಯವಿರುವ ಅಂಶಗಳು (ಉದಾ. ಡೋಕರ್ ಇನ್ಸ್ಟಾಲ್ ಮಾಡಿರಬೇಕು) ಇದ್ದಾರೆ ಎಂದು ಖಚಿತಪಡಿಸಿಕೊಳ್ಳಿ [Getting Started ಡಾಕ್ಯುಮೆಂಟೇಷನ್](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) ನಲ್ಲಿ.
-ಈ ರೆಪೋಜಿಟೋರಿಯನ್ನು ಬಳಸಲು, ನೀವು ಐಸೋಲೇಟ್ಡ್ ಡಾಕರ್ ವಾಲ್ಯೂಮ್ನಲ್ಲಿ ರೆಪೋವನ್ನು ತೆರೆಯಬಹುದು:
+ಈ ಸಂಗ್ರಹಾಲಯವನ್ನು ಬಳಸಲು, ನೀವು ಕಡತತಂತ್ರದಲ್ಲಿಲ್ಲದೆ ಒಂದು ಡೋಕರ್ ವಾಲ್ಯೂಮ್ನಲ್ಲಿ ರೆಪೋ ತೆಗೆಯಬಹುದು:
-**ಗಮನಿಸಿ**: ಇಲ್ಲಿನ Remote-Containers: **Clone Repository in Container Volume...** ಆಜ್ಞೆಯನ್ನು ಬಳಸಿ ಸ್ಥಳೀಯ ಫೈಲ್ಸಿಸ್ಟಮ್ ಬದಲು ಡಾಕರ್ ವಾಲ್ಯೂಮ್ಗೆ ಮೂಲ ಕೋಡ್ ಅನ್ನು ಕ್ಲೋನ್ ಮಾಡುತ್ತದೆ. [ವಾಲ್ಯೂಮ್ಗಳು](https://docs.docker.com/storage/volumes/) ಒಂದು ಕಂಟೇನರ್ ಡೇಟಾ ಉಳಿಸುವ ಪ್ರಾಥಮಿಕ ವಿಧಾನವಾಗಿವೆ.
+**ಗಮನಿಸಿ**: ಇದನ್ನು ಬಳಸಲು ಹಿಂಭಾಗದಲ್ಲಿ Remote-Containers: **Clone Repository in Container Volume...** ಆಜ್ಞೆಯನ್ನು ಬಳಸಿ ಮೂಲ ಕೋಡ್ ಅನ್ನು ಡೋಕರ್ ವಾಲ್ಯೂಮ್ಗೆ ಕ್ಲೋನ್ ಮಾಡುತ್ತದೆ. [ವಾಲ್ಯೂಮ್ಗಳು](https://docs.docker.com/storage/volumes/) ಕಂಟೈನರ್ ಡೇಟಾವನ್ನು ಉಳಿಸುವುದಕ್ಕೆ ಉಚಿತ ಮಿಕೆನಿಸಮ್ ಆಗಿವೆ.
-ಅಥವಾ ಕೊನೆಯಲ್ಲಿ ಕ್ಲೋನ್ ಮಾಡಲಾದ ಅಥವಾ ಡೌನ್ಲೋಡ್ ಮಾಡಲಾದ ರೆಪೋವನ್ನು ತೆರೆಯಿರಿ:
+ಅಥವಾ ಈ ರೆಪೋವನ್ನು ಸ್ಥಳೀಯವಾಗಿ ಕ್ಲೋನ್ ಅಥವಾ ಡೌನ್ಲೋಡ್ ಮಾಡಲಾಗಿರುವ ಪ್ರತಿಯನ್ನು ತೆರೆಯಿರಿ:
-- ಈ ರೆಪೋವನ್ನು ನಿಮ್ಮ ಸ್ಥಳೀಯ ಫೈಲ್ ಸಿಸ್ಟಮ್ಗೆ ಕ್ಲೋನ್ ಮಾಡಿ.
-- F1 ಒತ್ತಿ ಮತ್ತು Remote-Containers: Open Folder in Container... ಆಜ್ಞೆ ಆಯ್ಕೆಮಾಡಿ.
-- ಈ ಫೋಲ್ಡರ್ನ ಕ್ಲೋನ್ ಮಾಡಲಾದ ನಕಲನ್ನು ಆಯ್ಕೆ ಮಾಡಿ, ಕಂಟೇನರ್ ಪ್ರಾರಂಭವಾಗಲು ಕಾಯಿರಿ ಮತ್ತು ಪ್ರಯತ್ನಿಸಿ.
+- ಈ ರೆಪೋವನ್ನು ನಿಮ್ಮ ಸ್ಥಳೀಯ ಫೈಲ್ಸಿಸ್ಟಂಗೆ ಕ್ಲೋನ್ ಮಾಡಿ.
+- F1 ಒತ್ತಿ ಮತ್ತು **Remote-Containers: Open Folder in Container...** ಆಜ್ಞೆಯನ್ನು ಆರಿಸಿ.
+- ಈ ಫೋಲ್ಡರ್ನ ಕ್ಲೋನ್ ಮಾಡಲಾದ ನಕಲನ್ನು ಆಯ್ಕೆಮಾಡಿ, ಕಂಟೈನರ್ ಪ್ರಾರಂಭವಾಗುವವರೆಗೆ ಕಾಯಿರಿ ಮತ್ತು ಪ್ರಯತ್ನಿಸಿ.
-## ಆಫ್ಲೈನ್ ಪ್ರವೇಶ
+## ಆಫ್ಲೈನ್ ಪ್ರವೇಶ
-ನೀವು [Docsify](https://docsify.js.org/#/) ಬಳಸಿ ಈ ಡಾಕ್ಯುಮೆಂಟೇಶನ್ ಅನ್ನು ಆಫ್ಲೈನ್ನಲ್ಲಿ ಓದಬಹುದು. ಈ ರೆಪೋವನ್ನು ಫೋರ್ಕ್ ಮಾಡಿ, ನಿಮ್ಮ ಸ್ಥಳೀಯ ಯಂತ್ರದಲ್ಲಿ [Docsify ಅನ್ನು ಸ್ಥಾಪಿಸಿ](https://docsify.js.org/#/quickstart), ನಂತರ ಈ ರೆಪೋನ ರೂಟ್ ಫೋಲ್ಡರ್ನಲ್ಲಿ `docsify serve` ಎಂದು ಟೈಪ್ ಮಾಡಿ. ವೆಬ್ಸೈಟ್ ಸ್ಥಳೀಯವಾಗಿ 3000 ಪೋರ್ಟ್ನಲ್ಲಿ `localhost:3000` ನಲ್ಲಿ ಸರ್ವ್ ಆಗುತ್ತದೆ.
+ನೀವು ಈ ಡಾಕ್ಯುಮೆಂಟೇಶನ್ ಅನ್ನು ಆಫ್ಲೈನ್ನಲ್ಲಿ Docsify (https://docsify.js.org/#/) ಬಳಸಿ ಓಡಿಸಬಹುದು. ಈ ರೆಪೋವನ್ನು Fork ಮಾಡಿ, ನಿಮ್ಮ ಸ್ಥಳೀಯ ಯಂತ್ರದಲ್ಲಿ Docsify ಇನ್ಸ್ಟಾಲ್ ಮಾಡಿ (https://docsify.js.org/#/quickstart), ನಂತರ ಈ ರೆಪೋ ರೂಟ್ ಫೋಲ್ಡರ್ನಲ್ಲಿ `docsify serve` ಟೈಪ್ ಮಾಡಿ. ವೆಬ್ಸೈಟ್ ನಿಮ್ಮ ಸ್ಥಳೀಯ ಹಣಗೆ 3000 ಪೋರ್ಟ್ನಲ್ಲಿ ಸರ್ವ್ ಆಗುತ್ತದೆ: `localhost:3000`.
-> ಟಿಪ್ಪಣಿ, ಡಾಕ್ಯುಮೆಂಟ್ನೋಟ್ಬುಕ್ಗಳು Docsify ಮೂಲಕ ರೆಂಡರ್ ಆಗುವುದಿಲ್ಲ, ಆದ್ದರಿಂದ ನೀವು ನೋಟ್ಬುಕ್ಗೆ ಚಾಲನೆ ನೀಡಬೇಕಾದರೆ, ಅದನ್ನು VS Codeದಲ್ಲಿರುವ ಪೈಥಾನ್ ಕರ್ನೆಲ್ನಲ್ಲಿ ಪ್ರತ್ಯೇಕವಾಗಿ ಮಾಡಬೇಕು.
+> ಗಮನಿಸಿ, ನೋಟ್ಬುಕ್ಗಳನ್ನು Docsify ಮೂಲಕ ರೆಂಡರ್ ಮಾಡಲಾಗುವುದಿಲ್ಲ, ಆದ್ದರಿಂದ ನೀವು ನೋಟ್ಬುಕ್ ಅನ್ನು ಓಡಿಸುವ ಅಗತ್ಯವಿದ್ದರೆ, ಅದನ್ನು VS Code ನಲ್ಲಿ Python ಕೆರ್ನೆಲ್ ಮೂಲಕ ಪ್ರತ್ಯೇಕವಾಗಿ ನಡೆಸಿ.
-## ಇತರ ಪಠ್ಯಕ್ರಮಗಳು
+## ಇತರೆ ಪಠ್ಯಕ್ರಮಗಳು
-ನಮ್ಮ ತಂಡ ಇನ್ನೂ ಹಲವಾರು ಪಠ್ಯಕ್ರಮಗಳನ್ನು ಉತ್ಪಾದಿಸುತ್ತಿದೆ! ನೋಡಿ:
+ನಮ್ಮ ತಂಡ ಇತರೆ ಪಠ್ಯಕ್ರಮಗಳನ್ನು ಉತ್ಪಾದಿಸುತ್ತದೆ! ನೋಡಿ:
-### ಲ್ಯಾಂಚ್ಚೈನ್
+### ಲ್ಯಾಂಗ್ಚೈನ್
[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
-### ಅಜೂರ್ / ಎಡ್ಜ್ / MCP / ಏಜೆಂಟ್ಸ್
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+### ಅಜೂರ್ / ಎಡ್ಜ್ / MCP / ಏಜೆಂಟ್ಗಳು
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-
+
### ಜನರೇಟಿವ್ AI ಸರಣಿಗಳು
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
-
-### ಕೋರ್ ಲರ್ನಿಂಗ್
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+
+### ಹೃದಯಭಾಗದ ಕಲಿಕೆ
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-
-### ಕೋಪೈಲಟ್ ಸರಣಿ
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+
+### ಕೋಪಿಲಟ್ ಸರಣಿ
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## ಸಹಾಯ ಪಡೆಯುವುದು
-**ಸಮಸ್ಯೆ ಎದುರಿಸುತ್ತಿದ್ದೀರಾ?** ಸಾಮಾನ್ಯ ಸಮಸ್ಯೆಗಳ ಪರಿಹಾರಕ್ಕಾಗಿ ನಮ್ಮ [ಸಮಸ್ಯೆ ಪರಿಹಾರ ಮಾರ್ಗದರ್ಶಿ](TROUBLESHOOTING.md) ಅನ್ನು ಪರಿಶೀಲಿಸಿ.
+**ಸಮಸ್ಯೆ ಎದುರಿಸುತ್ತಿದ್ದೀರಾ?** ಸಾಮಾನ್ಯ ಸಮಸ್ಯೆಗಳ ಪರಿಹಾರಕ್ಕಾಗಿ ನಮ್ಮ [ಟ್ರಬುಲ್ಶೂಟಿಂಗ್ ಗೈಡ್](TROUBLESHOOTING.md) ಅನ್ನು ಪರಿಶೀಲಿಸಿ.
-ನೀವು ಅಡಚಣೆಯಲ್ಲಿದ್ದರೆ ಅಥವಾ AI ಅಪ್ಲಿಕೇಶನ್ಗಳನ್ನು ನಿರ್ಮಿಸುವ ಬಗ್ಗೆ ಯಾವುದಾದರೂ ಪ್ರಶ್ನೆಗಳಿದ್ದರೆ, MCP ಬಗ್ಗೆ ಚರ್ಚೆಗಳಿಗಾಗಿ ಸಹಪಾಠಿಗಳು ಮತ್ತು ಅನುಭವ ಹೊಂದಿದ ಡೆವಲಪರ್ಗಳ ಜೊತೆ ಸೇರಿ. ಇದು ಪ್ರಶ್ನೆಗಳನ್ನು ಸ್ವಾಗತಿಸುವ ಹಾಗೂ ಜ್ಞಾನವನ್ನು ಮುಕ್ತವಾಗಿ ಹಂಚಿಕೊಳ್ಳುವ ಬೆಂಬಲ ಸಮುದಾಯವಾಗಿದೆ.
+ನೀವು ಸಾಂದರ್ಭಿಕವಾಗಿ ಅಡ್ಡಿಯಾಗಿದ್ದೀರಿ ಅಥವಾ AI ಅಪ್ಲಿಕೇಶನ್ಗಳನ್ನು ನಿರ್ಮಿಸುವ ಕುರಿತು ಯಾವುದಾದರೂ ಪ್ರಶ್ನೆಗಳಿದ್ದರೆ, MCP ಬಗ್ಗೆ fellow ಕಲಿಯುವವರು ಮತ್ತು ಅನುಭವসূಕ್ತ ಬೆಳವಣಿಗಾರರೊಂದಿಗೆ ಚರ್ಚೆಗಳಲ್ಲಿ ಸೇರಿ. ಇದು ಸಹಾಯಕ ಸಮುದಾಯವಾಗಿದ್ದು, ಅಲ್ಲಿ ಪ್ರಶ್ನೆಗಳನ್ನು ಕೇಳಲು ಮತ್ತು ಜ್ಞಾನವನ್ನು ಮುಕ್ತವಾಗಿ ಹಂಚಿಕೊಳ್ಳಲು ಅವಕಾಶವಿದೆ.
-[](https://discord.gg/nTYy5BXMWG)
+[](https://discord.gg/nTYy5BXMWG)
-ನೀವು ಉತ್ಪನ್ನ ಪ್ರತಿಕ್ರಿಯೆ ಅಥವಾ ದೋಷಗಳನ್ನು ಕಂಡುಹಿಡಿದಿದ್ದರೆ, ನಿರ್ಮಾಣ ಮಾಡುವಾಗ ಭೇಟಿ ಕೊಡಿ:
+ನೀವು ಉತ್ಪನ್ನದ ಪ್ರತಿಕ್ರಿಯೆ ಅಥವಾ ದೋಷಗಳನ್ನು ಕಂಡುಹಿಡಿದಿದ್ದರೆ, ದಯವಿಟ್ಟು ಭೇಟಿ ನೀಡಿ:
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
---
-**ಅಪಘಾತ ನಿವರಣಾ ಸೂಚನೆ**:
-ಈ ದಸ್ತಾವೇಜು [Co-op Translator](https://github.com/Azure/co-op-translator) ಎಂಬ AI ಅನುವಾದ ಸೇವೆಯ ಮೂಲಕ ಅನುವಾದಿಸಲಾಗಿದೆ. ನಾವು ಶುದ್ಧತೆಯುಳ್ಳ ಅನುವಾದಕ್ಕಾಗಿ ಪ್ರಯತ್ನಿಸುತ್ತೇವೆ ಎಂಬುದರೊಂದಿಗೆ, ಸ್ವಯಂಚಾಲಿತ ಅನುವಾದಗಳಲ್ಲಿ ತಪ್ಪುಗಳು ಅಥವಾ ಅಸತ್ಯತೆಗಳಿರಬಹುದು ಎಂಬುದನ್ನು ದಯವಿಟ್ಟು ಗಮನದಲ್ಲಿಡಿ. ಮೂಲ ಭಾಷೆಯ ದಸ್ತಾವೇಜು ಅಥವಾ ಮೂಲ ಪಠ್ಯವೇ ಅನುಷ್ಠಾನಾತ್ಮಕ ಮತ್ತು ಅಧಿಕೃತ ಮೂಲ ಎಂದು ಪರಿಗಣಿಸಬೇಕು. ಪ್ರಮುಖ ಮಾಹಿತಿಗಾಗಿ ವೃತ್ತಿಪರ ಮಾನವರ ಅನುವಾದವನ್ನು ಶಿಫಾರಸು ಮಾಡಲಾಗುತ್ತದೆ. ಈ ಅನುವಾದದ ಬಳಕೆಯಿಂದ ಉಂಟಾಗಬಹುದಾದ ಯಾವುದೇ ತಪ್ಪುರ್ಥಮನೆ ಅಥವಾ ತಪ್ಪಾಗುವಿಕೆಗಳಿಗೆ ನಾವು ಹೊಣೆಗಾರರಾಗುವುದಿಲ್ಲ.
+**ತಪ್ಪು ನೋಟ:**
+ಈ ದಸ್ತಾವೇಜು [Co-op Translator](https://github.com/Azure/co-op-translator) ಎಂಬ AI ಅನುವಾದ ಸೇವೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅನುವಾದಿಸಲಾಗಿದೆ. ನಾವು ಸರಿಯಾಗಿರುವುದಕ್ಕೆ ಪ್ರಯತ್ನಿಸುವಾಗ, ಸ್ವಯಂಚಾಲಿತ ಅನುವಾದದಲ್ಲಿ ತಪ್ಪುಗಳು ಅಥವಾ ಅಸೂಚನೆಗಳಿರಬಹುದು ಎಂದು ಗಮನಿಸಿ. ಮೂಲ ದಸ್ತಾವೇಜನ್ನು ಅದರ ಮೂಲ ಭಾಷೆಯಲ್ಲಿ ಅಧಿಕಾರಿಕ ಮೂಲವಾಗಿಯೇ ಪರಿಗಣಿಸಬೇಕು. ಪ್ರಮುಖ ಮಾಹಿತಿಗೆ, ವೃತ್ತಿಪರ ಮಾನವ ಅನುವಾದವನ್ನು ಶಿಫಾರಸು ಮಾಡಲಾಗುತ್ತದೆ. ಈ ಅನುವಾದ ಬಳಕೆಯಿಂದ ಉಂಟಾಗುವ ಯಾವುದೇ ತಪ್ಪು ನಿರ್ವಹಣೆ ಹಾಗೂ ಭ್ರಾಂತಿಗಳುಗಾಗಿ ನಾವು ಯಾರಿಗೂ ಹೊಣೆಗಾರರಾಗುವುದಿಲ್ಲ.
\ No newline at end of file
diff --git a/translations/kn/SECURITY.md b/translations/kn/SECURITY.md
index f89a57ac..edebe6cb 100644
--- a/translations/kn/SECURITY.md
+++ b/translations/kn/SECURITY.md
@@ -1,12 +1,3 @@
-
## ಭದ್ರತೆ
Microsoft ನಮ್ಮ ಸಾಫ್ಟ್ವೇರ್ ಉತ್ಪನ್ನಗಳು ಮತ್ತು ಸೇವೆಗಳ ಭದ್ರತೆಯನ್ನು ಗಂಭೀರವಾಗಿ ತೆಗೆದುಕೊಳ್ಳುತ್ತದೆ, ಇದರಲ್ಲಿ ನಮ್ಮ GitHub ಸಂಸ್ಥೆಗಳ ಮೂಲಕ ನಿರ್ವಹಿಸಲಾದ ಎಲ್ಲಾ ಮೂಲ ಕೋಡ್ ರೆಪೊಸಿಟರಿಗಳು ಸೇರಿವೆ, ಅವುಗಳಲ್ಲಿ [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), ಮತ್ತು [ನಮ್ಮ GitHub ಸಂಸ್ಥೆಗಳು](https://opensource.microsoft.com/) ಸೇರಿವೆ.
diff --git a/translations/kn/SUPPORT.md b/translations/kn/SUPPORT.md
index 9964a5be..42d2a682 100644
--- a/translations/kn/SUPPORT.md
+++ b/translations/kn/SUPPORT.md
@@ -1,12 +1,3 @@
-
# ಬೆಂಬಲ
## ಸಮಸ್ಯೆಗಳನ್ನು ದಾಖಲಿಸುವುದು ಮತ್ತು ಸಹಾಯ ಪಡೆಯುವುದು ಹೇಗೆ
diff --git a/translations/kn/TROUBLESHOOTING.md b/translations/kn/TROUBLESHOOTING.md
index caf296ec..aa30cad4 100644
--- a/translations/kn/TROUBLESHOOTING.md
+++ b/translations/kn/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# ಸಮಸ್ಯೆ ಪರಿಹಾರ ಮಾರ್ಗದರ್ಶಿ
ಈ ಮಾರ್ಗದರ್ಶಿ ಡೇಟಾ ಸೈನ್ಸ್ ಫಾರ್ ಬಿಗಿನರ್ಸ್ ಪಠ್ಯಕ್ರಮದೊಂದಿಗೆ ಕೆಲಸ ಮಾಡುವಾಗ ನೀವು ಎದುರಿಸಬಹುದಾದ ಸಾಮಾನ್ಯ ಸಮಸ್ಯೆಗಳಿಗೆ ಪರಿಹಾರಗಳನ್ನು ಒದಗಿಸುತ್ತದೆ.
diff --git a/translations/kn/USAGE.md b/translations/kn/USAGE.md
index 6d7d9228..9f45db43 100644
--- a/translations/kn/USAGE.md
+++ b/translations/kn/USAGE.md
@@ -1,12 +1,3 @@
-
# ಬಳಕೆ ಮಾರ್ಗದರ್ಶಿ
ಈ ಮಾರ್ಗದರ್ಶಿ ಡೇಟಾ ಸೈನ್ಸ್ ಫಾರ್ ಬಿಗಿನರ್ಸ್ ಪಠ್ಯಕ್ರಮವನ್ನು ಬಳಸಲು ಉದಾಹರಣೆಗಳು ಮತ್ತು ಸಾಮಾನ್ಯ ಕಾರ್ಯಪ್ರವಾಹಗಳನ್ನು ಒದಗಿಸುತ್ತದೆ.
diff --git a/translations/kn/docs/_sidebar.md b/translations/kn/docs/_sidebar.md
index 1883fb89..1bdf772f 100644
--- a/translations/kn/docs/_sidebar.md
+++ b/translations/kn/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- ಪರಿಚಯ
- [ಡೇಟಾ ಸೈನ್ಸ್ ಅನ್ನು ವ್ಯಾಖ್ಯಾನಿಸುವುದು](../1-Introduction/01-defining-data-science/README.md)
- [ಡೇಟಾ ಸೈನ್ಸ್ ನ ನೈತಿಕತೆ](../1-Introduction/02-ethics/README.md)
diff --git a/translations/kn/examples/README.md b/translations/kn/examples/README.md
index c0bc6c2d..aae208da 100644
--- a/translations/kn/examples/README.md
+++ b/translations/kn/examples/README.md
@@ -1,12 +1,3 @@
-
# ಆರಂಭಿಕರಿಗಾಗಿ ಸ್ನೇಹಪರ ಡೇಟಾ ಸೈನ್ಸ್ ಉದಾಹರಣೆಗಳು
ಉದಾಹರಣೆಗಳ ಡೈರೆಕ್ಟರಿಗೆ ಸ್ವಾಗತ! ಈ ಸರಳ, ಚೆನ್ನಾಗಿ ಕಾಮೆಂಟ್ ಮಾಡಲಾದ ಉದಾಹರಣೆಗಳ ಸಂಗ್ರಹವು ನೀವು ಸಂಪೂರ್ಣ ಆರಂಭಿಕರಾಗಿದ್ದರೂ ಸಹ ಡೇಟಾ ಸೈನ್ಸ್ ಪ್ರಾರಂಭಿಸಲು ಸಹಾಯ ಮಾಡಲು ವಿನ್ಯಾಸಗೊಳಿಸಲಾಗಿದೆ.
diff --git a/translations/kn/for-teachers.md b/translations/kn/for-teachers.md
index 5381e6ec..20da67bf 100644
--- a/translations/kn/for-teachers.md
+++ b/translations/kn/for-teachers.md
@@ -1,12 +1,3 @@
-
## ಶಿಕ್ಷಕರಿಗಾಗಿ
ನೀವು ಈ ಪಠ್ಯಕ್ರಮವನ್ನು ನಿಮ್ಮ ತರಗತಿಯಲ್ಲಿ ಬಳಸಲು ಇಚ್ಛಿಸುತ್ತೀರಾ? ದಯವಿಟ್ಟು ಮುಕ್ತವಾಗಿ ಬಳಸಿಕೊಳ್ಳಿ!
diff --git a/translations/kn/quiz-app/README.md b/translations/kn/quiz-app/README.md
index 8a766adf..b0052b2f 100644
--- a/translations/kn/quiz-app/README.md
+++ b/translations/kn/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# ಪ್ರಶ್ನೋತ್ತರಗಳು
ಈ ಪ್ರಶ್ನೋತ್ತರಗಳು https://aka.ms/datascience-beginners ನಲ್ಲಿ ಡೇಟಾ ಸೈನ್ಸ್ ಪಠ್ಯಕ್ರಮದ ಪೂರ್ವ ಮತ್ತು ನಂತರದ ಉಪನ್ಯಾಸ ಪ್ರಶ್ನೋತ್ತರಗಳಾಗಿವೆ
diff --git a/translations/kn/sketchnotes/README.md b/translations/kn/sketchnotes/README.md
index 8a0684d5..7c9fcaca 100644
--- a/translations/kn/sketchnotes/README.md
+++ b/translations/kn/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
ಎಲ್ಲಾ ಸ್ಕೆಚ್ನೋಟ್ಗಳನ್ನು ಇಲ್ಲಿ ಕಂಡುಹಿಡಿಯಿರಿ!
## ಕ್ರೆಡಿಟ್ಸ್
diff --git a/translations/ko/.co-op-translator.json b/translations/ko/.co-op-translator.json
new file mode 100644
index 00000000..d2e8562b
--- /dev/null
+++ b/translations/ko/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:42:41+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "ko"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-25T16:56:53+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "ko"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-25T16:58:03+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "ko"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:12:49+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "ko"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-25T16:50:06+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "ko"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T13:09:36+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "ko"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-25T17:01:44+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "ko"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:12:23+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "ko"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-25T17:11:10+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "ko"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-25T16:38:36+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "ko"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T10:53:29+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "ko"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:53:46+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "ko"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T12:58:19+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "ko"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-25T16:36:48+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "ko"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:31:08+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "ko"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-25T16:31:55+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "ko"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T13:00:29+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "ko"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-25T16:24:07+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "ko"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-25T16:13:08+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T13:03:39+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-25T18:39:48+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T13:05:17+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-25T18:08:23+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T13:03:11+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-25T18:43:31+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:31:54+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-25T18:12:41+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T13:04:08+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-25T18:03:14+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-25T18:04:33+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-25T18:03:52+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-25T18:25:14+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-25T18:26:24+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-25T18:15:23+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-25T18:16:33+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-25T18:32:54+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-25T18:19:23+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-25T18:29:53+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "ko"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-25T17:58:20+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "ko"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:35:11+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "ko"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-25T17:45:20+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "ko"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:34:50+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "ko"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-25T17:48:29+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "ko"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:35:34+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "ko"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-25T17:56:45+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "ko"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-25T17:41:19+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "ko"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T12:57:00+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "ko"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-25T17:31:58+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "ko"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T12:55:44+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "ko"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-25T17:27:33+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "ko"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T12:57:30+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "ko"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-25T17:38:56+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "ko"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-25T17:20:02+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "ko"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:20:04+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "ko"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-25T17:19:02+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "ko"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-25T17:12:21+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "ko"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:10:09+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "ko"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-25T16:10:35+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "ko"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:37:51+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "ko"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:17:24+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "ko"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:25:33+00:00",
+ "source_file": "README.md",
+ "language_code": "ko"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-25T16:11:37+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "ko"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-25T16:08:35+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "ko"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:34:13+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "ko"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:57:29+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "ko"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-25T16:37:47+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "ko"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:58:54+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "ko"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:54:05+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "ko"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-25T17:40:28+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "ko"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-25T17:11:49+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "ko"
+ }
+}
\ No newline at end of file
diff --git a/translations/ko/1-Introduction/01-defining-data-science/README.md b/translations/ko/1-Introduction/01-defining-data-science/README.md
index 7dcb7508..73f451ae 100644
--- a/translations/ko/1-Introduction/01-defining-data-science/README.md
+++ b/translations/ko/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# 데이터 과학 정의
|  의 스케치노트 ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/ko/1-Introduction/01-defining-data-science/assignment.md b/translations/ko/1-Introduction/01-defining-data-science/assignment.md
index f070caff..55bc79d8 100644
--- a/translations/ko/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/ko/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# 과제: 데이터 과학 시나리오
이 첫 번째 과제에서는 다양한 문제 영역에서 실제 생활의 프로세스나 문제를 생각해보고, 데이터 과학 프로세스를 사용하여 이를 어떻게 개선할 수 있는지 고민해 보세요. 다음을 고려해 보세요:
diff --git a/translations/ko/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/ko/1-Introduction/01-defining-data-science/solution/assignment.md
index d9645564..b7878109 100644
--- a/translations/ko/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/ko/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# 과제: 데이터 과학 시나리오
이 첫 번째 과제에서는 다양한 문제 영역에서 실제 프로세스나 문제를 생각하고, 데이터 과학 프로세스를 사용하여 이를 개선할 방법을 고민해 보세요. 다음을 고려해 보세요:
diff --git a/translations/ko/1-Introduction/02-ethics/README.md b/translations/ko/1-Introduction/02-ethics/README.md
index 927eb408..5766a8ff 100644
--- a/translations/ko/1-Introduction/02-ethics/README.md
+++ b/translations/ko/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# 데이터 윤리 소개
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/ko/1-Introduction/02-ethics/assignment.md b/translations/ko/1-Introduction/02-ethics/assignment.md
index 80c9d01b..0e6c4641 100644
--- a/translations/ko/1-Introduction/02-ethics/assignment.md
+++ b/translations/ko/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## 데이터 윤리 사례 연구 작성하기
## 지침
diff --git a/translations/ko/1-Introduction/03-defining-data/README.md b/translations/ko/1-Introduction/03-defining-data/README.md
index c6195877..0293a108 100644
--- a/translations/ko/1-Introduction/03-defining-data/README.md
+++ b/translations/ko/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# 데이터 정의하기
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/ko/1-Introduction/03-defining-data/assignment.md b/translations/ko/1-Introduction/03-defining-data/assignment.md
index 315abb7d..940de197 100644
--- a/translations/ko/1-Introduction/03-defining-data/assignment.md
+++ b/translations/ko/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# 데이터셋 분류
## 지침
diff --git a/translations/ko/1-Introduction/04-stats-and-probability/README.md b/translations/ko/1-Introduction/04-stats-and-probability/README.md
index 119cd632..3989afd6 100644
--- a/translations/ko/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/ko/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# 통계와 확률에 대한 간단한 소개
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
중앙값과 사분위수의 관계를 그래픽으로 나타낸 것이 **박스 플롯**입니다:
-
+
여기서 **사분위 범위** IQR=Q3-Q1을 계산하며, **이상치**는 [Q1-1.5*IQR, Q3+1.5*IQR] 범위를 벗어난 값을 의미합니다.
diff --git a/translations/ko/1-Introduction/04-stats-and-probability/assignment.md b/translations/ko/1-Introduction/04-stats-and-probability/assignment.md
index b9ccd969..369fc331 100644
--- a/translations/ko/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/ko/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# 소규모 당뇨병 연구
이 과제에서는 [여기](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)에서 가져온 소규모 당뇨병 환자 데이터셋을 다룰 것입니다.
diff --git a/translations/ko/1-Introduction/README.md b/translations/ko/1-Introduction/README.md
index c95a7477..ceda9538 100644
--- a/translations/ko/1-Introduction/README.md
+++ b/translations/ko/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# 데이터 과학 입문

diff --git a/translations/ko/2-Working-With-Data/05-relational-databases/README.md b/translations/ko/2-Working-With-Data/05-relational-databases/README.md
index c7d2d961..c6398bc2 100644
--- a/translations/ko/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/ko/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# 데이터 작업: 관계형 데이터베이스
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/ko/2-Working-With-Data/05-relational-databases/assignment.md b/translations/ko/2-Working-With-Data/05-relational-databases/assignment.md
index 704550c5..99f9ded3 100644
--- a/translations/ko/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/ko/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# 공항 데이터 표시
[SQLite](https://sqlite.org/index.html)를 기반으로 구축된 [데이터베이스](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db)가 제공되었으며, 이 데이터베이스에는 공항에 대한 정보가 포함되어 있습니다. 아래에 스키마가 표시되어 있습니다. [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum)에서 [SQLite 확장](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum)을 사용하여 다양한 도시의 공항 정보를 표시합니다.
diff --git a/translations/ko/2-Working-With-Data/06-non-relational/README.md b/translations/ko/2-Working-With-Data/06-non-relational/README.md
index 1ccdb3e8..461f0e09 100644
--- a/translations/ko/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/ko/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# 데이터 작업: 비관계형 데이터
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/ko/2-Working-With-Data/06-non-relational/assignment.md b/translations/ko/2-Working-With-Data/06-non-relational/assignment.md
index 58005201..1f49df53 100644
--- a/translations/ko/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/ko/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# 소다 수익
## 지침
diff --git a/translations/ko/2-Working-With-Data/07-python/README.md b/translations/ko/2-Working-With-Data/07-python/README.md
index 52fd7a9b..50926949 100644
--- a/translations/ko/2-Working-With-Data/07-python/README.md
+++ b/translations/ko/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# 데이터 작업: Python과 Pandas 라이브러리
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/ko/2-Working-With-Data/07-python/assignment.md b/translations/ko/2-Working-With-Data/07-python/assignment.md
index d42ed9c8..a9b5def4 100644
--- a/translations/ko/2-Working-With-Data/07-python/assignment.md
+++ b/translations/ko/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# 파이썬을 활용한 데이터 처리 과제
이 과제에서는 우리가 도전 과제에서 개발하기 시작한 코드를 확장하여 작성해 보도록 하겠습니다. 과제는 두 부분으로 구성되어 있습니다:
diff --git a/translations/ko/2-Working-With-Data/08-data-preparation/README.md b/translations/ko/2-Working-With-Data/08-data-preparation/README.md
index ce8127ad..3d84ceeb 100644
--- a/translations/ko/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/ko/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# 데이터 작업: 데이터 준비
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/ko/2-Working-With-Data/08-data-preparation/assignment.md b/translations/ko/2-Working-With-Data/08-data-preparation/assignment.md
index ac970152..64b50d84 100644
--- a/translations/ko/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/ko/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# 양식 데이터 평가
클라이언트가 고객 기반에 대한 기본 데이터를 수집하기 위해 [작은 양식](../../../../2-Working-With-Data/08-data-preparation/index.html)을 테스트했습니다. 그들은 수집한 데이터를 검증하기 위해 당신에게 가져왔습니다. 브라우저에서 `index.html` 페이지를 열어 양식을 확인할 수 있습니다.
diff --git a/translations/ko/2-Working-With-Data/README.md b/translations/ko/2-Working-With-Data/README.md
index c975a64a..1c925c0a 100644
--- a/translations/ko/2-Working-With-Data/README.md
+++ b/translations/ko/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# 데이터 작업하기

diff --git a/translations/ko/3-Data-Visualization/09-visualization-quantities/README.md b/translations/ko/3-Data-Visualization/09-visualization-quantities/README.md
index ec942deb..61c7f49e 100644
--- a/translations/ko/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/ko/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# 양의 시각화
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/ko/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/ko/3-Data-Visualization/09-visualization-quantities/assignment.md
index 66ad0ab5..a5dadcea 100644
--- a/translations/ko/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/ko/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# 선, 산점도, 막대 그래프
## 지침
diff --git a/translations/ko/3-Data-Visualization/10-visualization-distributions/README.md b/translations/ko/3-Data-Visualization/10-visualization-distributions/README.md
index c8ae0dab..b46b5c9e 100644
--- a/translations/ko/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/ko/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# 분포 시각화
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ko/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/ko/3-Data-Visualization/10-visualization-distributions/assignment.md
index 871227ba..511b62fc 100644
--- a/translations/ko/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/ko/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# 기술을 적용해보세요
## 지침
diff --git a/translations/ko/3-Data-Visualization/11-visualization-proportions/README.md b/translations/ko/3-Data-Visualization/11-visualization-proportions/README.md
index c527a76c..5faccf2d 100644
--- a/translations/ko/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/ko/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# 비율 시각화
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ko/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/ko/3-Data-Visualization/11-visualization-proportions/assignment.md
index 14a62ef5..92333b9d 100644
--- a/translations/ko/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/ko/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# 엑셀에서 시도해보기
## 지침
diff --git a/translations/ko/3-Data-Visualization/12-visualization-relationships/README.md b/translations/ko/3-Data-Visualization/12-visualization-relationships/README.md
index f4009473..947d7645 100644
--- a/translations/ko/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/ko/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# 관계 시각화: 꿀에 대한 모든 것 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ko/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/ko/3-Data-Visualization/12-visualization-relationships/assignment.md
index 6b215bb4..6c984093 100644
--- a/translations/ko/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/ko/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# 벌집 속으로 뛰어들기
## 지침
diff --git a/translations/ko/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/ko/3-Data-Visualization/13-meaningful-visualizations/README.md
index 8812afe3..b52a2623 100644
--- a/translations/ko/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/ko/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# 의미 있는 데이터 시각화 만들기
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ko/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/ko/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index ad2ffd16..49b05c4a 100644
--- a/translations/ko/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/ko/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# 나만의 커스텀 시각화 만들기
## 지침
diff --git a/translations/ko/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/ko/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index ab79aeea..7e2014d2 100644
--- a/translations/ko/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/ko/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# 위험한 관계 데이터 시각화 프로젝트
시작하려면, NPM과 Node가 컴퓨터에서 실행되고 있는지 확인해야 합니다. 의존성을 설치한 후(npm install), 프로젝트를 로컬에서 실행하세요(npm run serve):
diff --git a/translations/ko/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/ko/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 8d60bda7..ecf556e5 100644
--- a/translations/ko/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/ko/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# 위험한 관계 데이터 시각화 프로젝트
시작하려면, NPM과 Node가 컴퓨터에서 실행되고 있는지 확인해야 합니다. 의존성을 설치한 후(npm install), 프로젝트를 로컬에서 실행하세요(npm run serve):
diff --git a/translations/ko/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/ko/3-Data-Visualization/R/09-visualization-quantities/README.md
index 68612620..b99337ba 100644
--- a/translations/ko/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/ko/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# 수량 시각화
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/ko/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/ko/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 038e7b02..ffce7148 100644
--- a/translations/ko/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/ko/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# 선, 산점도, 막대 그래프
## 지침
diff --git a/translations/ko/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/ko/3-Data-Visualization/R/10-visualization-distributions/README.md
index 7513bcbb..f865081b 100644
--- a/translations/ko/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/ko/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# 분포 시각화
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ko/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/ko/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index e97e27d7..d1a02477 100644
--- a/translations/ko/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/ko/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# 기술을 적용해보세요
## 지침
diff --git a/translations/ko/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/ko/3-Data-Visualization/R/11-visualization-proportions/README.md
index 8a294785..49994787 100644
--- a/translations/ko/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/ko/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# 비율 시각화
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ko/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/ko/3-Data-Visualization/R/12-visualization-relationships/README.md
index 385e4b71..9faa82ec 100644
--- a/translations/ko/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/ko/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# 관계 시각화: 꿀에 대한 모든 것 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ko/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/ko/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index d22652ce..5b2f3043 100644
--- a/translations/ko/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/ko/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# 의미 있는 시각화 만들기
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ko/3-Data-Visualization/README.md b/translations/ko/3-Data-Visualization/README.md
index 817c34e5..60594b2f 100644
--- a/translations/ko/3-Data-Visualization/README.md
+++ b/translations/ko/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# 시각화

diff --git a/translations/ko/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/ko/4-Data-Science-Lifecycle/14-Introduction/README.md
index 459dad0a..78f3d62f 100644
--- a/translations/ko/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/ko/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# 데이터 과학 생애 주기 소개
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/ko/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/ko/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 8bad9845..729c340b 100644
--- a/translations/ko/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/ko/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# 데이터셋 평가하기
한 고객이 뉴욕시에서 택시 고객의 계절별 소비 습관을 조사하는 데 도움을 요청했습니다.
diff --git a/translations/ko/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/ko/4-Data-Science-Lifecycle/15-analyzing/README.md
index ffea4c54..99b80be9 100644
--- a/translations/ko/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/ko/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# 데이터 과학 생명주기: 분석하기
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/ko/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/ko/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 23ca3251..2db57b66 100644
--- a/translations/ko/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/ko/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# 답을 탐구하기
이 문서는 이전 수업의 [과제](../14-Introduction/assignment.md)에서 이어지는 내용으로, 데이터 세트를 간단히 살펴본 바 있습니다. 이제 데이터를 더 깊이 분석해 보겠습니다.
diff --git a/translations/ko/4-Data-Science-Lifecycle/16-communication/README.md b/translations/ko/4-Data-Science-Lifecycle/16-communication/README.md
index dd4040dc..d3c5bb48 100644
--- a/translations/ko/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/ko/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# 데이터 과학 생명주기: 커뮤니케이션
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/ko/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/ko/4-Data-Science-Lifecycle/16-communication/assignment.md
index 76d61a3e..d8b56017 100644
--- a/translations/ko/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/ko/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# 이야기를 만들어보세요
## 지침
diff --git a/translations/ko/4-Data-Science-Lifecycle/README.md b/translations/ko/4-Data-Science-Lifecycle/README.md
index acdfd494..dc3a1a41 100644
--- a/translations/ko/4-Data-Science-Lifecycle/README.md
+++ b/translations/ko/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# 데이터 과학 생명주기

diff --git a/translations/ko/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/ko/5-Data-Science-In-Cloud/17-Introduction/README.md
index dcda344d..c41efdb7 100644
--- a/translations/ko/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/ko/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# 클라우드에서의 데이터 과학 소개
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/ko/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/ko/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 34b8bcea..0938ff2f 100644
--- a/translations/ko/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/ko/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# 시장 조사
## 지침
diff --git a/translations/ko/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/ko/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 57b5f54c..f8743c39 100644
--- a/translations/ko/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/ko/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# 클라우드에서의 데이터 과학: "로우 코드/노 코드" 방식
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/ko/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/ko/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index fb96f2c0..48912ce9 100644
--- a/translations/ko/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/ko/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML에서 저코드/무코드 방식으로 데이터 과학 프로젝트 수행하기
## 지침
diff --git a/translations/ko/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/ko/5-Data-Science-In-Cloud/19-Azure/README.md
index cb6c73bc..0ac77f75 100644
--- a/translations/ko/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/ko/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# 클라우드에서의 데이터 과학: "Azure ML SDK" 방식
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/ko/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/ko/5-Data-Science-In-Cloud/19-Azure/assignment.md
index c503c5f2..77bfff13 100644
--- a/translations/ko/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/ko/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML SDK를 사용한 데이터 과학 프로젝트
## 지침
diff --git a/translations/ko/5-Data-Science-In-Cloud/README.md b/translations/ko/5-Data-Science-In-Cloud/README.md
index 5fe6cccf..35fa5fbb 100644
--- a/translations/ko/5-Data-Science-In-Cloud/README.md
+++ b/translations/ko/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# 클라우드에서의 데이터 과학

diff --git a/translations/ko/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/ko/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 66b9c4d2..345fd2e7 100644
--- a/translations/ko/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/ko/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# 현실 세계의 데이터 과학
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/ko/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/ko/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index fb0261e4..66fe3f3f 100644
--- a/translations/ko/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/ko/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# 행성 컴퓨터 데이터셋 탐색하기
## 지침
diff --git a/translations/ko/6-Data-Science-In-Wild/README.md b/translations/ko/6-Data-Science-In-Wild/README.md
index c0c94c8a..03cebabe 100644
--- a/translations/ko/6-Data-Science-In-Wild/README.md
+++ b/translations/ko/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# 야생에서의 데이터 과학
산업 전반에 걸친 데이터 과학의 실제 응용 사례.
diff --git a/translations/ko/AGENTS.md b/translations/ko/AGENTS.md
index eb658aee..7d86397d 100644
--- a/translations/ko/AGENTS.md
+++ b/translations/ko/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## 프로젝트 개요
diff --git a/translations/ko/CODE_OF_CONDUCT.md b/translations/ko/CODE_OF_CONDUCT.md
index 65853c4c..f2ba6840 100644
--- a/translations/ko/CODE_OF_CONDUCT.md
+++ b/translations/ko/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft 오픈 소스 행동 강령
이 프로젝트는 [Microsoft 오픈 소스 행동 강령](https://opensource.microsoft.com/codeofconduct/)을 채택했습니다.
diff --git a/translations/ko/CONTRIBUTING.md b/translations/ko/CONTRIBUTING.md
index d4c01607..5dbc2d5e 100644
--- a/translations/ko/CONTRIBUTING.md
+++ b/translations/ko/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# 초보자를 위한 데이터 과학 기여하기
초보자를 위한 데이터 과학 커리큘럼에 관심을 가져주셔서 감사합니다! 커뮤니티의 기여를 환영합니다.
diff --git a/translations/ko/INSTALLATION.md b/translations/ko/INSTALLATION.md
index c2b632ac..52ceb608 100644
--- a/translations/ko/INSTALLATION.md
+++ b/translations/ko/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# 설치 가이드
이 가이드는 초보자를 위한 데이터 과학 커리큘럼을 작업할 수 있도록 환경을 설정하는 방법을 안내합니다.
diff --git a/translations/ko/README.md b/translations/ko/README.md
index e0bc1a06..5c5f939c 100644
--- a/translations/ko/README.md
+++ b/translations/ko/README.md
@@ -1,13 +1,4 @@
-
-# 초보자를 위한 데이터 과학 - 교육 과정
+# 초보자를 위한 데이터 과학 - 커리큘럼
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -19,244 +10,244 @@ CO_OP_TRANSLATOR_METADATA:
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
[](https://aka.ms/foundry/forum)
-마이크로소프트 Azure 클라우드 옹호자는 데이터 과학에 관한 10주, 20개의 수업 커리큘럼을 제공하게 되어 기쁩니다. 각 수업은 사전/사후 퀴즈, 수업 완료를 위한 서면 지침, 솔루션, 과제로 구성되어 있습니다. 프로젝트 기반 교수법을 통해 빌드하면서 학습할 수 있어 새로운 기술이 '잘 붙는' 입증된 방법입니다.
+Microsoft의 Azure Cloud Advocates가 데이터 과학에 관한 10주 20강의 커리큘럼을 기쁜 마음으로 제공합니다. 각 강의는 사전 및 사후 퀴즈, 강의를 완료하기 위한 서면 지침, 해답 및 과제를 포함합니다. 프로젝트 기반 교육 방식을 통해 학습하면서 직접 만들어 보는 경험을 제공하며, 이는 새로운 기술을 확실히 익히는 검증된 방법입니다.
**저자 여러분께 진심으로 감사드립니다:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 특별히 감사드립니다 🙏 [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) 저자, 검토자 및 콘텐츠 기여자 분들께,** 특히 Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 특별 감사드립니다 🙏 [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) 저자, 검토자 및 콘텐츠 기여자 여러분께,** 특히 Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| 초보자를 위한 데이터 과학 - _[@nitya](https://twitter.com/nitya)의 스케치노트_ |
+| 초보자를 위한 데이터 과학 - _[@nitya](https://twitter.com/nitya) 스케치노트_ |
### 🌐 다국어 지원
-#### GitHub Action을 통해 지원됨 (자동 및 항상 최신 상태 유지)
+#### GitHub 액션을 통한 지원 (자동 및 항상 최신 상태 유지)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](./README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[아랍어](../ar/README.md) | [벵골어](../bn/README.md) | [불가리아어](../bg/README.md) | [버마어 (미얀마)](../my/README.md) | [중국어 (간체)](../zh-CN/README.md) | [중국어 (번체, 홍콩)](../zh-HK/README.md) | [중국어 (번체, 마카오)](../zh-MO/README.md) | [중국어 (번체, 대만)](../zh-TW/README.md) | [크로아티아어](../hr/README.md) | [체코어](../cs/README.md) | [덴마크어](../da/README.md) | [네덜란드어](../nl/README.md) | [에스토니아어](../et/README.md) | [핀란드어](../fi/README.md) | [프랑스어](../fr/README.md) | [독일어](../de/README.md) | [그리스어](../el/README.md) | [히브리어](../he/README.md) | [힌디어](../hi/README.md) | [헝가리어](../hu/README.md) | [인도네시아어](../id/README.md) | [이탈리아어](../it/README.md) | [일본어](../ja/README.md) | [칸나다어](../kn/README.md) | [한국어](./README.md) | [리투아니아어](../lt/README.md) | [말레이어](../ms/README.md) | [말라얄람어](../ml/README.md) | [마라티어](../mr/README.md) | [네팔어](../ne/README.md) | [나이지리아 피진어](../pcm/README.md) | [노르웨이어](../no/README.md) | [페르시아어 (파르시)](../fa/README.md) | [폴란드어](../pl/README.md) | [포르투갈어 (브라질)](../pt-BR/README.md) | [포르투갈어 (포르투갈)](../pt-PT/README.md) | [펀자브어 (구르무키)](../pa/README.md) | [루마니아어](../ro/README.md) | [러시아어](../ru/README.md) | [세르비아어 (키릴 문자)](../sr/README.md) | [슬로바키아어](../sk/README.md) | [슬로베니아어](../sl/README.md) | [스페인어](../es/README.md) | [스와힐리어](../sw/README.md) | [스웨덴어](../sv/README.md) | [타갈로그어 (필리피노)](../tl/README.md) | [타밀어](../ta/README.md) | [텔루구어](../te/README.md) | [태국어](../th/README.md) | [터키어](../tr/README.md) | [우크라이나어](../uk/README.md) | [우르두어](../ur/README.md) | [베트남어](../vi/README.md)
-> **로컬로 클론하는 것을 선호하십니까?**
+> **로컬 복제를 선호하십니까?**
-> 이 저장소에는 50개 이상의 언어 번역이 포함되어 있어 다운로드 크기가 크게 증가합니다. 번역 없이 클론하려면 희소 체크아웃을 사용하세요:
+> 이 저장소에는 50개 이상의 언어 번역이 포함되어 있어 다운로드 크기가 상당히 증가합니다. 번역 없이 복제하려면 희소 체크아웃을 사용하세요:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> 이를 통해 훨씬 빠른 다운로드로 수업을 완료하는 데 필요한 모든 자료를 얻을 수 있습니다.
+> 이 방법으로 보다 빠른 다운로드 속도로 과정 완료에 필요한 모든 것을 얻을 수 있습니다.
-**추가 언어 지원을 원하시면 [여기](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)에서 목록을 확인하세요**
+**추가 번역 언어를 지원하고 싶다면 [여기](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)에서 확인하세요**
-#### 커뮤니티에 참여하세요
+#### 커뮤니티에 참여하기
[](https://discord.gg/nTYy5BXMWG)
-우리는 Discord에서 AI와 함께하는 학습 시리즈를 진행 중이며, 2025년 9월 18일부터 30일까지 진행되는 [Learn with AI Series](https://aka.ms/learnwithai/discord)에서 자세한 정보를 얻고 참여할 수 있습니다. 여기에서 GitHub Copilot을 데이터 과학에 활용하는 팁과 요령을 얻을 수 있습니다.
+우리는 Discord에서 AI와 함께 배우는 시리즈를 진행 중입니다. 자세한 내용을 확인하고 2025년 9월 18일부터 30일까지 [Learn with AI Series](https://aka.ms/learnwithai/discord)에 참여하세요. GitHub Copilot을 데이터 과학에 활용하는 팁과 요령을 얻을 수 있습니다.
-
+
# 학생이신가요?
-다음 자료로 시작하세요:
+다음 리소스부터 시작하세요:
-- [학생 허브 페이지](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) 이 페이지에는 초보자를 위한 자료, 학생 패키지, 무료 인증 바우처 획득 방법 등이 포함되어 있습니다. 콘텐츠가 적어도 매달 교체되므로 즐겨찾기해두고 수시로 확인하는 것이 좋습니다.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) 전 세계 학생 대사 커뮤니티에 참여하여 Microsoft에 진입할 수 있는 기회를 얻으세요.
+- [학생 허브 페이지](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) 이 페이지에서 초보자용 리소스, 학생 패키지, 무료 인증 바우처 받는 방법 등을 찾을 수 있습니다. 콘텐츠는 매월 변경되니 즐겨찾기에 추가하고 수시로 확인해 보세요.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) 전 세계 학생 대사 커뮤니티에 참여하세요. 이것이 Microsoft로의 길이 될 수 있습니다.
# 시작하기
## 📚 문서
-- **[설치 가이드](INSTALLATION.md)** - 초보자를 위한 단계별 설치 지침
-- **[사용 가이드](USAGE.md)** - 예제 및 일반적인 작업 흐름
-- **[문제 해결](TROUBLESHOOTING.md)** - 일반 문제 해결 방법
-- **[기여 가이드](CONTRIBUTING.md)** - 프로젝트 기여 방법
-- **[교사용](for-teachers.md)** - 교육 지침 및 교실 자료
+- **[설치 가이드](INSTALLATION.md)** - 초보자를 위한 단계별 설치 안내
+- **[사용 가이드](USAGE.md)** - 예제와 일반적인 작업 흐름
+- **[문제 해결](TROUBLESHOOTING.md)** - 일반적인 문제 해결 방법
+- **[기여 가이드](CONTRIBUTING.md)** - 이 프로젝트에 기여하는 방법
+- **[교사용 자료](for-teachers.md)** - 교수법 및 교실용 자료
## 👨🎓 학생용
-> **완전 초보자:** 데이터 과학이 처음인가요? [초보자 친화적 예제](examples/README.md)부터 시작하세요! 이 간단하고 주석이 잘 달린 예제를 통해 기본기를 이해한 뒤 전체 커리큘럼에 참여할 수 있습니다.
-> **[학생](https://aka.ms/student-page):** 이 커리큘럼을 혼자서 사용하려면 전체 저장소를 포크한 뒤, 사전 강의 퀴즈부터 시작해 직접 문제를 해결하며 진행하세요. 강의를 읽고 나머지 활동을 완료하세요. 솔루션 코드를 복사하기보다는 수업 내용을 이해하고 직접 프로젝트를 만들어보는 것을 추천합니다. 각 프로젝트 중심의 수업별로 /solutions 폴더에 솔루션 코드가 제공됩니다. 또 다른 방법으로는 친구들과 스터디 그룹을 구성해 함께 콘텐츠를 학습하는 것입니다. 더 심도 있는 학습을 위해 [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)을 권장합니다.
+> **완전 초보자**: 데이터 과학이 처음이라면, [초보자 친화적 예제](examples/README.md)부터 시작하세요! 이 간단하고 주석이 잘 달린 예제들은 전체 커리큘럼에 들어가기 전 기본기를 이해하는 데 도움을 줍니다.
+> **[학생](https://aka.ms/student-page)**: 이 커리큘럼을 스스로 사용하려면, 전체 저장소를 포크한 뒤 사전 강의 퀴즈부터 시작해 보세요. 그 다음 강의를 읽고 나머지 활동을 완성하세요. 해답 코드를 단순히 복사하지 말고 강의를 이해하며 프로젝트를 만들어 보세요. 해답 코드는 각 프로젝트 중심 강의의 /solutions 폴더에 있습니다. 또 다른 방법은 친구들과 스터디 그룹을 만들어 함께 내용을 진행하는 것입니다. 더 깊이 공부하고 싶다면 [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)을 추천합니다.
-**빠른 시작:**
+**빠른 시작 방법:**
1. 환경 설정을 위해 [설치 가이드](INSTALLATION.md)를 확인하세요
-2. 커리큘럼 작업 방법을 배우기 위해 [사용 가이드](USAGE.md)를 검토하세요
-3. 1과부터 시작해 순서대로 진행하세요
-4. 지원을 위해 [Discord 커뮤니티](https://aka.ms/ds4beginners/discord)에 참여하세요
+2. 커리큘럼 사용법을 배우려면 [사용 가이드](USAGE.md)를 검토하세요
+3. 1강부터 순서대로 시작하세요
+4. 지원이 필요하면 [Discord 커뮤니티](https://aka.ms/ds4beginners/discord)에 참여하세요
## 👩🏫 교사용
-> **교사분들:** 이 커리큘럼 사용 방법에 관한 [제안사항](for-teachers.md)을 포함했습니다. 피드백을 [토론 포럼](https://github.com/microsoft/Data-Science-For-Beginners/discussions)에서 환영합니다!
+> **교사분들께:** 이 커리큘럼 활용을 위한 [몇 가지 제안](for-teachers.md)을 포함했습니다. 여러분의 피드백을 [토론 포럼](https://github.com/microsoft/Data-Science-For-Beginners/discussions)에서 기다립니다!
+## 팀을 소개합니다
-## 팀 소개
-[](https://youtu.be/8mzavjQSMM4 "프로모션 비디오")
+[](https://youtu.be/8mzavjQSMM4 "프로모션 영상")
-**Gif 제작** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+**GIF 제공자** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 위 이미지를 클릭하면 이 프로젝트와 그것을 만든 분들에 관한 비디오를 볼 수 있습니다!
+> 🎥 위 이미지를 클릭하면 프로젝트와 그것을 만든 사람들에 관한 영상을 볼 수 있습니다!
-## 교육 철학
+## 교수법
-이 커리큘럼을 만들면서 두 가지 교육 원칙을 선택했습니다: 프로젝트 기반 학습 보장과 빈번한 퀴즈 포함입니다. 이 시리즈가 끝나면 학생들은 데이터 과학의 기본 원칙들, 윤리적 개념, 데이터 준비, 다양한 데이터 작업 방법, 데이터 시각화, 데이터 분석, 데이터 과학의 실제 사용 사례 등 다양한 내용을 배울 것입니다.
+이 커리큘럼을 구성하면서 우리는 두 가지 교수 원칙을 선택했습니다: 프로젝트 기반 학습과 자주 출제되는 퀴즈 포함. 이 시리즈가 끝날 때쯤 학생들은 윤리 개념, 데이터 준비, 다양한 데이터 작업 방법, 데이터 시각화, 데이터 분석, 데이터 과학의 실제 사례 등 기본적인 데이터 과학 원리를 학습하게 됩니다.
-또한 수업 전에 치르는 낮은 부담의 퀴즈는 학생들이 주제 학습에 집중하도록 동기를 부여하며, 수업 후의 두 번째 퀴즈는 학습 내용을 더욱 잘 기억하도록 도와줍니다. 이 커리큘럼은 유연하면서도 재미있게 설계되어 전체 또는 일부만 수강할 수 있습니다. 프로젝트는 처음에는 작은 규모로 시작하여 10주 과정이 끝날 때 쯤에는 점차 복잡해집니다.
+또한, 수업 전에 진행하는 간단한 퀴즈는 주제 학습에 대한 의도를 세우고, 수업 후 두 번째 퀴즈는 학습 내용을 더 오래 기억하도록 돕습니다. 이 커리큘럼은 유연하고 재미있게 설계되었으며 전부 또는 일부만 학습할 수도 있습니다. 프로젝트는 작게 시작해 10주 주기 종료 시점에 점점 더 복잡해집니다.
-> 저희 [행동 강령](CODE_OF_CONDUCT.md), [기여 안내](CONTRIBUTING.md), [번역 가이드](TRANSLATIONS.md)를 확인하세요. 건설적인 피드백을 환영합니다!
+> 우리의 [행동 강령](CODE_OF_CONDUCT.md), [기여 가이드](CONTRIBUTING.md), [번역 가이드](TRANSLATIONS.md)를 확인하세요. 건설적인 피드백을 환영합니다!
## 각 수업에는 다음이 포함됩니다:
- 선택적 스케치노트
-- 선택적 보조 비디오
+- 선택적 추가 영상
- 수업 전 워밍업 퀴즈
-- 서면 수업 자료
-- 프로젝트 기반 수업의 경우, 프로젝트를 만드는 단계별 가이드
+- 작성된 강의 내용
+- 프로젝트 기반 수업의 경우 프로젝트를 단계별로 만드는 가이드
- 지식 점검
- 도전 과제
-- 보충 읽을거리
+- 추가 읽을거리
- 과제
- [수업 후 퀴즈](https://ff-quizzes.netlify.app/en/)
-> **퀴즈에 대한 안내**: 모든 퀴즈는 Quiz-App 폴더에 포함되어 있으며, 총 40개의 퀴즈가 각 3문항으로 구성되어 있습니다. 수업 내에서 링크되어 있지만, 퀴즈 앱은 로컬에서 실행하거나 Azure에 배포할 수 있으며 `quiz-app` 폴더의 지침을 따르세요. 점진적으로 현지화 작업도 진행 중입니다.
+> **퀴즈에 대한 참고**: 모든 퀴즈는 Quiz-App 폴더에 있으며 총 40개의 3문제 퀴즈로 구성되어 있습니다. 퀴즈는 수업 중 연결되어 있지만 퀴즈 앱을 로컬에서 실행하거나 Azure에 배포할 수도 있습니다. `quiz-app` 폴더 내의 지침을 따르세요. 점차 현지화되고 있습니다.
## 🎓 초보자 친화적 예제
-**데이터 과학이 처음인가요?** 시작하는 데 도움을 주는 간단하고 주석이 잘 달린 코드가 담긴 특별한 [예제 디렉터리](examples/README.md)를 만들었습니다:
+**데이터 과학이 처음이신가요?** 저희가 간단하고 주석이 잘 달린 코드를 모은 특별한 [예제 디렉터리](examples/README.md)를 만들었습니다:
- 🌟 **Hello World** - 첫 데이터 과학 프로그램
-- 📂 **데이터 불러오기** - 데이터셋 읽기 및 탐색 배우기
+- 📂 **데이터 불러오기** - 데이터셋 읽기와 탐색 배우기
- 📊 **간단한 분석** - 통계 계산과 패턴 찾기
- 📈 **기본 시각화** - 차트와 그래프 만들기
-- 🔬 **실제 프로젝트** - 시작부터 끝까지 완성하는 워크플로우
+- 🔬 **실제 프로젝트** - 시작부터 끝까지의 완전한 워크플로우
-각 예제에는 단계별로 자세한 주석이 포함되어 있어, 완전 초보자에게 적합합니다!
+각 예제는 모든 단계를 자세히 설명하는 주석이 포함되어 있어 완전 초보자에게 안성맞춤입니다!
-👉 **[예제부터 시작하기](examples/README.md)** 👈
+👉 **[예제부터 시작하세요](examples/README.md)** 👈
## 수업 목록
-||
+||
|:---:|
-| 데이터 과학 초보자를 위한 로드맵 - _[nitya](https://twitter.com/nitya) 작성 스케치노트_ |
+| 초보자용 데이터 과학 로드맵 - _스케치노트 작성자 [@nitya](https://twitter.com/nitya)_ |
| 수업 번호 | 주제 | 수업 그룹 | 학습 목표 | 링크된 수업 | 저자 |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | 데이터 과학 정의 | [소개](1-Introduction/README.md) | 데이터 과학의 기본 개념과 인공지능, 머신러닝, 빅데이터와의 관계를 학습합니다. | [수업](1-Introduction/01-defining-data-science/README.md) [비디오](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | 데이터 과학 윤리 | [소개](1-Introduction/README.md) | 데이터 윤리 개념, 도전 과제 및 프레임워크. | [수업](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | 데이터 정의 | [소개](1-Introduction/README.md) | 데이터 분류 방법과 일반적인 출처. | [수업](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | 통계 및 확률 입문 | [소개](1-Introduction/README.md) | 데이터를 이해하기 위한 확률 및 통계의 수학적 기법. | [수업](1-Introduction/04-stats-and-probability/README.md) [비디오](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | 관계형 데이터 다루기 | [데이터 다루기](2-Working-With-Data/README.md) | 관계형 데이터 소개 및 SQL(발음: 씨퀄)을 사용해 관계형 데이터를 탐색하고 분석하는 기초. | [수업](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | NoSQL 데이터 다루기 | [데이터 다루기](2-Working-With-Data/README.md) | 비관계형 데이터 소개, 다양한 유형 및 문서형 데이터베이스 탐색과 분석 기본. | [수업](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Python 작업 | [데이터 다루기](2-Working-With-Data/README.md) | Pandas 같은 라이브러리를 활용한 데이터 탐색에 필요한 Python 기본 사항. Python 프로그래밍 기초 이해 추천. | [수업](2-Working-With-Data/07-python/README.md) [비디오](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | 데이터 준비 | [데이터 다루기](2-Working-With-Data/README.md) | 누락되었거나 부정확하거나 불완전한 데이터를 처리하기 위한 데이터 정제 및 변환 기술 주제. | [수업](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | 양 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | Matplotlib를 사용해 새 데이터를 시각화하는 방법 배우기 🦆 | [수업](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | 데이터 분포 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 구간 내 관측값과 추세 시각화. | [수업](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | 비율 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 이산 및 그룹화된 백분율 시각화. | [수업](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | 관계 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 데이터 세트와 변수 간 연결 및 상관관계 시각화. | [수업](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | 의미 있는 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 효과적 문제 해결과 통찰을 위한 가치 있는 시각화를 만드는 기법과 안내. | [수업](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | 데이터 과학 라이프사이클 소개 | [라이프사이클](4-Data-Science-Lifecycle/README.md) | 데이터 과학 라이프사이클과 첫 단계인 데이터 수집 및 추출 소개. | [수업](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | 분석하기 | [라이프사이클](4-Data-Science-Lifecycle/README.md) | 데이터 과학 라이프사이클의 이 단계는 데이터를 분석하는 기술에 집중합니다. | [수업](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | 커뮤니케이션 | [라이프사이클](4-Data-Science-Lifecycle/README.md) | 데이터 과학 라이프사이클의 이 단계는 의사결정자가 쉽게 이해할 수 있도록 데이터로부터 도출된 통찰을 전달하는 데 집중합니다. | [수업](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | 클라우드에서의 데이터 과학 | [클라우드 데이터](5-Data-Science-In-Cloud/README.md) | 클라우드에서의 데이터 과학과 그 이점을 소개하는 시리즈. | [수업](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
-| 18 | 클라우드에서의 데이터 과학 | [클라우드 데이터](5-Data-Science-In-Cloud/README.md) | 로우 코드 도구를 사용한 모델 학습. |[수업](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
-| 19 | 클라우드에서의 데이터 과학 | [클라우드 데이터](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio를 이용한 모델 배포. | [수업](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
-| 20 | 현장 데이터 과학 | [현장](6-Data-Science-In-Wild/README.md) | 실제 세계에서의 데이터 과학 기반 프로젝트. | [수업](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | 데이터 과학 정의 | [소개](1-Introduction/README.md) | 데이터 과학의 기본 개념과 인공지능, 기계 학습, 빅 데이터와의 관련성 배우기. | [강의](1-Introduction/01-defining-data-science/README.md) [영상](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | 데이터 과학 윤리 | [소개](1-Introduction/README.md) | 데이터 윤리 개념, 도전 과제 및 프레임워크. | [강의](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | 데이터 정의 | [소개](1-Introduction/README.md) | 데이터가 어떻게 분류되는지와 일반적인 출처. | [강의](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | 통계 및 확률 소개 | [소개](1-Introduction/README.md) | 데이터를 이해하기 위한 확률 및 통계의 수학적 기법. | [강의](1-Introduction/04-stats-and-probability/README.md) [영상](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | 관계형 데이터 다루기 | [데이터 작업](2-Working-With-Data/README.md) | 관계형 데이터 소개와 SQL(“see-quell”로 발음)로 관계형 데이터를 탐색하고 분석하는 기본. | [강의](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | NoSQL 데이터 다루기 | [데이터 작업](2-Working-With-Data/README.md) | 비관계형 데이터, 다양한 유형 및 문서 데이터베이스 탐색과 기본 분석법 소개. | [강의](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Python 다루기 | [데이터 작업](2-Working-With-Data/README.md) | Pandas와 같은 라이브러리를 사용한 데이터 탐색 Python 기초. Python 프로그래밍 기초 지식 권장. | [강의](2-Working-With-Data/07-python/README.md) [영상](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | 데이터 준비 | [데이터 작업](2-Working-With-Data/README.md) | 누락되거나 부정확하거나 불완전한 데이터를 처리하기 위한 데이터 클리닝 및 변환 기법. | [강의](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | 양적 데이터 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | Matplotlib를 사용하여 새 데이터를 시각화하는 법 배우기 🦆 | [강의](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | 데이터 분포 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 구간 내 관측치와 추세 시각화. | [강의](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | 비율 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 이산 및 그룹화된 백분율 시각화. | [강의](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | 관계 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 데이터 집합과 변수 간 연결 및 상관관계 시각화. | [강의](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | 유의미한 시각화 | [데이터 시각화](3-Data-Visualization/README.md) | 효과적인 문제 해결과 통찰을 위한 가치 있는 시각화 기법과 안내. | [강의](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | 데이터 과학 수명주기 소개 | [수명주기](4-Data-Science-Lifecycle/README.md) | 데이터 수집과 추출이라는 데이터 과학 수명주기 첫 단계 소개. | [강의](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | 분석 | [수명주기](4-Data-Science-Lifecycle/README.md) | 데이터 과학 수명주기에서 데이터를 분석하는 기법에 집중. | [강의](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | 커뮤니케이션 | [수명주기](4-Data-Science-Lifecycle/README.md) | 데이터 과학 수명주기에서 의사결정에 도움이 되도록 인사이트를 발표하는 단계. | [강의](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | 클라우드에서의 데이터 과학 | [클라우드 데이터](5-Data-Science-In-Cloud/README.md) | 클라우드의 데이터 과학과 그 이점 소개. | [강의](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
+| 18 | 클라우드에서의 데이터 과학 | [클라우드 데이터](5-Data-Science-In-Cloud/README.md) | Low Code 도구를 사용한 모델 학습. |[강의](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
+| 19 | 클라우드에서의 데이터 과학 | [클라우드 데이터](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio를 사용한 모델 배포. | [강의](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
+| 20 | 현실 세계의 데이터 과학 | [현실 세계](6-Data-Science-In-Wild/README.md) | 실제 세계에서 데이터 과학이 주도하는 프로젝트. | [강의](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-이 샘플을 Codespace에서 열려면 다음 단계를 따르세요:
-1. 코드 드롭다운 메뉴를 클릭하고 "Open with Codespaces" 옵션을 선택합니다.
-2. 창 아래쪽에서 "+ New codespace"를 선택합니다.
-자세한 내용은 [GitHub 문서](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace)를 참고하세요.
+다음 단계를 따라 이 샘플을 Codespace에서 열어보세요:
+1. Code 드롭다운 메뉴를 클릭하고 Open with Codespaces 옵션을 선택합니다.
+2. 창 하단에서 + New codespace를 선택합니다.
+자세한 내용은 [GitHub 문서](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace)를 참조하세요.
## VSCode 원격 - 컨테이너
-로컬 머신과 VSCode의 원격 - 컨테이너 확장을 사용하여 이 저장소를 컨테이너에서 여는 방법:
+로컬 머신과 VSCode를 사용하여 이 저장소를 컨테이너에서 열려면 VS Code Remote - Containers 확장 기능을 따라 하세요:
-1. 처음 개발 컨테이너를 사용하는 경우 [시작하기 문서](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)에서 시스템 요구 사항(예: Docker 설치)을 확인하세요.
+1. 처음 개발 컨테이너를 사용한다면, 시스템이 사전 요구 사항(예: Docker 설치)을 충족하는지 [시작하기 문서](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)에서 확인하세요.
-이 저장소를 사용하려면, 격리된 Docker 볼륨에 저장소를 열 수 있습니다:
+이 저장소를 사용하려면, 격리된 Docker 볼륨 내에서 저장소를 열 수 있습니다:
-**참고**: 내부적으로 Remote-Containers: **Clone Repository in Container Volume...** 명령을 사용하여 소스 코드를 로컬 파일 시스템이 아닌 Docker 볼륨에 복제합니다. [볼륨](https://docs.docker.com/storage/volumes/)은 컨테이너 데이터를 지속시키는 권장 메커니즘입니다.
+**참고**: 내부적으로 Remote-Containers: **Clone Repository in Container Volume...** 명령을 사용하여 소스 코드를 로컬 파일 시스템 대신 Docker 볼륨에 복제합니다. [볼륨](https://docs.docker.com/storage/volumes/)은 컨테이너 데이터 영속화를 위한 권장 방법입니다.
-또는 저장소를 로컬에 클론하거나 다운로드한 뒤 열 수도 있습니다:
+또는 로컬에 복제하거나 다운로드한 저장소를 열 수 있습니다:
-- 이 저장소를 로컬 파일 시스템에 클론하세요.
-- F1 키를 누르고 **Remote-Containers: Open Folder in Container...** 명령을 선택하세요.
-- 클론한 폴더를 선택하고, 컨테이너가 시작될 때까지 기다린 후 실행해보세요.
+- 이 저장소를 로컬 파일 시스템에 복제하세요.
+- F1을 누르고 **Remote-Containers: Open Folder in Container...** 명령을 선택하세요.
+- 복제한 폴더를 선택하고 컨테이너 시작을 기다린 후 사용해 보세요.
## 오프라인 접근
-[Docsify](https://docsify.js.org/#/)를 사용해 이 문서를 오프라인에서 실행할 수 있습니다. 이 저장소를 포크한 후, 로컬 머신에 [Docsify](https://docsify.js.org/#/quickstart)를 설치하세요. 그리고 저장소 루트 폴더에서 `docsify serve`를 실행하면 웹사이트가 localhost의 3000번 포트에서 서빙됩니다: `localhost:3000`.
+이 문서를 오프라인에서 보려면 [Docsify](https://docsify.js.org/#/)를 사용하세요. 이 저장소를 포크하고, 로컬 머신에 [Docsify](https://docsify.js.org/#/quickstart)를 설치한 후 저장소 루트 폴더에서 `docsify serve`를 실행하세요. 로컬호스트의 3000 포트(`localhost:3000`)에서 웹사이트가 서비스됩니다.
-> 참고로, 노트북은 Docsify를 통해 렌더링되지 않으므로 노트북을 실행해야 할 때는 별도로 VS Code에서 Python 커널로 실행하세요.
+> 참고로, 노트북은 Docsify를 통해 렌더링되지 않으므로 노트북을 실행해야 할 때는 Python 커널이 실행 중인 VS Code에서 별도로 실행하세요.
-## 다른 교육 과정들
+## 기타 커리큘럼
-저희 팀은 다른 교육 과정도 제작합니다! 확인해보세요:
+저희 팀은 다른 커리큘럼도 제작합니다! 확인해보세요:
### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
-### Azure / Edge / MCP / Agents
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+### Azure / Edge / MCP / 에이전트
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### 생성형 AI 시리즈
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
-### 핵심 학습
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+### 기본 학습
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### 코파일럿 시리즈
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## 도움 받기
-**문제가 발생했나요?** 일반적인 문제 해결 방법은 [문제 해결 가이드](TROUBLESHOOTING.md)에서 확인하세요.
+**문제가 있나요?** 일반적인 문제 해결 방법은 [문제 해결 가이드](TROUBLESHOOTING.md)에서 확인하세요.
-AI 앱 개발 중에 막히거나 궁금한 점이 있으면 MCP에 대해 배우는 동료 학습자와 경험 많은 개발자들이 모인 토론에 참여하세요. 질문을 환영하고 지식을 자유롭게 공유하는 지원 커뮤니티입니다.
+AI 앱 개발 중에 막히거나 질문이 있으면 MCP 학습자 및 숙련된 개발자들과 함께 토론에 참여하세요. 질문이 환영받고 지식이 자유롭게 공유되는 지원 커뮤니티입니다.
[](https://discord.gg/nTYy5BXMWG)
-제품 피드백이나 빌드 중 오류가 있으면 다음을 방문하세요:
+제품 피드백이나 빌드 중 발생하는 오류는 다음에서 알려주세요:
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
---
**면책 조항**:
-이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 노력하였으나, 자동 번역에는 오류나 부정확한 부분이 있을 수 있음을 유의하시기 바랍니다. 원문 문서가 권위 있는 공식 자료로 간주되어야 합니다. 중요한 정보의 경우, 전문 인력의 번역을 권장합니다. 본 번역의 사용으로 발생하는 어떠한 오해나 잘못된 해석에 대해서도 책임을 지지 않습니다.
+이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 노력했으나, 자동 번역에는 오류나 부정확성이 포함될 수 있음을 유의하시기 바랍니다. 원본 문서가 권위 있는 출처로 간주되어야 합니다. 중요한 정보에 대해서는 전문 번역가의 번역을 권장합니다. 본 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 당사는 책임을 지지 않습니다.
\ No newline at end of file
diff --git a/translations/ko/SECURITY.md b/translations/ko/SECURITY.md
index 9e7cbef9..55605ae6 100644
--- a/translations/ko/SECURITY.md
+++ b/translations/ko/SECURITY.md
@@ -1,12 +1,3 @@
-
## 보안
Microsoft는 소프트웨어 제품과 서비스의 보안을 매우 중요하게 생각하며, 여기에는 [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), 그리고 [Microsoft의 GitHub 조직들](https://opensource.microsoft.com/)을 통해 관리되는 모든 소스 코드 저장소가 포함됩니다.
diff --git a/translations/ko/SUPPORT.md b/translations/ko/SUPPORT.md
index 317e3953..fbcff5af 100644
--- a/translations/ko/SUPPORT.md
+++ b/translations/ko/SUPPORT.md
@@ -1,12 +1,3 @@
-
# 지원
## 문제 신고 및 도움 받는 방법
diff --git a/translations/ko/TROUBLESHOOTING.md b/translations/ko/TROUBLESHOOTING.md
index 295afa4b..41a1251a 100644
--- a/translations/ko/TROUBLESHOOTING.md
+++ b/translations/ko/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# 문제 해결 가이드
이 가이드는 Data Science for Beginners 커리큘럼을 사용하는 동안 발생할 수 있는 일반적인 문제에 대한 해결책을 제공합니다.
diff --git a/translations/ko/USAGE.md b/translations/ko/USAGE.md
index 14b6cab6..8a9bb7c0 100644
--- a/translations/ko/USAGE.md
+++ b/translations/ko/USAGE.md
@@ -1,12 +1,3 @@
-
# 사용 가이드
이 가이드는 초보자를 위한 데이터 과학 커리큘럼을 사용하는 예제와 일반적인 워크플로를 제공합니다.
diff --git a/translations/ko/docs/_sidebar.md b/translations/ko/docs/_sidebar.md
index 4932e884..e2a5b763 100644
--- a/translations/ko/docs/_sidebar.md
+++ b/translations/ko/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- 소개
- [데이터 과학 정의하기](../1-Introduction/01-defining-data-science/README.md)
- [데이터 과학 윤리](../1-Introduction/02-ethics/README.md)
diff --git a/translations/ko/examples/README.md b/translations/ko/examples/README.md
index 160a49a0..ff5d14eb 100644
--- a/translations/ko/examples/README.md
+++ b/translations/ko/examples/README.md
@@ -1,12 +1,3 @@
-
# 초보자를 위한 데이터 과학 예제
예제 디렉토리에 오신 것을 환영합니다! 이 간단하고 잘 주석 처리된 예제 모음은 데이터 과학을 처음 접하는 분들도 쉽게 시작할 수 있도록 설계되었습니다.
diff --git a/translations/ko/for-teachers.md b/translations/ko/for-teachers.md
index 2a7d51b1..7a33dc18 100644
--- a/translations/ko/for-teachers.md
+++ b/translations/ko/for-teachers.md
@@ -1,12 +1,3 @@
-
## 교육자를 위한 안내
이 커리큘럼을 교실에서 사용하고 싶으신가요? 자유롭게 활용하세요!
diff --git a/translations/ko/quiz-app/README.md b/translations/ko/quiz-app/README.md
index 938753b6..b82375dd 100644
--- a/translations/ko/quiz-app/README.md
+++ b/translations/ko/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# 퀴즈
이 퀴즈는 데이터 과학 커리큘럼의 강의 전후 퀴즈로, https://aka.ms/datascience-beginners에서 확인할 수 있습니다.
diff --git a/translations/ko/sketchnotes/README.md b/translations/ko/sketchnotes/README.md
index 801db96f..ea7f4c87 100644
--- a/translations/ko/sketchnotes/README.md
+++ b/translations/ko/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
스케치노트를 모두 여기에서 찾아보세요!
## 크레딧
diff --git a/translations/lt/.co-op-translator.json b/translations/lt/.co-op-translator.json
new file mode 100644
index 00000000..d1b3d132
--- /dev/null
+++ b/translations/lt/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:14:07+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "lt"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-31T05:57:37+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "lt"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-31T05:57:47+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "lt"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T17:12:24+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "lt"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-31T06:01:45+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "lt"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T16:15:34+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "lt"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-31T05:58:33+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "lt"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T14:25:29+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "lt"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-31T05:56:25+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "lt"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-31T05:54:57+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "lt"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T12:30:34+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "lt"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:59:27+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "lt"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T16:02:26+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "lt"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-31T05:39:11+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "lt"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T16:07:15+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "lt"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-31T05:40:23+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "lt"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T16:05:03+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "lt"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-31T05:42:34+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "lt"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-31T05:38:27+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T16:09:27+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-31T05:52:23+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T16:11:22+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-31T05:54:48+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T16:08:58+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-31T05:51:42+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:51:31+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-31T05:54:04+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T16:10:04+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-31T05:53:10+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-31T05:53:17+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-31T05:53:23+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-31T05:48:12+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-31T05:48:56+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-31T05:49:49+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-31T05:50:27+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-31T05:47:35+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-31T05:49:03+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-31T05:50:34+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "lt"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-31T05:47:15+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "lt"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:54:28+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "lt"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-31T05:44:35+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "lt"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:53:19+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "lt"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-31T05:43:17+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "lt"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:55:01+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "lt"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-31T05:47:06+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "lt"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-31T05:42:51+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "lt"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T16:00:08+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "lt"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-31T05:36:33+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "lt"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T15:58:06+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "lt"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-31T05:35:27+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "lt"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T16:01:33+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "lt"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-31T05:38:19+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "lt"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-31T05:33:48+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "lt"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:49:52+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "lt"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-31T06:03:12+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "lt"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-31T06:02:16+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "lt"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:46:40+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "lt"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-31T05:33:41+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "lt"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:49:29+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "lt"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:27:49+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "lt"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:39:15+00:00",
+ "source_file": "README.md",
+ "language_code": "lt"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-31T05:33:06+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "lt"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-31T05:32:52+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "lt"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:50:28+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "lt"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:13:02+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "lt"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-31T05:42:41+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "lt"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:09:57+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "lt"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T20:02:54+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "lt"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-31T06:01:57+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "lt"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-31T06:03:27+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "lt"
+ }
+}
\ No newline at end of file
diff --git a/translations/lt/1-Introduction/01-defining-data-science/README.md b/translations/lt/1-Introduction/01-defining-data-science/README.md
index b7f13281..2b96c0f1 100644
--- a/translations/lt/1-Introduction/01-defining-data-science/README.md
+++ b/translations/lt/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Duomenų mokslas: apibrėžimas
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/lt/1-Introduction/01-defining-data-science/assignment.md b/translations/lt/1-Introduction/01-defining-data-science/assignment.md
index 774df6d7..d9e6cf06 100644
--- a/translations/lt/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/lt/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Užduotis: Duomenų mokslo scenarijai
Šioje pirmoje užduotyje prašome pagalvoti apie realaus gyvenimo procesą ar problemą skirtingose problemų srityse ir kaip galite ją patobulinti naudodami duomenų mokslo procesą. Pagalvokite apie šiuos klausimus:
diff --git a/translations/lt/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/lt/1-Introduction/01-defining-data-science/solution/assignment.md
index 18322651..a16f1951 100644
--- a/translations/lt/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/lt/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Užduotis: Duomenų mokslo scenarijai
Šioje pirmoje užduotyje prašome pagalvoti apie realaus gyvenimo procesą ar problemą skirtingose srityse ir kaip ją būtų galima pagerinti naudojant duomenų mokslo procesą. Pagalvokite apie šiuos klausimus:
diff --git a/translations/lt/1-Introduction/02-ethics/README.md b/translations/lt/1-Introduction/02-ethics/README.md
index bb541b1e..3e98abb3 100644
--- a/translations/lt/1-Introduction/02-ethics/README.md
+++ b/translations/lt/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Įvadas į duomenų etiką
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/lt/1-Introduction/02-ethics/assignment.md b/translations/lt/1-Introduction/02-ethics/assignment.md
index 27019b86..58840f46 100644
--- a/translations/lt/1-Introduction/02-ethics/assignment.md
+++ b/translations/lt/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Parašykite duomenų etikos atvejo analizę
## Instrukcijos
diff --git a/translations/lt/1-Introduction/03-defining-data/README.md b/translations/lt/1-Introduction/03-defining-data/README.md
index 0ae60a94..3419e8e9 100644
--- a/translations/lt/1-Introduction/03-defining-data/README.md
+++ b/translations/lt/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Duomenų Apibrėžimas
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/lt/1-Introduction/03-defining-data/assignment.md b/translations/lt/1-Introduction/03-defining-data/assignment.md
index e457134a..b9c92444 100644
--- a/translations/lt/1-Introduction/03-defining-data/assignment.md
+++ b/translations/lt/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Duomenų rinkinių klasifikavimas
## Instrukcijos
diff --git a/translations/lt/1-Introduction/04-stats-and-probability/README.md b/translations/lt/1-Introduction/04-stats-and-probability/README.md
index 30bcf730..e5ab8d61 100644
--- a/translations/lt/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/lt/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Trumpas įvadas į statistiką ir tikimybių teoriją
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Norėdami geriau suprasti duomenų pasiskirstymą, naudinga kalbėti apie **kvar
Grafiškai galime pavaizduoti medianos ir kvartilių santykį diagramoje, vadinamoje **dėžės diagrama**:
-
+
Čia taip pat apskaičiuojame **tarpkvartilinį diapazoną** IQR=Q3-Q1 ir vadinamuosius **išskirtinius taškus** - reikšmes, kurios yra už ribų [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/lt/1-Introduction/04-stats-and-probability/assignment.md b/translations/lt/1-Introduction/04-stats-and-probability/assignment.md
index 3b77ef0d..96379d41 100644
--- a/translations/lt/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/lt/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Mažas diabeto tyrimas
Šioje užduotyje dirbsime su mažu diabeto pacientų duomenų rinkiniu, paimtu iš [čia](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/lt/1-Introduction/README.md b/translations/lt/1-Introduction/README.md
index 828901bf..519f4940 100644
--- a/translations/lt/1-Introduction/README.md
+++ b/translations/lt/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Įvadas į Duomenų Mokslą

diff --git a/translations/lt/2-Working-With-Data/05-relational-databases/README.md b/translations/lt/2-Working-With-Data/05-relational-databases/README.md
index 983f3370..048dcf1d 100644
--- a/translations/lt/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/lt/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Darbas su duomenimis: reliacinės duomenų bazės
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/lt/2-Working-With-Data/05-relational-databases/assignment.md b/translations/lt/2-Working-With-Data/05-relational-databases/assignment.md
index ab5d7c38..d4082855 100644
--- a/translations/lt/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/lt/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Oro uostų duomenų rodymas
Jums buvo pateikta [duomenų bazė](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db), sukurta naudojant [SQLite](https://sqlite.org/index.html), kurioje yra informacija apie oro uostus. Schema pateikta žemiau. Naudosite [SQLite plėtinį](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) programoje [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum), kad galėtumėte rodyti informaciją apie įvairių miestų oro uostus.
diff --git a/translations/lt/2-Working-With-Data/06-non-relational/README.md b/translations/lt/2-Working-With-Data/06-non-relational/README.md
index 730c1d2d..c73edc48 100644
--- a/translations/lt/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/lt/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Darbas su duomenimis: Nerelaciniai duomenys
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/lt/2-Working-With-Data/06-non-relational/assignment.md b/translations/lt/2-Working-With-Data/06-non-relational/assignment.md
index bc7f821c..d1b44b8f 100644
--- a/translations/lt/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/lt/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Soda Pelnai
## Instrukcijos
diff --git a/translations/lt/2-Working-With-Data/07-python/README.md b/translations/lt/2-Working-With-Data/07-python/README.md
index 3d0df946..53624392 100644
--- a/translations/lt/2-Working-With-Data/07-python/README.md
+++ b/translations/lt/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Darbas su duomenimis: Python ir Pandas biblioteka
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/lt/2-Working-With-Data/07-python/assignment.md b/translations/lt/2-Working-With-Data/07-python/assignment.md
index 2a6c93ec..e66e0433 100644
--- a/translations/lt/2-Working-With-Data/07-python/assignment.md
+++ b/translations/lt/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Užduotis duomenų apdorojimui su Python
Šioje užduotyje prašysime jūsų išplėtoti kodą, kurį pradėjome kurti mūsų iššūkiuose. Užduotis susideda iš dviejų dalių:
diff --git a/translations/lt/2-Working-With-Data/08-data-preparation/README.md b/translations/lt/2-Working-With-Data/08-data-preparation/README.md
index 247c5372..91fb09f8 100644
--- a/translations/lt/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/lt/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Darbas su duomenimis: Duomenų paruošimas
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/lt/2-Working-With-Data/08-data-preparation/assignment.md b/translations/lt/2-Working-With-Data/08-data-preparation/assignment.md
index 09daa41d..509e6265 100644
--- a/translations/lt/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/lt/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Duomenų iš formos vertinimas
Klientas testavo [nedidelę formą](../../../../2-Working-With-Data/08-data-preparation/index.html), skirtą surinkti pagrindinius duomenis apie savo klientų bazę. Jie pateikė jums savo surinktus duomenis, kad juos patikrintumėte. Galite atidaryti `index.html` puslapį naršyklėje, kad peržiūrėtumėte formą.
diff --git a/translations/lt/2-Working-With-Data/README.md b/translations/lt/2-Working-With-Data/README.md
index ecd06dcf..cc384b6b 100644
--- a/translations/lt/2-Working-With-Data/README.md
+++ b/translations/lt/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Darbas su duomenimis

diff --git a/translations/lt/3-Data-Visualization/09-visualization-quantities/README.md b/translations/lt/3-Data-Visualization/09-visualization-quantities/README.md
index c41fbe77..8256be15 100644
--- a/translations/lt/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/lt/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Vizualizuojame kiekius
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/lt/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/lt/3-Data-Visualization/09-visualization-quantities/assignment.md
index 300637bc..0dad477f 100644
--- a/translations/lt/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/lt/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linijos, sklaidos diagramos ir stulpelinės diagramos
## Instrukcijos
diff --git a/translations/lt/3-Data-Visualization/10-visualization-distributions/README.md b/translations/lt/3-Data-Visualization/10-visualization-distributions/README.md
index 790d6e62..d60bf571 100644
--- a/translations/lt/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/lt/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizuojame pasiskirstymus
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/lt/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/lt/3-Data-Visualization/10-visualization-distributions/assignment.md
index 061e6e3f..b898e475 100644
--- a/translations/lt/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/lt/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Pradėkite taikyti savo įgūdžius
## Instrukcijos
diff --git a/translations/lt/3-Data-Visualization/11-visualization-proportions/README.md b/translations/lt/3-Data-Visualization/11-visualization-proportions/README.md
index 9c89b9e9..1d615a38 100644
--- a/translations/lt/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/lt/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizuojame proporcijas
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/lt/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/lt/3-Data-Visualization/11-visualization-proportions/assignment.md
index c86d6a2c..56a9b599 100644
--- a/translations/lt/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/lt/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Išbandykite Excel programoje
## Instrukcijos
diff --git a/translations/lt/3-Data-Visualization/12-visualization-relationships/README.md b/translations/lt/3-Data-Visualization/12-visualization-relationships/README.md
index f8e8286e..df0a84d6 100644
--- a/translations/lt/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/lt/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Vizualizuojame ryšius: Viskas apie medų 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/lt/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/lt/3-Data-Visualization/12-visualization-relationships/assignment.md
index f5ca0eef..371433a4 100644
--- a/translations/lt/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/lt/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Pasinerkite į avilį
## Instrukcijos
diff --git a/translations/lt/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/lt/3-Data-Visualization/13-meaningful-visualizations/README.md
index afd45d61..69f5f118 100644
--- a/translations/lt/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/lt/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Kaip Kurti Prasmingas Vizualizacijas
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/lt/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/lt/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 5c6c1feb..89388955 100644
--- a/translations/lt/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/lt/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Sukurkite savo individualią vizualizaciją
## Instrukcijos
diff --git a/translations/lt/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/lt/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index c941c6ff..ee0b9b8b 100644
--- a/translations/lt/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/lt/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Pavojingų ryšių duomenų vizualizacijos projektas
Norėdami pradėti, įsitikinkite, kad jūsų kompiuteryje veikia NPM ir Node. Įdiekite priklausomybes (npm install) ir tada paleiskite projektą lokaliai (npm run serve):
diff --git a/translations/lt/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/lt/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 32be5861..304a7ea5 100644
--- a/translations/lt/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/lt/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Pavojingų ryšių duomenų vizualizacijos projektas
Norėdami pradėti, įsitikinkite, kad jūsų kompiuteryje veikia NPM ir Node. Įdiekite priklausomybes (npm install) ir tada paleiskite projektą lokaliai (npm run serve):
diff --git a/translations/lt/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/lt/3-Data-Visualization/R/09-visualization-quantities/README.md
index 428f0cd0..aca8fecc 100644
--- a/translations/lt/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/lt/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija kiekių
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/lt/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/lt/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 67afdbb4..c42e2a4c 100644
--- a/translations/lt/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/lt/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linijos, sklaidos diagramos ir stulpelinės diagramos
## Instrukcijos
diff --git a/translations/lt/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/lt/3-Data-Visualization/R/10-visualization-distributions/README.md
index d27c5fa4..78fd0da9 100644
--- a/translations/lt/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/lt/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizuojant pasiskirstymus
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/lt/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/lt/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index e642872e..64ae13a9 100644
--- a/translations/lt/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/lt/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Pradėkite taikyti savo įgūdžius
## Instrukcijos
diff --git a/translations/lt/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/lt/3-Data-Visualization/R/11-visualization-proportions/README.md
index e90d4133..780b2b03 100644
--- a/translations/lt/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/lt/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizuojame Proporcijas
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/lt/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/lt/3-Data-Visualization/R/12-visualization-relationships/README.md
index 3a539261..f1803930 100644
--- a/translations/lt/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/lt/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Vizualizuojame ryšius: Viskas apie medų 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/lt/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/lt/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index d4b3dad3..f6ba0140 100644
--- a/translations/lt/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/lt/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Kurti prasmingas vizualizacijas
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/lt/3-Data-Visualization/README.md b/translations/lt/3-Data-Visualization/README.md
index a9b63273..969a18c2 100644
--- a/translations/lt/3-Data-Visualization/README.md
+++ b/translations/lt/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacijos

diff --git a/translations/lt/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/lt/4-Data-Science-Lifecycle/14-Introduction/README.md
index f015c402..0fb5692c 100644
--- a/translations/lt/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/lt/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Duomenų mokslo gyvavimo ciklo įvadas
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/lt/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/lt/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index b27c1dce..009880d2 100644
--- a/translations/lt/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/lt/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Duomenų rinkinio vertinimas
Klientas kreipėsi į jūsų komandą, prašydamas pagalbos tiriant taksi klientų sezoninius išlaidų įpročius Niujorke.
diff --git a/translations/lt/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/lt/4-Data-Science-Lifecycle/15-analyzing/README.md
index 114c1a5b..2ecf04f4 100644
--- a/translations/lt/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/lt/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Duomenų mokslo gyvavimo ciklas: Analizavimas
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/lt/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/lt/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index e1b50f3c..efee41f8 100644
--- a/translations/lt/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/lt/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Atsakymų paieška
Tai yra tęsinys ankstesnės pamokos [užduoties](../14-Introduction/assignment.md), kurioje trumpai apžvelgėme duomenų rinkinį. Dabar giliau pažvelgsime į duomenis.
diff --git a/translations/lt/4-Data-Science-Lifecycle/16-communication/README.md b/translations/lt/4-Data-Science-Lifecycle/16-communication/README.md
index 0b26bfca..4edd1a1c 100644
--- a/translations/lt/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/lt/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Duomenų mokslo ciklas: Komunikacija
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/lt/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/lt/4-Data-Science-Lifecycle/16-communication/assignment.md
index 4b1b3d66..a0a32c12 100644
--- a/translations/lt/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/lt/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Papasakok istoriją
## Instrukcijos
diff --git a/translations/lt/4-Data-Science-Lifecycle/README.md b/translations/lt/4-Data-Science-Lifecycle/README.md
index 5aa61573..2649a789 100644
--- a/translations/lt/4-Data-Science-Lifecycle/README.md
+++ b/translations/lt/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Duomenų mokslo gyvavimo ciklas

diff --git a/translations/lt/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/lt/5-Data-Science-In-Cloud/17-Introduction/README.md
index 5d64342f..e393bccc 100644
--- a/translations/lt/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/lt/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Duomenų mokslas debesyje: Įvadas
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/lt/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/lt/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 1fd4cf06..707ba28f 100644
--- a/translations/lt/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/lt/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Rinkos tyrimai
## Instrukcijos
diff --git a/translations/lt/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/lt/5-Data-Science-In-Cloud/18-Low-Code/README.md
index c16800ef..1238aecd 100644
--- a/translations/lt/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/lt/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Duomenų mokslas debesyje: „Mažai kodo / Be kodo“ būdas
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/lt/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/lt/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 392fd041..6694f7bf 100644
--- a/translations/lt/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/lt/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Mažai kodo/Be kodo duomenų mokslų projektas Azure ML platformoje
## Instrukcijos
diff --git a/translations/lt/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/lt/5-Data-Science-In-Cloud/19-Azure/README.md
index 10670e5c..a7472654 100644
--- a/translations/lt/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/lt/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Duomenų mokslas debesyje: „Azure ML SDK“ būdas
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/lt/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/lt/5-Data-Science-In-Cloud/19-Azure/assignment.md
index ca040be0..57c70181 100644
--- a/translations/lt/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/lt/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Duomenų mokslo projektas naudojant Azure ML SDK
## Instrukcijos
diff --git a/translations/lt/5-Data-Science-In-Cloud/README.md b/translations/lt/5-Data-Science-In-Cloud/README.md
index 5ac7f62b..e7c1bcc5 100644
--- a/translations/lt/5-Data-Science-In-Cloud/README.md
+++ b/translations/lt/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Duomenų mokslas debesyje

diff --git a/translations/lt/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/lt/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 932c1372..9c8d5a3c 100644
--- a/translations/lt/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/lt/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Duomenų mokslas realiame pasaulyje
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/lt/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/lt/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 37e5d166..56263f90 100644
--- a/translations/lt/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/lt/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Tyrinėkite Planetary Computer duomenų rinkinį
## Instrukcijos
diff --git a/translations/lt/6-Data-Science-In-Wild/README.md b/translations/lt/6-Data-Science-In-Wild/README.md
index ad1cdf3a..ea64287a 100644
--- a/translations/lt/6-Data-Science-In-Wild/README.md
+++ b/translations/lt/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Duomenų mokslas praktikoje
Duomenų mokslo taikymas įvairiose pramonės šakose.
diff --git a/translations/lt/AGENTS.md b/translations/lt/AGENTS.md
index 04387822..12355920 100644
--- a/translations/lt/AGENTS.md
+++ b/translations/lt/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Projekto apžvalga
diff --git a/translations/lt/CODE_OF_CONDUCT.md b/translations/lt/CODE_OF_CONDUCT.md
index c247ff8d..9a13c7f1 100644
--- a/translations/lt/CODE_OF_CONDUCT.md
+++ b/translations/lt/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft atvirojo kodo elgesio kodeksas
Šis projektas priėmė [Microsoft atvirojo kodo elgesio kodeksą](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/lt/CONTRIBUTING.md b/translations/lt/CONTRIBUTING.md
index e02c182e..de392312 100644
--- a/translations/lt/CONTRIBUTING.md
+++ b/translations/lt/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Prisidėjimas prie „Data Science for Beginners“
Ačiū, kad domitės prisidėjimu prie „Data Science for Beginners“ mokymo programos! Mes džiaugiamės bendruomenės indėliu.
diff --git a/translations/lt/INSTALLATION.md b/translations/lt/INSTALLATION.md
index d03c802c..c60aecaa 100644
--- a/translations/lt/INSTALLATION.md
+++ b/translations/lt/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Diegimo vadovas
Šis vadovas padės jums paruošti aplinką darbui su pradedančiųjų duomenų mokslo mokymo programa.
diff --git a/translations/lt/README.md b/translations/lt/README.md
index 722e182f..d275666c 100644
--- a/translations/lt/README.md
+++ b/translations/lt/README.md
@@ -1,24 +1,15 @@
-
-# Duomenų Mokslas Pradedantiesiems – Mokymo Programa
+# Duomenų mokslas pradedantiesiems – Mokymo programa
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
@@ -26,181 +17,181 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Azure Cloud advokatai Microsoft’e džiaugiasi galėdami pasiūlyti 10 savaičių, 20 pamokų mokymo programą, skirtą Duomenų Mokslui. Kiekviena pamoka apima priešpamokinius ir popamokinius testus, parašytas instrukcijas pamokos atlikimui, sprendimą ir užduotį. Mūsų projektinė pedagogika leidžia mokytis per praktinius darbus, patikrintas būdas naujiems įgūdžiams „įsimesti“.
+„Azure Cloud Advocates“ komanda iš Microsoft su malonumu siūlo 10 savaičių, 20 pamokų mokymo programą, skirtą Duomenų mokslui. Kiekvienoje pamokoje rasite ir prieš, ir po pamokos testus, rašytines instrukcijas užduočiai atlikti, sprendimą bei namų darbą. Mūsų projektus pagrįsta pedagogika leidžia mokytis kuriant – tai patikrintas būdas įsisavinti naujus įgūdžius.
**Nuoširdus ačiū mūsų autoriams:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Ypatingas ačiū 🙏 mūsų [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) autoriams, peržiūrėtojams ir turinio bendradarbiams,** išskirtinai Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Ypatingas ačiū 🙏 mūsų [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) autoriams, peržiūrėtojams ir turinio bendradarbiautojams,** ypač Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Duomenų Mokslas Pradedantiesiems - _Sketchnote autorius [@nitya](https://twitter.com/nitya)_ |
+| Duomenų mokslas pradedantiesiems – _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
-### 🌐 Daugiakalbės Galimybės
+### 🌐 Daugiakalbystės palaikymas
-#### Palaikoma naudojant GitHub Action (automatinis ir visada atnaujintas)
+#### Palaikoma per GitHub Action (automatinis ir visada atnaujinamas)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](./README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](./README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **Norite Klonuoti Vietoje?**
+> **Labiau norite klonuoti lokaliai?**
-> Šiame repozitorijoje yra daugiau nei 50 kalbų vertimų, kurie žymiai padidina atsisiuntimo dydį. Norėdami klonuoti be vertimų, naudokite sąrašo išrinkimą (sparse checkout):
+> Šiame saugykloje yra 50+ kalbų vertimų, todėl atsisiuntimas yra ženkliai didesnis. Norėdami klonuoti be vertimų, naudokite retinimo checkout (sparse checkout):
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Tai suteiks jums viską, ko reikia kursui atlikti, su daug greitesniu atsisiuntimu.
+> Tai suteiksite jums viską, ką reikia kursui atlikti su daug greitesniu atsisiuntimu.
-**Jei norite turėti daugiau palaikomų vertimų kalbų, jas rasite [čia](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Jei norite papildomų palaikomų vertimų kalbų, jos pateiktos [čia](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Prisijunkite prie mūsų bendruomenės
[](https://discord.gg/nTYy5BXMWG)
-Turime vykdomą Discord mokymosi su DI seriją, sužinokite daugiau ir prisijunkite prie mūsų [Mokymosi su DI serijoje](https://aka.ms/learnwithai/discord) nuo 2025 m. rugsėjo 18 iki 30 dienos. Gaunate patarimus ir gudrybes, kaip naudoti GitHub Copilot Duomenų Mokslui.
+Turime vykdomą „Discord“ mokymų su DI seriją, sužinokite daugiau ir prisijunkite prie mūsų adresu [Learn with AI Series](https://aka.ms/learnwithai/discord) nuo 2025 m. rugsėjo 18 - 30 dienos. Gaunate patarimus ir triukus, kaip naudoti GitHub Copilot Duomenų mokslui.
-
+
# Ar esi studentas?
-Pradėk su šiais ištekliais:
+Pradėkite nuo šių išteklių:
-- [Studentų centras](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Šiame puslapyje rasite pradedančiųjų išteklius, Studentų paketus ir net būdus gauti nemokamą sertifikato kuponą. Tai puslapis, kurį verta įsidėti į mėgstamiausius ir periodiškai peržiūrėti, nes mes bent kartą per mėnesį atnaujiname turinį.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Prisijunk prie pasaulinės studentų ambasadorių bendruomenės, tai galėtų būti tavo kelias į Microsoft.
+- [Studentų Centras puslapis](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Šiame puslapyje rasite pradedančiųjų išteklius, studentų paketus ir net būdus gauti nemokamą sertifikato kuponą. Tai puslapis, kurį verta pridėti prie žymių ir kartkartėmis tikrinti, nes turinys atnaujinamas bent jau kas mėnesį.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Prisijunkite prie pasaulinės studentų ambasadorių bendruomenės, tai gali būti jūsų kelias į Microsoft.
# Pradžia
## 📚 Dokumentacija
-- **[Įdiegimo Vadovas](INSTALLATION.md)** – Žingsnis po žingsnio diegimo instrukcijos pradedantiesiems
-- **[Naudojimo Vadovas](USAGE.md)** – Pavyzdžiai ir dažni darbo metodai
-- **[Trikčių šalinimas](TROUBLESHOOTING.md)** – Dažnų problemų sprendimai
-- **[Indėlio Vadovas](CONTRIBUTING.md)** – Kaip prisidėti prie šio projekto
-- **[Mokytojams](for-teachers.md)** – Mokymo gairės ir klasės ištekliai
+- **[Įdiegimo vadovas](INSTALLATION.md)** – žingsnis po žingsnio naujokams
+- **[Naudojimo vadovas](USAGE.md)** – pavyzdžiai ir įprasti darbo procesai
+- **[Trikčių šalinimas](TROUBLESHOOTING.md)** – sprendimai dažniausioms problemoms
+- **[Prisidėjimo vadovas](CONTRIBUTING.md)** – kaip prisidėti prie šio projekto
+- **[Mokytojams](for-teachers.md)** – mokymo gairės ir klasių ištekliai
## 👨🎓 Studentams
-> **Visiškai pradedantiesiems**: Naujas duomenų moksle? Pradėk nuo mūsų [prieinamų pradedantiesiems pavyzdžių](examples/README.md)! Šie paprasti, gerai paaiškinti pavyzdžiai padės suprasti pagrindus prieš pradedant visą mokymo programą.
-> **[Studentams](https://aka.ms/student-page)**: norint naudoti šią mokymo programą savarankiškai, šakinkite visą repozitoriją ir savarankiškai atlikite pratimus, pradėdami nuo priešpaskaitinio testo. Tada perskaitykite paskaitą ir atlikite likusias veiklas. Stenkitės kurti projektus per pamokų supratimą, o ne kopijuojant sprendimo kodą; tačiau pastarasis yra prieinamas kiekvienos projekto orientuotos pamokos /solutions aplankuose. Kita idėja galėtų būti sudaryti studijų grupę su draugais ir kartu peržiūrėti turinį. Papildomam mokymuisi rekomenduojame [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Visiškai pradedantiesiems**: naujokas duomenų moksle? Pradėkite nuo mūsų [pradedantiesiems skirtų pavyzdžių](examples/README.md)! Šie paprasti ir gerai paaiškinti pavyzdžiai padės suprasti pagrindus prieš peržiūrint visą mokymo programą.
+> **[Studentams](https://aka.ms/student-page)**: norėdami naudotis šia mokymo programa savarankiškai, fork‘inkite visą repozitoriją ir atlikite užduotis savarankiškai, pradėdami nuo priešpaskaitinio testo. Tada perskaitykite paskaitą ir atlikite likusias veiklas. Stenkitės projektus kurti suprasdami pamokas, o ne kopijuodami sprendimų kodus; tačiau jie yra prieinami /solutions aplankuose kiekvienoje projekto orientuotoje pamokoje. Kita idėja – sudaryti mokymosi grupę su draugais ir kartu peržiūrėti turinį. Tolimesniam mokymuisi rekomenduojame [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
-**Greita pradžia:**
-1. Pasitikrinkite [Įdiegimo Vadovą](INSTALLATION.md), kad nustatytumėte savo aplinką
-2. Peržiūrėkite [Naudojimo Vadovą](USAGE.md), kad sužinotumėte, kaip dirbti su mokymo programa
-3. Pradėkite nuo 1 pamokos ir eikite nuosekliai
+**Greitas pradėjimas:**
+1. Patikrinkite [Įdiegimo vadovą](INSTALLATION.md), kad pasiruoštumėte aplinką
+2. Peržiūrėkite [Naudojimo vadovą](USAGE.md), kad sužinotumėte, kaip dirbti su mokymo programa
+3. Pradėkite nuo 1 pamokos ir atlikite seką
4. Prisijunkite prie mūsų [Discord bendruomenės](https://aka.ms/ds4beginners/discord) pagalbai
## 👩🏫 Mokytojams
-> **Mokytojams**: mes [įtraukėme keletą pasiūlymų](for-teachers.md), kaip naudoti šią mokymo programą. Būtume dėkingi už jūsų atsiliepimus [mūsų diskusijų forume](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
+> **Mokytojams**: mes įtraukėme [keletą pasiūlymų](for-teachers.md), kaip naudoti šią mokymo programą. Laukiame jūsų atsiliepimų [mūsų diskusijų forume](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Susipažinkite su komanda
+
[](https://youtu.be/8mzavjQSMM4 "Reklaminis vaizdo įrašas")
-**Gif’as sukurtas** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+**Gif sukūrė** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Spustelėkite paveikslėlį aukščiau, norėdami peržiūrėti vaizdo įrašą apie projektą ir žmones, kurie jį sukūrė!
+> 🎥 Spustelėkite aukščiau esančią nuotrauką, kad pamatytumėte vaizdo įrašą apie projektą ir žmones, kurie jį sukūrė!
## Pedagogika
-Kuriant šią programą pasirinkome du pedagoginius principus: užtikrinti, kad mokymasis vyktų per projektus ir kad būtų dažnai atliekami testai. Šios serijos pabaigoje studentai išmoks duomenų mokslo pagrindus, įskaitant etikos sampratas, duomenų paruošimą, įvairius darbų su duomenimis būdus, duomenų vizualizaciją, duomenų analizę, realaus pasaulio duomenų mokslo panaudojimo atvejus ir daugiau.
+Kuriant šią mokymo programą pasirinkome du pedagoginius principus: užtikrinti, kad ji būtų projektų pagrindu ir apimtų dažnai pasitaikančius testus. Baigę šią seriją studentai išmoks duomenų mokslo pagrindinius principus, įskaitant etinius konceptus, duomenų paruošimą, skirtingus duomenų apdorojimo būdus, duomenų vizualizaciją, duomenų analizę, realius duomenų mokslo panaudojimo atvejus ir dar daugiau.
-Be to, mažos svarbos testas prieš pamoką nukreipia studentų dėmesį į temos mokymąsi, o antras testas po pamokos užtikrina geresnį įsisavinimą. Ši programa sukurta būti lanksčia ir smagia, ją galima atlikti visą iš karto arba dalimis. Projektai prasideda nuo paprastų ir tampa vis sudėtingesni per 10 savaičių ciklą.
+Be to, žemas rizikos lygis turintis testas prieš pamoką nustato studentų ketinimą mokytis tam tikros temos, o antras testas po pamokos užtikrina papildomą medžiagos įsisavinimą. Ši mokymo programa buvo sukurta būti lanksti ir smagi, ją galima atlikti visą arba dalimis. Projektai prasideda nuo paprastų ir palaipsniui tampa sudėtingesni per 10 savaičių ciklą.
-> Rasite mūsų [Elgesio kodeksą](CODE_OF_CONDUCT.md), [Indėlio į taisykles gaires](CONTRIBUTING.md), [Vertimo gaires](TRANSLATIONS.md). Laukiame jūsų konstruktyvios grįžtamosios informacijos!
+> Raskite mūsų [Elgesio kodeksą](CODE_OF_CONDUCT.md), [Prisidėjimo taisykles](CONTRIBUTING.md), [Vertimo](TRANSLATIONS.md) gaires. Laukiame jūsų konstruktyvaus atsiliepimo!
## Kiekviena pamoka apima:
-- Pasirenkamą sketchnote (piešinį-užrašą)
-- Pasirenkamą papildomą vaizdo įrašą
-- Įžanginį testą prieš pamoką
+- Pasirinktinį eskizų užrašą
+- Pasirinktinį papildomą vaizdo įrašą
+- Apšilimo testą prieš pamoką
- Rašytinę pamoką
-- Projektiniu pagrindu rengiamose pamokose – žingsnis po žingsnio gaires, kaip sukurti projektą
+- Projektų pagrindu sudarytose pamokose – žingsnis po žingsnio vadovus, kaip sukurti projektą
- Žinių patikrinimus
- Iššūkį
- Papildomą skaitymą
- Užduotį
- [Testą po pamokos](https://ff-quizzes.netlify.app/en/)
-> **Pastaba apie testus**: Visi testai yra Quiz-App kataloge, kuriuose yra iš viso 40 testų, kiekvienas su trimis klausimais. Jie yra susieti pamokose, tačiau testų programėlę galima paleisti vietoje arba išplėsti į Azure; instrukcijas rasite `quiz-app` kataloge. Testai palaipsniui lokalizuojami.
+> **Pastaba apie testus**: Visi testai yra Quiz-App aplanke, iš viso yra 40 testų po tris klausimus kiekviename. Jie susieti iš pamokų, tačiau testų programą galima paleisti vietoje arba publikuoti Azure; vadovaukitės „quiz-app“ aplanko instrukcijomis. Jie palaipsniui lokalizuojami.
-## 🎓 Mokiniai pradedantiesiems
+## 🎓 Pradedančiajam draugiški pavyzdžiai
-**Naujas duomenų moksle?** Sukūrėme specialų [pavyzdžių katalogą](examples/README.md) su paprastu, gerai paaiškintu kodu, kad padėtume pradėti:
+**Naujas duomenų moksle?** Sukūrėme specialų [pavyzdžių katalogą](examples/README.md) su paprastu, aiškiai komentuotu kodu, kad padėtų jums pradėti:
-- 🌟 **Hello World** – Jūsų pirmoji duomenų mokslo programa
-- 📂 **Duomenų įkėlimas** – Išmokite skaityti ir tirti duomenų rinkinius
-- 📊 **Paprasta analizė** – Apskaičiuokite statistiką ir raskite dėsningumus
+- 🌟 **Sveikas pasauli!** – Jūsų pirmoji duomenų mokslo programa
+- 📂 **Duomenų įkėlimas** – Išmokite skaityti ir tyrinėti duomenų rinkinius
+- 📊 **Paprasta analizė** – Apskaičiuokite statistiką ir raskite modelius
- 📈 **Pagrindinė vizualizacija** – Kurkite diagramas ir grafikus
-- 🔬 **Realus projektas** – Pilnas darbo eiga nuo pradžios iki pabaigos
+- 🔬 **Realaus pasaulio projektas** – Pilnas darbo eiga nuo pradžios iki pabaigos
-Kiekviename pavyzdyje yra išsamūs komentarai, paaiškinantys kiekvieną žingsnį, todėl tai puiku absoliučioms pradedantiesiems!
+Kiekvienas pavyzdys apima išsamius komentarus, paaiškinančius kiekvieną žingsnį, todėl ypač tinka visiškiems pradedantiesiems!
👉 **[Pradėkite nuo pavyzdžių](examples/README.md)** 👈
## Pamokos
-||
+||
|:---:|
-| Duomenų mokslas pradedantiesiems: Žemėlapis - _Piešinys-užrašas autorius [@nitya](https://twitter.com/nitya)_ |
+| Duomenų mokslas pradedantiesiems: kelio žemėlapis - _Eskizo užrašas [@nitya](https://twitter.com/nitya)_ |
| Pamokos numeris | Tema | Pamokos grupė | Mokymosi tikslai | Susieta pamoka | Autorius |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Duomenų mokslo apibrėžimas | [Įvadas](1-Introduction/README.md) | Sužinokite pagrindines duomenų mokslo sąvokas ir kaip jis susijęs su dirbtiniu intelektu, mašininiu mokymusi ir didžiaisiais duomenimis. | [pamoka](1-Introduction/01-defining-data-science/README.md) [vaizdo įrašas](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Duomenų mokslo etika | [Įvadas](1-Introduction/README.md) | Duomenų etikos sąvokos, iššūkiai ir metodikos. | [pamoka](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Duomenų apibrėžimas | [Įvadas](1-Introduction/README.md) | Kaip klasifikuojami duomenys ir dažniausios jų kilmės. | [pamoka](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Įvadas į statistiką ir tikimybes | [Įvadas](1-Introduction/README.md) | Tikimybių ir statistikos matematiniai metodai duomenims suvokti. | [pamoka](1-Introduction/04-stats-and-probability/README.md) [vaizdo įrašas](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Darbas su reliaciniais duomenimis | [Darbas su duomenimis](2-Working-With-Data/README.md) | Įvadas į reliacinius duomenis ir pagrindus, kaip tirti ir analizuoti reliacinius duomenis naudojant struktūrizuotą užklausų kalbą, žinomą kaip SQL (tarimas „si-kwel“). | [pamoka](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Darbas su NoSQL duomenimis | [Darbas su duomenimis](2-Working-With-Data/README.md) | Įvadas į nereliacinius duomenis, jų tipus ir pagrindus, kaip tirti ir analizuoti dokumentų duomenų bazes. | [pamoka](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Darbas su Python | [Darbas su duomenimis](2-Working-With-Data/README.md) | Python pagrindai duomenų tyrimui su bibliotekomis, tokiomis kaip Pandas. Rekomenduojama turėti pagrindinių Python programavimo žinių. | [pamoka](2-Working-With-Data/07-python/README.md) [vaizdo įrašas](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Duomenų paruošimas | [Darbas su duomenimis](2-Working-With-Data/README.md) | Duomenų valymo ir transformavimo technikos, skirtos spręsti trūkstamų, netikslių arba neišsamių duomenų problemas. | [pamoka](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Kiekių vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Išmokite naudoti Matplotlib paukščių duomenų vizualizavimui 🦆 | [pamoka](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Duomenų pasiskirstymo vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Stebėjimų ir tendencijų fiksavimas intervale. | [pamoka](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Proporcijų vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Diskrečių ir grupuotų procentų vizualizavimas. | [pamoka](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Ryšių vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Sąsajų ir koreliacijų tarp duomenų rinkinių ir jų kintamųjų vizualizavimas. | [pamoka](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Prasmingos vizualizacijos | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Technikos ir gairės, kaip padaryti vizualizacijas vertingas efektyviai problemų sprendimui ir įžvalgoms. | [pamoka](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Įvadas į duomenų mokslo gyvavimo ciklą | [Gyvavimo ciklas](4-Data-Science-Lifecycle/README.md) | Įvadas į duomenų mokslo gyvavimo ciklą ir jo pirmą žingsnį – duomenų gavimą ir išgavimą. | [pamoka](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analizė | [Gyvavimo ciklas](4-Data-Science-Lifecycle/README.md) | Šio duomenų mokslo gyvavimo ciklo etapo dėmesys – duomenų analizės technikos. | [pamoka](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Komunikacija | [Gyvavimo ciklas](4-Data-Science-Lifecycle/README.md) | Šio duomenų mokslo gyvavimo ciklo etapo dėmesys – pateikti duomenų įžvalgas taip, kad sprendimų priėmėjams būtų lengviau jas suprasti. | [pamoka](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Duomenų mokslas debesyje | [Debesis duomenyse](5-Data-Science-In-Cloud/README.md) | Ši pamokų serija supažindina su duomenų mokslu debesyje ir jo privalumais. | [pamoka](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ir [Maud](https://twitter.com/maudstweets) |
-| 18 | Duomenų mokslas debesyje | [Debesis duomenyse](5-Data-Science-In-Cloud/README.md) | Modelių mokymas naudojant Low Code įrankius. |[pamoka](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ir [Maud](https://twitter.com/maudstweets) |
-| 19 | Duomenų mokslas debesyje | [Debesis duomenyse](5-Data-Science-In-Cloud/README.md) | Modelių diegimas naudojant Azure Machine Learning Studio. | [pamoka](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ir [Maud](https://twitter.com/maudstweets) |
-| 20 | Duomenų mokslas realiame gyvenime | [Realiame gyvenime](6-Data-Science-In-Wild/README.md) | Duomenų mokslo projektai tikrame pasaulyje. | [pamoka](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | Duomenų mokslo apibrėžimas | [Įvadas](1-Introduction/README.md) | Sužinokite pagrindines duomenų mokslo sąvokas ir kaip tai susiję su dirbtiniu intelektu, mašininio mokymosi ir didžiaisiais duomenimis. | [pamoka](1-Introduction/01-defining-data-science/README.md) [vaizdo įrašas](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Duomenų mokslo etika | [Įvadas](1-Introduction/README.md) | Duomenų etikos sąvokos, iššūkiai ir pagrindai. | [pamoka](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Duomenų apibrėžimas | [Įvadas](1-Introduction/README.md) | Kaip klasifikuojami duomenys ir jų įprasti šaltiniai. | [pamoka](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Statistikos ir tikimybių įvadas | [Įvadas](1-Introduction/README.md) | Matematiniai tikimybių ir statistikos metodai duomenims suprasti. | [pamoka](1-Introduction/04-stats-and-probability/README.md) [vaizdo įrašas](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Darbas su reliaciniais duomenimis | [Darbas su duomenimis](2-Working-With-Data/README.md) | Įvadas į reliacinius duomenis ir pagrindus, kaip tyrinėti ir analizuoti reliacinius duomenis naudojant struktūrizuotųjų užklausų kalbą, dar vadinamą SQL (tar. „si-kvel“). | [pamoka](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Darbas su NoSQL duomenimis | [Darbas su duomenimis](2-Working-With-Data/README.md) | Įvadas į nerealiacinius duomenis, jų įvairias rūšis ir pagrindus, kaip tyrinėti ir analizuoti dokumentų duomenų bazes. | [pamoka](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Darbas su Python | [Darbas su duomenimis](2-Working-With-Data/README.md) | Python naudojimo duomenų tyrinėjimui pagrindai su tokiomis bibliotekomis kaip Pandas. Rekomenduojamas Python programavimo pagrindų supratimas. | [pamoka](2-Working-With-Data/07-python/README.md) [vaizdo įrašas](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Duomenų paruošimas | [Darbas su duomenimis](2-Working-With-Data/README.md) | Temų apžvalga apie duomenų valymą ir transformavimą, kad būtų galima spręsti trūkstamų, netikslių ar neišsamių duomenų problemas. | [pamoka](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Kiekybinių duomenų vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Išmokite naudoti Matplotlib paukščių duomenų vizualizavimui 🦆 | [pamoka](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Duomenų pasiskirstymo vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Stebėjimų ir tendencijų intervalo viduje vizualizavimas. | [pamoka](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Proporcijų vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Diskrečios ir sugrupuotos proporcijos vizualizavimas. | [pamoka](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Ryšių vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Ryšių ir koreliacijų tarp duomenų rinkinių ir jų kintamųjų vizualizavimas. | [pamoka](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Reikšmingos vizualizacijos | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Technika ir vadovai, padedantys padaryti jūsų vizualizacijas vertingas efektyviam problemų sprendimui ir įžvalgoms. | [pamoka](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Duomenų mokslo ciklo įvadas | [Ciklas](4-Data-Science-Lifecycle/README.md) | Įvadas į duomenų mokslo gyvenimo ciklą ir jo pirmąjį etapą – duomenų gavimą ir išgavimą. | [pamoka](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Duomenų analizė | [Ciklas](4-Data-Science-Lifecycle/README.md) | Šis duomenų mokslo ciklo etapas skiria dėmesį duomenų analizės technikoms. | [pamoka](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Komunikacija | [Ciklas](4-Data-Science-Lifecycle/README.md) | Šis duomenų mokslo ciklo etapas skiria dėmesį duomenų įžvalgų pateikimui taip, kad sprendimų priėmėjams būtų lengviau suprasti. | [pamoka](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Duomenų mokslas debesyje | [Debesų duomenys](5-Data-Science-In-Cloud/README.md) | Ši pamokų serija pristato duomenų mokslą debesyje ir jo privalumus. | [pamoka](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ir [Maud](https://twitter.com/maudstweets) |
+| 18 | Duomenų mokslas debesyje | [Debesų duomenys](5-Data-Science-In-Cloud/README.md) | Modelių mokymas naudojant Low Code įrankius. |[pamoka](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ir [Maud](https://twitter.com/maudstweets) |
+| 19 | Duomenų mokslas debesyje | [Debesų duomenys](5-Data-Science-In-Cloud/README.md) | Modelių dislokavimas naudojant Azure Machine Learning Studio. | [pamoka](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ir [Maud](https://twitter.com/maudstweets) |
+| 20 | Duomenų mokslas gamtoje | [Gamtoje](6-Data-Science-In-Wild/README.md) | Duomenų mokslo projektai realiame pasaulyje. | [pamoka](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Norėdami atidaryti šį pavyzdį Codespace aplinkoje, atlikite šiuos veiksmus:
-1. Spustelėkite išskleidžiamą meniu Code ir pasirinkite Open with Codespaces.
-2. Apačioje pasirinkite + New codespace.
+Atlikite šiuos veiksmus, kad atidarytumėte šį pavyzdį Codespace aplinkoje:
+1. Spustelėkite mygtuką Code ir pasirinkite Open with Codespaces parinktį.
+2. Pasirinkite + New codespace apačioje esančioje srityje.
Daugiau informacijos rasite [GitHub dokumentacijoje](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Norėdami atidaryti šį saugyklą konteineryje savo vietiniame kompiuteryje naudodami VSCode per VS Code Remote - Containers plėtinį, atlikite šiuos veiksmus:
+Atlikite šiuos veiksmus, kad atidarytumėte šį saugyklą konteineryje naudodami savo kompiuterį ir VSCode naudojant VS Code Remote - Containers plėtinį:
-1. Jei tai pirmas kartas, kai naudojate vystymo konteinerį, įsitikinkite, kad jūsų sistema atitinka priešreikalavimus (pavyzdžiui, įdiegta Docker) pagal [pradžiamokslį](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Jei pirmą kartą naudojate kūrimo konteinerį, įsitikinkite, kad jūsų sistema atitinka reikalavimus (pvz., įdiegėte Docker) pagal [pradžios dokumentaciją](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Norėdami naudoti šią saugyklą, galite arba atidaryti saugyklą izoliuotame Docker tūryje:
+Norėdami naudoti šią saugyklą, galite atidaryti ją izoliuoto Docker tūrio viduje:
-**Pastaba**: Paviršutiniškai šis procesas naudoja Remote-Containers komandą: **Clone Repository in Container Volume...**, kad kodą klo-ninuotų Docker tūryje, o ne vietiniame failų sistemos kataloge. [Tūriai](https://docs.docker.com/storage/volumes/) yra pageidaujamas duomenų konteinerio saugojimo mechanizmas.
+**Pastaba**: Tam naudojama Remote-Containers: **Clone Repository in Container Volume...** komanda, kuri duomenų kodą nukopijuoja į Docker tūrį, o ne į vietinę failų sistemą. [Tūriai](https://docs.docker.com/storage/volumes/) yra pageidautinas būdas išsaugoti konteinerio duomenis.
-Arba atidarykite vietoje klo-ninuotą ar į jūsų kompiuterį atsisiųstą saugyklą:
+Arba atidarykite vietinę klonuotą ar parsisiųstą saugyklos versiją:
-- Klo-ninuokite šią saugyklą savo vietiniame failų sistemos kataloge.
+- Nuklonuokite šią saugyklą į savo kompiuterį.
- Paspauskite F1 ir pasirinkite komandą **Remote-Containers: Open Folder in Container...**.
-- Pasirinkite įkeltą šio katalogo kopiją, palaukite, kol konteineris užsikraus, ir išbandykite.
+- Pasirinkite šios aplanko nuklonuotą kopiją, palaukite kol konteineris užsikraus ir išbandykite.
-## Offline prieiga
+## Darbas neprisijungus
-Šią dokumentaciją galite naudoti ir offline režimu su [Docsify](https://docsify.js.org/#/). Forkinkite šią saugyklą, [įdiekite Docsify](https://docsify.js.org/#/quickstart) savo kompiuteryje, tada šios saugyklos šakniniame kataloge įvykdykite komandą `docsify serve`. Svetainė bus pasiekiama per prievadą 3000 jūsų localhost adresu: `localhost:3000`.
+Galite naudoti šią dokumentaciją neprisijungę naudodami [Docsify](https://docsify.js.org/#/). Nuklonuokite šią saugyklą, [įdiekite Docsify](https://docsify.js.org/#/quickstart) savo kompiuteryje, tada šios saugyklos šakninėje aplanke paleiskite komandą `docsify serve`. Svetainė bus pasiekiama per 3000 prievadą jūsų vietiniame serveryje: `localhost:3000`.
-> Pastaba: užrašinai (notebooks) nebus atvaizduojami naudojant Docsify, todėl norėdami paleisti užrašinį paleiskite jį atskirai VS Code, naudodami Python branduolį.
+> Pastaba, užrašų knygelės nebus rodomos Docsify platformoje, tad kai reikės paleisti užrašų knygelę, darykite tai atskirai VS Code su Python branduoliu.
-## Kitos studijų programos
+## Kitos mokymo programos
-Mūsų komanda kuria ir kitas studijų programas! Peržiūrėkite:
+Mūsų komanda kuria ir kitas mokymo programas! Pažiūrėkite:
### LangChain
@@ -213,24 +204,24 @@ Mūsų komanda kuria ir kitas studijų programas! Peržiūrėkite:
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-### Generatyvinis AI serija
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+### Generatyvinė AI mokymų serija
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
### Pagrindinis mokymasis
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
@@ -244,13 +235,13 @@ Mūsų komanda kuria ir kitas studijų programas! Peržiūrėkite:
## Pagalbos gavimas
-**Susidūrėte su problemomis?** Peržiūrėkite mūsų [Trikčių šalinimo gidą](TROUBLESHOOTING.md) su dažniausiai pasitaikančių problemų sprendimais.
+**Susiduriate su problemomis?** Peržiūrėkite mūsų [Trikčių šalinimo vadovą](TROUBLESHOOTING.md) su dažnų problemų sprendimais.
-Jei įstringate arba turite klausimų apie AI programų kūrimą. Prisijunkite prie kitų besimokančiųjų ir patyrusių kūrėjų diskusijų apie MCP. Tai palaikanti bendruomenė, kurioje klausimai yra laukiami ir žinios dalijamos laisvai.
+Jei įstringate ar turite klausimų apie AI programų kūrimą, prisijunkite prie kitų besimokančių ir patyrusių kūrėjų diskusijų apie MCP. Tai palaikanti bendruomenė, kurioje klausimai yra laukiamí ir žinios dalijamasi laisvai.
[](https://discord.gg/nTYy5BXMWG)
-Jei turite produkto atsiliepimų arba pastebite klaidų kūrimo metu, apsilankykite:
+Jei turite produktų atsiliepimų arba susiduriate su klaidomis kūrimo metu, apsilankykite:
[](https://aka.ms/foundry/forum)
@@ -258,5 +249,5 @@ Jei turite produkto atsiliepimų arba pastebite klaidų kūrimo metu, apsilankyk
**Atsakomybės apribojimas**:
-Šis dokumentas buvo išverstas naudojant dirbtinio intelekto vertimo paslaugą [Co-op Translator](https://github.com/Azure/co-op-translator). Nors siekiame tikslumo, prašome atkreipti dėmesį, kad automatizuoti vertimai gali turėti klaidų ar netikslumų. Originalus dokumentas jo gimtąja kalba turėtų būti laikomas autoritetingu šaltiniu. Svarbiai informacijai rekomenduojamas profesionalus žmogiškas vertimas. Mes neatsakome už bet kokius nesusipratimus ar klaidingas interpretacijas, kylančias dėl šio vertimo naudojimo.
+Šis dokumentas buvo išverstas naudojant dirbtinio intelekto vertimo paslaugą [Co-op Translator](https://github.com/Azure/co-op-translator). Nors stengiamės užtikrinti tikslumą, prašome atkreipti dėmesį, kad automatiniai vertimai gali turėti klaidų ar netikslumų. Originalus dokumentas jo gimtąja kalba turi būti laikomas autoritetingu šaltiniu. Kritinei informacijai rekomenduojamas profesionalus žmogaus vertimas. Mes neatsakom už bet kokius nesusipratimus ar neteisingus aiškinimus, kilusius naudojant šį vertimą.
\ No newline at end of file
diff --git a/translations/lt/SECURITY.md b/translations/lt/SECURITY.md
index 665ef18c..a458f552 100644
--- a/translations/lt/SECURITY.md
+++ b/translations/lt/SECURITY.md
@@ -1,12 +1,3 @@
-
## Saugumas
„Microsoft“ rimtai žiūri į savo programinės įrangos produktų ir paslaugų saugumą, įskaitant visus šaltinio kodo saugyklas, valdomas per mūsų „GitHub“ organizacijas, tokias kaip [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) ir [mūsų GitHub organizacijas](https://opensource.microsoft.com/).
diff --git a/translations/lt/SUPPORT.md b/translations/lt/SUPPORT.md
index bb152ea8..2a956c74 100644
--- a/translations/lt/SUPPORT.md
+++ b/translations/lt/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Palaikymas
## Kaip pranešti apie problemas ir gauti pagalbą
diff --git a/translations/lt/TROUBLESHOOTING.md b/translations/lt/TROUBLESHOOTING.md
index 8e1d4ac6..ae45a71a 100644
--- a/translations/lt/TROUBLESHOOTING.md
+++ b/translations/lt/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Trikčių šalinimo vadovas
Šis vadovas pateikia sprendimus dažniausiai pasitaikančioms problemoms, su kuriomis galite susidurti dirbdami su „Data Science for Beginners“ mokymo programa.
diff --git a/translations/lt/USAGE.md b/translations/lt/USAGE.md
index bd50ac0f..234c5734 100644
--- a/translations/lt/USAGE.md
+++ b/translations/lt/USAGE.md
@@ -1,12 +1,3 @@
-
# Naudojimo vadovas
Šis vadovas pateikia pavyzdžius ir dažniausiai naudojamus darbo procesus, susijusius su „Duomenų mokslas pradedantiesiems“ mokymo programa.
diff --git a/translations/lt/docs/_sidebar.md b/translations/lt/docs/_sidebar.md
index 8595a9fa..fa26b680 100644
--- a/translations/lt/docs/_sidebar.md
+++ b/translations/lt/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Įvadas
- [Duomenų mokslo apibrėžimas](../1-Introduction/01-defining-data-science/README.md)
- [Duomenų mokslo etika](../1-Introduction/02-ethics/README.md)
diff --git a/translations/lt/examples/README.md b/translations/lt/examples/README.md
index 21bc6110..1d3599a5 100644
--- a/translations/lt/examples/README.md
+++ b/translations/lt/examples/README.md
@@ -1,12 +1,3 @@
-
# Pradedančiųjų duomenų mokslas: Pavyzdžiai
Sveiki atvykę į pavyzdžių katalogą! Ši paprastų, gerai paaiškintų pavyzdžių kolekcija sukurta tam, kad padėtų jums pradėti mokytis duomenų mokslo, net jei esate visiškas naujokas.
diff --git a/translations/lt/for-teachers.md b/translations/lt/for-teachers.md
index 9edce12d..dfee81f3 100644
--- a/translations/lt/for-teachers.md
+++ b/translations/lt/for-teachers.md
@@ -1,12 +1,3 @@
-
## Mokytojams
Norėtumėte naudoti šią mokymo programą savo klasėje? Prašome, naudokitės!
diff --git a/translations/lt/quiz-app/README.md b/translations/lt/quiz-app/README.md
index 4856869d..5d712878 100644
--- a/translations/lt/quiz-app/README.md
+++ b/translations/lt/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Viktorinos
Šios viktorinos yra prieš ir po paskaitų vykstančios viktorinos, skirtos duomenų mokslo mokymo programai adresu https://aka.ms/datascience-beginners.
diff --git a/translations/lt/sketchnotes/README.md b/translations/lt/sketchnotes/README.md
index 27a5f075..5efb4d03 100644
--- a/translations/lt/sketchnotes/README.md
+++ b/translations/lt/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Raskite visas sketchnotes čia!
## Kreditas
diff --git a/translations/ml/.co-op-translator.json b/translations/ml/.co-op-translator.json
new file mode 100644
index 00000000..2e8b31a2
--- /dev/null
+++ b/translations/ml/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-12-19T13:37:59+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "ml"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-12-19T13:41:01+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "ml"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-12-19T14:34:45+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "ml"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-12-19T14:10:15+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "ml"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-12-19T14:28:24+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "ml"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-12-19T13:59:33+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "ml"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-12-19T14:01:37+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "ml"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-12-19T13:51:35+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "ml"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-12-19T13:57:05+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "ml"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-12-19T13:23:07+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "ml"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T15:48:02+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "ml"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-12-19T15:51:22+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "ml"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-12-19T15:38:44+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "ml"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-12-19T15:40:57+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "ml"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-12-19T15:32:07+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "ml"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-12-19T15:37:13+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "ml"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-12-19T15:42:32+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "ml"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-12-19T15:45:32+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "ml"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-12-19T13:29:38+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-12-19T16:14:27+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-12-19T16:17:19+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-12-19T15:54:16+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-12-19T15:57:01+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-12-19T16:02:29+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-12-19T16:05:10+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-12-19T15:58:10+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-12-19T16:00:04+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-12-19T16:08:19+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-12-19T16:11:28+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-12-19T16:18:53+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-12-19T16:18:07+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-12-19T16:32:46+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-12-19T16:34:47+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-12-19T16:21:13+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-12-19T16:23:38+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-12-19T16:28:20+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-12-19T16:24:50+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-12-19T16:38:09+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "ml"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-12-19T13:35:23+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "ml"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-12-19T15:27:04+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "ml"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-12-19T15:28:43+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "ml"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-12-19T15:24:36+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "ml"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-12-19T15:26:03+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "ml"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-12-19T15:19:45+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "ml"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-12-19T15:22:59+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "ml"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-12-19T13:24:32+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "ml"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-12-19T15:10:58+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "ml"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-12-19T15:17:51+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "ml"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-12-19T14:53:19+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "ml"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-12-19T15:03:50+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "ml"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-12-19T14:43:18+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "ml"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-12-19T14:47:26+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "ml"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-12-19T13:23:43+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "ml"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-12-19T16:51:57+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "ml"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-12-19T16:59:20+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "ml"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-12-19T13:36:40+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "ml"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-12-19T13:04:53+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "ml"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-12-19T13:09:06+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "ml"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-12-19T12:49:34+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "ml"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-12-19T13:11:42+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "ml"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:52:10+00:00",
+ "source_file": "README.md",
+ "language_code": "ml"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-12-19T13:13:57+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "ml"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-12-19T12:48:32+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "ml"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-12-19T12:55:49+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "ml"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-12-19T12:45:11+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "ml"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-12-19T13:30:42+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "ml"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-12-19T13:27:55+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "ml"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-12-19T12:40:49+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "ml"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-12-19T13:25:40+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "ml"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-12-19T13:31:46+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "ml"
+ }
+}
\ No newline at end of file
diff --git a/translations/ml/1-Introduction/01-defining-data-science/README.md b/translations/ml/1-Introduction/01-defining-data-science/README.md
index a320e071..b3564af7 100644
--- a/translations/ml/1-Introduction/01-defining-data-science/README.md
+++ b/translations/ml/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# ഡാറ്റാ സയൻസ് നിർവചിക്കൽ
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/ml/1-Introduction/01-defining-data-science/assignment.md b/translations/ml/1-Introduction/01-defining-data-science/assignment.md
index 9ec767d5..3c8fd908 100644
--- a/translations/ml/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/ml/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
Translation for chunk 1 of 'assignment.md' skipped due to timeout.
---
diff --git a/translations/ml/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/ml/1-Introduction/01-defining-data-science/solution/assignment.md
index 39811a11..1c737fe2 100644
--- a/translations/ml/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/ml/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
Translation for chunk 1 of 'assignment.md' skipped due to timeout.
---
diff --git a/translations/ml/1-Introduction/02-ethics/README.md b/translations/ml/1-Introduction/02-ethics/README.md
index 3b33eaf5..66934595 100644
--- a/translations/ml/1-Introduction/02-ethics/README.md
+++ b/translations/ml/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
Translation for chunk 1 of 'README.md' skipped due to timeout.
* വിവരങ്ങൾ യാഥാർത്ഥ്യത്തെ പ്രതിഫലിപ്പിക്കുന്നതിൽ _സത്യസന്ധമായി_ പിടിച്ചെടുത്തിട്ടുണ്ടോ?
diff --git a/translations/ml/1-Introduction/02-ethics/assignment.md b/translations/ml/1-Introduction/02-ethics/assignment.md
index 45ebd0c1..2ca56c14 100644
--- a/translations/ml/1-Introduction/02-ethics/assignment.md
+++ b/translations/ml/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## ഡാറ്റ എതിക്സ് കേസ് സ്റ്റഡി എഴുതുക
## നിർദ്ദേശങ്ങൾ
diff --git a/translations/ml/1-Introduction/03-defining-data/README.md b/translations/ml/1-Introduction/03-defining-data/README.md
index 798b3563..38323ab8 100644
--- a/translations/ml/1-Introduction/03-defining-data/README.md
+++ b/translations/ml/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# ഡാറ്റ നിർവചിക്കൽ
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/ml/1-Introduction/03-defining-data/assignment.md b/translations/ml/1-Introduction/03-defining-data/assignment.md
index fe9c9f54..e76871d2 100644
--- a/translations/ml/1-Introduction/03-defining-data/assignment.md
+++ b/translations/ml/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# ഡാറ്റാസെറ്റുകൾ വർഗ്ഗീകരിക്കൽ
## നിർദ്ദേശങ്ങൾ
diff --git a/translations/ml/1-Introduction/04-stats-and-probability/README.md b/translations/ml/1-Introduction/04-stats-and-probability/README.md
index fefa095a..2d736692 100644
--- a/translations/ml/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/ml/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# സാംഖ്യശാസ്ത്രത്തെയും സാദ്ധ്യതയെയും കുറിച്ചുള്ള ഒരു സംക്ഷിപ്ത പരിചയം
| ](../../sketchnotes/04-Statistics-Probability.png)|
diff --git a/translations/ml/1-Introduction/04-stats-and-probability/assignment.md b/translations/ml/1-Introduction/04-stats-and-probability/assignment.md
index 5502edb7..aad2c000 100644
--- a/translations/ml/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/ml/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# ചെറിയ പ്രമേഹ പഠനം
ഈ അസൈൻമെന്റിൽ, നാം [ഇവിടെ](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) നിന്നെടുത്ത ചെറിയ പ്രമേഹ രോഗികളുടെ ഡാറ്റാസെറ്റുമായി പ്രവർത്തിക്കും.
diff --git a/translations/ml/1-Introduction/README.md b/translations/ml/1-Introduction/README.md
index bac643cf..085d3f76 100644
--- a/translations/ml/1-Introduction/README.md
+++ b/translations/ml/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# ഡാറ്റാ സയൻസിലേക്ക് പരിചയം

diff --git a/translations/ml/2-Working-With-Data/05-relational-databases/README.md b/translations/ml/2-Working-With-Data/05-relational-databases/README.md
index 25110d0c..a2139658 100644
--- a/translations/ml/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/ml/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# ഡാറ്റയുമായി പ്രവർത്തിക്കൽ: ബന്ധപരമായ ഡാറ്റാബേസുകൾ
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/ml/2-Working-With-Data/05-relational-databases/assignment.md b/translations/ml/2-Working-With-Data/05-relational-databases/assignment.md
index 677222e0..56e235cb 100644
--- a/translations/ml/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/ml/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# വിമാനത്താവള ഡാറ്റ പ്രദർശിപ്പിക്കൽ
നിങ്ങൾക്ക് [SQLite](https://sqlite.org/index.html) അടിസ്ഥാനമാക്കിയുള്ള [ഡാറ്റാബേസ്](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) ലഭിച്ചിട്ടുണ്ട്, ഇത് വിമാനത്താവളങ്ങളെക്കുറിച്ചുള്ള വിവരങ്ങൾ ഉൾക്കൊള്ളുന്നു. സ്കീമ താഴെ കാണിക്കുന്നു. വ്യത്യസ്ത നഗരങ്ങളിലെ വിമാനത്താവളങ്ങളുടെ വിവരങ്ങൾ പ്രദർശിപ്പിക്കാൻ നിങ്ങൾ [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) ൽ [SQLite വിപുലീകരണം](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) ഉപയോഗിക്കും.
diff --git a/translations/ml/2-Working-With-Data/06-non-relational/README.md b/translations/ml/2-Working-With-Data/06-non-relational/README.md
index 4265e4d0..74221c3d 100644
--- a/translations/ml/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/ml/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# ഡാറ്റയുമായി പ്രവർത്തിക്കൽ: നോൺ-റിലേഷണൽ ഡാറ്റ
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/ml/2-Working-With-Data/06-non-relational/assignment.md b/translations/ml/2-Working-With-Data/06-non-relational/assignment.md
index bed7432d..69633c4e 100644
--- a/translations/ml/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/ml/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# സോഡ ലാഭം
## നിർദ്ദേശങ്ങൾ
diff --git a/translations/ml/2-Working-With-Data/07-python/README.md b/translations/ml/2-Working-With-Data/07-python/README.md
index 37bb4db5..9bd0c673 100644
--- a/translations/ml/2-Working-With-Data/07-python/README.md
+++ b/translations/ml/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# ഡാറ്റയുമായി പ്രവർത്തിക്കൽ: പൈത്തൺയും പാൻഡാസ് ലൈബ്രറിയും
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/ml/2-Working-With-Data/07-python/assignment.md b/translations/ml/2-Working-With-Data/07-python/assignment.md
index 4f524c04..7d699105 100644
--- a/translations/ml/2-Working-With-Data/07-python/assignment.md
+++ b/translations/ml/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# പൈത്തണിൽ ഡാറ്റ പ്രോസസ്സിംഗിനുള്ള അസൈൻമെന്റ്
ഈ അസൈൻമെന്റിൽ, ഞങ്ങൾ ഞങ്ങളുടെ ചലഞ്ചുകളിൽ വികസിപ്പിക്കാൻ തുടങ്ങിയ കോഡിനെക്കുറിച്ച് വിശദീകരിക്കാൻ നിങ്ങളോട് ആവശ്യപ്പെടും. അസൈൻമെന്റ് രണ്ട് ഭാഗങ്ങളായി വിഭജിച്ചിരിക്കുന്നു:
diff --git a/translations/ml/2-Working-With-Data/08-data-preparation/README.md b/translations/ml/2-Working-With-Data/08-data-preparation/README.md
index 7f4397ab..181a6bed 100644
--- a/translations/ml/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/ml/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# ഡാറ്റയുമായി പ്രവർത്തിക്കൽ: ഡാറ്റ തയ്യാറാക്കൽ
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/ml/2-Working-With-Data/08-data-preparation/assignment.md b/translations/ml/2-Working-With-Data/08-data-preparation/assignment.md
index ca27fd6e..9d6e39fd 100644
--- a/translations/ml/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/ml/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# ഒരു ഫോമിൽ നിന്നുള്ള ഡാറ്റ വിലയിരുത്തൽ
ഒരു ക്ലയന്റ് അവരുടെ ക്ലയന്റ്-ബേസ് സംബന്ധിച്ച ചില അടിസ്ഥാന ഡാറ്റ ശേഖരിക്കാൻ ഒരു [ചെറിയ ഫോം](../../../../2-Working-With-Data/08-data-preparation/index.html) പരീക്ഷിച്ചു വരുന്നു. അവർ ശേഖരിച്ച ഡാറ്റ ശരിയാണോ എന്ന് സ്ഥിരീകരിക്കാൻ അവർ അവരുടെ കണ്ടെത്തലുകൾ നിങ്ങളെ സമീപിച്ചു. ഫോം കാണാൻ ബ്രൗസറിൽ `index.html` പേജ് തുറക്കാം.
diff --git a/translations/ml/2-Working-With-Data/README.md b/translations/ml/2-Working-With-Data/README.md
index 39785444..79d48065 100644
--- a/translations/ml/2-Working-With-Data/README.md
+++ b/translations/ml/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# ഡാറ്റയുമായി പ്രവർത്തിക്കൽ

diff --git a/translations/ml/3-Data-Visualization/09-visualization-quantities/README.md b/translations/ml/3-Data-Visualization/09-visualization-quantities/README.md
index f5d42519..135a6075 100644
--- a/translations/ml/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/ml/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# അളവുകൾ ദൃശ്യവൽക്കരിക്കൽ
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/ml/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/ml/3-Data-Visualization/09-visualization-quantities/assignment.md
index 93876db1..e614a60a 100644
--- a/translations/ml/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/ml/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# ലൈനുകൾ, സ്കാറ്ററുകൾ, ബാറുകൾ
## നിർദ്ദേശങ്ങൾ
diff --git a/translations/ml/3-Data-Visualization/10-visualization-distributions/README.md b/translations/ml/3-Data-Visualization/10-visualization-distributions/README.md
index 04002b00..0186c375 100644
--- a/translations/ml/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/ml/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# വിതരണങ്ങൾ ദൃശ്യവൽക്കരിക്കൽ
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ml/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/ml/3-Data-Visualization/10-visualization-distributions/assignment.md
index 9892748d..c5ffda7b 100644
--- a/translations/ml/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/ml/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# നിങ്ങളുടെ കഴിവുകൾ പ്രയോഗിക്കുക
## നിർദ്ദേശങ്ങൾ
diff --git a/translations/ml/3-Data-Visualization/11-visualization-proportions/README.md b/translations/ml/3-Data-Visualization/11-visualization-proportions/README.md
index 414b3cf2..ac03ea5c 100644
--- a/translations/ml/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/ml/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# അനുപാതങ്ങൾ ദൃശ്യവൽക്കരിക്കൽ
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ml/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/ml/3-Data-Visualization/11-visualization-proportions/assignment.md
index 8d795a19..354eddd7 100644
--- a/translations/ml/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/ml/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Excel-ൽ പരീക്ഷിക്കുക
## നിർദ്ദേശങ്ങൾ
diff --git a/translations/ml/3-Data-Visualization/12-visualization-relationships/README.md b/translations/ml/3-Data-Visualization/12-visualization-relationships/README.md
index ef7a9218..c25870e5 100644
--- a/translations/ml/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/ml/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# ബന്ധങ്ങൾ ദൃശ്യവൽക്കരിക്കൽ: തേൻ സംബന്ധിച്ച എല്ലാം 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ml/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/ml/3-Data-Visualization/12-visualization-relationships/assignment.md
index 89ef0f38..ac02fe95 100644
--- a/translations/ml/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/ml/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# തേനീച്ചകളുടെ കുടിലിലേക്ക് ഡൈവ് ചെയ്യുക
## നിർദ്ദേശങ്ങൾ
diff --git a/translations/ml/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/ml/3-Data-Visualization/13-meaningful-visualizations/README.md
index 6443048c..c95dd84b 100644
--- a/translations/ml/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/ml/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# അർത്ഥവത്തായ ദൃശ്യവത്കരണങ്ങൾ നിർമ്മിക്കൽ
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ml/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/ml/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index c126c01d..ef6911d6 100644
--- a/translations/ml/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/ml/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# നിങ്ങളുടെ സ്വന്തം കസ്റ്റം വിസ് നിർമ്മിക്കുക
## നിർദ്ദേശങ്ങൾ
diff --git a/translations/ml/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/ml/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 2b8c244b..87b6273c 100644
--- a/translations/ml/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/ml/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# ഡേഞ്ചറസ് ലിയാസൺസ് ഡാറ്റാ വിസ്വലൈസേഷൻ പ്രോജക്ട്
ആരംഭിക്കാൻ, നിങ്ങളുടെ മെഷീനിൽ NPMയും Nodeയും പ്രവർത്തനക്ഷമമാണെന്ന് ഉറപ്പാക്കണം. ഡിപ്പൻഡൻസികൾ ഇൻസ്റ്റാൾ ചെയ്യുക (npm install) പിന്നെ പ്രോജക്ട് ലോക്കലായി റൺ ചെയ്യുക (npm run serve):
diff --git a/translations/ml/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/ml/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 22855310..bde5a349 100644
--- a/translations/ml/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/ml/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# ഡേഞ്ചറസ് ലിയാസൺസ് ഡാറ്റാ വിസ്വലൈസേഷൻ പ്രോജക്ട്
ആരംഭിക്കാൻ, നിങ്ങളുടെ മെഷീനിൽ NPMയും Nodeയും പ്രവർത്തനക്ഷമമാണെന്ന് ഉറപ്പാക്കണം. ഡിപ്പൻഡൻസികൾ ഇൻസ്റ്റാൾ ചെയ്യുക (npm install) പിന്നെ പ്രോജക്ട് ലോക്കലായി റൺ ചെയ്യുക (npm run serve):
diff --git a/translations/ml/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/ml/3-Data-Visualization/R/09-visualization-quantities/README.md
index 08747224..65f68301 100644
--- a/translations/ml/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/ml/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# അളവുകൾ ദൃശ്യവൽക്കരിക്കൽ
| എന്നവരുടെ സ്കെച്ച്നോട്ട് ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/ml/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/ml/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index d7f28361..8c1fa692 100644
--- a/translations/ml/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/ml/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# ലൈനുകൾ, സ്കാറ്ററുകൾ, ബാറുകൾ
## നിർദ്ദേശങ്ങൾ
diff --git a/translations/ml/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/ml/3-Data-Visualization/R/10-visualization-distributions/README.md
index b0f89a79..99f862b0 100644
--- a/translations/ml/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/ml/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# വിതരണങ്ങൾ ദൃശ്യവൽക്കരിക്കൽ
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ml/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/ml/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 18b4db41..efb7ef0c 100644
--- a/translations/ml/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/ml/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# നിങ്ങളുടെ കഴിവുകൾ പ്രയോഗിക്കുക
## നിർദ്ദേശങ്ങൾ
diff --git a/translations/ml/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/ml/3-Data-Visualization/R/11-visualization-proportions/README.md
index b3ec0024..cfb8cf43 100644
--- a/translations/ml/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/ml/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# അനുപാതങ്ങൾ ദൃശ്യവൽക്കരിക്കൽ
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ml/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/ml/3-Data-Visualization/R/12-visualization-relationships/README.md
index e3d926cd..242bf108 100644
--- a/translations/ml/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/ml/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# ബന്ധങ്ങൾ ദൃശ്യവൽക്കരിക്കൽ: തേൻ 🍯 സംബന്ധിച്ച എല്ലാം
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ml/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/ml/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index f2a96fbb..2e074168 100644
--- a/translations/ml/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/ml/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# അർത്ഥവത്തായ ദൃശ്യവത്കരണങ്ങൾ നിർമ്മിക്കൽ
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ml/3-Data-Visualization/README.md b/translations/ml/3-Data-Visualization/README.md
index 2cc22a7e..605d4960 100644
--- a/translations/ml/3-Data-Visualization/README.md
+++ b/translations/ml/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# ദൃശ്യവത്കരണങ്ങൾ

diff --git a/translations/ml/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/ml/4-Data-Science-Lifecycle/14-Introduction/README.md
index 0b57cdfb..713e14a9 100644
--- a/translations/ml/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/ml/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# ഡാറ്റാ സയൻസ് ലൈഫ്സൈക്കിൾ പരിചയം
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/ml/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/ml/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index b373336e..b746b0e1 100644
--- a/translations/ml/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/ml/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# ഒരു ഡാറ്റാസെറ്റ് വിലയിരുത്തൽ
നിങ്ങളുടെ ടീമിന് ഒരു ക്ലയന്റ് ന്യൂയോർക്ക് സിറ്റിയിലെ ടാക്സി ഉപഭോക്താവിന്റെ സീസണൽ ചെലവഴിക്കൽ ശീലങ്ങൾ അന്വേഷിക്കുന്നതിന് സഹായം തേടിയിട്ടുണ്ട്.
diff --git a/translations/ml/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/ml/4-Data-Science-Lifecycle/15-analyzing/README.md
index 9842c8cf..4eb54102 100644
--- a/translations/ml/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/ml/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# ഡാറ്റ സയൻസ് ലൈഫ്സൈക്കിൾ: വിശകലനം
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/ml/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/ml/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index e9f9a9f8..e42a3e15 100644
--- a/translations/ml/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/ml/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# ഉത്തരം അന്വേഷിക്കൽ
ഇത് മുൻപത്തെ പാഠത്തിന്റെ [അസൈൻമെന്റ്](../14-Introduction/assignment.md) തുടർച്ചയാണ്, അവിടെ നാം ഡാറ്റാ സെറ്റിനെ കുറിച്ച് സംക്ഷിപ്തമായി നോക്കിയിരുന്നു. ഇപ്പോൾ നാം ഡാറ്റയെ കൂടുതൽ ആഴത്തിൽ പരിശോധിക്കാനാണ് പോകുന്നത്.
diff --git a/translations/ml/4-Data-Science-Lifecycle/16-communication/README.md b/translations/ml/4-Data-Science-Lifecycle/16-communication/README.md
index 37e4295e..315ba87c 100644
--- a/translations/ml/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/ml/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# ഡാറ്റ സയൻസ് ലൈഫ്സൈക്കിൾ: കമ്മ്യൂണിക്കേഷൻ
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/ml/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/ml/4-Data-Science-Lifecycle/16-communication/assignment.md
index c15a34e8..af292f91 100644
--- a/translations/ml/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/ml/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# ഒരു കഥ പറയുക
## നിർദ്ദേശങ്ങൾ
diff --git a/translations/ml/4-Data-Science-Lifecycle/README.md b/translations/ml/4-Data-Science-Lifecycle/README.md
index dfa27b09..d83e278f 100644
--- a/translations/ml/4-Data-Science-Lifecycle/README.md
+++ b/translations/ml/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# ഡാറ്റ സയൻസ് ലൈഫ്സൈക്കിൾ

diff --git a/translations/ml/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/ml/5-Data-Science-In-Cloud/17-Introduction/README.md
index a11f0430..d90d1366 100644
--- a/translations/ml/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/ml/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
Translation for chunk 1 of 'README.md' skipped due to timeout.
---
diff --git a/translations/ml/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/ml/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 0f54a2e4..4adc6867 100644
--- a/translations/ml/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/ml/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# മാർക്കറ്റ് റിസർച്ച്
## നിർദ്ദേശങ്ങൾ
diff --git a/translations/ml/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/ml/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 5be0ce4d..9ea25f2f 100644
--- a/translations/ml/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/ml/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# ക്ലൗഡിലെ ഡാറ്റാ സയൻസ്: "ലോ കോഡ്/നോ കോഡ്" വഴി
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/ml/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/ml/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 6ca270c1..2f1f9726 100644
--- a/translations/ml/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/ml/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# ലോ കോഡ്/നോ കോഡ് ഡാറ്റാ സയൻസ് പ്രോജക്ട് ആസ്യൂർ ML-ൽ
## നിർദ്ദേശങ്ങൾ
diff --git a/translations/ml/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/ml/5-Data-Science-In-Cloud/19-Azure/README.md
index 76ac415b..aabcf9b3 100644
--- a/translations/ml/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/ml/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# ക്ലൗഡിലെ ഡാറ്റാ സയൻസ്: "Azure ML SDK" വഴി
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/ml/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/ml/5-Data-Science-In-Cloud/19-Azure/assignment.md
index f94185fd..e09e9001 100644
--- a/translations/ml/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/ml/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML SDK ഉപയോഗിച്ച് ഡാറ്റാ സയൻസ് പ്രോജക്ട്
## നിർദ്ദേശങ്ങൾ
diff --git a/translations/ml/5-Data-Science-In-Cloud/README.md b/translations/ml/5-Data-Science-In-Cloud/README.md
index 98377029..c3f280c1 100644
--- a/translations/ml/5-Data-Science-In-Cloud/README.md
+++ b/translations/ml/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# ക്ലൗഡിലെ ഡാറ്റാ സയൻസ്

diff --git a/translations/ml/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/ml/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 196155db..e588391d 100644
--- a/translations/ml/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/ml/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# യഥാർത്ഥ ലോകത്തിലെ ഡാറ്റാ സയൻസ്
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/ml/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/ml/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index e35dc9e9..6e923310 100644
--- a/translations/ml/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/ml/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# ഒരു പ്ലാനറ്ററി കമ്പ്യൂട്ടർ ഡാറ്റാസെറ്റ് അന്വേഷിക്കുക
## നിർദ്ദേശങ്ങൾ
diff --git a/translations/ml/6-Data-Science-In-Wild/README.md b/translations/ml/6-Data-Science-In-Wild/README.md
index eba3ea7a..8b1d3471 100644
--- a/translations/ml/6-Data-Science-In-Wild/README.md
+++ b/translations/ml/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Data Science in the Wild
വ്യവസായങ്ങളിലുടനീളം ഡാറ്റാ സയൻസിന്റെ യഥാർത്ഥ ലോക പ്രയോഗങ്ങൾ.
diff --git a/translations/ml/AGENTS.md b/translations/ml/AGENTS.md
index 64abd72a..97f1c9a8 100644
--- a/translations/ml/AGENTS.md
+++ b/translations/ml/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## പ്രോജക്ട് അവലോകനം
diff --git a/translations/ml/CODE_OF_CONDUCT.md b/translations/ml/CODE_OF_CONDUCT.md
index 1c7588f7..d34b926e 100644
--- a/translations/ml/CODE_OF_CONDUCT.md
+++ b/translations/ml/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft ഓപ്പൺ സോഴ്സ് കോഡ് ഓഫ് കണ്ടക്റ്റ്
ഈ പ്രോജക്ട് [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/) സ്വീകരിച്ചിട്ടുണ്ട്.
diff --git a/translations/ml/CONTRIBUTING.md b/translations/ml/CONTRIBUTING.md
index 0ae9e832..515e78b5 100644
--- a/translations/ml/CONTRIBUTING.md
+++ b/translations/ml/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Data Science for Beginners-ലേക്ക് സംഭാവന ചെയ്യുക
Data Science for Beginners പാഠ്യപദ്ധതിയിലേക്ക് സംഭാവന ചെയ്യുന്നതിൽ താൽപര്യമുള്ളതിന് നന്ദി! സമൂഹത്തിൽ നിന്നുള്ള സംഭാവനകൾ ഞങ്ങൾ സ്വാഗതം ചെയ്യുന്നു.
diff --git a/translations/ml/INSTALLATION.md b/translations/ml/INSTALLATION.md
index 21d3c5d6..f33a6ee5 100644
--- a/translations/ml/INSTALLATION.md
+++ b/translations/ml/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# ഇൻസ്റ്റലേഷൻ ഗൈഡ്
ഈ ഗൈഡ് ഡാറ്റാ സയൻസ് ഫോർ ബിഗിനേഴ്സ് പാഠ്യപദ്ധതിയുമായി പ്രവർത്തിക്കാൻ നിങ്ങളുടെ പരിസ്ഥിതി സജ്ജമാക്കുന്നതിൽ സഹായിക്കും.
diff --git a/translations/ml/README.md b/translations/ml/README.md
index 6837b814..56cfa2f1 100644
--- a/translations/ml/README.md
+++ b/translations/ml/README.md
@@ -1,206 +1,197 @@
-
-# നൂറ്റാണ്ടുകൾക്കുള്ള ഡാറ്റാ സയൻസ് - ഒരു പാഠ്യപദ്ധതി
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+# ഡാറ്റാ സയൻസ് ഫോ ബെഗിനേഴ്സ് - ഒരു കോഴ്സ് പ്രോഗ്രാം
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
+[](http://makeapullrequest.com)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
-മൈക്രോസോഫ്റ്റിലെ അസ്യൂർ ക്ലൗഡ് അഡ്വക്കേറ്റുകൾ ഡാറ്റാ സയൻസ് സംബന്ധിച്ച 10 ആഴ്ച, 20 പാഠങ്ങൾ ഉൾക്കൊള്ളുന്ന ഒരു പാഠ്യപദ്ധതി വാഗ്ദാനം ചെയ്യുന്നു. ഓരോ പാഠത്തിലും പ്രീ-ലസൺ, പോസ്റ്റ്-ലസൺ ക്വിസുകളും, പാഠം പൂര്ത്തിയാക്കുന്നതിനുള്ള എഴുത്ത് നിർദ്ദേശങ്ങളും, പരിഹാരവും, അസൈൻമെന്റും ഉൾപ്പെടുത്തിയിരിക്കുന്നു. നമ്മുടെ പ്രോജക്റ്റ്-അധിഷ്ഠിത പാഠാന്തര നിയന്ത്രണം പുതിയ കഴിവുകൾ ചെറുതായി മനസ്സിലാക്കുന്നതിൽ സഹായിക്കുന്ന ഒരു തെളിയിച്ച രീതി ആണ്.
+മൈക്രോസോഫ്റ്റിലെ അസ്യൂർ ക്ലൗഡ് അഭിമുഖീകരിക്കുന്നവർ ഡാറ്റാ സയൻസിനെക്കുറിച്ച് 10 ആഴ്ച, 20 പാഠങ്ങൾ അടങ്ങിയ ഒരു കോഴ്സ് പ്രോഗ്രാം Bern കൊടുക്കാൻ സന്തോഷവാന്മാർ ആണ്. ഓരോ പാഠത്തിലേക്കും പൂർവ്വപാഠ ക്യൂഇസുകൾ, മുന്നറിയിപ്പ് മുതൽ പാഠം പൂർത്തിയാക്കാനുള്ള എഴുതിയ നിർദ്ദേശങ്ങൾ, ഒരു പരിഹാരം, ഏൽപ്പിക്കൽ എന്നിവ ഉൾപ്പെടുത്തുന്നുണ്ട്. ഞങ്ങളുടെ പ്രോജക്റ്റ് അധിഷ്ഠിത പഠന രീതി ഉള്ളതിനാൽ നിങ്ങൾ നിർമ്മിക്കുകയായി പഠിക്കാം, ഇത് പുതിയ കഴിവുകൾ 'ബാധകമായി' മാറാനുള്ള ഉറപ്പുള്ള മാർഗം ആണ്.
-**ഞങ്ങളുടെ രചയിതാക്കളായ ഏതാണ്ട് എല്ലാവർക്കും ഹൃദയപൂർവ്വമായ നന്ദി:** [ജാസ്മിൻ ഗ്രീൻവേ](https://www.twitter.com/paladique), [ഡ്മിത്രി സോഷ്യ്നിക്കോവ്](http://soshnikov.com), [നിത്യ നരസിംഹൻ](https://twitter.com/nitya), [ജാലൻ മക്ഗീ](https://twitter.com/JalenMcG), [ജെൻ ലൂപ്പർ](https://twitter.com/jenlooper), [മോഡ് ലെവി](https://twitter.com/maudstweets), [ടിഫിനി സോട്ടെറെ](https://twitter.com/TiffanySouterre), [ക്രിസ്റ്റോഫർ ഹാരിസ്ൺ](https://www.twitter.com/geektrainer).
+**ഞങ്ങളുടെ രചയിതാക്കൾക്ക് ആഴത്തിലുള്ള നന്ദി:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 പ്രത്യേക നന്ദി 🙏 [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) ആയ രചയിതാക്കൾക്കും, റിവ്യൂവർക്കും, ഉള്ളടക്ക സംഭാവന ദാതാക്കളും,** പ്രത്യേകിച്ച് ആര്യൻ അരോറ, [അദിത്യ ഗാർഗ്](https://github.com/AdityaGarg00), [അലോൻഡ്ര സാഞ്ചൈസ്](https://www.linkedin.com/in/alondra-sanchez-molina/), [അങ്കിത സിങ്](https://www.linkedin.com/in/ankitasingh007), [അനുപം മിശ്ര](https://www.linkedin.com/in/anupam--mishra/), [അർപിത ദാസ്](https://www.linkedin.com/in/arpitadas01/), ചിത്രൽബിഹാരി ദുബെയി, [ദിബ്രിൻ nsofor](https://www.linkedin.com/in/dibrinsofor), [ദിഷิต ഭാസിൻ](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [മാജദ് സഫി](https://www.linkedin.com/in/majd-s/), [മാക്സ് ബ്ലം](https://www.linkedin.com/in/max-blum-6036a1186/), [മിഗെൽ കോരეა](https://www.linkedin.com/in/miguelmque/), [മോഹമ്മ ഇഫ്റ്റഖർ (ഇഫ്തു) ഇബ്നെ ജലാൽ](https://twitter.com/iftu119), [നാവ്സിൻ തടാസ്സും](https://www.linkedin.com/in/nawrin-tabassum), [റെമോണ്ട് വാങ്സ പുത്ത്ര](https://www.linkedin.com/in/raymond-wp/), [രോഹിത് യാദവ്](https://www.linkedin.com/in/rty2423), സമൃദ്ധി ശർമ, [സാന്യ സിഹ](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
-[ഷീന നാരുല](https://www.linkedin.com/in/sheena-narua-n/), [തൗക്കീർ അഹ്മദ്](https://www.linkedin.com/in/tauqeerahmad5201/), യോഗേന്ദ്രസിങ് പവാർ , [വിദുഷി ഗുപ്ത](https://www.linkedin.com/in/vidushi-gupta07/), [ജസ്ലീൻ സോന്ധി](https://www.linkedin.com/in/jasleen-sondhi/)
+**🙏 പ്രത്യേക നന്ദി 🙏 നമ്മുടെ [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) രചയിതാക്കളും, അവലോകനക്കാരുമായും ഉള്ളടക്ക സംഭാവന്കാരുമായും,** പ്രധാനമായും Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| ഡാറ്റാ സയൻസ് ഫോർ ബിഗിനേഴ്സ് - _സ്കെച്ച് നോട്ട് [@nitya](https://twitter.com/nitya)_ |
-
+| ഡാറ്റാ സയൻസ് ഫോ ബെഗിനേഴ്സ് - _സ്കെച്ച്നോട്ട് [@nitya](https://twitter.com/nitya) ഒരുക്കിയത്_ |
### 🌐 ബഹുഭാഷാ പിന്തുണ
-#### GitHub ആക്ഷൻ വഴി പിന്തുണ ലഭിക്കുന്നു (സ്വയം പ്രവർത്തി & എപ്പോഴും പുതുക്കുന്ന)
+#### GitHub ആക്ഷൻ വഴി പിന്തുണയ്ക്കപ്പെടുന്നു (സ്വയം പ്രവർത്തിക്കുന്നതും എప్పഴും പുതുക്കപ്പെട്ടതും)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](./README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](./README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **പ്രിയതമമായി ലോക്കലായി ക്ലോൺ ചെയ്യണമെന്ന് ആഗ്രഹിക്കുന്നുവോ?**
+> **പ്രദേശീയമായി ക്ലോൺ ചെയ്യാൻ ഇഷ്ടപ്പെടുന്നുവോ?**
-> ഈ റിപ്പോസിറ്ററിയിൽ 50+ ഭാഷാ വിവർത്തനങ്ങൾ ഉൾപ്പെടുന്നു, ഇത് ഡൗൺലോഡ് വലിപ്പം വളരെ വർദ്ധിപ്പിക്കുന്നു. വിവർത്തനങ്ങൾ കൂടാതെ ക്ലോൺ ചെയ്യാൻ sparse checkout ഉപയോഗിക്കുക:
+> ഈ റിപോസിറ്ററിയിൽ 50-ലധികം ഭാഷാ വിവർത്തനങ്ങൾ ഉൾക്കൊള്ളുന്നുണ്ടു, ഇത് ഡൗൺലോഡ് വലിപ്പം വലിയതാക്കുന്നു. വിവർത്തനങ്ങൾ ഇല്ലാതെ ക്ലോൺ ചെയ്യാൻ sparse checkout ഉപയോഗിക്കുക:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> ദ്രുത ഡൗൺലോഡിനായി നിങ്ങൾക്ക് പാഠം പൂർത്തിയാക്കുന്നതിന് എല്ലാം ഇതിലൂടെ ലഭിക്കും.
+> ഇത് നിങ്ങൾക്ക് കോഴ്സ് പൂർത്തിയാക്കാൻ ആവശ്യമായ എല്ലാ കാര്യങ്ങളും വേഗത്തിൽ നൽകുന്നു.
-**കൂടുതൽ സംവരണം ചെയ്യാൻ ആഗ്രഹിക്കുന്ന പുതിയ വിവർത്തന ഭാഷകൾ ഇവിടെ [വരെയുള്ളവ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) കാണുക**
+**കൂടുതൽ വിവർത്തന ഭാഷകൾ പിന്തുണയ്ക്കണമെങ്കിൽ ഇവയും [ഇവിടെ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) പ്രദർശിപ്പിച്ചിരിക്കുന്നു**
#### നമ്മുടെ കമ്മ്യൂണിറ്റിയിൽ ചേരുക
[](https://discord.gg/nTYy5BXMWG)
-നമുക്കൊപ്പം ഒരു Discord ലേണിംഗ് സീരീസ് നടക്കുകയാണ്, കൂടുതൽ പഠിക്കാനും ചേരാനും [Learn with AI Series](https://aka.ms/learnwithai/discord) സന്ദർശിക്കുക 2025 സെപ്റ്റംബർ 18 - 30 വരെ. GitHub Copilot ഉപയോഗിച്ച് ഡാറ്റാ സയൻസിന് കുറിച്ച് ടിപ്പുകളും വഴികളുമാണ് നിങ്ങൾക്ക് ലഭിക്കുക.
+നമ്മുടെ Discord-ൽ AI-യോടൊപ്പം പഠന പരമ്പര തുടരുകയാണ്, കൂടുതൽ അറിഞ്ഞ് [Learn with AI Series](https://aka.ms/learnwithai/discord) ലേക്ക് 2025 സെപ്റ്റംബർ 18 മുതൽ 30 വരെയുള്ള കാലയളവിൽ ചേരുക. GitHub Copilot ഉപയോഗിച്ച് ഡാറ്റാ സയൻസിനുള്ള ടിപ്പുകളും തന്ത്രങ്ങളും നിങ്ങൾക്ക് ലഭിക്കും.
-
+
-# നിങ്ങൾ വിദ്യാർത്ഥിയോ?
+# നിങ്ങൾ വിദ്യാർത്ഥിയാണോ?
-തുടങ്ങുവാൻ താഴെ നൽകിയ റിസോഴ്സുകൾ ഉപയോഗിക്കുക:
+തുടങ്ങാൻ താഴെ കൊടുത്ത റിസോഴ്സുകൾ ഉപയോഗിക്കുക:
-- [വിദ്യാർത്ഥി ഹബ് പേജ്](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ഇവിടെ നിങ്ങൾക്ക് തുടക്കക്കാരുടെ റിസോഴ്സുകളും, വിദ്യാർത്ഥി പാക്കുകളും, സൗജന്യ സർട്ട് വൗച്ചർ നേടാനുള്ള വഴികളും ലഭിക്കും. എല്ലാ മാസവും ഉള്ളടക്കം പുതുക്കുന്നതുകൊണ്ട് ഈ പേജ് ബുക്ക്മാർക്ക് ചെയ്ത് സമയത്തിനൊപ്പം പരിശോധിക്കുന്നതാണ് നല്ലത്.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ഒരു ആഗോള വിദ്യാർത്ഥി അംബാസഡർ കമ്മ്യൂണിറ്റിയിലേക്ക് ചേരുക, ഇത് മൈക്രോസോഫ്റ്റിലേക്ക് നിങ്ങളുടെ വഴി ആകാം.
+- [Student Hub പേജ്](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ഈ പേജിൽ നിങ്ങൾക്ക് ആരംഭകർക്കുള്ള റിസോഴ്സുകൾ, വിദ്യാർത്ഥി പാക്കുകൾ, സൗജന്യ സർട്ടിഫിക്കറ്റ് വൗച്ചറുകൾ എന്നിവ ലഭിക്കും. ഇതാണ് നിങ്ങൾക്ക് ബുക്ക് മാർക്ക് ചെയ്ത് സമയവും സമയം ചെക്ക് ചെയ്യേണ്ട ഒരു പേജ്, കാരണം ഞങ്ങൾ സ محتويات് പ്രതിമാസം മാറ്റുന്നു.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ആഗോള വിദ്യാർത്ഥി അംബാസിഡർ കമ്മ്യൂണിറ്റിയിൽ ചേർക്കുക, ഇതാണ് മൈക്രോസോഫ്റ്റിലേക്ക് എത്താനുള്ള ഒരു വഴി.
-# ആരംഭിക്കൽ
+# തുടങ്ങാം
-## 📚 രേഖകളുകൾ
+## 📚 ഡോക്യുമെന്റേഷൻ
-- **[ഇൻസ്റ്റലേഷൻ ഗൈഡ്](INSTALLATION.md)** - തുടക്കക്കാര്ക്ക് ഘട്ടം ഘട്ടമായി സെറ്റപ്പ് നിർദ്ദേശങ്ങൾ
-- **[ഉപയോഗ മാർഗ്ഗം](USAGE.md)** - ഉദാഹരണങ്ങൾക്കും സാധാരണ പ്രവൃത്തി പ്രവാഹങ്ങൾക്കും
-- **[പ്രശ്ന പരിഹാരം](TROUBLESHOOTING.md)** - സാധാരണ പ്രശ്നങ്ങൾക്ക് പരിഹാരങ്ങൾ
-- **[സംഭാവന മാർഗ്ഗം](CONTRIBUTING.md)** - ഈ പ്രോജക്ടിൽ സംഭാവന ചെയ്യാനുള്ള രീതികൾ
-- **[അധ്യാപകർക്ക്](for-teachers.md)** - പഠന മാർഗ്ഗനിർദ്ദേശങ്ങളും ക്ലാസ്സ് റൂം റിസോഴ്സുകളും
+- **[ഇൻസ്റ്റലേഷൻ ഗൈഡ്](INSTALLATION.md)** - ആരംഭകർക്കായി ഘട്ടം ഘട്ടമായിലാണ് സെറ്റപ്പ് നിർദ്ദേശങ്ങൾ
+- **[ഉപയോഗ വേർപ്പ്](USAGE.md)** - ഉദാഹരണങ്ങളും പൊതു പ്രവൃത്തികളെഴുപ്പുകളും
+- **[പ്രശ്നപരിഹാരം](TROUBLESHOOTING.md)** - പൊതു പ്രശ്നങ്ങളുടെ പരിഹാരങ്ങൾ
+- **[സംഭാവന ഗൈഡ്](CONTRIBUTING.md)** - ഈ പദ്ധതിയിലേക്ക് സംഭാവന ചെയ്യാനുള്ള മാർഗങ്ങൾ
+- **[അധ്യാപകർക്ക്](for-teachers.md)** - പഠന ദിശാനിർദ്ദേശങ്ങളും ക്ലാസ് മുറി റിസോഴ്സുകളും
-## 👨🎓 വിദ്യാർത്ഥികൾക്കായി
-> **സമ്പൂർണ്ണ തുടക്കക്കാർ**: ഡാറ്റാ സയൻസിലേക്ക് പുതിയവരാണോ? നമ്മുടെ [തുടക്കക്കാർക്കായി അനുയോജ്യമായ ഉദാഹരണങ്ങൾ](examples/README.md) ഉപയോഗിച്ച് തുടങ്ങൂ! ഈ ലളിതവും വിശദീകരണക്കൂടിയ ഉദാഹരണങ്ങൾ മുഖേന അടിസ്ഥാനങ്ങൾ മനസിലാക്കാനാകും.
-> **[വിദ്യാർത്ഥികൾ](https://aka.ms/student-page)**: ഈ പാഠ്യപദ്ധതി സ്വയം പഠിക്കാൻ, മുഴുവൻ റിപ്പൊ ഡൗൺലോഡ് ചെയ്ത് പ്രീ-ലെക്ചർ ക്വിസ് മുതൽ ആരംഭിച്ച് പഠനം പൂർത്തിയാക്കൂ. പാഠം വായിച്ച് ശേഷമുള്ള പ്രവർത്തനങ്ങൾ തീരൂ. തീരുമാനം കോഡ് പകർപ്പി പ്രോജക്ടുകൾ സൃഷ്ടിക്കാനല്ല; പക്ഷേ, ആ കോഡ് ഓരോ പ്രോജക്റ്റ്-ഓറിയന്റഡ് പാഠത്തിലെ /solutions ഫോള്ഡറുകളിൽ ലഭ്യമാണ്. മറ്റൊരു ആശയമെന്നാൽ കൂട്ടുകാരോടൊപ്പം പഠന ഗ്രൂപ്പ് രൂപപ്പെടുത്തിയും ഉള്ളടക്കങ്ങൾ ഒന്നിച്ച് പഠിക്കാം. കൂടുതൽ പഠനത്തിനായി [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ശുപാർശ ചെയ്യുന്നു.
+## 👨🎓 വിദ്യാർത്ഥികൾക്ക്
+> **പൂർണ്ണമായി പുതിയവർക്കായി**: ഡാറ്റാ സയൻസില് പുതുമകാണുന്നുണ്ടോ? ഞങ്ങളുടെ [ആരംഭകർക്കുള്ള ഉദാഹരണങ്ങൾ](examples/README.md) ഉപയോഗിച്ച് തുടങ്ങുക! ഈ ലളിതവും നല്ല രീതിയിൽ ഓരോള സംഭവത്തെ വിശദീകരിച്ചിരിക്കുന്ന ഉദാഹരണങ്ങൾ, പൂർണ്ണ കോഴ്സിൽ പ്രവേശിക്കുന്നതിന് മുമ്പ് അടിസ്ഥാനങ്ങൾ മനസ്സിലാക്കാൻ സഹായിക്കും.
+> **[വിദ്യാർത്ഥികൾ](https://aka.ms/student-page)**: ഈ കോഴ്സ് സ്വയം പഠിക്കാൻ, പൂർണ്ണ റിപൊ ഫോർക്ക് ചെയ്ത് മുൻ പാഠം ക്യൂഇസോടെ ആരംഭിച്ച്, തുടർചിന്തിച്ചും പാഠം വായിച്ച് ബാക്കിയുള്ള പ്രവർത്തനങ്ങൾ പൂർത്തിയാക്കുക. പരിഹാര കോഡ് എഴുതാതെ പാഠങ്ങൾ മനസ്സിലാക്കി പ്രോജക്റ്റുകൾ സൃഷ്ടിക്കുക; എന്നാൽ പരിഹാരകോഡുകൾ ഓരോ പ്രോജക്റ്റ് അധിഷ്ഠിത പാഠങ്ങളിൽ /solutions ഫോൾഡറുകളിൽ ലഭ്യമാണ്. മറ്റൊരു മാർഗം സുഹൃത്തുക്കളോടൊപ്പം പഠന ഗ്രൂപ്പ് രൂപീകരിച്ച് സംവദിക്കുക. കൂടുതൽ പഠനത്തിനായി, [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) പ്രോത്സാഹിപ്പിക്കുന്നു.
-**വേഗത്തിൽ തുടങ്ങൽ:**
-1. നിങ്ങളുടെ പരിസ്ഥിതി ക്രമീകരിക്കാൻ [ഇൻസ്റ്റലേഷൻ ഗൈഡ്](INSTALLATION.md) പരിശോധിയ്ക്കുക
-2. പാഠപദ്ധതിയുടെ ഉപയോഗം മനസിലാക്കാൻ [ഉപയോഗ മാർഗ്ഗം](USAGE.md) വായിക്കുക
-3. ലെഷൻ 1 മുതൽ തുടക്കം വച്ചുകൊണ്ട് തുടർച്ചയായി പ്രവർത്തിക്കുക
-4. പിന്തുണയ്ക്കായി [ഡിസ്കോർഡ് കമ്മ്യൂണിറ്റി](https://aka.ms/ds4beginners/discord) ജോയിൻ ചെയ്യൂ
+**ത്വരിതാരംഭം:**
+1. നിങ്ങളുടെ പരിസ്ഥിതി തയ്യാറാക്കാൻ [ഇൻസ്റ്റലേഷൻ ഗൈഡ്](INSTALLATION.md) പരിശോധിക്കുക
+2. കോഴ്സ് എങ്ങനെ പ്രവർത്തിക്കുമെന്ന് മനസ്സിലാക്കാൻ [ഉപയോഗ വേർപ്പ്](USAGE.md) വായിക്കുക
+3. പാഠം 1 മുതൽ തുടക്കം കുറിച്ച് ക്രമത്തിലായി മുന്നോട്ട് പോവുക
+4. പിന്തുണക്കായി ഞങ്ങളുടെ [Discord കമ്മ്യൂണിറ്റിയിൽ](https://aka.ms/ds4beginners/discord) ചേരുക
## 👩🏫 അധ്യാപകർക്ക്
-> **അധ്യാപകർ**: ഈ പാഠ്യപദ്ധതി ഉപയോഗിക്കാൻ അനുയോജ്യമായ [കുറിപ്പുകൾ](for-teachers.md) ഉൾപ്പെടുത്തിയിട്ടുണ്ട്. നിങ്ങളുടെ അഭിപ്രായങ്ങൾ ഞങ്ങളുടെ [ചർച്ച ഫോറത്തിൽ](https://github.com/microsoft/Data-Science-For-Beginners/discussions) പങ്കുവെയ്ക്കാൻ ഞങ്ങൾ ആഗ്രഹിക്കുന്നു!
+> **അധ്യാപകർക്ക്**: ഈ കോഴ്സ് എങ്ങനെ ഉപയോഗിക്കാമെന്ന് കുറച്ച് [ശുപാർശകൾ](for-teachers.md) നൽകിയിട്ടുണ്ട്. നിങ്ങളുടെ അഭിപ്രായം ഞങ്ങളുടെ [ചർച്ച ഫോറത്തിൽ](https://github.com/microsoft/Data-Science-For-Beginners/discussions) പങ്കുവെയ്ക്കുക!
+## ടീം പരിചയപ്പെടുക
-## സംഘത്തെ പരിചയപ്പെടുക
[](https://youtu.be/8mzavjQSMM4 "പ്രമോ വീഡിയോ")
-**ഗיף നിർമ്മിച്ചത്** [മോഹിത് ജൈസല്](https://www.linkedin.com/in/mohitjaisal)
+**ഗിഫ്** [മോഹിത് ജയ്സാൽ](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 പദ്ധതിയെക്കുറിച്ചും അതിൻറെ സൃഷ്ടാക്കൾക്കുറിച്ചുമായുള്ള ഒരു വീഡിയോ കാണാൻ മുകളിൽ വരുന്ന ചിത്രം ക്ലിക്ക് ചെയ്യൂ!
+> 🎥 പ്രോജക്ട് ആയും അതിനെ സൃഷ്ടിച്ചവരാണ് എന്നുള്ള ഒരു വീഡിയോക്കായി മുകളിൽ ചിത്രത്തിൽ ക്ലിക്കുചെയ്യൂ!
-## പഠനരീതി
+## പാഠശാസ്ത്രം
-ഈ പാഠ്യപദ്ധതി രൂപകല്പന ചെയ്യുമ്പോൾ ഞങ്ങൾ രണ്ട് പഠനസിദ്ധാന്തങ്ങൾ തെരഞ്ഞെടുക്കുകയുണ്ടായി: ഇത് പ്രോജക്റ്റ്-അടിഷ്ഠിതമായിരിക്കണം എന്നുംതിൽ സ്ഥിരം ക്വിസുകളും ഉൾപ്പെടുത്തണം എന്നതു കൂടി. ഈ പരമ്പരയുടെ അവസാനം, വിദ്യാർത്ഥികൾ ഡാറ്റ സയൻസിന്റെ അടിസ്ഥാന സിദ്ധാന്തങ്ങൾ പഠിക്കും, ഇതിൽ നയതന്ത്ര സിദ്ധാന്തങ്ങൾ, ഡാറ്റ തയ്യാറാക്കൽ, ഡാറ്റയുമായി ജോലി ചെയ്യുന്നതിന്റെ വിവിധ രീതികൾ, ഡാറ്റ ദൃശ്യവത്കരണം, ഡാറ്റ വിശകലനം, ഡാറ്റ സയൻസിന്റെ യഥാർത്ഥ ലോക ഉപയോഗ കേസുകൾ തുടങ്ങിയവ ഉൾപ്പെടും.
+ഈ പഠനക്രമം നിർമ്മിക്കുമ്പോൾ ഞങ്ങൾ രണ്ട് പാഠശാസ്ത്ര തത്വങ്ങൾ തിരഞ്ഞെടுக்கியിട്ടുണ്ട്: പ്രോജക്ട് അടിസ്ഥാനമായിരിക്കുക എന്നതും നിരന്തരം ക്വിസ് ഉൾപ്പെടുത്തുക എന്നതും. ഈ പരമ്പരയിലൂടെ വിദ്യാർത്ഥികൾ ഡാറ്റാ സയൻസിന്റെ അടിസ്ഥാന സിദ്ധാന്തങ്ങൾ, സഹജമായ ധാർമിക കാഴ്ചക്കാഴ്ചകൾ, ഡാറ്റാ തയ്യാറാക്കൽ, ഡാറ്റ ഉപയോഗിക്കുന്ന വ്യത്യസ്ത രീതി, ഡാറ്റാ ദൃശ്യീകരണം, ഡാറ്റാ വിശകലനം, ഡാറ്റാ സയൻസിന്റെ യഥാർത്ഥ ലോക ഉപയോഗക്കേസുകൾ എന്നിവ പഠിക്കും.
-കൂടാതെ, ക്ലാസിനു മുമ്പുള്ള കുറഞ്ഞ ഭാരം വരുന്ന ഒരു ക്വിസ് വിദ്യാർത്ഥിയുടെ പഠന താത്പര്യം സജീവമാക്കുന്നു, ക്ലാസിനു ശേഷം മടങ്ങി പഠന ഉറപ്പാക്കുന്ന രണ്ടാം ക്വിസും ഇതിൽ ഉൾപ്പെടുത്തിയിട്ടുണ്ട്. ഈ പാഠ്യപദ്ധതി ലച്ചിതമായും രസകരമായും രൂപംകൊണ്ടതാണ്, പൂർണമോ ഭാഗികമായോ പഠിക്കാവുന്നതാണ്. 10 ആഴ്ചയായ ചക്രത്തിലെ അവസാനം പ്രോജക്റ്റുകൾ ചെറിയതായിരിക്കും തുടങ്ങികൊണ്ടു വേറിട്ടും സങ്കീർണ്ണമായും വളരുന്ന തരത്തിലാണ്.
+അതുപോലെ, ക്ലാസിന് മുൻപുള്ള ഒരു കുറഞ്ഞ സമ്മർദ്ദം ഉള്ള ക്വിസ് വിദ്യാർത്ഥിയുടെ പഠന സാധ്യതയ്ക്ക് ഉദ്ദേശ്യം നിശ്ചയിക്കുന്നു, ക്ലാസിനു ശേഷം രണ്ടാമത്തെ ക്വിസ് കൂടുതൽ നിലനിർത്തൽ ഉറപ്പു വരുത്തുന്നു. ഈ പഠനക്രമം സുഖകരവും സുഖത്തോടെ പകർന്നെടുക്കാവുന്നതുമായ രീതിയിലുള്ളതാണ്. 10 ആഴ്ചകളുടെ ചക്രത്തിൽ പ്രോജക്ടുകൾ ചെറിയതിൽ ആരംഭിച്ച് ക്രമാതീതമായി ക്രമേണ പ്രയാസപരവും സങ്കീർണവുമായിരിക്കും.
-> ഞങ്ങളുടെ [ചടവ് നയം](CODE_OF_CONDUCT.md), [സംരംഭകരെ സംബന്ധിച്ച നിർദ്ദേശങ്ങൾ](CONTRIBUTING.md), [പരിഭാഷ](TRANSLATIONS.md) മാർഗ്ഗനിർദ്ദേശങ്ങൾ കാണൂ. നിങ്ങളുടെ സൃഷ്ടിപരമായ പ്രതികരണം സ്വാഗതം!
+> ഞങ്ങളുടെ [നിയമനിർദ്ദേശങ്ങൾ](CODE_OF_CONDUCT.md), [ഒപ്പം സംഭാവന](CONTRIBUTING.md), [പരിശോധന](TRANSLATIONS.md) മാർഗനിർദ്ദേശങ്ങൾ കാണുക. നിങ്ങളുടെ രചനാത്മക ഫീഡ്ബാക്ക് ഞങ്ങൾ സ്വാഗതം ചെയ്യുന്നു!
-## ഓരോ പാഠവും ഉൾക്കൊള്ളുന്നത്:
+## ഓരോ പാഠവും ഉൾപ്പെടുത്തുന്നു:
-- ഐച്ഛിക സ്കെച്ച് നോട്ട്
-- ഐച്ഛിക സഹായക വീഡിയോ
-- പാഠത്തിനു മുൻപുള്ള ഒരുക്ക ക്വിസ്
-- എഴുത്തുള്ള പാഠം
-- പ്രോജക്റ്റ്-അടിഷ്ഠിത പാഠങ്ങൾക്കായി പ്രോജക്റ്റ് നിർമ്മിക്കുന്നതിനുള്ള ചുവടു ചുവടായി നിർദ്ദേശങ്ങൾ
+- ഐച്ഛിക സ്കെട്നോട്ട്
+- ഐച്ഛിക കൂട്ടിച്ചേർത്ത വീഡിയോ
+- പാഠം മുമ്പുള്ള വാഴ്മപ്പ് ക്വിസ്
+- എഴുതുന്ന പാഠം
+- പ്രോജക്ട് അടിസ്ഥാനത്തിലുള്ള പാഠങ്ങൾക്ക്, പ്രോജക്ട് നിർമ്മിക്കാൻ ഘട്ടം ഘട്ടമായുള്ള മാർഗനിർദ്ദേശങ്ങൾ
- അറിവ് പരിശോധനകൾ
-- ഒരു ചലഞ്ച്
-- സഹായക വായന
--တာ [പഠനാനന്തര ക്വിസ്](https://ff-quizzes.netlify.app/en/)
+- ഒരു ചാലഞ്ച്
+- കൂട്ടിച്ചേർത്ത വായന
+- അസൈൻമെന്റ്
+- [പാഠം കഴിഞ്ഞുള്ള ക്വിസ്](https://ff-quizzes.netlify.app/en/)
-> **ക്വിസുകളെക്കുറിച്ചുള്ള ഒരു കാഴ്ച**: എല്ലാ ക്വിസുകളും Quiz-App ഫോൾഡറിൽ ഉൾപ്പെടുത്തിയിട്ടുണ്ട്, ഓരോന്നിലും മൂന്ന് ചോദ്യങ്ങൾ ചേർന്ന 40 ക്വിസുകളാണ്. പാഠങ്ങളിൽ നിന്നു ലിങ്കുചെയ്തിരിക്കുന്നു, എന്നാൽ ക്വിസ് അപ്ലിക്കേഷൻ ലോക്കലായി ഓടിക്കുകയോ ആസ്യൂറില് നോക്കിക്കാണിക്കുകയോ കഴിയും; `quiz-app` ഫോൾഡറിലുളള നിർദ്ദേശങ്ങൾ പാലിക്കുക. ഇവ постепല്ലായി ഭാഷാനുപ്രേഷണം നടത്തപ്പെടുന്നു.
+> **ക്വിസുകളെ കുറിച്ചുള്ള കുറിപ്പുകൾ**: എല്ലാ ക്വിസുകളും Quiz-App ഫോൾഡറിലാണ് സൂക്ഷിച്ചിരിക്കുന്നതും, ഓരോതിലും മൂന്ന് ചോദ്യങ്ങളുള്ള 40 മൊത്തം ക്വിസുകളാണ് ഉള്ളത്. അവ പാഠങ്ങളിൽ നിന്ന് ലിങ്ക് ചെയ്തിട്ടുള്ളതായിരിക്കുകയാണ്, എന്നാൽ ക്വിസ് ആപ്പ് പ്രാദേശികമോ ഡെപ്ലോയ്മെന്റിനോ ഉപയോഗിക്കാം; `quiz-app` ഫോൾഡറിലെ നിർദ്ദേശങ്ങൾ പിന്തുടരുക. അവ ക്രമമേറിയും പ്രാദേശികമാക്കപ്പെട്ടു വരുന്നു.
-## 🎓 ആരംഭകരെ അനുകൂലിക്കുന്ന ഉദാഹരണങ്ങൾ
+## 🎓 ആരംഭക്കാർക്കായി സൗഹൃദം ഉള്ള ഉദാഹരണങ്ങൾ
-**ഡാറ്റ സയൻസിൽ പുതുതായി വന്നവരേ?** നിങ്ങളെ സഹായിക്കാൻ ലളിതവും നന്നായി കമന്റിട്ടും ഉള്ള ഒരു പ്രത്യേക [ഉദാഹരണ ഡയറക്ടറി](examples/README.md) ഞങ്ങൾ സൃഷ്ടിച്ചു:
+**ഡാറ്റാ സയൻസിൽ പുതിയോ?** ചെറുതും വിശദമായി കമന്റ് ചെയ്ത കോഡും ഉൾപ്പെടുത്തിയ [ഉദാഹരണങ്ങൾ ഡയറക്ടറി](examples/README.md) ഞങ്ങൾ സൃഷ്ടിച്ചു, നിങ്ങളെ സഹായിക്കാൻ:
-- 🌟 **ഹെലോ വേൾഡ്** - നിങ്ങളുടെ ആദ്യ ഡാറ്റ സയൻസ് പ്രോഗ്രാം
-- 📂 **ഡാറ്റ ലോഡ് ചെയ്യൽ** - ഡാറ്റാ സെറ്റുകൾ വായിക്കുകയും പരിശോധിക്കുകയും പഠിക്കുക
-- 📊 **സിമ്പിൾ അനാലിസിസ്** - കണക്കെടുപ്പുകൾ നടത്തി പാറ്റേണുകൾ കണ്ടെത്തുക
-- 📈 **ബേസിക് ദൃശ്യവത്കരണം** - ചാർട്ടുകളും ഗ്രാഫുകളും ഉണ്ടാക്കുക
-- 🔬 **യഥാർത്ഥ പ്രോജക്റ്റ്** - തുടക്കം മുതൽ അവസാനവരെയും Workflow പൂർത്തിയാക്കുക
+- 🌟 **ഹലോ വേൾഡ്** - നിങ്ങളുടെ ആദ്യ ഡാറ്റാ സയൻസ് പ്രോഗ്രാം
+- 📂 **ഡാറ്റാ ലോഡിംഗ്** - ഡാറ്റാസെറ്റുകൾ വായിക്കുകയും പരിശോധിക്കുകയും ചെയ്യുന്നത് പഠിക്കുക
+- 📊 **സാധാരണ വിശകലനം** - സാഖ്യങ്ങൾ കണക്കുകൂട്ടുകയും മാതൃകകൾ കണ്ടെത്തുകയും ചെയ്യുക
+- 📈 **അടിസ്ഥാന ദൃശ്യീകരണം** - ചാർട്ടുകളും ഗ്രാഫുകളും സൃഷ്ടിക്കുക
+- 🔬 **യഥാർത്ഥ ലോക പ്രോജക്ട്** - തുടങ്ങിയിടത്തുനിന്നും പൂർത്തിയാക്കുന്നവരെപ്പം പൂർത്തിയാക്കുക
-ഓരോ ഉദാഹരണവും ഓരോ ഘട്ടവും വിശദമായി വിശദീകരിക്കുന്ന കമന്റുകൾ ഉൾക്കൊള്ളുന്നു, ഇത് തൊട്ടുതുടങ്ങിയവർക്കായി ഉത്തമമായി അനുയോജ്യമാണ്!
+ഓരോ ഉദാഹരണവും ഓരോ ഘട്ടവും വിശദമായി വിവരിക്കുന്ന കോമന്റുകളോടെയുള്ളതുകൊണ്ട്, പൂർണ്ണ սկսിച്ചവർക്കും അനുയോജ്യമാണ്!
-👉 **[ഉദാഹരണങ്ങളിൽ ആരംഭിക്കുക](examples/README.md)** 👈
+👉 **[ഉദാഹരണങ്ങളോടൊപ്പം ആരംഭിക്കുക](examples/README.md)** 👈
## പാഠങ്ങൾ
-||
+||
|:---:|
-| ഡാറ്റ സയൻസ് ഫോർ ബിഗിന്നേഴ്സ്: റോഡ് മാപ്പ് - _സ്കെച്ച്നോട്ട് @nitya യിലൂടെ_.([https://twitter.com/nitya](https://twitter.com/nitya)) |
+| ഡാറ്റ സയൻസ് ഫോർ ബിഗിന്നേഴ്സ്: റോഡ്മാപ്പ് - _സ്കെട്നോട്ട് [@nitya](https://twitter.com/nitya)_ |
-| പാഠ നമ്പർ | വിഷയഭാഗം | പാഠ ഗ്രൂപ്പിങ്ങ് | പഠനലക്ഷ്യങ്ങൾ | ലിങ്കുചെയ്ത പാഠം | എഴുത്തുകാരൻ |
+| പാഠം നമ്പർ | വിഷയപരിധി | പാഠ വിഭാഗം | പഠന ലക്ഷ്യങ്ങൾ | ലിങ്കുചെയ്ത പാഠം | എഴുത്തുകാരന് |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | ഡാറ്റ സയൻസ് നിശ്ചയിക്കൽ | [പരിചയം](1-Introduction/README.md) | ഡാറ്റ സയൻസിന്റെ അടിസ്ഥാന ആശയങ്ങൾ പഠിക്കുകയും അതിന്റെ ആധികാര്യബുദ്ധിയും, മെഷീൻ ലേണിങ്ങും, വലിയ ഡേറ്റയും തമ്മിലുള്ള ബന്ധം മനസ്സിലാക്കുക. | [പാഠം](1-Introduction/01-defining-data-science/README.md) [വീഡിയോ](https://youtu.be/beZ7Mb_oz9I) | [ദിമിത്രി](http://soshnikov.com) |
-| 02 | ഡാറ്റ സയൻസ് നയശാസ്ത്രം | [പരിചയം](1-Introduction/README.md) | ഡാറ്റ നയശാസ്ത്ര ആശയങ്ങൾ, വെല്ലുവിളികൾ & ഘടനകൾ. | [പാഠം](1-Introduction/02-ethics/README.md) | [നിത്യ](https://twitter.com/nitya) |
-| 03 | ഡാറ്റ നിർവചനം | [പരിചയം](1-Introduction/README.md) | ഡാറ്റ എങ്ങനെ വർഗ്ഗീകരിക്കുമെന്നതും സാധാരണ ഉറവിടങ്ങളും. | [പാഠം](1-Introduction/03-defining-data/README.md) | [ജാസ്മിൻ](https://www.twitter.com/paladique) |
-| 04 | സ്ഥിതിവിവരശാസ്ത്രവും സാധ്യതാ സിദ്ധാന്തവും | [പരിചയം](1-Introduction/README.md) | ഡാറ്റ മനസ്സിലാക്കാൻ സാധ്യതയും സ്ഥിതിവിവരശാസ്ത്രത്തിന്റെ ഗണിതരീതികൾ. | [പാഠം](1-Introduction/04-stats-and-probability/README.md) [വീഡിയോ](https://youtu.be/Z5Zy85g4Yjw) | [ദിമിത്രി](http://soshnikov.com) |
-| 05 | ബന്ധ ഡാറ്റയിൽ പ്രവർത്തനങ്ങൾ | [ഡാറ്റയുമായി പ്രവർത്തനം](2-Working-With-Data/README.md) | ബന്ധ ഡാറ്റ (Relational Data) പരിചയം, SQL എന്ന സ്ട്രക്ചേഡ് ക്വറി ലാങ്ങ്വേജ് ഉപയോഗിച്ച് ഡാറ്റ കണ്ടെത്തലും വിശകലനവും. | [പാഠം](2-Working-With-Data/05-relational-databases/README.md) | [ക്രിസ്റ്റഫർ](https://www.twitter.com/geektrainer) | | |
-| 06 | നോൺ-എസ്ക്യൂഎൽ ഡാറ്റയുമായി പ്രവർത്തനം | [ഡാറ്റയുമായി പ്രവർത്തനം](2-Working-With-Data/README.md) | നോൺ-ബന്ധ ഡാറ്റയുടെ പരിചയം, അതിന്റെ വിവിധ തരം, ഡോക്യുമെന്റ് ഡാറ്റാബേസുകൾ പരിശോധിക്കാനും വിശകലനം ചെയ്യാനും അടിസ്ഥാന ചിന്തകൾ. | [പാഠം](2-Working-With-Data/06-non-relational/README.md) | [ജാസ്മിൻ](https://twitter.com/paladique)|
-| 07 | പൈത്തണുമായി പ്രവർത്തനം | [ഡാറ്റയുമായി പ്രവർത്തനം](2-Working-With-Data/README.md) | പാന്ഡാസ് പോലുള്ള ലൈബ്രറിയുകൾ ഉപയോഗിച്ച് ഡാറ്റാ സഹായിത പഠനങ്ങൾ ആരംഭിക്കാൻ പൈത്തൺ അടിസ്ഥാനങ്ങൾ. പൈത്തൺ പ്രോഗ്രാമിങിലെ ആമുഖ അറിവ് ആവശ്യമാണ്. | [പാഠം](2-Working-With-Data/07-python/README.md) [വീഡിയോ](https://youtu.be/dZjWOGbsN4Y) | [ദിമിത്രി](http://soshnikov.com) |
-| 08 | ഡാറ്റ തയ്യാറാക്കൽ | [ഡാറ്റയുമായി പ്രവർത്തനം](2-Working-With-Data/README.md) | മിസ്സിങ്, തെറ്റായ, അപൂർണ്ണമായ ഡാറ്റ കൈകാര്യം ചെയ്യാനുള്ള ഡാറ്റ ക്ലീനിംഗും ട്രാൻസ്ഫോർമേഷനും സംബന്ധിച്ച വിഷയങ്ങൾ. | [പാഠം](2-Working-With-Data/08-data-preparation/README.md) | [ജാസ്മിൻ](https://www.twitter.com/paladique) |
-| 09 | അളക്കത്തിൻറെ ദൃശ്യവത്കരണം | [ഡാറ്റ ദൃശ്യവത്കരണം](3-Data-Visualization/README.md) | മാട്പ്ലോട്ട്ലിബ് ഉപയോഗിച്ച് പടവാട്ടിയ പക്ഷി ഡാറ്റ ദൃശ്യവത്ക്കരിക്കുന്നത് പഠിക്കുക 🦆 | [പാഠം](3-Data-Visualization/09-visualization-quantities/README.md) | [ജെൻ](https://twitter.com/jenlooper) |
-| 10 | ഡാറ്റയുടെ വിതരണങ്ങൾ ദൃശ്യവത്കരണം | [ഡാറ്റ ദൃശ്യവത്കരണം](3-Data-Visualization/README.md) | നിരത്തിലുളള നിരീക്ഷണങ്ങളും പ്രവണതകളും ദൃശ്യവത്കരിക്കൽ. | [പാഠം](3-Data-Visualization/10-visualization-distributions/README.md) | [ജെൻ](https://twitter.com/jenlooper) |
-| 11 | അനുപാതങ്ങളുടെ ദൃശ്യവത്കരണം | [ഡാറ്റ ദൃശ്യവത്കരണം](3-Data-Visualization/README.md) | വ്യത്യസ്ത സാമൂഹ്യജീവിത ശതമാനങ്ങളുടെ ദൃശ്യവത്കരണം. | [പാഠം](3-Data-Visualization/11-visualization-proportions/README.md) | [ജെൻ](https://twitter.com/jenlooper) |
-| 12 | ബന്ധങ്ങളുടെ ദൃശ്യവത്കരണം | [ഡാറ്റ ദൃശ്യവത്കരണം](3-Data-Visualization/README.md) | ഡാറ്റ സെറ്റുകളും പോവരിബന്ധങ്ങളുമാകെ ബന്ധങ്ങളുടെ ദൃശ്യവത്കരണം. | [പാഠം](3-Data-Visualization/12-visualization-relationships/README.md) | [ജെൻ](https://twitter.com/jenlooper) |
-| 13 | മൂല്യമുള്ള ദൃശ്യവത്കരണം | [ഡാറ്റ ദൃശ്യവത്കരണം](3-Data-Visualization/README.md) | പ്രയോജനം നിറഞ്ഞ പ്രശ്ന പരിഹാരത്തിനും സൂക്ഷ്മ വിവേകത്തിനും വേണ്ടി നിങ്ങളുടെ ദൃശ്യവത്കരണം വിലപ്പെട്ടതാക്കാനുള്ള സാങ്കേതികങ്ങൾ. | [പാഠം](3-Data-Visualization/13-meaningful-visualizations/README.md) | [ജെൻ](https://twitter.com/jenlooper) |
-| 14 | ഡാറ്റ സയൻസ് ലൈഫ് സൈകിളിൻറെ പരിചയം | [ലൈഫ് സൈകിള്](4-Data-Science-Lifecycle/README.md) | ഡാറ്റ സയൻസ് ലൈഫ് സൈകിളിൻറെ പരിചയം, ആദ്യഘട്ടം ആയ ഡാറ്റ ഏറ്റെടുക്കലും എക്സ്ട്രാക്ഷനുമ്. | [പാഠം](4-Data-Science-Lifecycle/14-Introduction/README.md) | [ജാസ്മിൻ](https://twitter.com/paladique) |
-| 15 | വിശകലനം | [ലൈഫ് സൈകിള്](4-Data-Science-Lifecycle/README.md) | ഡാറ്റ സയൻസ് ലൈഫ് സൈകിളിന്റെ സ്ഥലം ഡാറ്റ വിശകലനത്തിന് സാങ്കേതിക വിദ്യകൾ. | [പാഠം](4-Data-Science-Lifecycle/15-analyzing/README.md) | [ജാസ്മിൻ](https://twitter.com/paladique) | | |
-| 16 | ആശയവിനിമയം | [ലൈഫ് സൈകിള്](4-Data-Science-Lifecycle/README.md) | ഡാറ്റയിൽനിന്ന് ലഭിച്ച അറിവുകൾ തീരുമാനമെടുക്കുന്നവർക്കു എളുപ്പത്തിൽ മനസ്സിലാകും വിധം പ്രദർശിപ്പിക്കാനുള്ള ഘട്ടം. | [പാഠം](4-Data-Science-Lifecycle/16-communication/README.md) | [ജാലൻ](https://twitter.com/JalenMcG) | | |
-| 17 | ക്ലൗഡിലെ ഡാറ്റ സയൻസ് | [ക്ലൗഡ് ഡാറ്റ](5-Data-Science-In-Cloud/README.md) | ക്ലൗഡിലെ ഡാറ്റ സയൻസിന്റെ പരിചയവും പ്രയോജനങ്ങളും. | [പാഠം](5-Data-Science-In-Cloud/17-Introduction/README.md) | [ടിഫാൻ](https://twitter.com/TiffanySouterre) & [മാഉഡ്](https://twitter.com/maudstweets) |
-| 18 | ക്ലൗഡിലെ ഡാറ്റ സയൻസ് | [ക്ലൗഡ് ഡാറ്റ](5-Data-Science-In-Cloud/README.md) | ലോ കോഡ് ഉപകരണങ്ങൾ ഉപയോഗിച്ച് മോഡൽ പരിശീലനം. |[പാഠം](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [ടിഫാൻ](https://twitter.com/TiffanySouterre) & [മാഉഡ്](https://twitter.com/maudstweets) |
-| 19 | ക്ലൗഡിലെ ഡാറ്റ സയൻസ് | [ക്ലൗഡ് ഡാറ്റ](5-Data-Science-In-Cloud/README.md) | അജ്വർ മെഷീൻ ലേണിങ്ങ് സ്റ്റുഡിയോയിൽ മോഡലുകൾ വിന്യസിക്കൽ. | [പാഠം](5-Data-Science-In-Cloud/19-Azure/README.md)| [ടിഫാൻ](https://twitter.com/TiffanySouterre) & [മാഉഡ്](https://twitter.com/maudstweets) |
-| 20 | വന്യമായിട്ടുള്ള ഡാറ്റ സയൻസ് | [വന്യത്തിലൂടെ](6-Data-Science-In-Wild/README.md) | യഥാർത്ഥ ലോകത്തെ ഡാറ്റ സയൻസ് നേതൃത്വത്തിലുള്ള പ്രോജക്റ്റുകൾ. | [പാഠം](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [നിത്യ](https://twitter.com/nitya) |
-
-## GitHub_CODESpaces
-
-ഈ ഉദാഹരണം ഒരു Codespace ൽ തുറക്കാൻ നിലനിൽക്കുന്ന ചുവടുകൾ ഉപയോഗിക്കുക:
-1. Code ഡ്രോപ്-ഡൗൺ മെനു ക്ലിക്ക് ചെയ്ത് Open with Codespaces തിരഞ്ഞെടുക്കുക.
-2. താഴെ ഇത്രയും അതിൻറെ പാനലിൽ + New codespace തിരഞ്ഞെടുക്കുക.
-കൂടുതൽ വിവരങ്ങൾക്ക് GitHub രേഖ ചോദിക്കുയ്യാം: [GitHub ഡോക്യുമെന്റേഷൻ](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
-
-## VSCode_Remote_-_Containers
-ഈ റിപ്പോസിറ്ററി ഒരു കണ്ടെയിനറിൽ തുറക്കാൻ ചുവടുള്ള മാർഗ്ഗനിർദ്ദേശങ്ങൾ പാലിക്കുക. നിങ്ങളുടെ ലൊക്കൽ മെഷീനും VSCode യും ഉപയോഗിച്ച് VS Code Remote - Containers എക്സ്റ്റൻഷൻ ഉപയോഗിക്കുക:
-
-1. ആദ്യമായി ഡെവലപ്പ്മെന്റ് കണ്ടെയ്നർ ഉപയോഗിക്കുന്നുവെങ്കിൽ, നിങ്ങളുടെ സംവിധാനം മുൻനിബന്ധനകൾ നിറവേറ്റുന്നുവെന്ന് ഉറപ്പാക്കുക (ഹെച്ച് ഡോക്കർ ഇൻസ്റ്റാൾ ചെയ്തിട്ടുണ്ടോ എന്നതുപോലുള്ളത്) [ആരംഭ ഡോക്യുമെന്റേഷൻ](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) പരിശോധിക്കുക.
-
-ഈ റിപ്പോസിറ്ററി ഇസൊലേറ്റഡ് ഡോക്കർ വോളിയത്തിലോ അല്ലെങ്കിൽ ലോക്കലായി ക്ലോൺ ചെയ്ത അല്ലെങ്കിൽ ഡൗൺലോഡ് ചെയ്ത പക്ഷേ തുറക്കാം:
-
-**കൂടുകുറിപ്പായി**: Remote-Containers: **Clone Repository in Container Volume...** കമാൻഡ് ഉപയോഗിച്ച് സോഴ്സ് കോഡ് ഡോക്കർ വോളിയത്തിലേക്ക് ക്ലോൺ ചെയ്യുന്നു, ലൊക്കൽ ഫയൽ സിസ്റ്റം അല്ല. [ഡോക്കർ വോളിയം](https://docs.docker.com/storage/volumes/) കണ്ടെയ്നർ ഡാറ്റ സംരക്ഷിക്കാൻ അഭിലഷണീയമാണ്.
-
-അല്ലെങ്കിൽ ലോക്കലായി ക്ലോൺ ചെയ്ത കോപ്പി തുറക്കുക:
-
-- ഈ റിപ്പോസിറ്ററി നിങ്ങളുടെ ലൊക്കൽ ഫയൽ സിസ്റ്റത്തിൽ ക്ലോൺ ചെയ്യുക.
+| 01 | ഡാറ്റാ സയൻസ് നിർവചിക്കൽ | [പരിചയം](1-Introduction/README.md) | ഡാറ്റാ സയൻസിന്റെ അടിസ്ഥാന ആശയങ്ങൾ പഠിക്കുകയും, അതാണ് ആർട്ടിഫിഷ്യൽ ഇന്റലിജൻസ്, മെഷീൻ ലേണിങ്, വലിയ ഡാറ്റ എന്നിവയും എങ്ങനെ ബന്ധപ്പെട്ടു പ്രവർത്തിക്കുന്നുവെന്ന് മനസ്സിലാക്കുക. | [lesson](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [ഡിമിട്രി](http://soshnikov.com) |
+| 02 | ഡാറ്റാ സയൻസ് ധാർമികത | [പരിചയം](1-Introduction/README.md) | ഡാറ്റാ ധാർമികതയുടെ ആശയങ്ങൾ, വെല്ലുവിളികൾ, നിബന്ധനകൾ. | [lesson](1-Introduction/02-ethics/README.md) | [നിത്യ](https://twitter.com/nitya) |
+| 03 | ഡാറ്റ നിർവചിക്കൽ | [പരിചയം](1-Introduction/README.md) | ഡാറ്റ എങ്ങിനെ വർഗീകരിക്കപ്പെടുന്നു, അതിന്റെ സാധാരണ ഉറവിടങ്ങൾ. | [lesson](1-Introduction/03-defining-data/README.md) | [ജാസ്മിൻ](https://www.twitter.com/paladique) |
+| 04 | സ്റ്റാറ്റിസ്റ്റിക്സിനും പരസ്യങ്ങൾക്കും പരിചയം | [പരിചയം](1-Introduction/README.md) | ദിവസവുമുള്ള ഡാറ്റ മനസ്സിലാക്കാൻ പരസ്യവും സ്റ്റാറ്റിസ്റ്റിക്സും ഉപയോഗിച്ച ഗണിത സാങ്കേതിക വിദ്യകൾ. | [lesson](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [ഡിമിട്രി](http://soshnikov.com) |
+| 05 | റിലേഷണൽ ഡാറ്റ ഉപയോഗപ്പെടുത്താം | [ഡാറ്റയുമായി പ്രവർത്തിക്കൽ](2-Working-With-Data/README.md) | റിലേഷണൽ ഡാറ്റയിലേക്കുള്ള പരിചയവും, ഘടിത ചോദ്യം ഭാഷയായി അറിയപ്പെടുന്ന SQL ഉപയോഗിച്ച് റിലേഷണൽ ഡാറ്റ പരിശോധിക്കുന്നതിന്റെ അടിസ്ഥാന കാര്യങ്ങൾ. | [lesson](2-Working-With-Data/05-relational-databases/README.md) | [ക്രിസ്റ്റോഫർ](https://www.twitter.com/geektrainer) | | |
+| 06 | നോൺ-SQL ഡാറ്റയുമായി പ്രവർത്തിക്കുക | [ഡാറ്റയുമായി പ്രവർത്തിക്കൽ](2-Working-With-Data/README.md) | നോൺ-രിലേഷണൽ ഡാറ്റയിലേക്കുള്ള പരിചയവും, അതിന്റെ പല തരങ്ങളും രേഖ ഡാറ്റാബേസുകൾ പരിശോധിക്കുകയും വിശകലനം ചെയ്യുകയും ചെയ്യുന്നതിന്റെ അടിസ്ഥാന കാര്യങ്ങൾ. | [lesson](2-Working-With-Data/06-non-relational/README.md) | [ജാസ്മിൻ](https://twitter.com/paladique)|
+| 07 | പൈഥൺ ഉപയോഗിച്ച് പ്രവർത്തിക്കുക | [ഡാറ്റയുമായി പ്രവർത്തിക്കൽ](2-Working-With-Data/README.md) | Pandas പോലുള്ള ലൈബ്രറികൾ ഉപയോഗിച്ച് ഡാറ്റ പരിശോധിക്കാൻ പൈഥൺക്ക് അടിസ്ഥാനങ്ങൾ. പൈഥൺ പ്രോഗ്രാമിംഗിൽ അടിസ്ഥാന അറിവ് നിർബന്ധം. | [lesson](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [ഡിമിട്രി](http://soshnikov.com) |
+| 08 | ഡാറ്റ ഒരുക്കൽ | [ഡാറ്റയുമായി പ്രവർത്തിക്കൽ](2-Working-With-Data/README.md) | മിസ്സിംഗ്, തെറ്റായ, അപൂർണ്ണമായ ഡാറ്റ കൈകാര്യം ചെയ്യുന്നതിന് ഡാറ്റ ശുചീകരണവും പരിവർത്തനവും സംബന്ധിച്ച സാങ്കേതിക വിശദാംശങ്ങൾ. | [lesson](2-Working-With-Data/08-data-preparation/README.md) | [ജാസ്മിൻ](https://www.twitter.com/paladique) |
+| 09 | മാസ്പ്ളോട്ട്ലിബ് ഉപയോഗിച്ച് അളവുകൾ ദൃശ്യവത്കരിക്കൽ | [ഡാറ്റ ദൃശ്യീകരണം](3-Data-Visualization/README.md) | പറവികളുടെ ഡാറ്റാ ദൃശ്യവത്കരിക്കാൻ Matplotlib ഉപയോഗിക്കുക 🦆 | [lesson](3-Data-Visualization/09-visualization-quantities/README.md) | [ജെൻ](https://twitter.com/jenlooper) |
+| 10 | ഡാറ്റാ വിതരണങ്ങളുടെ ദൃശ്യവത്കരണം | [ഡാറ്റ ദൃശ്യീകരണം](3-Data-Visualization/README.md) | ഒരു ഇടവേളയിലുള്ള നിരീക്ഷണങ്ങളും പ്രവണതകളും ദൃശ്യവത്കരിക്കൽ. | [lesson](3-Data-Visualization/10-visualization-distributions/README.md) | [ജെൻ](https://twitter.com/jenlooper) |
+| 11 | അനുപാതങ്ങൾ ദൃശ്യവത്കരിക്കൽ | [ഡാറ്റ ദൃശ്യീകരണം](3-Data-Visualization/README.md) | വ്യത്യസ്തമായ ഗ്രൂപ്പ് ചെയ്ത ശതമാനങ്ങൾ ദൃശ്യമാക്കുക. | [lesson](3-Data-Visualization/11-visualization-proportions/README.md) | [ജെൻ](https://twitter.com/jenlooper) |
+| 12 | ബന്ധങ്ങൾ ദൃശ്യവത്കരിക്കൽ | [ഡാറ്റ ദൃശ്യീകരണം](3-Data-Visualization/README.md) | ഡാറ്റയും അതിലെ ചാരിത്രങ്ങളുമുള്ള സെറ്റുകൾ തമ്മിലുള്ള ബന്ധങ്ങളും സാന്ദ്രതകളും ദൃശ്യമാക്കുക. | [lesson](3-Data-Visualization/12-visualization-relationships/README.md) | [ജെൻ](https://twitter.com/jenlooper) |
+| 13 | പ്രധാനം ഉള്ള ദൃശ്യവത്കരണം | [ഡാറ്റ ദൃശ്യമാക്കൽ](3-Data-Visualization/README.md) | സജീവ പ്രശ്നപരിഹാരത്തിനും തിരിച്ചറിവിനുംറെ മൂല്യം വർദ്ധിപ്പിക്കാൻ ഉപകരിക്കുന്ന സാങ്കേതിക വിദ്യകളും മാർഗനിർദ്ദേശങ്ങളും. | [lesson](3-Data-Visualization/13-meaningful-visualizations/README.md) | [ജെൻ](https://twitter.com/jenlooper) |
+| 14 | ഡാറ്റാ സയൻസ് ജീവിത ചക്രത്തിനുള്ള പരിചയം | [ജീവിതചക്രം](4-Data-Science-Lifecycle/README.md) | ഡാറ്റാ സയൻസ് ജീവിത ചക്രം പരിചയപ്പെടുക, ആദ്യ ഘട്ടമായ ഡാറ്റാ സമാഹരണവും ഉൽപ്പാദനവുമാണ്. | [lesson](4-Data-Science-Lifecycle/14-Introduction/README.md) | [ജാസ്മിൻ](https://twitter.com/paladique) |
+| 15 | വിശകലനം | [ജീവിതചക്രം](4-Data-Science-Lifecycle/README.md) | ഡാറ്റാ സയൻസ് ജീവിതചക്രത്തിൽ ഡാറ്റ വിശകലനം നടത്തുന്നതിനുള്ള സാങ്കേതികതകൾ സൂചിപ്പിക്കുന്നു. | [lesson](4-Data-Science-Lifecycle/15-analyzing/README.md) | [ജാസ്മിൻ](https://twitter.com/paladique) | | |
+| 16 | സംവാദം | [ജീവിതചക്രം](4-Data-Science-Lifecycle/README.md) | ഡാറ്റയിലുള്ള തിരിച്ചറിവുകൾ സ്വീകാര്യമായ വിധത്തിൽ നയതന്ത്ര നിർണായകർക്കായി സമർപ്പിക്കുന്ന ഘട്ടം. | [lesson](4-Data-Science-Lifecycle/16-communication/README.md) | [ജാലൻ](https://twitter.com/JalenMcG) | | |
+| 17 | ക്ലൗഡിൽ ഡാറ്റാ സയൻസ് | [ക്ലൗഡ് ഡാറ്റ](5-Data-Science-In-Cloud/README.md) | ക്ലൗഡിൽ ഡാറ്റാ സയൻസ് പരിചയപ്പെടുക കൂടാതെ അതിന്റെ ഗുണങ്ങൾ. | [lesson](5-Data-Science-In-Cloud/17-Introduction/README.md) | [റ്റിഫാനി](https://twitter.com/TiffanySouterre) & [മോഡ്](https://twitter.com/maudstweets) |
+| 18 | ക്ലൗഡിൽ ഡാറ്റാ സയൻസ് | [ക്ലൗഡ് ഡാറ്റ](5-Data-Science-In-Cloud/README.md) | ലോ കോഡ് ഉപകരണങ്ങൾ ഉപയോഗിച്ച് മാതൃകകൾ പരിശീലിപ്പിക്കൽ. |[lesson](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [റ്റിഫാനി](https://twitter.com/TiffanySouterre) & [മോഡ്](https://twitter.com/maudstweets) |
+| 19 | ക്ലൗഡിൽ ഡാറ്റാ സയൻസ് | [ക്ലൗഡ് ഡാറ്റ](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio ഉപയോഗിച്ചു മാതൃകകൾ വിനിയോഗിക്കൽ. | [lesson](5-Data-Science-In-Cloud/19-Azure/README.md)| [റ്റിഫാനി](https://twitter.com/TiffanySouterre) & [മോഡ്](https://twitter.com/maudstweets) |
+| 20 | യഥാർത്ഥ ലോകത്തെ ഡാറ്റാ സയൻസ് | [വനം നിറത്തിൽ](6-Data-Science-In-Wild/README.md) | യഥാർത്ഥ ലോകം പ്രോജക്റ്റുകളിൽ ഡാറ്റാ സയൻസിന്റെ പ്രയോജനം. | [lesson](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [നിത്യ](https://twitter.com/nitya) |
+
+## GitHub കോഡ്സ്പേസസ്
+
+ഈ സാമ്പിൾ Codespace ൽ തുറക്കുന്നതിനുള്ള ചുവടു പിന്തുടരുക:
+1. കോഡ് ഡ്രോപ്പ്-ഡൗൺ മെനുവിൽ നിന്ന് Open with Codespaces തിരഞ്ഞെടുക്കുക.
+2. പാനൽ അടിവരിയിൽ + New codespace തിരഞ്ഞെടുക്കുക.
+കൂടുതൽ വിവരങ്ങൾക്കായി [GitHub ഡോക്യുമെന്റേഷൻ](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) കാണുക.
+
+## VSCode റിമോട്ട് - കണ്ടെയ്നറുകൾ
+നിങ്ങളുടെ ലൊക്കൽ മെഷീനിൽ VSCode ഉപയോഗിച്ച് ഈ റെപ്പോ ഒരു കണ്ടെയ്നറിൽ തുറക്കാൻ, VS Code Remote - Containers എക്സ്റ്റൻഷൻ ഉപയോഗിച്ച് ചുവടു പിന്തുടരുക:
+
+1. ഇത് നിങ്ങളുടെ ആദ്യ ഡെവലപ്പ്മെന്റ് കണ്ടെയ്നർ സംവിധാനം ആയിരിക്കുകയാണെങ്കിൽ, ദയവായി നിങ്ങളുടെ സിസ്റ്റം പ്രീ-റിക്വിസിറ്റുകൾ (ഉദാ: Docker ഇൻസ്റ്റാൾ ചെയ്തിട്ടുണ്ടെന്ന്) [Getting started ഡോക്യുമെന്റേഷൻ](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) ൽ ഉറപ്പാക്കുക.
+
+ഈ റെപ്പോ സമ്പൂർണമായും ഡോക്കർ വോൾയത്തിൽ ക്ലോൺ ചെയ്യുക എന്ന് ഉപയോഗിക്കാം:
+
+**ഗమనിക്കുക**: ഇതിന്റെ പിന്നിൽ, Remote-Containers: **Clone Repository in Container Volume...** കമാൻഡ് ഉപയോഗിച്ച് കോഡ്ഡാറ്റയെ ലൊക്കൽ ഫയൽ സിസ്റ്റത്തിലെ പകരം ഡോക്കർ വോൾയത്തിൽ ക്ലോൺ ചെയ്യും. [Volumes](https://docs.docker.com/storage/volumes/) കണ്ടെയ്നർ ഡാറ്റ പിന്തുണയ്ക്കാൻ മുൻഗണനാ സംവിധാനമാണ്.
+
+അല്ലെങ്കിൽ ലൊക്കലായി ക്ലോൺ ചെയ്ത റെപ്പോ തുറക്കുക:
+
+- ഈ റെപ്പോ നിങ്ങളുടെ ലൊക്കൽ ഫയൽസിസ്റ്റത്തിലേക്ക് ക്ലോൺ ചെയ്യുക.
- F1 അമർത്തി **Remote-Containers: Open Folder in Container...** കമാൻഡ് തിരഞ്ഞെടുക്കുക.
-- ഈ ഫോൾഡർ ക്ലോൺ ചെയ്ത കോപ്പി തിരഞ്ഞെടുത്ത്, കണ്ടെയ്നർ ആരംഭിക്കുവോളം കാത്തിരിക്കുക, ശേഷം പരീക്ഷിക്കുക.
+- ഫോളഡറിന്റെ ക്ലോൺ ചെയ്യുന്ന പകർപ്പ് തിരഞ്ഞെടുക്കുക, കണ്ടെയ്നർ ആരംഭിക്കാൻ കാത്തിരിക്കുക, തുടർന്ന് പരീക്ഷിച്ച് നോക്കുക.
-## ഓഫീസ്ലൈൻ ആക്സസ്
+## ഓഫ്ലൈൻ ആക്സസ്
-[Docsify](https://docsify.js.org/#/) ഉപകരണം ഉപയോഗിച്ച് നിങ്ങളുടെ ഡോക്യുമെന്റേഷൻ ഓഫ്ലൈനിലും ഓടിക്കാം. ഈ റിപ്പോസിറ്ററി ഫോർക്ക് ചെയ്ത്, [Docsify ഇൻസ്റ്റാൾ ചെയ്ത്](https://docsify.js.org/#/quickstart) നിങ്ങളുടെ ലോക്കൽ മെഷീനിൽ, പിന്നെ ഈ റിപ്പോസിറ്ററിയുടെ റൂട്ട് ഫോൾഡറിൽ `docsify serve` ടൈപ്പ് ചെയ്യുക. വെബ്സൈറ്റ് `localhost:3000` എന്ന പോർട്ടിൽ ലഭ്യമാകും.
+[Docsify](https://docsify.js.org/#/) ഉപയോഗിച്ച് ഈ ഡോക്യുമെന്റേഷൻ ഓഫ്ലൈൻ ചോന്ന് പ്രവർത്തിപ്പിക്കാൻ കഴിയും. ഈ റെപ്പോ ഫോർക്ക് ചെയ്യുക, [Docsify ഇൻസ്റ്റാൾ](https://docsify.js.org/#/quickstart) ചെയ്യുക നിങ്ങളുടെ ലൊക്കൽ മെഷീനിൽ, തുടർന്ന് ഈ റെപ്പോയുടെ റൂട്ടിൽ `docsify serve` ടൈപ് ചെയ്യുക. വെബ്സൈറ്റ് `localhost:3000` പോർട്ടിൽ ലഭ്യമാണ്.
-> കുറിപ്പ്: നോട്ട് ബുകുകൾ Docsify വഴി പ്രകാശിപ്പിക്കണമെന്നില്ല, അതിനാൽ നോട്ട് ബുക് പ്രവർത്തിപ്പിക്കേണ്ടപ്പോൾ, പൈത്തൺ കർണൽ ഓടിക്കുന്ന VS Code ആണ് വേണം.
+> കുറിപ്പ്: നോട്ട് ബുക്കുകൾ Docsify വഴിയില്ലാതെ, അതിനാൽ നിങ്ങൾക്ക് നോട്ട് ബുക്ക് ഓടിക്കേണ്ടത് വേണം എങ്കിൽ വേർപെടുത്തി VS കോഡിൽ പൈതൺ കൺറോളറോടെ നടത്തണം.
-## മറ്റ് പാഠ്യപദ്ധതികൾ
+## മറ്റൊരു പാഠ്യപദ്ധതി
-ഞങ്ങളുടെ ടീം മറ്റ് പാഠ്യപദ്ധതികളും ഉണ്ടാക്കുന്നു! പരിശോധിക്കുക:
+ഞങ്ങളുടെ ടീം മറ്റു പാഠ്യപധതികളും സൃഷ്ടിക്കുന്നു! നോക്കൂ:
### LangChain
@@ -209,7 +200,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-### ആസ്യൂർ / എഡ്ജ് / എംസിപി / ഏജന്റ്സ്
+### ആസ്യൂർ / എഡ്ജ് / MCP / ഏജന്റുകൾ
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
@@ -217,7 +208,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-### ജനറേറ്റീവ് എഐ സീരീസ്
+### ജനറേറ്റീവ് AI പരമ്പര
[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
@@ -225,7 +216,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-### കോർ ലേർണിംഗ്
+### കോർ ലേണിംഗ്
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
@@ -236,27 +227,27 @@ CO_OP_TRANSLATOR_METADATA:
---
-### കോപ്പൈലറ്റ് സീരീസ്
+### കോപൈലട്ട് പരമ്പര
[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-## സഹായം നേടാം
+## സഹായം നേടുന്നതിന്
-**പ്രശ്നങ്ങൾ നേരിടുന്നുണ്ടോ?** സാധാരണപ്പെട്ട പ്രശ്നങ്ങൾക്ക് പരിഹാരങ്ങൾ കാണാൻ ഞങ്ങളുടെ [Troubleshooting Guide](TROUBLESHOOTING.md) പരിശോധിക്കുക.
+**പ്രശ്നങ്ങൾ നേരിടുകയാണോ?** സാധാരണ പ്രശ്നങ്ങൾക്ക് പരിഹാരങ്ങൾക്കായി നമ്മുടെ [Troubleshooting Guide](TROUBLESHOOTING.md) പരിശോധിക്കുക.
-AI ആപ്പുകൾ നിർമ്മിക്കുന്നതിൽ തടസ്സമുണ്ടെങ്കിൽ അല്ലെങ്കിൽ ഏതെങ്കിലും ചോദ്യങ്ങൾ ഉണ്ടായാൽ, MCP സംബന്ധിച്ച ചർച്ചകളിൽ പങ്കുചേരാൻ അനുഭവസമ്പന്നരായ ഡെവലപ്പർമാരും പഠനാർത്ഥികളും ഉള്ള ഒരു കൂട്ടായ്മയിൽ ചേർക്കുക. ചോദ്യങ്ങൾ ഏറ്റെടുക്കുന്ന ഒരു പിന്തുണയുള്ള സമൂഹമാണ് ഇത്, അറിവ് സൗജന്യമായി പങ്കുവെക്കപ്പെടുന്നു.
+AI ആപ്പുകൾ നിർമ്മിക്കുന്നതിൽ നിങ്ങൾക്ക് തടസ്സമുണ്ടെങ്കിൽ അല്ലെങ്കിൽ സംശയങ്ങളുണ്ടെങ്കിൽ MCP-യെക്കുറിച്ച് fellow learners ഉം പരിചയസമ്പന്നരും ആയ ഡെവലപ്പർമാരുമായുള്ള ചർച്ചകളിൽ ചേർത്ത് വെക്കുക. ചോദ്യങ്ങൾക്ക് സ്വാഗതം പറയുന്നു, അറിയിപ്പ് സ്വതന്ത്രമായി പങ്കുവെക്കപ്പെടുന്നു എന്നു ഈ സാമുദായികം ആണ്.
[](https://discord.gg/nTYy5BXMWG)
-നിങ്ങൾക്ക് ഉൽപ്പന്ന പ്രതികരണം ഉണ്ടെങ്കിൽ അല്ലെങ്കിൽ ഉണ്ടാകുന്ന പിഴവുകൾ ഉണ്ടാകുമ്പോൾ സന്ദർശിക്കുക:
+ഉൽപ്പന്ന പ്രതികരണങ്ങൾക്കോ തകരാറുകൾക്കോ വേണ്ടി നിർമ്മിക്കാന് വരുമ്പോൾ സന്ദർശിക്കുക:
[](https://aka.ms/foundry/forum)
---
-**അസ്വീകാര്യത**:
-ഈ ദസ്താവേജ് AI വിവർത്തന സേവനമായ [Co-op Translator](https://github.com/Azure/co-op-translator) ഉപയോഗിച്ച് വിവർത്തനം ചെയ്തതാണ്. ഞങ്ങൾ സത്യസന്ധതയിൽ ശ്രമിച്ചാലും, ഓട്ടോമാറ്റഡ് വിവർത്തനങ്ങളിൽ പിശകുകൾ അല്ലെങ്കിൽ തെറ്റിദ്ധാരണകൾ ഉണ്ടാകാവുന്നതാണ്. ആഭിക്ഷമായ ഭാഷയിൽ ഉണ്ടായിരുന്നുള്ള ഒറിജിനൽ ദസ്താവേജിനെ അധികാരപ്രാപ്തമായ ഉറവിടമായി പരിഗണിക്കുക. പ്രധാന വിവരങ്ങൾക്ക്, പ്രൊഫഷണൽ മനുഷ്യ വിവർത്തനം ശുപാർശ ചെയ്യപ്പെടുന്നു. ഈ വിവർത്തനത്തിന്റെ ഉപയോഗത്തിൽ നുണർഭാഷകൾ അല്ലെങ്കിൽ തെറ്റിദ്ധാരണകൾ സംഭവിച്ചപ്പോഴും ഞങ്ങൾ ഉത്തരവാദിത്വം വഹിക്കുന്നില്ല.
+**വിവരണക്കുറിപ്പ്**:
+ഈ ഡോക്യുമെന്റ് AI പരിഭാഷാ സേവനം [Co-op Translator](https://github.com/Azure/co-op-translator) ഉപയോഗിച്ച് പരിഭാഷപ്പെടുത്തിയതാണ്. നമ്മൾ നിഷ്ക്കളങ്കതയ്ക്ക് ശ്രമിക്കുന്നുവെങ്കിലും, ഓട്ടോമേറ്റഡ് പരിഭാഷകളിൽ പിശകുകൾ അല്ലെങ്കിൽ തെറ്റുകൾ ഉണ്ടാകാമെന്ന് ദയവായി ശ്രദ്ധിക്കുക. മൂല ഭാഷയിൽ ഉള്ള അത്യന്താപേക്ഷിത ഡോക്യുമെന്റ് ആയാണ് വിശ്വസിക്കേണ്ടത്. പ്രധാനപ്പെട്ട വിവരങ്ങൾക്ക്, പ്രൊഫഷണൽ മനുഷ്യ പരിഭാഷ ശുപാർശ ചെയ്യപ്പെടുന്നു. ഈ പരിഭാഷയുടെ ഉപയോഗത്തിൽ നിന്നുണ്ടാകുന്ന എന്തെങ്കിലും തെറ്റിദ്ധാരണകൾക്കോ തെറ്റായി വ്യാഖ്യാനങ്ങൾക്കോ ഞങ്ങൾ ഉത്തരവാദികളല്ല.
\ No newline at end of file
diff --git a/translations/ml/SECURITY.md b/translations/ml/SECURITY.md
index a1fe14c4..f201a6a9 100644
--- a/translations/ml/SECURITY.md
+++ b/translations/ml/SECURITY.md
@@ -1,12 +1,3 @@
-
## Security
Microsoft നമ്മുടെ സോഫ്റ്റ്വെയർ ഉൽപ്പന്നങ്ങളും സേവനങ്ങളും സുരക്ഷിതമാക്കുന്നതിൽ ഗൗരവമുണ്ട്, ഇതിൽ നമ്മുടെ GitHub സംഘടനകൾ വഴി നിയന്ത്രിക്കുന്ന എല്ലാ സോഴ്സ് കോഡ് റിപോസിറ്ററികളും ഉൾപ്പെടുന്നു, അവയിൽ [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), കൂടാതെ [നമ്മുടെ GitHub സംഘടനകൾ](https://opensource.microsoft.com/) ഉൾപ്പെടുന്നു.
diff --git a/translations/ml/SUPPORT.md b/translations/ml/SUPPORT.md
index a7e9d4a5..678d51e3 100644
--- a/translations/ml/SUPPORT.md
+++ b/translations/ml/SUPPORT.md
@@ -1,12 +1,3 @@
-
# പിന്തുണ
## പ്രശ്നങ്ങൾ ഫയൽ ചെയ്യാനും സഹായം ലഭിക്കാനും
diff --git a/translations/ml/TROUBLESHOOTING.md b/translations/ml/TROUBLESHOOTING.md
index dc8bb101..2f721d6f 100644
--- a/translations/ml/TROUBLESHOOTING.md
+++ b/translations/ml/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# പ്രശ്നപരിഹാര ഗൈഡ്
ഡാറ്റാ സയൻസ് ഫോർ ബിഗിനേഴ്സ് പാഠ്യപദ്ധതിയുമായി പ്രവർത്തിക്കുമ്പോൾ നിങ്ങൾക്ക് നേരിടാവുന്ന സാധാരണ പ്രശ്നങ്ങൾക്ക് ഈ ഗൈഡ് പരിഹാരങ്ങൾ നൽകുന്നു.
diff --git a/translations/ml/USAGE.md b/translations/ml/USAGE.md
index b1b1310f..6db2941b 100644
--- a/translations/ml/USAGE.md
+++ b/translations/ml/USAGE.md
@@ -1,12 +1,3 @@
-
# ഉപയോഗ മാർഗ്ഗനിർദ്ദേശം
ഡാറ്റാ സയൻസ് ഫോർ ബിഗിനേഴ്സ് പാഠ്യപദ്ധതിയുടെ ഉദാഹരണങ്ങളും സാധാരണ പ്രവൃത്തിപദ്ധതികളും ഈ മാർഗ്ഗനിർദ്ദേശം നൽകുന്നു.
diff --git a/translations/ml/docs/_sidebar.md b/translations/ml/docs/_sidebar.md
index d6fc7890..dcd3ebb0 100644
--- a/translations/ml/docs/_sidebar.md
+++ b/translations/ml/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- പരിചയം
- [ഡാറ്റാ സയൻസ് നിർവചനം](../1-Introduction/01-defining-data-science/README.md)
- [ഡാറ്റാ സയൻസിന്റെ നൈതികത](../1-Introduction/02-ethics/README.md)
diff --git a/translations/ml/examples/README.md b/translations/ml/examples/README.md
index 81ba9d5f..d1e5832a 100644
--- a/translations/ml/examples/README.md
+++ b/translations/ml/examples/README.md
@@ -1,12 +1,3 @@
-
# തുടക്കക്കാർക്ക് അനുയോജ്യമായ ഡാറ്റാ സയൻസ് ഉദാഹരണങ്ങൾ
ഉദാഹരണങ്ങൾ ഡയറക്ടറിയിലേക്ക് സ്വാഗതം! ഈ ലളിതവും നന്നായി കമന്റ് ചെയ്ത ഉദാഹരണങ്ങളുടെ ശേഖരം, നിങ്ങൾ ഒരു പൂർണ്ണമായ തുടക്കക്കാരനാണെങ്കിലും, ഡാറ്റാ സയൻസിൽ തുടങ്ങാൻ സഹായിക്കുന്നതിനായി രൂപകൽപ്പന ചെയ്തതാണ്.
diff --git a/translations/ml/for-teachers.md b/translations/ml/for-teachers.md
index a610462b..a89f0b55 100644
--- a/translations/ml/for-teachers.md
+++ b/translations/ml/for-teachers.md
@@ -1,12 +1,3 @@
-
## അധ്യാപകര്ക്കായി
ഈ പാഠ്യപദ്ധതി നിങ്ങളുടെ ക്ലാസ്സില് ഉപയോഗിക്കണോ? ദയവായി സ്വതന്ത്രമായി ഉപയോഗിക്കൂ!
diff --git a/translations/ml/quiz-app/README.md b/translations/ml/quiz-app/README.md
index a6cdb082..6e7b6cd4 100644
--- a/translations/ml/quiz-app/README.md
+++ b/translations/ml/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# ക്വിസുകൾ
ഈ ക്വിസുകൾ https://aka.ms/datascience-beginners എന്ന ഡാറ്റാ സയൻസ് പാഠ്യപദ്ധതിക്കുള്ള പ്രീ-ലക്ചർ, പോസ്റ്റ്-ലക്ചർ ക്വിസുകളാണ്
diff --git a/translations/ml/sketchnotes/README.md b/translations/ml/sketchnotes/README.md
index 0421633e..2763ffe2 100644
--- a/translations/ml/sketchnotes/README.md
+++ b/translations/ml/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
എല്ലാ സ്കെച്ച്നോട്ടുകളും ഇവിടെ കണ്ടെത്തുക!
## ക്രെഡിറ്റുകൾ
diff --git a/translations/mo/README.md b/translations/mo/README.md
deleted file mode 100644
index bf074d88..00000000
--- a/translations/mo/README.md
+++ /dev/null
@@ -1,262 +0,0 @@
-
-# Data Science for Beginners - A Curriculum
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
-
-
-[](https://discord.gg/nTYy5BXMWG)
-
-[](https://aka.ms/foundry/forum)
-
-微軟 Azure Cloud Advocates 高興地提供一個為期 10 週、共 20 課的數據科學課程。每節課包含課前及課後測驗、完成課程的文字指引、解答方案以及作業。我們以專案為基礎的教學方式讓你在實作中學習,是讓新技能「紮根」的有效方法。
-
-**衷心感謝我們的作者:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer)。
-
-**🙏 特別鳴謝 🙏 我們的 [Microsoft 學生大使](https://studentambassadors.microsoft.com/) 作者、審稿人及內容貢獻者,** 其中包括 Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
-[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-
-||
-|:---:|
-| 初學者數據科學 - _手繪筆記由 [@nitya](https://twitter.com/nitya) 製作_ |
-
-### 🌐 多語言支援
-
-#### 透過 GitHub Action 支援(自動且隨時更新)
-
-
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](./README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-
-> **想本地複製?**
-
-> 本倉庫包括超過 50 種語言翻譯,會大大增加下載大小。若想不下載翻譯檔請使用稀疏檢出:
-> ```bash
-> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
-> cd Data-Science-For-Beginners
-> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
-> ```
-> 這樣可更快速取得完成課程所需所有內容。
-
-
-**如果您希望支援更多翻譯語言,請參考列表 [這裡](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-
-#### 加入我們的社群
-[](https://discord.gg/nTYy5BXMWG)
-
-我們正在進行 Discord AI 系列學習活動,詳情與加入請訪問 [Learn with AI Series](https://aka.ms/learnwithai/discord),活動期間為 2025 年 9 月 18日至 30日。你將學習使用 GitHub Copilot 進行數據科學的技巧與秘訣。
-
-
-
-# 你是學生嗎?
-
-可從以下資源開始:
-
-- [學生中心頁面](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) 在此頁面,你會找到初學者資源、學生套件甚至免費認證券的取得方式。這是你值得加入書籤、並定期查看的頁面,因為我們至少每月更新內容一次。
-- [Microsoft Learn 學生大使](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) 加入全球學生大使社群,這可能是你進入微軟的大好機會。
-
-# 開始使用
-
-## 📚 文件
-
-- **[安裝指南](INSTALLATION.md)** - 初學者逐步安裝設定指示
-- **[使用指南](USAGE.md)** - 範例與常見作業流程
-- **[疑難排解](TROUBLESHOOTING.md)** - 常見問題解決方案
-- **[貢獻指南](CONTRIBUTING.md)** - 如何參與本專案
-- **[教師指南](for-teachers.md)** - 教學指引與課堂資源
-
-## 👨🎓 學生專區
-> **完全初學者**:對數據科學一無所知?先從我們的[新手友好範例](examples/README.md)開始!這些簡單且帶有充分註解的範例能在你深入整套課程前打好基礎。
-> **[學生](https://aka.ms/student-page)**:若想自行使用此課程,請 fork 整個倉庫並完成練習,從課前測驗開始。接著閱讀講義並完成後續活動。試著透過理解課程內容自行製作專案,而非僅僅複製解答程式碼;當然,每個專案導向課程中的 /solutions 資料夾內提供了解答程式碼。另外,也可以和朋友組成讀書小組一同學習。若欲進一步研習,建議參考 [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)。
-
-**快速開始:**
-1. 查看[安裝指南](INSTALLATION.md) 完成環境配置
-2. 閱讀[使用指南](USAGE.md) 學習如何使用課程
-3. 由第 1 課開始依序學習
-4. 加入我們的 [Discord 社區](https://aka.ms/ds4beginners/discord) 獲取支援
-
-## 👩🏫 教師專區
-
-> **教師們**:我們提供了[一些建議](for-teachers.md)幫助您使用本課程。歡迎您在[討論論壇](https://github.com/microsoft/Data-Science-For-Beginners/discussions)分享寶貴意見!
-
-## 認識團隊
-[](https://youtu.be/8mzavjQSMM4 "推廣影片")
-
-**Gif 由** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal) 提供
-
-> 🎥 按一下上方圖片觀看關於此專案及其創作者的影片!
-
-## 教學法
-
-我們在設計這個課程時選擇了兩個教學宗旨:確保以專案為基礎,並且包含頻繁的小測驗。在這個系列結束時,學生將會學到資料科學的基本原理,包括倫理概念、資料準備、不同的資料操作方式、資料視覺化、資料分析、資料科學的實際應用案例等等。
-
-另外,課前進行一次低壓力的小測驗可以設定學生學習主題的意圖,而課後再進行一次小測驗能確保進一步的記憶鞏固。此課程設計靈活且有趣,可全程或部分參與。專案從簡單開始,到十週週期結束時逐漸增加難度。
-
-> 請參閱我們的[行為守則](CODE_OF_CONDUCT.md)、[貢獻指南](CONTRIBUTING.md)、[翻譯指引](TRANSLATIONS.md)。我們歡迎您的建設性回饋!
-
-## 每堂課包含:
-
-- 選擇性速寫筆記
-- 選擇性補充影片
-- 課前暖身小測驗
-- 課文內容
-- 對於專案型課程,提供逐步指南以完成專案
-- 知識檢測
-- 挑戰題
-- 補充閱讀
-- 作業
-- [課後測驗](https://ff-quizzes.netlify.app/en/)
-
-> **關於小測驗的說明**:所有小測驗都包含於 Quiz-App 資料夾中,共有40次小測,每次三題。它們在課程中有連結,但這個小測驗應用程式可以在本地執行或部署到 Azure;請參閱 `quiz-app` 資料夾中的說明。這些小測驗正逐步本地化。
-
-## 🎓 友善初學者範例
-
-**剛接觸資料科學?** 我們特別製作了一個[範例目錄](examples/README.md),裡面有簡單且包含詳細註解的程式碼,幫助你入門:
-
-- 🌟 **Hello World** - 你的第一個資料科學程式
-- 📂 **載入資料** - 學習讀取與探索資料集
-- 📊 **簡單分析** - 計算統計數據並找出模式
-- 📈 **基礎視覺化** - 製作圖表
-- 🔬 **實際專案** - 從頭到尾完成完整工作流程
-
-每個範例都包含詳細註解說明每個步驟,非常適合完全初學者!
-
-👉 **[從範例開始](examples/README.md)** 👈
-
-## 課程列表
-
-
-||
-|:---:|
-| 資料科學初學者路線圖 - _速寫筆記由 [@nitya](https://twitter.com/nitya) 提供_ |
-
-
-| 課程編號 | 主題 | 課程群組 | 學習目標 | 聯結課程 | 作者 |
-| :------: | :------------------------------------------: | :----------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------: | :--: |
-| 01 | 定義資料科學 | [介紹](1-Introduction/README.md) | 瞭解資料科學的基本概念及其與人工智慧、機器學習和大數據的關係。 | [課程](1-Introduction/01-defining-data-science/README.md) [影片](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | 資料科學倫理 | [介紹](1-Introduction/README.md) | 資料倫理概念、挑戰與框架。 | [課程](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | 定義資料 | [介紹](1-Introduction/README.md) | 如何分類資料及其常見來源。 | [課程](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | 統計學與機率初探 | [介紹](1-Introduction/README.md) | 使用機率與統計的數學技術來理解資料。 | [課程](1-Introduction/04-stats-and-probability/README.md) [影片](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | 關聯式資料操作 | [資料處理](2-Working-With-Data/README.md) | 介紹關聯式資料及使用結構化查詢語言(Structured Query Language,簡稱SQL)進行探索與分析的基礎。 | [課程](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | 非關聯式資料操作 | [資料處理](2-Working-With-Data/README.md) | 介紹非關聯式資料及其類型,並基本說明文件型資料庫的探索與分析。 | [課程](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Python 使用入門 | [資料處理](2-Working-With-Data/README.md) | 使用 Python 及 Pandas 等函式庫進行資料探索的基礎。建議具備基本 Python 程式設計知識。 | [課程](2-Working-With-Data/07-python/README.md) [影片](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | 資料準備 | [資料處理](2-Working-With-Data/README.md) | 探討資料清理與轉換技術,處理缺失、不準確或不完整資料的挑戰。 | [課程](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | 數量視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 學習使用 Matplotlib 視覺化鳥類資料 🦆 | [課程](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | 資料分佈視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 對區間內觀察和趨勢進行視覺化。 | [課程](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | 比例視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 視覺化離散及群組百分比。 | [課程](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | 關係視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 視覺化資料集及其變數之間的關聯與相關性。 | [課程](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | 意義深遠的視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 改善視覺化的技巧及指導,使其對有效解決問題及洞察更具價值。 | [課程](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | 資料科學生命週期介紹 | [生命週期](4-Data-Science-Lifecycle/README.md) | 資料科學生命週期介紹及其第一步——資料擷取與抽取。 | [課程](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | 資料分析 | [生命週期](4-Data-Science-Lifecycle/README.md) | 此階段聚焦於資料分析技術。 | [課程](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | 溝通 | [生命週期](4-Data-Science-Lifecycle/README.md) | 此階段專注於用易於決策者理解的方式呈現資料洞察。 | [課程](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | 雲端資料科學 | [雲端資料](5-Data-Science-In-Cloud/README.md) | 一系列介紹雲端資料科學及其優點的課程。 | [課程](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 及 [Maud](https://twitter.com/maudstweets) |
-| 18 | 雲端資料科學 | [雲端資料](5-Data-Science-In-Cloud/README.md) | 使用低代碼工具進行模型訓練。 |[課程](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 及 [Maud](https://twitter.com/maudstweets) |
-| 19 | 雲端資料科學 | [雲端資料](5-Data-Science-In-Cloud/README.md) | 使用 Azure Machine Learning Studio 部署模型。 | [課程](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) 及 [Maud](https://twitter.com/maudstweets) |
-| 20 | 資料科學實務 | [實務應用](6-Data-Science-In-Wild/README.md) | 資料科學驅動的真實世界專案。 | [課程](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
-
-## GitHub Codespaces
-
-按照以下步驟在 Codespace 中打開此範例:
-1. 按一下 Code 下拉選單,選擇 Open with Codespaces 選項。
-2. 在窗格底部選擇 + New codespace。
-更多資訊請參閱[GitHub 文件](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace)。
-
-## VSCode Remote - Containers
-使用本機端電腦與 VSCode 以及 VS Code Remote - Containers 擴充套件,在容器中開啟此倉庫,請遵循以下步驟:
-
-1. 若是第一次使用開發容器,請確認系統符合前置需求(如已安裝 Docker),詳情請參見[入門文件](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)。
-
-您可以選擇打開此倉庫於獨立 Docker 卷中:
-
-**備註**:底層會使用 Remote-Containers: **Clone Repository in Container Volume...** 指令,將原始碼克隆到 Docker 卷,而非本機檔案系統。卷是持續保存容器資料的首選機制。
-
-或者打開本地克隆或下載的倉庫版本:
-
-- 將此倉庫克隆到本機文件系統。
-- 按下 F1 並選擇 **Remote-Containers: Open Folder in Container...** 指令。
-- 選擇該文件夾的克隆版本,等待容器啟動,然後開始嘗試。
-
-## 離線存取
-
-您可使用 [Docsify](https://docsify.js.org/#/) 離線瀏覽此文件。叉出此倉庫,在本機安裝 Docsify,然後在此倉庫根目錄下執行 `docsify serve`。網站將在本地端口 3000(localhost:3000)提供服務。
-
-> 注意,Docsify 無法渲染筆記本,因此如需執行筆記本,請在 VS Code 中使用 Python 核心另外完成。
-
-## 其他課程
-
-我們團隊還製作其他課程!請參考:
-
-
-### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
-
----
-
-### Azure / Edge / MCP / 代理人
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
-
----
-
-### 生成式 AI 系列
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
-
----
-
-### 核心學習
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
-
----
-
-### Copilot 系列
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-
-
-## 尋求幫助
-
-**遇到問題?** 請查看我們的[Troubleshooting Guide](TROUBLESHOOTING.md),裡面有常見問題的解決方案。
-
-如果你卡住了或有任何關於建立 AI 應用的問題,歡迎加入學習者和經驗豐富開發者的討論,一同參與 MCP 的社群。這是一個支持性的社群,歡迎提問並自由分享知識。
-
-[](https://discord.gg/nTYy5BXMWG)
-
-如果你在開發中有產品反饋或遇到錯誤,請訪問:
-
-[](https://aka.ms/foundry/forum)
-
----
-
-
-**免責聲明**:
-本文件由 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。雖然我們致力於確保準確性,但請注意,自動翻譯可能包含錯誤或不精確之處。原始文件的母語版本應被視為權威資料來源。對於重要資訊,建議採用專業人工翻譯。我們不對因使用本翻譯而引起之任何誤解或誤釋負責。
-
\ No newline at end of file
diff --git a/translations/mr/.co-op-translator.json b/translations/mr/.co-op-translator.json
new file mode 100644
index 00000000..9ff4d398
--- /dev/null
+++ b/translations/mr/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:45:29+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "mr"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-27T17:16:48+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "mr"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-27T17:17:33+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "mr"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:18:56+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "mr"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-27T17:12:12+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "mr"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-06T07:37:12+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "mr"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-27T17:20:52+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "mr"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:18:24+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "mr"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-27T17:28:44+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "mr"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-27T17:02:07+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "mr"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:02:01+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "mr"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:54:16+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "mr"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-06T07:25:35+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "mr"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-27T17:00:24+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "mr"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:34:10+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "mr"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-27T16:56:33+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "mr"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-06T07:27:48+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "mr"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-27T16:49:42+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "mr"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-27T16:40:56+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-06T07:31:51+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-27T18:42:14+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-06T07:33:30+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-27T18:19:03+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-06T07:30:53+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-27T18:44:51+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:33:29+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-27T18:22:09+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-06T07:32:23+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-27T18:15:02+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T18:16:03+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T18:15:34+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-27T18:28:57+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-27T18:33:42+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-27T18:22:37+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-27T18:24:57+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-27T18:37:01+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-27T18:25:27+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-27T18:34:12+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "mr"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-27T18:10:05+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "mr"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:41:39+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "mr"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-27T18:00:25+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "mr"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:40:52+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "mr"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-27T18:02:46+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "mr"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:42:08+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "mr"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-27T18:09:35+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "mr"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-27T17:55:42+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "mr"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-06T07:24:24+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "mr"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-27T17:47:31+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "mr"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-06T07:23:18+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "mr"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-27T17:44:22+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "mr"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-06T07:24:54+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "mr"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-27T17:53:45+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "mr"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-27T17:36:48+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "mr"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:22:31+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "mr"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-27T17:35:50+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "mr"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-27T17:29:52+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "mr"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:13:42+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "mr"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-27T16:39:05+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "mr"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:43:50+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "mr"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:18:10+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "mr"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:32:06+00:00",
+ "source_file": "README.md",
+ "language_code": "mr"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-27T16:39:30+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "mr"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-27T16:37:14+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "mr"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:35:58+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "mr"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:58:45+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "mr"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-27T17:00:59+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "mr"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:59:46+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "mr"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:54:51+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "mr"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-27T17:54:23+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "mr"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-27T17:29:30+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "mr"
+ }
+}
\ No newline at end of file
diff --git a/translations/mr/1-Introduction/01-defining-data-science/README.md b/translations/mr/1-Introduction/01-defining-data-science/README.md
index 9c0e3e61..d1591362 100644
--- a/translations/mr/1-Introduction/01-defining-data-science/README.md
+++ b/translations/mr/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# डेटा सायन्सची व्याख्या
|  द्वारे ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/mr/1-Introduction/01-defining-data-science/assignment.md b/translations/mr/1-Introduction/01-defining-data-science/assignment.md
index c001af51..8f7c07fe 100644
--- a/translations/mr/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/mr/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# असाइनमेंट: डेटा सायन्स परिदृश्य
या पहिल्या असाइनमेंटमध्ये, तुम्हाला वेगवेगळ्या समस्या क्षेत्रांमधील काही वास्तविक जीवनातील प्रक्रिया किंवा समस्या विचारात घ्यायच्या आहेत आणि डेटा सायन्स प्रक्रियेचा वापर करून त्यात सुधारणा कशी करता येईल याचा विचार करायचा आहे. खालील गोष्टींचा विचार करा:
diff --git a/translations/mr/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/mr/1-Introduction/01-defining-data-science/solution/assignment.md
index feb272cf..b63327c8 100644
--- a/translations/mr/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/mr/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# असाइनमेंट: डेटा सायन्स परिदृश्य
या पहिल्या असाइनमेंटमध्ये, तुम्हाला वेगवेगळ्या समस्या क्षेत्रांमधील काही वास्तविक जीवनातील प्रक्रिया किंवा समस्या विचारात घ्यायच्या आहेत आणि डेटा सायन्स प्रक्रियेचा वापर करून त्यात सुधारणा कशी करता येईल याचा विचार करायचा आहे. खालील गोष्टींचा विचार करा:
diff --git a/translations/mr/1-Introduction/02-ethics/README.md b/translations/mr/1-Introduction/02-ethics/README.md
index 09f697fb..99e8789f 100644
--- a/translations/mr/1-Introduction/02-ethics/README.md
+++ b/translations/mr/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# डेटा नैतिकतेची ओळख
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/mr/1-Introduction/02-ethics/assignment.md b/translations/mr/1-Introduction/02-ethics/assignment.md
index 206b6c70..1ba3ac96 100644
--- a/translations/mr/1-Introduction/02-ethics/assignment.md
+++ b/translations/mr/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## डेटा नीतिमत्ता प्रकरण अभ्यास लिहा
## सूचना
diff --git a/translations/mr/1-Introduction/03-defining-data/README.md b/translations/mr/1-Introduction/03-defining-data/README.md
index c894dafc..f028fc17 100644
--- a/translations/mr/1-Introduction/03-defining-data/README.md
+++ b/translations/mr/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# डेटा परिभाषित करणे
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/mr/1-Introduction/03-defining-data/assignment.md b/translations/mr/1-Introduction/03-defining-data/assignment.md
index 97a660e3..bfd6f99c 100644
--- a/translations/mr/1-Introduction/03-defining-data/assignment.md
+++ b/translations/mr/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# डेटासेट वर्गीकरण
## सूचना
diff --git a/translations/mr/1-Introduction/04-stats-and-probability/README.md b/translations/mr/1-Introduction/04-stats-and-probability/README.md
index 0a897311..99e7cc73 100644
--- a/translations/mr/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/mr/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# सांख्यिकी आणि संभाव्यतेचा संक्षिप्त परिचय
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
ग्राफिकदृष्ट्या आपण माध्य आणि चतुर्थांश यांच्यातील संबंध **बॉक्स प्लॉट** (box plot) नावाच्या आकृतीत दर्शवू शकतो:
-
+
येथे आपण **आंतर-चतुर्थांश श्रेणी** IQR=Q3-Q1 आणि तथाकथित **आउटलायर्स** - मूल्ये, जी [Q1-1.5*IQR,Q3+1.5*IQR] च्या मर्यादेबाहेर असतात, मोजतो.
diff --git a/translations/mr/1-Introduction/04-stats-and-probability/assignment.md b/translations/mr/1-Introduction/04-stats-and-probability/assignment.md
index a6375dce..ec2c3863 100644
--- a/translations/mr/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/mr/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# लहान मधुमेह अभ्यास
या असाइनमेंटमध्ये, आपण [येथून](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) घेतलेल्या मधुमेह रुग्णांच्या एका लहान डेटासेटसह काम करू.
diff --git a/translations/mr/1-Introduction/README.md b/translations/mr/1-Introduction/README.md
index 55572cc5..0648ff63 100644
--- a/translations/mr/1-Introduction/README.md
+++ b/translations/mr/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# डेटा सायन्सची ओळख

diff --git a/translations/mr/2-Working-With-Data/05-relational-databases/README.md b/translations/mr/2-Working-With-Data/05-relational-databases/README.md
index 7a80a3d8..55e52ded 100644
--- a/translations/mr/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/mr/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# डेटासह काम करणे: रिलेशनल डेटाबेस
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/mr/2-Working-With-Data/05-relational-databases/assignment.md b/translations/mr/2-Working-With-Data/05-relational-databases/assignment.md
index dedda1c2..2e80379b 100644
--- a/translations/mr/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/mr/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# विमानतळ डेटा प्रदर्शित करणे
तुम्हाला [SQLite](https://sqlite.org/index.html) वर आधारित एक [डेटाबेस](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) प्रदान करण्यात आला आहे ज्यामध्ये विमानतळांची माहिती आहे. खाली स्कीमा दर्शवले आहे. तुम्ही [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) मधील [SQLite विस्तार](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) वापरून विविध शहरांच्या विमानतळांची माहिती प्रदर्शित कराल.
diff --git a/translations/mr/2-Working-With-Data/06-non-relational/README.md b/translations/mr/2-Working-With-Data/06-non-relational/README.md
index 6d6bb064..371466ec 100644
--- a/translations/mr/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/mr/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# डेटासह काम करणे: नॉन-रिलेशनल डेटा
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/mr/2-Working-With-Data/06-non-relational/assignment.md b/translations/mr/2-Working-With-Data/06-non-relational/assignment.md
index fcd79ec0..1f80ada0 100644
--- a/translations/mr/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/mr/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# सोडा नफा
## सूचना
diff --git a/translations/mr/2-Working-With-Data/07-python/README.md b/translations/mr/2-Working-With-Data/07-python/README.md
index f2468e54..fc56e945 100644
--- a/translations/mr/2-Working-With-Data/07-python/README.md
+++ b/translations/mr/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# डेटा सोबत काम करणे: Python आणि Pandas लायब्ररी
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/mr/2-Working-With-Data/07-python/assignment.md b/translations/mr/2-Working-With-Data/07-python/assignment.md
index 8ababf7c..cc11ce32 100644
--- a/translations/mr/2-Working-With-Data/07-python/assignment.md
+++ b/translations/mr/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# डेटा प्रोसेसिंगसाठी Python मध्ये असाइनमेंट
या असाइनमेंटमध्ये, आम्ही तुम्हाला आमच्या चॅलेंजेसमध्ये विकसित केलेल्या कोडवर अधिक सविस्तर माहिती देण्यास सांगणार आहोत. असाइनमेंट दोन भागांमध्ये विभागलेली आहे:
diff --git a/translations/mr/2-Working-With-Data/08-data-preparation/README.md b/translations/mr/2-Working-With-Data/08-data-preparation/README.md
index 9b5901dc..0d4a3142 100644
--- a/translations/mr/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/mr/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# डेटा सोबत काम करणे: डेटा तयारी
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/mr/2-Working-With-Data/08-data-preparation/assignment.md b/translations/mr/2-Working-With-Data/08-data-preparation/assignment.md
index a21399f5..6864bb31 100644
--- a/translations/mr/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/mr/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# फॉर्ममधून डेटा मूल्यांकन करणे
एक ग्राहक त्यांच्या ग्राहक-आधारित माहिती गोळा करण्यासाठी [लहान फॉर्म](../../../../2-Working-With-Data/08-data-preparation/index.html) चाचणी करत आहे. त्यांनी गोळा केलेला डेटा सत्यापित करण्यासाठी आपल्याकडे आणला आहे. फॉर्म पाहण्यासाठी तुम्ही `index.html` पृष्ठ ब्राउझरमध्ये उघडू शकता.
diff --git a/translations/mr/2-Working-With-Data/README.md b/translations/mr/2-Working-With-Data/README.md
index 62c22c0a..20f09528 100644
--- a/translations/mr/2-Working-With-Data/README.md
+++ b/translations/mr/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# डेटा सोबत काम करणे

diff --git a/translations/mr/3-Data-Visualization/09-visualization-quantities/README.md b/translations/mr/3-Data-Visualization/09-visualization-quantities/README.md
index 4ad789b0..12e570c8 100644
--- a/translations/mr/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/mr/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# प्रमाणांचे दृश्यांकन
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/mr/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/mr/3-Data-Visualization/09-visualization-quantities/assignment.md
index 7a59d776..46425f81 100644
--- a/translations/mr/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/mr/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# रेषा, विखुरलेले आणि बार
## सूचना
diff --git a/translations/mr/3-Data-Visualization/10-visualization-distributions/README.md b/translations/mr/3-Data-Visualization/10-visualization-distributions/README.md
index 70026da9..cc24d23d 100644
--- a/translations/mr/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/mr/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# वितरणांचे दृश्यांकन
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/mr/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/mr/3-Data-Visualization/10-visualization-distributions/assignment.md
index 8908a86d..f2e346b6 100644
--- a/translations/mr/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/mr/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# तुमचे कौशल्य वापरा
## सूचना
diff --git a/translations/mr/3-Data-Visualization/11-visualization-proportions/README.md b/translations/mr/3-Data-Visualization/11-visualization-proportions/README.md
index 12489804..971881c4 100644
--- a/translations/mr/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/mr/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# प्रमाणांचे दृश्यांकन
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/mr/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/mr/3-Data-Visualization/11-visualization-proportions/assignment.md
index c1b2dfaa..362c0595 100644
--- a/translations/mr/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/mr/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# एक्सेलमध्ये प्रयत्न करा
## सूचना
diff --git a/translations/mr/3-Data-Visualization/12-visualization-relationships/README.md b/translations/mr/3-Data-Visualization/12-visualization-relationships/README.md
index bb9ca727..97474d17 100644
--- a/translations/mr/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/mr/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# नातेसंबंधांचे दृश्यांकन: मधाबद्दल सर्व काही 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/mr/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/mr/3-Data-Visualization/12-visualization-relationships/assignment.md
index 5c8ad511..62a2f809 100644
--- a/translations/mr/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/mr/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# मधमाशांच्या पोळ्यात डोकावून पाहा
## सूचना
diff --git a/translations/mr/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/mr/3-Data-Visualization/13-meaningful-visualizations/README.md
index 86dc32b6..f46d1c77 100644
--- a/translations/mr/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/mr/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# अर्थपूर्ण व्हिज्युअलायझेशन तयार करणे
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/mr/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/mr/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index bad375ff..517af93a 100644
--- a/translations/mr/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/mr/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# आपली स्वतःची कस्टम व्हिज तयार करा
## सूचना
diff --git a/translations/mr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/mr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 76e0ab2d..ce83a926 100644
--- a/translations/mr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/mr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# डेंजरस लिझॉन्स डेटा व्हिज्युअलायझेशन प्रोजेक्ट
सुरुवात करण्यासाठी, तुमच्या मशीनवर NPM आणि Node चालू असल्याची खात्री करा. dependencies (npm install) इंस्टॉल करा आणि प्रोजेक्ट स्थानिक पातळीवर चालवा (npm run serve):
diff --git a/translations/mr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/mr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index ea00b4f0..aea5b582 100644
--- a/translations/mr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/mr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Dangerous Liaisons डेटा व्हिज्युअलायझेशन प्रकल्प
सुरुवात करण्यासाठी, तुमच्या मशीनवर NPM आणि Node चालू आहेत याची खात्री करा. अवलंबित्वे स्थापित करा (npm install) आणि नंतर प्रकल्प स्थानिक पातळीवर चालवा (npm run serve):
diff --git a/translations/mr/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/mr/3-Data-Visualization/R/09-visualization-quantities/README.md
index 42280fc6..d0e35280 100644
--- a/translations/mr/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/mr/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# प्रमाणांचे दृश्यरूप
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/mr/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/mr/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 7332834a..5406b1a6 100644
--- a/translations/mr/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/mr/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# रेषा, विखुरलेले आणि बार
## सूचना
diff --git a/translations/mr/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/mr/3-Data-Visualization/R/10-visualization-distributions/README.md
index e6a3a3fd..3961c21c 100644
--- a/translations/mr/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/mr/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# वितरणांचे दृश्यरूप
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/mr/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/mr/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 919724c6..22a7f3a9 100644
--- a/translations/mr/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/mr/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# तुमचे कौशल्य वापरा
## सूचना
diff --git a/translations/mr/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/mr/3-Data-Visualization/R/11-visualization-proportions/README.md
index 11e1c720..9af0a69a 100644
--- a/translations/mr/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/mr/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# प्रमाणांचे दृश्यांकन
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/mr/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/mr/3-Data-Visualization/R/12-visualization-relationships/README.md
index c5508c0e..76d3fb09 100644
--- a/translations/mr/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/mr/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# नातेसंबंधांचे दृश्यांकन: मधाबद्दल सर्व काही 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/mr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/mr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 42e587d9..87701333 100644
--- a/translations/mr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/mr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# अर्थपूर्ण दृश्यांकन तयार करणे
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/mr/3-Data-Visualization/README.md b/translations/mr/3-Data-Visualization/README.md
index 67ba23d2..acff9f45 100644
--- a/translations/mr/3-Data-Visualization/README.md
+++ b/translations/mr/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# दृश्यचित्रण

diff --git a/translations/mr/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/mr/4-Data-Science-Lifecycle/14-Introduction/README.md
index c25cabeb..1e264394 100644
--- a/translations/mr/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/mr/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# डेटा सायन्स जीवनचक्राची ओळख
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/mr/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/mr/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index b833902c..b8d38dad 100644
--- a/translations/mr/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/mr/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# डेटासेटचे मूल्यांकन
एक ग्राहक तुमच्या टीमकडे न्यूयॉर्क सिटीतील टॅक्सी ग्राहकांच्या हंगामी खर्चाच्या सवयींचा तपास करण्यासाठी मदत मागत आला आहे.
diff --git a/translations/mr/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/mr/4-Data-Science-Lifecycle/15-analyzing/README.md
index e2632211..4b99e752 100644
--- a/translations/mr/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/mr/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# डेटा सायन्स जीवनचक्र: विश्लेषण
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/mr/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/mr/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 1d2f4569..8c9f3d63 100644
--- a/translations/mr/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/mr/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# उत्तर शोधत आहोत
ही मागील धड्याच्या [असाइनमेंट](../14-Introduction/assignment.md) ची पुढील पायरी आहे, जिथे आपण डेटासेटचा थोडक्यात आढावा घेतला होता. आता आपण डेटावर अधिक सखोल नजर टाकणार आहोत.
diff --git a/translations/mr/4-Data-Science-Lifecycle/16-communication/README.md b/translations/mr/4-Data-Science-Lifecycle/16-communication/README.md
index 2ba014ef..7fb30956 100644
--- a/translations/mr/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/mr/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# डेटा सायन्स जीवनचक्र: संवाद
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/mr/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/mr/4-Data-Science-Lifecycle/16-communication/assignment.md
index 0457a9a3..ea75d5d4 100644
--- a/translations/mr/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/mr/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# एक कथा सांगा
## सूचना
diff --git a/translations/mr/4-Data-Science-Lifecycle/README.md b/translations/mr/4-Data-Science-Lifecycle/README.md
index 74ea4c0a..7762a7a7 100644
--- a/translations/mr/4-Data-Science-Lifecycle/README.md
+++ b/translations/mr/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# डेटा सायन्स जीवनचक्र

diff --git a/translations/mr/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/mr/5-Data-Science-In-Cloud/17-Introduction/README.md
index c94815e7..eb639361 100644
--- a/translations/mr/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/mr/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# क्लाउडमधील डेटा सायन्सची ओळख
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/mr/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/mr/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index ff66917e..ea86236d 100644
--- a/translations/mr/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/mr/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# बाजार संशोधन
## सूचना
diff --git a/translations/mr/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/mr/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 588b7f2c..de5eae52 100644
--- a/translations/mr/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/mr/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# क्लाउडमधील डेटा सायन्स: "लो कोड/नो कोड" पद्धत
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/mr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/mr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 6b847395..518e51e5 100644
--- a/translations/mr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/mr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML वर लो कोड/नो कोड डेटा सायन्स प्रकल्प
## सूचना
diff --git a/translations/mr/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/mr/5-Data-Science-In-Cloud/19-Azure/README.md
index 482b7c47..67b17c50 100644
--- a/translations/mr/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/mr/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# क्लाउडमधील डेटा सायन्स: "Azure ML SDK" मार्ग
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/mr/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/mr/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 1e402f93..0a9b5efc 100644
--- a/translations/mr/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/mr/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML SDK वापरून डेटा सायन्स प्रोजेक्ट
## सूचना
diff --git a/translations/mr/5-Data-Science-In-Cloud/README.md b/translations/mr/5-Data-Science-In-Cloud/README.md
index 12d9bc22..59b9d30c 100644
--- a/translations/mr/5-Data-Science-In-Cloud/README.md
+++ b/translations/mr/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# क्लाउडमधील डेटा सायन्स

diff --git a/translations/mr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/mr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 3af15045..8ab2f5b6 100644
--- a/translations/mr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/mr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# वास्तविक जगातील डेटा सायन्स
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/mr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/mr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 13ee5c3d..ab6d8b6f 100644
--- a/translations/mr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/mr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# ग्रह संगणक डेटासेटचा अभ्यास करा
## सूचना
diff --git a/translations/mr/6-Data-Science-In-Wild/README.md b/translations/mr/6-Data-Science-In-Wild/README.md
index a578445c..b6e1b6c9 100644
--- a/translations/mr/6-Data-Science-In-Wild/README.md
+++ b/translations/mr/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# जंगलातील डेटा सायन्स
उद्योगांमध्ये डेटा सायन्सच्या प्रत्यक्ष उपयोगांचे उदाहरण.
diff --git a/translations/mr/AGENTS.md b/translations/mr/AGENTS.md
index 1b1c624a..d30d1842 100644
--- a/translations/mr/AGENTS.md
+++ b/translations/mr/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## प्रकल्पाचा आढावा
diff --git a/translations/mr/CODE_OF_CONDUCT.md b/translations/mr/CODE_OF_CONDUCT.md
index 7f38ffef..bea46aed 100644
--- a/translations/mr/CODE_OF_CONDUCT.md
+++ b/translations/mr/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft ओपन सोर्स आचारसंहिता
या प्रकल्पाने [Microsoft ओपन सोर्स आचारसंहिता](https://opensource.microsoft.com/codeofconduct/) स्वीकारली आहे.
diff --git a/translations/mr/CONTRIBUTING.md b/translations/mr/CONTRIBUTING.md
index 278eaff6..05c62133 100644
--- a/translations/mr/CONTRIBUTING.md
+++ b/translations/mr/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# डेटा सायन्स फॉर बिगिनर्ससाठी योगदान
डेटा सायन्स फॉर बिगिनर्स अभ्यासक्रमात योगदान देण्याची तुमची इच्छा असल्याबद्दल धन्यवाद! आम्ही समुदायाकडून योगदानाचे स्वागत करतो.
diff --git a/translations/mr/INSTALLATION.md b/translations/mr/INSTALLATION.md
index bff0aa2e..ef438f51 100644
--- a/translations/mr/INSTALLATION.md
+++ b/translations/mr/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# स्थापना मार्गदर्शक
हा मार्गदर्शक तुम्हाला Data Science for Beginners अभ्यासक्रमासाठी तुमचे वातावरण सेट अप करण्यात मदत करेल.
diff --git a/translations/mr/README.md b/translations/mr/README.md
index bf0f1f4b..567f2d8c 100644
--- a/translations/mr/README.md
+++ b/translations/mr/README.md
@@ -1,210 +1,201 @@
-
-# नवीनांसाठी डेटा सायन्स - एक अभ्यासक्रम
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+# नवीन सुरुवातीसाठी डेटा सायन्स - एक अभ्यासक्रम
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
[](https://aka.ms/foundry/forum)
-मायक्रोसॉफ्टमधील Azure Cloud Advocates यांनी डेटा सायन्सबद्दल 10 आठवड्यांचा, 20 धड्यांचा अभ्यासक्रम सादर केला आहे. प्रत्येक धड्यात पूर्व-धडा आणि नंतरचा क्विझ, धडा पूर्ण करण्यासाठी लेखी सूचना, एक समाधान आणि एक असाइनमेंट समाविष्ट आहे. आमची प्रकल्पांवर आधारित शिक्षण पद्धत तुम्हाला शिकतानाच तयार करायला देते, ही नवीन कौशल्ये 'अडकून राहण्यासाठी' सिद्ध झालेली पद्धत आहे.
+मायक्रोसॉफ्टमधील Azure Cloud Advocates हे डेटा सायन्सबाबत १० आठवडे, २० धडे या अभ्यासक्रमाची ऑफर देताना आनंदित आहेत. प्रत्येक धड्यात प्री-लेसन आणि पोस्ट-लेसन प्रश्नपत्रिका, धडा पूर्ण करण्यासाठी लेखी सूचना, एक मार्गदर्शक उपाय आणि एक असाइनमेंट समाविष्ट आहे. आमच्या प्रोजेक्ट-आधारित पद्धतीमुळे आपण शिकताना तयार करता, जे नवीन कौशल्य अधिक चांगल्या प्रकारे लागून राहण्यासाठी सिद्ध झाले आहे.
**आमच्या लेखकांचे मनापासून आभार:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 खास धन्यवाद 🙏 आमच्या [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) लेखक, पुनरावलोकक आणि सामग्री योगदानकर्त्यांना,** विशेषतः आर्यन अरोरा, [आदित्य गर्ग](https://github.com/AdityaGarg00), [एलोन드्रा सांचेझ](https://www.linkedin.com/in/alondra-sanchez-molina/), [अंकिता सिंग](https://www.linkedin.com/in/ankitasingh007), [अनुपम मिश्रा](https://www.linkedin.com/in/anupam--mishra/), [अर्पिता दास](https://www.linkedin.com/in/arpitadas01/), छैलबिहारी दुबे, [डिब्री नसोफर](https://www.linkedin.com/in/dibrinsofor), [डिशिता भसीन](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [मजद सफी](https://www.linkedin.com/in/majd-s/), [मॅक्स ब्लूम](https://www.linkedin.com/in/max-blum-6036a1186/), [मिगुएल कोरेआ](https://www.linkedin.com/in/miguelmque/), [मोहम्मा इफ्तेखर (इफ्तू) एब्ने जलाल](https://twitter.com/iftu119), [नवरीन तबस्सुम](https://www.linkedin.com/in/nawrin-tabassum), [रेमंड वांग्सा पुत्र](https://www.linkedin.com/in/raymond-wp/), [रोहित यादव](https://www.linkedin.com/in/rty2423), समृद्धी शर्मा, [सन्या सिन्हा](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
-[शीना नारुला](https://www.linkedin.com/in/sheena-narua-n/), [तौकीर अहमद](https://www.linkedin.com/in/tauqeerahmad5201/), योगेंद्रसिंग पवार , [विदुषी गुप्ता](https://www.linkedin.com/in/vidushi-gupta07/), [जसलीन सोनधी](https://www.linkedin.com/in/jasleen-sondhi/)
+**🙏 विशेष आभार 🙏 आमच्या [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) लेखक, परिक्षक आणि सामग्री योगदानकर्त्यांना,** विशेषतः आर्यन अरोरा, [आदित्य गर्ग](https://github.com/AdityaGarg00), [अलोंद्रामोलिना सांचेज](https://www.linkedin.com/in/alondra-sanchez-molina/), [अंकिता सिंग](https://www.linkedin.com/in/ankitasingh007), [अनुपम मिश्रा](https://www.linkedin.com/in/anupam--mishra/), [अर्पिता दास](https://www.linkedin.com/in/arpitadas01/), छैल बिहारी दुबे, [डिब्री नसोफोर](https://www.linkedin.com/in/dibrinsofor), [दिशिता भासिन](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [माजद सफी](https://www.linkedin.com/in/majd-s/), [मॅक्स ब्लुम](https://www.linkedin.com/in/max-blum-6036a1186/), [मिगुएल कोरेया](https://www.linkedin.com/in/miguelmque/), [मोहम्मा इफ्तेखेर (इफ्टू) अबने जलाल](https://twitter.com/iftu119), [नवरीन तबास्सुम](https://www.linkedin.com/in/nawrin-tabassum), [रेमंड वांग्सा पुत्त्रा](https://www.linkedin.com/in/raymond-wp/), [रोहित यादव](https://www.linkedin.com/in/rty2423), समृद्धी शर्मा, [सान्या सिन्हा](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+[शीना नारुला](https://www.linkedin.com/in/sheena-narua-n/), [तौकीर अहमद](https://www.linkedin.com/in/tauqeerahmad5201/), योगेंद्रसिंग पवार , [विदुषी गुप्ता](https://www.linkedin.com/in/vidushi-gupta07/), [जसलीन सुनधी](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| नवीनांसाठी डेटा सायन्स - _स्केचनोट [@nitya](https://twitter.com/nitya) कडून_ |
+| सुरु करणार्यांसाठी डेटा सायन्स - _स्केचनोद [@nitya](https://twitter.com/nitya) द्वारे_ |
### 🌐 बहुभाषिक समर्थन
-#### GitHub Action द्वारे समर्थित (स्वयंचलित आणि नेहमी अद्ययावत)
+#### GitHub Action द्वारे समर्थित (स्वयंचलित व कायम अद्ययावत)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](./README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](./README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **स्थानिक पद्धतीने क्लोन करायला प्राधान्य द्यायचे?**
+> **स्थानिक कॉपी प्राधान्य द्याल का?**
-> हा रेपॉजिटरी ५०+ भाषांमध्ये अनुवाद समाविष्ट करतो ज्यामुळे डाउनलोड आकार लक्षणीय वाढतो. अनुवादांशिवाय क्लोन करण्यासाठी sparse checkout वापरा:
+> हा संग्रह 50+ भाषांमध्ये भाषांतरांचा समावेश करतो ज्यामुळे डाउनलोड साइज मोठा होतो. भाषांतरांशिवाय क्लोन करण्यासाठी sparse checkout वापरा:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> या माध्यमातून तुम्हाला कोर्स पूर्ण करण्यासाठी आवश्यक सगळे मिळेल आणि डाउनलोड अधिक वेगवान होईल.
+> यामुळे आपल्याला अभ्यासक्रम पूर्ण करण्यासाठी आवश्यक सर्वकाही मिळेल आणि डाउनलोड जलद होईल.
-**जर तुम्हाला अतिरिक्त भाषांमध्ये अनुवाद हवेत तर ते [येथे](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) सूचीबद्ध आहेत**
+**अधिक भाषांतरांसाठी समर्थित भाषा येथे पाहा [येथे](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### आमच्या समुदायात सहभागी व्हा
+#### आमच्या समुदायात सामील व्हा
[](https://discord.gg/nTYy5BXMWG)
-आमच्याकडे Discord वर AI सोबत शिकण्याच्या मालिके आहे, अधिक जाणून घ्या आणि आमच्याशी सामील व्हा [Learn with AI Series](https://aka.ms/learnwithai/discord) १८ - ३० सप्टेंबर, २०२५ दरम्यान. तुम्हाला डेटा सायन्ससाठी GitHub Copilot वापरण्याच्या टिपा आणि युक्त्या मिळतील.
+आमच्याकडे Discord वर AI सह जाणून घेण्याचा सत्र चालू आहे, त्याबद्दल अधिक जाणून घेण्यासाठी आणि सहभागी होण्यासाठी [Learn with AI Series](https://aka.ms/learnwithai/discord) येथे भेट द्या, १८ - ३० सप्टेंबर, २०२५. तुम्हाला डेटा सायन्ससाठी GitHub Copilot वापरण्याचे टिप्स आणि ट्रिक्स मिळतील.
-
+
-# आपण विद्यार्थी आहात का?
+# तुम्ही विद्यार्थी आहात का?
-खालील संसाधनांसह सुरू करा:
+खालील संसाधनांसह प्रारंभ करा:
-- [विद्यार्थी हब पृष्ठ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) या पृष्ठावर तुम्हाला नवीन learner साठी संसाधने, विद्यार्थी पॅक आणि अगदी मोफत प्रमाणपत्र व्हाउचर मिळण्याचे मार्गही सापडतील. हा पृष्ठ तुम्ही निवडून ठेवा व वेळोवेळी पाहत राहा कारण आम्ही किमान मासिक आधारावर सामग्री बदलतो.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) जागतिक विद्यार्थी अँम्बॅसडर समुदायात सामील व्हा, हे मायक्रोसॉफ्ट मध्ये प्रवेश मिळवण्याचा एक मार्ग ठरू शकतो.
+- [विद्यार्थी हब पेज](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) या पृष्ठावर, तुम्हाला नवीन सुरुवातीसाठी संसाधने, विद्यार्थी पॅक आणि अगदी मोफत प्रमाणपत्र व्हाउचरसाठी मार्ग मिळतील. हा असा एक पृष्ठ आहे ज्याला तुम्ही बुकमार्क करा आणि कधी कधी तपासत राहा कारण आम्ही किमान महिन्याला एकदा सामग्री अद्ययावत करतो.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) या ग्लोबल समुदायात सहभागी व्हा, हे तुम्हाला Microsoft मध्ये सामील होण्याचा मार्ग असू शकतो.
-# सुरुवात कशी करावी
+# प्रारंभ करणे
## 📚 दस्तऐवजीकरण
-- **[इंस्टॉलेशन मार्गदर्शक](INSTALLATION.md)** - नवीन विद्यार्थ्यांसाठी टप्प्याटप्प्याने सेटअप सूचना
-- **[वापर मार्गदर्शक](USAGE.md)** - उदाहरणे व सामान्य कार्यपद्धती
-- **[समस्या निवारण](TROUBLESHOOTING.md)** - सामान्य समस्या आणि उपाय
+- **[स्थापना मार्गदर्शक](INSTALLATION.md)** - सुरुवातीसाठी पावलोपावली सेटअप सूचना
+- **[वापर मार्गदर्शक](USAGE.md)** - उदाहरणे आणि सामान्य कार्यप्रवाह
+- **[समस्या निवारण](TROUBLESHOOTING.md)** - सामान्य समस्या सोडवण्याचे उपाय
- **[योगदान कसे करावे](CONTRIBUTING.md)** - या प्रकल्पात कसे योगदान द्यावे
-- **[शिक्षकांसाठी](for-teachers.md)** - शिकवण्याचे मार्गदर्शन आणि वर्गासाठी संसाधने
+- **[शिकविणाऱ्यांसाठी](for-teachers.md)** - शिकवण्याचे मार्गदर्शन आणि वर्गातील संसाधने
## 👨🎓 विद्यार्थ्यांसाठी
-> **पूर्ण नवीन:** डेटा सायन्समध्ये नवीन आहात? आमच्या [नवोदय-स्नेही उदाहरणांपासून](examples/README.md) सुरू करा! हे सोपे, चांगले टिपण्णी केलेली उदाहरणे तुम्हाला मुलभूत गोष्टी समजून घेण्यास मदत करतील.
-> **[विद्यार्थी](https://aka.ms/student-page)**: हा अभ्यासक्रम स्वतः वापरण्यासाठी, या संपूर्ण रेपॉजिटरीचा फोर्क करा आणि आपले व्यायाम स्वतंत्रपणे करा, पूर्व लेक्चर क्विझ पास करून. मग लेक्चर वाचा आणि बाकीच्या क्रियाकलाप पूर्ण करा. प्रकल्प तयार करताना लेक्शर समजून घेऊन तयार करण्याचा प्रयत्न करा, समाधान कोड कॉपी करू नका; तरी ते कोड /solutions फोल्डरमध्ये उपलब्ध आहे. दुसरा पर्याय म्हणजे मित्रांसोबत अभ्यास गट तयार करून एकत्र सामग्री पार पाडणे. अधिक अभ्यासासाठी [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) चा सल्ला देतो.
+> **पूर्ण नवीन सुरुवातीसाठी**: डेटा सायन्समध्ये नवीन आहात का? आमच्या [सुरुवातीसाठी सोप्या उदाहरणांपासून](examples/README.md) सुरू करा! ही सोपी, व्यवस्थित समजावलेली उदाहरणे आपल्याला मूलभूत समजण्यासाठी मदत करतील आणि नंतर संपूर्ण अभ्यासक्रमात उडी मारू शकता.
+> **[विद्यार्थी](https://aka.ms/student-page)**: हा अभ्यासक्रम स्वतः वापरण्यासाठी, संपूर्ण रेपो फोर्क करा आणि स्वतः प्रश्नपत्रिका पासून सुरू करून एक्सरसाइझ पूर्ण करा. नंतर लेक्चर वाचा आणि बाकीच्या क्रियाकलापांचे पूर्णत्व साधा. प्रोजेक्ट तयार करताना समाधान कोड कॉपी करण्याऐवजी धडे समजून घेण्याचा प्रयत्न करा; तथापि, त्या कोड प्रत्येक प्रोजेक्ट-उन्मुख धड्यातील /solutions फोल्डरमध्ये उपलब्ध आहे. आणखी एक विचार म्हणजे मित्रांबरोबर अभ्यास गट तयार करून सामग्री एकत्रून जाणून घेणे. पुढील अध्ययनासाठी आम्ही [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) शिफारस करतो.
-**जलद प्रारंभ:**
-1. तुमच्या पर्यावरणाची सेटअपसाठी [इंस्टॉलेशन मार्गदर्शक](INSTALLATION.md) पहा
-2. अभ्यासक्रम वापरासाठी [वापर मार्गदर्शक](USAGE.md) पुनरावलोकन करा
-3. पहिल्या धड्यापासून सुरू करा आणि सलग कार्य करा
-4. आमच्या [Discord समुदायात](https://aka.ms/ds4beginners/discord) सहभागी व्हा समर्थनासाठी
+**त्वरित प्रारंभ:**
+1. आपले वातावरण सेट करण्यासाठी [स्थापना मार्गदर्शक](INSTALLATION.md) तपासा
+2. अभ्यासक्रम वापरण्याबाबत जाणून घेण्यासाठी [वापर मार्गदर्शक](USAGE.md) पाहा
+3. पहिल्या धड्यानं सुरू करा आणि सलग काम करा
+4. आधारासाठी आमच्या [Discord समुदायात](https://aka.ms/ds4beginners/discord) सहभागी व्हा
## 👩🏫 शिक्षकांसाठी
-> **शिक्षकांनो:** आम्ही [अभ्यासक्रम वापरण्याबाबत काही उपाय सुचवले आहेत](for-teachers.md). तुमचा अभिप्राय आम्हाला आवडेल [आमच्या चर्चासत्रात](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+> **शिक्षकांसाठी**: आम्ही या अभ्यासक्रमाचा कसा वापर करावा याबाबत काही [सूचना](for-teachers.md) समाविष्ट केल्या आहेत. आम्हाला तुमचे अभिप्राय आवडेल [आपल्या चर्चा मंचावर](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## टीमला भेटा
-## टीमशी परिचय करा
-[](https://youtu.be/8mzavjQSMM4 "प्रसिती व्हिडिओ")
+[](https://youtu.be/8mzavjQSMM4 "प्रोमो व्हिडिओ")
-**गिफ** [मोहित जैसल](https://www.linkedin.com/in/mohitjaisal) द्वारा
+**गीफ** [मोहीत जैसल](https://www.linkedin.com/in/mohitjaisal) यांनी तयार केलेली
-> 🎥 प्रोजेक्ट आणि ज्यांनी ते तयार केले त्यांच्याबद्दल व्हिडिओसाठी वरिल प्रतिमेवर क्लिक करा!
+> 🎥 प्रोजेक्ट आणि ते तयार करणाऱ्या लोकांबद्दल व्हिडिओ पाहण्यासाठी वरील प्रतिमेवर क्लिक करा!
-## अध्यापन शास्त्र
+## अध्यापन पद्धती
-ह्या अभ्यासक्रमाची रचना करताना आम्ही दोन अध्यापन तत्त्वे निवडली आहेत: तो प्रकल्प-आधारित असावा आणि त्यात वारंवार क्विझ असावे. ह्या मालिकेच्या शेवटी, विद्यार्थी डेटा सायन्सचे मूलभूत तत्त्वे शिकतील, ज्यात नैतिक संकल्पना, डेटा तयारी, डेटा हाताळण्याच्या विविध मार्ग, डेटा दृश्यीकरण, डेटा विश्लेषण, डेटा सायन्सचे विश्वसनीय वापर, आणि बरेच काही येते.
+आम्ही या अभ्यासक्रम तयार करताना दोन अध्यापन तत्त्वे निवडली आहेत: तो प्रोजेक्ट-आधारित असेल आणि त्यात वारंवार क्विझेस असतील याची खात्री करणे. या मालिकेच्या शेवटी, विद्यार्थ्यांनी डेटासायन्सची मूलभूत तत्त्वे शिकली असतील, ज्यात नैतिक संकल्पना, डेटाची तयारी, डेटासह काम करण्याच्या वेगवेगळ्या पद्धती, डेटा व्हिज्युअलायझेशन, डेटा विश्लेषण, डेटासायन्सचे वास्तविक वापर केसेस आणि बरेच काही समाविष्ट आहे.
-याशिवाय, वर्गापूर्वी एक कमी दबावाचा क्विझ विद्यार्थ्याच्या विषय शिकण्याच्या उद्देश दर्शवितो, तर वर्गानंतरचा दुसरा क्विझ अधिक स्मरण सुनिश्चित करतो. हा अभ्यासक्रम लवचिक आणि मजेदार असावा म्हणून डिझाइन केला गेला असून तो संपूर्ण किंवा भागाने घेतला जाऊ शकतो. प्रकल्प छोटे सुरू होतात आणि 10 आठवड्यांच्या चक्राच्या शेवटी अधिक क्लिष्ट होतात.
+याशिवाय, वर्गाच्या आधी एक कमी-धोक्याचा क्विझ विद्यार्थ्याच्या एका विषयावर लक्ष केंद्रित करण्याचा उद्देश सेट करतो, तर वर्गानंतरचा दुसरा क्विझ अधिक टिकाव खातो. हा अभ्यासक्रम लवचिक आणि मजेशीर बनविण्यासाठी डिझाइन केला गेला आहे आणि तो पूर्णपणे किंवा भागानुसार घेता येऊ शकतो. प्रोजेक्ट्स लहान सुरू होतात आणि 10 आठवड्यांच्या चक्राच्या शेवटी अधिक जटिल होतात.
-> आमचे [कोड ऑफ कंडक्ट](CODE_OF_CONDUCT.md), [योगदान](CONTRIBUTING.md), [भाषांतर](TRANSLATIONS.md) मार्गदर्शक तत्त्वे येथे शोधा. आम्हाला तुमचा रचनात्मक अभिप्राय स्वागतार्ह आहे!
+> आमचा [व्यवहार संहिता](CODE_OF_CONDUCT.md), [योगदान](CONTRIBUTING.md), [भाषांतर](TRANSLATIONS.md) मार्गदर्शक तत्त्वे पहा. आम्ही आपले रचनात्मक अभिप्राय स्वागत करतो!
-## प्रत्येक धडा यामध्ये असतो:
+## प्रत्येक धड्यात समाविष्ट आहे:
- ऐच्छिक स्केच नोट
- ऐच्छिक पूरक व्हिडिओ
-- पूर्व-धडा वॉर्मअप क्विझ
+- धड्याआधी गरम-up क्विझ
- लेखी धडा
-- प्रकल्प-आधारित धड्यांसाठी प्रोजेक्ट तयार करण्यासाठी टप्प्याटप्प्याने मार्गदर्शक
-- ज्ञान तपासणी
+- प्रोजेक्ट-आधारित धड्यांकरिता, प्रोजेक्ट कसा तयार करावा यावर चरण-दर-चरण मार्गदर्शक
+- ज्ञान तपासण्या
- एक आव्हान
- पूरक वाचन
- असाइनमेंट
- [धड्यानंतरचा क्विझ](https://ff-quizzes.netlify.app/en/)
-> **क्विझबद्दल एक नोट**: सर्व क्विझ Quiz-App फोल्डरमध्ये आहेत, ज्यात प्रत्येकी तीन प्रश्नांची 40 पूर्ण क्विझ आहेत. ते धड्यांमधून लिंक केलेले आहेत, पण क्विझ अॅप स्थानिकपणे चालवता किंवा Azure वर तैनात करता येतो; `quiz-app` फोल्डरमधील निर्देशांचे पालन करा. ते हळूहळू स्थानिकीकरण केले जात आहे.
+> **क्विझेसबाबत एक टिप**: सर्व क्विझेस Quiz-App फोल्डरमध्ये आहेत, प्रत्येकमध्ये तीन प्रश्नांसह 40 क्विझेस. ते धड्यांमध्ये लिंक केलेले आहेत, पण क्विझ ॲप स्थानिकरित्या चालवता येऊ शकते किंवा Azure वर तैनात करता येऊ शकते; `quiz-app` फोल्डरमधील सूचना पाळा. ते हळूहळू स्थानिकीकरण केले जात आहेत.
-## 🎓 नवशिक्यांसाठी उदाहरणे
+## 🎓 नवशिक्यांसाठी सोपे उदाहरणे
-**डेटा सायन्समध्ये नवे आहात?** आम्ही एक खास [उदाहरणे निर्देशिका](examples/README.md) तयार केली आहे ज्यात सोपी, चांगल्या प्रकारे कॉमेंट केलेली कोड आहे ज्यामुळे तुम्हाला सुरुवात करण्यात मदत होईल:
+**डेटासायन्समध्ये नवीन आहात?** आम्ही एक खास [उदाहरणांचे निर्देशिका](examples/README.md) तयार केली आहे ज्यात सोपा, व्यवस्थित टिप्पणी केलेला कोड आहे ज्यामुळे तुम्हाला सुरुवात करण्यात मदत होईल:
-- 🌟 **हॅलो वर्ल्ड** - तुमचा पहिला डेटा सायन्स प्रोग्राम
-- 📂 **लोडिंग डेटा** - डेटासेट वाचणे आणि अन्वेषण शिकणे
-- 📊 **सोपे विश्लेषण** - सांख्यिकी गणना करा आणि नमुने शोधा
-- 📈 **मूलभूत दृश्यीकरण** - चार्ट आणि ग्राफ तयार करा
-- 🔬 **खऱ्या जगातील प्रकल्प** - सुरुवातीपासून पूर्ण कार्यप्रवाह
+- 🌟 **हॅलो वर्ल्ड** - तुमचा पहिला डेटासायन्स प्रोग्राम
+- 📂 **डेटा लोड करणे** - डेटासेट वाचणे आणि तपासणे शिका
+- 📊 **सोपा विश्लेषण** - सांख्यिकी मोजा आणि नमुने शोधा
+- 📈 **मूलभूत व्हिज्युअलायझेशन** - चार्ट आणि ग्राफ तयार करा
+- 🔬 **प्रामाणिक प्रोजेक्ट** - सुरुवातीपासून शेवटपर्यंत संपूर्ण कार्यप्रवाह
-प्रत्येक उदाहरणात प्रत्येक टप्प्याचे तपशीलवार स्पष्टीकरण आहे, ज्यामुळे ते पूर्णपणे नवशिक्यांसाठी परिपूर्ण आहे!
+प्रत्येक उदाहरणात प्रत्येक टप्प्यावर सविस्तर टिप्पणी आहे, त्यामुळे ते पूर्णपणे नवशिक्यांसाठी योग्य आहे!
-👉 **[उदाहरणांसह प्रारंभ करा](examples/README.md)** 👈
+👉 **[उदाहरणांसह सुरू करा](examples/README.md)** 👈
## धडे
-||
+||
|:---:|
-| डेटा सायन्स फॉर बिगिनर्स: रोडमॅप - _स्केच नोट [@nitya](https://twitter.com/nitya) यांनी_ |
+| डेटासायन्स फॉर बिगिनर्स: रोडमॅप - _स्केच नोट [@nitya](https://twitter.com/nitya) यांनी_ |
-| धडा क्रमांक | विषय | धडा गट | शिकण्याची उद्दिष्टे | संबंधित धडा | लेखक |
+| धडा क्रमांक | विषय | धडा समूह | शिकण्याचे उद्दिष्टे | लिंक केलेला धडा | लेखक |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | डेटा सायन्स व्याख्या | [परिचय](1-Introduction/README.md) | डेटा सायन्समागील मूलभूत संकल्पना आणि त्याचा कृत्रिम बुद्धिमत्ता, मशीन लर्निंग, आणि बिग डेटा यांच्याशी संबंध कसा आहे हे शिका. | [धडा](1-Introduction/01-defining-data-science/README.md) [व्हिडिओ](https://youtu.be/beZ7Mb_oz9I) | [दिमित्रि](http://soshnikov.com) |
-| 02 | डेटा सायन्स नैतिकता | [परिचय](1-Introduction/README.md) | डेटा नैतिकता संकल्पना, आव्हाने आणि फ्रेमवर्क. | [धडा](1-Introduction/02-ethics/README.md) | [नित्या](https://twitter.com/nitya) |
-| 03 | डेटा व्याख्या | [परिचय](1-Introduction/README.md) | डेटा कसा वर्गीकृत केला जातो आणि त्याचे सामान्य स्रोत. | [धडा](1-Introduction/03-defining-data/README.md) | [जॅस्मिन](https://www.twitter.com/paladique) |
-| 04 | सांख्यिकी आणि संभाव्यता परिचय | [परिचय](1-Introduction/README.md) | डेटा समजण्यासाठी संभाव्यता आणि सांख्यिकीची गणिती तंत्रे. | [धडा](1-Introduction/04-stats-and-probability/README.md) [व्हिडिओ](https://youtu.be/Z5Zy85g4Yjw) | [दिमित्रि](http://soshnikov.com) |
-| 05 | रिलेशनल डेटा सह काम करणे | [डेटासह काम](2-Working-With-Data/README.md) | रिलेशनल डेटाचा परिचय आणि रचनेने विचारलेली भाषा एसक्यूएल (SQL, "सी-क्वेल" म्हणून उच्चारली जाते) वापरून रिलेशनल डेटा एक्सप्लोर आणि विश्लेषण करण्याची मूलभूत माहिती. | [धडा](2-Working-With-Data/05-relational-databases/README.md) | [क्रिस्टोफर](https://www.twitter.com/geektrainer) | | |
-| 06 | नोएसक्यूएल डेटा सह काम करणे | [डेटासह काम](2-Working-With-Data/README.md) | नॉन-रिलेशनल डेटाचा परिचय, त्याचे विविध प्रकार आणि दस्तऐवज डेटाबेस एक्सप्लोर व विश्लेषणाचे मूलभूत गोष्टी. | [धडा](2-Working-With-Data/06-non-relational/README.md) | [जॅस्मिन](https://twitter.com/paladique)|
-| 07 | पाइथन सह काम करणे | [डेटासह काम](2-Working-With-Data/README.md) | पँडास सारख्या लायब्ररीसह डेटाचा अन्वेषण करण्यासाठी पाइथन वापरण्याची मूलभूत माहिती. पाइथन प्रोग्रामिंगचे प्राथमिक ज्ञान असणे शिफारसीय आहे. | [धडा](2-Working-With-Data/07-python/README.md) [व्हिडिओ](https://youtu.be/dZjWOGbsN4Y) | [दिमित्रि](http://soshnikov.com) |
-| 08 | डेटा तयारी | [डेटासह काम](2-Working-With-Data/README.md) | डेटामध्ये अपूर्ण, चुकीचा किंवा गहाळ डेटा हाताळण्यासाठी स्वच्छता व रूपांतरणाच्या तंत्रांचा अभ्यास. | [धडा](2-Working-With-Data/08-data-preparation/README.md) | [जॅस्मिन](https://www.twitter.com/paladique) |
-| 09 | मात्रांचे दृश्यीकरण | [डेटा दृश्यीकरण](3-Data-Visualization/README.md) | मॅटप्लॉटलिबचा वापर करून पक्षी डेटा 🦆 चे दृश्यीकरण कसे करायचे ते शिका. | [धडा](3-Data-Visualization/09-visualization-quantities/README.md) | [जेन](https://twitter.com/jenlooper) |
-| 10 | डेटाच्या वितरणांचे दृश्यीकरण | [डेटा दृश्यीकरण](3-Data-Visualization/README.md) | निरीक्षणे आणि प्रवृत्ती एका कालावधीत कशी दर्शवायची ते. | [धडा](3-Data-Visualization/10-visualization-distributions/README.md) | [जेन](https://twitter.com/jenlooper) |
-| 11 | प्रमाणांचे दृश्यीकरण | [डेटा दृश्यीकरण](3-Data-Visualization/README.md) | डिस्क्रीट आणि गटलेले टक्केवारीचे दृश्यीकरण. | [धडा](3-Data-Visualization/11-visualization-proportions/README.md) | [जेन](https://twitter.com/jenlooper) |
-| 12 | नात्यांचे दृश्यीकरण | [डेटा दृश्यीकरण](3-Data-Visualization/README.md) | डेटाच्या संचांमधील आणि त्याच्या चलांमधील संबंध आणि सहसंबंधांचे दृश्यीकरण. | [धडा](3-Data-Visualization/12-visualization-relationships/README.md) | [जेन](https://twitter.com/jenlooper) |
-| 13 | अर्थपूर्ण दृश्यीकरणे | [डेटा दृश्यीकरण](3-Data-Visualization/README.md) | प्रभावी समस्या सोडवण्यासाठी आणि अंतर्दृष्टीसाठी तुमच्या दृश्यीकरणांना कसे मूल्यवान बनवायचे यासाठी तंत्र आणि मार्गदर्शन. | [धडा](3-Data-Visualization/13-meaningful-visualizations/README.md) | [जेन](https://twitter.com/jenlooper) |
-| 14 | डेटा सायन्स जीवनचक्राचा परिचय | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा सायन्स जीवनचक्राचा परिचय आणि डेटा प्राप्ती व एक्सट्रॅक्शन ही पहिले पाऊल. | [धडा](4-Data-Science-Lifecycle/14-Introduction/README.md) | [जॅस्मिन](https://twitter.com/paladique) |
-| 15 | विश्लेषण | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा सायन्स जीवनचक्राचा हा टप्पा डेटाचे विश्लेषण करण्याच्या तंत्रांवर लक्ष केंद्रित करतो. | [धडा](4-Data-Science-Lifecycle/15-analyzing/README.md) | [जॅस्मिन](https://twitter.com/paladique) | | |
-| 16 | संवाद | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा सायन्स जीवनचक्राचा हा टप्पा डेटामधून निष्कर्ष सादर करण्यावर लक्ष केंद्रित करतो ज्यामुळे निर्णय घेणाऱ्यांना समजणे सोपे होते. | [धडा](4-Data-Science-Lifecycle/16-communication/README.md) | [जालेन](https://twitter.com/JalenMcG) | | |
-| 17 | क्लाउडमधील डेटा सायन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | ह्या धड्यांच्या मालिकेमध्ये क्लाउडमधील डेटा सायन्स आणि त्याचे फायदे ओळख दिले आहेत. | [धडा](5-Data-Science-In-Cloud/17-Introduction/README.md) | [टिफनी](https://twitter.com/TiffanySouterre) आणि [मॉड](https://twitter.com/maudstweets) |
-| 18 | क्लाउडमधील डेटा सायन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | लो कोड साधने वापरून मॉडेल्सचे प्रशिक्षण. |[धडा](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [टिफनी](https://twitter.com/TiffanySouterre) आणि [मॉड](https://twitter.com/maudstweets) |
-| 19 | क्लाउडमधील डेटा सायन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | Azure मशीन लर्निंग स्टुडिओ वापरून मॉडेल्सची तैनाती. | [धडा](5-Data-Science-In-Cloud/19-Azure/README.md)| [टिफनी](https://twitter.com/TiffanySouterre) आणि [मॉड](https://twitter.com/maudstweets) |
-| 20 | निसर्गात डेटा सायन्स | [निसर्गात](6-Data-Science-In-Wild/README.md) | वास्तविक जगातील डेटा सायन्सद्वारे चालणारे प्रकल्प. | [धडा](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [नित्या](https://twitter.com/nitya) |
+| 01 | डेटासायन्सची व्याख्या | [परिचय](1-Introduction/README.md) | डेटासायन्समागील मूलभूत संकल्पना आणि तो कसा आर्टिफिशियल इंटेलिजन्स, मशीन लर्निंग, व बिग डेटा शी संबंधित आहे हे शिका. | [धडा](1-Introduction/01-defining-data-science/README.md) [व्हिडिओ](https://youtu.be/beZ7Mb_oz9I) | [दिमित्री](http://soshnikov.com) |
+| 02 | डेटासायन्सचे नैतिक तत्त्व | [परिचय](1-Introduction/README.md) | डेटाऐथिक्सची संकल्पना, आव्हाने व चौकट. | [धडा](1-Introduction/02-ethics/README.md) | [नित्य](https://twitter.com/nitya) |
+| 03 | डेटाची व्याख्या | [परिचय](1-Introduction/README.md) | डेटाची वर्गवारी कशी केली जाते आणि त्याचे सामान्य स्रोत कोणते. | [धडा](1-Introduction/03-defining-data/README.md) | [जॅस्मीन](https://www.twitter.com/paladique) |
+| 04 | सांख्यिकी व संभाव्यता परिचय | [परिचय](1-Introduction/README.md) | डेटा समजून घेण्यासाठी संभाव्यता आणि सांख्यिकीचे गणितीय तंत्र. | [धडा](1-Introduction/04-stats-and-probability/README.md) [व्हिडिओ](https://youtu.be/Z5Zy85g4Yjw) | [दिमित्री](http://soshnikov.com) |
+| 05 | रिलेशनल डेटासह काम करणे | [डेटासह काम करणे](2-Working-With-Data/README.md) | रिलेशनल डेटाचा परिचय व स्ट्रक्चर्ड क्वेरी लँग्वेज (SQL) वापरून डेटाचा शोध व विश्लेषण. | [धडा](2-Working-With-Data/05-relational-databases/README.md) | [क्रिस्टोफर](https://www.twitter.com/geektrainer) | | |
+| 06 | NoSQL डेटासह काम करणे | [डेटासह काम करणे](2-Working-With-Data/README.md) | नॉन-रिलेशनल डेटाचा परिचय, विविध प्रकार व दस्तऐवज डेटाबेसची मूलभूत माहिती. | [धडा](2-Working-With-Data/06-non-relational/README.md) | [जॅस्मीन](https://twitter.com/paladique)|
+| 07 | पायथॉनचा वापर | [डेटासह काम करणे](2-Working-With-Data/README.md) | पायथॉन वापरून डेटाची तपासणी करण्यासाठी पॅंडाज सारख्या लायब्ररींसह मूलभूत ज्ञान. पायथॉन प्रोग्रॅमिंगची प्राथमिक समज आवश्यक. | [धडा](2-Working-With-Data/07-python/README.md) [व्हिडिओ](https://youtu.be/dZjWOGbsN4Y) | [दिमित्री](http://soshnikov.com) |
+| 08 | डेटा तयारी | [डेटासह काम करणे](2-Working-With-Data/README.md) | गहाळ, चुकीचा किंवा अपूर्ण डेटाशी संबंधित डेटा स्वच्छता आणि रूपांतरणाच्या तंत्रज्ञानावर विषय. | [धडा](2-Working-With-Data/08-data-preparation/README.md) | [जॅस्मीन](https://www.twitter.com/paladique) |
+| 09 | मात्रांचे व्हिज्युअलायझेशन | [डेटा व्हिज्युअलायझेशन](3-Data-Visualization/README.md) | Matplotlib वापरून पक्षी डेटा 🦆 कसा व्हिज्युअलायझ करायचा ते शिका | [धडा](3-Data-Visualization/09-visualization-quantities/README.md) | [जेन](https://twitter.com/jenlooper) |
+| 10 | डेटाच्या वितरणांचे व्हिज्युअलायझेशन | [डेटा व्हिज्युअलायझेशन](3-Data-Visualization/README.md) | निरीक्षणे आणि ट्रेंड एका अंतरालात कसे व्हिज्युअलायझ करायचे. | [धडा](3-Data-Visualization/10-visualization-distributions/README.md) | [जेन](https://twitter.com/jenlooper) |
+| 11 | प्रमाणांचे व्हिज्युअलायझेशन | [डेटा व्हिज्युअलायझेशन](3-Data-Visualization/README.md) | डिस्क्रीट आणि गटबद्ध टक्केवारींचे व्हिज्युअलायझेशन. | [धडा](3-Data-Visualization/11-visualization-proportions/README.md) | [जेन](https://twitter.com/jenlooper) |
+| 12 | नातेसंबंधांचे व्हिज्युअलायझेशन | [डेटा व्हिज्युअलायझेशन](3-Data-Visualization/README.md) | डेटाच्या संचांमधील कनेक्शन आणि सहसंबंध कसे व्हिज्युअलायझ करायचे. | [धडा](3-Data-Visualization/12-visualization-relationships/README.md) | [जेन](https://twitter.com/jenlooper) |
+| 13 | अर्थपूर्ण व्हिज्युअलायझेशन | [डेटा व्हिज्युअलायझेशन](3-Data-Visualization/README.md) | प्रभावी समस्या सोडविण्यासाठी आणि आकलनांसाठी व्हिज्युअलायझेशन कसे मूल्यवान बनवायचे यासाठी तंत्रे व मार्गदर्शन. | [धडा](3-Data-Visualization/13-meaningful-visualizations/README.md) | [जेन](https://twitter.com/jenlooper) |
+| 14 | डेटासायन्सच्या जीवनचक्राचा परिचय | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटासायन्स जीवनचक्राचा परिचय आणि डेटाकडे प्रवेश व बाहेर काढण्याचा प्रथम टप्पा. | [धडा](4-Data-Science-Lifecycle/14-Introduction/README.md) | [जॅस्मीन](https://twitter.com/paladique) |
+| 15 | विश्लेषण | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटासायन्स जीवनचक्राचा हा टप्पा डेटाचे विश्लेषण करण्यावर लक्ष केंद्रित करतो. | [धडा](4-Data-Science-Lifecycle/15-analyzing/README.md) | [जॅस्मीन](https://twitter.com/paladique) | | |
+| 16 | संवाद | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | निर्णय घेणाऱ्यांना समजायला सोपे करण्यासाठी डेटापासून Insights सादर करण्यावर लक्ष केंद्रित करतो. | [धडा](4-Data-Science-Lifecycle/16-communication/README.md) | [जालेन](https://twitter.com/JalenMcG) | | |
+| 17 | क्लाउडमधील डेटासायन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | क्लाउड मधील डेटासायन्स आणि त्याचे फायदे यांचा ओळख. | [धडा](5-Data-Science-In-Cloud/17-Introduction/README.md) | [टिफनी](https://twitter.com/TiffanySouterre) आणि [मॉड](https://twitter.com/maudstweets) |
+| 18 | क्लाउडमधील डेटासायन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | लो कोड टूल्स वापरून मॉडेल ट्रेनिंग. |[धडा](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [टिफनी](https://twitter.com/TiffanySouterre) आणि [मॉड](https://twitter.com/maudstweets) |
+| 19 | क्लाउडमधील डेटासायन्स | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio वापरून मॉडेल तैनात करणे. | [धडा](5-Data-Science-In-Cloud/19-Azure/README.md)| [टिफनी](https://twitter.com/TiffanySouterre) आणि [मॉड](https://twitter.com/maudstweets) |
+| 20 | नैसर्गिक जगतातील डेटासायन्स | [नैसर्गिक जगतामध्ये](6-Data-Science-In-Wild/README.md) | वास्तविक जगातील डेटासायन्स चालवलेले प्रोजेक्ट्स. | [धडा](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [नित्य](https://twitter.com/nitya) |
## GitHub Codespaces
-हा नमुना Codespace मध्ये उघडण्यासाठी खालील चरणांचे अनुसरण करा:
-1. कोड ड्रॉपडाउन मेनूवर क्लिक करा आणि Open with Codespaces पर्याय निवडा.
-2. पॅनलच्या तळाशी + New codespace निवडा.
-अधिक माहितीसाठी, [GitHub कागदपत्र](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) पहा.
+या नमुन्यावर Codespace मध्ये उघडण्यासाठी खालील चरणांचे अनुसरण करा:
+1. "कोड" ड्रॉप-डाउन मेनूवर क्लिक करा आणि "Open with Codespaces" पर्याय निवडा.
+2. पॅनेलच्या तळाशी + New codespace निवडा.
+अधिक माहितीकरिता, [GitHub दस्तऐवज](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) पहा.
-## VSCode रिमोट - कंटेनर्स
-तुमच्या स्थानिक संगणकावर आणि VSCode वापरून या रेपॉमध्ये कंटेनरमध्ये उघडण्यासाठी खालील चरणांचे अनुसरण करा, VS Code Remote - Containers विस्तार वापरताना:
+## VSCode Remote - Containers
+आपल्या स्थानिक संगणकाचा वापर करून आणि VSCode मध्ये VS Code Remote - Containers विस्तार वापरून या रेपॉजिटरीला कंटेनरमध्ये उघडण्यासाठी खालील चरणांचे पालन करा:
-1. जर तुम्ही प्रथम वेळ विकास कंटेनर वापरत असाल, तर कृपया [गेटिंग स्टार्टेड डॉक्युमेंटेशन](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) मधील पूर्वआधी गरजा (जसे Docker इन्स्टॉल असणे) पूर्ण आहेत याची खात्री करा.
+1. जर तुम्ही प्रथमच विकास कंटेनर वापरत असाल, तर तुमची प्रणाली आवश्यकता पूर्ण आहे याची खात्री करा (उदा. Docker स्थापित केलेले आहे) [सुरुवात कशी करावी दस्तऐवज](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) मध्ये.
-या रेपॉचा वापर करण्यासाठी, तुम्ही हा रेपॉ एकल Docker व्हॉल्यूममध्ये उघडू शकता:
+या रेपॉजिटरीसाठी, तुम्ही कंटेनरमध्ये सोर्स कोड क्लोन करण्यासाठी या कमांडचा वापर करू शकता:
-**टीप**: अंतर्गतपणे, Remote-Containers: **Clone Repository in Container Volume...** कमांड वापरून स्त्रोत कोड लोकल फाइलसिस्टमऐवजी Docker व्हॉल्यूममध्ये क्लोन केला जाईल. [व्हॉल्यूम्स](https://docs.docker.com/storage/volumes/) कंटेनर डेटा टिकवण्यासाठी प्राधान्य देण्यात येणारा यंत्रणा आहे.
+**टीप:** Remote-Containers: **Clone Repository in Container Volume...** आदेश वापरून सोर्स कोड लोकल फाईल सिस्टमऐवजी Docker व्हॉल्यूममध्ये क्लोन करणे. डेटा टिकवण्यासाठी व्हॉल्यूम (volumes) हा प्राधान्यक्रम आहे.
-किंवा स्थानिकपणे क्लोन किंवा डाउनलोड केलेल्या रेपॉची आवृत्ती उघडा:
+किंवा स्थानिक क्लोन किंवा डाउनलोड केलेली आवृत्ती वापरा:
-- या रेपॉला आपल्या स्थानिक फाइलसिस्टमवर क्लोन करा.
-- F1 दाबा आणि **Remote-Containers: Open Folder in Container...** कमांड निवडा.
-- या फोल्डरची क्लोन केलेली प्रत निवडा, कंटेनर सुरू होईपर्यंत प्रतीक्षा करा, आणि प्रयत्न करा.
+- आपल्या स्थानिक फाईल सिस्टमवर हि रेपॉजिटरी क्लोन करा.
+- F1 दाबा आणि **Remote-Containers: Open Folder in Container...** आदेश निवडा.
+- या फोल्डरची क्लोन आवृत्ती निवडा, कंटेनर सुरू होईपर्यंत थांबा, आणि प्रयत्न करा.
## ऑफलाइन प्रवेश
-तुम्ही [Docsify](https://docsify.js.org/#/) वापरून ही दस्तऐवज ऑफलाइन चालवू शकता. हा रेपॉ Fork करा, तुमच्या स्थानिक मशीनवर [Docsify इंस्टॉल करा](https://docsify.js.org/#/quickstart), नंतर या रेपॉच्या मूळ फोल्डरमध्ये `docsify serve` टाइप करा. वेबसाईट तुमच्या लोकलहोस्टवर पोर्ट 3000 वर चालेल: `localhost:3000`.
+तुम्ही [Docsify](https://docsify.js.org/#/) वापरून ही दस्तऐवज ऑफलाइन चालवू शकता. या रेपॉजिटरीचा fork करा, [Docsify इंस्टॉल करा](https://docsify.js.org/#/quickstart) आपल्या स्थानिक संगणकावर, आणि नंतर या रेपॉजिटरीच्या मूळ फोल्डरमध्ये `docsify serve` असा कमांड द्या. वेबसाइट तुमच्या लोकलहोस्ट: पोर्ट 3000 वर सर्व्ह केली जाईल: `localhost:3000`.
-> लक्षात ठेवा, नोटबुक Docsify द्वारे रेंडर केले जाणार नाहीत, त्यामुळे जेव्हा नोटबुक चालवायची गरज भासेल तेव्हा ते स्वतंत्रपणे VS Code मध्ये Python कर्नल चालवून करा.
+> लक्षात ठेवा, नोटबुक्स Docsify द्वारे रेंडर होणार नाहीत, त्यामुळे तुम्हाला नोटबुक चालवायची असल्यास, ते वेगळे VS Code मध्ये Python कर्नल चालवून करा.
## इतर अभ्यासक्रम
-आमचा संघ इतर अभ्यासक्रम तयार करतो! पहा:
+आमची टीम इतर अभ्यासक्रम तयार करते! पहा:
### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchain4j-for-beginners)
[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
@@ -217,7 +208,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-### जनरेटिव AI मालिका
+### जनरेटिव AI सिरीज
[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
@@ -225,7 +216,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-### मूलभूत शिक्षण
+### कोर शिक्षण
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
@@ -236,7 +227,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-### Copilot मालिका
+### कॉपिलॉट सिरीज
[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
@@ -244,19 +235,19 @@ CO_OP_TRANSLATOR_METADATA:
## मदत मिळवा
-**समस्या येत आहेत का?** सामान्य समस्या सोडवण्यासाठी आमचा [ट्रबलशूटिंग मार्गदर्शक](TROUBLESHOOTING.md) तपासा.
+**समस्या येत आहेत का?** सर्वसाधारण समस्या सोडविण्यासाठी आमचा [Troubleshooting Guide](TROUBLESHOOTING.md) तपासा.
-तुम्हाला अडचण आल्यास किंवा AI अॅप तयार करण्यासंबंधी काही प्रश्न असतील तर. MCP विषयी चर्चांमध्ये सहभागी व्हा जिथे इतर शिकणारे आणि अनुभवी विकसक एकत्र येतात. ही एक समर्थक समुदाय आहे जिथे प्रश्न विचारले जातात आणि ज्ञान मुक्तपणे शेअर केले जाते.
+जर तुम्ही अडकले असाल किंवा AI ऍप विकसित करताना काही प्रश्न असतील तर MCP विषयी चर्चा करण्यासाठी सहअभ्यासक आणि अनुभवी विकासकांच्या समुदायात सहभागी व्हा. हे एक सहाय्यकारी समुदाय आहे जिथे प्रश्न विचारणे स्वागतार्ह आहे आणि ज्ञान मोफत सामायिक केले जाते.
[](https://discord.gg/nTYy5BXMWG)
-उत्पादन अभिप्राय किंवा अॅप तयार करताना त्रुटी आल्यास भेट द्या:
+तुमच्याकडे उत्पादनाबद्दल अभिप्राय किंवा बांधकाम करताना त्रुटी असतील तर येथे भेट द्या:
[](https://aka.ms/foundry/forum)
---
-**विज्ञप्ती**:
-हा दस्तऐवज AI भाषांतर सेव्हिस [Co-op Translator](https://github.com/Azure/co-op-translator) वापरून भाषांतरित केला आहे. आम्ही अचूकतेसाठी प्रयत्नशील असलो तरी, कृपया लक्षात ठेवा की स्वयंचलित भाषांतरांमध्ये चुका किंवा अचूकतेतील त्रुटी असू शकतात. मूळ दस्तऐवज त्याच्या मातृभाषेमध्ये अधिकृत स्रोत मानला जावा. महत्त्वाच्या माहितीकरिता व्यावसायिक मानवी भाषांतर करण्याचा सल्ला दिला जातो. या भाषांतराच्या वापरामुळे उद्भवणाऱ्या कोणत्याही गैरसमजुती किंवा चुकीच्या अर्थसंग्रहासाठी आम्ही जबाबदार नाही.
+**अस्वीकरण**:
+हा दस्तऐवज AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) वापरून अनुवादित केला आहे. आपण अचूकतेसाठी प्रयत्न करत असलो तरी, कृपया लक्षात घ्या की ऑटोमेटेड अनुवादांमध्ये त्रुटी किंवा अचूकतेच्या समस्या असू शकतात. मूळ दस्तऐवज त्याच्या स्थानिक भाषेत अधिकृत स्रोत मानला जावा. महत्त्वाच्या माहितीसाठी व्यावसायिक मानवी अनुवाद शिफारसीय आहे. या अनुवादामुळे उद्भवलेल्या कोणत्याही गैरसमजुतीं किंवा चुकीच्या समजुतीसाठी आम्ही जबाबदार नाही.
\ No newline at end of file
diff --git a/translations/mr/SECURITY.md b/translations/mr/SECURITY.md
index 5f6739b1..07e8bd22 100644
--- a/translations/mr/SECURITY.md
+++ b/translations/mr/SECURITY.md
@@ -1,12 +1,3 @@
-
## सुरक्षा
मायक्रोसॉफ्ट आपल्या सॉफ्टवेअर उत्पादने आणि सेवांच्या सुरक्षेला प्राधान्य देते, ज्यामध्ये आमच्या GitHub संस्थांद्वारे व्यवस्थापित केलेल्या सर्व स्रोत कोड रिपॉझिटरीजचा समावेश होतो. यामध्ये [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), आणि [आमच्या GitHub संस्थांचा](https://opensource.microsoft.com/) समावेश आहे.
diff --git a/translations/mr/SUPPORT.md b/translations/mr/SUPPORT.md
index 54a93b3c..481c2fe6 100644
--- a/translations/mr/SUPPORT.md
+++ b/translations/mr/SUPPORT.md
@@ -1,12 +1,3 @@
-
# समर्थन
## समस्या कशा दाखल करायच्या आणि मदत कशी मिळवायची
diff --git a/translations/mr/TROUBLESHOOTING.md b/translations/mr/TROUBLESHOOTING.md
index d39ea126..ff09a13a 100644
--- a/translations/mr/TROUBLESHOOTING.md
+++ b/translations/mr/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# समस्या निराकरण मार्गदर्शक
ही मार्गदर्शिका डेटा सायन्स फॉर बिगिनर्स अभ्यासक्रमाशी संबंधित सामान्य समस्यांचे निराकरण प्रदान करते.
diff --git a/translations/mr/USAGE.md b/translations/mr/USAGE.md
index 185bcce4..5d370cd2 100644
--- a/translations/mr/USAGE.md
+++ b/translations/mr/USAGE.md
@@ -1,12 +1,3 @@
-
# वापर मार्गदर्शक
ही मार्गदर्शिका डेटा सायन्स फॉर बिगिनर्स अभ्यासक्रमाचा वापर करण्यासाठी उदाहरणे आणि सामान्य कार्यप्रवाह प्रदान करते.
diff --git a/translations/mr/docs/_sidebar.md b/translations/mr/docs/_sidebar.md
index 8fa52ad8..f93c92e7 100644
--- a/translations/mr/docs/_sidebar.md
+++ b/translations/mr/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- परिचय
- [डेटा सायन्सची व्याख्या](../1-Introduction/01-defining-data-science/README.md)
- [डेटा सायन्सचे नैतिक मूल्य](../1-Introduction/02-ethics/README.md)
diff --git a/translations/mr/examples/README.md b/translations/mr/examples/README.md
index e11646e7..1a92c5ae 100644
--- a/translations/mr/examples/README.md
+++ b/translations/mr/examples/README.md
@@ -1,12 +1,3 @@
-
# नवशिक्यांसाठी डेटा सायन्स उदाहरणे
उदाहरणांच्या या संचात आपले स्वागत आहे! ही सोपी, व्यवस्थित टिपण्या असलेली उदाहरणे डेटा सायन्स शिकण्यास सुरुवात करण्यासाठी डिझाइन केली आहेत, अगदी तुम्ही पूर्णपणे नवशिके असलात तरीही.
diff --git a/translations/mr/for-teachers.md b/translations/mr/for-teachers.md
index 83d86497..5798535e 100644
--- a/translations/mr/for-teachers.md
+++ b/translations/mr/for-teachers.md
@@ -1,12 +1,3 @@
-
## शिक्षकांसाठी
तुम्हाला हा अभ्यासक्रम तुमच्या वर्गात वापरायचा आहे का? कृपया मोकळ्या मनाने वापरा!
diff --git a/translations/mr/quiz-app/README.md b/translations/mr/quiz-app/README.md
index a5450c7c..ced3b973 100644
--- a/translations/mr/quiz-app/README.md
+++ b/translations/mr/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# क्विझेस
ही क्विझेस डेटा सायन्स अभ्यासक्रमासाठीच्या व्याख्यानांपूर्वी आणि नंतर घेण्यात येणाऱ्या क्विझेस आहेत. अधिक माहितीसाठी https://aka.ms/datascience-beginners येथे भेट द्या.
diff --git a/translations/mr/sketchnotes/README.md b/translations/mr/sketchnotes/README.md
index 4bf6cbdb..fb0abbca 100644
--- a/translations/mr/sketchnotes/README.md
+++ b/translations/mr/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
सर्व स्केच नोट्स येथे शोधा!
## श्रेय
diff --git a/translations/ms/.co-op-translator.json b/translations/ms/.co-op-translator.json
new file mode 100644
index 00000000..66fc73dc
--- /dev/null
+++ b/translations/ms/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:01:16+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "ms"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-28T18:57:50+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "ms"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-28T18:58:26+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "ms"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:47:34+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "ms"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-28T19:05:59+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "ms"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-06T00:14:22+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "ms"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-28T19:00:46+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "ms"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:54:28+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "ms"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-28T18:54:16+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "ms"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-28T18:49:53+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "ms"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:52:28+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "ms"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:57:08+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "ms"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-06T00:04:33+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "ms"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-28T18:07:36+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "ms"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:52:57+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "ms"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-28T18:12:01+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "ms"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-06T00:06:38+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "ms"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-28T18:18:24+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "ms"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-28T18:05:22+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-06T00:09:58+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-28T18:42:54+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-06T00:11:18+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-28T18:49:29+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-06T00:09:29+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-28T18:40:57+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:43:27+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-28T18:47:38+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-06T00:10:20+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-28T18:45:03+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-28T18:45:22+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-28T18:45:40+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-28T18:31:55+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-28T18:32:58+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-28T18:36:11+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-28T18:36:55+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-28T18:30:10+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-28T18:34:15+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-28T18:38:17+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "ms"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-28T18:28:59+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "ms"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:22:46+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "ms"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-28T18:24:18+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "ms"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:22:03+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "ms"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-28T18:20:41+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "ms"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:23:12+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "ms"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-28T18:28:20+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "ms"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-28T18:19:17+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "ms"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-06T00:03:23+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "ms"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-28T18:01:04+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "ms"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-06T00:01:53+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "ms"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-28T17:58:58+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "ms"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-06T00:03:47+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "ms"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-28T18:04:53+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "ms"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-28T17:54:10+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "ms"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:38:19+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "ms"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-28T19:10:14+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "ms"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-28T19:07:10+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "ms"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:31:51+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "ms"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-28T17:53:45+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "ms"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:22:06+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "ms"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:23:26+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "ms"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:10:21+00:00",
+ "source_file": "README.md",
+ "language_code": "ms"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-28T17:52:36+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "ms"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-28T17:51:33+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "ms"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:44:12+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "ms"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:07:04+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "ms"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-28T18:18:52+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "ms"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:05:23+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "ms"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:59:31+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "ms"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-28T19:06:45+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "ms"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-28T19:10:41+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "ms"
+ }
+}
\ No newline at end of file
diff --git a/translations/ms/1-Introduction/01-defining-data-science/README.md b/translations/ms/1-Introduction/01-defining-data-science/README.md
index 61cc3162..ba076570 100644
--- a/translations/ms/1-Introduction/01-defining-data-science/README.md
+++ b/translations/ms/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Mendefinisikan Sains Data
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/ms/1-Introduction/01-defining-data-science/assignment.md b/translations/ms/1-Introduction/01-defining-data-science/assignment.md
index 5c9f801f..04a2cd78 100644
--- a/translations/ms/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/ms/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Tugasan: Senario Sains Data
Dalam tugasan pertama ini, kami meminta anda untuk memikirkan tentang beberapa proses atau masalah kehidupan sebenar dalam pelbagai domain masalah, dan bagaimana anda boleh memperbaikinya menggunakan proses Sains Data. Fikirkan perkara berikut:
diff --git a/translations/ms/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/ms/1-Introduction/01-defining-data-science/solution/assignment.md
index dea75c77..aa1e3f5e 100644
--- a/translations/ms/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/ms/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Tugasan: Senario Sains Data
Dalam tugasan pertama ini, kami meminta anda untuk memikirkan tentang beberapa proses atau masalah kehidupan sebenar dalam pelbagai domain masalah, dan bagaimana anda boleh memperbaikinya menggunakan proses Sains Data. Fikirkan perkara berikut:
diff --git a/translations/ms/1-Introduction/02-ethics/README.md b/translations/ms/1-Introduction/02-ethics/README.md
index f6686487..ae38d1d9 100644
--- a/translations/ms/1-Introduction/02-ethics/README.md
+++ b/translations/ms/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Pengenalan kepada Etika Data
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/ms/1-Introduction/02-ethics/assignment.md b/translations/ms/1-Introduction/02-ethics/assignment.md
index 849ef4f2..c7235bfd 100644
--- a/translations/ms/1-Introduction/02-ethics/assignment.md
+++ b/translations/ms/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Tulis Kajian Kes Etika Data
## Arahan
diff --git a/translations/ms/1-Introduction/03-defining-data/README.md b/translations/ms/1-Introduction/03-defining-data/README.md
index 29996c52..9ddf0fd7 100644
--- a/translations/ms/1-Introduction/03-defining-data/README.md
+++ b/translations/ms/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Mendefinisikan Data
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/ms/1-Introduction/03-defining-data/assignment.md b/translations/ms/1-Introduction/03-defining-data/assignment.md
index f9991fbc..b0dd8fd6 100644
--- a/translations/ms/1-Introduction/03-defining-data/assignment.md
+++ b/translations/ms/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Mengklasifikasikan Set Data
## Arahan
diff --git a/translations/ms/1-Introduction/04-stats-and-probability/README.md b/translations/ms/1-Introduction/04-stats-and-probability/README.md
index 96eeeb11..072540c2 100644
--- a/translations/ms/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/ms/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Pengenalan Ringkas kepada Statistik dan Kebarangkalian
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Untuk membantu kita memahami taburan data, adalah berguna untuk bercakap tentang
Secara grafik, kita boleh mewakili hubungan antara median dan kuartil dalam diagram yang dipanggil **plot kotak**:
-
+
Di sini kita juga mengira **jarak antara kuartil** IQR=Q3-Q1, dan apa yang dipanggil **outlier** - nilai yang berada di luar sempadan [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/ms/1-Introduction/04-stats-and-probability/assignment.md b/translations/ms/1-Introduction/04-stats-and-probability/assignment.md
index 1c827a91..911e2cdc 100644
--- a/translations/ms/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/ms/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Kajian Kecil Diabetes
Dalam tugasan ini, kita akan bekerja dengan dataset kecil pesakit diabetes yang diambil dari [sini](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/ms/1-Introduction/README.md b/translations/ms/1-Introduction/README.md
index 793b56e1..a11e7c67 100644
--- a/translations/ms/1-Introduction/README.md
+++ b/translations/ms/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Pengenalan kepada Sains Data

diff --git a/translations/ms/2-Working-With-Data/05-relational-databases/README.md b/translations/ms/2-Working-With-Data/05-relational-databases/README.md
index 2249b849..97b2c67b 100644
--- a/translations/ms/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/ms/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Bekerja dengan Data: Pangkalan Data Relasi
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/ms/2-Working-With-Data/05-relational-databases/assignment.md b/translations/ms/2-Working-With-Data/05-relational-databases/assignment.md
index 4b971558..c3a5ae0f 100644
--- a/translations/ms/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/ms/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Memaparkan data lapangan terbang
Anda telah diberikan [pangkalan data](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) yang dibina menggunakan [SQLite](https://sqlite.org/index.html) yang mengandungi maklumat tentang lapangan terbang. Skema ditunjukkan di bawah. Anda akan menggunakan [SQLite extension](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) dalam [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) untuk memaparkan maklumat tentang lapangan terbang di pelbagai bandar.
diff --git a/translations/ms/2-Working-With-Data/06-non-relational/README.md b/translations/ms/2-Working-With-Data/06-non-relational/README.md
index ac5a98f0..41f75e25 100644
--- a/translations/ms/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/ms/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Bekerja dengan Data: Data Tidak Relasional
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/ms/2-Working-With-Data/06-non-relational/assignment.md b/translations/ms/2-Working-With-Data/06-non-relational/assignment.md
index 6d85dc5d..b3da5b75 100644
--- a/translations/ms/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/ms/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Keuntungan Soda
## Arahan
diff --git a/translations/ms/2-Working-With-Data/07-python/README.md b/translations/ms/2-Working-With-Data/07-python/README.md
index 6fa2b377..17407ace 100644
--- a/translations/ms/2-Working-With-Data/07-python/README.md
+++ b/translations/ms/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Bekerja dengan Data: Python dan Perpustakaan Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/ms/2-Working-With-Data/07-python/assignment.md b/translations/ms/2-Working-With-Data/07-python/assignment.md
index a9822cde..3956936d 100644
--- a/translations/ms/2-Working-With-Data/07-python/assignment.md
+++ b/translations/ms/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Tugasan untuk Pemprosesan Data dalam Python
Dalam tugasan ini, kami akan meminta anda untuk menghuraikan kod yang telah kami mula bangunkan dalam cabaran kami. Tugasan ini terdiri daripada dua bahagian:
diff --git a/translations/ms/2-Working-With-Data/08-data-preparation/README.md b/translations/ms/2-Working-With-Data/08-data-preparation/README.md
index 7c4ba5fa..2da8fb6a 100644
--- a/translations/ms/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/ms/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Bekerja dengan Data: Penyediaan Data
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/ms/2-Working-With-Data/08-data-preparation/assignment.md b/translations/ms/2-Working-With-Data/08-data-preparation/assignment.md
index 51ab4c6b..b998f6bd 100644
--- a/translations/ms/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/ms/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Menilai Data daripada Borang
Seorang pelanggan telah menguji [borang kecil](../../../../2-Working-With-Data/08-data-preparation/index.html) untuk mengumpulkan beberapa data asas tentang pangkalan pelanggan mereka. Mereka telah membawa penemuan mereka kepada anda untuk mengesahkan data yang telah mereka kumpulkan. Anda boleh membuka halaman `index.html` dalam pelayar untuk melihat borang tersebut.
diff --git a/translations/ms/2-Working-With-Data/README.md b/translations/ms/2-Working-With-Data/README.md
index be0f478b..b80e04be 100644
--- a/translations/ms/2-Working-With-Data/README.md
+++ b/translations/ms/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Bekerja dengan Data

diff --git a/translations/ms/3-Data-Visualization/09-visualization-quantities/README.md b/translations/ms/3-Data-Visualization/09-visualization-quantities/README.md
index 8a9834b6..e62bb872 100644
--- a/translations/ms/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/ms/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Memvisualkan Kuantiti
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/ms/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/ms/3-Data-Visualization/09-visualization-quantities/assignment.md
index 5a8544ad..c917e21d 100644
--- a/translations/ms/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/ms/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Garisan, Taburan dan Bar
## Arahan
diff --git a/translations/ms/3-Data-Visualization/10-visualization-distributions/README.md b/translations/ms/3-Data-Visualization/10-visualization-distributions/README.md
index 00a99bc0..5f43b1e0 100644
--- a/translations/ms/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/ms/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Memvisualkan Taburan
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ms/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/ms/3-Data-Visualization/10-visualization-distributions/assignment.md
index 3a6a8d1d..6cec9691 100644
--- a/translations/ms/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/ms/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Gunakan Kemahiran Anda
## Arahan
diff --git a/translations/ms/3-Data-Visualization/11-visualization-proportions/README.md b/translations/ms/3-Data-Visualization/11-visualization-proportions/README.md
index d17362db..b90c113a 100644
--- a/translations/ms/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/ms/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Memvisualkan Perkadaran
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ms/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/ms/3-Data-Visualization/11-visualization-proportions/assignment.md
index c2031bd1..68d051cd 100644
--- a/translations/ms/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/ms/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Cuba di Excel
## Arahan
diff --git a/translations/ms/3-Data-Visualization/12-visualization-relationships/README.md b/translations/ms/3-Data-Visualization/12-visualization-relationships/README.md
index 842f7da3..5afcfe7f 100644
--- a/translations/ms/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/ms/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualisasi Hubungan: Semua Tentang Madu 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ms/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/ms/3-Data-Visualization/12-visualization-relationships/assignment.md
index f25a6421..b8c7fc34 100644
--- a/translations/ms/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/ms/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Menyelami Sarang Lebah
## Arahan
diff --git a/translations/ms/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/ms/3-Data-Visualization/13-meaningful-visualizations/README.md
index 5a7c9737..064275e5 100644
--- a/translations/ms/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/ms/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Membuat Visualisasi yang Bermakna
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ms/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/ms/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 363f6d35..4bd0f373 100644
--- a/translations/ms/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/ms/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Bina visualisasi tersuai anda sendiri
## Arahan
diff --git a/translations/ms/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/ms/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index cb45cb18..4b71e822 100644
--- a/translations/ms/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/ms/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Projek visualisasi data Dangerous Liaisons
Untuk memulakan, pastikan anda mempunyai NPM dan Node yang berjalan di mesin anda. Pasang kebergantungan (npm install) dan kemudian jalankan projek secara tempatan (npm run serve):
diff --git a/translations/ms/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/ms/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 8181284d..d26522c1 100644
--- a/translations/ms/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/ms/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Projek visualisasi data Dangerous Liaisons
Untuk memulakan, pastikan anda mempunyai NPM dan Node yang berjalan pada mesin anda. Pasang kebergantungan (npm install) dan kemudian jalankan projek secara tempatan (npm run serve):
diff --git a/translations/ms/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/ms/3-Data-Visualization/R/09-visualization-quantities/README.md
index 85bd006e..f46c71fb 100644
--- a/translations/ms/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/ms/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Memvisualkan Kuantiti
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/ms/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/ms/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 6328e563..aad7eaff 100644
--- a/translations/ms/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/ms/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Garisan, Taburan dan Bar
## Arahan
diff --git a/translations/ms/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/ms/3-Data-Visualization/R/10-visualization-distributions/README.md
index e0e80de2..bedcf1e0 100644
--- a/translations/ms/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/ms/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Memvisualkan Taburan
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ms/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/ms/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 3db94823..77a302ca 100644
--- a/translations/ms/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/ms/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Gunakan kemahiran anda
## Arahan
diff --git a/translations/ms/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/ms/3-Data-Visualization/R/11-visualization-proportions/README.md
index b923f129..7c50da0f 100644
--- a/translations/ms/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/ms/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Memvisualkan Peratusan
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ms/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/ms/3-Data-Visualization/R/12-visualization-relationships/README.md
index b1d5d507..027c3d27 100644
--- a/translations/ms/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/ms/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Memvisualkan Hubungan: Semua Tentang Madu 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ms/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/ms/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 1c238b94..cbe96c92 100644
--- a/translations/ms/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/ms/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Membuat Visualisasi yang Bermakna
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ms/3-Data-Visualization/README.md b/translations/ms/3-Data-Visualization/README.md
index 6ed6b891..6d7f5d43 100644
--- a/translations/ms/3-Data-Visualization/README.md
+++ b/translations/ms/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Visualisasi

diff --git a/translations/ms/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/ms/4-Data-Science-Lifecycle/14-Introduction/README.md
index dcb4b293..32b584f4 100644
--- a/translations/ms/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/ms/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Pengenalan kepada Kitaran Hayat Sains Data
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/ms/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/ms/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 741c02ac..6742fb46 100644
--- a/translations/ms/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/ms/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Menilai Dataset
Seorang klien telah mendekati pasukan anda untuk mendapatkan bantuan dalam menyelidik tabiat perbelanjaan bermusim pelanggan teksi di New York City.
diff --git a/translations/ms/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/ms/4-Data-Science-Lifecycle/15-analyzing/README.md
index b1e07f9a..8500c8d6 100644
--- a/translations/ms/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/ms/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Kitaran Hayat Sains Data: Menganalisis
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/ms/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/ms/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 0d468b9f..cba14397 100644
--- a/translations/ms/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/ms/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Meneroka Jawapan
Ini adalah sambungan kepada [tugasan](../14-Introduction/assignment.md) pelajaran sebelumnya, di mana kita telah melihat secara ringkas set data. Sekarang kita akan melihat data tersebut dengan lebih mendalam.
diff --git a/translations/ms/4-Data-Science-Lifecycle/16-communication/README.md b/translations/ms/4-Data-Science-Lifecycle/16-communication/README.md
index d5f6994d..7d4aae31 100644
--- a/translations/ms/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/ms/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Kitaran Sains Data: Komunikasi
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/ms/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/ms/4-Data-Science-Lifecycle/16-communication/assignment.md
index e615af7e..3d32548a 100644
--- a/translations/ms/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/ms/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Ceritakan sebuah kisah
## Arahan
diff --git a/translations/ms/4-Data-Science-Lifecycle/README.md b/translations/ms/4-Data-Science-Lifecycle/README.md
index e7e83454..75b87cb4 100644
--- a/translations/ms/4-Data-Science-Lifecycle/README.md
+++ b/translations/ms/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Kitaran Hayat Sains Data

diff --git a/translations/ms/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/ms/5-Data-Science-In-Cloud/17-Introduction/README.md
index 1fe2fd9c..c6f6d3c4 100644
--- a/translations/ms/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/ms/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Pengenalan kepada Sains Data di Awan
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/ms/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/ms/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 676be5c1..dfe079c9 100644
--- a/translations/ms/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/ms/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Penyelidikan Pasaran
## Arahan
diff --git a/translations/ms/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/ms/5-Data-Science-In-Cloud/18-Low-Code/README.md
index e47914a9..932587b9 100644
--- a/translations/ms/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/ms/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Sains Data di Awan: Cara "Kod Rendah/Tiada Kod"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/ms/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/ms/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 9f9e2439..0ae09f0f 100644
--- a/translations/ms/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/ms/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Projek Sains Data Low code/No code di Azure ML
## Arahan
diff --git a/translations/ms/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/ms/5-Data-Science-In-Cloud/19-Azure/README.md
index ba17b361..ac93d554 100644
--- a/translations/ms/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/ms/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Sains Data di Awan: Cara "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/ms/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/ms/5-Data-Science-In-Cloud/19-Azure/assignment.md
index f6e0b6f5..a6eb94c5 100644
--- a/translations/ms/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/ms/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Projek Sains Data menggunakan Azure ML SDK
## Arahan
diff --git a/translations/ms/5-Data-Science-In-Cloud/README.md b/translations/ms/5-Data-Science-In-Cloud/README.md
index 8d8b0a8b..c71b8edf 100644
--- a/translations/ms/5-Data-Science-In-Cloud/README.md
+++ b/translations/ms/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Sains Data di Awan

diff --git a/translations/ms/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/ms/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index ac4643bc..08ecba4d 100644
--- a/translations/ms/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/ms/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Sains Data di Dunia Sebenar
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/ms/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/ms/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index c50a60b0..a88b4fb0 100644
--- a/translations/ms/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/ms/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Terokai Dataset Planetary Computer
## Arahan
diff --git a/translations/ms/6-Data-Science-In-Wild/README.md b/translations/ms/6-Data-Science-In-Wild/README.md
index 5988cab7..4f27bc52 100644
--- a/translations/ms/6-Data-Science-In-Wild/README.md
+++ b/translations/ms/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Sains Data di Dunia Nyata
Aplikasi sebenar sains data merentasi pelbagai industri.
diff --git a/translations/ms/AGENTS.md b/translations/ms/AGENTS.md
index c0785b86..ad74ef72 100644
--- a/translations/ms/AGENTS.md
+++ b/translations/ms/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Gambaran Projek
diff --git a/translations/ms/CODE_OF_CONDUCT.md b/translations/ms/CODE_OF_CONDUCT.md
index c73f076c..ab45940b 100644
--- a/translations/ms/CODE_OF_CONDUCT.md
+++ b/translations/ms/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Kod Etika Sumber Terbuka Microsoft
Projek ini telah mengguna pakai [Kod Etika Sumber Terbuka Microsoft](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/ms/CONTRIBUTING.md b/translations/ms/CONTRIBUTING.md
index d9ab4eac..118bb358 100644
--- a/translations/ms/CONTRIBUTING.md
+++ b/translations/ms/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Menyumbang kepada Data Science untuk Pemula
Terima kasih atas minat anda untuk menyumbang kepada kurikulum Data Science untuk Pemula! Kami mengalu-alukan sumbangan daripada komuniti.
diff --git a/translations/ms/INSTALLATION.md b/translations/ms/INSTALLATION.md
index 191ec249..4d48e45f 100644
--- a/translations/ms/INSTALLATION.md
+++ b/translations/ms/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Panduan Pemasangan
Panduan ini akan membantu anda menyediakan persekitaran untuk bekerja dengan kurikulum Data Science for Beginners.
diff --git a/translations/ms/README.md b/translations/ms/README.md
index ad7f4582..f5e2dbd0 100644
--- a/translations/ms/README.md
+++ b/translations/ms/README.md
@@ -1,12 +1,3 @@
-
# Sains Data untuk Pemula - Kurikulum
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -18,235 +9,235 @@ CO_OP_TRANSLATOR_METADATA:
[](http://makeapullrequest.com)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
-Advokat Awan Azure di Microsoft dengan sukacitanya menawarkan kurikulum 10 minggu, 20 pelajaran yang semuanya mengenai Sains Data. Setiap pelajaran termasuk kuiz pra-pelajaran dan pasca-pelajaran, arahan bertulis untuk menyelesaikan pelajaran, penyelesaian, dan tugasan. Pedagogi berasaskan projek kami membolehkan anda belajar sambil membina, cara terbukti untuk kemahiran baru 'melekat'.
+Penyokong Azure Cloud di Microsoft gembira untuk menawarkan kurikulum 10 minggu, 20 pelajaran yang membahas tentang Sains Data. Setiap pelajaran termasuk kuiz pra-pelajaran dan pasca-pelajaran, arahan bertulis untuk menyelesaikan pelajaran, penyelesaian, dan tugasan. Pedagogi berasaskan projek kami membolehkan anda belajar sambil membina, cara yang terbukti untuk kemahiran baru terus diingati.
-**Terima kasih yang ikhlas kepada penulis kami:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Terima kasih banyak kepada penulis kami:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Terima kasih istimewa 🙏 kepada penulis, penyemak dan penyumbang kandungan [Duta Pelajar Microsoft](https://studentambassadors.microsoft.com/),** terutamanya Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Terima kasih istimewa 🙏 kepada penulis, pengulas dan penyumbang kandungan [Duta Pelajar Microsoft](https://studentambassadors.microsoft.com/),** khususnya Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Sains Data Untuk Pemula - _Nota Lakaran oleh [@nitya](https://twitter.com/nitya)_ |
+| Sains Data Untuk Pemula - _Sketchnote oleh [@nitya](https://twitter.com/nitya)_ |
### 🌐 Sokongan Pelbagai Bahasa
-#### Disokong melalui GitHub Action (Automatik & Sentiasa Terkini)
+#### Disokong melalui Tindakan GitHub (Automatik & Sentiasa Dikemas Kini)
-[Arab](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgaria](../bg/README.md) | [Burma (Myanmar)](../my/README.md) | [Cina (Dipermudahkan)](../zh/README.md) | [Cina (Tradisional, Hong Kong)](../hk/README.md) | [Cina (Tradisional, Macau)](../mo/README.md) | [Cina (Tradisional, Taiwan)](../tw/README.md) | [Kroasia](../hr/README.md) | [Ceko](../cs/README.md) | [Denmark](../da/README.md) | [Belanda](../nl/README.md) | [Estonia](../et/README.md) | [Finland](../fi/README.md) | [Perancis](../fr/README.md) | [Jerman](../de/README.md) | [Greek](../el/README.md) | [Ibrani](../he/README.md) | [Hindi](../hi/README.md) | [Hungaria](../hu/README.md) | [Indonesia](../id/README.md) | [Itali](../it/README.md) | [Jepun](../ja/README.md) | [Kannada](../kn/README.md) | [Korea](../ko/README.md) | [Lithuania](../lt/README.md) | [Melayu](./README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Pidgin Nigeria](../pcm/README.md) | [Norway](../no/README.md) | [Parsi (Farsi)](../fa/README.md) | [Poland](../pl/README.md) | [Portugal (Brazil)](../br/README.md) | [Portugal (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romania](../ro/README.md) | [Rusia](../ru/README.md) | [Serbia (Cyrillic)](../sr/README.md) | [Slovakia](../sk/README.md) | [Slovenia](../sl/README.md) | [Sepanyol](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipina)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turki](../tr/README.md) | [Ukraine](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnam](../vi/README.md)
+[Arab](../ar/README.md) | [Benggali](../bn/README.md) | [Bulgaria](../bg/README.md) | [Myanmar (Bahasa Burma)](../my/README.md) | [Cina (Ringkas)](../zh-CN/README.md) | [Cina (Tradisional, Hong Kong)](../zh-HK/README.md) | [Cina (Tradisional, Macau)](../zh-MO/README.md) | [Cina (Tradisional, Taiwan)](../zh-TW/README.md) | [Kroasia](../hr/README.md) | [Czech](../cs/README.md) | [Denmark](../da/README.md) | [Belanda](../nl/README.md) | [Estonia](../et/README.md) | [Finland](../fi/README.md) | [Perancis](../fr/README.md) | [Jerman](../de/README.md) | [Yunani](../el/README.md) | [Ibrani](../he/README.md) | [Hindi](../hi/README.md) | [Hungary](../hu/README.md) | [Indonesia](../id/README.md) | [Itali](../it/README.md) | [Jepun](../ja/README.md) | [Kannada](../kn/README.md) | [Korea](../ko/README.md) | [Lithuania](../lt/README.md) | [Melayu](./README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Pidgin Nigeria](../pcm/README.md) | [Norway](../no/README.md) | [Parsi (Farsi)](../fa/README.md) | [Poland](../pl/README.md) | [Portugis (Brazil)](../pt-BR/README.md) | [Portugis (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romania](../ro/README.md) | [Rusia](../ru/README.md) | [Serbia (Cyrillic)](../sr/README.md) | [Slovakia](../sk/README.md) | [Slovenia](../sl/README.md) | [Sepanyol](../es/README.md) | [Swahili](../sw/README.md) | [Sweden](../sv/README.md) | [Tagalog (Filipina)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turki](../tr/README.md) | [Ukraine](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnam](../vi/README.md)
-> **Lebih Suka Klon Secara Lokal?**
+> **Lebih suka Klon Secara Tempatan?**
-> Repositori ini termasuk 50+ terjemahan bahasa yang meningkatkan saiz muat turun dengan ketara. Untuk klon tanpa terjemahan, gunakan sparse checkout:
+> Repositori ini merangkumi lebih dari 50 terjemahan bahasa yang meningkatkan saiz muat turun dengan ketara. Untuk klon tanpa terjemahan, gunakan sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Ini memberikan anda segala yang anda perlukan untuk menyelesaikan kursus dengan muat turun yang jauh lebih cepat.
+> Ini memberi anda semua yang anda perlukan untuk menyelesaikan kursus dengan muat turun yang lebih pantas.
-**Jika anda ingin sokongan bahasa terjemahan tambahan disenaraikan [di sini](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Jika anda ingin menyokong bahasa tambahan terjemahan disenaraikan [di sini](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Sertai Komuniti Kami
+#### Sertai Komuniti Kami
[](https://discord.gg/nTYy5BXMWG)
-Kami sedang menjalankan siri belajar dengan AI di Discord, pelajari lebih lanjut dan sertai kami di [Siri Belajar dengan AI](https://aka.ms/learnwithai/discord) dari 18 - 30 September, 2025. Anda akan mendapat petua dan helah menggunakan GitHub Copilot untuk Sains Data.
+Kami mempunyai siri belajar dengan AI di Discord yang sedang berjalan, ketahui lebih lanjut dan sertai kami di [Siri Belajar dengan AI](https://aka.ms/learnwithai/discord) dari 18 - 30 September, 2025. Anda akan mendapatkan petua dan trik menggunakan GitHub Copilot untuk Sains Data.
-
+
-# Adakah anda seorang pelajar?
+# Adakah anda pelajar?
Mulakan dengan sumber berikut:
-- [Halaman Pusat Pelajar](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Dalam halaman ini, anda akan menemui sumber permulaan, Pek Pelajar dan bahkan cara untuk mendapatkan baucar sijil percuma. Ini adalah halaman yang anda mahu tandakan dan semak dari masa ke masa kerana kami menukar kandungan sekurang-kurangnya setiap bulan.
-- [Duta Pelajar Microsoft Learn](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Sertai komuniti duta pelajar global, ini boleh menjadi jalan anda ke Microsoft.
+- [Halaman Pusat Pelajar](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Dalam halaman ini, anda akan menemui sumber untuk pemula, Pakej Pelajar dan juga cara untuk mendapatkan baucar sijil percuma. Ini adalah satu halaman yang anda mahu tandai dan semak dari masa ke masa kerana kandungan diganti sekurang-kurangnya setiap bulan.
+- [Duta Pelajar Microsoft Learn](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Sertai komuniti global duta pelajar, ini boleh menjadi jalan anda ke Microsoft.
# Memulakan
## 📚 Dokumentasi
-- **[Panduan Pemasangan](INSTALLATION.md)** - Arahan pemasangan langkah demi langkah untuk pemula
-- **[Panduan Penggunaan](USAGE.md)** - Contoh dan aliran kerja biasa
+- **[Panduan Pemasangan](INSTALLATION.md)** - Arahan langkah demi langkah untuk pemula
+- **[Panduan Penggunaan](USAGE.md)** - Contoh dan alur kerja biasa
- **[Penyelesaian Masalah](TROUBLESHOOTING.md)** - Penyelesaian untuk isu biasa
-- **[Panduan Menyumbang](CONTRIBUTING.md)** - Cara menyumbang kepada projek ini
-- **[Untuk Guru](for-teachers.md)** - Panduan pengajaran dan sumber kelas
+- **[Panduan Menyumbang](CONTRIBUTING.md)** - Cara untuk menyumbang kepada projek ini
+- **[Untuk Guru](for-teachers.md)** - Panduan pengajaran dan sumber bilik darjah
## 👨🎓 Untuk Pelajar
-> **Pemula Lengkap**: Baru dalam sains data? Mula dengan [contoh mesra-pemula kami](examples/README.md)! Contoh mudah yang disertakan komen ini akan membantu anda memahami asas sebelum menyelami keseluruhan kurikulum.
-> **[Pelajar](https://aka.ms/student-page)**: untuk menggunakan kurikulum ini sendiri, buat forkan repo penuh dan selesaikan latihan sendiri, bermula dengan kuiz sebelum kuliah. Kemudian baca kuliah dan lengkapkan aktiviti lain. Cuba hasilkan projek dengan memahami pelajaran daripada menyalin kod penyelesaian; walau bagaimanapun, kod itu tersedia dalam folder /solutions dalam setiap pelajaran berorientasikan projek. Satu idea lain adalah membentuk kumpulan belajar bersama rakan dan bersama-sama melalui kandungan. Untuk kajian lebih lanjut, kami mengesyorkan [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Pemula Sepenuhnya**: Baru dalam sains data? Mulakan dengan [contoh mesra pemula kami](examples/README.md)! Contoh mudah ini dengan komen membantu anda memahami asas sebelum menyelami kurikulum penuh.
+> **[Pelajar](https://aka.ms/student-page)**: untuk menggunakan kurikulum ini secara sendiri, forklah keseluruhan repo dan selesaikan latihan sendiri, bermula dengan kuiz pra-ceramah. Kemudian baca ceramah dan selesaikan aktiviti lain. Cuba cipta projek dengan memahami pelajaran bukannya menyalin kod penyelesaian; namun, kod itu ada di dalam folder /solutions dalam setiap pelajaran berorientasikan projek. Satu lagi idea adalah membuat kumpulan belajar dengan rakan dan lalui kandungan bersama. Untuk kajian lanjut, kami mengesyorkan [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
-**Permulaan Pantas:**
+**Mulakan dengan cepat:**
1. Semak [Panduan Pemasangan](INSTALLATION.md) untuk menyediakan persekitaran anda
-2. Tinjau [Panduan Penggunaan](USAGE.md) untuk belajar cara menggunakan kurikulum
-3. Mulakan dengan Pelajaran 1 dan ikuti secara berurutan
+2. Tinjau [Panduan Penggunaan](USAGE.md) untuk belajar cara bekerja dengan kurikulum
+3. Mulakan dari Pelajaran 1 dan teruskan secara berurutan
4. Sertai [komuniti Discord kami](https://aka.ms/ds4beginners/discord) untuk sokongan
## 👩🏫 Untuk Guru
-> **Guru**: kami telah [menyertakan beberapa cadangan](for-teachers.md) mengenai cara menggunakan kurikulum ini. Kami mengalu-alukan maklum balas anda [di forum perbincangan kami](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+> **Guru**: kami telah [menyertakan beberapa cadangan](for-teachers.md) tentang cara menggunakan kurikulum ini. Kami amat menghargai maklum balas anda [di forum perbincangan kami](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## Kenali Pasukan
-## Temui Pasukan
-[](https://youtu.be/8mzavjQSMM4 "Promo video")
+[](https://youtu.be/8mzavjQSMM4 "Video Promo")
**Gif oleh** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Klik gambar di atas untuk video tentang projek dan orang yang menciptakannya!
+> 🎥 Klik imej di atas untuk video mengenai projek dan orang yang menciptakannya!
## Pedagogi
-Kami telah memilih dua prinsip pedagogi semasa membina kurikulum ini: memastikan ia berasaskan projek dan termasuk kuiz yang kerap. Pada akhir siri ini, pelajar akan mempelajari prinsip asas sains data, termasuk konsep etika, penyediaan data, pelbagai cara bekerja dengan data, visualisasi data, analisis data, kes penggunaan sains data dunia sebenar, dan banyak lagi.
+Kami telah memilih dua prinsip pedagogi semasa membina kurikulum ini: memastikan ianya berasaskan projek dan termasuk kuiz yang kerap. Menjelang akhir siri ini, pelajar akan mempelajari prinsip asas sains data, termasuk konsep etika, persiapan data, pelbagai cara bekerja dengan data, visualisasi data, analisis data, penggunaan dunia sebenar dalam sains data, dan banyak lagi.
-Selain itu, kuiz berisiko rendah sebelum kelas menetapkan niat pelajar untuk mempelajari sesuatu topik, manakala kuiz kedua selepas kelas memastikan pengingatan yang lebih baik. Kurikulum ini direka untuk menjadi fleksibel dan menyeronokkan serta boleh diikuti secara keseluruhan atau sebahagian. Projek bermula kecil dan menjadi semakin kompleks menjelang akhir kitaran 10 minggu.
+Selain itu, kuiz berisiko rendah sebelum kelas menetapkan niat pelajar terhadap pembelajaran topik, manakala kuiz kedua selepas kelas memastikan pengekalan tambahan. Kurikulum ini direka untuk fleksibel dan menyeronokkan dan boleh diambil secara keseluruhan atau sebahagian. Projek bermula kecil dan menjadi semakin rumit menjelang akhir kitaran 10 minggu.
-> Temui [Kod Etika](CODE_OF_CONDUCT.md), [Menyumbang](CONTRIBUTING.md), [Terjemahan](TRANSLATIONS.md) panduan kami. Kami mengalu-alukan maklum balas membina anda!
+> Cari [Kod Etika](CODE_OF_CONDUCT.md), [Sumbangan](CONTRIBUTING.md), [Terjemahan](TRANSLATIONS.md) kami. Kami mengalu-alukan maklum balas membina anda!
## Setiap pelajaran termasuk:
-- Sketchnote pilihan
-- Video sokongan pilihan
+- Nota sketchnote pilihan
+- Video tambahan pilihan
- Kuiz pemanasan sebelum pelajaran
- Pelajaran bertulis
- Untuk pelajaran berasaskan projek, panduan langkah demi langkah cara membina projek
-- Semakan pengetahuan
+- Pemeriksaan pengetahuan
- Cabaran
- Bacaan tambahan
- Tugasan
- [Kuiz selepas pelajaran](https://ff-quizzes.netlify.app/en/)
-> **Nota mengenai kuiz**: Semua kuiz terkandung di dalam folder Quiz-App, dengan jumlah 40 kuiz kandungan tiga soalan setiap satu. Ia dipautkan dalam pelajaran, tetapi aplikasi kuiz boleh dijalankan secara tempatan atau dipasang di Azure; ikut arahan dalam folder `quiz-app`. Ia sedang diterjemahkan secara berperingkat.
+> **Nota tentang kuiz**: Semua kuiz terkandung dalam folder Quiz-App, dengan 40 kuiz keseluruhan yang setiap satu mempunyai tiga soalan. Mereka dipautkan dari dalam pelajaran, tetapi aplikasi kuiz boleh dijalankan secara lokal atau dilancarkan di Azure; ikuti arahan dalam folder `quiz-app`. Ia sedang diterjemah secara berperingkat.
## 🎓 Contoh Mesra Pemula
-**Baharu dalam Sains Data?** Kami telah mencipta [direktori contoh](examples/README.md) khas dengan kod mudah dan bertulis dengan baik untuk membantu anda bermula:
+**Baru dalam Sains Data?** Kami telah mencipta direktori [contoh](examples/README.md) khas dengan kod mudah dan dikomen dengan baik untuk membantu anda bermula:
- 🌟 **Hello World** - Program sains data pertama anda
- 📂 **Memuatkan Data** - Belajar membaca dan meneroka set data
-- 📊 **Analisis Mudah** - Kira statistik dan cari pola
-- 📈 **Visualisasi Asas** - Buat carta dan graf
-- 🔬 **Projek Dunia Nyata** - Aliran kerja lengkap dari mula hingga akhir
+- 📊 **Analisis Mudah** - Mengira statistik dan mencari corak
+- 📈 **Visualisasi Asas** - Mencipta carta dan graf
+- 🔬 **Projek Dunia Sebenar** - Aliran kerja lengkap dari mula hingga akhir
-Setiap contoh termasuk komen terperinci menerangkan setiap langkah, sesuai untuk pemula mutlak!
+Setiap contoh termasuk komen terperinci yang menerangkan setiap langkah, menjadikannya sempurna untuk pemula mutlak!
-👉 **[Mulakan dengan contoh](examples/README.md)** 👈
+👉 **[Mula dengan contoh](examples/README.md)** 👈
## Pelajaran
-||
+||
|:---:|
| Sains Data Untuk Pemula: Peta Jalan - _Sketchnote oleh [@nitya](https://twitter.com/nitya)_ |
| Nombor Pelajaran | Topik | Kumpulan Pelajaran | Objektif Pembelajaran | Pelajaran Berkaitan | Pengarang |
-| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Mendefinisikan Sains Data | [Pengenalan](1-Introduction/README.md) | Pelajari konsep asas di sebalik sains data dan bagaimana ia berkaitan dengan kecerdasan buatan, pembelajaran mesin, dan data besar. | [pelajaran](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Etika Sains Data | [Pengenalan](1-Introduction/README.md) | Konsep, cabaran & rangka kerja Etika Data. | [pelajaran](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Mendefinisikan Data | [Pengenalan](1-Introduction/README.md) | Bagaimana data diklasifikasikan dan sumbernya yang biasa. | [pelajaran](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Pengenalan Statistik & Kebarangkalian | [Pengenalan](1-Introduction/README.md) | Teknik matematik kebarangkalian dan statistik untuk memahami data. | [pelajaran](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Bekerja dengan Data Relasional | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Pengenalan kepada data relasional dan asas meneroka serta menganalisis data relasional dengan Bahasa Pertanyaan Berstruktur, juga dikenali sebagai SQL (sebutan “see-quell”). | [pelajaran](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Bekerja dengan Data NoSQL | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Pengenalan kepada data bukan relasional, pelbagai jenisnya dan asas meneroka serta menganalisis pangkalan data dokumen. | [pelajaran](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Bekerja dengan Python | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Asas menggunakan Python untuk penerokaan data dengan perpustakaan seperti Pandas. Disarankan mempunyai pemahaman asas pengaturcaraan Python. | [pelajaran](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Penyediaan Data | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Topik teknik data untuk membersih dan menukar data bagi mengendalikan cabaran data yang hilang, tidak tepat, atau tidak lengkap. | [pelajaran](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Visualisasi Kuantiti | [Visualisasi Data](3-Data-Visualization/README.md) | Pelajari cara menggunakan Matplotlib untuk memvisualisasikan data burung 🦆 | [pelajaran](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Visualisasi Taburan Data | [Visualisasi Data](3-Data-Visualization/README.md) | Visualisasi pemerhatian dan trend dalam selang. | [pelajaran](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Visualisasi Peratusan | [Visualisasi Data](3-Data-Visualization/README.md) | Visualisasi peratusan diskret dan berkelompok. | [pelajaran](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Visualisasi Hubungan | [Visualisasi Data](3-Data-Visualization/README.md) | Visualisasi sambungan dan korelasi antara set data dan pembolehubahnya. | [pelajaran](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Visualisasi Bermakna | [Visualisasi Data](3-Data-Visualization/README.md) | Teknik dan panduan untuk menjadikan visualisasi anda bernilai bagi penyelesaian masalah dan memperoleh pengetahuan yang berkesan. | [pelajaran](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| :--------------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
+| 01 | Mendefinisikan Sains Data | [Pengenalan](1-Introduction/README.md) | Pelajari konsep asas di belakang sains data dan bagaimana ia berkaitan dengan kecerdasan buatan, pembelajaran mesin, dan data besar. | [pelajaran](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Etika Sains Data | [Pengenalan](1-Introduction/README.md) | Konsep Etika Data, Cabaran & Rangka Kerja. | [pelajaran](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Mendefinisikan Data | [Pengenalan](1-Introduction/README.md) | Bagaimana data diklasifikasikan dan sumber-sumber umumnya. | [pelajaran](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Pengenalan kepada Statistik & Kebarangkalian | [Pengenalan](1-Introduction/README.md) | Teknik matematik kebarangkalian dan statistik untuk memahami data. | [pelajaran](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Bekerja dengan Data Relasi | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Pengenalan kepada data relasi dan asas meneroka serta menganalisis data relasi dengan Bahasa Pengaturcaraan Berstruktur, juga dikenali sebagai SQL (sebut “see-quell”). | [pelajaran](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) |
+| 06 | Bekerja dengan Data NoSQL | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Pengenalan kepada data bukan relasi, pelbagai jenisnya dan asas meneroka serta menganalisis pangkalan data dokumen. | [pelajaran](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 07 | Bekerja dengan Python | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Asas menggunakan Python untuk penerokaan data dengan perpustakaan seperti Pandas. Pemahaman asas pengaturcaraan Python disyorkan. | [pelajaran](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Persiapan Data | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Topik teknik data untuk membersihkan dan mengubah data bagi menangani cabaran data hilang, tidak tepat, atau tidak lengkap. | [pelajaran](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Memvisualisasikan Kuantiti | [Visualisasi Data](3-Data-Visualization/README.md) | Belajar cara menggunakan Matplotlib untuk memvisualisasikan data burung 🦆 | [pelajaran](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Memvisualisasikan Taburan Data | [Visualisasi Data](3-Data-Visualization/README.md) | Memvisualisasikan pemerhatian dan tren dalam suatu selang. | [pelajaran](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Memvisualisasikan Peratusan | [Visualisasi Data](3-Data-Visualization/README.md) | Memvisualisasikan peratusan diskret dan berkelompok. | [pelajaran](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Memvisualisasikan Hubungan | [Visualisasi Data](3-Data-Visualization/README.md) | Memvisualisasikan sambungan dan korelasi antara set data dan pemboleh ubahnya. | [pelajaran](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Visualisasi Bermakna | [Visualisasi Data](3-Data-Visualization/README.md) | Teknik dan panduan untuk menjadikan visualisasi anda berharga untuk penyelesaian masalah yang berkesan dan wawasan. | [pelajaran](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Pengenalan kepada Kitaran Hayat Sains Data | [Kitaran Hayat](4-Data-Science-Lifecycle/README.md) | Pengenalan kepada kitaran hayat sains data dan langkah pertama iaitu memperoleh dan mengekstrak data. | [pelajaran](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Menganalisis | [Kitaran Hayat](4-Data-Science-Lifecycle/README.md) | Fasa kitaran hayat sains data yang memberi fokus pada teknik untuk menganalisis data. | [pelajaran](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Komunikasi | [Kitaran Hayat](4-Data-Science-Lifecycle/README.md) | Fasa kitaran hayat sains data yang menumpukan pada pembentangan maklumat daripada data agar mudah difahami oleh pembuat keputusan. | [pelajaran](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Sains Data di Awan | [Data Awan](5-Data-Science-In-Cloud/README.md) | Siri pelajaran yang memperkenalkan sains data di awan dan manfaatnya. | [pelajaran](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) dan [Maud](https://twitter.com/maudstweets) |
+| 15 | Menganalisis | [Kitaran Hayat](4-Data-Science-Lifecycle/README.md) | Fasa kitaran hayat sains data ini memfokuskan pada teknik untuk menganalisis data. | [pelajaran](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 16 | Komunikasi | [Kitaran Hayat](4-Data-Science-Lifecycle/README.md) | Fasa kitaran hayat sains data ini memfokuskan pada penyampaian wawasan dari data dengan cara yang lebih mudah difahami oleh pembuat keputusan. | [pelajaran](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) |
+| 17 | Sains Data di Awan | [Data Awan](5-Data-Science-In-Cloud/README.md) | Siri pelajaran ini memperkenalkan sains data di awan dan manfaatnya. | [pelajaran](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) dan [Maud](https://twitter.com/maudstweets) |
| 18 | Sains Data di Awan | [Data Awan](5-Data-Science-In-Cloud/README.md) | Melatih model menggunakan alat Low Code. |[pelajaran](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) dan [Maud](https://twitter.com/maudstweets) |
| 19 | Sains Data di Awan | [Data Awan](5-Data-Science-In-Cloud/README.md) | Melancarkan model dengan Azure Machine Learning Studio. | [pelajaran](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) dan [Maud](https://twitter.com/maudstweets) |
-| 20 | Sains Data di Dunia Sebenar | [Di Luar](6-Data-Science-In-Wild/README.md) | Projek berasaskan sains data dalam dunia sebenar. | [pelajaran](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 20 | Sains Data dalam Alam Semula Jadi | [Dalam Alam Semula Jadi](6-Data-Science-In-Wild/README.md) | Projek yang didorong oleh sains data di dunia sebenar. | [pelajaran](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Ikut langkah berikut untuk membuka contoh ini dalam Codespace:
-1. Klik menu turun bawah Kod dan pilih pilihan Buka dengan Codespaces.
-2. Pilih + Kod ruang baru di bawah panel.
-Untuk maklumat lanjut, lihat [dokumentasi GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+Ikuti langkah ini untuk membuka contoh ini dalam Codespace:
+1. Klik menu lungsur turun Code dan pilih pilihan Open with Codespaces.
+2. Pilih + New codespace di bahagian bawah panel.
+Untuk maklumat lanjut, semak [dokumentasi GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Ikut langkah ini untuk membuka repo ini dalam kontena menggunakan mesin tempatan anda dan VSCode dengan sambungan VS Code Remote - Containers:
+Ikuti langkah ini untuk membuka repo ini dalam bekas menggunakan mesin tempatan anda dan VSCode menggunakan sambungan VS Code Remote - Containers:
-1. Jika ini kali pertama anda menggunakan kontena pembangunan, pastikan sistem anda memenuhi prasyarat (contohnya telah pasang Docker) dalam [dokumentasi memulakan](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Jika ini kali pertama anda menggunakan bekas pembangunan, sila pastikan sistem anda memenuhi prasyarat (contohnya telah memasang Docker) dalam [dokumentasi permulaan](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Untuk menggunakan repositori ini, anda boleh membuka repo dalam volum Docker terasing:
+Untuk menggunakan repositori ini, anda boleh buka sama ada repositori dalam volume Docker yang terasing:
-**Nota**: Secara dalaman, ini akan menggunakan perintah Remote-Containers: **Clone Repository in Container Volume...** untuk menyalin kod sumber dalam volum Docker dan bukannya sistem fail tempatan. [Volum](https://docs.docker.com/storage/volumes/) adalah mekanisme pilihan untuk mengekalkan data kontena.
+**Nota**: Di belakang tabir, ini akan menggunakan perintah Remote-Containers: **Clone Repository in Container Volume...** untuk menyalin kod sumber dalam volume Docker bukan dalam sistem fail tempatan. [Volume](https://docs.docker.com/storage/volumes/) adalah mekanisme pilihan untuk mengekalkan data kontena.
-Atau buka salinan repo yang telah dimuat turun atau diklon secara tempatan:
+Atau buka versi repositori yang diclon secara lokal atau dimuat turun:
- Klon repositori ini ke sistem fail tempatan anda.
-- Tekan F1 dan pilih arahan **Remote-Containers: Open Folder in Container...**.
-- Pilih salinan folder yang diklon tersebut, tunggu kontena bermula, dan cuba gunakan.
+- Tekan F1 dan pilih perintah **Remote-Containers: Open Folder in Container...**.
+- Pilih salinan folder yang telah diclon, tunggu bekas mula, dan cuba solusi.
## Akses Luar Talian
-Anda boleh menjalankan dokumentasi ini luar talian dengan menggunakan [Docsify](https://docsify.js.org/#/). Fork repo ini, [pasang Docsify](https://docsify.js.org/#/quickstart) pada mesin tempatan anda, kemudian dalam folder akar repo ini, taip `docsify serve`. Laman web akan disajikan pada port 3000 di localhost anda: `localhost:3000`.
+Anda boleh menjalankan dokumentasi ini secara luar talian dengan menggunakan [Docsify](https://docsify.js.org/#/). Gandakan repo ini, [pasang Docsify](https://docsify.js.org/#/quickstart) pada mesin lokal anda, kemudian dalam folder root repo ini, taip `docsify serve`. Laman web akan disediakan pada port 3000 di localhost anda: `localhost:3000`.
-> Nota, buku nota tidak akan dirender melalui Docsify, jadi apabila anda perlu menjalankan buku nota, lakukan secara berasingan di VS Code dengan kernel Python.
+> Nota, buku nota tidak akan dipaparkan melalui Docsify, jadi apabila anda perlu menjalankan buku nota, lakukan secara berasingan di VS Code yang menjalankan kernel Python.
## Kurikulum Lain
-Pasukan kami mengeluarkan kurikulum lain! Lihat:
+Pasukan kami menghasilkan kurikulum lain! Semak:
### LangChain
[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
### Azure / Edge / MCP / Ejen
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### Siri AI Generatif
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
-### Pembelajaran Teras
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+### Pembelajaran Asas
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### Siri Copilot
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Mendapatkan Bantuan
-**Menghadapi masalah?** Semak [Panduan Penyelesaian Masalah](TROUBLESHOOTING.md) kami untuk penyelesaian kepada masalah biasa.
+**Menghadapi masalah?** Semak [Panduan Penyelesaian Masalah](TROUBLESHOOTING.md) kami untuk penyelesaian masalah biasa.
-Jika anda tersekat atau mempunyai sebarang soalan tentang membina aplikasi AI. Sertai pelajar lain dan pembangun berpengalaman dalam perbincangan mengenai MCP. Ia adalah komuniti sokongan di mana soalan dialu-alukan dan pengetahuan dikongsi dengan bebas.
+Jika anda tersekat atau ada soalan mengenai pembinaan aplikasi AI. Sertai pelajar lain dan pembangun berpengalaman dalam perbincangan mengenai MCP. Ia adalah komuniti sokongan di mana soalan dialu-alukan dan pengetahuan dikongsi secara bebas.
[](https://discord.gg/nTYy5BXMWG)
@@ -257,6 +248,6 @@ Jika anda mempunyai maklum balas produk atau ralat semasa membina, lawati:
---
-**Penafian**:
-Dokumen ini telah diterjemahkan menggunakan perkhidmatan terjemahan AI [Co-op Translator](https://github.com/Azure/co-op-translator). Walaupun kami berusaha untuk ketepatan, sila ambil perhatian bahawa terjemahan automatik mungkin mengandungi kesilapan atau ketidaktepatan. Dokumen asal dalam bahasa asalnya hendaklah dianggap sebagai sumber rasmi. Untuk maklumat penting, terjemahan profesional oleh manusia adalah disyorkan. Kami tidak bertanggungjawab terhadap sebarang salah faham atau salah tafsir yang timbul akibat penggunaan terjemahan ini.
+**Penafian**:
+Dokumen ini telah diterjemahkan menggunakan perkhidmatan terjemahan AI [Co-op Translator](https://github.com/Azure/co-op-translator). Walaupun kami berusaha untuk ketepatan, sila ambil maklum bahawa terjemahan automatik mungkin mengandungi kesilapan atau ketidaktepatan. Dokumen asal dalam bahasa asalnya harus dianggap sebagai sumber rujukan utama. Untuk maklumat penting, terjemahan oleh penterjemah profesional adalah disyorkan. Kami tidak bertanggungjawab atas sebarang salah faham atau tafsiran yang timbul daripada penggunaan terjemahan ini.
\ No newline at end of file
diff --git a/translations/ms/SECURITY.md b/translations/ms/SECURITY.md
index 3c4c2fb9..b711ab56 100644
--- a/translations/ms/SECURITY.md
+++ b/translations/ms/SECURITY.md
@@ -1,12 +1,3 @@
-
## Keselamatan
Microsoft mengambil serius keselamatan produk dan perkhidmatan perisian kami, termasuk semua repositori kod sumber yang diuruskan melalui organisasi GitHub kami, yang merangkumi [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), dan [organisasi GitHub kami](https://opensource.microsoft.com/).
diff --git a/translations/ms/SUPPORT.md b/translations/ms/SUPPORT.md
index 8ea03696..852903d5 100644
--- a/translations/ms/SUPPORT.md
+++ b/translations/ms/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Sokongan
## Cara melaporkan isu dan mendapatkan bantuan
diff --git a/translations/ms/TROUBLESHOOTING.md b/translations/ms/TROUBLESHOOTING.md
index 1c3b3586..4a73a88f 100644
--- a/translations/ms/TROUBLESHOOTING.md
+++ b/translations/ms/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Panduan Penyelesaian Masalah
Panduan ini menyediakan penyelesaian untuk isu-isu biasa yang mungkin anda hadapi semasa menggunakan kurikulum Data Science for Beginners.
diff --git a/translations/ms/USAGE.md b/translations/ms/USAGE.md
index 70d67c95..5a778c28 100644
--- a/translations/ms/USAGE.md
+++ b/translations/ms/USAGE.md
@@ -1,12 +1,3 @@
-
# Panduan Penggunaan
Panduan ini menyediakan contoh dan alur kerja biasa untuk menggunakan kurikulum Data Science untuk Pemula.
diff --git a/translations/ms/docs/_sidebar.md b/translations/ms/docs/_sidebar.md
index 3a2149a8..88f5ec85 100644
--- a/translations/ms/docs/_sidebar.md
+++ b/translations/ms/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Pengenalan
- [Mendefinisikan Sains Data](../1-Introduction/01-defining-data-science/README.md)
- [Etika Sains Data](../1-Introduction/02-ethics/README.md)
diff --git a/translations/ms/examples/README.md b/translations/ms/examples/README.md
index 3edcbed5..fa353700 100644
--- a/translations/ms/examples/README.md
+++ b/translations/ms/examples/README.md
@@ -1,12 +1,3 @@
-
# Contoh Data Sains Mesra Pemula
Selamat datang ke direktori contoh! Koleksi contoh yang mudah dan penuh dengan komen ini direka untuk membantu anda memulakan perjalanan dalam data sains, walaupun anda seorang pemula sepenuhnya.
diff --git a/translations/ms/for-teachers.md b/translations/ms/for-teachers.md
index 5b58c029..668292f7 100644
--- a/translations/ms/for-teachers.md
+++ b/translations/ms/for-teachers.md
@@ -1,12 +1,3 @@
-
## Untuk Pendidik
Adakah anda ingin menggunakan kurikulum ini di dalam kelas anda? Jangan ragu untuk mencubanya!
diff --git a/translations/ms/quiz-app/README.md b/translations/ms/quiz-app/README.md
index 56d33588..6da17e0a 100644
--- a/translations/ms/quiz-app/README.md
+++ b/translations/ms/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Kuiz
Kuiz-kuiz ini adalah kuiz sebelum dan selepas kuliah untuk kurikulum sains data di https://aka.ms/datascience-beginners
diff --git a/translations/ms/sketchnotes/README.md b/translations/ms/sketchnotes/README.md
index 552fcb45..7e550999 100644
--- a/translations/ms/sketchnotes/README.md
+++ b/translations/ms/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Cari semua sketchnote di sini!
## Kredit
diff --git a/translations/my/.co-op-translator.json b/translations/my/.co-op-translator.json
new file mode 100644
index 00000000..97388a21
--- /dev/null
+++ b/translations/my/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:12:09+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "my"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-30T19:32:48+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "my"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-30T19:34:01+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "my"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T17:07:59+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "my"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-30T19:49:26+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "my"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T20:24:20+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "my"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-30T19:37:26+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "my"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T14:19:34+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "my"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-30T19:26:44+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "my"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-30T19:18:09+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "my"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T12:24:07+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "my"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:59:03+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "my"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T20:10:21+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "my"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-30T18:04:17+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "my"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T16:05:05+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "my"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-30T18:10:46+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "my"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T20:13:04+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "my"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-30T18:21:14+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "my"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-30T18:00:25+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T20:18:57+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-30T19:04:50+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T20:21:19+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-30T19:17:30+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T20:17:40+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-30T19:00:19+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:50:12+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-30T19:13:56+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T20:19:41+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-30T19:08:56+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-30T19:09:31+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-30T19:10:05+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-30T18:45:47+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-30T18:46:52+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-30T18:52:45+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-30T18:53:58+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-30T18:41:57+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-30T18:49:21+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-30T18:56:45+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "my"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-30T18:39:33+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "my"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:48:27+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "my"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-30T18:31:22+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "my"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:48:02+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "my"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-30T18:25:42+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "my"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:49:49+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "my"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-30T18:38:10+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "my"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-30T18:22:44+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "my"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T20:08:56+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "my"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-30T17:50:42+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "my"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T20:07:33+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "my"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-30T17:45:21+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "my"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T20:09:32+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "my"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-30T17:59:37+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "my"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-30T17:37:42+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "my"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:47:57+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "my"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-30T19:57:19+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "my"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-30T19:51:37+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "my"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:44:36+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "my"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-30T17:37:02+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "my"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:45:35+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "my"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:27:05+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "my"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:35:43+00:00",
+ "source_file": "README.md",
+ "language_code": "my"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-30T17:35:00+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "my"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-30T17:33:21+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "my"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:49:27+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "my"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:11:58+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "my"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-30T18:22:03+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "my"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:09:07+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "my"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T20:02:17+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "my"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-30T19:50:53+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "my"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-30T19:57:59+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "my"
+ }
+}
\ No newline at end of file
diff --git a/translations/my/1-Introduction/01-defining-data-science/README.md b/translations/my/1-Introduction/01-defining-data-science/README.md
index fbfa362f..f3f4d08d 100644
--- a/translations/my/1-Introduction/01-defining-data-science/README.md
+++ b/translations/my/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# ဒေတာသိပ္ပံကို သတ်မှတ်ခြင်း
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/my/1-Introduction/01-defining-data-science/assignment.md b/translations/my/1-Introduction/01-defining-data-science/assignment.md
index d474c424..78234fb0 100644
--- a/translations/my/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/my/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# အလုပ်တာဝန်: ဒေတာသိပ္ပံအခြေအနေများ
ဒီပထမအလုပ်တာဝန်မှာတော့ သင့်ကို အမျိုးမျိုးသော ပြဿနာနယ်ပယ်များတွင် ဖြစ်ပေါ်နေသော အမှန်တကယ်ဖြစ်ရပ်များ သို့မဟုတ် ပြဿနာတစ်ခုကို စဉ်းစားပြီး ဒေတာသိပ္ပံလုပ်ငန်းစဉ်ကို အသုံးပြု၍ ဘယ်လိုတိုးတက်အောင်လုပ်နိုင်မလဲဆိုတာကို စဉ်းစားဖို့ တိုက်တွန်းပါမည်။ အောက်ပါအချက်များကို စဉ်းစားပါ-
diff --git a/translations/my/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/my/1-Introduction/01-defining-data-science/solution/assignment.md
index 7d46e8b6..88ac3448 100644
--- a/translations/my/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/my/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# အလုပ်: ဒေတာသိပ္ပံ အခြေအနေများ
ဒီပထမအလုပ်မှာ၊ သင့်ကို အမျိုးမျိုးသော ပြဿနာနယ်ပယ်များတွင် ဖြစ်ပျက်နေသော အမှန်တကယ် လုပ်ငန်းစဉ် သို့မဟုတ် ပြဿနာတစ်ခုအပေါ်တွင် စဉ်းစားစေလိုပါတယ်၊ ဒါနဲ့အတူ ဒေတာသိပ္ပံ လုပ်ငန်းစဉ်ကို အသုံးပြုပြီး ဘယ်လိုတိုးတက်အောင်လုပ်နိုင်မလဲဆိုတာကို တွေးပါ။ အောက်ပါအချက်များကို စဉ်းစားပါ-
diff --git a/translations/my/1-Introduction/02-ethics/README.md b/translations/my/1-Introduction/02-ethics/README.md
index 6ae2606d..dfe1495e 100644
--- a/translations/my/1-Introduction/02-ethics/README.md
+++ b/translations/my/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# ဒေတာအကျင့်သိက္ခာအကျဉ်းချုပ်
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/my/1-Introduction/02-ethics/assignment.md b/translations/my/1-Introduction/02-ethics/assignment.md
index 8d698746..45671b9b 100644
--- a/translations/my/1-Introduction/02-ethics/assignment.md
+++ b/translations/my/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## ဒေတာအကျင့်သိက္ခာ ကိစ္စလေ့လာမှုရေးသားခြင်း
## လမ်းညွှန်ချက်များ
diff --git a/translations/my/1-Introduction/03-defining-data/README.md b/translations/my/1-Introduction/03-defining-data/README.md
index 8adc0302..ba54a276 100644
--- a/translations/my/1-Introduction/03-defining-data/README.md
+++ b/translations/my/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# ဒေတာကို သတ်မှတ်ခြင်း
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/my/1-Introduction/03-defining-data/assignment.md b/translations/my/1-Introduction/03-defining-data/assignment.md
index 2d1d37af..7365d4fa 100644
--- a/translations/my/1-Introduction/03-defining-data/assignment.md
+++ b/translations/my/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# ဒေတာများကို အမျိုးအစားခွဲခြားခြင်း
## လမ်းညွှန်ချက်များ
diff --git a/translations/my/1-Introduction/04-stats-and-probability/README.md b/translations/my/1-Introduction/04-stats-and-probability/README.md
index 1989af77..fe3fb9c6 100644
--- a/translations/my/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/my/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# စာရင်းအင်းနှင့် အလားအလာအကြောင်း အကျဉ်းချုပ်
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Continuous uniform distribution ဟုခေါ်သော uniform distribution
Median နှင့် quartiles တစ်ခုချင်းစီ၏ ဆက်နွယ်မှုကို **box plot** ဟုခေါ်သော အကြမ်းဖျင်းပုံစံတွင် ဖော်ပြနိုင်သည်-
-
+
ဒီမှာ **inter-quartile range** IQR=Q3-Q1 ကို တွက်ချက်ပြီး၊ **outliers** ဟုခေါ်သော တန်ဖိုးများကို တွက်ချက်သည် - [Q1-1.5*IQR,Q3+1.5*IQR] အကန့်အသတ်များအပြင်မှာရှိသော တန်ဖိုးများ။
diff --git a/translations/my/1-Introduction/04-stats-and-probability/assignment.md b/translations/my/1-Introduction/04-stats-and-probability/assignment.md
index 5ac9e457..96288a8a 100644
--- a/translations/my/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/my/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# သေးငယ်သော ဆီးချိုလေ့လာမှု
ဒီအလုပ်မှာ [ဒီမှာ](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) ရရှိတဲ့ ဆီးချိုလူနာများ၏ သေးငယ်သော ဒေတာစနစ်ကို အသုံးပြုမည်ဖြစ်သည်။
diff --git a/translations/my/1-Introduction/README.md b/translations/my/1-Introduction/README.md
index 10e13844..b465fbd2 100644
--- a/translations/my/1-Introduction/README.md
+++ b/translations/my/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# ဒေတာသိပ္ပံအကျဉ်းချုပ်

diff --git a/translations/my/2-Working-With-Data/05-relational-databases/README.md b/translations/my/2-Working-With-Data/05-relational-databases/README.md
index b597c738..7417b97e 100644
--- a/translations/my/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/my/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# ဒေတာနှင့်အလုပ်လုပ်ခြင်း: ဆက်စပ်ဒေတာဘေ့စ်များ
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/my/2-Working-With-Data/05-relational-databases/assignment.md b/translations/my/2-Working-With-Data/05-relational-databases/assignment.md
index 97fe4a63..085352eb 100644
--- a/translations/my/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/my/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# လေဆိပ်ဆိုင်ရာ ဒေတာများ ပြသခြင်း
သင့်အား [SQLite](https://sqlite.org/index.html) အခြေခံပြီး တည်ဆောက်ထားသော [ဒေတာဘေစ်စ်](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) တစ်ခု ပေးထားပြီး လေဆိပ်ဆိုင်ရာ အချက်အလက်များ ပါဝင်သည်။ အောက်တွင် schema ကို ပြထားသည်။ သင်သည် [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) တွင် [SQLite extension](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) ကို အသုံးပြု၍ မြို့များ၏ လေဆိပ်ဆိုင်ရာ အချက်အလက်များကို ပြသမည်ဖြစ်သည်။
diff --git a/translations/my/2-Working-With-Data/06-non-relational/README.md b/translations/my/2-Working-With-Data/06-non-relational/README.md
index 2a29bd8a..a8fa60be 100644
--- a/translations/my/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/my/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# ဒေတာနှင့်အလုပ်လုပ်ခြင်း - မဟုတ်သောဆက်နွယ်မှုရှိသော ဒေတာ
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/my/2-Working-With-Data/06-non-relational/assignment.md b/translations/my/2-Working-With-Data/06-non-relational/assignment.md
index 8fdf6354..dfa21eff 100644
--- a/translations/my/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/my/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# ဆိုဒါ အမြတ်
## ညွှန်ကြားချက်များ
diff --git a/translations/my/2-Working-With-Data/07-python/README.md b/translations/my/2-Working-With-Data/07-python/README.md
index 0421a241..75074bf1 100644
--- a/translations/my/2-Working-With-Data/07-python/README.md
+++ b/translations/my/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# ဒေတာနှင့်အလုပ်လုပ်ခြင်း: Python နှင့် Pandas Library
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/my/2-Working-With-Data/07-python/assignment.md b/translations/my/2-Working-With-Data/07-python/assignment.md
index 4b6e31c4..5103a993 100644
--- a/translations/my/2-Working-With-Data/07-python/assignment.md
+++ b/translations/my/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Python တွင် ဒေတာကို အလုပ်လုပ်ခြင်းအတွက် လုပ်ငန်းတာဝန်
ဒီလုပ်ငန်းတာဝန်မှာ ကျွန်တော်တို့ရဲ့ စိန်ခေါ်မှုများတွင် စတင်ဖန်တီးထားသော ကုဒ်ကို ဆက်လက်ဖော်ပြရန် မေးမြန်းပါမည်။ လုပ်ငန်းတာဝန်ကို အပိုင်းနှစ်ပိုင်းခွဲထားသည်။
diff --git a/translations/my/2-Working-With-Data/08-data-preparation/README.md b/translations/my/2-Working-With-Data/08-data-preparation/README.md
index 86ad2fcd..7f379c0d 100644
--- a/translations/my/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/my/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# ဒေတာနှင့်အလုပ်လုပ်ခြင်း: ဒေတာပြင်ဆင်ခြင်း
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/my/2-Working-With-Data/08-data-preparation/assignment.md b/translations/my/2-Working-With-Data/08-data-preparation/assignment.md
index 071128e5..e0bb98d8 100644
--- a/translations/my/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/my/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# ဖောင်မှ ဒေတာကို အကဲဖြတ်ခြင်း
ဖောင်အသေးစား [small form](../../../../2-Working-With-Data/08-data-preparation/index.html) တစ်ခုကို သုံးပြီး သူတို့၏ ဖောက်သည်အခြေခံအချက်အလက်များကို စုဆောင်းရန် စမ်းသပ်နေသော ဖောက်သည်တစ်ဦးရှိသည်။ သူတို့ စုဆောင်းထားသော ဒေတာကို သင့်ထံ ယူဆောင်လာပြီး အတည်ပြုရန် တောင်းဆိုထားသည်။ `index.html` စာမျက်နှာကို browser တွင် ဖွင့်ပြီး ဖောင်ကို ကြည့်ရှုနိုင်သည်။
diff --git a/translations/my/2-Working-With-Data/README.md b/translations/my/2-Working-With-Data/README.md
index 2c17ca18..59820bf5 100644
--- a/translations/my/2-Working-With-Data/README.md
+++ b/translations/my/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# ဒေတာနှင့်အလုပ်လုပ်ခြင်း

diff --git a/translations/my/3-Data-Visualization/09-visualization-quantities/README.md b/translations/my/3-Data-Visualization/09-visualization-quantities/README.md
index 909f1072..6fad0555 100644
--- a/translations/my/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/my/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# အရေအတွက်များကို ရှင်းလင်းဖော်ပြခြင်း
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/my/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/my/3-Data-Visualization/09-visualization-quantities/assignment.md
index 932c10c6..3e5197b6 100644
--- a/translations/my/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/my/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# လိုင်းများ၊ စက်ကွင်းများနှင့် ဘားများ
## လမ်းညွှန်ချက်များ
diff --git a/translations/my/3-Data-Visualization/10-visualization-distributions/README.md b/translations/my/3-Data-Visualization/10-visualization-distributions/README.md
index fc7b66c9..33142651 100644
--- a/translations/my/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/my/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# အချိုးအစားများကိုမြင်နိုင်စေခြင်း
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/my/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/my/3-Data-Visualization/10-visualization-distributions/assignment.md
index 585db78e..aa7f7b4c 100644
--- a/translations/my/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/my/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# သင်၏ကျွမ်းကျင်မှုများကို အသုံးချပါ
## လမ်းညွှန်ချက်များ
diff --git a/translations/my/3-Data-Visualization/11-visualization-proportions/README.md b/translations/my/3-Data-Visualization/11-visualization-proportions/README.md
index 06bc51d8..5438bd44 100644
--- a/translations/my/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/my/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# အချိုးအစားများကိုမြင်သာအောင်ဖော်ပြခြင်း
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/my/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/my/3-Data-Visualization/11-visualization-proportions/assignment.md
index 74f1e78d..de43e330 100644
--- a/translations/my/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/my/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Excel တွင် စမ်းကြည့်ပါ
## လမ်းညွှန်ချက်များ
diff --git a/translations/my/3-Data-Visualization/12-visualization-relationships/README.md b/translations/my/3-Data-Visualization/12-visualization-relationships/README.md
index aa9d8086..7efa2704 100644
--- a/translations/my/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/my/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# ဆက်ဆံရေးများကိုမြင်နိုင်စေခြင်း: ပျားရည်အကြောင်း 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/my/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/my/3-Data-Visualization/12-visualization-relationships/assignment.md
index eb0a1f1e..89e6d95c 100644
--- a/translations/my/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/my/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# ပျားအုံထဲကို ရောက်ကြည့်ပါ
## လမ်းညွှန်ချက်များ
diff --git a/translations/my/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/my/3-Data-Visualization/13-meaningful-visualizations/README.md
index 7e90c4ce..12aac13e 100644
--- a/translations/my/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/my/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# အဓိပ္ပါယ်ရှိသော ဒေတာအမြင်ဖန်တီးခြင်း
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/my/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/my/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 086ac23d..acc3f781 100644
--- a/translations/my/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/my/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# သင့်ကိုယ်ပိုင် Custom Visualization တည်ဆောက်ပါ
## လမ်းညွှန်ချက်များ
diff --git a/translations/my/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/my/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index c9fb7f0b..abed4b09 100644
--- a/translations/my/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/my/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# အန္တရာယ်များသော ဆက်ဆံရေးများ ဒေတာအမြင်ဖော်ပြမှု ပရောဂျက်
စတင်ရန်အတွက် သင့်စက်တွင် NPM နှင့် Node ရှိနေကြောင်း သေချာစေပါ။ လိုအပ်သော dependencies များကို (npm install) ဖြင့် ထည့်သွင်းပြီး၊ ပရောဂျက်ကို ဒေသတွင်းတွင် (npm run serve) ဖြင့် လည်ပတ်ပါ။
diff --git a/translations/my/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/my/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 32f958a9..1fbbdef9 100644
--- a/translations/my/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/my/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# အန္တရာယ်များသော ဆက်ဆံရေးများ ဒေတာအမြင်ဖော်ပြမှု ပရောဂျက်
စတင်ရန်အတွက် သင့်စက်တွင် NPM နှင့် Node ရှိနေကြောင်း သေချာစေပါ။ အလိုအလျောက်လိုအပ်သော library များကို (npm install) ဖြင့် ထည့်သွင်းပြီး၊ ပရောဂျက်ကို ဒေသတွင်းတွင် (npm run serve) ဖြင့် လည်ပတ်စေပါ။
diff --git a/translations/my/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/my/3-Data-Visualization/R/09-visualization-quantities/README.md
index 34a9d835..6ce0c827 100644
--- a/translations/my/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/my/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# အရေအတွက်များကိုမြင်နိုင်အောင်ဖော်ပြခြင်း
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/my/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/my/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 1f50885a..68fd58f7 100644
--- a/translations/my/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/my/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# လိုင်းများ၊ စက်ကွင်းများနှင့် ဘားများ
## လမ်းညွှန်ချက်များ
diff --git a/translations/my/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/my/3-Data-Visualization/R/10-visualization-distributions/README.md
index 87580dda..514ff310 100644
--- a/translations/my/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/my/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# အချိုးအစားများကို မြင်သာအောင် ဖော်ပြခြင်း
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/my/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/my/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 9feb3e69..a6dd41c5 100644
--- a/translations/my/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/my/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# သင်၏ကျွမ်းကျင်မှုများကို အသုံးချပါ
## လမ်းညွှန်ချက်များ
diff --git a/translations/my/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/my/3-Data-Visualization/R/11-visualization-proportions/README.md
index e5b7c5ac..92449ad1 100644
--- a/translations/my/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/my/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# အချိုးအစားများကို မြင်သာအောင် ဖော်ပြခြင်း
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/my/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/my/3-Data-Visualization/R/12-visualization-relationships/README.md
index 21bbc8d0..8c9456b7 100644
--- a/translations/my/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/my/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# ဆက်စပ်မှုများကိုမြင်သာစေခြင်း: ပျားရည်အကြောင်း 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/my/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/my/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 215dd129..6b1c023c 100644
--- a/translations/my/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/my/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# အဓိပ္ပါယ်ရှိသော ဒေတာအမြင်ဖန်တီးခြင်း
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/my/3-Data-Visualization/README.md b/translations/my/3-Data-Visualization/README.md
index ac35fba6..d1471e0d 100644
--- a/translations/my/3-Data-Visualization/README.md
+++ b/translations/my/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# ရုပ်ပုံဖော်ပြမှုများ

diff --git a/translations/my/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/my/4-Data-Science-Lifecycle/14-Introduction/README.md
index 45cd0c5b..f56aa7ac 100644
--- a/translations/my/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/my/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# ဒေတာသိပ္ပံ၏ အသက်တာစဉ်ကို မိတ်ဆက်ခြင်း
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/my/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/my/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 4526096a..9d9d7abf 100644
--- a/translations/my/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/my/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# ဒေတာဆက်စပ်မှုကို အကဲဖြတ်ခြင်း
တစ်ဦးတစ်ယောက်သောဖောက်သည်သည် သင်၏အဖွဲ့ကို နယူးယောက်မြို့တွင် တက္ကစီစီးသူများ၏ ရာသီအလိုက် အသုံးစရိတ်အလေ့အထကို စုံစမ်းရန်အတွက် အကူအညီတောင်းခံလာသည်။
diff --git a/translations/my/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/my/4-Data-Science-Lifecycle/15-analyzing/README.md
index f725648e..c48ce722 100644
--- a/translations/my/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/my/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# ဒေတာသိပ္ပံ၏ အသက်တာစဉ်: ခွဲခြမ်းစိတ်ဖြာခြင်း
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/my/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/my/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 76df32d9..518efd86 100644
--- a/translations/my/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/my/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# အဖြေများကို ရှာဖွေခြင်း
ဒီဟာက ယခင်သင်ခန်းစာရဲ့ [အလုပ်ပေးစာ](../14-Introduction/assignment.md) ရဲ့ ဆက်လက်မှုဖြစ်ပြီး၊ ဒေတာအစုအဖွဲ့ကို အနည်းငယ်ကြည့်ရှုခဲ့ပါတယ်။ အခုတော့ ဒေတာကို ပိုမိုနက်ရှိုင်းစွာ လေ့လာသွားမှာ ဖြစ်ပါတယ်။
diff --git a/translations/my/4-Data-Science-Lifecycle/16-communication/README.md b/translations/my/4-Data-Science-Lifecycle/16-communication/README.md
index 3a09a497..1190a5ee 100644
--- a/translations/my/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/my/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# ဒေတာ သိပ္ပံ၏ အသက်ရှင်မှု စက်ဝိုင်း: ဆက်သွယ်မှု
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/my/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/my/4-Data-Science-Lifecycle/16-communication/assignment.md
index 0ae1b340..937925fd 100644
--- a/translations/my/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/my/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# အတောအတွင်းကို ပြောပြပါ
## လမ်းညွှန်ချက်များ
diff --git a/translations/my/4-Data-Science-Lifecycle/README.md b/translations/my/4-Data-Science-Lifecycle/README.md
index 16a9d794..eabb1088 100644
--- a/translations/my/4-Data-Science-Lifecycle/README.md
+++ b/translations/my/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# ဒေတာသိပ္ပံ၏ အသက်ရှည်လက်ဆောင်

diff --git a/translations/my/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/my/5-Data-Science-In-Cloud/17-Introduction/README.md
index 3eb896c8..b11641c0 100644
--- a/translations/my/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/my/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Cloud တွင် Data Science ကိုမိတ်ဆက်ခြင်း
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/my/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/my/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index a1e0865b..b133e5ea 100644
--- a/translations/my/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/my/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# စျေးကွက်သုတေသန
## ညွှန်ကြားချက်များ
diff --git a/translations/my/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/my/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 614a4e5b..b814a93f 100644
--- a/translations/my/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/my/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Cloud တွင် Data Science: "Low code/No code" နည်းလမ်း
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/my/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/my/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index c2b5b386..ec116d26 100644
--- a/translations/my/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/my/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML တွင် Low code/No code Data Science ပရောဂျက်
## လမ်းညွှန်ချက်များ
diff --git a/translations/my/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/my/5-Data-Science-In-Cloud/19-Azure/README.md
index a8780797..875925d8 100644
--- a/translations/my/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/my/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Cloud တွင် Data Science: "Azure ML SDK" နည်းလမ်း
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/my/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/my/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 0bfbf180..adb41f4a 100644
--- a/translations/my/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/my/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML SDK ကို အသုံးပြု၍ Data Science Project
## လမ်းညွှန်ချက်များ
diff --git a/translations/my/5-Data-Science-In-Cloud/README.md b/translations/my/5-Data-Science-In-Cloud/README.md
index 177d1e96..2784d300 100644
--- a/translations/my/5-Data-Science-In-Cloud/README.md
+++ b/translations/my/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Cloud တွင် ဒေတာသိပ္ပံ

diff --git a/translations/my/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/my/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 067802fb..ae51d6e4 100644
--- a/translations/my/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/my/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# အမှန်တကယ်ကမ္ဘာကြီးထဲက ဒေတာသိပ္ပံ
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/my/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/my/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index a4a0f6a4..aaf41409 100644
--- a/translations/my/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/my/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# အာကာသကွန်ပျူတာဒေတာအစုအဝေးကို စူးစမ်းပါ
## လမ်းညွှန်ချက်များ
diff --git a/translations/my/6-Data-Science-In-Wild/README.md b/translations/my/6-Data-Science-In-Wild/README.md
index 3773eafb..38d3c800 100644
--- a/translations/my/6-Data-Science-In-Wild/README.md
+++ b/translations/my/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# တောထဲက ဒေတာသိပ္ပံ
စက်မှုလုပ်ငန်းများအနှံ့ ဒေတာသိပ္ပံ၏ အမှန်တကယ်အသုံးချမှုများ။
diff --git a/translations/my/AGENTS.md b/translations/my/AGENTS.md
index 1c89dd71..85778da9 100644
--- a/translations/my/AGENTS.md
+++ b/translations/my/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## ပရောဂျက်အကျဉ်းချုပ်
diff --git a/translations/my/CODE_OF_CONDUCT.md b/translations/my/CODE_OF_CONDUCT.md
index fc46cf15..72c0f665 100644
--- a/translations/my/CODE_OF_CONDUCT.md
+++ b/translations/my/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft Open Source Code of Conduct
ဒီပရောဂျက်သည် [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/) ကို လက်ခံထားပါသည်။
diff --git a/translations/my/CONTRIBUTING.md b/translations/my/CONTRIBUTING.md
index 0b9dc306..72a9a2f4 100644
--- a/translations/my/CONTRIBUTING.md
+++ b/translations/my/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Data Science for Beginners အတွက် အထောက်အပံ့
Data Science for Beginners သင်ခန်းစာများအတွက် အထောက်အပံ့ပေးလိုက်တဲ့အတွက် ကျေးဇူးတင်ပါတယ်! ကျွန်ုပ်တို့သည် အသိုင်းအဝိုင်းမှ အထောက်အပံ့များကို ကြိုဆိုပါသည်။
diff --git a/translations/my/INSTALLATION.md b/translations/my/INSTALLATION.md
index 14c8ae20..bb34bead 100644
--- a/translations/my/INSTALLATION.md
+++ b/translations/my/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# တပ်ဆင်ရန်လမ်းညွှန်
ဒီလမ်းညွှန်က Data Science for Beginners သင်ခန်းစာများအတွက် သင့်ပတ်ဝန်းကျင်ကို စတင်ပြင်ဆင်ရန် ကူညီပေးပါမည်။
diff --git a/translations/my/README.md b/translations/my/README.md
index 5afa97a2..14f40bca 100644
--- a/translations/my/README.md
+++ b/translations/my/README.md
@@ -1,13 +1,4 @@
-
-# ကူစီတင်းများအတွက် ဒေတာသိပ္ပံ - သင်ရိုးညွှန်းတမ်း
+# ဒေတာသိပ္ပံ စတုတ္တန်းများအတွက် - သင်ရိုးအစီအစဉ်
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,181 +17,181 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Microsoft ရဲ့ Azure Cloud Advocates တွေက ဒေတာသိပ္ပံအကြောင်း ၁၀ ပတ်၊ ၂၀ ပုဒ်မပါဝင်တဲ့ သင်ရိုးညွှန်းတမ်းကို ပေးအပ်ဖို့ ဝမ်းမြောက်ပါတယ်။ အထဲမှာ သင်ခန်းစာတိုင်းမှာ သင်ခန်းစာမတိုင်မီနှင့် သင်ခန်းစာပြီးနောက် စစ်ဆေးမြင်သာစရာမေးခွန်းများ, သင်ခန်းစာ ပြီးဆုံးရန် အရေးကြီးတဲ့ ရေးသားချက်များ, ဖြေရှင်းချက်, နောက်တစ်ခုက ခွင့်ပြုချက်ပါဝင်ပါတယ်။ ကျွန်ုပ်တို့ရဲ့ စီမံကိန်းအခြေပြု သင်ကြားပုံစနစ်က ဖန်တီးနေစဉ် သင်ယူနိုင်စေပြီး၊ အတတ်ပညာအသစ်တွေအတွက် ထိရောက်သော နည်းလမ်းဖြစ်ပါတယ်။
+Microsoft ရဲ့ Azure Cloud Advocates များသည် ဒေတာသိပ္ပံအကြောင်း ၁၀ ပတ်၊ ၂၀ ခန်းသင်ရိုးအစီအစဉ်ကို ပေးဆောင်ပေးရာရှိသည်။ ခန်းနှစ်ခန်းစီတွင် သင်ခန်းစာမတိုင်မီနှင့်ပြီးပါက စစ်တမ်းများ၊ သင်ခန်းစာပြီးမြောက်ရန် ရေးသားထားသော ညွှန်ကြားမှုများ၊ ဖြေရှင်းချက်များနှင့် အလုပ်ဖြေဆိုရန် အပ်အေစာများပါဝင်သည်။ ကျွန်ုပ်တို့၏ စီမံကိန်းအခြေပြုသင်ကြားနည်းသည် သင်ယူသူများသင်ယူခြင်းနှင့်တပြိုင်နက် တီထွင် ဆောက်လုပ်ခြင်းဖြင့် သင်ယူနိုင်စေပြီး အတတ်ပညာများ ပိုမို အားကောင်းစေသည်။
-**ကျေးဇူးအထူးတင်ရှိပါသည် ကျွန်ုပ်တို့၏ရေးဆွဲသူများအား:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer)။
+**ကျွန်ုပ်တို့၏ လက်ရေးတန်းထိုးသူများအား ဆုေတာင်းအထူးကျေးဇူးတင်ပါသည်။** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer)။
-**🙏 အထူးဘဲကျေးဇူးတင်စကားများ 🙏 ကျွန်ုပ်တို့၏ [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) ရေးဆွဲသူများ၊ သုံးသပ်သူများနှင့် ပါဝင်ပံ့ပိုးသူများအား**, ထူးချွန်စွာသော Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 အထူးကျေးဇူးတင်ရှိပါသည် 🙏 Microsoft Student Ambassador [https://studentambassadors.microsoft.com/](https://studentambassadors.microsoft.com/) လက်ရေးတန်းထိုးသူများ၊ ပြန်လည်သုံးသပ်သူများနှင့် အကြောင်းအရာ ပံ့ပိုးသူများအား၊** အထူးသဖြင့် Aaryan Arora၊ [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| ဒေတာသိပ္ပံ အခြေခံများအတွက် - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
+| ဒေတာသိပ္ပံ စတုတ္တန်းများအတွက် - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
-### 🌐 ဘာသာစကားအများအပြားကို ပံ့ပိုးမှု
+### 🌐 ဘာသာစကား များစွာ အထောက်အပံ့
-#### GitHub Action ဖြင့် ပံ့ပိုးထားသည် (အလိုအလျောက်နှင့် အမြဲတမ်း ပြောင်းလဲနေသည်)
+#### GitHub Action ဖြင့် ပံ့ပိုးထားသည် (အလိုအလျောက်နှင့် အမြဲတမ်း နောက်ဆုံးပေါ်ဖြစ်နေသည်)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](./README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[အာရဘိكية](../ar/README.md) | [ဘင်္ဂလား](../bn/README.md) | [ဘူဂေးရီးယား](../bg/README.md) | [မြန်မာ (Myanmar)](./README.md) | [တိုက်ရိုက် တရုတ်](../zh-CN/README.md) | [ရိုးရာ တရုတ် (ဟောင်ကောင်)](../zh-HK/README.md) | [ရိုးရာ တရုတ် (မကော)](../zh-MO/README.md) | [ရိုးရာ တရုတ် (တိုင်ဝမ်)](../zh-TW/README.md) | [ခရိုအေးရှား](../hr/README.md) | [ချက်](../cs/README.md) | [ဒိန်းမတ်](../da/README.md) | [ဒတ်ချ်](../nl/README.md) | [အက်စ်တိုနီးယား](../et/README.md) | [ဖင်နီရှ်](../fi/README.md) | [ပြင်သစ်](../fr/README.md) | [ဂျာမန်](../de/README.md) | [ဂရိ](../el/README.md) | [ဟီဘရူး](../he/README.md) | [ဟိန္ဒီ](../hi/README.md) | [ဟန်ဂေရီ](../hu/README.md) | [အင်ဒိုနီးရှား](../id/README.md) | [အီတလီ](../it/README.md) | [ဂျပန်](../ja/README.md) | [ကန်နာဒါ](../kn/README.md) | [ကိုရီးယား](../ko/README.md) | [လစ်သူယေးနီးယား](../lt/README.md) | [မလေးရှား](../ms/README.md) | [မလေးလံ](../ml/README.md) | [မာရသီ](../mr/README.md) | [နပ္ကီလီ](../ne/README.md) | [ไนဂျီးရီးယား ပစ်ဂျင်](../pcm/README.md) | [နော်ဝေး](../no/README.md) | [ပါရှန် (ဖာစီ)](../fa/README.md) | [ပိုလန်](../pl/README.md) | [ပေါ်သူးဂီ (ဘရာဇီး) ](../pt-BR/README.md) | [ပေါ်သူးဂီ (ပေါ်တူဂီ) ](../pt-PT/README.md) | [ပန်ဂျာဘီ (ဂူမြူခီ)](../pa/README.md) | [ရိုမေးနီးယား](../ro/README.md) | [ရုရှား](../ru/README.md) | [ဆားဘီးယား (ဆီရီလစ်)](../sr/README.md) | [စလိုဗက်](../sk/README.md) | [စလိုဗေးနီးယား](../sl/README.md) | [စပိန်](../es/README.md) | [ဆွာဟီလီ](../sw/README.md) | [ဆွီဒင်](../sv/README.md) | [တာဂါလို (ဖိလစ်ပိုင်)](../tl/README.md) | [တမီးလ်](../ta/README.md) | [တဲလူဂူ](../te/README.md) | [ထိုင်း](../th/README.md) | [တူရကီ](../tr/README.md) | [ယူကရိန်း](../uk/README.md) | [ဥဩရ်ဒူး](../ur/README.md) | [ဗီယက်နမ်](../vi/README.md)
-> **ဒေါင်းလုပ်ကို ဒေသိယလက်တွေ့လုပ်ချင်ပါသလား?**
+> **စားရိတ်အလိုက် ဒေါင်းလုပ်ဆွဲချင်သူ?**
-> ဒီ repository မှာ ဘာသာစကား ၅၀ ကျော်ကို ဖြန့်ဝေထားတာကြောင့် ဒေါင်းလုပ်အရွယ်အစား ကြီးလွန်းပါတယ်။ ဘာသာပြန်မပါဘဲ ကလုံချင်ရင် sparse checkout ကို အသုံးပြုပါ:
+> ဒီရေပိုတွင် ဘာသာစကား ၅၀ ကျော် အပြန်အလှန်ရှိပြီး ဒေါင်းလုပ်အရွယ်အစားကို အများကြီး တိုးမြှင့်ပေးသည်။ ဘာသာပြန်ချက်များ မပါဘဲ clone လုပ်ချင်ရင် sparse checkout ကို အသုံးပြုပါ။
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> ဒီနည်းနဲ့ သင်အား သင်တန်းလုံးဝ ဖြစ်အောင် လိုအပ်တဲ့ အရာအားလုံး ထုတ်ယူပေးပါတယ်၊ ဒေါင်းလုပ်လည်း ပိုမြန်ပါတယ်။
+> ဒါက သင်တန်းကို ပြီးမြောက်အောင်လုပ်ရန် လိုအပ်သမျှ အားလုံးကို မြန်ဆန်စွာ ရရှိနိုင်စေရန် ဖြစ်သည်။
-**ထပ်ဖြည့် ဘာသာပြန်မှု အသုံးပြုလိုပါက အောက်ပါနေရာတွင် စာရင်းပြထားပါသည် [here](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**အပို ဘာသာစကားပံ့ပိုးမှု အသစ်များလိုပါက အောက်ပါနေရာတွင်စာရင်းထားသည် [here](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### ကျွန်ုပ်တို့ရဲ့ ကွန်ယက်အဖွဲ့အစည်းတွင်ပါဝင်ပါ
+#### ကျွန်တော်တို့၏ အသိုင်းအဝိုင်းကို စုပေါင်းလိုက်ပါ
[](https://discord.gg/nTYy5BXMWG)
-AI နဲ့အတူ သင်ယူနိုင်တဲ့ Discord စီးရီးတစ်ခုရှိတယ်၊ ၂၀၂၅ ခုနှစ် စက်တင်ဘာ ၁၈ ရက်မှ ၃၀ ရက်အထိ [Learn with AI Series](https://aka.ms/learnwithai/discord) မှာ ပို၍သိရှိနိုင်ပြီး လာပါ။ GitHub Copilot ကို ဒေတာသိပ္ပံအတွက် အသုံးပြုနည်း အကြံပြုမှုများရမှာ ဖြစ်ပါတယ်။
+ကျွန်ုပ်တို့တွင် Discord ၏ AI နှင့်တကွ သင်ယူပုံစံ လုပ်ငန်းစဉ်ဟာ ဆက်လက်ဖြစ်ပြီး၊ ပိုမိုသိရှိလိုပါက [Learn with AI Series](https://aka.ms/learnwithai/discord) ကို ၂၀၂၅ ခုနှစ် စက်တင်ဘာလ ၁၈ ရက်မှ ၃၀ ရက်အထိ လာရောက်ပါ။ GitHub Copilot ကို ဒေတာသိပ္ပံအတွက် အသုံးပြုနည်း အသုံးအဆောင်များရရှိဦးမည်။
-
+
-# သင်သည် ကျောင်းသားအနေဖြင့်လား?
+# သင်သည် ကျောင်းသားလား?
-အောက်ပါ အသုံးအေဆာင္များနှင့် စတင်ပါ:
+အောက်ပါ အရင်းအမြစ်များဖြင့် စတင်လိုက်ပါ။
-- [Student Hub စာမျက်နှာ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ဒီစာမျက်နှာတွင် အခြေခံ အသုံးအဆောင်များ၊ ကျောင်းသားပက် များနှင့် အခမဲ့ အသိအမှတ်ပြုလက်မှတ် ချီးမြှင့်ကြေး ဗောက်ချာ ရနိုင်သည့် နည်းလမ်းများ ပါဝင်သည်။ ထိုစာမျက်နှာကို bookmark ထားပြီး အချိန်မှီစစ်ဆေး ရမှာ ဖြစ်သည်က အကြောင်းအရာအစဉ်အမြဲ ပြောင်းလဲမှုရှိကြောင်း ဖြစ်သည်။
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ကမ္ဘာတစ်ဝှမ်းရှိ ကျောင်းသားနည်းပြအဖွဲ့အစည်းတွင် ပူးပေါင်းပါဝင်ပါ၊ ဒါက Microsoft ထဲ ဝင်ရန် သင့်နည်းလမ်းဖြစ်နိုင်တယ်။
+- [Student Hub စာမျက်နှာ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ဤစာမျက်နှာတွင် စတုတ္တန်းအဆင့် အနေဖြင့် အရင်းအမြစ်များ၊ ကျောင်းသားပက်ကေ့များနှင့် အခမဲ့ ဝက်ချာလက်မှတ်ရယူနည်းများပါရှိသည်။ အချိန်အချိန်ဖြင့် စာမျက်နှာကို ဘတ်မှတ်ထားပြီး စစ်ဆေးပါက ကောင်းမွန်ပါသည်။
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ကမ္ဘာလုံးဆိုင်ရာ ကျောင်းသား သံတမန် အဖွဲ့ဝင်များနှင့် ပူးပေါင်းလိုက်ပါ၊ ၎င်းမှ Microsoft ထဲသို့ ဝင်ရောက်နိုင်ခွင့် ရရှိနိုင်သည်။
-# စတင်မည်
+# စတင်ခြင်း
-## 📚 မှတ်တမ်းစာတမ်းများ
+## 📚 စာတမ်းများ
-- **[တပ်ဆင်ခြင်း လမ်းညွှန်](INSTALLATION.md)** - အခြေခံအသုံးပြုသူများအတွက် အဆင့်ဆင့် တပ်ဆင်နည်းလမ်းညွှန်
-- **[အသုံးပြုပုံ လမ်းညွှန်](USAGE.md)** - နမူနာများနှင့် ပုံမှန် လုပ်ငန်းစဉ်များ
-- **[ပြဿနာရှာဖွေရေး](TROUBLESHOOTING.md)** - ပုံမှန်ဖြစ်ပေါ်သော ပြဿနာများ အတွက် ဖြေရှင်းနည်းများ
-- **[ပူးပေါင်းရေးရာ လမ်းညွှန်](CONTRIBUTING.md)** - ဤ စီမံကိန်းထဲတွင် ပူးပေါင်းရန် နည်းလမ်းများ
-- **[ဆရာများအတွက်](for-teachers.md)** - သင်ကြားရေးလမ်းညွှန်နှင့် သင်တန်းအတွက် အရင်းအမြစ်များ
+- **[တပ်ဆင်ခြင်း လမ်းညွှန်](INSTALLATION.md)** - စတုတ္တန်းများအတွက် အဆင့်လိုက် တပ်ဆင်မှုညွှန်ကြားချက်များ
+- **[အသုံးပြုခြင်း လမ်းညွှန်](USAGE.md)** - ဥပမာများနှင့် ပုံမှန် လုပ်ငန်းစဉ်များ
+- **[ပြဿနာဖြေရှင်းခြင်း](TROUBLESHOOTING.md)** - ပုံမှန်ပြဿနာများအတွက် ဖြေရှင်းနည်းများ
+- **[ပံ့ပိုးမှု လမ်းညွှန်](CONTRIBUTING.md)** - ဤပရောဂျက်တွင် ပါဝင်ရန် နည်းလမ်းများ
+- **[ဆရာများအတွက်](for-teachers.md)** - သင်ကြားရာတွင် ညွှန်ကြားချက်များနှင့် စာသင်တန်း ရင်းမြစ်များ
## 👨🎓 ကျောင်းသားများအတွက်
-> **အခြေခံအသစ်စက်စက်များ**: ဒေတာသိပ္ပံ စတင်လေ့လာပါသလား? ကျွန်ုပ်တို့ရဲ့ [အခြေခံအဆင်ပြေမှု နမူနာများ](examples/README.md) ကနေ စတင်ပါ! ဤလွယ်ကူ၍ မှန်ကန်စွာရှင်းလင်းထားသော နမူနာများက သင်၏ အခြေခံ အသိပညာကို နားလည်စေပါမည်။
-> **[ကျောင်းသားများ](https://aka.ms/student-page)** မိမိအတွက် ယခု သင်ရိုးညွှန်းတမ်းကို အသုံးပြုရန်၊ repository လုံးဝကို fork ပြုလုပ်၍ သင်ခန်းစာမတိုင်မီ စစ်ဆေးမှုကို စတင်ပြီး ကိုယ်တိုင် လေ့ကျင့်ခန်းများ ပြီးမြောက်အောင် ဆောင်ရွက်ပါ။ ထို့နောက် သင်ခန်းစာဖတ်ရှုပြီး ကျန်ရှိတဲ့ လုပ်ငန်းစဉ်တွေကို ပြီးမြောက်စေပါ။ ဖြေရှင်းနည်း ကုဒ်ကို ကူးယူမဲ့အစား သင်ခန်းစာများကိုနားလည်ပြီး စီမံကိန်းများ ဖန်တီးကြဖို့ ကြိုးစားပါ။ ထိုကုဒ်များကို /solutions ဖိုလ်ဒါထဲတွင် သိမ်းဆည်းထားပါသည်။ သဘောတူသူများနှင့် လေ့လာရေးအဖွဲ့ဖွဲ့ပြီး အတူတူ ပြီးစီးနိုင်သည်။ နောက်ထပ် တက်ကြွလေ့လာလိုသူများအတွက် [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ကို အကြံပြုပါသည်။
+> **စတုတ္တန်းအသစ်များအတွက်**: ဒေတာသိပ္ပံကို အသစ်စတင်ပါသလား? ကျွန်ုပ်တို့၏ [စတုတ္တန်းအသင့် ဥပမာများ](examples/README.md) မှ စတင်လိုက်ပါ။ ဤရိုးရှင်းပြီး ကောင်းစွာ မှတ်ချက်ရေးသွားထားသော ဥပမာများက ပညာအခြေခံကို နားလည်စေရန် ကူညီပေးမည်။
+> **[ကျောင်းသားများ](https://aka.ms/student-page)** : ဤသင်ရိုးအစီအစဉ်ကို သင့်တစ်ကိုယ်တော် အသုံးပြုရန်၊ repo ကို အပြည့်အစုံ fork ပြုလုပ်ကာ သင်ခန်းစာ မတိုင်မီ စစ်တမ်းဖြေသောနေရာမှ စ၍ လေ့ကျင့်ခန်းများကို တစ်ဖက်တစ်လမ်း ပြီးမြောက်သည်အထိ အလုပ်လုပ်ပါ။ သင်ခန်းစာကို ကူးယူရန် အစား နားလည်ပြီး ပရောဂျက်များ ပြုလုပ်ရန် ကြိုးစားပါ။ သို့သော် အဖြေသတ် code များက /solutions ဖိုလ်ဒါတွင် သင်ခန်းစာစီ၌ ရရှိနိုင်ပါသည်။ ထပ်မံလေ့လာရန် အတွက် မိတ်ဆွေများနှင့် သင်တန်းအဖွဲ့ ပြုလုပ်၍ ပူးပေါင်းကြည့်ရှုနိုင်ပါသည်။ ပိုမိုတိုးတက်ရန် Microsoft Learn ကိုလည်း အားဖြည့်ရန် တင်ပြပါသည် (https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)။
-**အမြန်စတင်ရန်:**
-1. သင်၏ပတ်ဝန်းကျင်ကို တပ်ဆင်ရန် [တပ်ဆင်ခြင်း လမ်းညွှန်](INSTALLATION.md) ကို စစ်ဆေးပါ
-2. သင်ရိုးညွှန်းတမ်းကို အသုံးပြုနည်းကို သိရှိရန် [အသုံးပြုပုံ လမ်းညွှန်](USAGE.md) ကို ပြန်လည်ကြည့်ဆွေးနွေးပါ
-3. ပထမ သင်ခန်းစာနှင့် အဆင့်ဆင့် ဖြတ်သန်းပြီး လေ့လာပါ
-4. အထောက်အပံ့အတွက် ကျွန်ုပ်တို့ရဲ့ [Discord community](https://aka.ms/ds4beginners/discord) တွင် ပါဝင်ဆွေးနွေးပါ
+**နည်းလမ်းအချုပ်:**
+1. သင့်ပတ်ဝန်းကျင် တပ်ဆင်ရန် [တပ်ဆင်ခြင်းလမ်းညွှန်](INSTALLATION.md) ကို စစ်ဆေးပါ
+2. သင်ရိုးကို လေ့လာနည်း သင်ယူရန် [အသုံးပြုခြင်း လမ်းညွှန်](USAGE.md) ကို ပြန်လည်ကြည့်ပါ
+3. သင်ခန်းစာ ၁ မှ စတင်ပြီး တန်းတူ အဆင့်လိုက်များကို လုပ်ဆောင်ပါ
+4. အထောက်အပံ့လိုပါက ကျွန်ုပ်တို့၏ [Discord အသိုင်းအဝိုင်း](https://aka.ms/ds4beginners/discord) တွင် ဝင်ပါ
-## 👩🏫 ဆရာများအတွက်
+## 👩🏫 ဆရာ/ဆရာမများအတွက်
-> **ဆရာများ**: ဤသင်ရိုးညွှန်းတမ်း အသုံးပြုနည်းအတွက် [အကြံပြုချက်များ](for-teachers.md) ပါဝင်ပါသည်။ ကျွန်ုပ်တို့၏ ဆွေးနွေးပွဲ [ဂျစ်ဟပ်ဖိုရမ်](https://github.com/microsoft/Data-Science-For-Beginners/discussions) တွင် သင့်ရဲ႕ တုံ့ပြန်ချက်ကို မျှဝေလိုပါသည်။
+> **ဆရာ/ဆရာမများအတွက်**: ဤသင်ရိုးအစီအစဉ် အသုံးပြုနည်းအတွက် ကျွန်ုပ်တို့ [အကြံဉာဏ်အချို့](for-teachers.md) ထည့်သွင်းပေးထားသည်။ ကျွန်ုပ်တို့၏ ဆွေးနွေးပွဲ ဂိုဃ်းတွင် သင့်ရဲ့ တုံ့ပြန်ချက်ကို တွေ့ရှိလိုပါသည် [in our discussion forum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## အဖွဲ့ကို တွေ့ဆုံပါ
-## အသင်းအဖွဲ့ကို တွေ့ဆုံပါ။
-[](https://youtu.be/8mzavjQSMM4 "Promo video")
+[](https://youtu.be/8mzavjQSMM4 "ကြော်ငြာ ဗွီဒီယို")
-**Gif by** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+**Gif ကို ဖန်တီးသူ** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 အပေါ်ကပုံကိုနှိပ်ပြီး ဒီလုပ်ငန်းစဉ်အကြောင်း အဲ့ဒီကိုဖန်တီးသူတွေဆီက ဗီဒီယိုကြည့်ပါ!
+> 🎥 ပရောဂျက်နှင့် အဲဒီကို ဖန်တီးသူများအကြောင်း ဗွီဒီယို၊ လင်္ကေ့ကို နှိပ်ပါ။
-## သင်ကြားပုံ
+## ပညာပေးနည်း
-ဒီ သင်ရိုးညွှန်းမှာ ကျွန်တော်တို့မှာ သင်ကြားပုံနိယာမနှစ်ခုကို ရွေးချယ်ထားပါတယ်၊ အဲဒါက အစီအစဉ်အခြေပြုထားဖို့နဲ့ မကြာခဏ စစ်တမ်းမေးခွန်းများပါဝင်ဖို့ ဖြစ်ပါတယ်။ ဒီ စီးရီးပြီးဆုံးတဲ့အရောက်မှာ ကျောင်းသားတွေဟာ ဒေတာသိပ္ပံ၏ အခြေခံအယူအဆတွေ၊ ကိုယ်ကျင့်တရားဆိုင်ရာ အကြောင်းအရာတွေ၊ ဒေတာပြင်ဆင်ခြင်း၊ ဒေတာနဲ့အလုပ်လုပ်ပုံမျိုးစုံ၊ ဒေတာမြင်သာခြင်း၊ ဒေတာသုံးစွဲခြင်း၊ ပညာရပ်သုံးလောကနဲ့ ပို၍ တွေ့ရှိမယ့် အချက်တွေကို သင်ယူထားလိမ့်မယ်။
+ဒီသင်တန်းအစီအစဉ်ကို တည်ဆောက်ရာတွင် ကျွန်ုပ်တို့သည် နှစ်ခုသော ပညာပေးအခြေခံအယူအဆများကို ရွေးချယ်ထားသည်။ ၎င်းမှာ ပရောဂျက်အခြေပြုဖြစ်ရန်နှင့် မကြာခဏ စစ်ဆေးမှုများ ပါဝင်ရန်ဖြစ်သည်။ ဒီအစီအစဉ်၏ အဆုံးသတ်တွင် ကျောင်းသားများသည် ဒေတာသိပ္ပံ၏ အခြေခံအယူအဆများ၊ ယဉ်ကျေးမှုဆိုင်ရာ အယူအဆများ၊ ဒေတာပြင်ဆင်ခြင်း၊ ဒေတာကို မတူညီသောနည်းလမ်းများဖြင့် ကုသခြင်း၊ ဒေတာကြည့်ရှုခြင်း၊ ဒေတာခွဲခြားစစ်ဆေးခြင်း၊ ဒေတာသိပ္ပံ၏ အပြင်လောက အသုံးချမှုများစသည့် အကြောင်းအရာများကို သင်ယူထားမည် ဖြစ်သည်။
-ထို့အပြင် သင်တန်းမတက်ခင် လူကြီးမင်း စိတ်ထားကို သတ်မှတ်ပေးတဲ့ နည်းနည်းတောင် စစ်တမ်းမေးခွန်းတစ်ခုနဲ့၊ သင်တန်းပြီးချိန်မှာ ပိုမိုသိမှတ်နိုင်ရန် စစ်တမ်းမေးခွန်းဒ်တစ်ခု ထပ်မံရောထွေးထားပါတယ်။ ဒီ သင်ရိုးဟာ ကွဲပြားမှုနှင့် ပျော်ရွှင်စရာလည်းဖြစ်ပြီး လုံးဝတစ်ခန်းလုံး သို့မဟုတ် အစိတ်အပိုင်းအနည်းငယ်သာ လေ့လာနိုင်ပါတယ်။ ပြုပြင်မှုတွေက သေးငယ်ပြီး အဆုံးသတ်အထိ နောက်ပိုင်းတွင် ပိုမိုရှုပ်ထွေးလာပါသည်။
+ထို့အပြင် မိတျကသညျသညျခနစျတျာဘိုငျ မညီမျှမွှတဲှြပြီးတှား စဂ္ကာွလိ ံမိန့်ခွန်းခိုက ခွန်ပုံအညွန်းစဉ်မှီချိန်ဝိုင်းကြွားထဲက မျှော်လင့်ချက်များ ထားရှိပြီး ပြီးတဲ့အချိန်မှာ ထပ်မံ မှတ်မိမှုအတွက် ဒုတိယ စစ်ဆေးမှုရှိသည်။ ဒီသင်တန်းကို ချိန်ညှိနိုင်ပြီး ပျော်စရာဖြစ်စေရန်ပြုလုပ်ထားပြီး အပိုင်းအစ အစိတ်အပိုင်းအဖြစ် သို့မဟုတ် တစ်ပတ်တည်း အပြီးကိုယူနိုင်သည်။ ပရောဂျက်များသည် တစိတ်တပိုင်းကနေ စတင်ပြီး ၁၀ ပတ်အပြီးဆုံးတွင် ပိုမိုရှုပ်ထွေးလာသည်။
-> ကျွန်တော်တို့ရဲ့ [ဖြစ်စဉ်စည်းကမ်းများ](CODE_OF_CONDUCT.md), [ပါဝင်ဆောင်ရွက်မှု](CONTRIBUTING.md), [ဘာသာပြန်](TRANSLATIONS.md) လမ်းညွှန်စောင် များကို တွေ့နိုင်ပါတယ်။ သင့်အနေနဲ့ အဆင်ပြေထိုက်တဲ့ တုံ့ပြန်ချက်များကိုလည်း ကြိုဆိုပါတယ်!
+> ကျွန်ုပ်တို့၏ [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) လမ်းညွှန်ချက်များကို တွေ့မြင်နိုင်ပါသည်။ သင်၏ တည်ဆောက်မှုနှိုင်းယှဉ်ချက်များကို ကြိုဆိုပါသည်။
-## သင်ခန်းစာ တစ်ခုချင်းစီတွင် ပါဝင်သည်မှာ -
+## တစ်ခုချင်းစီ အတန်းများတွင် ပါဝင်သည်။
-- စိတ်ကြိုက်သရုပ်ပြ မှတ်စု
-- စိတ်ကြိုက် ထောက်ပံ့ဗီဒီယို
-- သင်ခန်းစာမတိုင်ခင် ကြိုပြင် စစ်တမ်းမေးခွန်း
-- စာဖြင့် ရေးသားထားသော သင်ခန်းစာ
-- ပရောဂျက်အခြေပြုသင်ခန်းစာများအတွက် အဆင့်လိုက် လမ်းညွှန်ချက်များ
-- အသိပညာစစ်ဆေးခြင်းများ
+- ရွေးချယ်နိုင်သော စကက်ချ်မှတ်တမ်း
+- ရွေးချယ်နိုင်သော ထပ်ထည့်ဗွီဒီယို
+- အတန်းမတိုင်မီ စမ်းသပ်မေးခွန်း
+- စာသားအတန်း
+- ပရောဂျက်အခြေခံအတန်းများအတွက် ပရောဂျက်တည်ဆောက်နည်း လမ်းညွှန်ချက်များ
+- တတ်မြောက်မှုစစ်ဆေးမှုများ
- စိန်ခေါ်မှု
-- ထောက်ပံ့စာအုပ် ဖတ်ရှုမှု
-- စာမေးပွဲ တင်ပြချက်
-- [သင်ခန်းစာပြီးသွားပြီးနောက် စစ်တမ်းမေးခွန်း](https://ff-quizzes.netlify.app/en/)
+- ထပ်မံဖတ်ရှုရန်
+- အစီအစဉ်
+- [အတန်းပြီးနောက် စမ်းသပ်မေးခွန်း](https://ff-quizzes.netlify.app/en/)
-> **စစ်တမ်းမေးခွန်းများအကြောင်း မှတ်ချက်**: စစ်တမ်းမေးခွန်းအားလုံးဟာ Quiz-App ဖိုလ်ဒါထဲမှာ ပါရှိပြီး မေးခွန်း သုံးခုပါဝင်တဲ့ စုစုပေါင်း ၄० မေးခွန်းရှိပါတယ်။ သင်ခန်းစာများထဲကနေ လင့်ခ်ဆက်ထားပေမယ့် ဒီ quiz app ကို မိမိ့ဒက်မြေ့ပေါ်မှာ ရှာဖွေတတ်ပါတယ်၊ ထို့အပြင် Azure မှတင်သွင်းနိုင်ပါတယ်၊ quiz-app ဖိုလ်ဒါထဲ ရေးသားထားတဲ့ ညွှန်ကြားချက်များကို လိုက်နာပါ။ ယင်းတွေအား မြန်မာလို ဖြန့်ချိနေဆဲ။
+> **စမ်းသပ်မေးခွန်းများအကြောင်း မှတ်ချက်**: စမ်းသပ်မေးခွန်းအားလုံးသည် Quiz-App ဖိုလ်ဒါအတွင်း ပါဝင်ပြီး သုံးမေးခွန်းပါဝင်သည့် စုစုပေါင်း ၄၀ စမ်းသပ်မေးခွန်းရှိသည်။ ၎င်းတို့ကို အတန်းများအတွင်းမှ လင့်ခ်ထားပြီး သို့သော် စမ်းသပ်မေးခွန်း အက်ပ်ကို ဒေသမီ သို့မဟုတ် လိုကယ်လ်တွင် ထုတ်ပေးနိုင်ပြီး Azure သို့ တင်နိုင်သည်။ `quiz-app` ဖိုလ်ဒါတွင် ညွှန်ကြားချက်များ ပါရှိသည်။ ၎င်းတို့ကို နေ့စဉ် ပြောင်းလဲ တွင်အပ်နေပါသည်။
-## 🎓 အစပြုသူများအတွက် နမူနာများ
+## 🎓 စတင်ဖွင့်လှစ်သူများအတွက် ဥပမာများ
-**ဒေတာသိပ္ပံအသစ်လား?** တစ်ချက်တွင် နားလည်ရန် လွယ်ကူသည့် နှင့် မှတ်ချက်များစွာ ပါဝင်သည့် [နမူနာများ ဖိုလ်ဒါ](examples/README.md) ကို ကျွန်တော်တို့ ဖန်တီးထားပါတယ်-
+**ဒေတာသိပ္ပံကို အသစ်စတင်ပါသလား?** ကျွန်ုပ်တို့သည် လွယ်ကူပြီး မှတ်ချက်ပြည့်စုံသည့် ကုဒ်များပါရှိသည့် [ဥပမာ ဖိုင်တိုတို](examples/README.md) ကို ဖန်တီးထားပြီး စတင်ရန် ကူညီပေးပါသည်။
-- 🌟 **Hello World** - သင့် ပထမဆုံး ဒေတာသိပ္ပံ ပရိုဂရမ်း
-- 📂 **ဒေတာ loading** - ဒေတာစုစည်းမှုများကို ကိုးကား ဖတ်ရှုနည်း သင်ယူခြင်း
-- 📊 **ရိုးရှင်းသော စစ်တမ်းခွဲခြားမှု** - စာရင်းအချက်ပြခွဲခြင်းနှင့် ပုံစံများ ရှာဖွေခြင်း
-- 📈 **အခြေခံ ရုပ်မြင်ကွင်း ပြတင်းပေါက်** - ချတ်များကို ဖန်တီးခြင်း
-- 🔬 **အမှန်တကယ် လုပ်ငန်းပုံစံ** - ဦးတည်စာရင်းကို အစမှ အဆုံး အလုပ်လုပ်နည်း
+- 🌟 **Hello World** - သင့်ရဲ့ ပထမဆုံး ဒေတာသိပ္ပံပရိုဂရမ်
+- 📂 **ဒေတာတင်ခြင်း** - ဒေတာစုစည်းမှုများ ဖတ်ရှုရန် နှင့် စမ်းသပ်ရန် သင်ယူပါ
+- 📊 **ရိုးရိုးရှင်းရှင်း ခွဲခြာမှု** - စံချိန်များတွက်ချက်ပြီး ပုံစံများ ရှာဖွေပါ
+- 📈 **အခြေခံ ဓါတ်ပုံပြဆွဲခြင်း** - အဘယ်သူမျှမ ဖန်တီးနိုင်သော ဇယားများနှင့် အချက်အလက်များဖန်တီးပါ
+- 🔬 **အမှန်တကယ် လောက ပရောဂျက်** - အပေါ်မှ အောက်အထိ ပြည့်စုံသော အလုပ်စဉ်
-နမူနာ တစ်ခုချင်းစီသည် အဆင့်ဆင့်ရိုက်ဆိုထားသော မှတ်ချက်များ ပါဝင်ပြီး အစပြုသူအတွက် အထူးသင့်လျော်ပါသည်။
+ဤဥပမာတိုင်းတွင် အဆင့်ဆင့် ဘာသာပြန်ဖော်ပြချက်များပါရှိပြီး အပျော်အပါးများကို အသင့်တော်ဆုံးဟု သတ်မှတ်သည်။
-👉 **[နမူနာများနှင့် စတင်ပါ](examples/README.md)** 👈
+👉 **[ဤဥပမာများနှင့် စတင်ပါ](examples/README.md)** 👈
-## သင်ခန်းစာများ
+## အတန်းများ
-||
+||
|:---:|
-| ဒေတာသိပ္ပံ အစပြုသူများအတွက် မျဉ်းပြ မြေပုံ - _sketchnote by [@nitya](https://twitter.com/nitya)_ |
+| Data Science For Beginners: Roadmap - _စကက်ချ်မှတ်တမ်း _[@nitya](https://twitter.com/nitya) မှ_ |
-| သင်ခန်းစာ အမှတ် | ခေါင်းစဉ် | သင်ခန်းစာ အုပ်စု | သင်ယူရည်ရွယ်ချက်များ | ဆက်စပ်သင်ခန်းစာ | ဆရာ/ဆရာမ |
+| အတန်းနံပါတ် | ခေါင်းစဉ် | အတန်းအုပ်စု | သင်ယူရမည့် ရည်မှန်းချက်များ | လင့်ခ်ရှိသော အတန်း | ဇာတ်ဆောင် |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | ဒေတာသိပ္ပံ အဓိပ္ပာယ်ဖေါ်ပြခြင်း | [နိဒါန်း](1-Introduction/README.md) | ဒေတာသိပ္ပံ၏ အခြေခံအယူအဆများနှင့် ၎င်းသည် အတုအယောင်အသိပညာ၊ စက်သင်ကြားမှုနှင့် ကြီးမားသောဒေတာအား မည်သို့ ဆက်နွယ်သည်ကို သင်ယူပါ။ | [သင်ခန်းစာ](1-Introduction/01-defining-data-science/README.md) [ဗီဒီယို](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | ဒေတာသိပ္ပံ ကိုယ်ကျင့်တရား | [နိဒါန်း](1-Introduction/README.md) | ဒေတာ ကိုယ်ကျင့်တရား အယူအဆများ၊ စိန်ခေါ်မှုများနှင့် ခြုံငုံသုံးသပ်ချက်။ | [သင်ခန်းစာ](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | ဒေတာ အဓိပ္ပာယ်ဖေါ်ပြခြင်း | [နိဒါန်း](1-Introduction/README.md) | ဒေတာကို မည်သို့ အုပ်စုခွဲပြီး ထုံးစံအားဖြင့် မည်သည့်အရင်းအမြစ်များမှ ရရှိသည်ကို ကျွမ်းကျင်စွာ သိရှိခြင်း။ | [သင်ခန်းစာ](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | သင်္ကေတနှင့် ဖြစ်နိုင်ခြေအခြားများမိတ်ဆက်ခြင်း | [နိဒါန်း](1-Introduction/README.md) | ဒေတာကို နားလည်ရန် သင်္ကေတနှင့် ဖြစ်နိုင်ချေ သင်္ချာနည်းများ။ | [သင်ခန်းစာ](1-Introduction/04-stats-and-probability/README.md) [ဗီဒီယို](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | အချက်အလက်ဆက်စပ်ဒေတာအလုပ်လုပ်ခြင်း | [ဒေတာဖြင့်အလုပ်လုပ်ခြင်း](2-Working-With-Data/README.md) | ဆက်စပ်ဒေတာ မိတ်ဆက်ခြင်း နှင့် Structured Query Language (SQL) ဖြင့် စူးစမ်းလေ့လာခြင်းနှင့် ခွဲခြမ်းစိတ်ဖြာခြင်း အခြေခံများ။ | [သင်ခန်းစာ](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | NoSQL ဒေတာဖြင့် အလုပ်လုပ်ခြင်း | [ဒေတာဖြင့်အလုပ်လုပ်ခြင်း](2-Working-With-Data/README.md) | မဆက်စပ်ဒေတာ မိတ်ဆက်ခြင်း၊ ၎င်း၏အမျိုးအစားမျိုးစုံ နှင့် စာရွက်စာတမ်းဒေတာဗေဒသို့ စူးစမ်းလေ့လာခြင်း အခြေခံ။ | [သင်ခန်းစာ](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Python သုံးပြီး အလုပ်လုပ်ခြင်း | [ဒေတာဖြင့်အလုပ်လုပ်ခြင်း](2-Working-With-Data/README.md) | Pandas စသည့် စာကြည့်တိုက်များဖြင့် ဒေတာ စူးစမ်းခြင်းအတွက် Python အသုံးပြုပုံ အခြေခံများ။ Python အခြေခံပရိုဂရမ်ရေးခြင်း၏ နားလည်မှု မရှိမဖြစ်လိုအပ်သည်။ | [သင်ခန်းစာ](2-Working-With-Data/07-python/README.md) [ဗီဒီယို](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | ဒေတာပြင်ဆင်ခြင်း | [ဒေတာဖြင့်အလုပ်လုပ်ခြင်း](2-Working-With-Data/README.md) | ဒေတာ သန့်စင်ခြင်း နှင့် ပြောင်းလဲခြင်း နည်းနည်းများ၊ ဒေတာရှားပါးမှု၊ မှားနေမှု သို့မဟုတ် မပြီးစီးမှုများကို ကိုင်တွယ်ရန် နည်းလမ်းများ။ | [သင်ခန်းစာ](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | ပမာဏများ မြင်သာစေခြင်း | [ဒေတာမြင်သာခြင်း](3-Data-Visualization/README.md) | Matplotlib သုံးပြီး ငှက်ဒေတာများကို မြင်သာစေခြင်း 🦆 | [သင်ခန်းစာ](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | ဒေတာ ဖြန့်ဝေမှုပုံရိပ် မြင်သာစေခြင်း | [ဒေတာမြင်သာခြင်း](3-Data-Visualization/README.md) | ခွဲခြားမှု နှင့် အတန်းများအတွင်းတွင် ကြည့်မြင်များနှင့် လှမ်းခြားချက်များ မြင်သာစေခြင်း။ | [သင်ခန်းစာ](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | အပိုင်းနှုန်းများ မြင်သာစေခြင်း | [ဒေတာမြင်သာခြင်း](3-Data-Visualization/README.md) | ဖြန့်ဝေမှုပုံရိပ်နှင့် အုပ်စုတစ်ခုချင်းစီ၏ ရာခိုင်နှုန်းများ မြင်သာစေခြင်း။ | [သင်ခန်းစာ](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | ဆက်စပ်မှုများ မြင်သာစေခြင်း | [ဒေတာမြင်သာခြင်း](3-Data-Visualization/README.md) | ဒေတာနဲ့ ထပ်တူ ထပ်မျှ Variable များအကြား ဆက်နွယ်မှုနှင့် ထင်ရှားမှုများ မြင်သာစေခြင်း။ | [သင်ခန်းစာ](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | တန်ဖိုးရှိတဲ့ မြင်သာမှုများ | [ဒေတာမြင်သာခြင်း](3-Data-Visualization/README.md) | သင့်မြင်သာမှုများ ကို ထိရောက်သော ပြဿနာ ဖြေရှင်းခြင်းနှင့် အမြင်ရှာဖွေမှုများအတွက် တန်ဖိုးရှိစေဖို့ နည်းစနစ်များနှင့် လမ်းညွှန်မှုများ။ | [သင်ခန်းစာ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | ဒေတာသိပ္ပံ ဖြစ်စဉ်ဇီဝများ မိတ်ဆက်ခြင်း | [ဇီဝလမ်း](4-Data-Science-Lifecycle/README.md) | ဒေတာသိပ္ပံ ဖြစ်စဉ်ဇီဝများနဲ့ ဒေတာ ရယူခြင်းနှင့် ထုတ်ယူခြင်း အဆင့် ပထမဆုံးကို မိတ်ဆက်ခြင်း။ | [သင်ခန်းစာ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | ခွဲခြမ်းစိတ်ဖြာခြင်း | [ဇီဝလမ်း](4-Data-Science-Lifecycle/README.md) | ဒေတာသိပ္ပံ ဖြစ်စဉ်ဇီဝ၏ ဒီအဆင့်တွင် ဒေတာခွဲခြမ်းမှု နည်းနည်းများ အကျုံးဝင်သည်။ | [သင်ခန်းစာ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | ဆက်သွယ်ဆက်သွယ်ရေး | [ဇီဝလမ်း](4-Data-Science-Lifecycle/README.md) | ဒေတာသိပ္ပံ ဖြစ်စဉ်ဇီဝ၏ ဒီအဆင့်တွင် ဒေတာမှ ရရှိသော အမြင်ရှာဖွေမှုများကို ဆုံးဖြတ်သူများ နားလည်နိုင်ရုံ ရည်ရွယ်တင်ပြခြင်း။ | [သင်ခန်းစာ](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Cloud ထဲမှာ ဒေတာသိပ္ပံ | [Cloud Data](5-Data-Science-In-Cloud/README.md) | ဒီသင်ခန်းစာကြီးတွင် Cloud ထဲမှာ ဒေတာသိပ္ပံနဲ့ ၎င်း၏ အကျိုးကျေးဇူး မိတ်ဆက်ထားသည်။ | [သင်ခန်းစာ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
-| 18 | Cloud ထဲမှာ ဒေတာသိပ္ပံ | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Low Code လုပ်ဆောင်ချက်များအသုံးပြုပြီး မော်ဒယ်များ လေ့ကျင့်ခြင်း။ |[သင်ခန်းစာ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
-| 19 | Cloud ထဲမှာ ဒေတာသိပ္ပံ | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio ဖြင့် မော်ဒယ်များ ထုတ်လွှတ်ခြင်း။ | [သင်ခန်းစာ](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
-| 20 | သဘာဝ အတွက် ဒေတာသိပ္ပံ | [In the Wild](6-Data-Science-In-Wild/README.md) | အမှန်တကယ် လောက၌ ဒေတာသိပ္ပံ အသုံးပြုထားသည့် ပရောဂျက်များ။ | [သင်ခန်းစာ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | ဒေတာသိပ္ပံ သတ်မှတ်ခြင်း | [နိဒါန်း](1-Introduction/README.md) | ဒေတာသိပ္ပံ၏ အခြေခံအယူအဆများနှင့် Artificial Intelligence, Machine Learning နှင့် Big Data နှင့် ပတ်သက်မှုကို သင်ယူပါ။ | [lesson](1-Introduction/01-defining-data-science/README.md) [ဗွီဒီယို](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | ဒေတာသိပ္ပံ သမာဓိ | [နိဒါန်း](1-Introduction/README.md) | ဒေတာသမာဓိ အယူအဆများ၊ စိန်ခေါ်မှုများနှင့် ဖွဲ့စည်းပုံများ။ | [lesson](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | ဒေတာ သတ်မှတ်ခြင်း | [နိဒါန်း](1-Introduction/README.md) | ဒေတာများ ဘယ်လို ခွဲခြားထားသည်နှင့် ၎င်း၏ ပုံမှန်ရင်းမြစ်များ။ | [lesson](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | စိစစ်မှုနည်းစနစ် နှင့် ဖြစ်နိုင်ခြေ နိဒါန်း | [နိဒါန်း](1-Introduction/README.md) | ဒေတာ နားလည်ရန် ဖြစ်နိုင်ခြေ နည်းပညာများနှင့် စိစစ်မှုနည်းပညာများ။ | [lesson](1-Introduction/04-stats-and-probability/README.md) [ဗွီဒီယို](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | ဆက်စပ်ဒေတာနှင့် အလုပ်လုပ်ခြင်း | [ဒေတာနှင့်အလုပ်လုပ်ခြင်း](2-Working-With-Data/README.md) | ဆက်စပ်ဒေတာအခြေခံ နေရာရင်းနှင့် Structured Query Language (SQL) ကို အသုံးပြုပြီး ဒေတာများကို စူးစမ်းစစ်ဆေးခြင်း။ | [lesson](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | NoSQL ဒေတာနှင့် အလုပ်လုပ်ခြင်း | [ဒေတာနှင့်အလုပ်လုပ်ခြင်း](2-Working-With-Data/README.md) | အဆက်မပြတ် ဒေတာအမျိုးအစားနှင့် ဒေါက်မြူမင့်ဒေတာဘေ့စ်များကို ရှာဖွေရန်၊ စစ်ဆေးရသော အခြေခံသိကောင်းစရာများ။ | [lesson](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Python ဖြင့် အလုပ်လုပ်ခြင်း | [ဒေတာနှင့်အလုပ်လုပ်ခြင်း](2-Working-With-Data/README.md) | Pandas ကဲ့သို့သော ဆိုဒ်နည်းပညာများကို အသုံးပြု၍ Python ဖြင့် ဒေတာစူးစမ်းခြင်း။ Python အခြေခံမှု ကို စနစ်တကျ နားလည်ထား အကြံပြုသည်။ | [lesson](2-Working-With-Data/07-python/README.md) [ဗွီဒီယို](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | ဒေတာ ပြင်ဆင်ခြင်း | [ဒေတာနှင့်အလုပ်လုပ်ခြင်း](2-Working-With-Data/README.md) | ဒေတာများ လိုက်ကာကျင့်ပြင်ခြင်း၊ မရှိသော ဒေတာ၊ မမှန်ကန်သော ဒေတာများကို ကိုင်တွယ်ခြင်းအတွက် နည်းပညာများ။ | [lesson](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | အရေအတွက်များ ကို မြင်သာအောင် ပြသခြင်း | [ဒေတာ မြင်သာရေး](3-Data-Visualization/README.md) | Matplotlib ကို အသုံးပြုပြီး ငွက်ဒေတာများကို မြင်သာအောင်ပြသခြင်း 🦆 | [lesson](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | ဒေတာ မျိုးစုံ ချီပါဝင်မှု ကို မြင်သာအောင်ပြသခြင်း | [ဒေတာ မြင်သာရေး](3-Data-Visualization/README.md) | အတွင်းကာလ အတွင်း ကြည့်ရှုမှုများနှင့် လမ်းကြောင်းများကို မြင်သာအောင်ပြသခြင်း။ | [lesson](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | အပိုင်းနှုန်းများ ကို မြင်သာအောင် ပြသခြင်း | [ဒေတာ မြင်သာရေး](3-Data-Visualization/README.md) | ဝေစု နှင့် အစုလိုက်ရာနှုန်းများ ကို မြင်သာအောင်ပြသခြင်း။ | [lesson](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | ဆက်စပ်မှုများ ကို မြင်သာအောင် ပြသခြင်း | [ဒေတာ မြင်သာရေး](3-Data-Visualization/README.md) | ဒေတာနှင့် အမိန့်အမျိုးအစား များကြား ဆက်စပ်မှုများကို မြင်သာအောင်ပြသခြင်း။ | [lesson](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | အကျိုးရှိသော မြင်သာရေးများ | [ဒေတာ မြင်သာရေး](3-Data-Visualization/README.md) | သင့်မြင်သာရေးများကို ထိရောက်စွာ ပြဿနာဖြေရှင်းခြင်းနှင့် ဖော်ထုတ်ချက်များ ရရှိရန် နည်းလမ်းများနှင့် အကြံပြုချက်များ။ | [lesson](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | ဒေတာသိပ္ပံ ဘဝတစ်လျှောက် နိဒါန်း | [ဘဝတစ်လျှောက်](4-Data-Science-Lifecycle/README.md) | ဒေတာသိပ္ပံ ဘဝတစ်လျှောက်နှင့် ဒေတာ ရယူခြင်း၊ စူးစမ်းထုတ်ယူခြင်း ပထမဆုံးအဆင့်ကို နားလည်ခြင်း။ | [lesson](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | ခွဲခြာစစ်ဆေးခြင်း | [ဘဝတစ်လျှောက်](4-Data-Science-Lifecycle/README.md) | ဒေတာစစ်ဆေးမှု အဆင့်အတွက် နည်းပညာများကို အာရုံစိုက်ခြင်း။ | [lesson](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | ဆက်သွယ်မှု | [ဘဝတစ်လျှောက်](4-Data-Science-Lifecycle/README.md) | ဒေတာမှ ရရှိသော တွေ့ရှိချက်များကို ဆုံးဖြတ်ချက် ထုတ်သူများ နားလည်ရန် လွယ်ကူသောပုံစံဖြင့် တင်ပြခြင်း။ | [lesson](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | မိုဃ်းတိမ်ပြင်တွင် ဒေတာသိပ္ပံ | [မိုဃ်းတိမ်ဒေတာ](5-Data-Science-In-Cloud/README.md) | မိုဃ်းတိမ် ဒေတာသိပ္ပံနှင့် ၎င်း၏ အကျိုးကျေးဇူးများကို မျှဝေပေးသော သင်တန်း အစီအစဉ်။ | [lesson](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) နှင့် [Maud](https://twitter.com/maudstweets) |
+| 18 | မိုဃ်းတိမ်ပြင်တွင် ဒေတာသိပ္ပံ | [မိုဃ်းတိမ်ဒေတာ](5-Data-Science-In-Cloud/README.md) | Low Code ကိရိယာများ အသုံးပြုပြီး ပုံစံသင်ကြားခြင်း။ |[lesson](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) နှင့် [Maud](https://twitter.com/maudstweets) |
+| 19 | မိုဃ်းတိမ်ပြင်တွင် ဒေတာသိပ္ပံ | [မိုဃ်းတိမ်ဒေတာ](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio သုံး၍ ပုံစံများ တင်ဆောင်ခြင်း။ | [lesson](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) နှင့် [Maud](https://twitter.com/maudstweets) |
+| 20 | တောတွင်း ဒေတာသိပ္ပံ | [ တောတွင်း](6-Data-Science-In-Wild/README.md) | အသက်ဝင်သော ကမ္ဘာအတွင်း ဒေတာသိပ္ပံ မောင်းနှင်သည့် ပရောဂျက်များ။ | [lesson](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-ဒီ နမူနာကို Codespace မှာဖွင့်ရန် အောက်ပါ လမ်းညွှန်ချက်များကို လိုက်နာပါ။
-1. Code မီနူးကို နှိပ်ပြီး Open with Codespaces ကို ရွေးပါ။
-2. မျက်နှာပြင် အောက်ဆုံးတွင် + New codespace ကို ရွေးချယ်ပါ။
-အသေးစိတ် သိရှိလိုပါက [GitHub မှတ်တမ်း](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) သုံးသပ်ပါ။
+အောက်ပါအဆင့်များကို လိုက်နာ၍ ဤနမူနာကို Codespace တွင် ဖွင့်ပါ။
+1. Code drop-down မီနူးကို နှိပ်၍ Open with Codespaces ရွေးချယ်ပါ။
+2. ပန်းကန်အောက်ခါးတွင် + New codespace ကို ရွေးချယ်ပါ။
+ဆက်လက်သိရှိရန် [GitHub အညွှန်းစာတမ်း](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) ကို ကြည့်ပါ။
## VSCode Remote - Containers
-နှင့် သင်၏ ဒေသခံ စက်နှင့် VSCode ကို အသုံးပြု၍ ဒီ repo ကို container အတွင်း ဖွင့်ရန် အောက်ပါ လမ်းညွှန်ချက်များကို လိုက်နာပါ-
+သင့် မိမိစက်နှင့် VSCode ကို အသုံးပြု၍ VS Code Remote - Containers အပိုင်းဆက်မောင်းတင်ကနေ ဤ repo ကို ကွန်တိန်နာတွင် ဖွင့်ရန် အောက်ပါအဆင့်များကို လိုက်နာပါ။
-1. သင် ပထမဆုံး တတ်ကြွဖြစ်နေသော development container အသုံးပြုမှုဖြစ်လျှင်၊ သင်၏ စနစ်သည် လိုအပ်ချက်များနှင့် ကိုက်ညီသော Docker ရှိဖို့ သေချာပါစေ [အစပြုပြုလုပ်မှု သတင်းအချက်အလက်](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) မှ တစ်ဆင့်စစ်ဆေးပါ။
+1. ဒီကွန်တိန်နာကို ပထမဆုံး အသုံးပြုမည့် အခါတွင် Docker ရှိမှု အရှိဆုံး ဖြစ်စေမည့် စနစ်လိုအပ်ချက်များနားလည်ပြီးဖြစ်ပါက [အစစချင်း အညွှန်းစာတမ်း](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) ကို ဖတ်ပါ။
-ဒီ repository ကို အသုံးပြုရန်အတွက် isolation လုပ်ထားသော Docker volume အတွင်း၌ ဖွင့်နိုင်သည်-
+ဤ repository ကို အသုံးပြုရန်၊ isolated Docker volume တွင် repository ကို ဖွင့်နိုင်သည် -
-**မှတ်ချက်**: ဒေါ်ဘာမှ Remote-Containers: **Clone Repository in Container Volume...** အမိန့်ကို အသုံးပြုပြီး ဒေတာဗေဒလွှာကို ဒေါ်ဘာ volume အတွင်း ဒေါင်းလုပ် ပြုလုပ်ပြီး ဒေသခံဖိုင်စနစ်အစား သိုလှောင်ထားသည်။ [Volumes](https://docs.docker.com/storage/volumes/) တွေက container ဒေတာ ထိန်းသိမ်းစောင့်ရှောက်ရာ အကြံပြုထားတဲ့နည်းဖြစ်ပါတယ်။
+**မှတ်ချက်**: အမှတ်စဉ် Remote-Containers: **Clone Repository in Container Volume...** ကို အသုံးပြုပြီး ဒေတာကို ဒေါ့ခ်ဘာ volume တစ်ခုတွင် ကလုန်းလုပ်သည်။ [Volumes](https://docs.docker.com/storage/volumes/) သည် ကွန်တိန်နာ ဒေတာသိမ်းဆည်းမှုအတွက် ဦးစားပေးစနစ်ဖြစ်သည်။
-သို့မဟုတ် ဒေသခံမှာ ဒေါင်းလုပ်လုပ်ထားသော သို့မဟုတ် clone လုပ်ထားသည့် repository ကို ဖွင့်နိုင်ပါသည်-
+သို့မဟုတ် လိုကယ်ဖြင့် clone သို့မဟုတ် download လုပ်ထားသော version ကိုဖွင့်နိုင်သည် -
-- ဒီ repository ကို ဒေသခံဖိုင်စနစ်ထံ Clone လုပ်ပါ။
-- F1 ကို နှိပ်ပြီး **Remote-Containers: Open Folder in Container...** အမိန့်ကို ရွေးချယ်ပါ။
-- ဒီ ဖိုလ်ဒါ စားပြားကို ရွေးချယ်ပြီး container စတင်ပါက စမ်းသပ်ကြည့်ပါ။
+- ဤ repository ကို သင့်စက်တွင် clone လုပ်ပါ။
+- F1 ကိုနှိပ်ပြီး **Remote-Containers: Open Folder in Container...** အမိန့်ကို ရွေးပါ။
+- ဒီဖိုလ်ဒါကို ရွေးပြီး ကွန်တိန်နာ စတင်ရန် စောင့်ပါ၊ နောက်ဆုံးတွင် စမ်းသပ်ကြည့်ပါ။
-## Offline access
+## အွန်လိုင်းမလိုအပ်ဘဲဝင်ရောက်ရယူမှု
-[Docsify](https://docsify.js.org/#/) အသုံးပြု၍ ဒီစာတမ်းကို offline မှာ ဖတ်ရှုနိုင်ပါတယ်။ ဒီ repo ကို fork လုပ်ပြီး [Docsify](https://docsify.js.org/#/quickstart) ကို ဒေသခံစက်၌ ထည့်သွင်းပါ၊ ပြီးရင် repo ပွိုင့်ဖိုလ်ဒါ အတွင်း `docsify serve` ဟု ရိုက်ထည့်ပါ။ ၎င်း မိုဘိုင်းမှာ port 3000 တွင် ဝဘ်ဆိုဒ်ကို ဝင်ရောက်ကြည့်ရှုနိုင်မှာဖြစ်ပါတယ် - `localhost:3000` ។
+ဤစာတမ်းကို အွန်လိုင်းမလိုအပ်ဘဲ [Docsify](https://docsify.js.org/#/) ကို အသုံးပြု၍ ပြုလုပ်နိုင်သည်။ ဤ repo ကို fork လုပ်ပြီး [Docsify](https://docsify.js.org/#/quickstart) ကို သင့်စက်သို့ တပ်ဆင်ပြီး၊ repo ၏ အမြစ်ဖိုလ်ဒါတွင် `docsify serve` ဟုပြီးရိုက်ပါ။ ဝက်ဘ်ဆိုက်သည် localhost ရဲ့ ၃၀၀၀ ပေါ့(့)့(့)တွင် ဝန်ဆောင်မှု မပေးမည်: `localhost:3000`။
-> သတိပြုရန်၊ notebook များကို Docsify ဖြင့် ပြရန် မဖြစ်နိုင်သဖြင့် notebook ကို လိုချင်ချိန်တွင် VS Code တွင် Python kernel ဖြင့် သီးခြား ပြုလုပ်ကြပါ။
+> မှတ်ချက်၊ notebook များကို Docsify မှ အသံမပေးပါ၊ ထို့ကြောင့် notebook မလိုအပ်သောအခါ Python kernel ဖြင့် VS Code တွင် သီးခြား အသုံးပြုပါ။
-## အခြား သင်ရိုးညွှန်းများ
+## အခြား သင်တန်းအစီအစဉ်များ
-ကျွန်ုပ်တို့အဖွဲ့သည် အခြားသော သင်ရိုးညွှန်းများကို မိတ်ဆက်ပေးလျက်ရှိသည်! ကြည့်ရှုပါ-
+ကျွန်ုပ်တို့၏ အဖွဲ့သည် အခြား သင်တန်းအစီအစဉ်များ ထုတ်လုပ်ပါသည်။ ကြည့်ပါ -
### LangChain
@@ -242,21 +233,21 @@ AI နဲ့အတူ သင်ယူနိုင်တဲ့ Discord စီး
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-## အကူအညီရယူခြင်း
+## Getting Help
-**ပြဿနာများကြုံတွေ့နေရပါသလား?** လူကြိုက်များသောပြဿနာများအတွက်ဖြေရှင်းနည်းများကို ကြည့်ရန် [Troubleshooting Guide](TROUBLESHOOTING.md) ကို ကြည့်ပါ။
+**ပြဿနာများတွေနေသလား?** ကျွန်ုပ်တို့ရဲ့ [ပြဿနာများဖြေရှင်းနည်းလမ်းညွှန်](TROUBLESHOOTING.md) တွင်သာမကသောပြဿနာများအတွက်ဖြေရှင်းနည်းများကိုကြည့်ပါ။
-AI အသုံးချမှု app များတည်ဆောက်ရာ၌ အားတက်မှုရှိရန်၊ မေးခွန်းများရှိပါက MCP အကြောင်း အတူတူလေ့လာသူများနှင့် အတွေ့အကြုံရှိ developer များနှင့် ဆွေးနွေးရန် ပါဝင်နိုင်ပါသည်။ ဤသည်မှာ မေးခွန်းတင်ပြနိုင်ပြီး သိကောင်းစရာများကို လွတ်လပ်စွာမျှဝေရန် ပံ့ပိုးပေးသော အသိုင်းအဝိုင်းဖြစ်သည်။
+AI အက်ပ်များတည်ဆောက်ရာတွင် ဖြစ်နေရင် မေးခွန်းရှိရင် သို့မဟုတ် တားလိုက်ရင် MCP အကြောင်းအဆွေးအဝေးတွင် ဆွေးနွေးရန် ညီအစ်ကိုကျောင်းသားများနှင့် အတွေ့အကြုံရှိ ပရိုဂရမ်မာများနှင့် ပူးပေါင်းပါ။ ဤနေရာမှာ မေးခွန်းများကို ကြိုဆိုပြီး အသိပညာကို လွတ်လပ်စွာ ဝေမျှသည့်အသိုင်းအဝိုင်းဖြစ်ပါသည်။
[](https://discord.gg/nTYy5BXMWG)
-ထုတ်ကုန်တုံ့ပြန်ချက်များ သို့မဟုတ် တည်ဆောက်မှုအတွင်း အမှားများ ရှိပါက အောက်ပါနေရာသို့ သွားရောက် ကြည့်ပါ-
+ပစ္စည်းအသုံးပြုမှုဆိုင်ရာ တုံ့ပြန်ချက်များ သို့မဟုတ် အမှားများ ရှိနေသည်ဆိုပါက သွားရောက်ကြည့်ရှုနိုင်ပါသည် -
[](https://aka.ms/foundry/forum)
---
-**ဆိုက်ငံ့ချက်**
-ဤစာရွက်စာတမ်းကို AI ဘာသာပြန်ဝန်ဆောင်မှုဖြစ်သည့် [Co-op Translator](https://github.com/Azure/co-op-translator) အသုံးပြု၍ ဘာသာပြန်ထားပါသည်။ ကျွန်ုပ်တို့သည် တိကျမှန်ကန်မှုအတွက် ကြိုးစားပေမယ့် အလိုအလျောက်ဘာသာပြန်မှုများတွင် အမှားအယွင်းများ ရှိနိုင်ခြင်းကို သတိပြုရန် လိုအပ်ပါသည်။ မူရင်းစာရွက်စာတမ်းကို မိမိ၏ မူလဘာသာစကားဖြင့် တရားဝင်အရင်းအမြစ်အဖြစ် စဉ်းစားသင့်ပါသည်။ အရေးကြီးသတင်းအချက်အလက်များအတွက် ကျွမ်းကျင်သော လူဘာသာပြန်ကူညီမှုကို အကြံပြုပါသည်။ ဤဘာသာပြန်ချက် အသုံးပြုမှုကြောင့် ဖြစ်ပေါ်လာနိုင်သည့် နားလည်မှုမှားခြင်း သို့မဟုတ် မှားယွင်းနားလည်ခြင်းများအတွက် ကျွန်ုပ်တို့သည် တာဝန်မှ လွတ်မြောက်ပါသည်။
+**ကြောင်းကြားချက်**
+ဤစာတမ်းကို AI ဘာသာပြန်ဝန်ဆောင်မှု [Co-op Translator](https://github.com/Azure/co-op-translator) အသုံးပြု၍ ဘာသာပြန်ထားပါသည်။ တိကျမှုရှိစေရန် ကြိုးစားသော်လည်း၊ အလိုအလျောက် ဘာသာပြန်မှုများတွင် အမှားများ သို့မဟုတ် မှန်ကန်မှုနည်းပါးမှုများ ဖြစ်ပေါ်နိုင်သည်ကို သတိပြုပါရန် မေတ္တာရပ်ခံအပ်ပါသည်။ မူလစာတမ်းသည် မိခင်ဘာသာဖြင့် ရေးသားထားသည့် အကြောင်းအရင်းဖြစ်သည့်အတွက် အတည်ပြုရရှိသော ရင်းမြစ်အနေဖြင့် ဆင်ခြင်ခြင်း လိုအပ်ပါသည်။ အရေးကြီးသော အချက်အလက်များအတွက် မူလသား လူသား ဘာသာပြန်ကျွမ်းကျင်သူအား အသုံးပြုရန် အကြံပြုပါသည်။ ဤဘာသာပြန်မှုကို အသုံးပြုမှုကြောင့် ဖြစ်ပေါ်လာနိုင်သည့် နားလည်မမှန်ခြင်းများ သို့မဟုတ် မှားယွင်းစွဲမှတ်မှုများအတွက် ကျွန်ုပ်တို့ အာမခံမထားပါ။
\ No newline at end of file
diff --git a/translations/my/SECURITY.md b/translations/my/SECURITY.md
index 036c5f5b..fc502ebe 100644
--- a/translations/my/SECURITY.md
+++ b/translations/my/SECURITY.md
@@ -1,12 +1,3 @@
-
## လုံခြုံရေး
Microsoft သည် ၎င်း၏ ဆော့ဖ်ဝဲထုတ်ကုန်များနှင့် ဝန်ဆောင်မှုများ၏ လုံခြုံရေးကို အလေးထားဆောင်ရွက်ပြီး၊ ၎င်းတွင် [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) နှင့် [ကျွန်ုပ်တို့၏ GitHub အဖွဲ့အစည်းများ](https://opensource.microsoft.com/) အပါအဝင် GitHub အဖွဲ့အစည်းများမှ စီမံခန့်ခွဲထားသော အရင်းအမြစ်ကုဒ်ရုံများအားလုံး ပါဝင်သည်။
diff --git a/translations/my/SUPPORT.md b/translations/my/SUPPORT.md
index cada995d..0494a43c 100644
--- a/translations/my/SUPPORT.md
+++ b/translations/my/SUPPORT.md
@@ -1,12 +1,3 @@
-
# အထောက်အပံ့
## ပြဿနာများတင်သွင်းခြင်းနှင့် အကူအညီရယူရန်
diff --git a/translations/my/TROUBLESHOOTING.md b/translations/my/TROUBLESHOOTING.md
index d477b10f..a630777d 100644
--- a/translations/my/TROUBLESHOOTING.md
+++ b/translations/my/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# ပြဿနာဖြေရှင်းလမ်းညွှန်
ဒီလမ်းညွှန်မှာ Data Science for Beginners သင်ခန်းစာကို အသုံးပြုရာမှာ ကြုံတွေ့နိုင်တဲ့ ပုံမှန်ပြဿနာများအတွက် ဖြေရှင်းနည်းများကို ပေးထားပါတယ်။
diff --git a/translations/my/USAGE.md b/translations/my/USAGE.md
index bc3d9790..7c4f87fa 100644
--- a/translations/my/USAGE.md
+++ b/translations/my/USAGE.md
@@ -1,12 +1,3 @@
-
# အသုံးပြုရန်လမ်းညွှန်
ဒီလမ်းညွှန်မှာ Data Science for Beginners သင်ခန်းစာများကို အသုံးပြုရန် နမူနာများနှင့် ပုံမှန်လုပ်ငန်းစဉ်များကို ဖော်ပြထားပါတယ်။
diff --git a/translations/my/docs/_sidebar.md b/translations/my/docs/_sidebar.md
index 6ddc2a5b..696f87ff 100644
--- a/translations/my/docs/_sidebar.md
+++ b/translations/my/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- အနိမ့်အမြင့်
- [ဒေတာသိပ္ပံကို အဓိပ္ပါယ်ဖွင့်ဆိုခြင်း](../1-Introduction/01-defining-data-science/README.md)
- [ဒေတာသိပ္ပံ၏ စည်းကမ်းများ](../1-Introduction/02-ethics/README.md)
diff --git a/translations/my/examples/README.md b/translations/my/examples/README.md
index 98b1c3ac..9b51d937 100644
--- a/translations/my/examples/README.md
+++ b/translations/my/examples/README.md
@@ -1,12 +1,3 @@
-
# အခြေခံမှစတင်ရန် Data Science နမူနာများ
Data Science ကို စတင်လေ့လာလိုသူများအတွက် ဒီနမူနာဖိုင်များကို ကြိုဆိုပါတယ်။ ဒီနမူနာများမှာ ရိုးရှင်းပြီး အဆင်ပြေသော မှတ်ချက်များပါဝင်ပြီး၊ အခြေခံကနေ စတင်လေ့လာသူများအတွက် အထောက်အကူဖြစ်စေဖို့ ရည်ရွယ်ထားပါတယ်။
diff --git a/translations/my/for-teachers.md b/translations/my/for-teachers.md
index 49d4e014..c7566e21 100644
--- a/translations/my/for-teachers.md
+++ b/translations/my/for-teachers.md
@@ -1,12 +1,3 @@
-
## ကျောင်းဆရာများအတွက်
ဒီသင်ခန်းစာများကို သင့်အတန်းထဲမှာ အသုံးပြုချင်ပါသလား? လွတ်လပ်စွာ အသုံးပြုနိုင်ပါတယ်!
diff --git a/translations/my/quiz-app/README.md b/translations/my/quiz-app/README.md
index 11775839..4db4f5fb 100644
--- a/translations/my/quiz-app/README.md
+++ b/translations/my/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# မေးခွန်းများ
ဒီမေးခွန်းများကတော့ https://aka.ms/datascience-beginners မှာရှိတဲ့ ဒေတာသိပ္ပံ သင်ရိုးညွှန်းတန်းအတွက် သင်ခန်းစာမတိုင်မီနှင့်ပြီးလျှင် မေးခွန်းများဖြစ်ပါတယ်။
diff --git a/translations/my/sketchnotes/README.md b/translations/my/sketchnotes/README.md
index 89955f4e..2a08808f 100644
--- a/translations/my/sketchnotes/README.md
+++ b/translations/my/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
အားလုံးကို ဒီနေရာမှာ sketchnotes တွေရှာနိုင်ပါတယ်!
## အားကျရေစွဲသူများ
diff --git a/translations/ne/.co-op-translator.json b/translations/ne/.co-op-translator.json
new file mode 100644
index 00000000..2e0e3674
--- /dev/null
+++ b/translations/ne/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:46:25+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "ne"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-27T17:16:58+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "ne"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-27T17:17:50+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "ne"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:20:18+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "ne"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-27T17:12:25+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "ne"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-06T07:54:12+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "ne"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-27T17:21:03+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "ne"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:19:34+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "ne"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-27T17:28:55+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "ne"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-27T17:02:15+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "ne"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:05:25+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "ne"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:54:27+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "ne"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-06T07:42:29+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "ne"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-27T17:00:32+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "ne"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:35:09+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "ne"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-27T16:56:44+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "ne"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-06T07:44:34+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "ne"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-27T16:49:49+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "ne"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-27T16:41:03+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-06T07:48:37+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-27T18:42:22+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-06T07:50:15+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-27T18:19:09+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-06T07:47:39+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-27T18:44:58+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:34:01+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-27T18:22:16+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-06T07:49:08+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-27T18:15:09+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T18:16:09+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T18:15:41+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-27T18:30:27+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-27T18:33:50+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-27T18:23:14+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-27T18:25:06+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-27T18:37:34+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-27T18:26:03+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-27T18:34:59+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "ne"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-27T18:10:26+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "ne"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:43:24+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "ne"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-27T18:00:35+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "ne"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:43:05+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "ne"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-27T18:02:56+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "ne"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:44:29+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "ne"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-27T18:09:42+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "ne"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-27T17:55:49+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "ne"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-06T07:41:08+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "ne"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-27T17:47:37+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "ne"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-06T07:39:55+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "ne"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-27T17:44:30+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "ne"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-06T07:41:42+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "ne"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-27T17:53:53+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "ne"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-27T17:37:02+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "ne"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:23:24+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "ne"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-27T17:36:04+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "ne"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-27T17:29:58+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "ne"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:14:17+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "ne"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-27T16:39:12+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "ne"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:46:06+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "ne"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:18:30+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "ne"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:33:47+00:00",
+ "source_file": "README.md",
+ "language_code": "ne"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-27T16:39:44+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "ne"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-27T16:37:20+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "ne"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:36:32+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "ne"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:59:07+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "ne"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-27T17:01:22+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "ne"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:00:09+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "ne"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:55:09+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "ne"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-27T17:54:45+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "ne"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-27T17:29:36+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "ne"
+ }
+}
\ No newline at end of file
diff --git a/translations/ne/1-Introduction/01-defining-data-science/README.md b/translations/ne/1-Introduction/01-defining-data-science/README.md
index 158ae0a2..8c302098 100644
--- a/translations/ne/1-Introduction/01-defining-data-science/README.md
+++ b/translations/ne/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# डाटा साइन्सको परिभाषा
|  द्वारा ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/ne/1-Introduction/01-defining-data-science/assignment.md b/translations/ne/1-Introduction/01-defining-data-science/assignment.md
index 15b3a897..89ea620c 100644
--- a/translations/ne/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/ne/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# असाइनमेन्ट: डाटा साइन्स परिदृश्यहरू
यस पहिलो असाइनमेन्टमा, तपाईंलाई विभिन्न समस्या क्षेत्रहरूमा कुनै वास्तविक जीवन प्रक्रिया वा समस्याबारे सोच्न र डाटा साइन्स प्रक्रियाको प्रयोग गरेर यसलाई कसरी सुधार गर्न सकिन्छ भन्नेबारे विचार गर्न भनिएको छ। निम्न कुराहरूमा विचार गर्नुहोस्:
diff --git a/translations/ne/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/ne/1-Introduction/01-defining-data-science/solution/assignment.md
index 1afd0ee3..6e400b6e 100644
--- a/translations/ne/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/ne/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# असाइनमेन्ट: डाटा साइन्स परिदृश्यहरू
यस पहिलो असाइनमेन्टमा, तपाईंलाई विभिन्न समस्या क्षेत्रहरूमा वास्तविक जीवनका प्रक्रिया वा समस्याहरूको बारेमा सोच्न र डाटा साइन्स प्रक्रियाको प्रयोग गरेर तिनीहरूलाई कसरी सुधार गर्न सकिन्छ भन्ने बारे विचार गर्न भनिएको छ। निम्न कुराहरूको बारेमा सोच्नुहोस्:
diff --git a/translations/ne/1-Introduction/02-ethics/README.md b/translations/ne/1-Introduction/02-ethics/README.md
index 66d81f38..a6d3eaeb 100644
--- a/translations/ne/1-Introduction/02-ethics/README.md
+++ b/translations/ne/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# डाटा नैतिकता परिचय
| द्वारा ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/ne/1-Introduction/02-ethics/assignment.md b/translations/ne/1-Introduction/02-ethics/assignment.md
index 69a68bd3..142a0438 100644
--- a/translations/ne/1-Introduction/02-ethics/assignment.md
+++ b/translations/ne/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## डाटा नैतिकता केस स्टडी लेख्नुहोस्
## निर्देशनहरू
diff --git a/translations/ne/1-Introduction/03-defining-data/README.md b/translations/ne/1-Introduction/03-defining-data/README.md
index 2df46df6..2d48412e 100644
--- a/translations/ne/1-Introduction/03-defining-data/README.md
+++ b/translations/ne/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# डेटा परिभाषित गर्दै
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/ne/1-Introduction/03-defining-data/assignment.md b/translations/ne/1-Introduction/03-defining-data/assignment.md
index 3e87f98b..f40c930f 100644
--- a/translations/ne/1-Introduction/03-defining-data/assignment.md
+++ b/translations/ne/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# डाटासेट वर्गीकरण
## निर्देशनहरू
diff --git a/translations/ne/1-Introduction/04-stats-and-probability/README.md b/translations/ne/1-Introduction/04-stats-and-probability/README.md
index 90bad026..d732e179 100644
--- a/translations/ne/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/ne/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# तथ्यांक र सम्भाव्यता: एक संक्षिप्त परिचय
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
ग्राफिकल रूपमा, हामी माध्यिका र क्वार्टाइलहरूको सम्बन्धलाई **बक्स प्लट (box plot)** मा देखाउन सक्छौं:
-
+
यहाँ हामी **इन्टर-क्वार्टाइल रेन्ज (inter-quartile range)** IQR=Q3-Q1 पनि गणना गर्छौं, र तथाकथित **आउटलायर्स (outliers)** - यस्ता मानहरू, जो [Q1-1.5*IQR, Q3+1.5*IQR] को सीमाभन्दा बाहिर पर्छन्।
diff --git a/translations/ne/1-Introduction/04-stats-and-probability/assignment.md b/translations/ne/1-Introduction/04-stats-and-probability/assignment.md
index fa8b9483..361f7c47 100644
--- a/translations/ne/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/ne/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# सानो मधुमेह अध्ययन
यस असाइनमेन्टमा, हामी मधुमेहका बिरामीहरूको सानो डेटासेटसँग काम गर्नेछौं जुन [यहाँ](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) बाट लिइएको छ।
diff --git a/translations/ne/1-Introduction/README.md b/translations/ne/1-Introduction/README.md
index 06131743..1e8dea5e 100644
--- a/translations/ne/1-Introduction/README.md
+++ b/translations/ne/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# डाटा साइन्सको परिचय

diff --git a/translations/ne/2-Working-With-Data/05-relational-databases/README.md b/translations/ne/2-Working-With-Data/05-relational-databases/README.md
index 7aa614d5..3ce71d29 100644
--- a/translations/ne/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/ne/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# डाटासँग काम गर्ने: सम्बन्धित डाटाबेसहरू
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/ne/2-Working-With-Data/05-relational-databases/assignment.md b/translations/ne/2-Working-With-Data/05-relational-databases/assignment.md
index abb56fa8..acdd4fee 100644
--- a/translations/ne/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/ne/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# एयरपोर्ट डेटा देखाउने
तपाईंलाई [डाटाबेस](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) प्रदान गरिएको छ जुन [SQLite](https://sqlite.org/index.html) मा आधारित छ र यसमा एयरपोर्टहरूको जानकारी समावेश छ। स्कीमा तल देखाइएको छ। तपाईंले [SQLite एक्सटेन्सन](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) लाई [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) मा प्रयोग गरेर विभिन्न शहरहरूको एयरपोर्टहरूको जानकारी देखाउनु पर्नेछ।
diff --git a/translations/ne/2-Working-With-Data/06-non-relational/README.md b/translations/ne/2-Working-With-Data/06-non-relational/README.md
index 1bc0695e..043c5d8c 100644
--- a/translations/ne/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/ne/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# डेटा संग काम गर्ने: गैर-संबंधित डेटा
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/ne/2-Working-With-Data/06-non-relational/assignment.md b/translations/ne/2-Working-With-Data/06-non-relational/assignment.md
index 8c8bcbcc..5c3bd47c 100644
--- a/translations/ne/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/ne/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# सोडा नाफा
## निर्देशनहरू
diff --git a/translations/ne/2-Working-With-Data/07-python/README.md b/translations/ne/2-Working-With-Data/07-python/README.md
index f9e734cc..39633512 100644
--- a/translations/ne/2-Working-With-Data/07-python/README.md
+++ b/translations/ne/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# डाटा संग काम गर्ने: पाइथन र पाण्डास लाइब्रेरी
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/ne/2-Working-With-Data/07-python/assignment.md b/translations/ne/2-Working-With-Data/07-python/assignment.md
index a71e33cb..3981bc3c 100644
--- a/translations/ne/2-Working-With-Data/07-python/assignment.md
+++ b/translations/ne/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# डाटा प्रोसेसिङ्गको लागि पायथनमा असाइनमेन्ट
यस असाइनमेन्टमा, हामी तपाईंलाई हाम्रो चुनौतीहरूमा विकास गर्न सुरु गरिएको कोडलाई विस्तृत गर्न अनुरोध गर्नेछौं। असाइनमेन्ट दुई भागहरूमा विभाजित छ:
diff --git a/translations/ne/2-Working-With-Data/08-data-preparation/README.md b/translations/ne/2-Working-With-Data/08-data-preparation/README.md
index 4ce7c785..a48b3a37 100644
--- a/translations/ne/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/ne/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# डेटा संग काम गर्ने: डेटा तयारी
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/ne/2-Working-With-Data/08-data-preparation/assignment.md b/translations/ne/2-Working-With-Data/08-data-preparation/assignment.md
index 2bb6c550..9d43c53b 100644
--- a/translations/ne/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/ne/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# फारमबाट डेटा मूल्याङ्कन गर्दै
एक ग्राहकले आफ्नो ग्राहक आधारको बारेमा केही आधारभूत डेटा सङ्कलन गर्न [सानो फारम](../../../../2-Working-With-Data/08-data-preparation/index.html) परीक्षण गरिरहेका छन्। उनीहरूले सङ्कलन गरेको डेटा प्रमाणित गर्नका लागि आफ्नो निष्कर्षहरू तपाईंलाई ल्याएका छन्। तपाईंले ब्राउजरमा `index.html` पृष्ठ खोलेर फारम हेर्न सक्नुहुन्छ।
diff --git a/translations/ne/2-Working-With-Data/README.md b/translations/ne/2-Working-With-Data/README.md
index fe186aa7..c55893f0 100644
--- a/translations/ne/2-Working-With-Data/README.md
+++ b/translations/ne/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# डाटासँग काम गर्ने

diff --git a/translations/ne/3-Data-Visualization/09-visualization-quantities/README.md b/translations/ne/3-Data-Visualization/09-visualization-quantities/README.md
index b7aa7fb1..eb77b52e 100644
--- a/translations/ne/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/ne/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# परिमाणहरूको दृश्यात्मकता
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/ne/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/ne/3-Data-Visualization/09-visualization-quantities/assignment.md
index 6e8109cf..0a4e0ee0 100644
--- a/translations/ne/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/ne/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# रेखा, स्क्याटर र बारहरू
## निर्देशनहरू
diff --git a/translations/ne/3-Data-Visualization/10-visualization-distributions/README.md b/translations/ne/3-Data-Visualization/10-visualization-distributions/README.md
index 40a4a425..a21c2e44 100644
--- a/translations/ne/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/ne/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# वितरणहरू दृश्यात्मक बनाउने
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ne/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/ne/3-Data-Visualization/10-visualization-distributions/assignment.md
index 668edde3..6f90b651 100644
--- a/translations/ne/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/ne/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# आफ्नो सीप प्रयोग गर्नुहोस्
## निर्देशनहरू
diff --git a/translations/ne/3-Data-Visualization/11-visualization-proportions/README.md b/translations/ne/3-Data-Visualization/11-visualization-proportions/README.md
index 4c911984..cb0a0819 100644
--- a/translations/ne/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/ne/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# अनुपातहरू देखाउने
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ne/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/ne/3-Data-Visualization/11-visualization-proportions/assignment.md
index 40ce2dbf..9d791640 100644
--- a/translations/ne/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/ne/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# एक्सेलमा प्रयास गर्नुहोस्
## निर्देशनहरू
diff --git a/translations/ne/3-Data-Visualization/12-visualization-relationships/README.md b/translations/ne/3-Data-Visualization/12-visualization-relationships/README.md
index 55fa39fb..25393a85 100644
--- a/translations/ne/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/ne/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# सम्बन्धहरू देखाउने: महको कथा 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ne/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/ne/3-Data-Visualization/12-visualization-relationships/assignment.md
index 6fe052cc..3dec17a8 100644
--- a/translations/ne/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/ne/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# मौरीको घारमा डुबुल्की मार्नुहोस्
## निर्देशनहरू
diff --git a/translations/ne/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/ne/3-Data-Visualization/13-meaningful-visualizations/README.md
index 76e78735..8459e896 100644
--- a/translations/ne/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/ne/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# अर्थपूर्ण दृश्यहरू बनाउने
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ne/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/ne/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index a319a681..f0688418 100644
--- a/translations/ne/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/ne/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# आफ्नो कस्टम भिजुअलाइजेसन बनाउनुहोस्
## निर्देशनहरू
diff --git a/translations/ne/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/ne/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 63386ec7..257e8f38 100644
--- a/translations/ne/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/ne/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# डेंजरस लिआइजन्स डेटा भिजुअलाइजेसन प्रोजेक्ट
सुरु गर्नका लागि, तपाईंको मेसिनमा NPM र Node चलिरहेको सुनिश्चित गर्नुहोस्। निर्भरता (npm install) स्थापना गर्नुहोस् र त्यसपछि प्रोजेक्टलाई स्थानीय रूपमा चलाउनुहोस् (npm run serve):
diff --git a/translations/ne/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/ne/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index f6b99747..00c28b89 100644
--- a/translations/ne/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/ne/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# डेंजरस लिआइजन्स डेटा भिजुअलाइजेसन प्रोजेक्ट
सुरु गर्नका लागि, तपाईंको मेसिनमा NPM र Node चलिरहेको सुनिश्चित गर्नुहोस्। निर्भरता (npm install) स्थापना गर्नुहोस् र त्यसपछि प्रोजेक्टलाई स्थानीय रूपमा चलाउनुहोस् (npm run serve):
diff --git a/translations/ne/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/ne/3-Data-Visualization/R/09-visualization-quantities/README.md
index 9699b7ca..bb1db611 100644
--- a/translations/ne/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/ne/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# परिमाणहरूको दृश्यात्मकता
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/ne/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/ne/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index f8aa8dd4..62f83bcf 100644
--- a/translations/ne/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/ne/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# रेखा, स्क्याटर र बारहरू
## निर्देशनहरू
diff --git a/translations/ne/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/ne/3-Data-Visualization/R/10-visualization-distributions/README.md
index de75f260..2c48d48a 100644
--- a/translations/ne/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/ne/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# वितरणहरू दृश्यात्मक बनाउने
| द्वारा स्केच नोट ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ne/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/ne/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 1ea2913f..f99a3dbd 100644
--- a/translations/ne/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/ne/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# आफ्नो सीप प्रयोग गर्नुहोस्
## निर्देशनहरू
diff --git a/translations/ne/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/ne/3-Data-Visualization/R/11-visualization-proportions/README.md
index dfaf2c7a..c214cd90 100644
--- a/translations/ne/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/ne/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# अनुपातहरूलाई दृश्यात्मक बनाउने
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ne/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/ne/3-Data-Visualization/R/12-visualization-relationships/README.md
index 04acd01c..1dacba19 100644
--- a/translations/ne/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/ne/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# सम्बन्धहरू देखाउने: महको बारेमा 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ne/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/ne/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 6ab39576..f031f875 100644
--- a/translations/ne/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/ne/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# अर्थपूर्ण दृश्यहरू बनाउने
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ne/3-Data-Visualization/README.md b/translations/ne/3-Data-Visualization/README.md
index ad7f89e9..29427942 100644
--- a/translations/ne/3-Data-Visualization/README.md
+++ b/translations/ne/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# दृश्यात्मकता

diff --git a/translations/ne/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/ne/4-Data-Science-Lifecycle/14-Introduction/README.md
index 7482ee20..c546f1b1 100644
--- a/translations/ne/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/ne/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# डाटा साइन्स जीवनचक्रको परिचय
| द्वारा ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/ne/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/ne/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 459d89b6..c855d2f8 100644
--- a/translations/ne/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/ne/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# डेटासेटको मूल्यांकन
एक ग्राहकले तपाईंको टिमलाई न्यूयोर्क सिटीमा ट्याक्सी ग्राहकको मौसमी खर्च गर्ने बानीको अनुसन्धान गर्न मद्दतको लागि सम्पर्क गरेका छन्।
diff --git a/translations/ne/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/ne/4-Data-Science-Lifecycle/15-analyzing/README.md
index 8aa94028..85389485 100644
--- a/translations/ne/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/ne/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# डाटा साइन्स जीवनचक्र: विश्लेषण
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/ne/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/ne/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index d130fc1b..31569d05 100644
--- a/translations/ne/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/ne/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# उत्तरहरूको खोजी गर्दै
यो अघिल्लो पाठको [कार्य](../14-Introduction/assignment.md) को निरन्तरता हो, जहाँ हामीले डेटा सेटलाई छोटकरीमा हेरेका थियौं। अब हामी डेटा सेटलाई अझ गहिरो रूपमा अध्ययन गर्नेछौं।
diff --git a/translations/ne/4-Data-Science-Lifecycle/16-communication/README.md b/translations/ne/4-Data-Science-Lifecycle/16-communication/README.md
index 69855e80..1e0d5d0a 100644
--- a/translations/ne/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/ne/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# डाटा साइन्स जीवनचक्र: सञ्चार
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/ne/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/ne/4-Data-Science-Lifecycle/16-communication/assignment.md
index 1844e086..24b8fe1b 100644
--- a/translations/ne/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/ne/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# कथा सुनाउनुहोस्
## निर्देशनहरू
diff --git a/translations/ne/4-Data-Science-Lifecycle/README.md b/translations/ne/4-Data-Science-Lifecycle/README.md
index ddcbc887..dec49e82 100644
--- a/translations/ne/4-Data-Science-Lifecycle/README.md
+++ b/translations/ne/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# डाटा साइन्स जीवनचक्र

diff --git a/translations/ne/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/ne/5-Data-Science-In-Cloud/17-Introduction/README.md
index 6dc5994f..afa49762 100644
--- a/translations/ne/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/ne/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# क्लाउडमा डाटा साइन्सको परिचय
| द्वारा स्केच नोट ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/ne/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/ne/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 9cd45034..cf472254 100644
--- a/translations/ne/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/ne/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# बजार अनुसन्धान
## निर्देशनहरू
diff --git a/translations/ne/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/ne/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 1e8b9269..bf1fd2db 100644
--- a/translations/ne/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/ne/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# क्लाउडमा डेटा साइन्स: "लो कोड/नो कोड" तरिका
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/ne/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/ne/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 671c2336..f80cec71 100644
--- a/translations/ne/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/ne/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML मा Low code/No code डेटा साइन्स प्रोजेक्ट
## निर्देशनहरू
diff --git a/translations/ne/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/ne/5-Data-Science-In-Cloud/19-Azure/README.md
index a16f034d..ad69f142 100644
--- a/translations/ne/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/ne/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# क्लाउडमा डेटा साइन्स: "Azure ML SDK" बाट
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/ne/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/ne/5-Data-Science-In-Cloud/19-Azure/assignment.md
index e7d8ea0d..27c060f7 100644
--- a/translations/ne/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/ne/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML SDK प्रयोग गरेर डाटा साइन्स प्रोजेक्ट
## निर्देशनहरू
diff --git a/translations/ne/5-Data-Science-In-Cloud/README.md b/translations/ne/5-Data-Science-In-Cloud/README.md
index 32cab482..39c9f597 100644
--- a/translations/ne/5-Data-Science-In-Cloud/README.md
+++ b/translations/ne/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# क्लाउडमा डेटा विज्ञान

diff --git a/translations/ne/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/ne/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index a6c0d185..422bc6f1 100644
--- a/translations/ne/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/ne/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# वास्तविक संसारमा डाटा साइन्स
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/ne/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/ne/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 46cdc85e..7653b802 100644
--- a/translations/ne/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/ne/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# ग्रह कम्प्युटर डेटासेट अन्वेषण गर्नुहोस्
## निर्देशनहरू
diff --git a/translations/ne/6-Data-Science-In-Wild/README.md b/translations/ne/6-Data-Science-In-Wild/README.md
index b95e3439..90ee2782 100644
--- a/translations/ne/6-Data-Science-In-Wild/README.md
+++ b/translations/ne/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# जङ्गलमा डेटा विज्ञान
विभिन्न उद्योगहरूमा डेटा विज्ञानको वास्तविक-जीवन प्रयोगहरू।
diff --git a/translations/ne/AGENTS.md b/translations/ne/AGENTS.md
index 846e4236..4cc1234a 100644
--- a/translations/ne/AGENTS.md
+++ b/translations/ne/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## परियोजना अवलोकन
diff --git a/translations/ne/CODE_OF_CONDUCT.md b/translations/ne/CODE_OF_CONDUCT.md
index 23047494..0fc4985d 100644
--- a/translations/ne/CODE_OF_CONDUCT.md
+++ b/translations/ne/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# माइक्रोसफ्ट ओपन सोर्स आचार संहिता
यस परियोजनाले [माइक्रोसफ्ट ओपन सोर्स आचार संहिता](https://opensource.microsoft.com/codeofconduct/) अपनाएको छ।
diff --git a/translations/ne/CONTRIBUTING.md b/translations/ne/CONTRIBUTING.md
index 0c1a4007..49154c7e 100644
--- a/translations/ne/CONTRIBUTING.md
+++ b/translations/ne/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# डेटा साइन्स फर बिगिनर्समा योगदान गर्ने
डेटा साइन्स फर बिगिनर्स पाठ्यक्रममा योगदान गर्न इच्छुक हुनु भएकोमा धन्यवाद! हामी समुदायबाट योगदानलाई स्वागत गर्दछौं।
diff --git a/translations/ne/INSTALLATION.md b/translations/ne/INSTALLATION.md
index 13173b5d..7cd2ae6c 100644
--- a/translations/ne/INSTALLATION.md
+++ b/translations/ne/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# स्थापना मार्गदर्शन
यो मार्गदर्शनले तपाईंलाई Data Science for Beginners पाठ्यक्रमसँग काम गर्नको लागि आफ्नो वातावरण सेटअप गर्न मद्दत गर्नेछ।
diff --git a/translations/ne/README.md b/translations/ne/README.md
index 42730f65..9c5c2f0e 100644
--- a/translations/ne/README.md
+++ b/translations/ne/README.md
@@ -1,13 +1,4 @@
-
-# डाटा साइन्सका लागि शुरुवातकर्ता - एक पाठ्यक्रम
+# डेटा विज्ञान सुरु गर्नेहरूका लागि - एक पाठ्यक्रम
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,181 +17,181 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Microsoft का Azure Cloud Advocates ले डाटा साइन्सका विषयमा १० हप्ताको, २० पाठहरूको पाठ्यक्रम प्रस्ताव गर्न पाउँदा खुशी लागेको छ। प्रत्येक पाठमा पाठ अघि र पाठ पश्चात क्विजहरू, पाठ पूरा गर्न लेखिएका निर्देशनहरू, समाधान र एक असाइनमेन्ट समावेश छन्। हाम्रो परियोजना-आधारित शिक्षण पद्धतिले तपाईंलाई निर्माण गर्दै सिक्न अनुमति दिन्छ, जुन नयाँ सीपहरू स्थायी बनाउन प्रमाणित उपाय हो।
+माइक्रोसफ्टका Azure Cloud Advocates ले १० हप्ता, २० पाठहरूको curriculum डेटा विज्ञानको बारेमा प्रस्तुत गर्न पाउँदा खुशी छन्। प्रत्येक पाठमा पूर्व-पाठ र पश्च-पाठ क्विजहरू, पाठ पूरा गर्न लेखिएको निर्देशहरू, समाधान, र एक असाइनमेन्ट समावेश छन्। हाम्रो परियोजना-आधारित पठन-पद्धतिले तपाईंलाई बनाउदै सिक्न अनुमति दिन्छ, जुन नयाँ सीपहरू 'टिक्न' को लागि सिद्ध गरिएको उपाय हो।
-**हाम्रा लेखकहरूलाई हार्दिक धन्यवाद:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**हाम्रा लेखकहरुलाई हार्दिक धन्यवाद:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer)।
-**🙏 विशेष धन्यवाद 🙏 हाम्रा [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) लेखक, समीक्षक र सामग्री योगदानकर्ताहरूलाई,** विशेष गरी Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
-[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
+**🙏 विशेष धन्यवाद 🙏 हाम्रा [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) लेखकहरू, समीक्षकहरू र सामग्री योगदानकर्ताहरूलाई,** विशेषगरी आर्यन अरोडा, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), छैलबिहारी दुबे, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), समृद्धि शर्मा, [सन्झा सिन्हा](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+[शीना नरूला](https://www.linkedin.com/in/sheena-narua-n/), [तौक़ीर अहमद](https://www.linkedin.com/in/tauqeerahmad5201/), योगेन्द्रसिंह पवार, [विदुषी गुप्ता](https://www.linkedin.com/in/vidushi-gupta07/), [जस्लिन सोन्ही](https://www.linkedin.com/in/jasleen-sondhi/)।
-||
+||
|:---:|
-| शुरुवातकर्ताहरूका लागि डाटा साइन्स - _स्केचनोट [@nitya](https://twitter.com/nitya) बाट_ |
+| डेटा विज्ञान सुरु गर्नेहरूका लागि - _स्केचनोट [@nitya](https://twitter.com/nitya) द्वारा_ |
### 🌐 बहुभाषिक समर्थन
#### GitHub Action द्वारा समर्थन गरिएको (स्वचालित र सधैं अद्यावधिक)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](./README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](./README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
> **स्थानीय रूपमा क्लोन गर्न चाहनुहुन्छ?**
-> यो रिपोजिटरीमा ५०+ भाषा अनुवादहरू समावेश छन् जसले डाउनलोड साइज धेरै बढाउँछ। अनुवाद बिना क्लोन गर्न sparse checkout प्रयोग गर्नुहोस्:
+> यो रिपोजिटोरीमा ५०+ भाषाको अनुवादहरू समावेश छन् जसले डाउनलोड साइज ठूलो बनाउँछ। अनुवाद बिना क्लोन गर्न, sparse checkout प्रयोग गर्नुहोस्:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> यसले तपाईंलाई गुणस्तरीय डाउनलोड सहित पाठ्यक्रम पूरा गर्न आवश्यक सबै कुरा दिन्छ।
+> यसले तपाईंलाई कोर्स पूरा गर्न आवश्यक सबै प्रदान गर्दछ, छिटो डाउनलोडका साथ।
-**यदि तपाईंलाई थप अनुवाद भाषाहरू चाहिन्छ भने तिनीहरू [यहाँ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) सूचीबद्ध छन्**
+**यदि तपाईं थप अनुवाद भाषाहरू चाहनुहुन्छ भने, तिनीहरू [यहाँ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) उल्लेखित छन्।**
-#### हाम्रो समुदायमा सामेल हुनुहोस्
+#### हाम्रो समुदायमा सहभागी हुनुहोस्
[](https://discord.gg/nTYy5BXMWG)
-हामीसँग Discord मा ongoing AI सँग सिक्ने श्रृंखला छ, थप जान्न र सहभागी हुन [Learn with AI Series](https://aka.ms/learnwithai/discord) मा सेप्टेम्बर १८ - ३०, २०२५ सम्म आउनुहोस्। तपाईंले डाटा साइन्सका लागि GitHub Copilot को टिप्स र ट्रिक्स पाउनु हुनेछ।
+हामीसँग AI सँग सिक्ने Discord श्रृंखला चलिरहेको छ, थप जान्न र सहभागी हुन [Learn with AI Series](https://aka.ms/learnwithai/discord) मा आउनुहोस्, सेप्टेम्बर १८ - ३०, २०२५ सम्म। तपाईं GitHub Copilot प्रयोग गरेर डेटा विज्ञानका टिप्स र चतुराइहरू पाउनुहुनेछ।
-
+
# के तपाईं विद्यार्थी हुनुहुन्छ?
-तलका स्रोतहरूबाट सुरु गर्नुहोस्:
+त्यस अवस्थामा तलका स्रोतहरूबाट सुरु गर्नुहोस्:
-- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) यस पृष्ठमा, तपाईंले शुरुवाती स्रोतहरू, विद्यार्थी प्याकहरू र निःशुल्क प्रमाणपत्र भौचर प्राप्त गर्ने तरिकाहरू भेट्टाउनुहुनेछ। यो एउटा पृष्ठ हो जुन तपाईंले बुकमार्क गरी समय-समयमा जाँच गर्नु पर्ने हुन्छ, किनकि हामी मासिक रूपमा सामग्री परिवर्तन गर्छौं।
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) विश्वव्यापी विद्यार्थी राजदूतहरूको समुदायमा सहभागी हुनुहोस्, यो तपाईंको Microsoft मा प्रवेश गर्ने तरिका हुन सक्छ।
+- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) यस पृष्ठमा तपाईंले सुरु गर्नेहरूका लागि स्रोतहरू, विद्यार्थी प्याकहरू र निःशुल्क प्रमाणपत्र भाउचर प्राप्त गर्ने तरिकाहरू पाउनुहुनेछ। यो पृष्ठ बुकमार्क गर्न र कहिले काहीँ जाँच गर्न चाहिने पृष्ठ हो किनभने सामग्री नियमित रूपमा परिवर्तन हुन्छ।
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) संसारभरिका विद्यार्थी एम्बेसडरहरूको समुदायमा सामेल हुनुहोस्, यो तपाईंको माइक्रोसफ्टमा प्रवेश गर्ने मार्ग हुन सक्छ।
# सुरु गर्ने तरिका
-## 📚 कागजातहरू
+## 📚 दस्तावेज
-- **[इन्स्टलेसन गाइड](INSTALLATION.md)** - शुरुवातकर्ताहरूका लागि चरण-द्वारा-चरण सेटअप निर्देशनहरू
-- **[प्रयोग मार्गनिर्देशन](USAGE.md)** - उदाहरणहरू र सामान्य कार्यप्रवाहहरू
-- **[समस्या समाधान](TROUBLESHOOTING.md)** - सामान्य समस्याहरूका समाधानहरू
-- **[योगदान गर्ने मार्गनिर्देशन](CONTRIBUTING.md)** - यस परियोजनामा योगदान कसरी गर्ने
-- **[शिक्षकहरूका लागि](for-teachers.md)** - पढाउने मार्गदर्शन र कक्षाकोठाका स्रोतहरू
+- **[इन्स्टलेशन गाइड](INSTALLATION.md)** - शुरुवातीहरूको लागि क्रमिक सेटअप निर्देशनहरू
+- **[प्रयोग गाइड](USAGE.md)** - उदाहरणहरू र सामान्य कार्यप्रणालीहरू
+- **[समस्या समाधान](TROUBLESHOOTING.md)** - सामान्य समस्याहरूको समाधानहरू
+- **[योगदान गाइड](CONTRIBUTING.md)** - यस परियोजनामा कसरी योगदान गर्ने
+- **[शिक्षकहरूको लागि](for-teachers.md)** - शिक्षण मार्गदर्शन र कक्षाकोठा स्रोतहरू
## 👨🎓 विद्यार्थीहरूका लागि
-> **पूर्ण शुरुवातकर्ता**: डाटा साइन्समा नयाँ हुनुहुन्छ? हाम्रो [शुरुवाती-मैत्री उदाहरणहरू](examples/README.md) बाट सुरु गर्नुहोस्! यी सरल र राम्ररी टिप्पणी गरिएको उदाहरणहरूले तपाईंलाई आधारभूत कुराहरू बुझ्न सहयोग गर्नेछन् पूर्ण पाठ्यक्रममा डुब्नु अघि।
-> **[विद्यार्थीहरू](https://aka.ms/student-page)**: यो पाठ्यक्रम आफैं चलाउन, पुरै रिपो फोर्क गर्नुहोस् र आफैं अभ्यासहरू पूरा गर्नुहोस्, पाठ अघि क्विजबाट सुरु गर्दै। त्यसपछि पाठ पढ्नुहोस् र बाँकी गतिविधिहरू पूरा गर्नुहोस्। समाधान कोड प्रतिलिपि गर्नुभन्दा पाठ बुझेर नै परियोजनाहरू बनाउन प्रयास गर्नुहोस्; यद्यपि त्यो कोड हरेक परियोजना-केन्द्रित पाठमा /solutions फोल्डरमा उपलब्ध छ। अर्को तरिका भनेको साथीहरूसँग अध्ययन समूह बनाएर सामग्री सँगसँगै जानु हो। थप अध्ययनका लागि, हामी [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) सिफारिस गर्छौं।
+> **पूर्ण शुरुवातीहरू**: डेटा विज्ञानमा नयाँ हुनुहुन्छ? हाम्रो [सुरु गर्ने अनुकूल उदाहरणहरू](examples/README.md) बाट सुरु गर्नुहोस्! यी सरल, राम्ररी टिप्पणी गरिएका उदाहरणहरूले तपाईंलाई आधार कुरा बुझ्न मद्दत गर्नेछन्, पूर्ण पाठ्यक्रममा लगि अगाडि बढ्नुअघि।
+> **[विद्यार्थीहरू](https://aka.ms/student-page)**: यो पाठ्यक्रम आफ्नै तरिकाले अवलम्बन गर्न, सम्पूर्ण रिपो फोर्क गरी अभ्यासहरू आफैं गरौं, पूर्व-पाठ क्विजबाट सुरु गर्दै। त्यसपछि लेक्चर पढ्न र बाँकी क्रियाकलापहरू पूरा गर्नुस्। समाधान कोड नक्कल गर्ने सट्टा पाठलाई बुझेर प्रोजेक्टहरू बनाउन प्रयास गर्नुहोस्; तर उक्त कोड हरेक परियोजना-केन्द्रित पाठमा /solutions फोल्डरमा उपलब्ध छ। अर्को सुझाव हो, साथीहरूसँग अध्ययन समूह बनाएर सँगै सामग्री हेर्नु। थप अध्ययनको लागि, हामी [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) सिफारिस गर्छौं।
-**छिटो सुरुवात:**
-1. आफ्नो वातावरण सेटअप गर्न [इन्स्टलेसन गाइड](INSTALLATION.md) जाँच गर्नुहोस्
-2. पाठ्यक्रमसँग काम गर्न [प्रयोग मार्गनिर्देशन](USAGE.md) पढ्नुहोस्
-3. पाठ १ बाट सुरु गरी क्रमबद्ध रूपमा काम गर्नुहोस्
-4. सहयोगका लागि हाम्रो [Discord समुदाय](https://aka.ms/ds4beginners/discord) मा सहभागी हुनुहोस्
+**छिटो सुरु:**
+1. आफ्नो वातावरण सेटअप गर्न [इन्स्टलेशन गाइड](INSTALLATION.md) जाँच्नुहोस्
+2. पाठ्यक्रमसँग कसरी काम गर्ने जान्न [प्रयोग गाइड](USAGE.md) पढ्नुहोस्
+3. लेसन १ बाट सुरु गरी क्रमशः सम्पन्न गर्नुहोस्
+4. सहयोगका लागि हाम्रो [Discord समुदाय](https://aka.ms/ds4beginners/discord) मा सामेल हुनुहोस्
-## 👩🏫 शिक्षकहरूका लागि
+## 👩🏫 शिक्षकहरूको लागि
-> **शिक्षकहरू**: हामीसँग [यो पाठ्यक्रम कसरी प्रयोग गर्ने भन्नेसँग सम्बन्धित केही सुझावहरू](for-teachers.md) समावेश छन्। तपाईंको प्रतिक्रिया हाम्रो [चर्चा मंचमा](https://github.com/microsoft/Data-Science-For-Beginners/discussions) चाहिन्छ!
+> **शिक्षकहरू**: हामीले [केहि सुझावहरू](for-teachers.md) समावेश गरेका छौं यस पाठ्यक्रम प्रयोग कसरी गर्ने भनेर। हाम्रो [चर्चा फोरम](https://github.com/microsoft/Data-Science-For-Beginners/discussions) मा तपाईंको प्रतिक्रिया पाउन चाहन्छौं!
+## टिमसँग भेट
-## टोलीसँग भेटघाट गर्नुहोस्
-[](https://youtu.be/8mzavjQSMM4 "प्रोमो भिडियो")
+[](https://youtu.be/8mzavjQSMM4 "प्रमो भिडियो")
-**गिफ** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal) द्वारा
+**गिफ** [मोहित जैसल](https://www.linkedin.com/in/mohitjaisal) द्वारा
-> 🎥 प्रोजेक्ट र त्यसलाई सिर्जना गर्ने ब्यक्तिहरुको बारेमा भिडियो हेर्न माथिको छविमा क्लिक गर्नुहोस्!
+> 🎥 माथिको चित्रमा क्लिक गरेर परियोजनाको बारेमा र जसले यसलाई सिर्जना गरेका छन्, त्यो भिडियो हेर्नुहोस्!
## शिक्षाशास्त्र
-हामीले यस पाठ्यक्रम निर्माण गर्दा दुई शैक्षिक सिद्धान्त छनोट गरेका छौं: यो परियोजना-आधारित हुनु आवश्यक छ र यसमा बारम्बार क्विजहरू समावेश हुनु आवश्यक छ। यस श्रृंखलाको अन्त्यसम्म, विद्यार्थीहरूले डाटा विज्ञानका आधारभूत सिद्धान्तहरू सिक्नेछन्, जसमा नैतिक अवधारणाहरू, डाटा तयारी, डाटासँग काम गर्ने विभिन्न तरिका, डाटा भिजुअलाइजेशन, डाटा विश्लेषण, डाटा विज्ञानका वास्तविक-विश्व प्रयोगहरू, र थप समावेश छन्।
+हामीले यस पाठ्यक्रम बनाउँदा दुई शिक्षाशास्त्रीय सिद्धान्तहरू रोजेका छौं: सुनिश्चित गर्नु कि यो परियोजना-आधारित हो र यसमा नियमित क्विजहरू समावेश छन्। यस श्रृंखलाको अन्त्यमा, विद्यार्थीहरूले डाटा विज्ञानका आधारभूत सिद्धान्तहरू सिक्नेछन्, जसमा नैतिक अवधारणा, डाटा तयारी, डाटासँग काम गर्ने विभिन्न तरिका, डाटा भिजुअलाइजेशन, डाटा विश्लेषण, डाटा विज्ञानका वास्तविकविश्व प्रयोगका केसहरू, र थप समावेश गर्दछ।
-थप रूपमा, कक्षाको अघि एक कम जोखिम भएको क्विजले विद्यार्थीको विषयलाई सिक्ने उद्देश्य सेट गर्छ, जबकि कक्षा पछि दोस्रो क्विजले थप अवधारणाको सुनिश्चितता गर्छ। यो पाठ्यक्रम लचकदार र रमाइलो हुने गरी डिजाइन गरिएको छ र पूर्ण वा अंशमा लिन सकिन्छ। परियोजनाहरू साना सुरु हुँदै १० हप्ते चक्रको अन्त्यतिर जटिल बन्दै जान्छन्।
+थप रूपमा, कक्षा सुरु हुनुअघि एउटा कम-महत्त्वपूर्ण क्विजले विद्यार्थीलाई विषय सिक्नको लागि अभिप्रेरित गर्छ, जब कि कक्षा पछि अर्को क्विजले थप सम्झन सजिलो बनाउँछ। यो पाठ्यक्रम लचिलो र रमाइलो बनाउन डिजाइन गरिएको छ र पूर्ण वा अंशमा लिन सकिन्छ। परियोजनाहरू साना तरिकाले सुरु हुन्छन् र १० हप्ताको चक्रको अन्त्यसम्म क्रमशः जटिल बन्दै जान्छन्।
-> हाम्रो [आचरण संहिता](CODE_OF_CONDUCT.md), [योगदान](CONTRIBUTING.md), [अनुवाद](TRANSLATIONS.md) निर्देशनहरू पत्ता लगाउनुहोस्। हामी तपाईंको रचनात्मक प्रतिक्रिया स्वागत गर्दछौं!
+> हाम्रो [आचरण कोड](CODE_OF_CONDUCT.md), [योगदान](CONTRIBUTING.md), [अनुवाद](TRANSLATIONS.md) दिशानिर्देशहरू पत्ता लगाउनुहोस्। हामी तपाईंका रचनात्मक प्रतिक्रियाहरूलाई स्वागत गर्छौं!
-## प्रत्येक पाठमा समावेश छ:
+## प्रत्येक पाठले समावेश गर्दछ:
-- वैकल्पिक स्केचनोट
+- वैकल्पिक स्केच नोट
- वैकल्पिक पूरक भिडियो
-- पूर्व-पाठ वार्मअप क्विज
+- पूर्व-पाठ तातो अनुभवको क्विज
- लेखिएको पाठ
-- परियोजना-आधारित पाठहरूको लागि, परियोजना कसरी बनाउने बारे चरण-दर-चरण गाइडहरू
-- ज्ञान परीक्षणहरू
-- चुनौती
-- पूरक पठन
+- परियोजना-आधारित पाठहरूको लागि, परियोजना कसरी बनाउन सकिन्छ भन्ने चरण-द्वारा-चरण मार्गदर्शन
+- ज्ञान जाँचहरू
+- एक चुनौती
+- पूरक पढाइ
- असाइनमेन्ट
-- [पाठ पछिको क्विज](https://ff-quizzes.netlify.app/en/)
+- [पाठपश्चात् क्विज](https://ff-quizzes.netlify.app/en/)
-> **क्विजहरूको बारेमा एउटा नोट**: सबै क्विजहरू Quiz-App फोल्डरमा समावेश छन्, प्रत्येकमा तीन प्रश्नका ४० क्विजहरू छन्। यी पाठहरूबाट लिंक गरिएका छन्, तर क्विज एप स्थानीय रूपमा चलाउन सकिन्छ वा Azure मा डिप्लोय गर्न सकिन्छ; `quiz-app` फोल्डरमा निर्देशनहरू पालना गर्नुहोस्। यी क्रमशः स्थानीयकरण भइरहेका छन्।
+> **क्विजहरू बारे एउटा नोट**: सबै क्विजहरू क्विज-एप फोल्डरमा संग्रहित छन्, जसमा प्रत्येकमा तीन प्रश्नहरू सहित ४० क्विजहरू छन्। यी पाठहरूबाट लिंक गरिएको छ, तर क्विज एप स्थानीय रूपमा चलाउन वा Azure मा डिप्लोय गर्न सकिन्छ; `quiz-app` फोल्डरमा निर्देशनहरू पछ्याउनुहोस्। यी क्रमशः स्थानीयकरण भइरहेका छन्।
-## 🎓 आरम्भकर्ताका लागि मैत्री उदाहरणहरू
+## 🎓 सुरुवातिङ मित्रवत उदाहरणहरू
-**डाटा साइन्स नयाँ हुनुहुन्छ?** हामीले सुरु गर्न मद्दत गर्न सरल, राम्रो कमेन्ट गरिएको कोड सहित विशेष [उदाहरण निर्देशिका](examples/README.md) तयार गरेका छौं:
+**डाटा विज्ञानमा नयाँ हुनुहुन्छ?** हामीले सुरु गर्न सजिलो र राम्रोसँग टिपोट गरिएको कोड सहितको विशेष [उदाहरण निर्देशिका](examples/README.md) तयार गरेका छौं:
-- 🌟 **Hello World** - तपाईंको पहिलो डाटा साइन्स कार्यक्रम
-- 📂 **डाटा लोड गर्दै** - डाटासेटहरू पढ्न र अन्वेषण गर्न सिक्नुहोस्
-- 📊 **साधारण विश्लेषण** - तथ्याङ्क गणना गर्नुहोस् र ढाँचा फेला पार्नुहोस्
-- 📈 **आधारभूत भिजुअलाइजेसन** - चार्ट र ग्राफहरू बनाउनुहोस्
-- 🔬 **वास्तविक-विश्व परियोजना** - सुरुबाट अन्त्यसम्म सम्पूर्ण कार्यप्रवाह पूरा गर्नुहोस्
+- 🌟 **हेलो वर्ल्ड** - तपाईंको पहिलो डाटा विज्ञान प्रोग्राम
+- 📂 **डाटा लोड गर्दै** - डेटासेट पढ्न र अन्वेषण गर्न सिक्नुहोस्
+- 📊 **सरल विश्लेषण** - तथ्याङ्क गणना गर्नुहोस् र पैटर्नहरू फेला पार्नुहोस्
+- 📈 **मूलभूत भिजुअलाइजेशन** - चार्ट र ग्राफ बनाउनुहोस्
+- 🔬 **यथार्थ परियोजना** - सुरु देखि अंत सम्म पूरा कार्यप्रवाह
-हरेक उदाहरणले प्रत्येक चरणलाई व्याख्या गर्ने विस्तृत टिप्पणीहरू समावेश गर्दछ, जसले यसलाई पूर्ण आरम्भकर्ताहरूका लागि उपयुक्त बनाउँछ!
+प्रत्येक उदाहरणमा प्रत्येक चरण व्याख्या गर्ने विस्तृत टिप्पणीहरू समावेश छन्, जसले यो पूर्ण नयाँहरूका लागि उपयुक्त बनाउँछ!
-👉 **[उदाहरणहरूबाट सुरु गर्नुहोस्](examples/README.md)** 👈
+👉 **[उदाहरणहरूसँग सुरु गर्नुहोस्](examples/README.md)** 👈
## पाठहरू
-||
+||
|:---:|
-| डाटा साइन्स फोर बिगिनर्स: रोडम्याप - _स्केचनोट [@nitya](https://twitter.com/nitya) द्वारा_ |
+| बुनियादी डाटा विज्ञान: रोडमैप - _स्केच नोट [@nitya](https://twitter.com/nitya) द्वारा_ |
-| पाठ नम्बर | विषय | पाठ समूह | सिक्ने उद्देश्यहरू | लिंक गरिएको पाठ | लेखक |
+| पाठ संख्या | विषय | पाठ समूह | सिकाइ उद्देश्यहरू | लिंक गरिएको पाठ | लेखक |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| ०१ | डाटा साइन्सको परिभाषा | [परिचय](1-Introduction/README.md) | डाटा साइन्सको मूल अवधारणाहरू र यसको कृत्रिम बुद्धिमत्ता, मेसिन लर्निङ र बिग डेटा सम्बन्धित कसरी हो भनेर जान्नुहोस्। | [पाठ](1-Introduction/01-defining-data-science/README.md) [वीडियो](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| ०२ | डाटा साइन्स एथिक्स | [परिचय](1-Introduction/README.md) | डाटा एथिक्स अवधारणाहरू, चुनौतीहरू र फ्रेमवर्कहरू। | [पाठ](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| ०३ | डाटाको परिभाषा | [परिचय](1-Introduction/README.md) | डाटा कसरी वर्गीकृत हुन्छ र यसको सामान्य स्रोतहरू। | [पाठ](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| ०४ | सांख्यिकी र सम्भाव्यताको परिचय | [परिचय](1-Introduction/README.md) | डाटा बुझ्नको लागि सम्भाव्यता र सांख्यिकीका गणितीय प्रविधिहरू। | [पाठ](1-Introduction/04-stats-and-probability/README.md) [वीडियो](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| ०५ | रिलेशनल डाटासँग काम गर्ने | [डाटा संग काम गर्दै](2-Working-With-Data/README.md) | रिलेशनल डाटाको परिचय र संरचित क्वेरी भाषा (SQL) मार्फत रिलेशनल डाटा अन्वेषण र विश्लेषणको आधारभूत कुरा। | [पाठ](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| ०६ | नोSQL डाटासँग काम गर्ने | [डाटा संग काम गर्दै](2-Working-With-Data/README.md) | गैर-रिलेशनल डाटाको परिचय, यसको विभिन्न प्रकारहरू र डकुमेन्ट डाटाबेसहरू अन्वेषण तथा विश्लेषणका आधारभूत कुरा। | [पाठ](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| ०७ | पाइथन संग काम गर्ने | [डाटा संग काम गर्दै](2-Working-With-Data/README.md) | प्यान्डाज जस्ता लाइब्रेरीहरूसँग डाटा अन्वेषणका लागि पाइथन प्रयोगका आधारभूत कुरा। पाइथन प्रोग्रामिङको आधारभूत बुझाइ सिफारिस गरिन्छ। | [पाठ](2-Working-With-Data/07-python/README.md) [वीडियो](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| ०८ | डाटा तयारी | [डाटा संग काम गर्दै](2-Working-With-Data/README.md) | हराएको, गलत, वा अधुरो डाटा सामना गर्न सफा र रूपान्तरण गर्ने डाटा प्रविधिहरू। | [पाठ](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| ०९ | मात्राहरूको भिजुअलाइजेसन | [डेटा भिजुअलाइजेसन](3-Data-Visualization/README.md) | म्याटप्लट्लिब प्रयोग गरेर चराका डाटाको भिजुअलाइजेसन गर्नुहोस् 🦆 | [पाठ](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| १० | डाटाको वितरणको भिजुअलाइजेसन | [डेटा भिजुअलाइजेसन](3-Data-Visualization/README.md) | अन्तरालभित्रका अवलोकन र ट्रेन्डहरूको भिजुअलाइजेसन। | [पाठ](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| ११ | अनुपातहरूको भिजुअलाइजेसन | [डेटा भिजुअलाइजेसन](3-Data-Visualization/README.md) | डिस्क्रिट र समूहीकृत प्रतिशतहरूको भिजुअलाइजेसन। | [पाठ](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| १२ | सम्बन्धहरूको भिजुअलाइजेसन | [डेटा भिजुअलाइजेसन](3-Data-Visualization/README.md) | डाटा र तिनका चराहरूबीचको कनेक्शन र सहसंबन्धहरुको भिजुअलाइजेसन। | [पाठ](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| १३ | अर्थपूर्ण भिजुअलाइजेसन | [डेटा भिजुअलाइजेसन](3-Data-Visualization/README.md) | प्रभावकारी समस्या समाधान र अन्तर्दृष्टिका लागि तपाईंको भिजुअलाइजेशनहरू मूल्यवान बनाउन प्रविधि र निर्देशनहरू। | [पाठ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| १४ | डाटा साइन्स जीवनचक्रको परिचय | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डाटा साइन्स जीवनचक्र र यसको पहिलो चरण डाटा प्राप्ति र निष्कर्षणको परिचय। | [पाठ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| १५ | विश्लेषण गर्दै | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डाटा विश्लेषण गर्ने प्रविधिहरूमा केन्द्रित डाटा साइन्स जीवनचक्रको यो चरण। | [पाठ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| १६ | सञ्चार | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डाटाबाट प्राप्त अन्तर्दृष्टि प्रस्तुत गर्ने चरण जसले निर्णयकर्ताहरूलाई सजिलै बुझ्न मद्दत गर्दछ। | [पाठ](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| १७ | क्लाउडमा डाटा साइन्स | [क्लाउड डाटा](5-Data-Science-In-Cloud/README.md) | क्लाउडमा डाटा साइन्स र यसको फाइदाहरूको श्रृंखला। | [पाठ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) र [Maud](https://twitter.com/maudstweets) |
-| १८ | क्लाउडमा डाटा साइन्स | [क्लाउड डाटा](5-Data-Science-In-Cloud/README.md) | लो कोड उपकरणहरू प्रयोग गरेर मोडलहरूको प्रशिक्षण। |[पाठ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) र [Maud](https://twitter.com/maudstweets) |
-| १९ | क्लाउडमा डाटा साइन्स | [क्लाउड डाटा](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio प्रयोग गरेर मोडल डिप्लोय गर्न। | [पाठ](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) र [Maud](https://twitter.com/maudstweets) |
-| २० | जंगलीमा डाटा साइन्स | [जंगलीमा](6-Data-Science-In-Wild/README.md) | वास्तविक विश्वमा डाटा साइन्स प्रेरित परियोजनाहरू। | [पाठ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| ०१ | डाटा विज्ञान परिभाषा | [परिचय](1-Introduction/README.md) | डाटा विज्ञानका आधारभूत अवधारणाहरू र यसले कसरी कृत्रिम बुद्धिमत्ता, मेसिन सिकाइ, र ठूलो डाटाहरूसँग सम्बन्ध राख्छ सिक्नुहोस्। | [पाठ](1-Introduction/01-defining-data-science/README.md) [भिडियो](https://youtu.be/beZ7Mb_oz9I) | [डमित्रि](http://soshnikov.com) |
+| ०२ | डाटा विज्ञान नैतिकता | [परिचय](1-Introduction/README.md) | डाटा नैतिकता अवधारणाहरू, चुनौतीहरू र रूपरेखा। | [पाठ](1-Introduction/02-ethics/README.md) | [नित्या](https://twitter.com/nitya) |
+| ०३ | डाटा परिभाषा | [परिचय](1-Introduction/README.md) | डाटालाई कसरी वर्गीकृत गरिन्छ र यसको सामान्य स्रोतहरू। | [पाठ](1-Introduction/03-defining-data/README.md) | [जास्मिन](https://www.twitter.com/paladique) |
+| ०४ | सांख्यिकी र सम्भावनाको परिचय | [परिचय](1-Introduction/README.md) | डाटा बुझ्नको लागि सम्भावना र सांख्यिकीका गणितीय प्रविधिहरू। | [पाठ](1-Introduction/04-stats-and-probability/README.md) [भिडियो](https://youtu.be/Z5Zy85g4Yjw) | [डमित्रि](http://soshnikov.com) |
+| ०५ | सम्बन्धित डाटासँग काम गर्दै | [डाटासँग काम गर्दै](2-Working-With-Data/README.md) | सम्बन्धित डाटाको परिचय र संरचित क्वेरी भाषा SQL (उच्चारण "सी-क्वेल") को प्रयोग गरेर डाटा अन्वेषण र विश्लेषणका आधारहरू। | [पाठ](2-Working-With-Data/05-relational-databases/README.md) | [क्रिस्टोफर](https://www.twitter.com/geektrainer) | | |
+| ०६ | नोएसक्युएल डाटासँग काम गर्दै | [डाटासँग काम गर्दै](2-Working-With-Data/README.md) | गैर-संबंधित डाटाको परिचय, यसको विभिन्न प्रकारहरू र कागजात डेटाबेसहरूको अन्वेषण र विश्लेषणका आधारहरू। | [पाठ](2-Working-With-Data/06-non-relational/README.md) | [जास्मिन](https://twitter.com/paladique)|
+| ०७ | पाइथनसँग काम गर्दै | [डाटासँग काम गर्दै](2-Working-With-Data/README.md) | प्यान्डाज जस्ता पुस्तकालयहरुमार्फत डाटा अन्वेषणको लागि पाइथन प्रयोगको आधारहरू। पाइथन प्रोग्रामिङको आधारभूत ज्ञान सिफारिस गरिन्छ। | [पाठ](2-Working-With-Data/07-python/README.md) [भिडियो](https://youtu.be/dZjWOGbsN4Y) | [डमित्रि](http://soshnikov.com) |
+| ०८ | डाटा तयारी | [डाटासँग काम गर्दै](2-Working-With-Data/README.md) | हराएको, गलत वा अपूर्ण डाटा व्यवस्थापनका लागि सफा गर्ने र रूपान्तरण गर्ने डाटा प्रविधिहरू। | [पाठ](2-Working-With-Data/08-data-preparation/README.md) | [जास्मिन](https://www.twitter.com/paladique) |
+| ०९ | मात्राहरूको भिजुअलाइजेशन | [डाटा भिजुअलाइजेशन](3-Data-Visualization/README.md) | म्याटप्लट्लिब प्रयोग गरेर चराहरूको डाटा भिजुअलाइज गर्न सिक्नुहोस् 🦆 | [पाठ](3-Data-Visualization/09-visualization-quantities/README.md) | [जेन्](https://twitter.com/jenlooper) |
+| १० | डाटाको वितरण भिजुअलाइजेशन | [डाटा भिजुअलाइजेशन](3-Data-Visualization/README.md) | अवलोकनहरू र प्रवृत्तिहरूलाई एक अन्तराल भित्र भिजुअलाइज गर्नुहोस्। | [पाठ](3-Data-Visualization/10-visualization-distributions/README.md) | [जेन्](https://twitter.com/jenlooper) |
+| ११ | अनुपातहरू भिजुअलाइज गर्दै | [डाटा भिजुअलाइजेशन](3-Data-Visualization/README.md) | असुत्रबद्ध र समूहीकृत प्रतिशतहरू भिजुअलाइज गर्दै। | [पाठ](3-Data-Visualization/11-visualization-proportions/README.md) | [जेन्](https://twitter.com/jenlooper) |
+| १२ | सम्बन्धहरू भिजुअलाइज गर्दै | [डाटा भिजुअलाइजेशन](3-Data-Visualization/README.md) | डाटा र तिनका भेरिएबलहरू बीचको कनेक्शन र सहसम्बन्धहरू भिजुअलाइज गर्दै। | [पाठ](3-Data-Visualization/12-visualization-relationships/README.md) | [जेन्](https://twitter.com/jenlooper) |
+| १३ | अर्थपूर्ण भिजुअलाइजेशन | [डाटा भिजुअलाइजेशन](3-Data-Visualization/README.md) | तपाईंका भिजुअलाइजेशनहरूलाई प्रभावकारी समस्या समाधान र अन्तर्दृष्टिका लागि मूल्यवान बनाउन प्रविधिहरू र मार्गदर्शन। | [पाठ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [जेन्](https://twitter.com/jenlooper) |
+| १४ | डाटा विज्ञान जीवनचक्र परिचय | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डाटा विज्ञान जीवनचक्रको परिचय र डाटा प्राप्त गर्ने र निकाल्नको पहिलो चरण। | [पाठ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [जास्मिन](https://twitter.com/paladique) |
+| १५ | विश्लेषण | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | यो डाटा विज्ञान जीवनचक्रको चरणले डाटा विश्लेषणका प्रविधिहरूमा केन्द्रित छ। | [पाठ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [जास्मिन](https://twitter.com/paladique) | | |
+| १६ | संचार | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | यो डाटा विज्ञान जीवनचक्रको चरणले डाटाबाट प्राप्त अन्तर्दृष्टिहरूलाई निर्णयकर्ताहरूले सजिलै बुझ्ने गरी प्रस्तुत गर्नमा केन्द्रित छ। | [पाठ](4-Data-Science-Lifecycle/16-communication/README.md) | [जालेन](https://twitter.com/JalenMcG) | | |
+| १७ | क्लाउडमा डाटा विज्ञान | [क्लाउड डाटा](5-Data-Science-In-Cloud/README.md) | यो पाठ श्रृंखलाले क्लाउडमा डाटा विज्ञान र यसको फाइदाहरू परिचय गराउँछ। | [पाठ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [टिफनी](https://twitter.com/TiffanySouterre) र [माउड](https://twitter.com/maudstweets) |
+| १८ | क्लाउडमा डाटा विज्ञान | [क्लाउड डाटा](5-Data-Science-In-Cloud/README.md) | कम कोड उपकरणहरूको प्रयोग गरेर मोडेल प्रशिक्षण। |[पाठ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [टिफनी](https://twitter.com/TiffanySouterre) र [माउड](https://twitter.com/maudstweets) |
+| १९ | क्लाउडमा डाटा विज्ञान | [क्लाउड डाटा](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio प्रयोग गरेर मोडेलहरू डिप्लोय गर्दै। | [पाठ](5-Data-Science-In-Cloud/19-Azure/README.md)| [टिफनी](https://twitter.com/TiffanySouterre) र [माउड](https://twitter.com/maudstweets) |
+| २० | वास्तविक संसारमा डाटा विज्ञान | [बनभोजमा](6-Data-Science-In-Wild/README.md) | वास्तविक संसारमा डाटा विज्ञान चालित परियोजनाहरू। | [पाठ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [नित्या](https://twitter.com/nitya) |
## GitHub Codespaces
-यस नमूना खोल्न Codespace मा यी चरणहरू पालना गर्नुहोस्:
-1. Code ड्रप-डाउन मेनुमा क्लिक गरी Open with Codespaces विकल्प चयन गर्नुहोस्।
-2. तल पेनमा + New codespace चयन गर्नुहोस्।
-थप जानकारीको लागि, [GitHub दस्तावेज](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) हेर्नुहोस्।
+यस नमुनालाई Codespace मा खोल्न यी चरणहरू पालन गर्नुहोस्:
+१. कोड ड्रप-डाउन मेनुमा क्लिक गर्नुहोस् र Open with Codespaces विकल्प चयन गर्नुहोस्।
+२. पेनको तल + New codespace चयन गर्नुहोस्।
+थप जानकारीको लागि, [GitHub डकुमेन्टेशन](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) हेर्नुहोस्।
## VSCode Remote - Containers
-तपाईंको स्थानीय मेसिन र VSCode प्रयोग गरी VS Code Remote - Containers एक्सटेन्सनको माध्यमबाट यो रिपोजिटोरी कन्टेनरमा खोल्न यी चरणहरू पालना गर्नुहोस्:
+तपाईंको स्थानीय मेशिन र VSCode प्रयोग गरी VS Code Remote - Containers एक्सटेन्सनबाट कन्टेनरमा यस रिपोजिटोरीलाई खोल्न यी चरणहरू अनुसरण गर्नुहोस्:
-1. यदि यो तपाईं पहिलो पटक विकास कन्टेनर प्रयोग गर्दै हुनुहुन्छ भने, कृपया सुनिश्चित गर्नुहोस् कि तपाईंको प्रणालीले पूर्व आवश्यकताहरू पूरा गर्दछ (जस्तै, Docker इन्स्टल गरिएको छ) [शुरु गर्नको लागि दस्तावेज](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) मा।
+१. यदि तपाईं पहिलो पटक विकास कन्टेनर प्रयोग गर्दै हुनुहुन्छ भने, कृपया तपाईंको सिस्टमले पूर्व आवश्यकताहरू (जस्तै Docker इन्स्टल गरिएको छ) पूरा गर्छ भन्ने सुनिश्चित गर्नुहोस् [शुरु गर्ने डकुमेन्टेशन](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) मा।
-यो रिपोजिटोरी प्रयोग गर्न, तपाईंले रिपोजिटोरीलाई अलग Docker भोल्युममा खोल्न सक्नुहुन्छ:
+यो रिपोजिटोरी प्रयोग गर्न, तपाईं तल दिइएका मध्ये कुनै एउटा तरिका अपनाउन सक्नुहुन्छ:
-**सूचना**: यो तल Remote-Containers: **Clone Repository in Container Volume...** कमाण्ड प्रयोग गरी स्रोत कोड स्थानीय फाइलसिस्टमको सट्टा Docker भोल्युममा क्लोन गर्नेछ। [भोल्युमहरू](https://docs.docker.com/storage/volumes/) कन्टेनर डाटालाई स्थायी राख्नका लागि प्राथमिक माध्यम हुन्।
+**नोट**: भित्र Remote-Containers: **Clone Repository in Container Volume...** कमाण्ड प्रयोग गरी स्रोत कोडलाई स्थानीय फाइल सिस्टमको सट्टा Docker भोल्युममा क्लोन गरिन्छ। [भोल्युमहरू](https://docs.docker.com/storage/volumes/) कन्टेनर डाटा टिकाउ राख्नको लागि प्राथमिक मेकानिजमहरू हुन्।
-वा स्थानीय रूपमा क्लोन गरेको वा डाउनलोड गरिएको रिपोजिटोरी खोल्नुहोस्:
+वा स्थानीय रूपमा क्लोन गरिएको वा डाउनलोड गरिएको भर्सन खोल्नुहोस्:
-- यो रिपोजिटोरीलाई तपाईंको स्थानीय फाइलसिस्टममा क्लोन गर्नुहोस्।
-- F1 थिचेर **Remote-Containers: Open Folder in Container...** कमाण्ड चयन गर्नुहोस्।
-- यस फोल्डरको क्लोन गरिएको प्रतिलिपि चयन गर्नुहोस्, कन्टेनर सुरु हुन पर्खनुहोस्, र चीजहरू प्रयास गर्नुहोस्।
+- यो रिपोजिटोरी तपाईंको स्थानीय फाइल सिस्टममा क्लोन गर्नुहोस्।
+- F1 थिच्नुहोस् र **Remote-Containers: Open Folder in Container...** कमाण्ड चयन गर्नुहोस्।
+- यस फोल्डरको क्लोन गरिएको प्रति चयन गर्नुहोस्, कन्टेनर सुरु हुन कुर्नुहोस्, र काम सुरु गर्नुहोस्।
## अफलाइन पहुँच
-[Docsify](https://docsify.js.org/#/) प्रयोग गरेर तपाईं यो दस्तावेजलाई अफलाइन चलाउन सक्नुहुन्छ। यो रिपोजिटोरी फोर्क गर्नुहोस्, आफ्नो स्थानीय मेसिनमा [Docsify इन्स्टल गर्नुहोस्](https://docsify.js.org/#/quickstart), अनि यो रिपोजिटोरीको रुट फोल्डरमा `docsify serve` टाइप गर्नुहोस्। वेबसाइट तपाईंको स्थानीय होस्टमा पोर्ट ३००० मा सेवा हुनेछ: `localhost:3000`।
+तपाईं [Docsify](https://docsify.js.org/#/) प्रयोग गरेर यो दस्तावेजलाई अफलाइन रूपमा चलाउन सक्नुहुन्छ। यस रिपोजिटोरीलाई फोर्क गर्नुहोस्, [Docsify इन्स्टल](https://docsify.js.org/#/quickstart) गर्नुहोस् र त्यसपछि यस रिपोरुटोरीको रुट फोल्डरमा `docsify serve` टाइप गर्नुहोस्। वेबसाइट तपाईँको स्थानीय होस्टमा पोर्ट ३००० मा सेवा गरिनेछ: `localhost:3000`।
-> नोट, नोटबुकहरू Docsify द्वारा रेंडर हुने छैनन्, त्यसैले जब तपाईंले नोटबुक चलाउन आवश्यक पर्छ, त्यो अलग्गै VS Code मा पायथन कर्नेल चलाएर गर्नुहोस्।
+> नोट, नोटबुकहरू Docsify मार्फत रेंडर हुँदैनन्, त्यसैले जब तपाईंलाई नोटबुक चलाउन आवश्यक छ भने, त्यो अलग्गै VS Code मा Python कर्नेल चलाएर गर्नुहोस्।
## अन्य पाठ्यक्रमहरू
-हाम्रो टोलीले अरू पाठ्यक्रमहरू पनि उत्पादन गर्छ! जाँच गर्नुहोस्:
+हाम्रो टिमले अन्य पाठ्यक्रमहरू पनि उत्पादन गर्दछ! हेर्नुहोस्:
### LangChain
@@ -209,7 +200,7 @@ Microsoft का Azure Cloud Advocates ले डाटा साइन्सक
---
-### Azure / Edge / MCP / Agents
+### Azure / Edge / MCP / एजेन्टहरू
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
@@ -217,7 +208,7 @@ Microsoft का Azure Cloud Advocates ले डाटा साइन्सक
---
-### Generative AI Series
+### जेनेरेटिभ AI शृंखला
[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
@@ -225,7 +216,7 @@ Microsoft का Azure Cloud Advocates ले डाटा साइन्सक
---
-### Core Learning
+### मुख्य सिकाइ
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
@@ -236,7 +227,7 @@ Microsoft का Azure Cloud Advocates ले डाटा साइन्सक
---
-### Copilot Series
+### Copilot शृंखला
[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
@@ -244,19 +235,19 @@ Microsoft का Azure Cloud Advocates ले डाटा साइन्सक
## मद्दत पाउनुहोस्
-**समस्याहरू भोग्दै हुनुहुन्छ?** सामान्य समस्याहरूका समाधानहरूका लागि हाम्रो [समस्या समाधान गाइड](TROUBLESHOOTING.md) हेर्नुहोस्।
+**समस्या आइरहेको छ?** सामान्य समस्याहरूका समाधानहरूको लागि हाम्रो [समाधान मार्गदर्शिका](TROUBLESHOOTING.md) हेर्नुहोस्।
-यदि तपाईं अड्किनुभयो वा AI अनुप्रयोगहरू निर्माण गर्ने बारेमा कुनै प्रश्न छ भने। MCP सम्बन्धी छलफलमा साथी सिक्नेहरू र अनुभवी विकासकर्ताहरू सामेल हुनुहोस्। यो एउटा सहयोगी समुदाय हो जहाँ प्रश्नहरू स्वागतयोग्य छन् र ज्ञान स्वतन्त्र रूपमा सँगै बाँडिन्छ।
+यदि तपाईं अड्किनुभयो वा AI एप्स बनाउने बारे कुनै प्रश्न छ भने। MCP सम्बन्धी छलफलहरूमा साथी सिक्नेहरू र अनुभवी विकासकर्ताहरू सँग सामेल हुनुहोस्। यो एक सहयोगी समुदाय हो जहाँ प्रश्नहरू स्वागत गरिन्छ र ज्ञान स्वतन्त्र रूपमा साझा गरिन्छ।
[](https://discord.gg/nTYy5BXMWG)
-यदि तपाईंसँग उत्पादन प्रतिक्रिया वा त्रुटिहरू छन् भने निर्माण गर्दा कृपया भ्रमण गर्नुहोस्:
+यदि तपाईंलाई उत्पादन प्रतिक्रिया वा निर्माण गर्दा त्रुटिहरू छन् भने यहाँ जानुहोस्:
[](https://aka.ms/foundry/forum)
---
-**अस्वीकरण**:
-यो दस्तावेज AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) प्रयोग गरी अनुवाद गरिएको हो। हामी शुद्धताको प्रयास गर्छौं, तर कृपया ध्यान दिनुहोस् कि स्वचालित अनुवादमा त्रुटि वा असत्यता हुन सक्दछ। मूल भाषा मा रहेको दस्तावेजलाई आधिकारिक स्रोत मान्नु पर्नेछ। महत्वपूर्ण जानकारीका लागि व्यावसायिक मानवीय अनुवाद सिफारिस गरिन्छ। यस अनुवादको प्रयोगबाट उत्पन्न कुनै गलतफहमी वा त्रुटिको लागि हामी जिम्मेवार छैनौं।
+**अस्वीकरण**:
+यस दस्तावेजलाई AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) प्रयोग गरी अनुवाद गरिएको हो। हामी शुद्धताको लागि प्रयासरत छौं, तर कृपया ध्यान दिनुहोस् कि स्वचालित अनुवादहरूमा त्रुटि वा गलत जानकारी हुन सक्छ। मूल भाषा मा रहेको दस्तावेजलाई आधिकारिक स्रोत मानिनु पर्छ। महत्वपूर्ण जानकारीका लागि व्यावसायिक मानवीय अनुवाद सिफारिस गरिन्छ। यस अनुवादको प्रयोगबाट उत्पन्न कुनै पनि गलतफहमी वा गलत व्याख्यामा हामी जिम्मेवार हुने छैनौं।
\ No newline at end of file
diff --git a/translations/ne/SECURITY.md b/translations/ne/SECURITY.md
index c170d607..35221582 100644
--- a/translations/ne/SECURITY.md
+++ b/translations/ne/SECURITY.md
@@ -1,12 +1,3 @@
-
## सुरक्षा
Microsoft ले आफ्ना सफ्टवेयर उत्पादनहरू र सेवाहरूको सुरक्षालाई गम्भीरतापूर्वक लिन्छ, जसमा हाम्रो GitHub संगठनहरूद्वारा व्यवस्थापन गरिएका सबै स्रोत कोड रिपोजिटरीहरू समावेश छन्, जस्तै [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), र [हाम्रो GitHub संगठनहरू](https://opensource.microsoft.com/)।
diff --git a/translations/ne/SUPPORT.md b/translations/ne/SUPPORT.md
index 00b66004..a8cbf4c3 100644
--- a/translations/ne/SUPPORT.md
+++ b/translations/ne/SUPPORT.md
@@ -1,12 +1,3 @@
-
# समर्थन
## समस्या दर्ता गर्ने र सहयोग प्राप्त गर्ने तरिका
diff --git a/translations/ne/TROUBLESHOOTING.md b/translations/ne/TROUBLESHOOTING.md
index 4b375c70..3978d9bd 100644
--- a/translations/ne/TROUBLESHOOTING.md
+++ b/translations/ne/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# समस्या समाधान मार्गदर्शिका
यो मार्गदर्शिकाले Data Science for Beginners पाठ्यक्रमसँग काम गर्दा सामना गर्न सकिने सामान्य समस्याहरूको समाधान प्रदान गर्दछ।
diff --git a/translations/ne/USAGE.md b/translations/ne/USAGE.md
index c8515f7a..632d538a 100644
--- a/translations/ne/USAGE.md
+++ b/translations/ne/USAGE.md
@@ -1,12 +1,3 @@
-
# प्रयोग मार्गदर्शन
यो मार्गदर्शनले Data Science for Beginners पाठ्यक्रम प्रयोग गर्नका लागि उदाहरणहरू र सामान्य कार्यप्रवाहहरू प्रदान गर्दछ।
diff --git a/translations/ne/docs/_sidebar.md b/translations/ne/docs/_sidebar.md
index 0de37f09..b0444c82 100644
--- a/translations/ne/docs/_sidebar.md
+++ b/translations/ne/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- परिचय
- [डाटा साइन्सको परिभाषा](../1-Introduction/01-defining-data-science/README.md)
- [डाटा साइन्सको नैतिकता](../1-Introduction/02-ethics/README.md)
diff --git a/translations/ne/examples/README.md b/translations/ne/examples/README.md
index d1408bf1..2a38384a 100644
--- a/translations/ne/examples/README.md
+++ b/translations/ne/examples/README.md
@@ -1,12 +1,3 @@
-
# डेटा साइन्सका लागि सुरु गर्न सजिलो उदाहरणहरू
उदाहरणहरूको यो डाइरेक्टरीमा स्वागत छ! यो संग्रह सरल र राम्रोसँग व्याख्या गरिएका उदाहरणहरू समावेश गर्दछ, जसले तपाईंलाई डेटा साइन्समा सुरु गर्न मद्दत गर्नेछ, चाहे तपाईं पूर्ण रूपमा नयाँ किन नहुनुहोस्।
diff --git a/translations/ne/for-teachers.md b/translations/ne/for-teachers.md
index 141a3d81..1456ae1f 100644
--- a/translations/ne/for-teachers.md
+++ b/translations/ne/for-teachers.md
@@ -1,12 +1,3 @@
-
## शिक्षकहरूका लागि
के तपाईं आफ्नो कक्षामा यो पाठ्यक्रम प्रयोग गर्न चाहनुहुन्छ? कृपया स्वतन्त्र रूपमा प्रयोग गर्नुहोस्!
diff --git a/translations/ne/quiz-app/README.md b/translations/ne/quiz-app/README.md
index 87866085..aa249de8 100644
--- a/translations/ne/quiz-app/README.md
+++ b/translations/ne/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# क्विजहरू
यी क्विजहरू डेटा साइन्स पाठ्यक्रमको लागि प्रि- र पोस्ट-लेक्चर क्विजहरू हुन्, जुन https://aka.ms/datascience-beginners मा उपलब्ध छ।
diff --git a/translations/ne/sketchnotes/README.md b/translations/ne/sketchnotes/README.md
index 5c1d6fcc..b9c462aa 100644
--- a/translations/ne/sketchnotes/README.md
+++ b/translations/ne/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
सबै स्केच नोटहरू यहाँ भेट्नुहोस्!
## श्रेय
diff --git a/translations/nl/.co-op-translator.json b/translations/nl/.co-op-translator.json
new file mode 100644
index 00000000..2a1fb979
--- /dev/null
+++ b/translations/nl/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:58:03+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "nl"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-28T15:51:32+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "nl"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-28T15:51:59+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "nl"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:42:25+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "nl"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-28T15:57:05+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "nl"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T23:07:04+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "nl"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-28T15:53:35+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "nl"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:45:48+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "nl"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-28T15:48:27+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "nl"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-28T15:45:21+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "nl"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:40:53+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "nl"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:56:33+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "nl"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T22:55:50+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "nl"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-28T15:14:32+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "nl"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:49:22+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "nl"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-28T15:17:02+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "nl"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T22:57:55+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "nl"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-28T15:21:41+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "nl"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-28T15:12:25+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T23:01:49+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-28T15:39:56+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T23:03:19+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-28T15:45:06+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T23:01:05+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-28T15:38:27+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:41:24+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-28T15:43:40+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T23:02:14+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-28T15:41:28+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-28T15:41:42+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-28T15:41:57+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-28T15:30:15+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-28T15:31:51+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-28T15:33:29+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-28T15:35:32+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-28T15:29:11+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-28T15:32:05+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-28T15:35:47+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "nl"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-28T15:28:34+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "nl"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:15:03+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "nl"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-28T15:25:39+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "nl"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:14:25+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "nl"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-28T15:23:23+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "nl"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:15:24+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "nl"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-28T15:28:20+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "nl"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-28T15:22:18+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "nl"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T22:54:01+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "nl"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-28T15:10:19+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "nl"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T22:53:00+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "nl"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-28T15:08:24+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "nl"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T22:55:08+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "nl"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-28T15:12:08+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "nl"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-28T15:03:32+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "nl"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:35:17+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "nl"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-28T16:00:54+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "nl"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-28T15:58:31+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "nl"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:28:02+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "nl"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-28T15:03:18+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "nl"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:13:43+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "nl"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:22:21+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "nl"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:03:01+00:00",
+ "source_file": "README.md",
+ "language_code": "nl"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-28T15:02:13+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "nl"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-28T15:01:46+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "nl"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:42:39+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "nl"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:05:36+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "nl"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-28T15:21:56+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "nl"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:04:19+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "nl"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:58:32+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "nl"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-28T15:57:48+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "nl"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-28T16:01:29+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "nl"
+ }
+}
\ No newline at end of file
diff --git a/translations/nl/1-Introduction/01-defining-data-science/README.md b/translations/nl/1-Introduction/01-defining-data-science/README.md
index f17646d0..d68b08e2 100644
--- a/translations/nl/1-Introduction/01-defining-data-science/README.md
+++ b/translations/nl/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Definitie van Data Science
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/nl/1-Introduction/01-defining-data-science/assignment.md b/translations/nl/1-Introduction/01-defining-data-science/assignment.md
index 10c6c6c7..6f0caad7 100644
--- a/translations/nl/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/nl/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Opdracht: Data Science Scenario's
In deze eerste opdracht vragen we je na te denken over een echt proces of probleem in verschillende probleemdomeinen, en hoe je dit kunt verbeteren met behulp van het Data Science-proces. Denk aan het volgende:
diff --git a/translations/nl/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/nl/1-Introduction/01-defining-data-science/solution/assignment.md
index cac37155..a3aa6cfd 100644
--- a/translations/nl/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/nl/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Opdracht: Data Science Scenario's
In deze eerste opdracht vragen we je na te denken over een echt proces of probleem in verschillende domeinen, en hoe je dit kunt verbeteren met behulp van het Data Science-proces. Denk aan het volgende:
diff --git a/translations/nl/1-Introduction/02-ethics/README.md b/translations/nl/1-Introduction/02-ethics/README.md
index 30b1ae9f..12135ede 100644
--- a/translations/nl/1-Introduction/02-ethics/README.md
+++ b/translations/nl/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Introductie tot Data-ethiek
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/nl/1-Introduction/02-ethics/assignment.md b/translations/nl/1-Introduction/02-ethics/assignment.md
index 0e179ff0..64cefbe1 100644
--- a/translations/nl/1-Introduction/02-ethics/assignment.md
+++ b/translations/nl/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Schrijf Een Casestudy Over Data-ethiek
## Instructies
diff --git a/translations/nl/1-Introduction/03-defining-data/README.md b/translations/nl/1-Introduction/03-defining-data/README.md
index 80240fe1..d6c8f2a7 100644
--- a/translations/nl/1-Introduction/03-defining-data/README.md
+++ b/translations/nl/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Definiëren van Data
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/nl/1-Introduction/03-defining-data/assignment.md b/translations/nl/1-Introduction/03-defining-data/assignment.md
index fca83fc0..17006f84 100644
--- a/translations/nl/1-Introduction/03-defining-data/assignment.md
+++ b/translations/nl/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Classificeren van datasets
## Instructies
diff --git a/translations/nl/1-Introduction/04-stats-and-probability/README.md b/translations/nl/1-Introduction/04-stats-and-probability/README.md
index 67b51531..9490a823 100644
--- a/translations/nl/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/nl/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Een Korte Introductie tot Statistiek en Kansberekening
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Om ons te helpen de verdeling van data te begrijpen, is het nuttig om te praten
Grafisch kunnen we de relatie tussen mediaan en kwartielen weergeven in een diagram dat de **boxplot** wordt genoemd:
-
+
Hier berekenen we ook de **interkwartielafstand** IQR=Q3-Q1, en zogenaamde **uitbijters** - waarden die buiten de grenzen [Q1-1.5*IQR,Q3+1.5*IQR] liggen.
diff --git a/translations/nl/1-Introduction/04-stats-and-probability/assignment.md b/translations/nl/1-Introduction/04-stats-and-probability/assignment.md
index 3c2cda67..30d2cde8 100644
--- a/translations/nl/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/nl/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Kleine Diabetesstudie
In deze opdracht werken we met een kleine dataset van diabetespatiënten, afkomstig van [hier](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/nl/1-Introduction/README.md b/translations/nl/1-Introduction/README.md
index 2f58f1ba..4b6d1a30 100644
--- a/translations/nl/1-Introduction/README.md
+++ b/translations/nl/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introductie tot Data Science

diff --git a/translations/nl/2-Working-With-Data/05-relational-databases/README.md b/translations/nl/2-Working-With-Data/05-relational-databases/README.md
index 1d940b75..de92bf66 100644
--- a/translations/nl/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/nl/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Werken met Data: Relationele Databases
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/nl/2-Working-With-Data/05-relational-databases/assignment.md b/translations/nl/2-Working-With-Data/05-relational-databases/assignment.md
index ed31e39c..bf6f8523 100644
--- a/translations/nl/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/nl/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Luchthavendata weergeven
Je hebt een [database](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) gekregen, gebouwd op [SQLite](https://sqlite.org/index.html), die informatie over luchthavens bevat. Het schema wordt hieronder weergegeven. Je zult de [SQLite-extensie](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) in [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) gebruiken om informatie over luchthavens in verschillende steden weer te geven.
diff --git a/translations/nl/2-Working-With-Data/06-non-relational/README.md b/translations/nl/2-Working-With-Data/06-non-relational/README.md
index 855c515a..6f82d39b 100644
--- a/translations/nl/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/nl/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Werken met Gegevens: Niet-relationele Gegevens
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/nl/2-Working-With-Data/06-non-relational/assignment.md b/translations/nl/2-Working-With-Data/06-non-relational/assignment.md
index f7d4b62c..386fff9f 100644
--- a/translations/nl/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/nl/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Soda Winst
## Instructies
diff --git a/translations/nl/2-Working-With-Data/07-python/README.md b/translations/nl/2-Working-With-Data/07-python/README.md
index ed26f397..c1bdb150 100644
--- a/translations/nl/2-Working-With-Data/07-python/README.md
+++ b/translations/nl/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Werken met Data: Python en de Pandas-bibliotheek
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/nl/2-Working-With-Data/07-python/assignment.md b/translations/nl/2-Working-With-Data/07-python/assignment.md
index 4bd6151f..93b7c463 100644
--- a/translations/nl/2-Working-With-Data/07-python/assignment.md
+++ b/translations/nl/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Opdracht voor Gegevensverwerking in Python
In deze opdracht vragen we je om verder te werken aan de code die we zijn begonnen te ontwikkelen in onze uitdagingen. De opdracht bestaat uit twee delen:
diff --git a/translations/nl/2-Working-With-Data/08-data-preparation/README.md b/translations/nl/2-Working-With-Data/08-data-preparation/README.md
index 013529bc..fc45d48d 100644
--- a/translations/nl/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/nl/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Werken met Data: Data Voorbereiding
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/nl/2-Working-With-Data/08-data-preparation/assignment.md b/translations/nl/2-Working-With-Data/08-data-preparation/assignment.md
index 2cf6dc92..5be6f690 100644
--- a/translations/nl/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/nl/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Evalueren van gegevens uit een formulier
Een klant heeft een [klein formulier](../../../../2-Working-With-Data/08-data-preparation/index.html) getest om wat basisgegevens over hun klantenbestand te verzamelen. Ze hebben hun bevindingen aan jou voorgelegd om de verzamelde gegevens te valideren. Je kunt de `index.html`-pagina in de browser openen om het formulier te bekijken.
diff --git a/translations/nl/2-Working-With-Data/README.md b/translations/nl/2-Working-With-Data/README.md
index 646e3829..97103034 100644
--- a/translations/nl/2-Working-With-Data/README.md
+++ b/translations/nl/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Werken met Data

diff --git a/translations/nl/3-Data-Visualization/09-visualization-quantities/README.md b/translations/nl/3-Data-Visualization/09-visualization-quantities/README.md
index c86f1784..c67ade5e 100644
--- a/translations/nl/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/nl/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualiseren van hoeveelheden
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/nl/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/nl/3-Data-Visualization/09-visualization-quantities/assignment.md
index 4d60c816..3d8cf4e6 100644
--- a/translations/nl/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/nl/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Lijnen, Spreidingen en Staafdiagrammen
## Instructies
diff --git a/translations/nl/3-Data-Visualization/10-visualization-distributions/README.md b/translations/nl/3-Data-Visualization/10-visualization-distributions/README.md
index b2021f31..71556b89 100644
--- a/translations/nl/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/nl/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualiseren van Distributies
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/nl/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/nl/3-Data-Visualization/10-visualization-distributions/assignment.md
index ea6adda9..2e194562 100644
--- a/translations/nl/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/nl/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Pas je vaardigheden toe
## Instructies
diff --git a/translations/nl/3-Data-Visualization/11-visualization-proportions/README.md b/translations/nl/3-Data-Visualization/11-visualization-proportions/README.md
index 0ccc0243..b06a66c1 100644
--- a/translations/nl/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/nl/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualiseren van Verhoudingen
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/nl/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/nl/3-Data-Visualization/11-visualization-proportions/assignment.md
index ed7d6628..878ea413 100644
--- a/translations/nl/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/nl/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Probeer het in Excel
## Instructies
diff --git a/translations/nl/3-Data-Visualization/12-visualization-relationships/README.md b/translations/nl/3-Data-Visualization/12-visualization-relationships/README.md
index 347f263a..560e7444 100644
--- a/translations/nl/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/nl/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Relaties Visualiseren: Alles Over Honing 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/nl/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/nl/3-Data-Visualization/12-visualization-relationships/assignment.md
index 354a38ba..0cf8c835 100644
--- a/translations/nl/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/nl/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Duik in de bijenkorf
## Instructies
diff --git a/translations/nl/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/nl/3-Data-Visualization/13-meaningful-visualizations/README.md
index 7b6d327d..db49cb6f 100644
--- a/translations/nl/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/nl/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Betekenisvolle Visualisaties Maken
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/nl/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/nl/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index d199aac1..c789f82c 100644
--- a/translations/nl/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/nl/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Bouw je eigen aangepaste visualisatie
## Instructies
diff --git a/translations/nl/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/nl/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 75070995..c9be9f6a 100644
--- a/translations/nl/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/nl/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Gevaarlijke Relaties data visualisatieproject
Om te beginnen moet je ervoor zorgen dat je NPM en Node op je machine hebt draaien. Installeer de afhankelijkheden (npm install) en voer vervolgens het project lokaal uit (npm run serve):
diff --git a/translations/nl/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/nl/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index f59efd78..4c96176e 100644
--- a/translations/nl/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/nl/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Gevaarlijke Relaties data visualisatieproject
Om te beginnen moet je ervoor zorgen dat je NPM en Node op je machine hebt draaien. Installeer de afhankelijkheden (npm install) en voer vervolgens het project lokaal uit (npm run serve):
diff --git a/translations/nl/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/nl/3-Data-Visualization/R/09-visualization-quantities/README.md
index 50d6ebda..f20ec932 100644
--- a/translations/nl/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/nl/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualiseren van hoeveelheden
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/nl/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/nl/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 8c39e5bd..7a293fd0 100644
--- a/translations/nl/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/nl/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Lijnen, Spreidingsdiagrammen en Staafdiagrammen
## Instructies
diff --git a/translations/nl/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/nl/3-Data-Visualization/R/10-visualization-distributions/README.md
index de318419..18227ee8 100644
--- a/translations/nl/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/nl/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualiseren van distributies
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/nl/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/nl/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index c5a5ceda..39225cca 100644
--- a/translations/nl/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/nl/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Pas je vaardigheden toe
## Instructies
diff --git a/translations/nl/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/nl/3-Data-Visualization/R/11-visualization-proportions/README.md
index f1ca8946..200b19ef 100644
--- a/translations/nl/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/nl/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualiseren van Verhoudingen
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/nl/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/nl/3-Data-Visualization/R/12-visualization-relationships/README.md
index 566ee11d..95d9b3fb 100644
--- a/translations/nl/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/nl/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Relaties Visualiseren: Alles Over Honing 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/nl/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/nl/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 4762c6f9..80b7786a 100644
--- a/translations/nl/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/nl/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Betekenisvolle Visualisaties Maken
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/nl/3-Data-Visualization/README.md b/translations/nl/3-Data-Visualization/README.md
index b59441a2..00c1eff7 100644
--- a/translations/nl/3-Data-Visualization/README.md
+++ b/translations/nl/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Visualisaties

diff --git a/translations/nl/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/nl/4-Data-Science-Lifecycle/14-Introduction/README.md
index 55c3ce91..6dd248ab 100644
--- a/translations/nl/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/nl/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introductie tot de Data Science Lifecycle
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/nl/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/nl/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index c6b85efb..f4ba8c7d 100644
--- a/translations/nl/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/nl/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Het beoordelen van een dataset
Een klant heeft jouw team benaderd om te helpen bij het onderzoeken van de seizoensgebonden uitgavenpatronen van taxiklanten in New York City.
diff --git a/translations/nl/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/nl/4-Data-Science-Lifecycle/15-analyzing/README.md
index 5d0c9340..093c721c 100644
--- a/translations/nl/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/nl/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# De Data Science Lifecycle: Analyseren
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/nl/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/nl/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 4303f360..436764ea 100644
--- a/translations/nl/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/nl/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Antwoorden verkennen
Dit is een vervolg op de [opdracht](../14-Introduction/assignment.md) van de vorige les, waarin we kort naar de dataset hebben gekeken. Nu gaan we dieper in op de gegevens.
diff --git a/translations/nl/4-Data-Science-Lifecycle/16-communication/README.md b/translations/nl/4-Data-Science-Lifecycle/16-communication/README.md
index 87fec7cf..8ca4aa0b 100644
--- a/translations/nl/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/nl/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# De Data Science Levenscyclus: Communicatie
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/nl/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/nl/4-Data-Science-Lifecycle/16-communication/assignment.md
index 42d01074..a7920cdf 100644
--- a/translations/nl/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/nl/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Vertel een verhaal
## Instructies
diff --git a/translations/nl/4-Data-Science-Lifecycle/README.md b/translations/nl/4-Data-Science-Lifecycle/README.md
index b79d6c77..7987a0f0 100644
--- a/translations/nl/4-Data-Science-Lifecycle/README.md
+++ b/translations/nl/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# De levenscyclus van Data Science

diff --git a/translations/nl/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/nl/5-Data-Science-In-Cloud/17-Introduction/README.md
index 000676e1..1411768d 100644
--- a/translations/nl/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/nl/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introductie tot Data Science in de Cloud
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/nl/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/nl/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 96db7e5e..2cb5b517 100644
--- a/translations/nl/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/nl/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Marktonderzoek
## Instructies
diff --git a/translations/nl/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/nl/5-Data-Science-In-Cloud/18-Low-Code/README.md
index b9f00914..cbfeaa5a 100644
--- a/translations/nl/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/nl/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Datawetenschap in de Cloud: De "Low code/No code" aanpak
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/nl/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/nl/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 100dcecd..dc6cd5b4 100644
--- a/translations/nl/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/nl/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Low code/No code Data Science-project op Azure ML
## Instructies
diff --git a/translations/nl/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/nl/5-Data-Science-In-Cloud/19-Azure/README.md
index d613e91a..448cfca2 100644
--- a/translations/nl/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/nl/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Datawetenschap in de Cloud: De "Azure ML SDK"-aanpak
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/nl/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/nl/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 1d7e7a75..37c9b28b 100644
--- a/translations/nl/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/nl/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Data Science-project met Azure ML SDK
## Instructies
diff --git a/translations/nl/5-Data-Science-In-Cloud/README.md b/translations/nl/5-Data-Science-In-Cloud/README.md
index e4935988..157bcd94 100644
--- a/translations/nl/5-Data-Science-In-Cloud/README.md
+++ b/translations/nl/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Data Science in de Cloud

diff --git a/translations/nl/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/nl/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 67bc75f4..a3a45483 100644
--- a/translations/nl/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/nl/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Datawetenschap in de Praktijk
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/nl/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/nl/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index ad266d85..146a56cc 100644
--- a/translations/nl/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/nl/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Verken een Planetary Computer Dataset
## Instructies
diff --git a/translations/nl/6-Data-Science-In-Wild/README.md b/translations/nl/6-Data-Science-In-Wild/README.md
index b67d0336..129f6983 100644
--- a/translations/nl/6-Data-Science-In-Wild/README.md
+++ b/translations/nl/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Datawetenschap in de praktijk
Toepassingen van datawetenschap in verschillende industrieën.
diff --git a/translations/nl/AGENTS.md b/translations/nl/AGENTS.md
index 71fd554e..1dc02a93 100644
--- a/translations/nl/AGENTS.md
+++ b/translations/nl/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Projectoverzicht
diff --git a/translations/nl/CODE_OF_CONDUCT.md b/translations/nl/CODE_OF_CONDUCT.md
index d3092663..e8762bae 100644
--- a/translations/nl/CODE_OF_CONDUCT.md
+++ b/translations/nl/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft Open Source Gedragscode
Dit project heeft de [Microsoft Open Source Gedragscode](https://opensource.microsoft.com/codeofconduct/) aangenomen.
diff --git a/translations/nl/CONTRIBUTING.md b/translations/nl/CONTRIBUTING.md
index 0d143457..1daa134f 100644
--- a/translations/nl/CONTRIBUTING.md
+++ b/translations/nl/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Bijdragen aan Data Science voor Beginners
Bedankt voor je interesse om bij te dragen aan het curriculum Data Science voor Beginners! We verwelkomen bijdragen van de gemeenschap.
diff --git a/translations/nl/INSTALLATION.md b/translations/nl/INSTALLATION.md
index bd2a8cf5..fb9b9985 100644
--- a/translations/nl/INSTALLATION.md
+++ b/translations/nl/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Installatiegids
Deze gids helpt je om je omgeving in te stellen voor het werken met het curriculum Data Science voor Beginners.
diff --git a/translations/nl/README.md b/translations/nl/README.md
index bc0b401f..64de8022 100644
--- a/translations/nl/README.md
+++ b/translations/nl/README.md
@@ -1,13 +1,4 @@
-
-# Data Science voor Beginners - Een Curriculum
+# Datawetenschap voor Beginners - Een Curriculum
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,27 +17,27 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Azure Cloud Advocates bij Microsoft zijn blij een 10-weekse, 20-les curriculum aan te bieden die volledig draait om Data Science. Elke les bevat quizzen voor en na de les, geschreven instructies om de les te voltooien, een oplossing en een opdracht. Onze projectgebaseerde pedagogiek stelt je in staat te leren terwijl je bouwt, een bewezen manier om nieuwe vaardigheden te 'verankeren'.
+Azure Cloud Advocates bij Microsoft bieden met plezier een curriculum van 10 weken en 20 lessen over Datawetenschap aan. Elke les bevat quizzes voor en na de les, schriftelijke instructies voor het voltooien van de les, een oplossing en een opdracht. Onze projectgerichte didactiek stelt je in staat te leren terwijl je bouwt, een bewezen manier om nieuwe vaardigheden te laten 'plakken'.
**Hartelijke dank aan onze auteurs:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Speciale dank 🙏 aan onze [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) auteurs, beoordelaars en contentbijdragers,** in het bijzonder Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Speciale dank 🙏 aan onze [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) auteurs, beoordelaars en inhoudsbijdragers,** met name Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Data Science Voor Beginners - _Sketchnote door [@nitya](https://twitter.com/nitya)_ |
+| Datawetenschap Voor Beginners - _Sketchnote door [@nitya](https://twitter.com/nitya)_ |
### 🌐 Meertalige Ondersteuning
-#### Ondersteund via GitHub Action (Geautomatiseerd & Altijd Up-to-Date)
+#### Ondersteund via GitHub Action (Automatisch & Altijd Actueel)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](./README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabisch](../ar/README.md) | [Bengaals](../bn/README.md) | [Bulgaars](../bg/README.md) | [Birmaans (Myanmar)](../my/README.md) | [Chinees (Vereenvoudigd)](../zh-CN/README.md) | [Chinees (Traditioneel, Hong Kong)](../zh-HK/README.md) | [Chinees (Traditioneel, Macau)](../zh-MO/README.md) | [Chinees (Traditioneel, Taiwan)](../zh-TW/README.md) | [Kroatisch](../hr/README.md) | [Tsjechisch](../cs/README.md) | [Deens](../da/README.md) | [Nederlands](./README.md) | [Ests](../et/README.md) | [Fins](../fi/README.md) | [Frans](../fr/README.md) | [Duits](../de/README.md) | [Grieks](../el/README.md) | [Hebreeuws](../he/README.md) | [Hindi](../hi/README.md) | [Hongaars](../hu/README.md) | [Indonesisch](../id/README.md) | [Italiaans](../it/README.md) | [Japans](../ja/README.md) | [Kannada](../kn/README.md) | [Koreaans](../ko/README.md) | [Litouws](../lt/README.md) | [Maleis](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepalees](../ne/README.md) | [Nigeriaans Pidgin](../pcm/README.md) | [Noors](../no/README.md) | [Perzisch (Farsi)](../fa/README.md) | [Pools](../pl/README.md) | [Portugees (Brazilië)](../pt-BR/README.md) | [Portugees (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Roemeens](../ro/README.md) | [Russisch](../ru/README.md) | [Servisch (Cyrillisch)](../sr/README.md) | [Slowaaks](../sk/README.md) | [Sloveens](../sl/README.md) | [Spaans](../es/README.md) | [Swahili](../sw/README.md) | [Zweeds](../sv/README.md) | [Tagalog (Filipijns)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turks](../tr/README.md) | [Oekraïens](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamees](../vi/README.md)
-> **Voorkeur om lokaal te klonen?**
+> **Lievelingswijze is lokaal klonen?**
-> Deze repository bevat vertalingen in 50+ talen, wat de downloadgrootte aanzienlijk vergroot. Om te klonen zonder vertalingen, gebruik sparse checkout:
+> Deze repository bevat meer dan 50 taalvertalingen die de downloadgrootte aanzienlijk vergroten. Om zonder vertalingen te klonen, gebruik sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
@@ -55,47 +46,47 @@ Azure Cloud Advocates bij Microsoft zijn blij een 10-weekse, 20-les curriculum a
> Dit geeft je alles wat je nodig hebt om de cursus te voltooien met een veel snellere download.
-**Als je meer vertalingen wilt zien, staan ondersteunde talen [hier](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Als je extra vertalingen wilt laten ondersteunen, staan de ondersteunde talen [hier](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Word lid van onze Community
+#### Doe mee met onze community
[](https://discord.gg/nTYy5BXMWG)
-We hebben een lopende Discord learn with AI-serie, leer meer en sluit je bij ons aan op [Learn with AI Series](https://aka.ms/learnwithai/discord) van 18 - 30 september 2025. Je krijgt tips en trucs over het gebruik van GitHub Copilot voor Data Science.
+We hebben een lopende Discord-serie ‘Learn with AI’, leer meer en doe mee op [Learn with AI Series](https://aka.ms/learnwithai/discord) van 18 - 30 september 2025. Je krijgt tips en trucs voor het gebruik van GitHub Copilot voor Datawetenschap.
-
+
-# Ben je een student?
+# Ben jij een student?
Begin met de volgende bronnen:
-- [Student Hub pagina](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Op deze pagina vind je bronnen voor beginners, studentenpakketten en zelfs manieren om een gratis certificaatvoucher te krijgen. Dit is een pagina die je wilt bookmarken en van tijd tot tijd wilt bekijken, omdat we minstens maandelijks content wisselen.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Word lid van een wereldwijde community van studentambassadeurs, dit zou jouw toegang tot Microsoft kunnen zijn.
+- [Student Hub pagina](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Op deze pagina vind je beginnersbronnen, studentenpakketten en zelfs manieren om een gratis certificeringsvoucher te krijgen. Dit is een pagina die je wilt markeren en af en toe bezoeken, want we wisselen minstens maandelijks van inhoud.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Word lid van een wereldwijde gemeenschap van studentambassadeurs, dit kan jouw weg naar Microsoft zijn.
# Aan de slag
## 📚 Documentatie
- **[Installatiehandleiding](INSTALLATION.md)** - Stapsgewijze installatie-instructies voor beginners
-- **[Gebruiksaanwijzing](USAGE.md)** - Voorbeelden en veelvoorkomende workflows
+- **[Gebruikershandleiding](USAGE.md)** - Voorbeelden en veelvoorkomende workflows
- **[Probleemoplossing](TROUBLESHOOTING.md)** - Oplossingen voor veelvoorkomende problemen
-- **[Bijdragen handleiding](CONTRIBUTING.md)** - Hoe bij te dragen aan dit project
-- **[Voor Docenten](for-teachers.md)** - Lesgeven richtlijnen en bronnen voor het klaslokaal
+- **[Bijdragenhandleiding](CONTRIBUTING.md)** - Hoe bij te dragen aan dit project
+- **[Voor Docenten](for-teachers.md)** - Lesgeefadvies en klaslokaalbronnen
## 👨🎓 Voor Studenten
-> **Volledig beginners**: Nieuw in data science? Begin met onze [voor beginners geschikte voorbeelden](examples/README.md)! Deze eenvoudige, goed becommentarieerde voorbeelden helpen je de basis te begrijpen voordat je in het volledige curriculum duikt.
-> **[Studenten](https://aka.ms/student-page)**: gebruik dit curriculum zelf door het volledige repo te forken en de oefeningen zelfstandig te maken, beginnend met een quiz vóór de les. Lees daarna de les en voltooi de rest van de activiteiten. Probeer de projecten te maken door de lessen te begrijpen in plaats van de oplossing te kopiëren; die code is echter beschikbaar in de /solutions-mappen in elke projectgerichte les. Een andere optie is een studiegroep met vrienden te vormen om samen door de inhoud te gaan. Voor verder studie raden we [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) aan.
+> **Volledig beginners**: Nieuw in datawetenschap? Begin met onze [beginnersvriendelijke voorbeelden](examples/README.md)! Deze eenvoudige, goed van commentaar voorziene voorbeelden helpen je de basis te begrijpen voordat je in het volledige curriculum duikt.
+> **[Studenten](https://aka.ms/student-page)**: om dit curriculum zelf te gebruiken, fork je de hele repo en maak je de oefeningen zelf af, te beginnen met een pre-lezing quiz. Lees dan de les en voltooi de overige activiteiten. Probeer de projecten te creëren door de lessen te begrijpen in plaats van simpelweg de oplossing te kopiëren; die code is echter beschikbaar in de /solutions mappen bij elke projectgerichte les. Een andere idee is om een studiegroep te vormen met vrienden en samen door de inhoud te gaan. Voor verdere studie raden we [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) aan.
-**Snel Beginnen:**
-1. Bekijk de [Installatiehandleiding](INSTALLATION.md) om je omgeving op te zetten
-2. Bekijk de [Gebruiksaanwijzing](USAGE.md) om te leren hoe je met het curriculum werkt
-3. Begin met Les 1 en werk deze in volgorde af
+**Snelle start:**
+1. Bekijk de [Installatiehandleiding](INSTALLATION.md) om je omgeving in te stellen
+2. Bekijk de [Gebruikershandleiding](USAGE.md) om te leren hoe je met het curriculum werkt
+3. Begin met Les 1 en werk de lessen achtereenvolgens door
4. Word lid van onze [Discord-community](https://aka.ms/ds4beginners/discord) voor ondersteuning
## 👩🏫 Voor Docenten
-> **Docenten**: we hebben [enkele suggesties](for-teachers.md) opgenomen over hoe je dit curriculum kunt gebruiken. We horen graag je feedback [in ons discussieforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+> **Docenten**: we hebben [enkele suggesties opgenomen](for-teachers.md) over hoe je dit curriculum kunt gebruiken. We horen graag je feedback [in ons discussieforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## Ontmoet het Team
-## Maak kennis met het team
[](https://youtu.be/8mzavjQSMM4 "Promo video")
**Gif door** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
@@ -104,103 +95,103 @@ Begin met de volgende bronnen:
## Pedagogiek
-We hebben twee pedagogische principes gekozen bij het opbouwen van dit curriculum: ervoor zorgen dat het projectgebaseerd is en dat het frequente quizzen bevat. Aan het einde van deze serie hebben studenten de basisprincipes van datawetenschap geleerd, inclusief ethische concepten, datavoorbereiding, verschillende manieren om met data te werken, datavisualisatie, data-analyse, gebruikssituaties uit de echte wereld van datawetenschap, en meer.
+We hebben twee pedagogische principes gekozen bij het samenstellen van deze cursus: ervoor zorgen dat deze projectgebaseerd is en dat er frequente quizzen worden opgenomen. Aan het einde van deze serie zullen studenten de basisprincipes van datawetenschap hebben geleerd, inclusief ethische concepten, data voorbereiding, verschillende manieren om met data te werken, datavisualisatie, data-analyse, praktijkvoorbeelden van datawetenschap en meer.
-Daarnaast zet een quiz met lage inzet vóór een les de intentie van de student om een onderwerp te leren, terwijl een tweede quiz na de les zorgt voor verdere retentie. Dit curriculum is ontworpen om flexibel en leuk te zijn en kan geheel of gedeeltelijk worden gevolgd. De projecten beginnen klein en worden steeds complexer aan het einde van de 10 weken cyclus.
+Daarnaast zorgt een laagdrempelige quiz voor de les ervoor dat de student zich focust op het leerdoel, terwijl een tweede quiz na de les verdere retentie verzekert. Deze cursus is ontworpen om flexibel en leuk te zijn en kan geheel of gedeeltelijk gevolgd worden. De projecten starten klein en worden steeds complexer aan het einde van de 10-weekse cyclus.
-> Vind onze [Gedragscode](CODE_OF_CONDUCT.md), [Bijdragen](CONTRIBUTING.md), [Vertaalrichtlijnen](TRANSLATIONS.md). We verwelkomen je constructieve feedback!
+> Vind onze [Gedragscode](CODE_OF_CONDUCT.md), [Bijdragen](CONTRIBUTING.md), [Vertalingen](TRANSLATIONS.md) richtlijnen. We verwelkomen je constructieve feedback!
## Elke les bevat:
-- Optionele sketchnote
+- Optionele schetsnota
- Optionele aanvullende video
-- Quiz voor de les als warming-up
+- Pre-les opwarmquiz
- Geschreven les
-- Voor projectgebaseerde lessen, stapsgewijze handleidingen over hoe je het project bouwt
+- Voor projectgebaseerde lessen, stapsgewijze handleidingen voor het bouwen van het project
- Kenniscontroles
- Een uitdaging
-- Aanvullende lectuur
+- Aanvullende leesstof
- Opdracht
-- [Quiz na de les](https://ff-quizzes.netlify.app/en/)
+- [Post-les quiz](https://ff-quizzes.netlify.app/en/)
-> **Een opmerking over quizzen**: Alle quizzen bevinden zich in de Quiz-App folder, in totaal 40 quizzen met elk drie vragen. Ze zijn gekoppeld vanuit de lessen, maar de quiz-app kan lokaal worden uitgevoerd of worden gedeployed naar Azure; volg de instructies in de `quiz-app` map. Ze worden geleidelijk gelokaliseerd.
+> **Een opmerking over quizzen**: Alle quizzen bevinden zich in de Quiz-App map, met in totaal 40 quizzen van elk drie vragen. Ze zijn gekoppeld vanuit de lessen, maar de quiz-app kan lokaal worden uitgevoerd of geïmplementeerd op Azure; volg de instructies in de `quiz-app` map. Ze worden geleidelijk gelokaliseerd.
## 🎓 Beginnersvriendelijke Voorbeelden
-**Nieuw in Data Science?** We hebben een speciale [voorbeelden map](examples/README.md) gemaakt met eenvoudige, goed becommentarieerde code om je op weg te helpen:
+**Nieuw in Data Science?** We hebben een speciale [voorbeeldenmap](examples/README.md) gemaakt met eenvoudige, goed becommentarieerde code om je op weg te helpen:
-- 🌟 **Hello World** - Je eerste datawetenschapsprogramma
+- 🌟 **Hello World** - Je eerste data science programma
- 📂 **Data Laden** - Leer datasets lezen en verkennen
-- 📊 **Eenvoudige Analyse** - Bereken statistieken en ontdek patronen
-- 📈 **Basisvisualisatie** - Maak grafieken en diagrammen
-- 🔬 **Project uit de Praktijk** - Volledige workflow van begin tot eind
+- 📊 **Eenvoudige Analyse** - Bereken statistieken en vind patronen
+- 📈 **Basis Visualisatie** - Maak grafieken en diagrammen
+- 🔬 **Praktijkproject** - Volledig workflow van begin tot eind
-Elk voorbeeld bevat gedetailleerde opmerkingen die elke stap uitleggen, perfect voor absolute beginners!
+Elk voorbeeld bevat gedetailleerde commentaren die elke stap uitleggen, perfect voor absolute beginners!
👉 **[Begin met de voorbeelden](examples/README.md)** 👈
## Lessen
-||
+||
|:---:|
-| Data Science voor Beginners: Roadmap - _Sketchnote door [@nitya](https://twitter.com/nitya)_ |
-
-
-| Lesnummer | Onderwerp | Lesgroep | Leerdoelen | Gekoppelde les | Auteur |
-| :-------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Data Science definiëren | [Introductie](1-Introduction/README.md) | Leer de basisconcepten achter datawetenschap en hoe het gerelateerd is aan kunstmatige intelligentie, machine learning en big data. | [les](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Data Science Ethiek | [Introductie](1-Introduction/README.md) | Concepten, uitdagingen en kaders binnen data-ethiek. | [les](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Data definiëren | [Introductie](1-Introduction/README.md) | Hoe data wordt geclassificeerd en de gebruikelijke bronnen daarvan. | [les](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Introductie in Statistiek & Kansrekening | [Introductie](1-Introduction/README.md) | De wiskundige technieken van kansrekening en statistiek om data te begrijpen. | [les](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Werken met Relationele Data | [Werken Met Data](2-Working-With-Data/README.md) | Introductie tot relationele data en de basis van het verkennen en analyseren van relationele data met de Structured Query Language, ook bekend als SQL (uitgesproken als “see-quell”). | [les](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Werken met NoSQL Data | [Werken Met Data](2-Working-With-Data/README.md) | Introductie tot niet-relationele data, de verschillende typen en de basis van het verkennen en analyseren van documentdatabases. | [les](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Werken met Python | [Werken Met Data](2-Working-With-Data/README.md) | Basisprincipes van het gebruik van Python voor data-exploratie met bibliotheken zoals Pandas. Aanbevolen om een fundamenteel begrip van Python programmeren te hebben. | [les](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Datavoorbereiding | [Werken Met Data](2-Working-With-Data/README.md) | Onderwerpen over technieken voor het schoonmaken en transformeren van data om uitdagingen rondom ontbrekende, onnauwkeurige of incomplete data aan te pakken. | [les](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Visualiseren van Hoeveelheden | [Datavisualisatie](3-Data-Visualization/README.md) | Leer hoe je Matplotlib gebruikt om vogeldata te visualiseren 🦆 | [les](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Visualiseren van Dataverdelingen | [Datavisualisatie](3-Data-Visualization/README.md) | Visualiseren van observaties en trends binnen een interval. | [les](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Visualiseren van Verhoudingen | [Datavisualisatie](3-Data-Visualization/README.md) | Visualiseren van discrete en gegroepeerde percentages. | [les](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Visualiseren van Relaties | [Datavisualisatie](3-Data-Visualization/README.md) | Visualiseren van verbindingen en correlaties tussen datasets en hun variabelen. | [les](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Betekenisvolle Visualisaties | [Datavisualisatie](3-Data-Visualization/README.md) | Technieken en richtlijnen om je visualisaties waardevol te maken voor effectieve probleemoplossing en inzichten. | [les](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Introductie tot de Data Science levenscyclus | [Levenscyclus](4-Data-Science-Lifecycle/README.md) | Introductie tot de levenscyclus van datawetenschap en de eerste stap van het verkrijgen en extraheren van data. | [les](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analyseren | [Levenscyclus](4-Data-Science-Lifecycle/README.md) | Deze fase van de datawetenschap levenscyclus richt zich op technieken om data te analyseren. | [les](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Communicatie | [Levenscyclus](4-Data-Science-Lifecycle/README.md) | Deze fase van de datawetenschap levenscyclus richt zich op het presenteren van inzichten uit data op een manier die het voor besluitvormers makkelijker maakt te begrijpen. | [les](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Datawetenschap in de Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Deze lesserie introduceert datawetenschap in de cloud en de voordelen ervan. | [les](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) en [Maud](https://twitter.com/maudstweets) |
-| 18 | Datawetenschap in de Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Modellen trainen met Low Code tools. |[les](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) en [Maud](https://twitter.com/maudstweets) |
-| 19 | Datawetenschap in de Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Modellen deployen met Azure Machine Learning Studio. | [les](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) en [Maud](https://twitter.com/maudstweets) |
-| 20 | Datawetenschap in de Praktijk | [In the Wild](6-Data-Science-In-Wild/README.md) | Datawetenschap gedreven projecten in de echte wereld. | [les](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| Data Science voor Beginners: Routekaart - _Sketchnote door [@nitya](https://twitter.com/nitya)_ |
+
+
+| Les Nummer | Onderwerp | Les Groepering | Leerdoelen | Gelinkte Les | Auteur |
+| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
+| 01 | Data Science definiëren | [Introductie](1-Introduction/README.md) | Leer de basisconcepten achter datawetenschap en hoe het verband houdt met kunstmatige intelligentie, machine learning en big data. | [les](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Ethiek in Datawetenschap | [Introductie](1-Introduction/README.md) | Concepten, uitdagingen & raamwerken van data-ethiek. | [les](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Data definiëren | [Introductie](1-Introduction/README.md) | Hoe data wordt geclassificeerd en de veelvoorkomende bronnen. | [les](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Inleiding statistiek & waarschijnlijkheid | [Introductie](1-Introduction/README.md) | De wiskundige technieken van waarschijnlijkheid en statistiek om data te begrijpen. | [les](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Werken met relationele data | [Werken met data](2-Working-With-Data/README.md) | Introductie tot relationele data en de basis van het verkennen en analyseren van relationele data met Structured Query Language, ook bekend als SQL (uitgesproken als “see-quell”). | [les](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Werken met NoSQL data | [Werken met data](2-Working-With-Data/README.md) | Introductie tot niet-relationele data, de verschillende types en de basis van het verkennen en analyseren van documentdatabases. | [les](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Werken met Python | [Werken met data](2-Working-With-Data/README.md) | Basiskennis van het gebruik van Python voor data-exploratie met bibliotheken zoals Pandas. Basiskennis van Python programmeren wordt aangeraden. | [les](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Data voorbereiding | [Werken met data](2-Working-With-Data/README.md) | Onderwerpen over datatechnieken voor het schoonmaken en transformeren van data om problemen met ontbrekende, onnauwkeurige of onvolledige data aan te pakken. | [les](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Visualiseren van hoeveelheden | [Datavisualisatie](3-Data-Visualization/README.md) | Leer hoe je Matplotlib gebruikt om vogeldata te visualiseren 🦆 | [les](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Visualiseren van datadistributies | [Datavisualisatie](3-Data-Visualization/README.md) | Visualiseren van observaties en trends binnen een interval. | [les](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Visualiseren van proporties | [Datavisualisatie](3-Data-Visualization/README.md) | Visualiseren van discrete en gegroepeerde percentages. | [les](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Visualiseren van relaties | [Datavisualisatie](3-Data-Visualization/README.md) | Visualiseren van verbanden en correlaties tussen datasets en hun variabelen. | [les](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Betekenisvolle visualisaties | [Datavisualisatie](3-Data-Visualization/README.md) | Technieken en richtlijnen om je visualisaties waardevol te maken voor effectieve probleemoplossing en inzichten. | [les](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Introductie Data Science levenscyclus | [Levenscyclus](4-Data-Science-Lifecycle/README.md) | Introductie tot de data science levenscyclus en de eerste stap van het verzamelen en extraheren van data. | [les](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Analyseren | [Levenscyclus](4-Data-Science-Lifecycle/README.md) | Deze fase van de data science levenscyclus richt zich op technieken om data te analyseren. | [les](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Communiceren | [Levenscyclus](4-Data-Science-Lifecycle/README.md) | Deze fase van de data science levenscyclus richt zich op het presenteren van inzichten uit data op een manier die het makkelijker maakt voor besluitvormers om te begrijpen. | [les](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Data Science in de Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Deze lessenreeks introduceert datawetenschap in de cloud en de voordelen ervan. | [les](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) en [Maud](https://twitter.com/maudstweets) |
+| 18 | Data Science in de Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Trainingsmodellen met Low Code tools. |[les](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) en [Maud](https://twitter.com/maudstweets) |
+| 19 | Data Science in de Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Modellen implementeren met Azure Machine Learning Studio. | [les](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) en [Maud](https://twitter.com/maudstweets) |
+| 20 | Data Science in de praktijk | [In the Wild](6-Data-Science-In-Wild/README.md) | Datawetenschap gestuurde projecten in de echte wereld. | [les](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Volg deze stappen om dit voorbeeld te openen in een Codespace:
+Volg deze stappen om deze voorbeeld in een Codespace te openen:
1. Klik op het Code dropdownmenu en selecteer de optie Open met Codespaces.
2. Selecteer + Nieuwe codespace onderaan het paneel.
Voor meer info, bekijk de [GitHub documentatie](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Volg deze stappen om deze repo te openen in een container via je lokale machine en VSCode met de VS Code Remote - Containers extensie:
+Volg deze stappen om deze repository te openen in een container met je lokale machine en VSCode met de VS Code Remote - Containers extensie:
-1. Als dit je eerste keer is dat je een development container gebruikt, zorg dan dat je systeem voldoet aan de vereisten (bijv. Docker geïnstalleerd) in [de get started documentatie](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Als dit jouw eerste keer is met een ontwikkelcontainer, zorg dan dat je systeem aan de vereisten voldoet (bijv. Docker geïnstalleerd) volgens [de startdocumentatie](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Om deze repository te gebruiken, kun je de repository openen in een geïsoleerde Docker-volume:
+Om deze repo te gebruiken kun je hem openen in een geïsoleerd Docker volume:
-**Opmerking**: Onderhuids gebruikt dit de Remote-Containers: **Clone Repository in Container Volume...**-opdracht om de broncode te klonen in een Docker-volume in plaats van het lokale bestandssysteem. [Volumes](https://docs.docker.com/storage/volumes/) zijn de aanbevolen manier om containerdata te bewaren.
+**Opmerking**: In feite wordt hiervoor de Remote-Containers: **Clone Repository in Container Volume...** opdracht gebruikt om de broncode in een Docker volume te klonen in plaats van in het lokale bestandssysteem. [Volumes](https://docs.docker.com/storage/volumes/) zijn het voorkeursmechanisme om containerdata te bewaren.
-Of open een lokaal gekloonde of gedownloade versie van de repository:
+Of open een lokaal gekloonde of gedownloade versie van de repo:
- Clone deze repository naar je lokale bestandssysteem.
-- Druk op F1 en selecteer de **Remote-Containers: Open Folder in Container...** opdracht.
-- Selecteer de gekloonde kopie van deze map, wacht tot de container start en probeer het uit.
+- Druk op F1 en selecteer de opdracht **Remote-Containers: Open Folder in Container...**.
+- Selecteer de gekloonde versie van deze folder, wacht tot de container is gestart en probeer het uit.
## Offline toegang
-Je kunt deze documentatie offline draaien met behulp van [Docsify](https://docsify.js.org/#/). Fork deze repo, [installeer Docsify](https://docsify.js.org/#/quickstart) op je lokale machine, en typ dan in de hoofdfolder van deze repo `docsify serve`. De website zal geserveerd worden op poort 3000 van je localhost: `localhost:3000`.
+Je kunt deze documentatie offline gebruiken met [Docsify](https://docsify.js.org/#/). Fork deze repo, [installeer Docsify](https://docsify.js.org/#/quickstart) op je lokale machine, en typ dan in de rootmap van deze repo `docsify serve`. De website wordt geserveerd op poort 3000 op je localhost: `localhost:3000`.
-> Let op, notebooks worden niet gerenderd via Docsify, dus als je een notebook moet draaien, doe dat apart in VS Code met een Python-kernel.
+> Let op, notebooks worden niet via Docsify gerenderd, dus wanneer je een notebook moet uitvoeren, doe dat dan apart in VS Code met een Python kernel.
## Andere Curricula
-Ons team maakt nog meer curricula! Bekijk:
+Ons team maakt ook andere curricula! Kijk eens naar:
### LangChain
@@ -225,19 +216,19 @@ Ons team maakt nog meer curricula! Bekijk:
---
-### Kernleerstof
+### Kernleren
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### Copilot Serie
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
@@ -246,7 +237,7 @@ Ons team maakt nog meer curricula! Bekijk:
**Problemen ondervonden?** Bekijk onze [Probleemoplossingsgids](TROUBLESHOOTING.md) voor oplossingen voor veelvoorkomende problemen.
-Als je vastloopt of vragen hebt over het bouwen van AI-applicaties. Doe mee met mede-lerenden en ervaren ontwikkelaars in discussies over MCP. Het is een ondersteunende community waar vragen welkom zijn en kennis vrij wordt gedeeld.
+Als je vastloopt of vragen hebt over het bouwen van AI-apps. Doe mee met mede-lerenden en ervaren ontwikkelaars in discussies over MCP. Het is een ondersteunende community waar vragen welkom zijn en kennis vrij wordt gedeeld.
[](https://discord.gg/nTYy5BXMWG)
@@ -258,5 +249,5 @@ Als je productfeedback hebt of fouten tegenkomt tijdens het bouwen, bezoek dan:
**Disclaimer**:
-Dit document is vertaald met behulp van de AI-vertalingsdienst [Co-op Translator](https://github.com/Azure/co-op-translator). Hoewel we streven naar nauwkeurigheid, dient u er rekening mee te houden dat geautomatiseerde vertalingen fouten of onjuistheden kunnen bevatten. Het oorspronkelijke document in de oorspronkelijke taal moet als de gezaghebbende bron worden beschouwd. Voor belangrijke informatie wordt professionele menselijke vertaling aanbevolen. Wij zijn niet aansprakelijk voor misverstanden of foutieve interpretaties die voortvloeien uit het gebruik van deze vertaling.
+Dit document is vertaald met behulp van de AI-vertalingsservice [Co-op Translator](https://github.com/Azure/co-op-translator). Hoewel we streven naar nauwkeurigheid, moet u er rekening mee houden dat geautomatiseerde vertalingen fouten of onnauwkeurigheden kunnen bevatten. Het oorspronkelijke document in de oorspronkelijke taal geldt als de gezaghebbende bron. Voor cruciale informatie wordt professionele menselijke vertaling aanbevolen. Wij zijn niet aansprakelijk voor misverstanden of verkeerde interpretaties die voortvloeien uit het gebruik van deze vertaling.
\ No newline at end of file
diff --git a/translations/nl/SECURITY.md b/translations/nl/SECURITY.md
index 07d60201..ab12c689 100644
--- a/translations/nl/SECURITY.md
+++ b/translations/nl/SECURITY.md
@@ -1,12 +1,3 @@
-
## Beveiliging
Microsoft neemt de beveiliging van onze softwareproducten en -diensten serieus, inclusief alle broncode-repositories die worden beheerd via onze GitHub-organisaties, waaronder [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) en [onze GitHub-organisaties](https://opensource.microsoft.com/).
diff --git a/translations/nl/SUPPORT.md b/translations/nl/SUPPORT.md
index 1c8d7560..67c55500 100644
--- a/translations/nl/SUPPORT.md
+++ b/translations/nl/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Ondersteuning
## Hoe problemen te melden en hulp te krijgen
diff --git a/translations/nl/TROUBLESHOOTING.md b/translations/nl/TROUBLESHOOTING.md
index 852f0ad0..8566dbeb 100644
--- a/translations/nl/TROUBLESHOOTING.md
+++ b/translations/nl/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Probleemoplossingsgids
Deze gids biedt oplossingen voor veelvoorkomende problemen die je kunt tegenkomen bij het werken met het curriculum Data Science voor Beginners.
diff --git a/translations/nl/USAGE.md b/translations/nl/USAGE.md
index 1ee6149c..8589349d 100644
--- a/translations/nl/USAGE.md
+++ b/translations/nl/USAGE.md
@@ -1,12 +1,3 @@
-
# Gebruikershandleiding
Deze handleiding biedt voorbeelden en veelvoorkomende workflows voor het gebruik van het curriculum Data Science voor Beginners.
diff --git a/translations/nl/docs/_sidebar.md b/translations/nl/docs/_sidebar.md
index 0f0a3220..c0c57d70 100644
--- a/translations/nl/docs/_sidebar.md
+++ b/translations/nl/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Introductie
- [Data Science definiëren](../1-Introduction/01-defining-data-science/README.md)
- [Ethiek van Data Science](../1-Introduction/02-ethics/README.md)
diff --git a/translations/nl/examples/README.md b/translations/nl/examples/README.md
index ea8dae34..862b4773 100644
--- a/translations/nl/examples/README.md
+++ b/translations/nl/examples/README.md
@@ -1,12 +1,3 @@
-
# Beginner-Vriendelijke Data Science Voorbeelden
Welkom in de voorbeeldenmap! Deze verzameling eenvoudige, goed becommentarieerde voorbeelden is ontworpen om je te helpen starten met data science, zelfs als je een complete beginner bent.
diff --git a/translations/nl/for-teachers.md b/translations/nl/for-teachers.md
index 86cf386b..889b061f 100644
--- a/translations/nl/for-teachers.md
+++ b/translations/nl/for-teachers.md
@@ -1,12 +1,3 @@
-
## Voor Docenten
Wilt u deze lesstof in uw klas gebruiken? Voel u vrij!
diff --git a/translations/nl/quiz-app/README.md b/translations/nl/quiz-app/README.md
index 87dc2d4d..e0f2b3ae 100644
--- a/translations/nl/quiz-app/README.md
+++ b/translations/nl/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Quizzen
Deze quizzen zijn de quizzen vóór en na de lessen in het data science-curriculum op https://aka.ms/datascience-beginners
diff --git a/translations/nl/sketchnotes/README.md b/translations/nl/sketchnotes/README.md
index 37a1fc3d..0f2fc297 100644
--- a/translations/nl/sketchnotes/README.md
+++ b/translations/nl/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Vind hier alle sketchnotes!
## Credits
diff --git a/translations/no/.co-op-translator.json b/translations/no/.co-op-translator.json
new file mode 100644
index 00000000..dd5e299f
--- /dev/null
+++ b/translations/no/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:56:20+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "no"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-26T21:34:47+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "no"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-26T21:35:58+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "no"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:39:37+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "no"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-26T21:27:42+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "no"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T22:29:39+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "no"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-26T21:39:59+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "no"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:41:13+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "no"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-26T21:48:19+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "no"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-26T21:14:08+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "no"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:35:58+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "no"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:56:14+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "no"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T22:16:08+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "no"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-26T21:12:21+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "no"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:47:35+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "no"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-26T21:07:37+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "no"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T22:18:48+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "no"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-26T20:59:43+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "no"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-26T20:47:25+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T22:23:31+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-26T23:19:38+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T22:25:17+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-26T22:51:21+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T22:22:55+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-26T23:24:16+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:40:24+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-26T22:55:37+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T22:24:04+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-26T22:46:00+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T22:47:17+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T22:46:41+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-26T23:07:44+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-26T23:09:19+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-26T22:58:11+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-26T22:59:46+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-26T23:15:13+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-26T23:02:29+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-26T23:12:07+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "no"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-26T22:41:08+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "no"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:10:51+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "no"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-26T22:28:18+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "no"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:10:11+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "no"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-26T22:31:16+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "no"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:11:16+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "no"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-26T22:39:41+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "no"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-26T22:20:59+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "no"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T22:13:46+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "no"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-26T22:11:21+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "no"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T22:12:25+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "no"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-26T22:06:10+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "no"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T22:15:14+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "no"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-26T22:18:14+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "no"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-26T21:57:27+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "no"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:33:43+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "no"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-26T21:56:25+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "no"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-26T21:49:32+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "no"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:26:12+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "no"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-26T20:44:46+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "no"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:10:41+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "no"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:21:48+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "no"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:58:16+00:00",
+ "source_file": "README.md",
+ "language_code": "no"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-26T20:45:45+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "no"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-26T20:42:35+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "no"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:41:43+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "no"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:04:48+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "no"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-26T21:13:18+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "no"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:03:46+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "no"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:58:01+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "no"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-26T22:19:44+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "no"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-26T21:49:01+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "no"
+ }
+}
\ No newline at end of file
diff --git a/translations/no/1-Introduction/01-defining-data-science/README.md b/translations/no/1-Introduction/01-defining-data-science/README.md
index 975b174a..29004012 100644
--- a/translations/no/1-Introduction/01-defining-data-science/README.md
+++ b/translations/no/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Definere Data Science
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/no/1-Introduction/01-defining-data-science/assignment.md b/translations/no/1-Introduction/01-defining-data-science/assignment.md
index 1235225b..162c8ceb 100644
--- a/translations/no/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/no/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Oppgave: Datascience-scenarier
I denne første oppgaven ber vi deg tenke på en reell prosess eller et problem innen forskjellige problemområder, og hvordan du kan forbedre det ved hjelp av datascience-prosessen. Tenk på følgende:
diff --git a/translations/no/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/no/1-Introduction/01-defining-data-science/solution/assignment.md
index 68776c53..8a94b813 100644
--- a/translations/no/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/no/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Oppgave: Datascience-scenarier
I denne første oppgaven ber vi deg tenke på noen virkelige prosesser eller problemer innen ulike problemområder, og hvordan du kan forbedre dem ved hjelp av datascience-prosessen. Tenk på følgende:
diff --git a/translations/no/1-Introduction/02-ethics/README.md b/translations/no/1-Introduction/02-ethics/README.md
index a52c3cb3..1cd032b1 100644
--- a/translations/no/1-Introduction/02-ethics/README.md
+++ b/translations/no/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Introduksjon til Dataetikk
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/no/1-Introduction/02-ethics/assignment.md b/translations/no/1-Introduction/02-ethics/assignment.md
index 515f759b..c0405c1c 100644
--- a/translations/no/1-Introduction/02-ethics/assignment.md
+++ b/translations/no/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Skriv en case-studie om dataetikk
## Instruksjoner
diff --git a/translations/no/1-Introduction/03-defining-data/README.md b/translations/no/1-Introduction/03-defining-data/README.md
index ea8f55bc..7b7559b0 100644
--- a/translations/no/1-Introduction/03-defining-data/README.md
+++ b/translations/no/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Definere Data
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/no/1-Introduction/03-defining-data/assignment.md b/translations/no/1-Introduction/03-defining-data/assignment.md
index ebc124dd..d92e77b1 100644
--- a/translations/no/1-Introduction/03-defining-data/assignment.md
+++ b/translations/no/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Klassifisering av datasett
## Instruksjoner
diff --git a/translations/no/1-Introduction/04-stats-and-probability/README.md b/translations/no/1-Introduction/04-stats-and-probability/README.md
index c07fc8ef..e0dd5856 100644
--- a/translations/no/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/no/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# En kort introduksjon til statistikk og sannsynlighet
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ For å hjelpe oss med å forstå fordelingen av data, er det nyttig å snakke om
Grafisk kan vi representere forholdet mellom median og kvartiler i et diagram kalt **boksplott**:
-
+
Her beregner vi også **interkvartilområde** IQR=Q3-Q1, og såkalte **uteliggere** - verdier som ligger utenfor grensene [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/no/1-Introduction/04-stats-and-probability/assignment.md b/translations/no/1-Introduction/04-stats-and-probability/assignment.md
index 77aacf51..0b2b02ea 100644
--- a/translations/no/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/no/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Liten Diabetesstudie
I denne oppgaven skal vi jobbe med et lite datasett av diabetespasienter hentet fra [her](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/no/1-Introduction/README.md b/translations/no/1-Introduction/README.md
index 677034ae..b7bd213e 100644
--- a/translations/no/1-Introduction/README.md
+++ b/translations/no/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduksjon til Data Science

diff --git a/translations/no/2-Working-With-Data/05-relational-databases/README.md b/translations/no/2-Working-With-Data/05-relational-databases/README.md
index eec8ad86..991b6a7a 100644
--- a/translations/no/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/no/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Arbeide med data: Relasjonsdatabaser
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/no/2-Working-With-Data/05-relational-databases/assignment.md b/translations/no/2-Working-With-Data/05-relational-databases/assignment.md
index d03ab0bd..0e8e4a0e 100644
--- a/translations/no/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/no/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Vise flyplassdata
Du har fått tilgang til en [database](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) bygget på [SQLite](https://sqlite.org/index.html) som inneholder informasjon om flyplasser. Skjemaet vises nedenfor. Du skal bruke [SQLite-utvidelsen](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) i [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) for å vise informasjon om flyplasser i forskjellige byer.
diff --git a/translations/no/2-Working-With-Data/06-non-relational/README.md b/translations/no/2-Working-With-Data/06-non-relational/README.md
index cd53893d..ff4e861f 100644
--- a/translations/no/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/no/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Arbeide med data: Ikke-relasjonelle data
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/no/2-Working-With-Data/06-non-relational/assignment.md b/translations/no/2-Working-With-Data/06-non-relational/assignment.md
index 5001196f..0a34634f 100644
--- a/translations/no/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/no/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Brusfortjenester
## Instruksjoner
diff --git a/translations/no/2-Working-With-Data/07-python/README.md b/translations/no/2-Working-With-Data/07-python/README.md
index 16a53e0d..b38e1d17 100644
--- a/translations/no/2-Working-With-Data/07-python/README.md
+++ b/translations/no/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Arbeide med Data: Python og Pandas-biblioteket
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/no/2-Working-With-Data/07-python/assignment.md b/translations/no/2-Working-With-Data/07-python/assignment.md
index 97b439ed..bdca91c8 100644
--- a/translations/no/2-Working-With-Data/07-python/assignment.md
+++ b/translations/no/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Oppgave for Databehandling i Python
I denne oppgaven vil vi be deg utdype koden vi har begynt å utvikle i våre utfordringer. Oppgaven består av to deler:
diff --git a/translations/no/2-Working-With-Data/08-data-preparation/README.md b/translations/no/2-Working-With-Data/08-data-preparation/README.md
index 0a121ef3..44e54a55 100644
--- a/translations/no/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/no/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Arbeide med data: Datapreparering
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/no/2-Working-With-Data/08-data-preparation/assignment.md b/translations/no/2-Working-With-Data/08-data-preparation/assignment.md
index 4c300fd2..c41fe5c6 100644
--- a/translations/no/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/no/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Evaluere Data fra et Skjema
En klient har testet et [lite skjema](../../../../2-Working-With-Data/08-data-preparation/index.html) for å samle inn grunnleggende data om sin kundebase. De har tatt med sine funn til deg for å validere dataene de har samlet inn. Du kan åpne `index.html`-siden i nettleseren for å se på skjemaet.
diff --git a/translations/no/2-Working-With-Data/README.md b/translations/no/2-Working-With-Data/README.md
index d46be6a8..e5411db3 100644
--- a/translations/no/2-Working-With-Data/README.md
+++ b/translations/no/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Arbeide med data

diff --git a/translations/no/3-Data-Visualization/09-visualization-quantities/README.md b/translations/no/3-Data-Visualization/09-visualization-quantities/README.md
index c31c137f..08db7c8c 100644
--- a/translations/no/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/no/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualisering av Mengder
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/no/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/no/3-Data-Visualization/09-visualization-quantities/assignment.md
index e3567925..ac65fc6c 100644
--- a/translations/no/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/no/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linjer, spredningsdiagrammer og stolpediagrammer
## Instruksjoner
diff --git a/translations/no/3-Data-Visualization/10-visualization-distributions/README.md b/translations/no/3-Data-Visualization/10-visualization-distributions/README.md
index 430784e0..68c3b8d7 100644
--- a/translations/no/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/no/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualisering av fordelinger
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/no/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/no/3-Data-Visualization/10-visualization-distributions/assignment.md
index 88441b21..731be162 100644
--- a/translations/no/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/no/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Bruk ferdighetene dine
## Instruksjoner
diff --git a/translations/no/3-Data-Visualization/11-visualization-proportions/README.md b/translations/no/3-Data-Visualization/11-visualization-proportions/README.md
index 7afa4872..0c0a5477 100644
--- a/translations/no/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/no/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualisering av proporsjoner
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/no/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/no/3-Data-Visualization/11-visualization-proportions/assignment.md
index 062fef1d..d6e38c11 100644
--- a/translations/no/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/no/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Prøv det i Excel
## Instruksjoner
diff --git a/translations/no/3-Data-Visualization/12-visualization-relationships/README.md b/translations/no/3-Data-Visualization/12-visualization-relationships/README.md
index b4300a3c..9457a48c 100644
--- a/translations/no/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/no/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualisering av relasjoner: Alt om honning 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/no/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/no/3-Data-Visualization/12-visualization-relationships/assignment.md
index b94f25f9..4e245d4b 100644
--- a/translations/no/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/no/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Utforsk bikuben
## Instruksjoner
diff --git a/translations/no/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/no/3-Data-Visualization/13-meaningful-visualizations/README.md
index b767adea..04a52382 100644
--- a/translations/no/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/no/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Lage Meningsfulle Visualiseringer
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/no/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/no/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index e9c1d8f6..b9459764 100644
--- a/translations/no/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/no/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Bygg din egen tilpassede vis
## Instruksjoner
diff --git a/translations/no/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/no/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 681a15b6..d2f4482b 100644
--- a/translations/no/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/no/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Dangerous Liaisons datavisualiseringsprosjekt
For å komme i gang må du sørge for at du har NPM og Node installert og kjører på maskinen din. Installer avhengighetene (npm install) og kjør deretter prosjektet lokalt (npm run serve):
diff --git a/translations/no/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/no/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 03abc1bc..96bd973b 100644
--- a/translations/no/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/no/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Dangerous Liaisons datavisualiseringsprosjekt
For å komme i gang, må du sørge for at du har NPM og Node installert på maskinen din. Installer avhengighetene (npm install) og kjør deretter prosjektet lokalt (npm run serve):
diff --git a/translations/no/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/no/3-Data-Visualization/R/09-visualization-quantities/README.md
index ff427684..b8d0464b 100644
--- a/translations/no/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/no/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualisering av Mengder
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/no/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/no/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index ba4eeb2a..b6de278e 100644
--- a/translations/no/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/no/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linjer, spredningsdiagrammer og stolpediagrammer
## Instruksjoner
diff --git a/translations/no/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/no/3-Data-Visualization/R/10-visualization-distributions/README.md
index 409f4cea..d0e73d0b 100644
--- a/translations/no/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/no/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualisering av fordelinger
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/no/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/no/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index be3c40ac..f9d740ae 100644
--- a/translations/no/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/no/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Bruk ferdighetene dine
## Instruksjoner
diff --git a/translations/no/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/no/3-Data-Visualization/R/11-visualization-proportions/README.md
index b4c137aa..10ee03e7 100644
--- a/translations/no/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/no/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualisering av proporsjoner
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/no/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/no/3-Data-Visualization/R/12-visualization-relationships/README.md
index abc42b38..5928971e 100644
--- a/translations/no/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/no/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualisering av relasjoner: Alt om honning 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/no/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/no/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 5a811b03..4d06d9b4 100644
--- a/translations/no/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/no/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Lage Meningsfulle Visualiseringer
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/no/3-Data-Visualization/README.md b/translations/no/3-Data-Visualization/README.md
index b1d9262e..180d1c45 100644
--- a/translations/no/3-Data-Visualization/README.md
+++ b/translations/no/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Visualiseringer

diff --git a/translations/no/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/no/4-Data-Science-Lifecycle/14-Introduction/README.md
index 0380e6e7..e5b9e46e 100644
--- a/translations/no/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/no/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduksjon til livssyklusen for datavitenskap
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/no/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/no/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 45d2aa01..ba05905c 100644
--- a/translations/no/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/no/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Vurdere et Datasett
En klient har kontaktet teamet ditt for hjelp med å undersøke en taxikundes sesongbaserte forbruksvaner i New York City.
diff --git a/translations/no/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/no/4-Data-Science-Lifecycle/15-analyzing/README.md
index c0ea510f..428ed545 100644
--- a/translations/no/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/no/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Livssyklusen for datavitenskap: Analysering
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/no/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/no/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index f908c8a9..34010ff6 100644
--- a/translations/no/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/no/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Utforske for svar
Dette er en fortsettelse av [oppgaven](../14-Introduction/assignment.md) fra forrige leksjon, hvor vi tok en rask titt på datasettet. Nå skal vi se nærmere på dataene.
diff --git a/translations/no/4-Data-Science-Lifecycle/16-communication/README.md b/translations/no/4-Data-Science-Lifecycle/16-communication/README.md
index 1cd49f0d..e057dffb 100644
--- a/translations/no/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/no/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Livssyklusen for Data Science: Kommunikasjon
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/no/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/no/4-Data-Science-Lifecycle/16-communication/assignment.md
index 7181ad62..9ceae645 100644
--- a/translations/no/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/no/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Fortell en historie
## Instruksjoner
diff --git a/translations/no/4-Data-Science-Lifecycle/README.md b/translations/no/4-Data-Science-Lifecycle/README.md
index 0f8a0645..2d847266 100644
--- a/translations/no/4-Data-Science-Lifecycle/README.md
+++ b/translations/no/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Livssyklusen for Data Science

diff --git a/translations/no/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/no/5-Data-Science-In-Cloud/17-Introduction/README.md
index 7f4f08ed..a7401a85 100644
--- a/translations/no/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/no/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduksjon til Data Science i Skyen
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/no/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/no/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index b997e8f3..6b9fd1f4 100644
--- a/translations/no/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/no/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Markedsundersøkelse
## Instruksjoner
diff --git a/translations/no/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/no/5-Data-Science-In-Cloud/18-Low-Code/README.md
index acfdde86..60b72022 100644
--- a/translations/no/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/no/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Data Science i skyen: "Low code/No code"-metoden
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/no/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/no/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index d3614f82..7061d55d 100644
--- a/translations/no/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/no/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Lav kode/Ingen kode Data Science-prosjekt på Azure ML
## Instruksjoner
diff --git a/translations/no/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/no/5-Data-Science-In-Cloud/19-Azure/README.md
index 9a3e207c..16e6c70b 100644
--- a/translations/no/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/no/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Data Science i skyen: "Azure ML SDK"-metoden
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/no/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/no/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 69f9f0db..5b1fc6ed 100644
--- a/translations/no/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/no/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Datascience-prosjekt med Azure ML SDK
## Instruksjoner
diff --git a/translations/no/5-Data-Science-In-Cloud/README.md b/translations/no/5-Data-Science-In-Cloud/README.md
index 7f166f87..00f2601f 100644
--- a/translations/no/5-Data-Science-In-Cloud/README.md
+++ b/translations/no/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Data Science i skyen

diff --git a/translations/no/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/no/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 4dd2a1f8..8eb8c66c 100644
--- a/translations/no/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/no/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Data Science i den virkelige verden
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/no/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/no/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 0dead861..06b02af3 100644
--- a/translations/no/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/no/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Utforsk et Planetary Computer-datasett
## Instruksjoner
diff --git a/translations/no/6-Data-Science-In-Wild/README.md b/translations/no/6-Data-Science-In-Wild/README.md
index 23cd4c4c..94a9f54c 100644
--- a/translations/no/6-Data-Science-In-Wild/README.md
+++ b/translations/no/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Data Science i det virkelige liv
Reelle anvendelser av data science på tvers av bransjer.
diff --git a/translations/no/AGENTS.md b/translations/no/AGENTS.md
index edbc1e9c..6100b42d 100644
--- a/translations/no/AGENTS.md
+++ b/translations/no/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Prosjektoversikt
diff --git a/translations/no/CODE_OF_CONDUCT.md b/translations/no/CODE_OF_CONDUCT.md
index 44a35911..7c9f5f06 100644
--- a/translations/no/CODE_OF_CONDUCT.md
+++ b/translations/no/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft Open Source Code of Conduct
Dette prosjektet har tatt i bruk [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/no/CONTRIBUTING.md b/translations/no/CONTRIBUTING.md
index 7e98eb4c..197a950f 100644
--- a/translations/no/CONTRIBUTING.md
+++ b/translations/no/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Bidra til Data Science for Beginners
Takk for din interesse for å bidra til Data Science for Beginners-kurset! Vi ønsker bidrag fra fellesskapet velkommen.
diff --git a/translations/no/INSTALLATION.md b/translations/no/INSTALLATION.md
index 9f86d8c1..440d31dd 100644
--- a/translations/no/INSTALLATION.md
+++ b/translations/no/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Installasjonsveiledning
Denne veiledningen hjelper deg med å sette opp miljøet ditt for å jobbe med Data Science for Beginners-kurset.
diff --git a/translations/no/README.md b/translations/no/README.md
index 34b6a25f..13e58d49 100644
--- a/translations/no/README.md
+++ b/translations/no/README.md
@@ -1,13 +1,4 @@
-
-# Data Science for Beginners - Et pensum
+# Data Science for Beginners - En læreplan
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,27 +17,27 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Azure Cloud Advocates hos Microsoft er glade for å tilby et 10-ukers, 20-leksjons pensum helt om Data Science. Hver leksjon inkluderer prøver før og etter leksjonen, skriftlige instruksjoner for å fullføre leksjonen, en løsning og en oppgave. Vår prosjektbaserte pedagogikk lar deg lære mens du bygger, en bevist måte for nye ferdigheter å «feste seg».
+Azure Cloud Advocates hos Microsoft er glade for å kunne tilby en 10-ukers, 20-leksjons læreplan som handler om Data Science. Hver leksjon inkluderer quiz før og etter leksjonen, skriftlige instruksjoner for å fullføre leksjonen, en løsning og en oppgave. Vår prosjektbaserte pedagogikk lar deg lære mens du bygger, en bevist måte for nye ferdigheter å «sette seg».
-**Hjertelig takk til våre forfattere:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Stor takk til våre forfattere:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Spesiell takk 🙏 til våre [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) forfattere, gjennomgåere og innholdsleverandører,** særlig Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Spesiell takk 🙏 til våre [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) forfattere, korrekturlesere og innholdsleverandører,** spesielt Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Data Science For Beginners - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
+| Data Science For Beginners - _Sketchnote av [@nitya](https://twitter.com/nitya)_ |
-### 🌐 Flerspråklig støtte
+### 🌐 Støtte for flere språk
#### Støttet via GitHub Action (Automatisert & Alltid Oppdatert)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](./README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabisk](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarsk](../bg/README.md) | [Burmesisk (Myanmar)](../my/README.md) | [Kinesisk (Forenklet)](../zh-CN/README.md) | [Kinesisk (Tradisjonell, Hong Kong)](../zh-HK/README.md) | [Kinesisk (Tradisjonell, Macau)](../zh-MO/README.md) | [Kinesisk (Tradisjonell, Taiwan)](../zh-TW/README.md) | [Kroatisk](../hr/README.md) | [Tsjekkisk](../cs/README.md) | [Dansk](../da/README.md) | [Nederlandsk](../nl/README.md) | [Estisk](../et/README.md) | [Finsk](../fi/README.md) | [Fransk](../fr/README.md) | [Tysk](../de/README.md) | [Gresk](../el/README.md) | [Hebraisk](../he/README.md) | [Hindi](../hi/README.md) | [Ungarsk](../hu/README.md) | [Indonesisk](../id/README.md) | [Italiensk](../it/README.md) | [Japansk](../ja/README.md) | [Kannada](../kn/README.md) | [Koreansk](../ko/README.md) | [Litauisk](../lt/README.md) | [Malaysisk](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepalesisk](../ne/README.md) | [Nigeriansk Pidgin](../pcm/README.md) | [Norsk](./README.md) | [Persisk (Farsi)](../fa/README.md) | [Polsk](../pl/README.md) | [Portugisisk (Brasil)](../pt-BR/README.md) | [Portugisisk (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Rumensk](../ro/README.md) | [Russisk](../ru/README.md) | [Serbisk (Kyrillisk)](../sr/README.md) | [Slovakisk](../sk/README.md) | [Slovensk](../sl/README.md) | [Spansk](../es/README.md) | [Swahili](../sw/README.md) | [Svensk](../sv/README.md) | [Tagalog (Filippinsk)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Tyrkisk](../tr/README.md) | [Ukrainsk](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamesisk](../vi/README.md)
> **Foretrekker du å klone lokalt?**
-> Dette depotet inkluderer over 50 språkoversettelser som øker nedlastingsstørrelsen betydelig. For å klone uten oversettelser, bruk sparsjekk ut:
+> Dette depotet inkluderer over 50 språkoversettelser som øker nedlastingsstørrelsen betydelig. For å klone uten oversettelser, bruk sparsjekontroll:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
@@ -55,189 +46,187 @@ Azure Cloud Advocates hos Microsoft er glade for å tilby et 10-ukers, 20-leksjo
> Dette gir deg alt du trenger for å fullføre kurset med en mye raskere nedlasting.
-**Hvis du ønsker at ytterligere oversettelsesspråk skal støttes, er disse listet [her](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Hvis du ønsker flere støttede oversettelsesspråk, er de listet opp [her](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Bli med i vårt fellesskap
[](https://discord.gg/nTYy5BXMWG)
-Vi har en pågående Discord-lær-med-AI-serie, lær mer og bli med oss på [Learn with AI Series](https://aka.ms/learnwithai/discord) fra 18. - 30. september 2025. Du vil få tips og triks for bruk av GitHub Copilot for Data Science.
+Vi har en pågående Discord-lær med AI-serie, lær mer og bli med oss på [Learn with AI Series](https://aka.ms/learnwithai/discord) fra 18. til 30. september 2025. Du vil få tips og triks om bruk av GitHub Copilot for Data Science.
-
+
-# Er du en student?
+# Er du student?
Kom i gang med følgende ressurser:
-- [Student Hub-side](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) På denne siden finner du nybegynnerressurser, studentpakker og til og med muligheter for å få en gratis sertifikatkupong. Dette er en side du ønsker å bokmerke og sjekke fra tid til annen ettersom vi bytter ut innhold minst månedlig.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Bli med i et globalt fellesskap av studentambassadører, dette kan være din vei inn i Microsoft.
+- [Student Hub side](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) På denne siden finner du nybegynnerressurser, studentpakker og til og med måter å få en gratis sertifikatkupong på. Dette er en side du bør bokmerke og sjekke fra tid til annen siden vi bytter ut innhold minst månedlig.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Bli med i et globalt fellesskap av studentambassadører; dette kan være din vei inn i Microsoft.
-# Komme i gang
+# Kom i gang
## 📚 Dokumentasjon
-- **[Installasjonsveiledning](INSTALLATION.md)** - Steg-for-steg oppsettinstruksjoner for nybegynnere
+- **[Installasjonsveiledning](INSTALLATION.md)** - Instruksjoner steg-for-steg for oppsett for nybegynnere
- **[Bruksanvisning](USAGE.md)** - Eksempler og vanlige arbeidsflyter
- **[Feilsøking](TROUBLESHOOTING.md)** - Løsninger på vanlige problemer
- **[Bidragsveiledning](CONTRIBUTING.md)** - Hvordan bidra til dette prosjektet
-- **[For lærere](for-teachers.md)** - Veiledning for undervisning og klasseromsressurser
+- **[For lærere](for-teachers.md)** - Veiledning for undervisning og ressurser for klasserommet
## 👨🎓 For studenter
-> **Fullstendige nybegynnere**: Ny på data science? Start med våre [nybegynnervennlige eksempler](examples/README.md)! Disse enkle, godt kommenterte eksemplene hjelper deg å forstå det grunnleggende før du dykker ned i hele pensum.
-> **[Studenter](https://aka.ms/student-page)**: for å bruke dette pensumet på egenhånd, forkk hele repoet og fullfør øvelsene selv, begynn med en prøve før forelesningen. Les deretter forelesningen og fullfør resten av aktivitetene. Prøv å lage prosjektene ved å forstå leksjonene i stedet for å kopiere løsningskoden; den koden er imidlertid tilgjengelig i /solutions-mappene i hver prosjektorienterte leksjon. En annen idé kan være å danne en studiegruppe med venner og gå gjennom innholdet sammen. For videre studier anbefaler vi [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Fullstendige nybegynnere**: Ny innen data science? Start med våre [nybegynnervennlige eksempler](examples/README.md)! Disse enkle, godt kommenterte eksemplene vil hjelpe deg å forstå grunnleggende før du går inn i hele læreplanen.
+> **[Studenter](https://aka.ms/student-page)**: for å bruke denne læreplanen på egen hånd, forgrener du hele depotet og fullfører oppgavene selv, start med en quiz før forelesningen. Deretter leser du forelesningen og fullfører resten av aktivitetene. Prøv å lage prosjektene ved å forstå leksjonene i stedet for å kopiere løsningskoden; den koden er imidlertid tilgjengelig i /solutions-mappene i hver prosjektorienterte leksjon. En annen idé er å danne en studiegruppe med venner og gå gjennom innholdet sammen. For videre studier anbefaler vi [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Rask start:**
1. Sjekk [Installasjonsveiledningen](INSTALLATION.md) for å sette opp miljøet ditt
-2. Gå gjennom [Bruksanvisningen](USAGE.md) for å lære hvordan du jobber med pensumet
-3. Start med Leksjon 1 og jobb deg gjennom i rekkefølge
+2. Gå gjennom [Bruksanvisningen](USAGE.md) for å lære hvordan du jobber med læreplanen
+3. Begynn med Leksjon 1 og jobb deg videre i rekkefølge
4. Bli med i vårt [Discord-fellesskap](https://aka.ms/ds4beginners/discord) for støtte
## 👩🏫 For lærere
-> **Lærere**: vi har [inkludert noen forslag](for-teachers.md) til hvordan du kan bruke dette pensumet. Vi setter stor pris på dine tilbakemeldinger [i vårt diskusjonsforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
+> **Lærere**: vi har [inkludert noen forslag](for-teachers.md) til hvordan du kan bruke denne læreplanen. Vi ønsker gjerne tilbakemeldinger [i vårt diskusjonsforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Møt teamet
+
[](https://youtu.be/8mzavjQSMM4 "Promo video")
**Gif av** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Klikk på bildet over for en video om prosjektet og folka som laget det!
+> 🎥 Klikk på bildet over for en video om prosjektet og folkene som laget det!
## Pedagogikk
-Vi har valgt to pedagogiske prinsipper mens vi bygde dette pensumet: å sikre at det er prosjektbasert og at det inneholder hyppige quizzer. Ved slutten av denne serien vil studentene ha lært grunnleggende prinsipper for datavitenskap, inkludert etiske konsepter, dataklargjøring, forskjellige måter å arbeide med data på, datavisualisering, dataanalyse, virkelige bruksområder for datavitenskap og mer.
+Vi har valgt to pedagogiske prinsipper under utarbeidelsen av denne læreplanen: å sikre at den er prosjektbasert og at den inneholder hyppige quizzer. Ved slutten av denne serien vil studentene ha lært grunnleggende prinsipper innen data science, inkludert etiske konsepter, datarensing, ulike måter å jobbe med data på, datavisualisering, dataanalyse, virkelige bruksområder for data science og mer.
-I tillegg setter en lavterskelquiz før en klasse studentens intensjon mot å lære et tema, mens en annen quiz etter klassen sikrer ytterligere bevaring. Dette pensumet er designet for å være fleksibelt og morsomt, og kan tas helt eller delvis. Prosjektene starter smått og blir stadig mer komplekse mot slutten av den 10 uker lange syklusen.
+I tillegg setter en liten quiz før timen studentens intensjon om å lære et emne, mens en andre quiz etter timen sikrer videre opprettholdelse. Denne læreplanen er designet for å være fleksibel og morsom og kan tas i sin helhet eller delvis. Prosjektene starter smått og blir mer og mer komplekse mot slutten av 10-ukers syklusen.
-> Finn vår [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) retningslinjer. Vi tar imot din konstruktive tilbakemelding!
+> Finn våre [atferdsregler](CODE_OF_CONDUCT.md), [bidragsretningslinjer](CONTRIBUTING.md), [oversettelsesretningslinjer](TRANSLATIONS.md). Vi ønsker din konstruktive tilbakemelding velkommen!
## Hver leksjon inkluderer:
-- Valgfri skisse-notat
+- Valgfri sketchnote
- Valgfri tilleggsvideo
-- Oppvarmingsquiz før leksjonen
+- Forhåndsquiz før leksjonen
- Skriftlig leksjon
-- For prosjektbaserte leksjoner, trinnvise guider for å bygge prosjektet
+- For prosjektbaserte leksjoner, trinnvise guider på hvordan bygge prosjektet
- Kunnskapssjekker
- En utfordring
- Tilleggslesing
- Oppgave
- [Quiz etter leksjonen](https://ff-quizzes.netlify.app/en/)
-> **En merknad om quizzer**: Alle quizzer ligger i Quiz-App-mappen, totalt 40 quizzer med tre spørsmål hver. De er lenket fra leksjonene, men quiz-appen kan kjøres lokalt eller deployeres til Azure; følg instruksjonene i `quiz-app` mappen. De lokaliseres gradvis.
+> **En merknad om quizzer**: Alle quizzer finnes i Quiz-App-mappen, totalt 40 quizzer med tre spørsmål hver. De er linket fra leksjonene, men quiz-appen kan også kjøres lokalt eller distribueres til Azure; følg instruksjonene i `quiz-app`-mappen. De blir gradvis oversatt.
## 🎓 Nybegynnervennlige eksempler
-**Ny i datavitenskap?** Vi har laget en spesiell [eksempelkatalog](examples/README.md) med enkel, godt kommentert kode for å hjelpe deg i gang:
+**Ny på Data Science?** Vi har laget en spesiell [eksempelmapppe](examples/README.md) med enkel, godt kommentert kode for å hjelpe deg å komme i gang:
-- 🌟 **Hello World** - Ditt første datavitenskapsprogram
-- 📂 **Laste inn data** - Lær å lese og utforske datasett
-- 📊 **Enkel analyse** - Beregn statistikk og finn mønstre
-- 📈 **Grunnleggende visualisering** - Lag diagrammer og grafer
-- 🔬 **Virkelig prosjekt** - Hele arbeidsflyten fra start til slutt
+- 🌟 **Hello World** – Ditt første data science-program
+- 📂 **Laste inn data** – Lær å lese og utforske datasett
+- 📊 **Enkel analyse** – Beregn statistikk og finn mønstre
+- 📈 **Grunnleggende visualisering** – Lag diagrammer og grafer
+- 🔬 **Virkelighetsnært prosjekt** – Full arbeidsflyt fra start til slutt
-Hvert eksempel inkluderer detaljerte kommentarer som forklarer hvert trinn, perfekt for absolutt nybegynnere!
+Hvert eksempel inkluderer detaljerte kommentarer som forklarer hvert steg, perfekt for absolutt nybegynnere!
👉 **[Start med eksemplene](examples/README.md)** 👈
## Leksjoner
-
-||
+||
|:---:|
-| Datavitenskap for nybegynnere: veikart - _Skisse-notat av [@nitya](https://twitter.com/nitya)_ |
-
+| Data Science For Beginners: Veikart - _Sketchnote av [@nitya](https://twitter.com/nitya)_ |
| Leksjonsnummer | Tema | Leksjonsgruppe | Læringsmål | Lenket leksjon | Forfatter |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Definere datavitenskap | [Introduksjon](1-Introduction/README.md) | Lær de grunnleggende konseptene bak datavitenskap og hvordan det relaterer seg til kunstig intelligens, maskinlæring og big data. | [leksjon](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Etikk i datavitenskap | [Introduksjon](1-Introduction/README.md) | Datatiske etikk-konsepter, utfordringer og rammeverk. | [leksjon](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Definere data | [Introduksjon](1-Introduction/README.md) | Hvordan data klassifiseres og dets vanlige kilder. | [leksjon](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Introduksjon til statistikk og sannsynlighet | [Introduksjon](1-Introduction/README.md) | De matematiske teknikkene sannsynlighet og statistikk for å forstå data. | [leksjon](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Arbeide med relasjonsdata | [Arbeide med data](2-Working-With-Data/README.md) | Introduksjon til relasjonsdata og det grunnleggende ved utforsking og analyse av relasjonsdata med Structured Query Language, også kjent som SQL (uttales "see-quell"). | [leksjon](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Arbeide med NoSQL-data | [Arbeide med data](2-Working-With-Data/README.md) | Introduksjon til ikke-relasjonsdata, ulike typer og det grunnleggende ved utforsking og analyse av dokumentdatabaser. | [leksjon](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 01 | Definisjon av Data Science | [Introduksjon](1-Introduction/README.md) | Lær de grunnleggende konseptene bak data science og hvordan det er relatert til kunstig intelligens, maskinlæring og Big Data. | [leksjon](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Etikk innen Data Science | [Introduksjon](1-Introduction/README.md) | Begreper, utfordringer og rammeverk for dataetikk. | [leksjon](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Definere data | [Introduksjon](1-Introduction/README.md) | Hvordan data klassifiseres og vanlige kilder. | [leksjon](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Introduksjon til statistikk og sannsynlighet | [Introduksjon](1-Introduction/README.md) | De matematiske teknikkene innen sannsynlighet og statistikk for å forstå data. | [leksjon](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Arbeide med relasjonsdata | [Arbeide med data](2-Working-With-Data/README.md) | Introduksjon til relasjonsdata og det grunnleggende ved å utforske og analysere relasjonsdata med Structured Query Language, også kjent som SQL (uttales "see-quell"). | [leksjon](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) |
+| 06 | Arbeide med NoSQL-data | [Arbeide med data](2-Working-With-Data/README.md) | Introduksjon til ikke-relasjonelle data, ulike typer og grunnleggende utforsking og analyse av dokumentdatabaser. | [leksjon](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique) |
| 07 | Arbeide med Python | [Arbeide med data](2-Working-With-Data/README.md) | Grunnleggende bruk av Python for datautforskning med biblioteker som Pandas. Grunnleggende forståelse av Python-programmering anbefales. | [leksjon](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Dataklargjøring | [Arbeide med data](2-Working-With-Data/README.md) | Emner om datateknikker for rengjøring og transformasjon av data for å håndtere utfordringer med manglende, unøyaktige eller ufullstendige data. | [leksjon](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Visualisere mengder | [Datavisualisering](3-Data-Visualization/README.md) | Lær hvordan du bruker Matplotlib for å visualisere fugledata 🦆 | [leksjon](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Visualisere datafordelinger | [Datavisualisering](3-Data-Visualization/README.md) | Visualisere observasjoner og trender innenfor et intervall. | [leksjon](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Visualisere proporsjoner | [Datavisualisering](3-Data-Visualization/README.md) | Visualisere diskrete og grupperte prosenter. | [leksjon](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Visualisere relasjoner | [Datavisualisering](3-Data-Visualization/README.md) | Visualisere forbindelser og korrelasjoner mellom datasett og deres variabler. | [leksjon](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Meningsfulle visualiseringer | [Datavisualisering](3-Data-Visualization/README.md) | Teknikker og veiledning for å gjøre dine visualiseringer verdifulle for effektiv problemløsning og innsikt. | [leksjon](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Introduksjon til datavitenskapens livssyklus | [Livssyklus](4-Data-Science-Lifecycle/README.md) | Introduksjon til datavitenskapens livssyklus og dens første steg med å innhente og hente ut data. | [leksjon](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analysere | [Livssyklus](4-Data-Science-Lifecycle/README.md) | Denne fasen av datavitenskapens livssyklus fokuserer på teknikker for å analysere data. | [leksjon](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Kommunikasjon | [Livssyklus](4-Data-Science-Lifecycle/README.md) | Denne fasen av datavitenskapens livssyklus fokuserer på å presentere innsiktene fra data på en måte som gjør det enklere for beslutningstakere å forstå. | [leksjon](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Datavitenskap i skyen | [Skydata](5-Data-Science-In-Cloud/README.md) | Denne serien av leksjoner introduserer datavitenskap i skyen og fordelene ved det. | [leksjon](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
-| 18 | Datavitenskap i skyen | [Skydata](5-Data-Science-In-Cloud/README.md) | Trene modeller ved å bruke Low Code-verktøy. |[leksjon](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
-| 19 | Datavitenskap i skyen | [Skydata](5-Data-Science-In-Cloud/README.md) | Distribuere modeller med Azure Machine Learning Studio. | [leksjon](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
-| 20 | Datavitenskap i praksis | [I praksis](6-Data-Science-In-Wild/README.md) | Datavitenskap-drevne prosjekter i den virkelige verden. | [leksjon](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 08 | Datapreparering | [Arbeide med data](2-Working-With-Data/README.md) | Temaer om teknikker for rensing og transformasjon av data for å håndtere utfordringer med manglende, unøyaktige eller ufullstendige data. | [leksjon](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Visualisere mengder | [Datavisualisering](3-Data-Visualization/README.md) | Lær å bruke Matplotlib for å visualisere fugledata 🦆 | [leksjon](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Visualisere datadistribusjoner | [Datavisualisering](3-Data-Visualization/README.md) | Visualisering av observasjoner og trender innen et intervall. | [leksjon](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Visualisere proporsjoner | [Datavisualisering](3-Data-Visualization/README.md) | Visualisering av diskrete og grupperte prosentandeler. | [leksjon](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Visualisere relasjoner | [Datavisualisering](3-Data-Visualization/README.md) | Visualisering av forbindelser og korrelasjoner mellom datasett og deres variabler. | [leksjon](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Meningsfulle visualiseringer | [Datavisualisering](3-Data-Visualization/README.md) | Teknikker og veiledning for å gjøre visualiseringene dine verdifulle for effektiv problemløsning og innsikt. | [leksjon](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Introduksjon til livssyklusen for data science | [Livssyklus](4-Data-Science-Lifecycle/README.md) | Introduksjon til livssyklusen i data science og det første trinnet med å hente og trekke ut data. | [leksjon](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Analysere | [Livssyklus](4-Data-Science-Lifecycle/README.md) | Denne fasen i livssyklusen for data science fokuserer på teknikker for å analysere data. | [leksjon](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 16 | Kommunikasjon | [Livssyklus](4-Data-Science-Lifecycle/README.md) | Denne fasen i livssyklusen for data science fokuserer på å presentere innsiktene fra data på en måte som gjør det enklere for beslutningstakere å forstå. | [leksjon](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) |
+| 17 | Data Science i skyen | [Skydata](5-Data-Science-In-Cloud/README.md) | Denne serien av leksjoner introduserer data science i skyen og dets fordeler. | [leksjon](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
+| 18 | Data Science i skyen | [Skydata](5-Data-Science-In-Cloud/README.md) | Trene modeller ved hjelp av Low Code-verktøy. | [leksjon](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
+| 19 | Data Science i skyen | [Skydata](5-Data-Science-In-Cloud/README.md) | Distribuere modeller med Azure Machine Learning Studio. | [leksjon](5-Data-Science-In-Cloud/19-Azure/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) og [Maud](https://twitter.com/maudstweets) |
+| 20 | Data Science i praksis | [I feltet](6-Data-Science-In-Wild/README.md) | Data science-styrte prosjekter i virkeligheten. | [leksjon](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Følg disse stegene for å åpne dette eksempelet i en Codespace:
-1. Klikk på Code-rullegardinmenyen og velg Open with Codespaces-alternativet.
+Følg disse trinnene for å åpne dette eksempelet i en Codespace:
+1. Klikk på Code-nedtrekksmenyen og velg alternativet Open with Codespaces.
2. Velg + New codespace nederst i panelet.
-For mer info, se [GitHub dokumentasjonen](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+For mer informasjon, se [GitHub dokumentasjon](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Følg disse stegene for å åpne dette repoet i en container ved hjelp av din lokale maskin og VSCode med VS Code Remote - Containers-utvidelsen:
+Følg disse trinnene for å åpne dette repo-et i en container ved bruk av din lokale maskin og VSCode med utvidelsen VS Code Remote - Containers:
-1. Hvis dette er første gang du bruker en utviklingscontainer, sørg for at systemet ditt møter forhåndskravene (dvs. ha Docker installert) i [kom i gang-dokumentasjonen](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Hvis dette er første gang du bruker en utviklingscontainer, må du sørge for at systemet ditt møter forutsetningene (dvs. har Docker installert) i [komme i gang-dokumentasjonen](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-For å bruke dette repositoriet kan du enten åpne repositoriet i et isolert Docker-volum:
+For å bruke dette repo-et kan du enten åpne repo-et i et isolert Docker-volum:
-**Merk**: Under panseret vil dette bruke Remote-Containers: **Clone Repository in Container Volume...**-kommandoen for å klone kildekoden i et Docker-volum i stedet for det lokale filsystemet. [Volumer](https://docs.docker.com/storage/volumes/) er foretrukket mekanisme for å bevare container-data.
+**Merk**: Under panseret vil dette bruke Remote-Containers: **Clone Repository in Container Volume...**-kommandoen for å klone kildekoden i et Docker-volum i stedet for på det lokale filsystemet. [Volumer](https://docs.docker.com/storage/volumes/) er den foretrukne mekanismen for å bevare containerdata.
-Eller åpne en lokalt klonet eller nedlastet versjon av repositoriet:
+Eller åpne en lokalt klonet eller nedlastet versjon av repo-et:
-- Klon dette repositoriet til ditt lokale filsystem.
+- Klon dette repo-et til ditt lokale filsystem.
- Trykk F1 og velg kommandoen **Remote-Containers: Open Folder in Container...**.
- Velg den klonede kopien av denne mappen, vent til containeren starter, og prøv ut ting.
-## Offline-tilgang
+## Offline tilgang
-Du kan kjøre denne dokumentasjonen offline ved å bruke [Docsify](https://docsify.js.org/#/). Fork dette repoet, [installer Docsify](https://docsify.js.org/#/quickstart) på din lokale maskin, og deretter i rotmappen av dette repoet, skriv `docsify serve`. Nettstedet vil bli servert på port 3000 på din localhost: `localhost:3000`.
+Du kan bruke denne dokumentasjonen offline ved hjelp av [Docsify](https://docsify.js.org/#/). Fork dette repo-et, [installer Docsify](https://docsify.js.org/#/quickstart) på din lokale maskin, og deretter i rotmappen for dette repo-et, skriv `docsify serve`. Nettstedet vil bli servert på port 3000 på localhost: `localhost:3000`.
-> Merk, notatbøker vil ikke bli gjengitt via Docsify, så når du trenger å kjøre en notatbok, gjør det separat i VS Code med en Python-kjerne kjørende.
+> Merk at notatbøker ikke vil bli gjengitt via Docsify, så når du trenger å kjøre en notatbok, gjør det separat i VS Code med en Python-kjerne.
-## Andre pensumlister
+## Andre læreplaner
-Teamet vårt produserer andre pensumlister! Sjekk ut:
+Vårt team produserer andre læreplaner! Sjekk ut:
### LangChain
[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
### Azure / Edge / MCP / Agenter
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### Generativ AI-serie
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
### Kjerneopplæring
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### Copilot-serie
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
@@ -246,11 +235,11 @@ Teamet vårt produserer andre pensumlister! Sjekk ut:
**Opplever du problemer?** Sjekk vår [Feilsøkingsguide](TROUBLESHOOTING.md) for løsninger på vanlige problemer.
-Hvis du står fast eller har spørsmål om å bygge AI-apper. Bli med andre lærende og erfarne utviklere i diskusjoner om MCP. Det er et støttende fellesskap der spørsmål er velkomne og kunnskap deles fritt.
+Hvis du sitter fast eller har spørsmål om å bygge AI-apper. Bli med andre lærende og erfarne utviklere i diskusjoner om MCP. Det er et støttende fellesskap hvor spørsmål er velkomne og kunnskap deles fritt.
[](https://discord.gg/nTYy5BXMWG)
-Hvis du har produktfeedback eller feil under byggingen, besøk:
+Hvis du har produktfeedback eller opplever feil under bygging, besøk:
[](https://aka.ms/foundry/forum)
@@ -258,5 +247,5 @@ Hvis du har produktfeedback eller feil under byggingen, besøk:
**Ansvarsfraskrivelse**:
-Dette dokumentet er oversatt ved bruk av AI-oversettelsestjenesten [Co-op Translator](https://github.com/Azure/co-op-translator). Selv om vi streber etter nøyaktighet, vennligst vær oppmerksom på at automatiske oversettelser kan inneholde feil eller unøyaktigheter. Det opprinnelige dokumentet på originalspråket skal anses som den autoritative kilden. For kritisk informasjon anbefales profesjonell menneskelig oversettelse. Vi påtar oss ikke ansvar for eventuelle misforståelser eller feiltolkninger som oppstår ved bruk av denne oversettelsen.
+Dette dokumentet er oversatt ved hjelp av AI-oversettelsestjenesten [Co-op Translator](https://github.com/Azure/co-op-translator). Selv om vi streber etter nøyaktighet, vennligst vær oppmerksom på at automatiserte oversettelser kan inneholde feil eller unøyaktigheter. Det originale dokumentet på dets opprinnelige språk skal anses som den autoritative kilden. For kritisk informasjon anbefales profesjonell menneskelig oversettelse. Vi er ikke ansvarlige for eventuelle misforståelser eller feiltolkninger som oppstår fra bruken av denne oversettelsen.
\ No newline at end of file
diff --git a/translations/no/SECURITY.md b/translations/no/SECURITY.md
index 38d60388..0494e7a7 100644
--- a/translations/no/SECURITY.md
+++ b/translations/no/SECURITY.md
@@ -1,12 +1,3 @@
-
## Sikkerhet
Microsoft tar sikkerheten til våre programvareprodukter og tjenester på alvor, inkludert alle kildekoderepositorier som administreres gjennom våre GitHub-organisasjoner, som inkluderer [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), og [våre GitHub-organisasjoner](https://opensource.microsoft.com/).
diff --git a/translations/no/SUPPORT.md b/translations/no/SUPPORT.md
index 2dcc5bc8..2589cc3d 100644
--- a/translations/no/SUPPORT.md
+++ b/translations/no/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Støtte
## Hvordan rapportere problemer og få hjelp
diff --git a/translations/no/TROUBLESHOOTING.md b/translations/no/TROUBLESHOOTING.md
index c747efd2..485a1aa3 100644
--- a/translations/no/TROUBLESHOOTING.md
+++ b/translations/no/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Feilsøkingsguide
Denne guiden gir løsninger på vanlige problemer du kan støte på når du jobber med Data Science for Beginners-kurset.
diff --git a/translations/no/USAGE.md b/translations/no/USAGE.md
index 07889bbf..8808d4f0 100644
--- a/translations/no/USAGE.md
+++ b/translations/no/USAGE.md
@@ -1,12 +1,3 @@
-
# Brukerveiledning
Denne veiledningen gir eksempler og vanlige arbeidsflyter for bruk av Data Science for Beginners-læreplanen.
diff --git a/translations/no/docs/_sidebar.md b/translations/no/docs/_sidebar.md
index 1ed04d31..4dd9d577 100644
--- a/translations/no/docs/_sidebar.md
+++ b/translations/no/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Introduksjon
- [Definere datavitenskap](../1-Introduction/01-defining-data-science/README.md)
- [Etikk i datavitenskap](../1-Introduction/02-ethics/README.md)
diff --git a/translations/no/examples/README.md b/translations/no/examples/README.md
index fe5cc21d..dcef3637 100644
--- a/translations/no/examples/README.md
+++ b/translations/no/examples/README.md
@@ -1,12 +1,3 @@
-
# Nybegynnervennlige Eksempler på Data Science
Velkommen til eksempelkatalogen! Denne samlingen av enkle, godt kommenterte eksempler er laget for å hjelpe deg i gang med data science, selv om du er helt nybegynner.
diff --git a/translations/no/for-teachers.md b/translations/no/for-teachers.md
index e6386582..4a36e49c 100644
--- a/translations/no/for-teachers.md
+++ b/translations/no/for-teachers.md
@@ -1,12 +1,3 @@
-
## For lærere
Vil du bruke denne læreplanen i klasserommet ditt? Vær så god!
diff --git a/translations/no/quiz-app/README.md b/translations/no/quiz-app/README.md
index a9b500dd..1a23343e 100644
--- a/translations/no/quiz-app/README.md
+++ b/translations/no/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Quizer
Disse quizene er forhånds- og etterforelesningsquizer for data science-læreplanen på https://aka.ms/datascience-beginners
diff --git a/translations/no/sketchnotes/README.md b/translations/no/sketchnotes/README.md
index f1dbecdd..6e79b73c 100644
--- a/translations/no/sketchnotes/README.md
+++ b/translations/no/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Finn alle sketchnoter her!
## Kreditering
diff --git a/translations/pa/.co-op-translator.json b/translations/pa/.co-op-translator.json
new file mode 100644
index 00000000..2ec22260
--- /dev/null
+++ b/translations/pa/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:48:06+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "pa"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-27T17:17:10+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "pa"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-27T17:18:06+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "pa"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:23:07+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "pa"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-27T17:12:42+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "pa"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-06T08:20:10+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "pa"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-27T17:21:14+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "pa"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:21:58+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "pa"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-27T17:29:06+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "pa"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-27T17:02:23+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "pa"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:08:52+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "pa"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:54:37+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "pa"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-06T08:03:13+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "pa"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-27T17:00:40+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "pa"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:37:41+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "pa"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-27T16:56:57+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "pa"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-06T08:08:07+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "pa"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-27T16:49:56+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "pa"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-27T16:41:13+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-06T08:13:01+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-27T18:42:28+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-06T08:15:44+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-27T18:19:16+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-06T08:12:28+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-27T18:45:05+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:34:32+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-27T18:22:23+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-06T08:14:21+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-27T18:15:20+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T18:16:17+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T18:15:49+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-27T18:32:06+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-27T18:33:57+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-27T18:23:45+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-27T18:25:12+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-27T18:38:13+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-27T18:26:45+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-27T18:35:33+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "pa"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-27T18:10:46+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "pa"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:45:51+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "pa"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-27T18:00:44+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "pa"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:45:28+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "pa"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-27T18:03:07+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "pa"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:47:26+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "pa"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-27T18:09:48+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "pa"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-27T17:55:55+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "pa"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-06T08:00:14+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "pa"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-27T17:47:43+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "pa"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-06T07:58:58+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "pa"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-27T17:44:38+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "pa"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-06T08:01:47+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "pa"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-27T17:54:03+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "pa"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-27T17:37:11+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "pa"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:25:15+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "pa"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-27T17:36:17+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "pa"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-27T17:30:04+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "pa"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:14:40+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "pa"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-27T16:39:18+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "pa"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:48:34+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "pa"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:18:50+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "pa"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:37:08+00:00",
+ "source_file": "README.md",
+ "language_code": "pa"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-27T16:39:58+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "pa"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-27T16:37:26+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "pa"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:36:52+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "pa"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:00:19+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "pa"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-27T17:01:46+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "pa"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:00:26+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "pa"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:55:24+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "pa"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-27T17:55:03+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "pa"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-27T17:29:40+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "pa"
+ }
+}
\ No newline at end of file
diff --git a/translations/pa/1-Introduction/01-defining-data-science/README.md b/translations/pa/1-Introduction/01-defining-data-science/README.md
index 2d535a9a..8f4b9071 100644
--- a/translations/pa/1-Introduction/01-defining-data-science/README.md
+++ b/translations/pa/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾ ਸਾਇੰਸ ਦੀ ਪਰਿਭਾਸ਼ਾ
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/pa/1-Introduction/01-defining-data-science/assignment.md b/translations/pa/1-Introduction/01-defining-data-science/assignment.md
index 66fdf98e..433b3f6b 100644
--- a/translations/pa/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/pa/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# ਅਸਾਈਨਮੈਂਟ: ਡਾਟਾ ਸਾਇੰਸ ਸਨਰੀਓਜ਼
ਇਸ ਪਹਿਲੇ ਅਸਾਈਨਮੈਂਟ ਵਿੱਚ, ਅਸੀਂ ਤੁਹਾਨੂੰ ਕਈ ਅਸਲ ਜ਼ਿੰਦਗੀ ਦੇ ਪ੍ਰਕਿਰਿਆਵਾਂ ਜਾਂ ਸਮੱਸਿਆਵਾਂ ਬਾਰੇ ਸੋਚਣ ਲਈ ਕਹਿੰਦੇ ਹਾਂ, ਅਤੇ ਕਿਵੇਂ ਤੁਸੀਂ ਡਾਟਾ ਸਾਇੰਸ ਪ੍ਰਕਿਰਿਆ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇਸਨੂੰ ਬਿਹਤਰ ਬਣਾ ਸਕਦੇ ਹੋ। ਹੇਠਾਂ ਦਿੱਤੇ ਬਾਰੇ ਸੋਚੋ:
diff --git a/translations/pa/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/pa/1-Introduction/01-defining-data-science/solution/assignment.md
index 8123cd83..4eca567c 100644
--- a/translations/pa/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/pa/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# ਅਸਾਈਨਮੈਂਟ: ਡਾਟਾ ਸਾਇੰਸ ਸਥਿਤੀਆਂ
ਇਸ ਪਹਿਲੇ ਅਸਾਈਨਮੈਂਟ ਵਿੱਚ, ਅਸੀਂ ਤੁਹਾਨੂੰ ਕਹਿੰਦੇ ਹਾਂ ਕਿ ਤੁਸੀਂ ਵੱਖ-ਵੱਖ ਸਮੱਸਿਆ ਖੇਤਰਾਂ ਵਿੱਚ ਕੁਝ ਅਸਲ-ਜੀਵਨ ਪ੍ਰਕਿਰਿਆ ਜਾਂ ਸਮੱਸਿਆ ਬਾਰੇ ਸੋਚੋ, ਅਤੇ ਤੁਸੀਂ ਇਸਨੂੰ ਡਾਟਾ ਸਾਇੰਸ ਪ੍ਰਕਿਰਿਆ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕਿਵੇਂ ਸੁਧਾਰ ਸਕਦੇ ਹੋ। ਹੇਠਾਂ ਦਿੱਤੇ ਬਾਰੇ ਸੋਚੋ:
diff --git a/translations/pa/1-Introduction/02-ethics/README.md b/translations/pa/1-Introduction/02-ethics/README.md
index 9c311c8e..84580096 100644
--- a/translations/pa/1-Introduction/02-ethics/README.md
+++ b/translations/pa/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾ ਨੈਤਿਕਤਾ ਦਾ ਪਰਚੇ
| ਦੁਆਰਾ ਬਣਾਈ ਗਈ ਸਕੈਚਨੋਟ ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/pa/1-Introduction/02-ethics/assignment.md b/translations/pa/1-Introduction/02-ethics/assignment.md
index eebf892e..3a316b7c 100644
--- a/translations/pa/1-Introduction/02-ethics/assignment.md
+++ b/translations/pa/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## ਡਾਟਾ ਨੈਤਿਕਤਾ ਕੇਸ ਅਧਿਐਨ ਲਿਖੋ
## ਹਦਾਇਤਾਂ
diff --git a/translations/pa/1-Introduction/03-defining-data/README.md b/translations/pa/1-Introduction/03-defining-data/README.md
index 5a4cdcd6..1e31e02f 100644
--- a/translations/pa/1-Introduction/03-defining-data/README.md
+++ b/translations/pa/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾ ਦੀ ਪਰਿਭਾਸ਼ਾ
| ਦੁਆਰਾ ਬਣਾਈ ਗਈ ਸਕੈਚਨੋਟ ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/pa/1-Introduction/03-defining-data/assignment.md b/translations/pa/1-Introduction/03-defining-data/assignment.md
index 3ed2cec3..81bd9176 100644
--- a/translations/pa/1-Introduction/03-defining-data/assignment.md
+++ b/translations/pa/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾਸੈਟਸ ਦੀ ਵਰਗੀਕਰਨ
## ਹਦਾਇਤਾਂ
diff --git a/translations/pa/1-Introduction/04-stats-and-probability/README.md b/translations/pa/1-Introduction/04-stats-and-probability/README.md
index a9fad73b..083f3395 100644
--- a/translations/pa/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/pa/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# ਸਟੈਟਿਸਟਿਕਸ ਅਤੇ ਪ੍ਰੋਬੈਬਿਲਿਟੀ ਦਾ ਸੰਖੇਪ ਪਰੀਚਯ
|![ [(@sketchthedocs)] ਦੁਆਰਾ ਬਣਾਈ ਗਈ ਸਕੈਚਨੋਟ](https://sketchthedocs.dev) ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
ਗ੍ਰਾਫਿਕਲ ਤੌਰ 'ਤੇ ਅਸੀਂ ਮੀਡਿਅਨ ਅਤੇ ਕਵਾਰਟਾਈਲਜ਼ ਦੇ ਸੰਬੰਧ ਨੂੰ **ਬਾਕਸ ਪਲਾਟ** ਵਿੱਚ ਦਰਸਾ ਸਕਦੇ ਹਾਂ:
-
+
ਇੱਥੇ ਅਸੀਂ **ਇੰਟਰ-ਕਵਾਰਟਾਈਲ ਰੇਂਜ** IQR=Q3-Q1 ਦੀ ਗਣਨਾ ਕਰਦੇ ਹਾਂ, ਅਤੇ **ਆਊਟਲਾਇਰਜ਼** - ਮੁੱਲ ਜੋ ਸੀਮਾਵਾਂ [Q1-1.5*IQR,Q3+1.5*IQR] ਤੋਂ ਬਾਹਰ ਪੈਂਦੇ ਹਨ।
diff --git a/translations/pa/1-Introduction/04-stats-and-probability/assignment.md b/translations/pa/1-Introduction/04-stats-and-probability/assignment.md
index d03fbbba..414981bc 100644
--- a/translations/pa/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/pa/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# ਛੋਟੀ ਡਾਇਬਟੀਜ਼ ਅਧਿਐਨ
ਇਸ ਅਸਾਈਨਮੈਂਟ ਵਿੱਚ, ਅਸੀਂ ਡਾਇਬਟੀਜ਼ ਮਰੀਜ਼ਾਂ ਦੇ ਇੱਕ ਛੋਟੇ ਡਾਟਾਸੈੱਟ ਨਾਲ ਕੰਮ ਕਰਾਂਗੇ ਜੋ [ਇਥੋਂ](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) ਲਿਆ ਗਿਆ ਹੈ।
diff --git a/translations/pa/1-Introduction/README.md b/translations/pa/1-Introduction/README.md
index 09da95d6..4f74f8e4 100644
--- a/translations/pa/1-Introduction/README.md
+++ b/translations/pa/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾ ਸਾਇੰਸ ਦਾ ਪਰਿਚਯ

diff --git a/translations/pa/2-Working-With-Data/05-relational-databases/README.md b/translations/pa/2-Working-With-Data/05-relational-databases/README.md
index f132027f..f94e0c12 100644
--- a/translations/pa/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/pa/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ: ਰਿਲੇਸ਼ਨਲ ਡੇਟਾਬੇਸ
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/pa/2-Working-With-Data/05-relational-databases/assignment.md b/translations/pa/2-Working-With-Data/05-relational-databases/assignment.md
index effaa493..b20f1cf2 100644
--- a/translations/pa/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/pa/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# ਹਵਾਈ ਅੱਡਿਆਂ ਦੇ ਡਾਟਾ ਨੂੰ ਦਿਖਾਉਣਾ
ਤੁਹਾਨੂੰ [ਡਾਟਾਬੇਸ](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) ਦਿੱਤਾ ਗਿਆ ਹੈ ਜੋ [SQLite](https://sqlite.org/index.html) 'ਤੇ ਬਣਾਇਆ ਗਿਆ ਹੈ ਅਤੇ ਜਿਸ ਵਿੱਚ ਹਵਾਈ ਅੱਡਿਆਂ ਬਾਰੇ ਜਾਣਕਾਰੀ ਹੈ। ਸਕੀਮਾ ਹੇਠਾਂ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਤੁਸੀਂ [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) ਵਿੱਚ [SQLite extension](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਵੱਖ-ਵੱਖ ਸ਼ਹਿਰਾਂ ਦੇ ਹਵਾਈ ਅੱਡਿਆਂ ਦੀ ਜਾਣਕਾਰੀ ਦਿਖਾਉਣਗੇ।
diff --git a/translations/pa/2-Working-With-Data/06-non-relational/README.md b/translations/pa/2-Working-With-Data/06-non-relational/README.md
index 5f0b2397..c77e725f 100644
--- a/translations/pa/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/pa/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ: ਗੈਰ-ਸੰਬੰਧਿਤ ਡਾਟਾ
| ਦੁਆਰਾ ਬਣਾਈ ਗਈ ਸਕੈਚਨੋਟ ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/pa/2-Working-With-Data/06-non-relational/assignment.md b/translations/pa/2-Working-With-Data/06-non-relational/assignment.md
index e81bf23a..12c12819 100644
--- a/translations/pa/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/pa/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# ਸੋਡਾ ਮੁਨਾਫੇ
## ਹਦਾਇਤਾਂ
diff --git a/translations/pa/2-Working-With-Data/07-python/README.md b/translations/pa/2-Working-With-Data/07-python/README.md
index 31d9ea2b..f702f258 100644
--- a/translations/pa/2-Working-With-Data/07-python/README.md
+++ b/translations/pa/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ: ਪਾਇਥਨ ਅਤੇ ਪੈਂਡਾਸ ਲਾਇਬ੍ਰੇਰੀ
|  ਦੁਆਰਾ ਬਣਾਈ ਗਈ ਸਕੈਚਨੋਟ ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/pa/2-Working-With-Data/07-python/assignment.md b/translations/pa/2-Working-With-Data/07-python/assignment.md
index 3af92574..a4ff7bf8 100644
--- a/translations/pa/2-Working-With-Data/07-python/assignment.md
+++ b/translations/pa/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾ ਪ੍ਰੋਸੈਸਿੰਗ ਵਿੱਚ ਪਾਇਥਨ ਲਈ ਅਸਾਈਨਮੈਂਟ
ਇਸ ਅਸਾਈਨਮੈਂਟ ਵਿੱਚ, ਅਸੀਂ ਤੁਹਾਨੂੰ ਉਹ ਕੋਡ ਵਧਾਉਣ ਲਈ ਕਹਾਂਗੇ ਜੋ ਅਸੀਂ ਆਪਣੇ ਚੈਲੈਂਜਾਂ ਵਿੱਚ ਵਿਕਸਿਤ ਕਰਨਾ ਸ਼ੁਰੂ ਕੀਤਾ ਹੈ। ਅਸਾਈਨਮੈਂਟ ਦੋ ਭਾਗਾਂ ਵਿੱਚ ਵੰਡਿਆ ਗਿਆ ਹੈ:
diff --git a/translations/pa/2-Working-With-Data/08-data-preparation/README.md b/translations/pa/2-Working-With-Data/08-data-preparation/README.md
index ba700ba5..cc238091 100644
--- a/translations/pa/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/pa/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ: ਡਾਟਾ ਤਿਆਰੀ
|![ [(@sketchthedocs)] ਦੁਆਰਾ ਸਕੈਚਨੋਟ](https://sketchthedocs.dev) ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/pa/2-Working-With-Data/08-data-preparation/assignment.md b/translations/pa/2-Working-With-Data/08-data-preparation/assignment.md
index 98e45751..e9adf963 100644
--- a/translations/pa/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/pa/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# ਫਾਰਮ ਤੋਂ ਡਾਟਾ ਦਾ ਮੁਲਾਂਕਨ
ਇੱਕ ਕਲਾਇੰਟ ਨੇ ਆਪਣੇ ਗਾਹਕਾਂ ਬਾਰੇ ਕੁਝ ਮੂਲ ਡਾਟਾ ਇਕੱਠਾ ਕਰਨ ਲਈ ਇੱਕ [ਛੋਟਾ ਫਾਰਮ](../../../../2-Working-With-Data/08-data-preparation/index.html) ਦੀ ਜਾਂਚ ਕੀਤੀ ਹੈ। ਉਹ ਆਪਣੇ ਨਤੀਜੇ ਤੁਹਾਡੇ ਕੋਲ ਲੈ ਕੇ ਆਏ ਹਨ ਤਾਂ ਕਿ ਤੁਸੀਂ ਇਕੱਠਾ ਕੀਤੇ ਡਾਟਾ ਦੀ ਪੁਸ਼ਟੀ ਕਰ ਸਕੋ। ਤੁਸੀਂ ਬ੍ਰਾਊਜ਼ਰ ਵਿੱਚ `index.html` ਪੇਜ ਖੋਲ੍ਹ ਕੇ ਫਾਰਮ ਨੂੰ ਦੇਖ ਸਕਦੇ ਹੋ।
diff --git a/translations/pa/2-Working-With-Data/README.md b/translations/pa/2-Working-With-Data/README.md
index ccbaadec..3e39562e 100644
--- a/translations/pa/2-Working-With-Data/README.md
+++ b/translations/pa/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ

diff --git a/translations/pa/3-Data-Visualization/09-visualization-quantities/README.md b/translations/pa/3-Data-Visualization/09-visualization-quantities/README.md
index eb927a9b..62d00dd5 100644
--- a/translations/pa/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/pa/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# ਮਾਤਰਾ ਨੂੰ ਦ੍ਰਿਸ਼ਮਾਨ ਕਰਨਾ
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/pa/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/pa/3-Data-Visualization/09-visualization-quantities/assignment.md
index 47b66619..703f0d97 100644
--- a/translations/pa/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/pa/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# ਲਾਈਨ, ਸਕੈਟਰ ਅਤੇ ਬਾਰ
## ਹਦਾਇਤਾਂ
diff --git a/translations/pa/3-Data-Visualization/10-visualization-distributions/README.md b/translations/pa/3-Data-Visualization/10-visualization-distributions/README.md
index c6fecda1..4a3a8afd 100644
--- a/translations/pa/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/pa/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# ਵੰਡਾਂ ਨੂੰ ਦ੍ਰਿਸ਼ਮਾਨ ਕਰਨਾ
|![ [(@sketchthedocs)] ਦੁਆਰਾ ਸਕੈਚਨੋਟ](https://sketchthedocs.dev) ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/pa/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/pa/3-Data-Visualization/10-visualization-distributions/assignment.md
index 56d44730..dcaceeba 100644
--- a/translations/pa/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/pa/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# ਆਪਣੀਆਂ ਕਾਬਲੀਆਂ ਲਾਗੂ ਕਰੋ
## ਹਦਾਇਤਾਂ
diff --git a/translations/pa/3-Data-Visualization/11-visualization-proportions/README.md b/translations/pa/3-Data-Visualization/11-visualization-proportions/README.md
index 81da3932..2fe235c2 100644
--- a/translations/pa/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/pa/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# ਅਨੁਪਾਤਾਂ ਦੀ ਦ੍ਰਿਸ਼ਟੀਕਰਨ
|![ [(@sketchthedocs)] ਦੁਆਰਾ ਸਕੈਚਨੋਟ](https://sketchthedocs.dev) ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/pa/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/pa/3-Data-Visualization/11-visualization-proportions/assignment.md
index 5164a835..55449fd7 100644
--- a/translations/pa/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/pa/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# ਐਕਸਲ ਵਿੱਚ ਅਜ਼ਮਾਓ
## ਹਦਾਇਤਾਂ
diff --git a/translations/pa/3-Data-Visualization/12-visualization-relationships/README.md b/translations/pa/3-Data-Visualization/12-visualization-relationships/README.md
index 7a37601c..6ef94207 100644
--- a/translations/pa/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/pa/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# ਰਿਸ਼ਤਿਆਂ ਦੀ ਦ੍ਰਿਸ਼ਟੀ: ਸ਼ਹਿਦ ਬਾਰੇ ਸਭ ਕੁਝ 🍯
|![ [(@sketchthedocs)] ਦੁਆਰਾ ਬਣਾਈ ਗਈ ਸਕੈਚਨੋਟ](https://sketchthedocs.dev) ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/pa/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/pa/3-Data-Visualization/12-visualization-relationships/assignment.md
index 4e74c7c8..5977be7f 100644
--- a/translations/pa/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/pa/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# ਮਧੂਮੱਖੀਆਂ ਦੇ ਛੱਤੇ ਵਿੱਚ ਡੁੱਬੋ
## ਹਦਾਇਤਾਂ
diff --git a/translations/pa/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/pa/3-Data-Visualization/13-meaningful-visualizations/README.md
index 464d89cc..ca9258ab 100644
--- a/translations/pa/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/pa/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# ਮਾਨਵਪ੍ਰਦ ਦ੍ਰਿਸ਼ੀਕਰਨ ਬਣਾਉਣਾ
|![ [(@sketchthedocs)] ਦੁਆਰਾ ਬਣਾਈ ਗਈ ਸਕੈਚਨੋਟ](https://sketchthedocs.dev) ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/pa/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/pa/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 48731e28..751d596e 100644
--- a/translations/pa/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/pa/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# ਆਪਣਾ ਕਸਟਮ ਵਿਜੁਅਲ ਬਣਾਓ
## ਹਦਾਇਤਾਂ
diff --git a/translations/pa/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/pa/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index f4328810..c0dfd842 100644
--- a/translations/pa/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/pa/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# ਖਤਰਨਾਕ ਸੰਬੰਧਾਂ ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ ਪ੍ਰੋਜੈਕਟ
ਸ਼ੁਰੂ ਕਰਨ ਲਈ, ਤੁਹਾਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣਾ ਹੋਵੇਗਾ ਕਿ ਤੁਹਾਡੇ ਕੰਪਿਊਟਰ 'ਤੇ NPM ਅਤੇ Node ਚੱਲ ਰਹੇ ਹਨ। Dependencies (npm install) ਨੂੰ ਇੰਸਟਾਲ ਕਰੋ ਅਤੇ ਫਿਰ ਪ੍ਰੋਜੈਕਟ ਨੂੰ ਲੋਕਲ ਤੌਰ 'ਤੇ ਚਲਾਓ (npm run serve):
diff --git a/translations/pa/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/pa/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index beb480e9..0f22c1b6 100644
--- a/translations/pa/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/pa/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# ਖਤਰਨਾਕ ਸੰਬੰਧਾਂ ਡਾਟਾ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ ਪ੍ਰੋਜੈਕਟ
ਸ਼ੁਰੂ ਕਰਨ ਲਈ, ਤੁਹਾਨੂੰ ਯਕੀਨੀ ਬਣਾਉਣਾ ਚਾਹੀਦਾ ਹੈ ਕਿ ਤੁਹਾਡੇ ਕੰਪਿਊਟਰ 'ਤੇ NPM ਅਤੇ Node ਚੱਲ ਰਹੇ ਹਨ। ਡਿਪੈਂਡੈਂਸੀਜ਼ ਇੰਸਟਾਲ ਕਰੋ (npm install) ਅਤੇ ਫਿਰ ਪ੍ਰੋਜੈਕਟ ਨੂੰ ਲੋਕਲ ਤੌਰ 'ਤੇ ਚਲਾਓ (npm run serve):
diff --git a/translations/pa/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/pa/3-Data-Visualization/R/09-visualization-quantities/README.md
index 394d3725..4adcbc03 100644
--- a/translations/pa/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/pa/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# ਮਾਤਰਾ ਨੂੰ ਦਿਖਾਉਣਾ
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/pa/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/pa/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 3b26b348..0bab3531 100644
--- a/translations/pa/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/pa/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# ਲਾਈਨ, ਸਕੈਟਰ ਅਤੇ ਬਾਰ
## ਹਦਾਇਤਾਂ
diff --git a/translations/pa/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/pa/3-Data-Visualization/R/10-visualization-distributions/README.md
index 9e60b452..375182ca 100644
--- a/translations/pa/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/pa/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# ਵੰਡਾਂ ਨੂੰ ਦਿਖਾਉਣਾ
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/pa/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/pa/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index a87c6ab4..26df9c1b 100644
--- a/translations/pa/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/pa/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# ਆਪਣੀਆਂ ਕੌਸ਼ਲਾਂ ਲਾਗੂ ਕਰੋ
## ਹਦਾਇਤਾਂ
diff --git a/translations/pa/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/pa/3-Data-Visualization/R/11-visualization-proportions/README.md
index bc8f2756..3f533353 100644
--- a/translations/pa/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/pa/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# ਅਨੁਪਾਤਾਂ ਨੂੰ ਦਿਖਾਉਣਾ
| ਦੁਆਰਾ ਬਣਾਇਆ ਗਿਆ ਸਕੈਚਨੋਟ ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/pa/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/pa/3-Data-Visualization/R/12-visualization-relationships/README.md
index db6ac596..7d72d066 100644
--- a/translations/pa/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/pa/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# ਰਿਸ਼ਤਿਆਂ ਦੀ ਦ੍ਰਿਸ਼ਟੀਕਰਨ: ਸ਼ਹਿਦ ਬਾਰੇ ਸਭ ਕੁਝ 🍯
|![ [(@sketchthedocs)] ਦੁਆਰਾ ਸਕੈਚਨੋਟ](https://sketchthedocs.dev)](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/pa/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/pa/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index d769ec39..b37110dd 100644
--- a/translations/pa/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/pa/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# ਮਾਨਹੀਣ ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ ਬਣਾਉਣਾ
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/pa/3-Data-Visualization/README.md b/translations/pa/3-Data-Visualization/README.md
index 507bcaba..44826deb 100644
--- a/translations/pa/3-Data-Visualization/README.md
+++ b/translations/pa/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# ਵਿਜੁਅਲਾਈਜ਼ੇਸ਼ਨ

diff --git a/translations/pa/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/pa/4-Data-Science-Lifecycle/14-Introduction/README.md
index 00a66976..e45184c2 100644
--- a/translations/pa/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/pa/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਪਰਚੇ
|![ [(@sketchthedocs)] ਦੁਆਰਾ ਬਣਾਈ ਗਈ ਸਕੈਚਨੋਟ](https://sketchthedocs.dev) ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/pa/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/pa/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 5ebe2a9f..90334e24 100644
--- a/translations/pa/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/pa/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾਸੈੱਟ ਦਾ ਮੁਲਾਂਕਨ
ਇੱਕ ਕਲਾਇੰਟ ਨੇ ਤੁਹਾਡੀ ਟੀਮ ਨੂੰ ਨਿਊਯਾਰਕ ਸਿਟੀ ਵਿੱਚ ਟੈਕਸੀ ਗਾਹਕਾਂ ਦੀ ਮੌਸਮੀ ਖਰਚ ਕਰਨ ਦੀਆਂ ਆਦਤਾਂ ਦੀ ਜਾਂਚ ਕਰਨ ਵਿੱਚ ਮਦਦ ਲਈ ਸੰਪਰਕ ਕੀਤਾ ਹੈ।
diff --git a/translations/pa/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/pa/4-Data-Science-Lifecycle/15-analyzing/README.md
index 7aeee72e..695d1ac7 100644
--- a/translations/pa/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/pa/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ: ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨਾ
| ਦੁਆਰਾ ਬਣਾਈ ਗਈ ਸਕੈਚਨੋਟ ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/pa/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/pa/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 18b421c1..65ccceb5 100644
--- a/translations/pa/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/pa/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# ਜਵਾਬਾਂ ਦੀ ਖੋਜ ਕਰਨਾ
ਇਹ ਪਿਛਲੇ ਪਾਠ ਦੇ [ਅਸਾਈਨਮੈਂਟ](../14-Introduction/assignment.md) ਦੀ ਜਾਰੀ ਹੈ, ਜਿੱਥੇ ਅਸੀਂ ਡਾਟਾ ਸੈਟ ਦਾ ਥੋੜ੍ਹਾ ਜਿਹਾ ਜਾਇਜ਼ਾ ਲਿਆ ਸੀ। ਹੁਣ ਅਸੀਂ ਡਾਟਾ ਨੂੰ ਗਹਿਰਾਈ ਨਾਲ ਦੇਖਾਂਗੇ।
diff --git a/translations/pa/4-Data-Science-Lifecycle/16-communication/README.md b/translations/pa/4-Data-Science-Lifecycle/16-communication/README.md
index c696bbf2..94669a5d 100644
--- a/translations/pa/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/pa/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ: ਸੰਚਾਰ
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/pa/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/pa/4-Data-Science-Lifecycle/16-communication/assignment.md
index 3b755a57..7b91a05d 100644
--- a/translations/pa/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/pa/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# ਇੱਕ ਕਹਾਣੀ ਦੱਸੋ
## ਹਦਾਇਤਾਂ
diff --git a/translations/pa/4-Data-Science-Lifecycle/README.md b/translations/pa/4-Data-Science-Lifecycle/README.md
index ca2ee9fe..cbb866cc 100644
--- a/translations/pa/4-Data-Science-Lifecycle/README.md
+++ b/translations/pa/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ

diff --git a/translations/pa/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/pa/5-Data-Science-In-Cloud/17-Introduction/README.md
index 8ca68901..c5b7dfb9 100644
--- a/translations/pa/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/pa/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ ਦਾ ਪਰਿਚਯ
|![ [(@sketchthedocs)] ਦੁਆਰਾ ਸਕੈਚਨੋਟ](https://sketchthedocs.dev) ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/pa/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/pa/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 840ab080..68112f6e 100644
--- a/translations/pa/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/pa/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# ਮਾਰਕੀਟ ਰਿਸਰਚ
## ਹਦਾਇਤਾਂ
diff --git a/translations/pa/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/pa/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 92000a0c..c630b3e5 100644
--- a/translations/pa/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/pa/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ: "ਲੋ ਕੋਡ/ਨੋ ਕੋਡ" ਤਰੀਕਾ
|![ [(@sketchthedocs)] ਦੁਆਰਾ ਬਣਾਈ ਗਈ ਸਕੈਚਨੋਟ](https://sketchthedocs.dev) ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/pa/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/pa/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index ce8dd5ec..2373b2c7 100644
--- a/translations/pa/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/pa/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# ਐਜ਼ਰ ਐਮਐਲ 'ਤੇ ਲੋ ਕੋਡ/ਨੋ ਕੋਡ ਡਾਟਾ ਸਾਇੰਸ ਪ੍ਰੋਜੈਕਟ
## ਹਦਾਇਤਾਂ
diff --git a/translations/pa/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/pa/5-Data-Science-In-Cloud/19-Azure/README.md
index 0f94b1d8..a3565976 100644
--- a/translations/pa/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/pa/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ: "Azure ML SDK" ਦਾ ਤਰੀਕਾ
| ਦੁਆਰਾ ਬਣਾਈ ਗਈ ਸਕੈਚਨੋਟ ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/pa/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/pa/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 4eed3957..f61ae103 100644
--- a/translations/pa/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/pa/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# ਐਜ਼ਰ ਐਮਐਲ ਐਸਡੀਕੇ ਦੀ ਵਰਤੋਂ ਨਾਲ ਡਾਟਾ ਸਾਇੰਸ ਪ੍ਰੋਜੈਕਟ
## ਹਦਾਇਤਾਂ
diff --git a/translations/pa/5-Data-Science-In-Cloud/README.md b/translations/pa/5-Data-Science-In-Cloud/README.md
index 0613bd9f..7d6495b8 100644
--- a/translations/pa/5-Data-Science-In-Cloud/README.md
+++ b/translations/pa/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ

diff --git a/translations/pa/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/pa/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 167260d8..694a3fdc 100644
--- a/translations/pa/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/pa/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# ਹਕੀਕਤੀ ਦੁਨੀਆ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ
|  ਦੁਆਰਾ ਬਣਾਈ ਗਈ ਸਕੈਚਨੋਟ ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/pa/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/pa/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 3de63134..f210f632 100644
--- a/translations/pa/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/pa/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# ਗ੍ਰਹਿ ਕੰਪਿਊਟਰ ਡਾਟਾਸੈੱਟ ਦੀ ਪੜਚੋਲ ਕਰੋ
## ਨਿਰਦੇਸ਼
diff --git a/translations/pa/6-Data-Science-In-Wild/README.md b/translations/pa/6-Data-Science-In-Wild/README.md
index 260ee2e3..33e5a83b 100644
--- a/translations/pa/6-Data-Science-In-Wild/README.md
+++ b/translations/pa/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# ਜੰਗਲੀ ਦਾਟਾ ਸਾਇੰਸ
ਉਦਯੋਗਾਂ ਵਿੱਚ ਦਾਟਾ ਸਾਇੰਸ ਦੇ ਅਸਲ-ਜੀਵਨ ਅਨੁਪ੍ਰਯੋਗ।
diff --git a/translations/pa/AGENTS.md b/translations/pa/AGENTS.md
index 8930f669..c38d3463 100644
--- a/translations/pa/AGENTS.md
+++ b/translations/pa/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## ਪ੍ਰੋਜੈਕਟ ਝਲਕ
diff --git a/translations/pa/CODE_OF_CONDUCT.md b/translations/pa/CODE_OF_CONDUCT.md
index 6620eebb..e0f9346e 100644
--- a/translations/pa/CODE_OF_CONDUCT.md
+++ b/translations/pa/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# ਮਾਈਕਰੋਸਾਫਟ ਓਪਨ ਸੋਰਸ ਕੋਡ ਆਫ ਕੰਡਕਟ
ਇਸ ਪ੍ਰੋਜੈਕਟ ਨੇ [ਮਾਈਕਰੋਸਾਫਟ ਓਪਨ ਸੋਰਸ ਕੋਡ ਆਫ ਕੰਡਕਟ](https://opensource.microsoft.com/codeofconduct/) ਨੂੰ ਅਪਨਾਇਆ ਹੈ।
diff --git a/translations/pa/CONTRIBUTING.md b/translations/pa/CONTRIBUTING.md
index fdc8d27c..ed8e9295 100644
--- a/translations/pa/CONTRIBUTING.md
+++ b/translations/pa/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# ਡਾਟਾ ਸਾਇੰਸ ਫਾਰ ਬਿਗਿਨਰਜ਼ ਵਿੱਚ ਯੋਗਦਾਨ ਪਾਉਣਾ
ਡਾਟਾ ਸਾਇੰਸ ਫਾਰ ਬਿਗਿਨਰਜ਼ ਦੇ ਪਾਠਕ੍ਰਮ ਵਿੱਚ ਯੋਗਦਾਨ ਪਾਉਣ ਵਿੱਚ ਦਿਲਚਸਪੀ ਦਿਖਾਉਣ ਲਈ ਧੰਨਵਾਦ! ਅਸੀਂ ਕਮਿਊਨਿਟੀ ਤੋਂ ਯੋਗਦਾਨਾਂ ਦਾ ਸਵਾਗਤ ਕਰਦੇ ਹਾਂ।
diff --git a/translations/pa/INSTALLATION.md b/translations/pa/INSTALLATION.md
index b76472e2..b440b5a0 100644
--- a/translations/pa/INSTALLATION.md
+++ b/translations/pa/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# ਇੰਸਟਾਲੇਸ਼ਨ ਗਾਈਡ
ਇਹ ਗਾਈਡ ਤੁਹਾਨੂੰ "ਡਾਟਾ ਸਾਇੰਸ ਫਾਰ ਬਿਗਿਨਰਜ਼" ਕੋਰਸ ਲਈ ਆਪਣਾ ਵਾਤਾਵਰਣ ਸੈਟਅਪ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰੇਗੀ।
diff --git a/translations/pa/README.md b/translations/pa/README.md
index ff29c6b0..9ea3b293 100644
--- a/translations/pa/README.md
+++ b/translations/pa/README.md
@@ -1,210 +1,199 @@
-
-# ਡੇਟਾ ਸਾਇੰਸ ਫਾਰ ਬਿਗਿਨਰਜ਼ - ਇੱਕ ਕੋਰਸ
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+# ਸ਼ੁਰੂਆਤੀ ਲਈ ਡਾਟਾ ਸਾਇੰਸ - ਇੱਕ ਅਧਿਆਪਨ
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
[](https://aka.ms/foundry/forum)
-ਮਾਈਕ੍ਰੋਸੌਫਟ ਵਿੱਚ ਅਜ਼ੂਰ ਕਲਾਉਡ ਵਕੀਲ ਖੁਸ਼ ਹਨ ਕਿ ਉਹ ਡੇਟਾ ਸਾਇੰਸ ਬਾਰੇ 10 ਹਫ਼ਤਿਆਂ, 20 ਪਾਠਾਂ ਦੀ ਪਾਠਕ੍ਰਮ ਪੇਸ਼ ਕਰ ਰਹੇ ਹਨ। ਹਰ ਪਾਠ ਵਿੱਚ ਪਾਠ-ਪূੁਰਵ ਅਤੇ ਪਾਠ-ਪਸ਼ਚਾਤ ਪਹਿਲੇ ਦੌਰਾਨ ਕਿਊਜ਼, ਪਾਠ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ ਲਿਖਤੀ ਹਦਾਇਤਾਂ, ਇੱਕ ਹੱਲ, ਅਤੇ ਇੱਕ ਅਸਾਈਨਮੈਂਟ ਸ਼ਾਮਲ ਹੈ। ਸਾਡਾ ਪ੍ਰੋਜੈਕਟ-ਆਧਾਰਿਤ ਪੈਡਾਗੋਜੀ ਤੁਹਾਨੂੰ ਬਿਲਡ ਕਰਦਿਆਂ ਸਿੱਖਣ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਜੋ ਕਿ ਨਵੀਆਂ ਕੌਸ਼ਲਾਂ ਲਈ ਸਬੂਤ شدہ ਤਰੀਕਾ ਹੈ।
+ਮਾਇਕ੍ਰੋਸਾਫਟ ਵਿੱਚ Azure ਕਲਾਉਡ ਵਕੀਲ ਖੁਸ਼ ਹਨ ਕਿ ਉਹ ਡਾਟਾ ਸਾਇੰਸ ਬਾਰੇ 10 ਹਫ਼ਤਿਆਂ, 20 ਪਾਠਾਂ ਦਾ ਅਧਿਆਪਨ ਪੇਸ਼ ਕਰਦੇ ਹਨ। ਹਰ ਪਾਠ ਵਿੱਚ ਪੂਰਵ ਪਾਠ ਅਤੇ ਪੋਸਟ-ਪਾਠ ਕਵਿਜ, ਲੇਖਤ ਹਦਾਇਤਾਂ ਜੋ ਪਾਠ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ ਹਨ, ਇੱਕ ਹੱਲ ਅਤੇ ਇੱਕ ਅਸਾਈਨਮੈਂਟ ਸ਼ਾਮਲ ਹੁੰਦੇ ਹਨ। ਸਾਡੇ ਪ੍ਰੋਜੈਕਟ-ਆਧਾਰਿਤ ਪਾਠ-ਪੜ੍ਹਾਈ ਦੇ ਤਰੀਕੇ ਨਾਲ ਤੁਸੀਂ ਬਣਾਉਂਦੇ ਹੋਏ ਸਿੱਖਦੇ ਹੋ, ਜੋ ਨਵੀਆਂ ਕੁਸ਼ਲਤਾਵਾਂ ਨੂੰ 'ਠੀਠ' ਬਣਾਉਣ ਦਾ ਸਬੂਤਿਅਦਾਰ ਤਰੀਕਾ ਹੈ।
-**ਸਾਡੇ ਲੇਖਕਾਂ ਦਾ ਦਿਲੋਂ ਧੰਨਵਾਦ:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**ਸਾਡੇ ਲੇਖਕਾਂ ਨੂੰ ਦਿਲੋਂ ਧੰਨਵਾਦ:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 ਸਾਡੇ [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) ਲੇਖਕਾਂ, ਸਮੀਖਿਅਕਾਂ ਅਤੇ ਸਮਗਰੀ ਯੋਗਦਾਨਕਾਰਾਂ ਨੂੰ ਵਿਸ਼ੇਸ਼ ਧੰਨਵਾਦ,** ਖਾਸ ਕਰਕੇ ਆਰਿਯਨ ਅਰੋੜਾ, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ਛੈਲਬਿਹਾਰੀ ਦੁਬੇ, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), ਸਮ੍ਰਿੱਧੀ ਸ਼ਰਮਾ, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
-[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), ਯੋਗਿੰਦਰ ਸਿੰਘ ਪਾਵਰ , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
+**🙏 ਸਾਡੇ [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) ਲੇਖਕਾਂ, ਸਮੀਖਿਆਕਾਰਾਂ ਅਤੇ ਸਮੱਗਰੀ ਯੋਗਦਾਨਕਾਰਾਂ ਨੂੰ ਖਾਸ ਧੰਨਵਾਦ 🙏,** ਵਿਸ਼ੇਸ਼ ਤੌਰ 'ਤੇ Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| ਡੇਟਾ ਸਾਇੰਸ ਫਾਰ ਬਿਗਿਨਰਜ਼ - _ਸਕੇਚਨੋਟ ਦੁਆਰਾ [@nitya](https://twitter.com/nitya)_ |
+| ਸ਼ੁਰੂਆਤੀ ਲਈ ਡਾਟਾ ਸਾਇੰਸ - _ਸਕੈਚਨੋਟ [@nitya](https://twitter.com/nitya) ਵੱਲੋਂ_ |
-### 🌐 ਬਹੁ-ਭਾਸ਼ਾਈ ਸਹਾਇਤਾ
+### 🌐 ਬਹੁ-ਭਾਸ਼ਾਈ ਸਹਾਇਤਾ
-#### GitHub ਐਕਸ਼ਨ ਰਾਹੀਂ ਸਮਰਥਿਤ (ਆਟੋਮੈਟਿਕ ਅਤੇ ਹਮੇਸ਼ਾ ਅਪ-ਟੂ-ਡੇਟ)
+#### GitHub ਐਕਸ਼ਨ ਰਾਹੀਂ ਸਮਰਥਿਤ (ਆਟੋਮੈਟਿਡ ਅਤੇ ਹਮੇਸ਼ਾ ਅਪ-ਟੂ-ਡੇਟ)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](./README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](./README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **ਕੀ ਤੁਹਾਨੂੰ ਲੋਕਲੀ ਕਲੋਨ ਕਰਨਾ ਹੈ?**
+> **ਕੀ ਤੁਸੀਂ ਲੋਕਲ ਕਲੋਨ ਕਰਨਾ ਪਸੰਦ ਕਰੋਗੇ?**
-> ਇਸ ਰਿਪੋ ਵਿੱਚ 50+ ਭਾਸ਼ਾ ਦੀਆਂ ਅਨੁਵਾਦ ਸਮੇਤ ਹਨ ਜੋ ਡਾਊਨਲੋਡ ਦੀ ਸਾਈਜ਼ ਨੂੰ ਬਹੁਤ ਵਧਾ ਦਿੰਦੇ ਹਨ। ਬਿਨਾਂ ਅਨੁਵਾਦਾਂ ਦੇ ਕਲੋਨ ਕਰਨ ਲਈ, sparse checkout ਦੀ ਵਰਤੋਂ ਕਰੋ:
+> ਇਸ ਰਿਪੋਜ਼ਿਟਰੀ ਵਿੱਚ 50+ ਭਾਸ਼ਾ ਅਨੁਵਾਦ ਸ਼ਾਮਲ ਹਨ ਜੋ ਡਾਊਨਲੋਡ ਸਾਈਜ਼ ਨੂੰ ਕਾਫ਼ੀ ਵਧਾਉਂਦੇ ਹਨ। ਬਿਨਾਂ ਅਨੁਵਾਦਾਂ ਦੇ ਕਲੋਨ ਕਰਨ ਲਈ, ਸਪਾਰਸ ਚੈਕਆਉਟ ਦੀ ਵਰਤੋਂ ਕਰੋ:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> ਇਹ ਤੁਹਾਨੂੰ ਕੋਰਸ ਪੂਰਾ ਕਰਨ ਲਈ ਸਾਰਾ ਕੁਝ ਵਧੀਆ ਤੇਜ਼ ਡਾਊਨਲੋਡ ਨਾਲ ਦਿੰਦਾ ਹੈ।
+> ਇਸ ਨਾਲ ਤੁਹਾਨੂੰ ਸਭ ਕੁਝ ਮਿਲੇਗਾ ਜੋ ਤੁਸੀਂ ਕੋਰਸ ਪੂਰਾ ਕਰਨ ਲਈ ਚਾਹੀਦਾ ਹੈ ਬਹੁਤ ਤੇਜ਼ ਡਾਊਨਲੋਡ ਨਾਲ।
-**ਜੇ ਤੁਸੀਂ ਹੋਰ ਅਨੁਵਾਦ ਸਹਾਇਤਾ ਚਾਹੁੰਦੇ ਹੋ ਤਾਂ ਉਹ [ਇਥੇ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) ਲਿਸਟ ਕੀਤੇ ਗਏ ਹਨ।**
+**ਜੇ ਤੁਸੀਂ ਵਧੇਰੇ ਅਨੁਵਾਦ ਭਾਸ਼ਾਵਾਂ ਦੀ ਮੰਗ ਕਰਦੇ ਹੋ, ਉਹ [ਇੱਥੇ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) ਦਿੱਤੀ ਗਈਆਂ ਹਨ**
-#### ਸਾਡੇ ਕਮਿਊਨਿਟੀ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ
+#### ਸਾਡੀ ਕਮਿਊਨਿਟੀ ਨਾਲ ਜੁੜੋ
[](https://discord.gg/nTYy5BXMWG)
-ਸਾਡੇ ਕੋਲ ਡਿਸਕੋਰਡ ਤੇ ਏਆਈ ਨਾਲ ਸਿੱਖਣ ਵਾਲੀ ਸਿਰੀਜ਼ ਚੱਲ ਰਹੀ ਹੈ, ਹੋਰ ਜਾਣਕਾਰੀ ਲਈ ਅਤੇ ਸਾਡੀ ਸਿਰੀਜ਼ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ [Learn with AI Series](https://aka.ms/learnwithai/discord) 18 ਤੋਂ 30 ਸਤੰਬਰ, 2025 ਤੱਕ। ਤੁਹਾਨੂੰ GitHub Copilot ਨੂੰ ਡੇਟਾ ਸਾਇੰਸ ਲਈ ਵਰਤਣ ਦੇ ਟਿੱਪਸ ਅਤੇ ਤਰਕ ਮਿਲਣਗੇ।
+ਸਾਡੇ ਕੋਲ ਇੱਕ Discord 'learn with AI' ਸਿਰੀਜ਼ ਚੱਲ ਰਹੀ ਹੈ, ਹੋਰ ਜਾਣਕਾਰੀ ਲਈ ਅਤੇ ਸਾਡੇ ਨਾਲ ਸ਼ਾਮਲ ਹੋਵੋ [Learn with AI Series](https://aka.ms/learnwithai/discord) 18 - 30 ਸਤੰਬਰ, 2025 ਤੱਕ। ਤੁਹਾਨੂੰ GitHub Copilot ਦੀ ਵਰਤੋਂ ਨਾਲ ਡਾਟਾ ਸਾਇੰਸ ਲਈ ਸੁਝਾਅ ਅਤੇ ਟਿੱਪਣੀਆਂ ਮਿਲਣਗੀਆਂ।
-
+
# ਕੀ ਤੁਸੀਂ ਵਿਦਿਆਰਥੀ ਹੋ?
ਹੇਠਾਂ ਦਿੱਤੇ ਸਰੋਤਾਂ ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ:
-- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ਇਸ ਸਫ਼ੇ 'ਤੇ, ਤੁਸੀਂ ਸ਼ੁਰੂਆਤੀ ਸਰੋਤ, ਵਿਦਿਆਰਥੀ ਪੈਕ ਅਤੇ ਮੁਫ਼ਤ ਸਰਟੀਫਿਕੇਟ ਵਾਊਚਰ ਦੇ ਤਰੀਕੇ ਲੱਭੋਗੇ। ਇਹ ਐਕ ਐਸਾ ਸਫ਼ਾ ਹੈ ਜੋ ਤੁਸੀਂ ਮਾਰਕਰ ਕਰ ਕੇ ਸਮੇਂ-ਸਮੇਂ 'ਤੇ ਦੇਖਦੇ ਰਹੋ ਕਿਉਂਕਿ ਅਸੀਂ ਹਰ ਮਹੀਨੇ ਸਮੱਗਰੀ ਬਦਲਦੇ ਰਹਿੰਦੇ ਹਾਂ।
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ਵਿਦਿਆਰਥੀ ਐਮਬੈਸਡਰਾਂ ਦੀ ਇੱਕ ਗਲੋਬਲ ਕਮਿਊਨਿਟੀ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ, ਇਹ ਤੁਹਾਡੇ ਲਈ ਮਾਈਕ੍ਰੋਸੌਫਟ ਵਿੱਚ ਜਾਣ ਦਾ ਰਸਤਾ ਹੋ ਸਕਦਾ ਹੈ।
+- [Student Hub ਪੇਜ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ਇਸ ਪੇਜ 'ਚ, ਤੁਸੀਂ ਸ਼ੁਰੂਆਤੀਆਂ ਲਈ ਸਰੋਤ, ਵਿਦਿਆਰਥੀ ਪੈਕ ਅਤੇ ਮੁਫ਼ਤ ਸਰਟੀਫਿਕੇਟ ਵਾਊਚਰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਤਰੀਕੇ ਲੱਭੋਗੇ। ਇਹ ਇੱਕ ਐਸਾ ਪੇਜ ਹੈ ਜਿਸਨੂੰ ਤੁਸੀਂ ਬੁੱਕਮਾਰਕ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ ਅਤੇ ਸਮੇਂ-ਸਮੇਂ ਤੇ ਚੈੱਕ ਕਰਦੇ ਰਹੋ ਕਿਉਂਕਿ ਅਸੀਂ ਥੋੜ੍ਹੇ ਸਮੇਂ 'ਚ ਸਮੱਗਰੀ ਬਦਲਦੇ ਰਹਿੰਦੇ ਹਾਂ।
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ਵਿਸ਼ਵ ਭਰ ਦੇ ਦੇ ਵਿਦਿਆਰਥੀ ਰਾਜਦੂਤਾਂ ਦੀ ਕਮਿਊਨਿਟੀ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ, ਇਹ ਤੁਹਾਡਾ ਮਾਇਕ੍ਰੋਸਾਫਟ ਵਿੱਚ ਦਾਖਲਾ ਹੋ ਸਕਦਾ ਹੈ।
-# ਸ਼ੁਰੂਆਤ
+# ਸ਼ੁਰੂਆਤ ਕਰਨਾ
## 📚 ਦਸਤਾਵੇਜ਼
-- **[ਇੰਸਟਾਲੇਸ਼ਨ ਗਾਈਡ](INSTALLATION.md)** - ਸ਼ੁਰੂਆਤ ਕਰਨ ਵਾਲਿਆਂ ਲਈ ਕਦਮ-ਦਰ-ਕਦਮ ਸੈੱਟਅਪ ਅਦਾਂਸ਼
-- **[ਵਰਤੋਂ ਦੀ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼](USAGE.md)** - ਉਦਾਹਰਣਾਂ ਅਤੇ ਆਮ ਕਾਰਜ-ਪ੍ਰਣਾਲੀਆਂ
-- **[ਮੁਸ਼ਕਲਾਂ ਸਪਸ਼ਟਕਰਨ](TROUBLESHOOTING.md)** - ਆਮ ਸਮੱਸਿਆਵਾਂ ਦੇ ਹੱਲ
-- **[ਯੋਗਦਾਨ ਦਿਓ](CONTRIBUTING.md)** - ਇਸ ਪ੍ਰੋਜੈਕਟ ਵਿੱਚ ਯੋਗਦਾਨ ਦੇਣ ਦਾ ਤਰੀਕਾ
-- **[ਸ਼ਿੱਖਿਆਰਥੀਆਂ ਲਈ](for-teachers.md)** - ਸਿਖਲਾਈ ਮਦਦ ਅਤੇ ਕਲਾਸ ਰਿਸੋਰਸ
+- **[ਇੰਸਟਾਲੇਸ਼ਨ ਗਾਈਡ](INSTALLATION.md)** - ਸ਼ੁਰੂਆਤੀਆਂ ਲਈ ਕਦਮ-ਦਰ-कਦਮ ਸੈੱਟਅਪ ਹਦਾਇਤਾਂ
+- **[ਵਰਤੋਂ ਗਾਈਡ](USAGE.md)** - ਉਦਾਹਰਨਾਂ ਅਤੇ ਆਮ ਕਾਰਜ ਪ੍ਰਵਾਹ
+- **[ਮੁਸ਼ਕਲਾਂ ਦਾ ਸਮਾਧਾਨ](TROUBLESHOOTING.md)** - ਆਮ ਸਮੱਸਿਆਵਾਂ ਦੇ ਹੱਲ
+- **[ਯੋਗਦਾਨ ਕਿਵੇਂ ਦੇਣਾ](CONTRIBUTING.md)** - ਇਸ ਪ੍ਰੋਜੈਕਟ ਵਿੱਚ ਯੋਗਦਾਨ ਕਿਵੇਂ ਦਿਓ
+- **[ਅਧਿਆਪਕਾਂ ਲਈ](for-teachers.md)** - ਪਾਠ-ਪੜ੍ਹਾਉ ਅਤੇ ਕਲਾਸਰੂਮ ਸਰੋਤ
-## 👨🎓 ਵਿਦਿਆਰਥੀਆਂ ਲਈ
-> **ਪੂਰੇ ਸ਼ੁਰੂਆਤੀ**: ਡੇਟਾ ਸਾਇੰਸ ਵਿੱਚ ਨਵੇਂ ਹੋ? ਸਾਡੀਆਂ [ਸ਼ੁਰੂਆਤੀ-ਮਿਤ੍ਰਾਂ ਉਦੇਹਾਰਣਾਂ](examples/README.md) ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ! ਇਹ ਸਧਾਰਣ, ਚੰਗੀ ਤਰ੍ਹਾਂ ਟਿੱਪਣੀ ਕੀਤੀਆਂ ਉਦਾਹਰਣਾਂ ਤੁਹਾਨੂੰ ਮੁਢਲੇ ਵਿਚਾਰ ਸਮਝਣ ਵਿੱਚ ਮਦਦ ਕਰਦੀਆਂ ਹਨ, ਇਸ ਤੋਂ ਪਹਿਲਾਂ ਕਿ ਤੁਸੀਂ ਪੂਰੇ ਕੋਰਸ ਵਿੱਚ ਗੋਤਾ ਲਗਾਓ।
-> **[ਵਿਦਿਆਰਥੀ](https://aka.ms/student-page)**: ਇਸ ਕੋਰਸ ਨੂੰ ਆਪਣੇ ਆਪ ਵਰਤਣ ਲਈ, ਸਾਰੀ ਰਿਪੋ ਨੂੰ fork ਕਰੋ ਅਤੇ ਆਪਣੇ ਆਪ ਕਸਰਤਾਂ ਪੂਰੀਆਂ ਕਰੋ, ਸ਼ੁਰੂ ਕਰਦੇ ਹੋਏ ਪੂਰਵ ਪ੍ਰੇਖਣ ਕਿਊਜ਼ ਨਾਲ। ਫਿਰ ਲੈਕਚਰ ਪੜ੍ਹੋ ਅਤੇ ਬਾਕੀ ਕਾਰਜ ਸਮਾਪਤ ਕਰੋ। ਕੋਡ ਨੂੰ ਕਾਪੀ ਕਰਨ ਦੀ ਬਜਾਏ ਪਾਠ ਸਮਝ ਕੇ ਪ੍ਰੋਜੈਕਟ ਬਣਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ; ਹਾਲਾਂਕਿ, ਹਰੇਕ ਪ੍ਰੋਜੈਕਟ-ਕੇਂਦਰਤ ਪਾਠ ਵਿੱਚ ਹੱਲ /solutions ਫੋਲਡਰ ਵਿੱਚ ਕੋਡ ਉਪਲਬਧ ਹੈ। ਇੱਕ ਹੋਰ ਵਿਚਾਰ ਹੈ ਕਿ ਆਪਣੇ ਦੋਸਤਾਂ ਨਾਲ ਇੱਕ ਅਧਿਐਨ ਸਮੂਹ ਬਣਾਓ ਅਤੇ ਸਮੱਗਰੀ ਨੂੰ ਮਿਲ ਕੇ ਪੜ੍ਹੋ। ਅਗਲੇ ਪਾਠ ਲਈ, ਅਸੀਂ [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ਦੀ ਸਿਫਾਰਸ਼ ਕਰਦੇ ਹਾਂ।
+## 👨🎓 ਵਿਦਿਆਰਥੀਆਂ ਲਈ
+> **ਪੂਰੇ ਸ਼ੁਰੂਆਤੀ**: ਡਾਟਾ ਸਾਇੰਸ ਵਿੱਚ ਨਵੇਂ ਹੋ? ਸਾਡੇ [ਆਸਾਨ ਤੇ ਸੁਝਾਈ ਨਾਲ ਭਰਪੂਰ ਉਦਾਹਰਨਾਂ](examples/README.md) ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ! ਇਹ ਸਧਾਰਣ ਅਤੇ ਚੰਗੀ ਤਰ੍ਹਾਂ ਟਿੱਪਣੀਆਂ ਵਾਲੀਆਂ ਉਦਾਹਰਨਾਂ ਤੁਹਾਨੂੰ ਮੁਢਲੀ ਸਮਝ ਦਿਲਾਉਣਗੀਆਂ ਅਤੇ ਫਿਰ ਮੁਕੰਮਲ ਅਧਿਆਪਨ ਨੂੰ ਸਿਖਣਗੇ।
+> **[ਵਿਦਿਆਰਥੀ](https://aka.ms/student-page)**: ਇਸ ਅਧਿਆਪਨ ਨੂੰ ਆਪਣੇ ਆਪ ਵਰਤਣ ਲਈ, ਪੂਰੇ ਭੰਡਾਰ ਨੂੰ ਫੋਰਕ ਕਰੋ ਅਤੇ ਖੁਦ ਅਭਿਆਸਾਂ ਪੂਰੇ ਕਰੋ, ਸ਼ੁਰੂਆਤ ਇੱਕ ਪੂਰਵ-ਲੇਕਚਰ ਕਵਿਜ ਨਾਲ ਕਰੋ। ਫਿਰ ਲੇਕਚਰ ਪੜ੍ਹੋ ਅਤੇ ਬਾਕੀ ਗਤੀਵਿਧੀਆਂ ਪੂਰੀਆਂ ਕਰੋ। ਜੁਆਇੰਟ ਬਣਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ ਪਾਠਾਂ ਨੂੰ ਸਮਝ ਕੇ ਪ੍ਰੋਜੈਕਟ ਬਣਾਉਣ ਲਈ, ਹੱਲ ਦੀ ਕੋਡ ਨਕਲ ਕਰਨ ਦੀ ਬਜਾਏ; ਹਾਲਾਂਕਿ, ਹੱਲ ਵਾਲਾ ਕੋਡ ਹਰ ਪ੍ਰੋਜੈਕਟ-ਕੇਂਦ੍ਰਿਤ ਪਾਠ ਵਿੱਚ /solutions ਫੋਲਡਰ ਵਿੱਚ ਉਪਲਬਧ ਹੈ। ਦੂਜਾ ਤਰੀਕਾ ਇਹ ਹੈ ਕਿ ਦੋਸਤਾਂ ਨਾਲ ਪੜ੍ਹਾਈ ਦਾ ਗਰੁੱਪ ਬਣਾਓ ਅਤੇ ਸਾਰਥਕ ਤਰੀਕੇ ਨਾਲ ਸਮੱਗਰੀ ਪੜ੍ਹੋ। ਵਧੇਰੇ ਸਿੱਖਣ ਲਈ ਸਾਡਾ ਸਿਫਾਰਸ਼ੀ [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ਹੈ।
-**ਤੇਜ਼ ਸ਼ੁਰੂਆਤ:**
-1. ਆਪਣਾ ਵਾਤਾਵਰਣ ਸੈੱਟ ਕਰਨ ਲਈ [ਇੰਸਟਾਲੇਸ਼ਨ ਗਾਈਡ](INSTALLATION.md) ਦੇਖੋ
-2. ਕੋਰਸ ਨਾਲ ਕੰਮ ਕਰਨ ਦਾ ਤਰੀਕਾ ਜਾਣਨ ਲਈ [ਵਰਤੋਂ ਦੀ ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼](USAGE.md) ਨੂੰ ਪੜ੍ਹੋ
-3. ਪਾਠ 1 ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ ਅਤੇ ਲੜੀਵਾਰ ਕੰਮ ਕਰੋ
-4. ਸਹਾਇਤਾ ਲਈ ਸਾਡੇ [ਡਿਸਕੋਰਡ ਕਮਿਊਨਿਟੀ](https://aka.ms/ds4beginners/discord) ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ
+**ਤੁਰੰਤ ਸ਼ੁਰੂਆਤ:**
+1. ਆਪਣਾ ਵਾਤਵਰਣ ਸੈੱਟ ਕਰਨ ਲਈ [ਇੰਸਟਾਲੇਸ਼ਨ ਗਾਈਡ](INSTALLATION.md) ਦੇਖੋ
+2. ਅਧਿਆਪਨ ਨਾਲ ਕੰਮ ਕਰਨਾ ਸਿੱਖਣ ਲਈ [ਵਰਤੋਂ ਗਾਈਡ](USAGE.md) ਦੀ ਸਮੀਖਿਆ ਕਰੋ
+3. ਪਹਿਲੇ ਪਾਠ ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ ਅਤੇ ਲੜੀਵਾਰ ਅੱਗੇ ਵਧੋ
+4. ਸਹਾਇਤਾ ਲਈ ਸਾਡੇ [Discord ਕਮਿਊਨਿਟੀ](https://aka.ms/ds4beginners/discord) ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ
## 👩🏫 ਅਧਿਆਪਕਾਂ ਲਈ
-> **ਅਧਿਆਪਕਾਂ**: ਅਸੀਂ [ਇਹ ਪਾਠਕ੍ਰਮ ਵਰਤਣ ਲਈ ਕੁਝ ਸੁਝਾਅ](for-teachers.md) ਸ਼ਾਮਲ ਕੀਤੇ ਹਨ। ਅਸੀਂ ਤੁਹਾਡੇ ਪ੍ਰਤੀਕਿਰਿਆ ਦੇ ਇੰਤਜ਼ਾਰ ਕਰ ਰਹੇ ਹਾਂ [ਸਾਡੇ ਚਰਚਾ ਫੋਰਮ](https://github.com/microsoft/Data-Science-For-Beginners/discussions) ਵਿੱਚ!
-
+> **ਅਧਿਆਪਕਾਂ**: ਅਸੀਂ [ਇਸ ਅਧਿਆਪਨ ਨੂੰ ਵਰਤਣ ਦੇ ਕੁਝ ਸੁਝਾਅ](for-teachers.md) ਸ਼ਾਮਲ ਕੀਤੇ ਹਨ। ਅਸੀਂ ਤੁਹਾਡੇ ਫੀਡਬੈਕ ਦਾ ਉਮੀਦ ਕਰਦੇ ਹਾਂ [ਸਾਡੇ ਚਰਚਾ ਫੋਰਮ ਵਿੱਚ](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## ਟੀਮ ਨਾਲ ਮਿਲੋ
+
[](https://youtu.be/8mzavjQSMM4 "ਪ੍ਰੋਮੋ ਵੀਡੀਓ")
-**ਗਿਫ** [ਮੋਹਿਤ ਜੈਸਲ](https://www.linkedin.com/in/mohitjaisal) ਵਲੋਂ
+**ਗਿਫ** [ਮੋਹਿਤ ਜੈਸਲ](https://www.linkedin.com/in/mohitjaisal) ਵੱਲੋਂ
-> 🎥 ਪ੍ਰੋਜੈਕਟ ਅਤੇ ਇਸਨੂੰ ਬਣਾਉਣ ਵਾਲੇ ਲੋਗਾਂ ਬਾਰੇ ਵੀਡੀਓ ਲਈ ਉਪਰ ਦਿੱਤੀ ਤਸਵੀਰ 'ਤੇ ਕਲਿੱਕ ਕਰੋ!
+> 🎥 ਪ੍ਰਾਜੈਕਟ ਅਤੇ ਉਸ ਨੂੰ ਬਣਾਉਣ ਵਾਲੇ ਲੋਕਾਂ ਬਾਰੇ ਵੀਡੀਓ ਲਈ ਉਪਰ ਦਿੱਤੀ ਚਿੱਤਰ 'ਤੇ ਕਲਿੱਕ ਕਰੋ!
-## ਪੈਡਾਗੌਜੀ
+## ਪੈਡਾਗੋਜੀ
-ਅਸੀਂ ਇਸ ਕੋਰਸ ਤਿਆਰ ਕਰਨ ਵੇਲੇ ਦੋ ਪੈਡਾਗੌਜੀਕਲ ਮੂਲ ਸਿਧਾਂਤਾਂ ਦੀ ਚੋਣ ਕੀਤੀ ਹੈ: ਇਹ ਪ੍ਰੋਜੈਕਟ-ਆਧਾਰਤ ਹੋਵੇ ਅਤੇ ਇਸ ਵਿੱਚ ਅਕਸਰ ਕੁਇਜ਼ ਸ਼ਾਮਲ ਹੋਣ। ਇਸ ਸਿਰੀਜ਼ ਦੇ ਅਖੀਰ ਤੱਕ ਵਿਦਿਆਰਥੀਆਂ ਨੂੰ ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਬੁਨਿਆਦੀ ਸਿਧਾਂਤ ਸਿੱਖਣ ਨੂੰ ਮਿਲਣਗੇ, ਜਿਸ ਵਿੱਚ ਨੈਤਿਕ ਸੰਕਲਪ, ਡਾਟਾ ਤਿਆਰੀ, ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨ ਦੇ ਵੱਖ-ਵੱਖ ਤਰੀਕੇ, ਡਾਟਾ ਵਿਜ਼ੂਅਲਾਈਜ਼ੇਸ਼ਨ, ਡਾਟਾ ਵਿਸ਼ਲੇਸ਼ਣ, ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਹਕੀਕਤੀ ਪ੍ਰਯੋਗ ਅਤੇ ਹੋਰ ਸ਼ਾਮਲ ਹਨ।
+ਅਸੀਂ ਇਸ ਕੋਰਸ ਬਣਾਉਂਦੇ ਸਮੇਂ ਦੋ ਪੈਡਾਗੋਜੀਕਲ ਸਿਧਾਂਤ ਚੁਣੇ ਹਨ: ਯਕੀਨੀ ਬਣਾਉਣਾ ਕਿ ਇਹ ਪ੍ਰੋਜੈਕਟ-ਆਧਾਰਿਤ ਹੈ ਅਤੇ ਇਸ ਵਿੱਚ ਅਕਸਰ ਕੁਇਜ਼ੇ ਸ਼ਾਮਿਲ ਹਨ। ਇਸ ਸੀਰੀਜ਼ ਦੇ ਅੰਤ ਤੱਕ, ਵਿਦਿਆਰਥੀ ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਬੁਨਿਆਦੀ ਪ੍ਰਿੰਸੀਪਲ ਸਿੱਖ ਚੁੱਕੇ ਹੋਣਗੇ, ਜਿਸ ਵਿੱਚ ਨੈਤਿਕ ਧਾਰਣਾ, ਡਾਟਾ ਤਿਆਰੀ, ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨ ਦੇ ਵੱਖ-ਵੱਖ ਤਰੀਕੇ, ਡਾਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ, ਡਾਟਾ ਵਿਸ਼ਲੇਸ਼ਣ, ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਅਸਲੀ ਦੁਨੀਆ ਦੇ ਉਪਯੋਗ ਮਾਮਲੇ, ਅਤੇ ਹੋਰ ਸ਼ਾਮਿਲ ਹਨ।
-ਇਸ ਤੋਂ ਇਲਾਵਾ, ਇੱਕ ਨਿਮਣ-ਜੋਖਮ ਵਾਲਾ ਕੁਇਜ਼ ਕਲਾਸ ਤੋਂ ਪਹਿਲਾਂ ਵਿਦਿਆਰਥੀ ਦੇ ਮਨੋਰਥ ਨੂੰ ਇੱਕ ਵਿਸ਼ੇ ਸਿੱਖਣ ਵੱਲ ਸੈੱਟ ਕਰਦਾ ਹੈ, ਜਦਕਿ ਕਲਾਸ ਦੇ ਬਾਅਦ ਦੂਜਾ ਕੁਇਜ਼ ਹੋਰ ਯਾਦਗਾਰੀ ਨੂੰ ਯਕੀਨੀ ਬਨਾਉਂਦਾ ਹੈ। ਇਹ ਕੋਰਸਲਾਈਨ ਲਚਕੀਲੀ ਅਤੇ ਮਜ਼ੇਦਾਰ ਬਣਾਈ ਗਈ ਹੈ ਅਤੇ ਪੂਰੀ ਜਾਂ ਹਿੱਸੇ ਵਜੋਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਪ੍ਰੋਜੈਕਟ ਛੋਟੇ ਸ਼ੁਰੂ ਹੁੰਦੇ ਹਨ ਅਤੇ 10 ਹਫ਼ਤਿਆਂ ਦੇ ਚੱਕਰ ਦੇ ਅਖੀਰ ਤੱਕ ਵੱਧ ਤੋਂ ਵੱਧ ਜਟਿਲ ਹੋ ਜਾਂਦੇ ਹਨ।
+ਉਪਰੰਤ, ਕਲਾਸ ਤੋਂ ਪਹਿਲਾਂ ਇਕ ਘੱਟ-ਜਖਮੀ ਕੁਇਜ਼ ਵਿਦਿਆਰਥੀ ਦੇ ਵਿਸ਼ੇ ਸਿੱਖਣ ਦੇ ਇरਾਦੇ ਨੂੰ ਸੈੱਟ ਕਰਦਾ ਹੈ, ਜਦਕਿ ਕਲਾਸ ਤੋਂ ਬਾਅਦ ਦੂਜਾ ਕੁਇਜ਼ ਹੋਰ ਯਾਦ ਰੱਖਣ ਸੰਨિਚਿਤ ਕਰਦਾ ਹੈ। ਇਹ ਕੋਰਿਕੁਲਮ ਲਚਕੀਲਾ ਅਤੇ ਮਨੋਰੰਜਕ ਬਣਾਉਣ ਲਈ ਡਿਜ਼ਾਈਨ ਕੀਤਾ ਗਿਆ ਹੈ ਅਤੇ ਸਾਰੇ ਕਰ ਜਾਂ ਹਿੱਸੇ ਵੱਜੋਂ ਲੈਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਪ੍ਰੋਜੈਕਟ ਛੋਟੇ ਤੋਂ ਸ਼ੁਰੂ ਹੁੰਦੇ ਹਨ ਅਤੇ 10 ਹਫਤਿਆਂ ਦੇ ਚੱਕਰ ਦੇ ਅੰਤ ਤੱਕ ਵੱਧ-ਵੱਧ ਜਟਿਲ ਹੋ ਜਾਂਦੇ ਹਨ।
-> ਸਾਡਾ [ਕੋਡ ਆਫ ਕੰਡਕਟ](CODE_OF_CONDUCT.md), [ਯੋਗਦਾਨ](CONTRIBUTING.md), [ਅਨੁਵਾਦ](TRANSLATIONS.md) ਨਿਰਦੇਸ਼ ਪਾਓ। ਅਸੀਂ ਤੁਹਾਡੇ ਰਚਨਾਤਮਕ ਪ੍ਰਤੀਕਿਰਿਆ ਦਾ ਸਵਾਗਤ ਕਰਦੇ ਹਾਂ!
+> ਸਾਡਾ [ਆਚਰਨ ਕੋਡ](CODE_OF_CONDUCT.md), [ਯੋਗਦਾਨ](CONTRIBUTING.md), [ਅਨੁਵਾਦ](TRANSLATIONS.md) ਗਾਈਡਲਾਈਨਜ਼ ਦੇਖੋ। ਅਸੀਂ ਤੁਹਾਡੇ ਰਚਨਾਤਮਕ ਪ੍ਰਤੀਕਿਰਿਆ ਦਾ ਸਵਾਗਤ ਕਰਦੇ ਹਾਂ!
-## ਹਰ ਪਾਠ ਵਿੱਚ ਸ਼ਾਮਲ ਹੈ:
+## ਹਰ ਪਾਠ ਵਿੱਚ ਸ਼ਾਮਿਲ ਹੈ:
-- ਵਿਕਲਪਿਕ ਸਕੇਚਨੋਟ
+- ਵਿਕਲਪਿਕ ਸਕੈਚਨੋਟ
- ਵਿਕਲਪਿਕ ਸਹਾਇਕ ਵੀਡੀਓ
-- ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਵਾਰਮਅਪ ਕੁਇਜ਼
+- ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਵਰਮਅਪ ਕੁਇਜ਼
- ਲਿਖਤੀ ਪਾਠ
-- ਪ੍ਰੋਜੈਕਟ-ਆਧਾਰਿਤ ਪਾਠਾਂ ਲਈ, ਪ੍ਰੋਜੈਕਟ ਬਣਾਉਣ ਲਈ ਕਦਮ-ਦਰ-ਕਦਮ ਮਾਰਗਦਰਸ਼ਕ
-- ਗਿਆਨ ਚੈੱਕ
-- ਇੱਕ ਚੁਣੌਤੀ
-- ਸਹਾਇਕ ਪੜ੍ਹਾਈ
-- ਅਸਾਈਨਮੈਂਟ
-- [ਪਾਠ ਬਾਅਦ ਕੁਇਜ਼](https://ff-quizzes.netlify.app/en/)
+- ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਪਾਠਾਂ ਲਈ, ਪ੍ਰੋਜੈਕਟ ਕਿਵੇਂ ਬਣਾਉਣਾ ਹੈ ਉਸ ਦੀ ਕਦਮ-ਦਰ-ਕਦਮ ਮਾਰਗਦਰਸ਼ਨ
+- ਗਿਆਨ ਜਾਂਚ
+- ਇੱਕ ਚੈਲੰਜ
+- ਸਹਾਇਕ ਪਾਠ
+- ਨਿੱਤ ਪਾਠ ਤੋਂ ਬਾਅਦ ਕੁਇਜ਼ ([post-lesson quiz](https://ff-quizzes.netlify.app/en/))
-> **ਕੁਇਜ਼ ਬਾਰੇ ਨੋਟ:** ਸਾਰੇ ਕੁਇਜ਼ ਨੂੰ Quiz-App ਫੋਲਡਰ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ ਹੈ, ਜਿੱਥੇ ਕੁੱਲ 40 ਕੁਇਜ਼ ਹਨ ਅਤੇ ਹਰ ਇੱਕ ਵਿੱਚ ਤਿੰਨ ਸਵਾਲ ਹਨ। ਇਹ ਪਾਠਾਂ ਵਿੱਚ ਲਿੰਕ ਕੀਤੇ ਗਏ ਹਨ, ਪਰ ਕੁਇਜ਼ ਐਪ ਨੂੰ ਸਥਾਨਕ ਤੌਰ 'ਤੇ ਚਲਾਇਆ ਜਾਂ ਸਕਦਾ ਹੈ ਜਾਂ Azure 'ਤੇ ਤੈਅ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ; `quiz-app` ਫੋਲਡਰ ਵਿੱਚ ਦਿੱਖਾਈਆਂ ਹدایਾਤਾਂ ਦੀ ਪਾਲਣਾ ਕਰੋ। ਇਹਨਾਂ ਨੂੰ ਹੌਲੀ-ਹੌਲੀ ਸਥਾਨਕ ਬਣਾਇਆ ਜਾ ਰਿਹਾ ਹੈ।
+> **ਕੁਇਜ਼ਜ਼ ਬਾਰੇ ਨੋਟ**: ਸਾਰੇ ਕੁਇਜ਼ਜ਼ Quiz-App ਫੋਲਡਰ ਵਿੱਚ ਹਨ, 40 ਕੁੱਲ ਕੁਇਜ਼ਜ਼ ਉਨਾਂ ਵਿੱਚ ਤਿੰਨ-ਤਿੰਨ ਪ੍ਰਸ਼ਨਾਂ ਵਾਲੇ ਹਨ। ਇਹ ਪਾਠਾਂ ਵਿੱਚ ਲਿੰਕ ਕੀਤੇ ਗਏ ਹਨ, ਪਰ ਕੁਇਜ਼ ਐਪ ਨੂੰ ਸਥਾਨਕ ਤੌਰ 'ਤੇ ਚਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਜਾਂ ਏਜ਼ਯੂਰ 'ਤੇ ਪ੍ਰਕਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ; `quiz-app` ਫੋਲਡਰ ਦੇ ਨਿਰਦੇਸ਼ਾਂ ਦੀ ਪਾਲਣਾ ਕਰੋ। ਇਹ ਆਹਿਸਤਾ-ਆਹਿਸਤਾ ਸਥਾਨਕ ਕੀਤਾ ਜਾ ਰਿਹਾ ਹੈ।
-## 🎓 ਸ਼ੁਰੂਆਤ-ਮਿੱਤਰ ਉਦਾਹਰਣਾਂ
+## 🎓 ਸ਼ੁਰੂਆਤੀ-ਮਿੱਤਰ ਉਦਾਹਰਣ
-**ਡੇਟਾ ਸਾਇੰਸ ਵਿੱਚ ਨਵਾਂ ਹੋ?** ਅਸੀਂ ਇੱਕ ਖਾਸ [examples directory](examples/README.md) ਬਣਾਇਆ ਹੈ ਜਿਸ ਵਿੱਚ ਸਿੱਝੇ, ਚੰਗੀ ਤਰ੍ਹਾਂ ਟਿੱਪਣੀ ਕੀਤੀ ਗਈ ਕੋਡ ਹੈ ਤਾਂ ਜੋ ਤੁਸੀਂ ਸ਼ੁਰੂਆਤ ਕਰ ਸਕੋ:
+**ਡਾਟਾ ਸਾਇੰਸ ਵਿੱਚ ਨਵਾਂ?** ਅਸੀਂ ਇੱਕ ਵਿਸ਼ੇਸ਼ [ਉਦਾਹਰਣ ਡਾਇਰੈਕਟਰੀ](examples/README.md) ਬਣਾਈ ਹੈ ਜਿਸ ਵਿੱਚ ਸੌਖਾ ਅਤੇ ਚੰਗੀ ਤਰ੍ਹਾਂ ਟਿੱਪਣੀਆਂ ਵਾਲਾ ਕੋਡ ਹੈ ਤਾਂ ਜੋ ਤੁਸੀਂ ਸ਼ੁਰੂਆਤ ਕਰ ਸਕੋ:
-- 🌟 **ਹੈਲੋ ਵਰਲਡ** - ਤੁਹਾਡਾ ਪਹਿਲਾ ਡਾਟਾ ਸਾਇੰਸ ਕਾਰਜਕ੍ਰਮ
-- 📂 **ਡਾਟਾ ਲੋਡ ਕਰਨਾ** - ਡੈਟਾਸੈੱਟ ਪੜ੍ਹਨ ਅਤੇ ਖੋਜਣ ਦੇ ਤਰੀਕੇ ਸਿੱਖੋ
-- 📊 **ਸਧਾਰਣ ਵਿਸ਼ਲੇਸ਼ਣ** - ਅੰਕੜਿਆਂ ਦੀ ਗਣਨਾ ਕਰੋ ਅਤੇ ਪੈਟਰਨ ਲੱਭੋ
-- 📈 **ਮੂਲ ਵਿਜ਼ੂਅਲਾਈਜ਼ੇਸ਼ਨ** - ਚਾਰਟਸ ਅਤੇ ਗ੍ਰਾਫ ਬਣਾਓ
-- 🔬 **ਅਸਲੀ ਦੁਨੀਆ ਪ੍ਰੋਜੈਕਟ** - ਸ਼ੁਰੂ ਤੋਂ ਅੰਤ ਤੱਕ ਪੂਰਾ ਵਰਕਫਲੋ
+- 🌟 **ਹੈਲੋ ਵਰਲਡ** - ਤੁਹਾਡਾ ਪਹਿਲਾ ਡਾਟਾ ਸਾਇੰਸ ਪ੍ਰੋਗਰਾਮ
+- 📂 **ਡਾਟਾ ਲੋਡ ਕਰਨਾ** - ਡੈਟਾਸੈਟ ਪੜ੍ਹਨਾ ਅਤੇ ਖੰਗਾਲਣਾ ਸਿੱਖੋ
+- 📊 **ਸਰਲ ਵਿਸ਼ਲੇਸ਼ਣ** - ਅੰਕੜੇ ਕੱਡੋ ਅਤੇ ਪੈਟਰਨ ਲੱਭੋ
+- 📈 **ਮੁੱਢਲਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ** - ਚਾਰਟ ਅਤੇ ਗ੍ਰਾਫ ਬਣਾਉਣਾ
+- 🔬 **ਅਸਲੀ ਦੁਨੀਆਂ ਦਾ ਪ੍ਰੋਜੈਕਟ** - ਸ਼ੁਰੂ ਤੋਂ ਅੰਤ ਤੱਕ ਪੂਰਾ ਕੰਮ
-ਹਰ ਉਦਾਹਰਣ ਵਿੱਚ ਹਰ ਕਦਮ ਨੂੰ ਸਮਝਾਉਂਦੇ ਵਿਸਥਾਰਿਤ ਟਿੱਪਣੀਆਂ ਹਨ, ਜੋ ਨਵੀਂ ਸ਼ੁਰੂਆਤ ਕਰਨ ਵਾਲਿਆਂ ਲਈ ਪੂਰਨ ਹਨ!
+ਹਰ ਉਦਾਹਰਣ ਵਿੱਚ ਹਰ ਕਦਮ ਦੀ ਵਿਆਖਿਆ ਕਰਨ ਵਾਲੀਆਂ ਵਿਚਾਰਧਾਰਾਂ ਵਾਲੀਆਂ ਟਿੱਪਣੀਆਂ ਸ਼ਾਮਲ ਹਨ, ਜਿਸ ਨਾਲ ਇਹ ਬਿਲਕੁਲ ਸ਼ੁਰੂਆਤੀ ਵਿਦਿਆਰਥੀਆਂ ਲਈ ਬਦਲ ਹੀ ਉਚਿਤ ਹੈ!
-👉 **[ਉਦਾਹਰਣਾਂ ਨਾਲ ਸ਼ੁਰੂਆਤ ਕਰੋ](examples/README.md)** 👈
+👉 **[ਉਦਾਹਰਣਾਂ ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ](examples/README.md)** 👈
## ਪਾਠ
-
-||
+||
|:---:|
-| ਡਾਟਾ ਸਾਇੰਸ ਫਾਰ ਬਿਗਿਨਰਜ਼: ਰੋਡਮੇਪ - _ਸਕੇਚਨੋਟ [@nitya](https://twitter.com/nitya) ਵਲੋਂ_ |
+| ਡਾਟਾ ਸਾਇੰਸ ਫੋਰ ਬਿਗਿਨਰਜ਼: ਰੋਡਮੈਪ - _ਸਕੈਚਨੋਟ [@nitya](https://twitter.com/nitya) ਵੱਲੋਂ_ |
-
-| ਪਾਠ ਨੰਬਰ | ਵਿਸ਼ਾ | ਪਾਠ ਸਮੂਹ | ਸਿੱਖਣ ਦੇ ਉਦਦੇਸ਼ | ਲਿੰਕ ਕੀਤਾ ਪਾਠ | ਲੇਖਕ |
+| ਪਾਠ ਨੰਬਰ | ਵਿਸ਼ਾ | ਪਾਠ ਸਮੂਹ | ਸਿੱਖਣ ਦੇ ਉਦੇਸ਼ | ਲਿੰਕ ਕੀਤੇ ਪਾਠ | ਲੇਖਕ |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | ਡਾਟਾ ਸਾਇੰਸ ਦੀ ਪਰਿਭਾਸ਼ਾ | [Introduction](1-Introduction/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਮੂਲ ਸਿਧਾਂਤ ਸਿੱਖੋ ਅਤੇ ਇਹ artiਫੀਸ਼ੀਅਲ ਇੰਟੈਲੀਜੈਂਸ, ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਤੇ ਬਿਗ ਡਾਟਾ ਨਾਲ ਕਿਵੇਂ ਜੁੜਿਆ ਹੈ ਸਮਝੋ। | [lesson](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [ਦਿਮਿਤਰੀ](http://soshnikov.com) |
-| 02 | ਡਾਟਾ ਸਾਇੰਸ ਨੈਤਿਕਤਾ | [Introduction](1-Introduction/README.md) | ਡਾਟਾ ਨੈਤਿਕਤਾ ਦੇ ਸੰਕਲਪ, ਚੁਣੌਤੀਆਂ ਅਤੇ ਧਾਂਚੇ। | [lesson](1-Introduction/02-ethics/README.md) | [ਨਿਤਿਆ](https://twitter.com/nitya) |
-| 03 | ਡਾਟਾ ਦੀ ਪਰਿਭਾਸ਼ਾ | [Introduction](1-Introduction/README.md) | ਡਾਟਾ ਕਿਵੇਂ ਵਰਗੀਕ੍ਰਿਤ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਸ ਦੇ ਆਮ ਸਰੋਤ। | [lesson](1-Introduction/03-defining-data/README.md) | [ਜੈਸਮੀਨ](https://www.twitter.com/paladique) |
-| 04 | ਅੰਕੜਿਆਂ ਅਤੇ ਸੰਭਾਵਨਾ ਦਾ ਪਰਚਾਰ | [Introduction](1-Introduction/README.md) | ਡਾਟਾ ਨੂੰ ਸਮਝਣ ਲਈ ਸੰਭਾਵਨਾ ਅਤੇ ਅੰਕੜਿਆਂ ਦੀ ਗਣਿਤੀਕ ਤਕਨੀਕਾਂ। | [lesson](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [ਦਿਮਿਤਰੀ](http://soshnikov.com) |
-| 05 | ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ | [Working With Data](2-Working-With-Data/README.md) | ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਦਾ ਪਰਿਚਯ ਅਤੇ ਅਧਾਰਭੂਤ SQL (ਸੰਰਚਿਤ ਕਿਊਰੀ ਭਾਸ਼ਾ) ਨਾਲ ਡਾਟਾ ਖੋਜਣ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਤਰੀਕੇ। | [lesson](2-Working-With-Data/05-relational-databases/README.md) | [ਕ੍ਰਿਸਟੋਫਰ](https://www.twitter.com/geektrainer) | | |
-| 06 | ਨਾਨ-ਸਕਯੂਐਲ ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ | [Working With Data](2-Working-With-Data/README.md) | ਗੈਰ-ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਦਾ ਪਰਚਾਰ, ਇਸ ਦੇ ਵੱਖ-ਵੱਖ ਪ੍ਰਕਾਰ ਅਤੇ ਡੌਕਯੂਮੈਂਟ ਡਾਟਾਬੇਸ ਖੋਜਣ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਅਧਾਰ। | [lesson](2-Working-With-Data/06-non-relational/README.md) | [ਜੈਸਮੀਨ](https://twitter.com/paladique)|
-| 07 | ਪਾਇਥਨ ਨਾਲ ਕੰਮ ਕਰਨਾ | [Working With Data](2-Working-With-Data/README.md) | ਪੈਂਡਾ ਲਾਇਬ੍ਰੇਰੀ ਵਰਗੀਆਂ ਲਾਇਬ੍ਰੇਰੀਆਂ ਨਾਲ ਡਾਟਾ ਖੋਜ ਲਈ ਪਾਇਥਨ ਦੀਆਂ ਬੁਨਿਆਦੀ ਜਾਣਕਾਰੀਆਂ। ਪਾਇਥਨ ਪ੍ਰੋਗ੍ਰਾਮਿੰਗ ਦੀ ਮੂਲ ਹੋਂਦਾਂ ਸਮਝਣਾ ਸੁਝਾਇਆ ਜਾਂਦਾ ਹੈ। | [lesson](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [ਦਿਮਿਤਰੀ](http://soshnikov.com) |
-| 08 | ਡਾਟਾ ਤਿਆਰੀ | [Working With Data](2-Working-With-Data/README.md) | ਗੁੰਝਲਦਾਰ, ਗਲਤ ਜਾਂ ਅਧੂਰੇ ਡਾਟਾ ਦੇ ਚੈਲੰਜਾਂ ਨਾਲ ਨਜਿੱਠਣ ਲਈ ਡਾਟਾ ਸਾਫ ਕਰਨਾ ਅਤੇ ਬਦਲਾਵ ਕਰਨ ਦੀਆਂ ਤਕਨੀਆਂ। | [lesson](2-Working-With-Data/08-data-preparation/README.md) | [ਜੈਸਮੀਨ](https://www.twitter.com/paladique) |
-| 09 | ਮਾਤਰਾ ਵਿਜ਼ੂਅਲਾਈਜ਼ੇਸ਼ਨ | [Data Visualization](3-Data-Visualization/README.md) | ਮੈਟਪਲੌਟਲਿਬ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਬਰਡ ਡਾਟਾ ਦੀ ਵਿਜ਼ੂਅਲਾਈਜ਼ੇਸ਼ਨ ਸਿੱਖੋ 🦆 | [lesson](3-Data-Visualization/09-visualization-quantities/README.md) | [ਜੈਨ](https://twitter.com/jenlooper) |
-| 10 | ਡਾਟਾ ਦੇ ਵਿਤਰਨਾਂ ਦੀ ਵਿਜ਼ੂਅਲਾਈਜ਼ੇਸ਼ਨ | [Data Visualization](3-Data-Visualization/README.md) | ਇਕ ਇੰਟਰਵੈਲ ਵਿੱਚ ਪਰਿੱਬੇਸ਼ ਅਤੇ ਰੁਝਾਨਾਂ ਦੀ ਵਿਜ਼ੂਅਲਾਈਜ਼ੇਸ਼ਨ। | [lesson](3-Data-Visualization/10-visualization-distributions/README.md) | [ਜੈਨ](https://twitter.com/jenlooper) |
-| 11 | ਪ੍ਰਤੀਸ਼ਤਾਂ ਦੀ ਵਿਜ਼ੂਅਲਾਈਜ਼ੇਸ਼ਨ | [Data Visualization](3-Data-Visualization/README.md) | ਅਲੱਗ-ਅਲੱਗ ਅਤੇ ਗਰੁੱਪੀਕ੍ਰਿਤ ਪ੍ਰਤੀਸ਼ਤਾਂ ਦੀ ਵਿਜ਼ੂਅਲਾਈਜ਼ੇਸ਼ਨ। | [lesson](3-Data-Visualization/11-visualization-proportions/README.md) | [ਜੈਨ](https://twitter.com/jenlooper) |
-| 12 | ਸੰਬੰਧਾਂ ਦੀ ਵਿਜ਼ੂਅਲਾਈਜ਼ੇਸ਼ਨ | [Data Visualization](3-Data-Visualization/README.md) | ਡਾਟਾ ਦੇ ਸੈੱਟਾਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਚਰਾਂ ਵਿੱਚ ਸੰਬੰਧ ਅਤੇ ਕੋਰਲੇਸ਼ਨ ਦੀ ਵਿਜ਼ੂਅਲਾਈਜ਼ੇਸ਼ਨ। | [lesson](3-Data-Visualization/12-visualization-relationships/README.md) | [ਜੈਨ](https://twitter.com/jenlooper) |
-| 13 | ਅਰਥਪੂਰਨ ਵਿਜ਼ੂਅਲਾਈਜ਼ੇਸ਼ਨ | [Data Visualization](3-Data-Visualization/README.md) | ਆਪਣੀਆਂ ਵਿਜ਼ੂਅਲਾਈਜ਼ੇਸ਼ਨਾਂ ਨੂੰ ਮੁੱਦੇ ਹੱਲ ਕਰਨ ਅਤੇ ਸੂਝ-ਬੂਝ ਲਈ ਕੀਮਤੀ ਬਣਾਉਣ ਲਈ ਤਕਨੀਕਾਂ ਅਤੇ ਮਾਰਗਦਰਸ਼ਨ। | [lesson](3-Data-Visualization/13-meaningful-visualizations/README.md) | [ਜੈਨ](https://twitter.com/jenlooper) |
-| 14 | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਪਰਿਚਯ | [Lifecycle](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਪਰਿਚਯ ਅਤੇ ਇਸ ਦਾ ਪਹਿਲਾ ਕਦਮ — ਡਾਟਾ ਪ੍ਰਾਪਤੀ ਅਤੇ ਕੱੱਢਣਾ। | [lesson](4-Data-Science-Lifecycle/14-Introduction/README.md) | [ਜੈਸਮੀਨ](https://twitter.com/paladique) |
-| 15 | ਵਿਸ਼ਲੇਸ਼ਣ | [Lifecycle](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਇਹ ਮੰਜਲ ਡਾਟਾ ਵਿਸ਼ਲੇਸ਼ਣ ਦੀਆਂ ਤਕਨੀਕਾਂ 'ਤੇ ਧਿਆਨ ਕੇਂਦ੍ਰਿਤ ਕਰਦਾ ਹੈ। | [lesson](4-Data-Science-Lifecycle/15-analyzing/README.md) | [ਜੈਸਮੀਨ](https://twitter.com/paladique) | | |
-| 16 | ਸੰਚਾਰ | [Lifecycle](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਇਹ ਮੰਜਲ ਡਾਟਾ ਤੋਂ ਪ੍ਰਾਪਤ ਸੂਝ-ਬੂਝ ਨੂੰ ਇਸ ਤਰੀਕੇ ਨਾਲ ਪੇਸ਼ ਕਰਦਾ ਹੈ ਜੋ ਫੈਸਲਾ ਕਰਨ ਵਾਲਿਆਂ ਲਈ ਸਮਝਣਾ ਅਸਾਨ ਬਣਾਂਵੇ। | [lesson](4-Data-Science-Lifecycle/16-communication/README.md) | [ਜੇਲਨ](https://twitter.com/JalenMcG) | | |
-| 17 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [Cloud Data](5-Data-Science-In-Cloud/README.md) | ਇਹ ਲੜੀ ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ ਅਤੇ ਇਸ ਦੇ ਫਾਇਦੇ ਜਾਣੂ ਕਰਵਾਉਂਦੀ ਹੈ। | [lesson](5-Data-Science-In-Cloud/17-Introduction/README.md) | [ਟਿਫਾਨੀ](https://twitter.com/TiffanySouterre) ਅਤੇ [ਮੌਡ](https://twitter.com/maudstweets) |
-| 18 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [Cloud Data](5-Data-Science-In-Cloud/README.md) | ਲੋਕੋਡ ਟੂਲਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮਾਡਲ ਟਰੇਨਿੰਗ। |[lesson](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [ਟਿਫਾਨੀ](https://twitter.com/TiffanySouterre) ਅਤੇ [ਮੌਡ](https://twitter.com/maudstweets) |
-| 19 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [Cloud Data](5-Data-Science-In-Cloud/README.md) | ਅਜ਼ੁਰ ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਸਟੂਡਿਓ ਨਾਲ ਮਾਡਲ ਤੈਨਾਤ ਕਰਨਾ। | [lesson](5-Data-Science-In-Cloud/19-Azure/README.md)| [ਟਿਫਾਨੀ](https://twitter.com/TiffanySouterre) ਅਤੇ [ਮੌਡ](https://twitter.com/maudstweets) |
-| 20 | ਜੰਗਲੀ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [In the Wild](6-Data-Science-In-Wild/README.md) | ਅਸਲੀ ਦੁਨੀਆ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ ਚਲਾਏ ਗਏ ਪ੍ਰੋਜੈਕਟ। | [lesson](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [ਨਿਤਿਆ](https://twitter.com/nitya) |
+| 01 | ਡਾਟਾ ਸਾਇੰਸ ਦੀ ਪਰਿਭਾਸ਼ਾ | [ਪਰਿਚਯ](1-Introduction/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਮੁੱਢਲੇ概念 ਅਤੇ ਇਹ ਕਿਵੇਂ ਕ੍ਰਿਤ੍ਰਿਮ ਬੁੱਧੀ, ਮਸ਼ੀਨ ਲਰਨਿੰਗ, ਅਤੇ ਵੱਡੇ ਡਾਟਾ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ। | [ਪਾਠ](1-Introduction/01-defining-data-science/README.md) [ਵੀਡੀਓ](https://youtu.be/beZ7Mb_oz9I) | [ਦਿਮਿਤਰੀ](http://soshnikov.com) |
+| 02 | ਡਾਟਾ ਸਾਇੰਸ ਦੀ ਨੈਤਿਕਤਾ | [ਪਰਿਚਯ](1-Introduction/README.md) | ਡਾਟਾ ਨੈਤਿਕਤਾ ਸੰਕਲਪ, ਚੁਣੌਤੀਆਂ ਅਤੇ ਢਾਂਚੇ। | [ਪਾਠ](1-Introduction/02-ethics/README.md) | [ਨਿਤਿਆ](https://twitter.com/nitya) |
+| 03 | ਡਾਟਾ ਦੀ ਪਰਿਭਾਸ਼ਾ | [ਪਰਿਚਯ](1-Introduction/README.md) | ਡਾਟਾ ਕਿਵੇਂ ਵਰਗੀਕ੍ਰਿਤ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਸਦੇ ਆਮ ਸ੍ਰੋਤ। | [ਪਾਠ](1-Introduction/03-defining-data/README.md) | [ਜੈਸਮੀਨ](https://www.twitter.com/paladique) |
+| 04 | ਅੰਕੜੇ ਅਤੇ ਸੰਭਾਵਨਾ ਦਾ ਪਰਿਚਯ | [ਪਰਿਚਯ](1-Introduction/README.md) | ਡਾਟਾ ਨੂੰ ਸਮਝਣ ਲਈ ਸੰਭਾਵਨਾ ਅਤੇ ਅੰਕੜਿਆਂ ਦੀ ਗਣਿਤੀਕ ਤਕਨੀਕਾਂ। | [ਪਾਠ](1-Introduction/04-stats-and-probability/README.md) [ਵੀਡੀਓ](https://youtu.be/Z5Zy85g4Yjw) | [ਦਿਮਿਤਰੀ](http://soshnikov.com) |
+| 05 | ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਦਾ ਪਰਿਚਯ ਅਤੇ ਸੰਰਚਿਤ ਕੁਇਰੀ ਭਾਸ਼ਾ (SQL) ਨਾਲ ਡਾਟਾ ਖੰਗਾਲਣ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਮੁੱਢਲੇ ਬੁੱਤਰ। | [ਪਾਠ](2-Working-With-Data/05-relational-databases/README.md) | [ਕ੍ਰਿਸਟੋਫ਼ਰ](https://www.twitter.com/geektrainer) | | |
+| 06 | ਨੋ-ਐਸਕਿਊਐਲ ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਗੈਰ-ਰਿਲੇਸ਼ਨਲ ਡਾਟਾ ਦਾ ਪਰਿਚਯ, ਇਸ ਦੇ ਕਈ ਰੂਪ ਅਤੇ ਦਸਤਾਵੇਜ਼ ਡੇਟਾਬੇਸ ਖੰਗਾਲਣ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਮੁੱਢਲੇ ਬੁੱਤਰ। | [ਪਾਠ](2-Working-With-Data/06-non-relational/README.md) | [ਜੈਸਮੀਨ](https://twitter.com/paladique) |
+| 07 | ਪਾਇਥਨ ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਡਾਟਾ ਖੰਗਾਲਣ ਲਈ Python ਦਾ ਮੂਲ ਭਾਸ਼ਾ ਵਰਤਣਾ, ਜਿਵੇਂ Pandas ਵਰਗੀਆਂ ਲਾਇਬ੍ਰੇਰੀਜ਼ ਨਾਲ। ਪਾਇਥਨ ਪ੍ਰੋਗ੍ਰਾਮਿੰਗ ਦੀ ਬੁਨਿਆਦੀ ਸਮਝ ਲਾਜ਼ਮੀ ਹੈ। | [ਪਾਠ](2-Working-With-Data/07-python/README.md) [ਵੀਡੀਓ](https://youtu.be/dZjWOGbsN4Y) | [ਦਿਮਿਤਰੀ](http://soshnikov.com) |
+| 08 | ਡਾਟਾ ਤਿਆਰੀ | [ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਡਾਟਾ ਨੂੰ ਸਾਫ ਕਰਨ ਅਤੇ ਬਦਲਣ ਲਈ ਤਕਨੀਕਾਂ, ਗੁੰਮ, ਗਲਤ ਜਾਂ ਅਧੂਰੇ ਡਾਟਾ ਦੀਆਂ ਸਮੱਸਿਆਵਾਂ ਹੱਲ ਕਰਨ ਲਈ। | [ਪਾਠ](2-Working-With-Data/08-data-preparation/README.md) | [ਜੈਸਮੀਨ](https://www.twitter.com/paladique) |
+| 09 | ਮਾਤਰਾ ਨੂੰ ਵਿਜ਼ੁਅਲਾਈਜ਼ ਕਰਨਾ | [ਡਾਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਮੈਟਪਲੌਟਲਿਬ ਵਰਤ ਕੇ ਪੰਛੀਆਂ ਦੇ ਡਾਟਾ ਨੂੰ ਵਿਜ਼ੁਅਲਾਈਜ਼ ਕਰਨਾ 🦆 | [ਪਾਠ](3-Data-Visualization/09-visualization-quantities/README.md) | [ਜੇਨ](https://twitter.com/jenlooper) |
+| 10 | ਡਾਟਾ ਦੇ ਵੰਡ ਨੂੰ ਵਿਜ਼ੁਅਲਾਈਜ਼ ਕਰਨਾ | [ਡਾਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਇੱਕ ਅੰਤਰਾਲ ਵਿਚ ਵੇਖੀਆਂ ਗਈਆਂ ਚੀਜ਼ਾਂ ਅਤੇ ਰੁਝਾਨਾਂ ਦੀ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ। | [ਪਾਠ](3-Data-Visualization/10-visualization-distributions/README.md) | [ਜੇਨ](https://twitter.com/jenlooper) |
+| 11 | ਅਨੁਪਾਤਾਂ ਨੂੰ ਵਿਜ਼ੁਅਲਾਈਜ਼ ਕਰਨਾ | [ਡਾਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਬਿਨਾਂ ਜੁੜੇ ਅਤੇ ਸਮੂਹਬੱਧ ਪ੍ਰਤੀਸ਼ਤਾਂ ਦੀ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ। | [ਪਾਠ](3-Data-Visualization/11-visualization-proportions/README.md) | [ਜੇਨ](https://twitter.com/jenlooper) |
+| 12 | ਰਿਸ਼ਤੇਦਾਰੀਆਂ ਨੂੰ ਵਿਜ਼ੁਅਲਾਈਜ਼ ਕਰਨਾ | [ਡਾਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਡਾਟਾ ਦੇ ਸੈੱਟਾਂ ਅਤੇ ਉਨਾਂ ਦੇ ਵੈਰੀਏਬਲਾਂ ਵਿਚਕਾਰ ਸੰਬੰਧ ਅਤੇ ਕੋਰਲੇਸ਼ਨਾਂ ਦੀ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ। | [ਪਾਠ](3-Data-Visualization/12-visualization-relationships/README.md) | [ਜੇਨ](https://twitter.com/jenlooper) |
+| 13 | ਮਾਇਨੇਦਾਰ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡਾਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਪ੍ਰਭਾਵਸ਼ਾਲੀ ਸਮੱਸਿਆ ਹੱਲ ਅਤੇ ਗਿਆਨ ਲਈ ਤੁਹਾਡੇ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨਾਂ ਨੂੰ ਕੀਮਤੀ ਬਣਾਉਣ ਲਈ ਤਕਨੀਕਾਂ ਅਤੇ ਦੀਪਦਰਸ਼ਨ। | [ਪਾਠ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [ਜੇਨ](https://twitter.com/jenlooper) |
+| 14 | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਪਰਿਚਯ | [ਲਾਈਫਸਾਈਕਲ](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਅਤੇ ਪਹਿਲੇ ਕਦਮ ਡਾਟਾ ਪ੍ਰਾਪਤ ਕਰਨ ਅਤੇ ਕੱਢਣ ਦਾ ਪਰਿਚਯ। | [ਪਾਠ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [ਜੈਸਮੀਨ](https://twitter.com/paladique) |
+| 15 | ਵਿਸ਼ਲੇਸ਼ਣ | [ਲਾਈਫਸਾਈਕਲ](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਇਹ ਪੜਾਅ ਡਾਟਾ ਨੂੰ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਦੀਆਂ ਤਕਨੀਕਾਂ 'ਤੇ ਕੇਂਦ੍ਰਿਤ ਹੈ। | [ਪਾਠ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [ਜੈਸਮੀਨ](https://twitter.com/paladique) | | |
+| 16 | ਸੰਚਾਰ | [ਲਾਈਫਸਾਈਕਲ](4-Data-Science-Lifecycle/README.md) | ਡਾਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਇਹ ਪੜਾਅ ਡਾਟਾ ਵਿੱਚੋਂ ਮਿਲੇ ਨਤੀਜੇ ਆਪਣੇ ਤਰੀਕੇ ਨਾਲ ਪੇਸ਼ ਕਰਨ 'ਤੇ ਕੇਂਦ੍ਰਿਤ ਹੈ ਕਿ ਜੋ ਫੈਸਲਾ ਲੈਣ ਵਾਲਿਆਂ ਲਈ ਸਮਝਣਾ ਸੁਗਮ ਬਣਾਏ। | [ਪਾਠ](4-Data-Science-Lifecycle/16-communication/README.md) | [ਜੇਲਨ](https://twitter.com/JalenMcG) | | |
+| 17 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [ਕਲਾਉਡ ਡਾਟਾ](5-Data-Science-In-Cloud/README.md) | ਇਹ ਸਿੱਖਿਆ ਪੁੜ੍ਹਾਈਆਂ ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ ਅਤੇ ਇਸਦੇ ਫਾਇਦਿਆਂ ਦਾ ਪਰਿਚਯ ਕਰਵਾਉਂਦੀਆਂ ਹਨ। | [ਪਾਠ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [ਟਿਫ਼ਨੀ](https://twitter.com/TiffanySouterre) ਅਤੇ [ਮੌਡ](https://twitter.com/maudstweets) |
+| 18 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [ਕਲਾਉਡ ਡਾਟਾ](5-Data-Science-In-Cloud/README.md) | ਲੋ ਕੋਡ ਟੂਲਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮਾਡਲਾਂ ਦੀ ਟਰੇਨਿੰਗ। |[ਪਾਠ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [ਟਿਫ਼ਨੀ](https://twitter.com/TiffanySouterre) ਅਤੇ [ਮੌਡ](https://twitter.com/maudstweets) |
+| 19 | ਕਲਾਉਡ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [ਕਲਾਉਡ ਡਾਟਾ](5-Data-Science-In-Cloud/README.md) | ਏਜ਼ਯੂਰ ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਸਟੁਡੀਓ ਨਾਲ ਮਾਡਲਾਂ ਦੀ ਤੈਨਾਤੀ। | [ਪਾਠ](5-Data-Science-In-Cloud/19-Azure/README.md)| [ਟਿਫ਼ਨੀ](https://twitter.com/TiffanySouterre) ਅਤੇ [ਮੌਡ](https://twitter.com/maudstweets) |
+| 20 | ਜੰਗਲ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ | [ਇਨ ਦ ਵਾਇਲਡ](6-Data-Science-In-Wild/README.md) | ਅਸਲੀ ਦੁਨੀਆ ਵਿੱਚ ਡਾਟਾ ਸਾਇੰਸ ਚਲਾਉਂਦੇ ਪ੍ਰੋਜੈਕਟ। | [ਪਾਠ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [ਨਿਤਿਆ](https://twitter.com/nitya) |
## GitHub ਕੋਡਸਪੇਸ
-ਇਸ ਸੈਂਪਲ ਨੂੰ ਕੋਡਸਪੇਸ ਵਿੱਚ ਖੋਲ੍ਹਣ ਲਈ ਇਹ ਕਦਮ ਫ਼ਾਲੋ ਕਰੋ:
-1. ਕੋਡ ਡ੍ਰਾਪ-ਡਾਊਨ ਮੇਨੂ ਤੇ ਕਲਿੱਕ ਕਰੋ ਅਤੇ Open with Codespaces ਚੁਣੋ।
-2. ਪੈਨ ਦੇ ਹੇਠਾਂ + ਨਵਾਂ ਕੋਡਸਪੇਸ ਚੁਣੋ।
-ਹੋਰ ਜਾਣਕਾਰੀ ਲਈ, [GitHub ਡੌਕਯੂਮੈਂਟੇਸ਼ਨ](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) ਵੇਖੋ।
+ਇਸ ਨਮੂਨੇ ਨੂੰ ਇੱਕ ਕੋਡਸਪੇਸ ਵਿੱਚ ਖੋਲ੍ਹਣ ਲਈ ਇਹ ਕਦਮ ਅਨੁਸਰਣ ਕਰੋ:
+1. ਕੋਡ ਡ੍ਰਾਪਡਾਊਨ ਮੈਨੂ 'ਤੇ ਕਲਿੱਕ ਕਰੋ ਅਤੇ Open with Codespaces ਵਿਕਲਪ ਚੁਣੋ।
+2. ਪੈਨੇ ਦੇ ਹੇਠਾਂ + ਨਵਾਂ ਕੋਡਸਪੇਸ ਚੁਣੋ।
+ਹੋਰ ਜਾਣਕਾਰੀ ਲਈ, [GitHub ਦਸਤਾਵੇਜ਼](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) ਵੇਖੋ।
## VSCode ਰਿਮੋਟ - ਕੰਟੇਨਰ
-ਆਪਣੀ ਲੋਕਲ ਮਸ਼ੀਨ ਅਤੇ VSCode ਵਿਚ VS Code Remote - Containers ਐਕਸਟੈਂਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਦਿਆਂ ਇਸ ਰਿਪੋ ਨੂੰ ਕੰਟੇਨਰ ਵਿਚ ਖੋਲ੍ਹਣ ਲਈ ਇਹ ਕਦਮ ਫ਼ਾਲੋ ਕਰੋ:
-1. ਜੇ ਤੁਹਾਡੇ ਵੱਲੋਂ ਪਹਿਲੀ ਵਾਰ ਡਿਵੈਲਪਮੈਂਟ ਕੰਟੇਨਰ ਵਰਤਿਆ ਜਾ ਰਿਹਾ ਹੈ, ਤਾਂ ਆਪਣੇ ਸਿਸਟਮ ਤੇ Docker ਇੰਸਟਾਲੇਸ਼ਨ ਸ਼ਾਮਲ ਹੋਣ ਦੀ ਪੂਰੀ ਜਾਂਚ ਕਰ ਲਓ [getting started ਡੌਕਯੂਮੈਂਟੇਸ਼ਨ](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) ਵਿੱਚ ਦਿੱਤੀ ਗਈ ਹੈ।
+ਆਪਣੇ ਸਥਾਨਕ ਮਸ਼ੀਨ ਅਤੇ VSCode ਦੀ VS Code Remote - Containers ਐਕਸਟੈਂਸ਼ਨ ਵਰਤ ਕੇ ਇਸ ਰਿਪੋ ਨੂੰ ਕੰਟੇਨਰ ਵਿੱਚ ਖੋਲ੍ਹਣ ਲਈ ਇਹ ਕਦਮ ਅਨੁਸਰਣ ਕਰੋ:
+
+1. ਜੇ ਇਹ ਤੁਹਾਡੇ ਲਈ ਪਹਿਲੀ ਵਾਰ ਵਿਕਾਸ ਕੰਟੇਨਰ ਲਈ ਹੈ, ਤਾਂ ਸ਼ੁਰੂਆਤੀ ਦਸਤਾਵੇਜ਼ਾਂ ਵਿੱਚ ਦਿੱਤੇ ਗਏ ਪ੍ਰੀ-ਰੀਕੁਆਰਮੈਂਟਸ (ਜਿਵੇਂ ਕਿ ਡਾਕਰ ਦੀ ਸਥਾਪਨਾ) ਦੀ ਪੁਸ਼ਟੀ ਕਰੋ: [ਦਸਤਾਵੇਜ਼](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)।
-ਇਸ ਰਿਪੋ ਨੂੰ ਵਰਤਣ ਲਈ, ਤੁਸੀਂ ਜਾਂ ਤਾਂ ਇਸਨੂੰ ਇਕ ਅਲੱਗ Docker ਵਾਲੀਉਮ ਵਿੱਚ ਖੋਲ੍ਹ ਸਕਦੇ ਹੋ:
+ਇਸ ਰਿਪੋਜ਼ਿਟਰੀ ਨੂੰ ਵਰਤਣ ਲਈ ਤੁਸੀਂ ਜਾਂ ਤਾਂ ਰਿਪੋ ਨੂੰ ਇੱਕ ਅਲੱਗ ਡਾਕਰ ਵਾਲੀਅਮ ਵਿੱਚ ਖੋਲ੍ਹ ਸਕਦੇ ਹੋ:
-**ਨੋਟ:** ਅੰਦਰੂਨੀ ਤੌਰ ਤੇ ਇਹ Remote-Containers: **Clone Repository in Container Volume...** ਕਮਾਂਡ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਸੋਰਸ ਕੋਡ ਨੂੰ ਡੋਕਰ ਵਾਲੀਉਮ ਵਿੱਚ ਕਲੋਨ ਕਰੇਗਾ ਬਜਾਏ ਲੋਕਲ ਫਾਈਲ ਸਿਸਟਮ ਦੇ। [ਵਾਲੀਉਮ](https://docs.docker.com/storage/volumes/) ਕੰਟੇਨਰ ਡਾਟਾ ਸੁਰੱਖਿਅਤ ਕਰਨ ਲਈ ਮਨਪਸੰਦ ਯੰਤਰ ਹਨ।
+**ਨੋਟ**: ਅੰਦਰੋਂ, ਇਹ Remote-Containers: **Clone Repository in Container Volume...** ਕਮਾਂਡ ਦੀ ਵਰਤੋਂ ਕਰੇਗਾ ਜਿਸ ਨਾਲ ਸੌਰਸ ਕੋਡ ਡਾਕਰ ਵਾਲੀਅਮ ਵਿੱਚ ਕਲੋਨ ਕੀਤਾ ਜਾਵੇਗਾ, ਸਥਾਨਕ ਫਾਇਲ ਸਿਸਟਮ ਦੀ ਥਾਂ। [ਵਾਲੀਅਮ](https://docs.docker.com/storage/volumes/) ਕੰਟੇਨਰ ਡਾਟਾ ਨੂੰ ਸਥਿਰ ਰੱਖਣ ਲਈ ਪਸੰਦੀਦਾ ਤਰੀਕਾ ਹਨ।
-ਜਾਂ ਲੋਕਲ ਤੌਰ 'ਤੇ ਕਲੋਨ ਜਾਂ ਡਾਊਨਲੋਡ ਕੀਤਾ ਰਿਪੋ ਖੋਲ੍ਹੋ:
+ਜਾਂ ਰਿਪੋਜ਼ਿਟਰੀ ਦੀ ਸਥਾਨਕ ਕਲੋਨ ਜਾਂ ਡਾਊਨਲੋਡ ਕੀਤੀ ਗਈ ਨਕਲ ਖੋਲ੍ਹੋ:
-- ਇਹ ਰਿਪੋ ਆਪਣੇ ਲੋਕਲ ਫਾਈਲ ਸਿਸਟਮ ਤੇ ਕਲੋਨ ਕਰੋ।
+- ਇਸ ਰਿਪੋਜ਼ਿਟਰੀ ਨੂੰ ਆਪਣੀ ਸਥਾਨਕ ਫਾਇਲ ਸਿਸਟਮ ਤੇ ਕਲੋਨ ਕਰੋ।
- F1 ਦਬਾਓ ਅਤੇ **Remote-Containers: Open Folder in Container...** ਕਮਾਂਡ ਚੁਣੋ।
-- ਇਸ ਫੋਲਡਰ ਦੀ ਕਲੋਨ ਕੀਤੀ ਨਕਲ ਚੁਣੋ, ਕੰਟੇਨਰ ਸ਼ੁਰੂ ਹੋਣ ਦੀ ਉਡੀਕ ਕਰੋ, ਅਤੇ ਕੰਮ ਸ਼ੁਰੂ ਕਰੋ।
+- ਇਸ ਫੋਲਡਰ ਦੀ ਕਲੋਨ ਕੀਤੀ ਨਕਲ ਚੁਣੋ, ਕੰਟੇਨਰ ਚਾਲੂ ਹੋਣ ਦੀ ਉਡੀਕ ਕਰੋ ਅਤੇ ਟੈਸਟ ਕਰੋ।
-## ਆਫਲਾਈਨ ਪਹੁੰਚ
+## ਆਫਲਾਈਨ ਐਕਸੈਸ
-ਤੁਸੀਂ ਇਹ ਡੌਕਯੂਮੈਂਟੇਸ਼ਨ ਆਫਲਾਈਨ [Docsify](https://docsify.js.org/#/) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਚਲਾ ਸਕਦੇ ਹੋ। ਇਸ ਰਿਪੋ ਨੂੰ ਫੌਰਕ ਕਰੋ, ਆਪਣੇ ਲੋਕਲ ਮਸ਼ੀਨ ਤੇ [Docsify ਇੰਸਟਾਲ ਕਰੋ](https://docsify.js.org/#/quickstart), ਫਿਰ ਇਸ ਰਿਪੋ ਦੀ ਰੂਟ ਫੋਲਡਰ ਵਿੱਚ `docsify serve` ਟਾਈਪ ਕਰੋ। ਵੈੱਬਸਾਈਟ ਤੁਹਾਡੇ ਲੋਕਲਹੋਸਟ ਤੇ ਪੋਰਟ 3000 'ਤੇ ਸਰਵ ਹੋਵੇਗੀ: `localhost:3000`।
+ਤੁਸੀਂ ਇਸ ਦਸਤਾਵੇਜ਼ ਨੂੰ ਆਫਲਾਈਨ ਚਲਾ ਸਕਦੇ ਹੋ [Docsify](https://docsify.js.org/#/) ਵਰਤ ਕੇ। ਇਸ ਰਿਪੋ ਨੂੰ ਫੋਰਕ ਕਰੋ, [Docsify ਇੰਸਟਾਲ ਕਰੋ](https://docsify.js.org/#/quickstart) ਆਪਣੀ ਸਥਾਨਕ ਮਸ਼ੀਨ ਤੇ, ਫਿਰ ਇਸ ਰਿਪੋ ਦੇ ਰੂਟ ਫੋਲਡਰ ਵਿੱਚ `docsify serve` ਟਾਈਪ ਕਰੋ। ਵੈੱਬਸਾਈਟ ਤੁਹਾਡੇ ਲੋਕਲਹੋਸਟ 'ਤੇ ਪੋਰਟ 3000 'ਤੇ ਚਲਾਈ ਜਾਵੇਗੀ: `localhost:3000`।
-> ਨੋਟ ਕਰੋ, ਨੋਟਬੁੱਕ ਡੌਕਸਿਫਾਈ ਰਾਹੀਂ ਰੇਂਡਰ ਨਹੀਂ ਕੀਤੇ ਜਾਣਗੇ, ਇਸ ਲਈ ਜਦੋਂ ਨੋਟਬੁੱਕ ਚਲਾਉਣ ਦੀ ਲੋੜ ਹੋਵੇ, ਉਸੇ ਵੱਖਰੇ ਵਿਸ਼ੇਸ਼ਤਿਵਾਲੇ VS ਕੋਡ 'ਚ ਪਾਇਥਨ ਕਰਨਲ ਨਾਲ ਕਰਨਾ ਹੈ।
+> ਧਿਆਨ ਦਿਓ, ਨੋਟਬੁੱਕ Docsify ਰਾਹੀਂ ਰੈਂਡਰ ਨਹੀਂ ਹੋਣਗੇ, ਇਸ ਲਈ ਜੇ ਤੁਹਾਨੂੰ ਨੋਟਬੁੱਕ ਚਲਾਣੀ ਹੈ, ਤਾਂ ਵੱਖਰੇ ਤੌਰ ਤੇ VS Code ਵਿੱਚ ਪਾਇਥਨ ਕਰਨਲ ਚਲਾਉਂਦੇ ਹੋਏ ਕਰੋ।
-## ਹੋਰ ਕੋਰਸ
+## ਹੋਰ ਕੋਰਿਕੁਲਮ
-ਸਾਡੀ ਟੀਮ ਹੋਰ ਕੋਰਸ ਵੀ ਬਣਾਉਂਦੀ ਹੈ! ਵੇਖੋ:
+ਸਾਡੀ ਟੀਮ ਹੋਰ ਕੋਰਿਕੁਲਮ ਵੀ ਤਿਆਰ ਕਰਦੀ ਹੈ! ਵੇਖੋ:
-### ਲੈਂਗਚੇਨ
-[](https://aka.ms/langchain4j-for-beginners)
+### LangChain
+[](https://aka.ms/langchain4j-for-beginners)
[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
@@ -225,7 +214,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-### ਕੋਰ ਲਰਨਿੰਗ
+### ਮੂਲ ਸਿੱਖਿਆ
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
@@ -242,21 +231,21 @@ CO_OP_TRANSLATOR_METADATA:
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-## ਮਦਦ ਲੈਣਾ
+## ਮਦਦ ਪ੍ਰਾਪਤ ਕਰਨਾ
-**ਮੁਸ਼ਕਲਾਂ ਦਾ ਸਾਹਮਣਾ ਕਰ ਰਹੇ ਹੋ?** ਸਾਡਾ [ਟ੍ਰਬਲਸ਼ੂਟਿੰਗ ਗਾਈਡ](TROUBLESHOOTING.md) ਦੇਖੋ ਜੋ ਆਮ ਸਮੱਸਿਆਵਾਂ ਦੇ ਹੱਲ ਦਿੰਦਾ ਹੈ।
+**ਕੋਈ ਸਮੱਸਿਆ ਆ ਰਹੀ ਹੈ?** ਸਾਡੇ [Troubleshooting Guide](TROUBLESHOOTING.md) ਵਿੱਚ ਆਮ ਸਮੱਸਿਆਵਾਂ ਦੇ ਹੱਲ ਵੇਖੋ।
-ਜੇ ਤੁਸੀਂ ਫਸ ਜਾਂਦੇ ਹੋ ਜਾਂ AI ਐਪਲਿਕੇਸ਼ਨ ਬਣਾਉਣ ਬਾਰੇ ਕੋਈ ਸਵਾਲ ਹੈ, ਤਾਂ MCP ਬਾਰੇ ਵਿਚਾਰ-ਵਿਮਰਸ਼ ਵਿੱਚ ਹੋਰ ਸਿੱਖਣ ਵਾਲੇ ਅਤੇ ਅਨੁਭਵੀ ਵਿਕਾਸਕਾਰਾਂ ਨਾਲ ਜੁੜੋ। ਇਹ ਇੱਕ ਸਹਿਯੋਗੀ ਕਮਿਊਨਿਟੀ ਹੈ ਜਿੱਥੇ ਸਵਾਲ ਸਵਾਗਤ ਹੈ ਅਤੇ ਗਿਆਨ ਖੁੱਲ੍ਹੇ ਦਿਲ ਨਾਲ ਸਾਂਝਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
+ਜੇ ਤੁਸੀਂ atਕ ਜਾਂਦੇ ਹੋ ਜਾਂ AI ਐਪ ਬਣਾਉਣ ਬਾਰੇ ਕੋਈ ਸਵਾਲ ਹੈ, ਤਾਂ MCP ਨੂੰ ਲੈ ਕੇ ਗੱਲਬਾਤ ਵਿੱਚ ਹੋਰ ਸਿੱਖਣ ਵਾਲਿਆਂ ਅਤੇ ਅਨਭਵੀ ਡਿਵੈਲਪਰਾਂ ਨਾਲ ਜੁੜੋ। ਇਹ ਇੱਕ ਮਦਦਗਾਰ ਕਮਿਊਨਿਟੀ ਹੈ ਜਿੱਥੇ ਸਵਾਲਾਂ ਦਾ ਸਵਾਗਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਗਿਆਨ ਖੁੱਲ੍ਹ੍ਹ ਕੇ ਸਾਂਝਾ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
[](https://discord.gg/nTYy5BXMWG)
-ਜੇ ਤੁਹਾਡੇ ਕੋਲ ਉਤਪਾਦ ਫੀਡਬੈਕ ਜਾੜੇ ਜਾਂ ਗਲਤੀਆਂ ਹਨ ਤਾਂ ਇੱਥੇ ਜਾਓ:
+ਜੇ ਤੁਹਾਡੇ ਕੋਲ ਉਤਪਾਦ ਲਈ ਫੀਡਬੈਕ ਹੈ ਜਾਂ ਬਿਲਡਿੰਗ ਦੌਰਾਨ ਕੋਈ ਐਰਰ ਆ ਰਹੇ ਹਨ ਤਾਂ ਇੱਥੇ ਜਾਓ:
[](https://aka.ms/foundry/forum)
---
-**ਅਸਵੀਕਾਰਨ**:
-ਇਹ ਦਸਤਾਵੇਜ਼ AI ਅਨੁਵਾਦ ਸੇਵਾ [Co-op Translator](https://github.com/Azure/co-op-translator) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਨੁਵਾਦ ਕੀਤਾ ਗਿਆ ਹੈ। ਜਦੋਂ ਕਿ ਅਸੀਂ ਸਹੀਤਾ ਲਈ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਾਂ, ਕਿਰਪਾ ਕਰਕੇ ਧਿਆਨ ਵਿੱਚ ਰੱਖੋ ਕਿ ਸਵੈਚਾਲਿਤ ਅਨੁਵਾਦਾਂ ਵਿੱਚ ਗਲਤੀਆਂ ਜਾਂ ਅਸਥਿਰਤਾਵਾਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਮੂਲ ਦਸਤਾਵੇਜ਼ ਆਪਣੀ ਮੂਲ ਭਾਸ਼ਾ ਵਿੱਚ ਹੀ ਪ੍ਰਮਾਣਿਕ ਸਰੋਤ ਮੰਨਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ। ਮਹੱਤਵਪੂਰਨ ਜਾਣਕਾਰੀ ਲਈ ਪੇਸ਼ੇਵਰ ਮਨੁੱਖੀ ਅਨੁਵਾਦ ਦੀ ਸਿਫਾਰਿਸ਼ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਅਨੁਵਾਦ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਪੈਦਾ ਹੋਣ ਵਾਲੀਆਂ ਕਿਸੇ ਵੀ ਗਲਤਫਹਮੀਆਂ ਜਾਂ ਭ੍ਰਮਾਂ ਲਈ ਅਸੀਂ ਜ਼ਿੰਮੇਵਾਰ ਨਹੀਂ ਹਾਂ।
+**ਅਸਤੀਹਾਰ**:
+ਇਹ ਦਸਤਾਵੇਜ਼ AI ਅਨੁਵਾਦ ਸੇਵਾ [Co-op Translator](https://github.com/Azure/co-op-translator) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਨੁਵਾਦਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਜਦੋਂ ਕਿ ਅਸੀਂ ਸਹੀਅਤਾ ਲਈ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਾਂ, ਕਿਰਪਾ ਕਰਕੇ ਧਿਆਨ ਰੱਖੋ ਕਿ ਆਟੋਮੈਟਿਕ ਅਨੁਵਾਦਾਂ ਵਿੱਚ ਗਲਤੀਆਂ ਜਾਂ ਅਸਹੀਤਾਈਆਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਮੂਲ ਦਸਤਾਵੇਜ਼ ਆਪਣੀ ਮੂਲ ਭਾਸ਼ਾ ਵਿੱਚ ਪ੍ਰਮਾਣਿਕ ਸਰੋਤ ਸਮਝਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ। ਮਹੱਤਵਪੂਰਨ ਜਾਣਕਾਰੀ ਲਈ, ਵਿਦਵਾਨ ਮਨੁੱਖੀ ਅਨੁਵਾਦ ਦੀ ਸਿਫਾਰਸ਼ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਅਨੁਵਾਦ ਦੀ ਵਰਤੋਂ ਤੋਂ ਉੱਪਜਣ ਵਾਲੀ ਕਿਸੇ ਵੀ ਗਲਤ ਫਹਿਮੀ ਜਾਂ ਗਲਤ ਵਿਆਖਿਆ ਲਈ ਅਸੀਂ ਜ਼ਿੰਮੇਵਾਰ ਨਹੀਂ ਹੋਵਾਂਗੇ।
\ No newline at end of file
diff --git a/translations/pa/SECURITY.md b/translations/pa/SECURITY.md
index adea10f7..1e767b28 100644
--- a/translations/pa/SECURITY.md
+++ b/translations/pa/SECURITY.md
@@ -1,12 +1,3 @@
-
## ਸੁਰੱਖਿਆ
ਮਾਈਕਰੋਸਾਫਟ ਆਪਣੇ ਸੌਫਟਵੇਅਰ ਉਤਪਾਦਾਂ ਅਤੇ ਸੇਵਾਵਾਂ ਦੀ ਸੁਰੱਖਿਆ ਨੂੰ ਗੰਭੀਰਤਾ ਨਾਲ ਲੈਂਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਸਾਡੇ GitHub ਸੰਸਥਾਵਾਂ ਦੁਆਰਾ ਪ੍ਰਬੰਧਿਤ ਸਾਰੇ ਸਰੋਤ ਕੋਡ ਰਿਪੋਜ਼ਿਟਰੀਜ਼ ਸ਼ਾਮਲ ਹਨ, ਜਿਵੇਂ ਕਿ [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), ਅਤੇ [ਸਾਡੀਆਂ GitHub ਸੰਸਥਾਵਾਂ](https://opensource.microsoft.com/)।
diff --git a/translations/pa/SUPPORT.md b/translations/pa/SUPPORT.md
index 251830b4..03ba6842 100644
--- a/translations/pa/SUPPORT.md
+++ b/translations/pa/SUPPORT.md
@@ -1,12 +1,3 @@
-
# ਸਹਾਇਤਾ
## ਸਮੱਸਿਆਵਾਂ ਦਰਜ ਕਰਨਾ ਅਤੇ ਮਦਦ ਪ੍ਰਾਪਤ ਕਰਨੀ
diff --git a/translations/pa/TROUBLESHOOTING.md b/translations/pa/TROUBLESHOOTING.md
index 1aa20b56..759e163b 100644
--- a/translations/pa/TROUBLESHOOTING.md
+++ b/translations/pa/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# ਸਮੱਸਿਆ ਹੱਲ ਗਾਈਡ
ਇਹ ਗਾਈਡ ਤੁਹਾਨੂੰ Data Science for Beginners ਕੋਰਸ ਦੇ ਦੌਰਾਨ ਆਉਣ ਵਾਲੀਆਂ ਆਮ ਸਮੱਸਿਆਵਾਂ ਦੇ ਹੱਲ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ।
diff --git a/translations/pa/USAGE.md b/translations/pa/USAGE.md
index 9efd94e0..34d8f1a8 100644
--- a/translations/pa/USAGE.md
+++ b/translations/pa/USAGE.md
@@ -1,12 +1,3 @@
-
# ਵਰਤੋਂ ਗਾਈਡ
ਇਹ ਗਾਈਡ ਡਾਟਾ ਸਾਇੰਸ ਫਾਰ ਬਿਗਿਨਰਜ਼ ਕਰਿਕੁਲਮ ਦੀ ਵਰਤੋਂ ਲਈ ਉਦਾਹਰਨਾਂ ਅਤੇ ਆਮ ਵਰਕਫਲੋਜ਼ ਪ੍ਰਦਾਨ ਕਰਦੀ ਹੈ।
diff --git a/translations/pa/docs/_sidebar.md b/translations/pa/docs/_sidebar.md
index e1055c03..3a502d12 100644
--- a/translations/pa/docs/_sidebar.md
+++ b/translations/pa/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- ਜਾਣ ਪਛਾਣ
- [ਡਾਟਾ ਸਾਇੰਸ ਦੀ ਪਰਿਭਾਸ਼ਾ](../1-Introduction/01-defining-data-science/README.md)
- [ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਨੈਤਿਕ ਮੂਲ](../1-Introduction/02-ethics/README.md)
diff --git a/translations/pa/examples/README.md b/translations/pa/examples/README.md
index 7c92aa92..111bd648 100644
--- a/translations/pa/examples/README.md
+++ b/translations/pa/examples/README.md
@@ -1,12 +1,3 @@
-
# ਸ਼ੁਰੂਆਤੀ-ਦੋਸਤਾਨਾ ਡਾਟਾ ਸਾਇੰਸ ਉਦਾਹਰਨਾਂ
ਉਦਾਹਰਨਾਂ ਡਾਇਰੈਕਟਰੀ ਵਿੱਚ ਤੁਹਾਡਾ ਸਵਾਗਤ ਹੈ! ਇਹ ਸਧਾਰਨ, ਵਧੀਆ ਟਿੱਪਣੀਆਂ ਵਾਲੇ ਉਦਾਹਰਨਾਂ ਦਾ ਸੰਗ੍ਰਹਿ ਤੁਹਾਨੂੰ ਡਾਟਾ ਸਾਇੰਸ ਵਿੱਚ ਸ਼ੁਰੂਆਤ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰਨ ਲਈ ਬਣਾਇਆ ਗਿਆ ਹੈ, ਭਾਵੇਂ ਤੁਸੀਂ ਪੂਰੇ ਸ਼ੁਰੂਆਤੀ ਹੋਵੋ।
diff --git a/translations/pa/for-teachers.md b/translations/pa/for-teachers.md
index c81ccf5d..148fb805 100644
--- a/translations/pa/for-teachers.md
+++ b/translations/pa/for-teachers.md
@@ -1,12 +1,3 @@
-
## ਸਿੱਖਿਆਕਾਰਾਂ ਲਈ
ਕੀ ਤੁਸੀਂ ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਆਪਣੇ ਕਲਾਸਰੂਮ ਵਿੱਚ ਵਰਤਣਾ ਚਾਹੋਗੇ? ਬਿਲਕੁਲ, ਜ਼ਰੂਰ ਕਰੋ!
diff --git a/translations/pa/quiz-app/README.md b/translations/pa/quiz-app/README.md
index 2451ab53..adc44b32 100644
--- a/translations/pa/quiz-app/README.md
+++ b/translations/pa/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# ਕਵਿਜ਼
ਇਹ ਕਵਿਜ਼ ਡਾਟਾ ਸਾਇੰਸ ਕਰੀਕੁਲਮ ਲਈ ਲੈਕਚਰ ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ਬਾਅਦ ਦੇ ਕਵਿਜ਼ ਹਨ ਜੋ https://aka.ms/datascience-beginners 'ਤੇ ਉਪਲਬਧ ਹਨ।
diff --git a/translations/pa/sketchnotes/README.md b/translations/pa/sketchnotes/README.md
index 782ec83d..815a7504 100644
--- a/translations/pa/sketchnotes/README.md
+++ b/translations/pa/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
ਸਾਰੇ ਸਕੈਚਨੋਟਸ ਇੱਥੇ ਪਾਓ!
## ਸ਼੍ਰੇਯ
diff --git a/translations/pcm/.co-op-translator.json b/translations/pcm/.co-op-translator.json
new file mode 100644
index 00000000..d0a73165
--- /dev/null
+++ b/translations/pcm/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-11-18T18:29:20+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "pcm"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-11-18T18:30:30+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "pcm"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-11-18T18:31:02+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "pcm"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-11-18T18:32:37+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "pcm"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-11-18T18:34:33+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "pcm"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-11-18T18:31:43+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "pcm"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-11-18T18:32:28+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "pcm"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-11-18T18:36:15+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "pcm"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-11-18T18:37:43+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "pcm"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-11-18T18:29:11+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "pcm"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T12:39:15+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "pcm"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-11-18T18:24:14+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "pcm"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-11-18T18:21:41+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "pcm"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-11-18T18:22:31+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "pcm"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-11-18T18:18:59+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "pcm"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-11-18T18:20:06+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "pcm"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-11-18T18:20:18+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "pcm"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-11-18T18:21:33+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "pcm"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-11-18T18:18:50+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-11-18T18:56:43+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-11-18T18:57:37+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-11-18T18:44:27+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-11-18T18:45:04+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-11-18T18:45:40+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-11-18T18:46:17+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-11-18T18:55:37+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-11-18T18:56:29+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-11-18T18:47:13+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-11-18T18:48:07+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-11-18T18:48:22+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-11-18T18:48:37+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-11-18T18:53:52+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-11-18T18:54:31+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-11-18T18:49:15+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-11-18T18:49:55+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-11-18T18:50:41+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-11-18T18:52:37+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-11-18T18:51:54+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "pcm"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-11-18T18:43:33+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "pcm"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-11-18T18:39:34+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "pcm"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-11-18T18:40:13+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "pcm"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-11-18T18:40:47+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "pcm"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-11-18T18:41:12+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "pcm"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-11-18T18:41:23+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "pcm"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-11-18T18:43:03+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "pcm"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-11-18T18:39:27+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "pcm"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-11-18T18:27:09+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "pcm"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-11-18T18:27:48+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "pcm"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-11-18T18:25:10+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "pcm"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-11-18T18:26:32+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "pcm"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-11-18T18:27:57+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "pcm"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-11-18T18:28:54+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "pcm"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-11-18T18:24:52+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "pcm"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-11-18T18:38:10+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "pcm"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-11-18T18:39:02+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "pcm"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-11-18T18:38:03+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "pcm"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-11-18T18:13:11+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "pcm"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-11-18T18:16:10+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "pcm"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-11-18T18:12:09+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "pcm"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-11-18T18:15:45+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "pcm"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:47:14+00:00",
+ "source_file": "README.md",
+ "language_code": "pcm"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-11-18T18:17:08+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "pcm"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-11-18T18:15:24+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "pcm"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-11-18T18:16:38+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "pcm"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-11-18T18:13:54+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "pcm"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-11-18T18:43:24+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "pcm"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-11-18T18:18:19+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "pcm"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-11-18T18:11:55+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "pcm"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-11-18T18:17:41+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "pcm"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-11-18T18:24:32+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "pcm"
+ }
+}
\ No newline at end of file
diff --git a/translations/pcm/1-Introduction/01-defining-data-science/README.md b/translations/pcm/1-Introduction/01-defining-data-science/README.md
index e938a498..99f70e4c 100644
--- a/translations/pcm/1-Introduction/01-defining-data-science/README.md
+++ b/translations/pcm/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Wetin Be Data Science
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/pcm/1-Introduction/01-defining-data-science/assignment.md b/translations/pcm/1-Introduction/01-defining-data-science/assignment.md
index 01a6041e..bb44d388 100644
--- a/translations/pcm/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/pcm/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Assignment: Data Science Scenarios
For dis first assignment, we wan make you think about some real-life process or wahala for different problem areas, and how you fit take improve am using Data Science process. Think about dis things:
diff --git a/translations/pcm/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/pcm/1-Introduction/01-defining-data-science/solution/assignment.md
index 05487d20..49ac2e24 100644
--- a/translations/pcm/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/pcm/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Assignment: Data Science Scenarios
For dis first assignment, we wan make you think about some real-life process or problem for different problem area, and how you fit take Data Science process improve am. Think about dis:
diff --git a/translations/pcm/1-Introduction/02-ethics/README.md b/translations/pcm/1-Introduction/02-ethics/README.md
index 9aba8b8d..9b4d135b 100644
--- a/translations/pcm/1-Introduction/02-ethics/README.md
+++ b/translations/pcm/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Introduction to Data Ethics
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/pcm/1-Introduction/02-ethics/assignment.md b/translations/pcm/1-Introduction/02-ethics/assignment.md
index a8f0119c..063682ed 100644
--- a/translations/pcm/1-Introduction/02-ethics/assignment.md
+++ b/translations/pcm/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Write Data Ethics Case Study
## Instructions
diff --git a/translations/pcm/1-Introduction/03-defining-data/README.md b/translations/pcm/1-Introduction/03-defining-data/README.md
index 41108059..efecc6d3 100644
--- a/translations/pcm/1-Introduction/03-defining-data/README.md
+++ b/translations/pcm/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Defining Data
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/pcm/1-Introduction/03-defining-data/assignment.md b/translations/pcm/1-Introduction/03-defining-data/assignment.md
index f9d78cc5..d9d0a961 100644
--- a/translations/pcm/1-Introduction/03-defining-data/assignment.md
+++ b/translations/pcm/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Classify Datasets
## Instructions
diff --git a/translations/pcm/1-Introduction/04-stats-and-probability/README.md b/translations/pcm/1-Introduction/04-stats-and-probability/README.md
index 292ccb75..1960a286 100644
--- a/translations/pcm/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/pcm/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Small Introduction to Statistics and Probability
| ](../../sketchnotes/04-Statistics-Probability.png)|
diff --git a/translations/pcm/1-Introduction/04-stats-and-probability/assignment.md b/translations/pcm/1-Introduction/04-stats-and-probability/assignment.md
index 62dd121a..1582fb07 100644
--- a/translations/pcm/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/pcm/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Small Diabetes Study
For dis assignment, we go work wit one small dataset of diabetes patients wey dem collect from [here](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/pcm/1-Introduction/README.md b/translations/pcm/1-Introduction/README.md
index 4eae0ada..b51513e5 100644
--- a/translations/pcm/1-Introduction/README.md
+++ b/translations/pcm/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduction to Data Science

diff --git a/translations/pcm/2-Working-With-Data/05-relational-databases/README.md b/translations/pcm/2-Working-With-Data/05-relational-databases/README.md
index 1df44167..9c15f9d8 100644
--- a/translations/pcm/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/pcm/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Working with Data: Relational Databases
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/pcm/2-Working-With-Data/05-relational-databases/assignment.md b/translations/pcm/2-Working-With-Data/05-relational-databases/assignment.md
index 79e6f9e6..85e5a40e 100644
--- a/translations/pcm/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/pcm/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# How to show airport data
Dem don give you one [database](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) wey dey use [SQLite](https://sqlite.org/index.html) wey get info about airports. The schema dey show for down. You go use the [SQLite extension](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) for [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) to show info about airports for different cities.
diff --git a/translations/pcm/2-Working-With-Data/06-non-relational/README.md b/translations/pcm/2-Working-With-Data/06-non-relational/README.md
index c151e7cb..a3219122 100644
--- a/translations/pcm/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/pcm/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# How to Work with Data: Non-Relational Data
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/pcm/2-Working-With-Data/06-non-relational/assignment.md b/translations/pcm/2-Working-With-Data/06-non-relational/assignment.md
index d98937b4..f2205ca0 100644
--- a/translations/pcm/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/pcm/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Soda Profits
## Instructions
diff --git a/translations/pcm/2-Working-With-Data/07-python/README.md b/translations/pcm/2-Working-With-Data/07-python/README.md
index 618156ac..80935a85 100644
--- a/translations/pcm/2-Working-With-Data/07-python/README.md
+++ b/translations/pcm/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# How to Work with Data: Python and Pandas Library
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/pcm/2-Working-With-Data/07-python/assignment.md b/translations/pcm/2-Working-With-Data/07-python/assignment.md
index 467e761d..fb799420 100644
--- a/translations/pcm/2-Working-With-Data/07-python/assignment.md
+++ b/translations/pcm/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Assignment for Data Processing for Python
For dis assignment, we go ask you make you explain di code wey we don start to dey develop for our challenges. Di assignment get two parts:
diff --git a/translations/pcm/2-Working-With-Data/08-data-preparation/README.md b/translations/pcm/2-Working-With-Data/08-data-preparation/README.md
index 2990a63c..80072bf7 100644
--- a/translations/pcm/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/pcm/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Work wit Data: Data Preparation
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/pcm/2-Working-With-Data/08-data-preparation/assignment.md b/translations/pcm/2-Working-With-Data/08-data-preparation/assignment.md
index d1d8c799..f7ea1055 100644
--- a/translations/pcm/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/pcm/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Check Data Wey Dem Collect From Form
One client dey test one [small form](../../../../2-Working-With-Data/08-data-preparation/index.html) to collect some basic info about dia client dem. Dem don carry wetin dem find come meet you make you check di data wey dem don collect. You fit open di `index.html` page for browser to see di form.
diff --git a/translations/pcm/2-Working-With-Data/README.md b/translations/pcm/2-Working-With-Data/README.md
index 667aa421..33d50305 100644
--- a/translations/pcm/2-Working-With-Data/README.md
+++ b/translations/pcm/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# How to Work with Data

diff --git a/translations/pcm/3-Data-Visualization/09-visualization-quantities/README.md b/translations/pcm/3-Data-Visualization/09-visualization-quantities/README.md
index 0984d7ec..74cff012 100644
--- a/translations/pcm/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/pcm/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Quantities
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/pcm/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/pcm/3-Data-Visualization/09-visualization-quantities/assignment.md
index 84fce10d..27629675 100644
--- a/translations/pcm/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/pcm/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Lines, Scatters and Bars
## Instructions
diff --git a/translations/pcm/3-Data-Visualization/10-visualization-distributions/README.md b/translations/pcm/3-Data-Visualization/10-visualization-distributions/README.md
index c76d6737..5636e174 100644
--- a/translations/pcm/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/pcm/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Distributions
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/pcm/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/pcm/3-Data-Visualization/10-visualization-distributions/assignment.md
index 22cebd0f..dae6ad9c 100644
--- a/translations/pcm/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/pcm/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Use your skills
## Wetin you go do
diff --git a/translations/pcm/3-Data-Visualization/11-visualization-proportions/README.md b/translations/pcm/3-Data-Visualization/11-visualization-proportions/README.md
index 2de475ed..9bbe3a57 100644
--- a/translations/pcm/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/pcm/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Proportions
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/pcm/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/pcm/3-Data-Visualization/11-visualization-proportions/assignment.md
index cd508b9c..f89d6436 100644
--- a/translations/pcm/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/pcm/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Try am for Excel
## Instructions
diff --git a/translations/pcm/3-Data-Visualization/12-visualization-relationships/README.md b/translations/pcm/3-Data-Visualization/12-visualization-relationships/README.md
index 093ddaa3..f27ec7ea 100644
--- a/translations/pcm/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/pcm/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Relationships: All About Honey 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/pcm/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/pcm/3-Data-Visualization/12-visualization-relationships/assignment.md
index 33ae3d9d..7eb4b71f 100644
--- a/translations/pcm/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/pcm/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Dive inside di beehive
## Instructions
diff --git a/translations/pcm/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/pcm/3-Data-Visualization/13-meaningful-visualizations/README.md
index c6f2e016..ef5ba042 100644
--- a/translations/pcm/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/pcm/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# How to Make Visualizations Wey Get Meaning
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/pcm/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/pcm/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 99997165..298b192b 100644
--- a/translations/pcm/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/pcm/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Build your own custom vis
## Instructions
diff --git a/translations/pcm/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/pcm/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index da917008..abd99a6f 100644
--- a/translations/pcm/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/pcm/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Dangerous Liaisons data visualization project
To start, make sure say NPM and Node dey run for your machine. Install di dependencies (npm install) and then run di project for your local machine (npm run serve):
diff --git a/translations/pcm/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/pcm/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 9866333a..f0811663 100644
--- a/translations/pcm/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/pcm/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Dangerous Liaisons data visualization project
To start, make sure say NPM and Node dey run for your machine. Install di dependencies (npm install) and then run di project for your local machine (npm run serve):
diff --git a/translations/pcm/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/pcm/3-Data-Visualization/R/09-visualization-quantities/README.md
index e3519ce5..51b10c4e 100644
--- a/translations/pcm/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/pcm/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Quantities
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/pcm/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/pcm/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 3ad27257..e151a91a 100644
--- a/translations/pcm/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/pcm/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Lines, Scatters and Bars
## Instructions
diff --git a/translations/pcm/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/pcm/3-Data-Visualization/R/10-visualization-distributions/README.md
index 9f470383..195d5197 100644
--- a/translations/pcm/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/pcm/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Distributions
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/pcm/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/pcm/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 5ff85655..f7273378 100644
--- a/translations/pcm/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/pcm/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Try your skills
## Wetin you go do
diff --git a/translations/pcm/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/pcm/3-Data-Visualization/R/11-visualization-proportions/README.md
index e9f8ffc4..d3e71534 100644
--- a/translations/pcm/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/pcm/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Proportions
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/pcm/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/pcm/3-Data-Visualization/R/12-visualization-relationships/README.md
index 55b481e1..42cd94c8 100644
--- a/translations/pcm/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/pcm/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Relationships: All About Honey 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/pcm/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/pcm/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index f1b91447..cfad9cc7 100644
--- a/translations/pcm/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/pcm/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# How to Make Visualizations Wey Get Meaning
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/pcm/3-Data-Visualization/README.md b/translations/pcm/3-Data-Visualization/README.md
index 1689020f..52130434 100644
--- a/translations/pcm/3-Data-Visualization/README.md
+++ b/translations/pcm/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Visualizations

diff --git a/translations/pcm/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/pcm/4-Data-Science-Lifecycle/14-Introduction/README.md
index ff622bac..7133e65d 100644
--- a/translations/pcm/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/pcm/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduction to the Data Science Lifecycle
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/pcm/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/pcm/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index c9ea2471..79ca12c7 100644
--- a/translations/pcm/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/pcm/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Check Di Dataset
One client don come meet una team make una help dem check how taxi customer dey spend money for New York City during different season.
diff --git a/translations/pcm/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/pcm/4-Data-Science-Lifecycle/15-analyzing/README.md
index 45d856fc..184d63c9 100644
--- a/translations/pcm/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/pcm/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# The Data Science Lifecycle: Analyzing
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/pcm/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/pcm/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 02c6c43f..d738a3c0 100644
--- a/translations/pcm/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/pcm/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Check for ansa
Dis one na continuation of di [assignment](../14-Introduction/assignment.md) wey dey di previous lesson, wey we small small check di data set. Now we go look di data well well.
diff --git a/translations/pcm/4-Data-Science-Lifecycle/16-communication/README.md b/translations/pcm/4-Data-Science-Lifecycle/16-communication/README.md
index 67ee3b41..7b3c209e 100644
--- a/translations/pcm/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/pcm/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# The Data Science Lifecycle: Communication
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/pcm/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/pcm/4-Data-Science-Lifecycle/16-communication/assignment.md
index 7bd37e5e..0e9abe37 100644
--- a/translations/pcm/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/pcm/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Tell story
## Instructions
diff --git a/translations/pcm/4-Data-Science-Lifecycle/README.md b/translations/pcm/4-Data-Science-Lifecycle/README.md
index 913e2d6a..6a0739d7 100644
--- a/translations/pcm/4-Data-Science-Lifecycle/README.md
+++ b/translations/pcm/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# The Data Science Lifecycle

diff --git a/translations/pcm/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/pcm/5-Data-Science-In-Cloud/17-Introduction/README.md
index ac60534c..47f8d48c 100644
--- a/translations/pcm/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/pcm/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduction to Data Science for Cloud
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/pcm/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/pcm/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index d6cdee15..18486a83 100644
--- a/translations/pcm/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/pcm/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Market Research
## Instructions
diff --git a/translations/pcm/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/pcm/5-Data-Science-In-Cloud/18-Low-Code/README.md
index d83eb338..5dd2d339 100644
--- a/translations/pcm/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/pcm/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Data Science for Cloud: Di "Low code/No code" Way
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/pcm/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/pcm/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 4ab692f5..9f7756a4 100644
--- a/translations/pcm/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/pcm/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Low code/No code Data Science project for Azure ML
## Instructions
diff --git a/translations/pcm/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/pcm/5-Data-Science-In-Cloud/19-Azure/README.md
index 9197e1d3..8ce44012 100644
--- a/translations/pcm/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/pcm/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Data Science for Cloud: Di "Azure ML SDK" Way
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/pcm/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/pcm/5-Data-Science-In-Cloud/19-Azure/assignment.md
index e0fa7d96..c9a16f17 100644
--- a/translations/pcm/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/pcm/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Data Science project wey use Azure ML SDK
## Instructions
diff --git a/translations/pcm/5-Data-Science-In-Cloud/README.md b/translations/pcm/5-Data-Science-In-Cloud/README.md
index 77fcd3e3..57e0ab34 100644
--- a/translations/pcm/5-Data-Science-In-Cloud/README.md
+++ b/translations/pcm/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Data Science for Cloud

diff --git a/translations/pcm/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/pcm/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 23fe8ac4..65759183 100644
--- a/translations/pcm/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/pcm/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Data Science for Real World
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/pcm/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/pcm/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 3f1bc8b0..36ab2c32 100644
--- a/translations/pcm/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/pcm/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Explore Planetary Computer Dataset
## Instructions
diff --git a/translations/pcm/6-Data-Science-In-Wild/README.md b/translations/pcm/6-Data-Science-In-Wild/README.md
index 69e49413..68862dd1 100644
--- a/translations/pcm/6-Data-Science-In-Wild/README.md
+++ b/translations/pcm/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Data Science for Real Life
How data science dey work for different industries.
diff --git a/translations/pcm/AGENTS.md b/translations/pcm/AGENTS.md
index ddaad160..a4caa6e8 100644
--- a/translations/pcm/AGENTS.md
+++ b/translations/pcm/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Project Overview
diff --git a/translations/pcm/CODE_OF_CONDUCT.md b/translations/pcm/CODE_OF_CONDUCT.md
index 0405c315..9af1a2b1 100644
--- a/translations/pcm/CODE_OF_CONDUCT.md
+++ b/translations/pcm/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft Open Source Code of Conduct
Dis project don adopt di [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/pcm/CONTRIBUTING.md b/translations/pcm/CONTRIBUTING.md
index 69252bfa..7e7a69df 100644
--- a/translations/pcm/CONTRIBUTING.md
+++ b/translations/pcm/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# How to Contribute to Data Science for Beginners
Tank you say you wan contribute to di Data Science for Beginners curriculum! We dey happy to see community people wey wan help.
diff --git a/translations/pcm/INSTALLATION.md b/translations/pcm/INSTALLATION.md
index 68e3d4c3..9125a8ca 100644
--- a/translations/pcm/INSTALLATION.md
+++ b/translations/pcm/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Installation Guide
Dis guide go help you set up your environment to work with di Data Science for Beginners curriculum.
diff --git a/translations/pcm/README.md b/translations/pcm/README.md
index c4f78da3..2d29fda5 100644
--- a/translations/pcm/README.md
+++ b/translations/pcm/README.md
@@ -1,12 +1,3 @@
-
# Data Science for Beginners - A Curriculum
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,14 +17,14 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Azure Cloud Advocates for Microsoft dey happy to offer 10 weeks, 20 lessons curriculum wey na all about Data Science. Every lesson get pre-lesson and post-lesson quizzes, written instructions to complete di lesson, solution and assignment. Our project-based way to teach go allow you learn as you dey build, na proven way to make new skills stick.
+Azure Cloud Advocates dem for Microsoft dey happy to offer one 10-week, 20-lesson curriculum wey na all about Data Science. Every lesson get pre-lesson and post-lesson quizzes, written instructions to finish the lesson, one solution, and one assignment. Our project-based pedagogy dey allow you learn as you dey build, na verified way for new skills to 'stick'.
**Big thanks to our authors:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
**🙏 Special thanks 🙏 to our [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) authors, reviewers and content contributors,** especially Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
| Data Science For Beginners - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
@@ -42,165 +33,165 @@ Azure Cloud Advocates for Microsoft dey happy to offer 10 weeks, 20 lessons curr
#### Supported via GitHub Action (Automated & Always Up-to-Date)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](./README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](./README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
> **Prefer to Clone Locally?**
-> This repository get over 50 language translations wey go make the download size big well well. If you want to clone without translations, use sparse checkout:
+> Dis repository get over 50 language translation dem wey dey increase the download size well-well. To clone without translations, use sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Dis one go give you everything wey you need to complete di course but download go quick more.
+> Dis one go give you everything wey you need to finish the course sharp-sharp.
-**If you want make dem add more translations, di ones wey dem fit add dey listed [here](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**If you wan get extra translation languages wey dem dey support, dem list dem [here](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Join Our Community
[](https://discord.gg/nTYy5BXMWG)
-We get Discord learn with AI serieswey dey go on, learn more and join us for [Learn with AI Series](https://aka.ms/learnwithai/discord) from 18 - 30 September, 2025. You go get tips and tricks to use GitHub Copilot for Data Science.
+We get one Discord learn with AI series wey dey go on, learn more and join us for [Learn with AI Series](https://aka.ms/learnwithai/discord) from 18 - 30 September, 2025. You go get tips and tricks on how to use GitHub Copilot for Data Science.
-
+
# You be student?
-Start with dis resources dem:
+Start with these resources:
-- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) For dis page, you go find beginner resources, Student packs and ways to get free certificate voucher. Na one page you go like bookmark and dey check from time to time because we dey change content at least every month.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Join global community of student ambassadors, dis one fit be your way enter Microsoft.
+- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) For dis page, you go find beginner resources, Student packs and even ways to get free cert voucher. Na one page wey you suppose bookmark and check every time as we dey change content at least every month.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Join global community of student ambassadors, dis fit be your way enter Microsoft.
-# How you go start
+# How to Start
## 📚 Documentation
- **[Installation Guide](INSTALLATION.md)** - Step-by-step setup instructions for beginners
- **[Usage Guide](USAGE.md)** - Examples and common workflows
-- **[Troubleshooting](TROUBLESHOOTING.md)** - Solutions to common issues
+- **[Troubleshooting](TROUBLESHOOTING.md)** - Solutions to common problems dem
- **[Contributing Guide](CONTRIBUTING.md)** - How to contribute to this project
- **[For Teachers](for-teachers.md)** - Teaching guidance and classroom resources
## 👨🎓 For Students
-> **Complete Beginners**: You new for data science? Start with our [beginner-friendly examples](examples/README.md)! Dem simple examples with good comments go help you understand basics well well before you start di full curriculum.
-> **[Students](https://aka.ms/student-page)**: If you wan use this curriculum by yourself, fork the whole repo and do all the exercises by yourself, start with pre-lecture quiz. Then read the lecture and complete the rest activities. Try make you create the projects by understanding the lessons instead of just copying di solution code; but that code dey the /solutions folders for each project-based lesson. Another idea na to form study group with your friends and go through the content together. For more study, we recommend [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Complete Beginners**: New for data science? Start with our [beginner-friendly examples](examples/README.md)! These simple examples with good comments go help you sabi the basics before you enter the full curriculum.
+> **[Students](https://aka.ms/student-page)**: to use this curriculum on your own, fork the whole repo and complete the exercise by yourself, start with pre-lecture quiz. Then read the lecture and finish the rest activities. Try create the projects by understanding the lessons instead of just copying the solution code; but the code dey available for /solutions folders inside each project-based lesson. Another idea na to form study group with your friends and go through the content together. For more study, we recommend [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Quick Start:**
-1. Check [Installation Guide](INSTALLATION.md) to set up your environment
-2. Read [Usage Guide](USAGE.md) to sabi how to work with the curriculum
-3. Start with Lesson 1 and follow the lessons one by one
+1. Check the [Installation Guide](INSTALLATION.md) to set up your environment
+2. Review the [Usage Guide](USAGE.md) to learn how to work with the curriculum
+3. Start with Lesson 1 and work through am sequencially
4. Join our [Discord community](https://aka.ms/ds4beginners/discord) for support
## 👩🏫 For Teachers
-> **Teachers**: We don include some suggestions for how to use this curriculum [here](for-teachers.md). We go like hear your feedback [for our discussion forum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
+> **Teachers**: we don put [some suggestions](for-teachers.md) on how to use this curriculum. We go happy to get your feedback [for our discussion forum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Meet the Team
+
[](https://youtu.be/8mzavjQSMM4 "Promo video")
**Gif by** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Click di pipul wey dey for di picture up top for video about di project and di pipo wey create am!
+> 🎥 Click di picture wey dey up dere for video about di project and di pipo wey create am!
## Pedagogy
-We choose two pedagogy work principles wen we dey build dis curriculum: make e be project-based and make e get plenty quizzes wey dey happen often. By di time dis series finish, students go don learn di basic principles of data science, including ethical concepts, data preparation, different ways to work with data, data visualization, data analysis, real-world ways wey people dey use data science, plus more.
+We don choose two pedagogical tenets wen we dey build dis curriculum: make sure say e dey project-based and e get quizzes plenty times. By di end of dis series, students go don learn basic principles of data science, including ethical concepts, data preparation, different ways to work wit data, data visualization, data analysis, real-world use cases of data science, and more.
-Plus, one low-stakes quiz before class dey set di student mind to learn di topic, while one other quiz after class dey help dem hold di knowledge. Dis curriculum na to make am flexible and fun and fit be taken finish or take small parts. Di projects dey start small then grow to big and complex by di time di 10 week cycle finish.
+Plus, small quiz before class go set di mind of di student to learn di topic, and another quiz after class go make dem remember better. Dis curriculum na to make am flexible and fun and you fit do am complete or part. Di projects start small and e go get strong pass gidigba by di end of di 10 week cycle.
-> Find our [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) guidelines. We dey welcome your constructive feedback!
+> Find our [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) guidelines. We welcome your constructive feedback!
## Each lesson get:
- Optional sketchnote
-- Optional supplemental video
+- Optional extra video
- Pre-lesson warmup quiz
- Written lesson
-- For project-based lessons, step-by-step guides on how to build di project
+- For project-based lessons, step-by-step guide how to build di project
- Knowledge checks
- Challenge
-- Supplemental reading
+- Extra reading
- Assignment
- [Post-lesson quiz](https://ff-quizzes.netlify.app/en/)
-> **Note about quizzes**: All quizzes dey inside di Quiz-App folder, total na 40 quizzes with three questions each. Dem link dem inside di lessons, but quiz app fit run for local or fit deploy to Azure; follow di instruction for `quiz-app` folder. Dem dey slowly dey localize.
+> **Note about quizzes**: All quizzes dey inside Quiz-App folder, total 40 quizzes wit three questions each. Dem link am from inside lessons, but quiz app fit run local or deploy for Azure; follow di instruction for the `quiz-app` folder. Dem dey localize dem steady steady.
## 🎓 Beginner-Friendly Examples
-**New to Data Science?** We create one special [examples directory](examples/README.md) wey get simple, well-commented code to help you start:
+**New to Data Science?** We don create special [examples directory](examples/README.md) wit simple, well-commented code to help you start well:
- 🌟 **Hello World** - Your first data science program
-- 📂 **Loading Data** - Learn how to read and explore datasets
+- 📂 **Loading Data** - Learn to read and explore datasets
- 📊 **Simple Analysis** - Calculate statistics and find patterns
- 📈 **Basic Visualization** - Create charts and graphs
- 🔬 **Real-World Project** - Complete workflow from start to finish
-Each example get detailed comments wey explain every step, make am perfect for complete beginners!
+Each example get detailed comments wey explain every step, e perfect for absolute beginners!
👉 **[Start with the examples](examples/README.md)** 👈
## Lessons
-||
+||
|:---:|
| Data Science For Beginners: Roadmap - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
| Lesson Number | Topic | Lesson Grouping | Learning Objectives | Linked Lesson | Author |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Defining Data Science | [Introduction](1-Introduction/README.md) | Learn di basic concepts behind data science and how e relate to artificial intelligence, machine learning, and big data. | [lesson](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 01 | Defining Data Science | [Introduction](1-Introduction/README.md) | Learn di basic concepts wey dey behind data science and how e relate to artificial intelligence, machine learning, and big data. | [lesson](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Data Science Ethics | [Introduction](1-Introduction/README.md) | Data Ethics Concepts, Challenges & Frameworks. | [lesson](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Defining Data | [Introduction](1-Introduction/README.md) | How data dey classified and di common sources. | [lesson](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introduction to Statistics & Probability | [Introduction](1-Introduction/README.md) | Di mathematical techniques of probability and statistics to understand data. | [lesson](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Working with Relational Data | [Working With Data](2-Working-With-Data/README.md) | Introduction to relational data and di basics of exploring and analyzing relational data with Structured Query Language, wey dem dey call SQL (pronounced “see-quell”). | [lesson](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Working with NoSQL Data | [Working With Data](2-Working-With-Data/README.md) | Introduction to non-relational data, e different types and di basics of exploring and analyzing document databases. | [lesson](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Working with Python | [Working With Data](2-Working-With-Data/README.md) | Basics of using Python for data exploration with libraries like Pandas. Foundational knowledge of Python programming dey recommended. | [lesson](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Data Preparation | [Working With Data](2-Working-With-Data/README.md) | Topics on data techniques for cleaning and transforming data to handle challenges of missing, inaccurate, or incomplete data. | [lesson](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Visualizing Quantities | [Data Visualization](3-Data-Visualization/README.md) | Learn how to use Matplotlib to visualize bird data 🦆 | [lesson](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Visualizing Distributions of Data | [Data Visualization](3-Data-Visualization/README.md) | Visualizing observations and trends inside interval. | [lesson](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 05 | Working with Relational Data | [Working With Data](2-Working-With-Data/README.md) | Introduction to relational data and di basics of how to explore and analyze relational data wit di Structured Query Language, wey dem sabi as SQL (dem dey talk am “see-quell”). | [lesson](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Working with NoSQL Data | [Working With Data](2-Working-With-Data/README.md) | Introduction to non-relational data, wetin different types of dem be and di basics of how to explore and analyze document databases. | [lesson](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Working with Python | [Working With Data](2-Working-With-Data/README.md) | Basics of how to use Python for data exploration wit libraries like Pandas. You need basic understanding of Python programming first. | [lesson](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Data Preparation | [Working With Data](2-Working-With-Data/README.md) | Topics about ways dey clean and change data well to fit handle challenges like missing, inaccurate, or incomplete data. | [lesson](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Visualizing Quantities | [Data Visualization](3-Data-Visualization/README.md) | Learn how to use Matplotlib to see bird data 🦆 | [lesson](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Visualizing Distributions of Data | [Data Visualization](3-Data-Visualization/README.md) | How to visualize observations and trends inside interval. | [lesson](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualizing Proportions | [Data Visualization](3-Data-Visualization/README.md) | Visualizing discrete and grouped percentages. | [lesson](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Visualizing Relationships | [Data Visualization](3-Data-Visualization/README.md) | Visualizing connections and correlations between sets of data and their variables. | [lesson](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Meaningful Visualizations | [Data Visualization](3-Data-Visualization/README.md) | Techniques and guidance to make your visualizations valuable for better problem solving and insights. | [lesson](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Introduction to the Data Science lifecycle | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Introduction to data science lifecycle and di first step of acquiring and extracting data. | [lesson](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analyzing | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Dis phase of di data science lifecycle focus on techniques to analyze data. | [lesson](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Communication | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Dis phase of di data science lifecycle focus on presenting insights from data in way wey go make am easy for decision makers to understand. | [lesson](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Data Science in the Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Dis series of lessons dey introduce data science for cloud and di benefits. | [lesson](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
-| 18 | Data Science in the Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Training models using Low Code tools. |[lesson](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
-| 19 | Data Science in the Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Deploying models with Azure Machine Learning Studio. | [lesson](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
+| 12 | Visualizing Relationships | [Data Visualization](3-Data-Visualization/README.md) | Visualizing connections and correlations between data sets and im variables. | [lesson](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Meaningful Visualizations | [Data Visualization](3-Data-Visualization/README.md) | Techniques and advice to make your visualizations valuable for better problem solving and insights. | [lesson](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Introduction to the Data Science lifecycle | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Introduction to the data science lifecycle and di first step wen you acquire and extract data. | [lesson](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Analyzing | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Dis phase for data science lifecycle dey focus on techniques to analyze data. | [lesson](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Communication | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Dis phase for data science lifecycle dey focus on how to talk di insights from data, so decision makers fit understand better. | [lesson](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Data Science in the Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Dis series of lessons introduce data science for cloud and di benefits. | [lesson](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
+| 18 | Data Science in the Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | How to train models wit Low Code tools. |[lesson](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
+| 19 | Data Science in the Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | How to deploy models wit Azure Machine Learning Studio. | [lesson](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) and [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science in the Wild | [In the Wild](6-Data-Science-In-Wild/README.md) | Data science driven projects for real world. | [lesson](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Follow these steps to open dis sample for Codespace:
-1. Click the Code drop-down menu and select Open with Codespaces option.
-2. Select + New codespace for bottom of di pane.
+Follow dis steps to open dis sample for Codespace:
+1. Click di Code drop-down menu and select di Open with Codespaces option.
+2. Select + New codespace for bottom for di pane.
For more info, check di [GitHub documentation](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Follow these steps to open dis repo inside container using your local machine and VSCode with VS Code Remote - Containers extension:
+Follow dis steps to open dis repo inside container using your local machine and VSCode with di VS Code Remote - Containers extension:
-1. If na your first time to use development container, make sure your system get di pre-reqs (like Docker installed) inside [di getting started documentation](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. If na your first time to dey use development container, make sure your system get all wetin e need first (like Docker installed) for [di getting started documentation](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-To use this repository, you fit open di repo inside isolated Docker volume:
+To use dis repository, you fit open di repository for isolated Docker volume:
-**Note**: Under di hood, dis go use Remote-Containers: **Clone Repository in Container Volume...** command to clone source code inside Docker volume instead of local filesystem. [Volumes](https://docs.docker.com/storage/volumes/) na preferred way to keep container data.
+**Note**: Under di hood, dis one dey use Remote-Containers: **Clone Repository in Container Volume...** command to clone di source code inside Docker volume instead of local computer. [Volumes](https://docs.docker.com/storage/volumes/) na how we best dey keep container data safe.
-Or open local cloned or downloaded copy of di repo:
+Or open local cloned or downloaded version of di repository:
-- Clone dis repo to your local filesystem.
+- Clone dis repository to your local computer.
- Press F1 and select **Remote-Containers: Open Folder in Container...** command.
-- Select cloned copy of dis folder, wait for container to start, then try am.
+- Select di cloned copy of dis folder, wait make container start, try am.
## Offline access
-You fit run dis documentation offline by using [Docsify](https://docsify.js.org/#/). Fork dis repo, [install Docsify](https://docsify.js.org/#/quickstart) on your local machine, then for root folder of dis repo, type `docsify serve`. Di website go run on port 3000 for your localhost: `localhost:3000`.
+You fit run dis documentation offline by using [Docsify](https://docsify.js.org/#/). Fork dis repo, [install Docsify](https://docsify.js.org/#/quickstart) for your machine, then for root folder of dis repo, type `docsify serve`. Di website go run for port 3000 on your localhost: `localhost:3000`.
-> Note, notebooks no go render through Docsify, so wen you need run notebook, do am separate for VS Code running Python kernel.
+> Note, notebooks no go render via Docsify, so if you need run notebook, do am separate for VS Code running Python kernel.
## Other Curricula
-Our team dey produce other curricula! Check am out:
+Our team dey produce other curricula! Check am:
### LangChain
@@ -244,19 +235,19 @@ Our team dey produce other curricula! Check am out:
## Getting Help
-**You dey face wahala?** Check our [Troubleshooting Guide](TROUBLESHOOTING.md) for solution dem to common problem dem.
+**You dey face wahala?** Check our [Troubleshooting Guide](TROUBLESHOOTING.md) for how to solve common wahala dem.
-If you jam gbege or get any question about how to build AI app dem. Join other learners and beta developers dem for discussion about MCP. E be community wey dey support, questions dey welcome, and knowledge dey free to share.
+If you jam delay or get any question about how to build AI app dem. Join other learners and experienced developers for discussions about MCP. Na supportive community wey questions dey welcome and knowledge dey share freely.
[](https://discord.gg/nTYy5BXMWG)
-If you get product feedback or e get error wen you dey build, visit:
+If you get product feedback or errors while you dey build, make you visit:
[](https://aka.ms/foundry/forum)
---
-**Disclaimer**:
-Dis document don translate wit AI translation service [Co-op Translator](https://github.com/Azure/co-op-translator). Even tho we dey try make am correct, abeg sabi say automated translation fit get errors or mistakes. Di original document wey dey im own language na im be di main correct one. For important matter, e better make person pikin human translator do am. We no go dey responsible for any wahala or wrong meaning wey fit happen because of dis translation.
+**Disclaimer**:
+Dis document na im we dem don translate wit AI translation service [Co-op Translator](https://github.com/Azure/co-op-translator). Even though we dey try make am correct, abeg make you sabi say automated translations fit get some errors or mistakes. Di original document for im own language na di main correct source. If na serious tori, e better make human translator wey sabi do am translate am. We no go take blame if anybody misunderstand or misinterpret di translation.
\ No newline at end of file
diff --git a/translations/pcm/SECURITY.md b/translations/pcm/SECURITY.md
index c59e1661..64875bb0 100644
--- a/translations/pcm/SECURITY.md
+++ b/translations/pcm/SECURITY.md
@@ -1,12 +1,3 @@
-
## Security
Microsoft dey take di security of dia software products and services serious, e include all di source code repositories wey dem dey manage through dia GitHub organizations, wey include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), and [our GitHub organizations](https://opensource.microsoft.com/).
diff --git a/translations/pcm/SUPPORT.md b/translations/pcm/SUPPORT.md
index 49b0329a..3d738718 100644
--- a/translations/pcm/SUPPORT.md
+++ b/translations/pcm/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Support
## How you go take report wahala and get help
diff --git a/translations/pcm/TROUBLESHOOTING.md b/translations/pcm/TROUBLESHOOTING.md
index f6fcc4ae..4976a9a9 100644
--- a/translations/pcm/TROUBLESHOOTING.md
+++ b/translations/pcm/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Troubleshooting Guide
Dis guide dey show solution to common wahala wey fit happen wen you dey use Data Science for Beginners curriculum.
diff --git a/translations/pcm/USAGE.md b/translations/pcm/USAGE.md
index c32e9996..d76c5393 100644
--- a/translations/pcm/USAGE.md
+++ b/translations/pcm/USAGE.md
@@ -1,12 +1,3 @@
-
# Usage Guide
Dis guide dey show example and common way wey you fit take use di Data Science for Beginners curriculum.
diff --git a/translations/pcm/docs/_sidebar.md b/translations/pcm/docs/_sidebar.md
index 328a62df..466d2e5f 100644
--- a/translations/pcm/docs/_sidebar.md
+++ b/translations/pcm/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Introduction
- [Wetin Data Science Mean](../1-Introduction/01-defining-data-science/README.md)
- [Ethics for Data Science](../1-Introduction/02-ethics/README.md)
diff --git a/translations/pcm/examples/README.md b/translations/pcm/examples/README.md
index cd3bd243..00ba9eae 100644
--- a/translations/pcm/examples/README.md
+++ b/translations/pcm/examples/README.md
@@ -1,12 +1,3 @@
-
# Beginner-Friendly Data Science Examples
Welcome to di examples directory! Dis collection of simple, well-commented examples dey designed to help you start data science, even if you be complete beginner.
diff --git a/translations/pcm/for-teachers.md b/translations/pcm/for-teachers.md
index 9ffbb323..c4696ab2 100644
--- a/translations/pcm/for-teachers.md
+++ b/translations/pcm/for-teachers.md
@@ -1,12 +1,3 @@
-
## For Educators
You wan use dis curriculum for your classroom? Abeg feel free!
diff --git a/translations/pcm/quiz-app/README.md b/translations/pcm/quiz-app/README.md
index 5efb3d1f..3d94808b 100644
--- a/translations/pcm/quiz-app/README.md
+++ b/translations/pcm/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Quizzes
Dis quizzes na di pre- and post-lecture quizzes for di data science curriculum wey dey https://aka.ms/datascience-beginners
diff --git a/translations/pcm/sketchnotes/README.md b/translations/pcm/sketchnotes/README.md
index c5ba1109..1b62666b 100644
--- a/translations/pcm/sketchnotes/README.md
+++ b/translations/pcm/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Find all di sketchnotes for here!
## Credits
diff --git a/translations/pl/.co-op-translator.json b/translations/pl/.co-op-translator.json
new file mode 100644
index 00000000..121c7dc7
--- /dev/null
+++ b/translations/pl/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:51:10+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "pl"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-24T21:31:18+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "pl"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-24T21:32:23+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "pl"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:28:03+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "pl"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-24T21:25:27+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "pl"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T14:45:01+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "pl"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-24T21:35:53+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "pl"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:30:16+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "pl"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-24T21:44:36+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "pl"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-24T21:15:18+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "pl"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:19:35+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "pl"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:55:16+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "pl"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T14:31:02+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "pl"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-24T21:13:39+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "pl"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:41:36+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "pl"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-24T21:09:28+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "pl"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T14:33:22+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "pl"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-24T21:02:22+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "pl"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-24T20:52:29+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T14:38:56+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-24T23:03:56+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T14:40:51+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-24T22:38:14+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T14:37:48+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-24T23:07:27+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:36:43+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-24T22:42:15+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T14:39:31+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-24T22:33:40+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-24T22:34:44+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-24T22:34:13+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-24T22:52:14+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-24T22:53:55+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-24T22:44:15+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-24T22:45:32+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-24T22:58:55+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-24T22:47:42+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-24T22:56:02+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "pl"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-24T22:29:36+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "pl"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:55:46+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "pl"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-24T22:17:34+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "pl"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:55:00+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "pl"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-24T22:20:19+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "pl"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:56:15+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "pl"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-24T22:28:15+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "pl"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-24T22:14:04+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "pl"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T14:29:37+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "pl"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-24T22:05:08+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "pl"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T14:27:36+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "pl"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-24T22:01:49+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "pl"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T14:30:10+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "pl"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-24T22:11:45+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "pl"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-24T21:52:54+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "pl"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:28:30+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "pl"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-24T21:51:59+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "pl"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-24T21:45:43+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "pl"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:19:07+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "pl"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-24T20:49:48+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "pl"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:57:46+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "pl"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:20:04+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "pl"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:44:46+00:00",
+ "source_file": "README.md",
+ "language_code": "pl"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-24T20:50:47+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "pl"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-24T20:47:42+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "pl"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:38:40+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "pl"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:02:00+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "pl"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-24T21:14:28+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "pl"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:01:37+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "pl"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:56:32+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "pl"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-24T22:13:00+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "pl"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-24T21:45:13+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "pl"
+ }
+}
\ No newline at end of file
diff --git a/translations/pl/1-Introduction/01-defining-data-science/README.md b/translations/pl/1-Introduction/01-defining-data-science/README.md
index 431ce6c7..35df5bc9 100644
--- a/translations/pl/1-Introduction/01-defining-data-science/README.md
+++ b/translations/pl/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Definiowanie Data Science
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/pl/1-Introduction/01-defining-data-science/assignment.md b/translations/pl/1-Introduction/01-defining-data-science/assignment.md
index a3024d3c..effc2f91 100644
--- a/translations/pl/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/pl/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Zadanie: Scenariusze Data Science
W tym pierwszym zadaniu prosimy Cię, abyś zastanowił się nad jakimś procesem lub problemem z życia codziennego w różnych obszarach tematycznych i pomyślał, jak można go ulepszyć, korzystając z procesu Data Science. Zastanów się nad następującymi kwestiami:
diff --git a/translations/pl/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/pl/1-Introduction/01-defining-data-science/solution/assignment.md
index 51bc438a..2d1d616c 100644
--- a/translations/pl/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/pl/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Zadanie: Scenariusze Data Science
W tym pierwszym zadaniu prosimy Cię, abyś zastanowił się nad rzeczywistym procesem lub problemem w różnych obszarach tematycznych i jak można go ulepszyć, korzystając z procesu Data Science. Pomyśl o następujących kwestiach:
diff --git a/translations/pl/1-Introduction/02-ethics/README.md b/translations/pl/1-Introduction/02-ethics/README.md
index d4a4e312..a511c21f 100644
--- a/translations/pl/1-Introduction/02-ethics/README.md
+++ b/translations/pl/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Wprowadzenie do etyki danych
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/pl/1-Introduction/02-ethics/assignment.md b/translations/pl/1-Introduction/02-ethics/assignment.md
index b6ae0289..cfb6348d 100644
--- a/translations/pl/1-Introduction/02-ethics/assignment.md
+++ b/translations/pl/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Napisz studium przypadku dotyczące etyki danych
## Instrukcje
diff --git a/translations/pl/1-Introduction/03-defining-data/README.md b/translations/pl/1-Introduction/03-defining-data/README.md
index dbeff3f7..8ceab7b7 100644
--- a/translations/pl/1-Introduction/03-defining-data/README.md
+++ b/translations/pl/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Definiowanie danych
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/pl/1-Introduction/03-defining-data/assignment.md b/translations/pl/1-Introduction/03-defining-data/assignment.md
index ddd2c5d4..b5fa597a 100644
--- a/translations/pl/1-Introduction/03-defining-data/assignment.md
+++ b/translations/pl/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Klasyfikacja Zbiorów Danych
## Instrukcje
diff --git a/translations/pl/1-Introduction/04-stats-and-probability/README.md b/translations/pl/1-Introduction/04-stats-and-probability/README.md
index 855ce28d..deaece10 100644
--- a/translations/pl/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/pl/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Krótkie wprowadzenie do statystyki i teorii prawdopodobieństwa
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Aby lepiej zrozumieć rozkład danych, warto mówić o **kwartylach**:
Graficznie możemy przedstawić zależność między medianą a kwartylami na diagramie zwanym **box plot**:
-
+
Tutaj obliczamy również **rozstęp międzykwartylowy** IQR=Q3-Q1 oraz tzw. **wartości odstające** - wartości, które znajdują się poza granicami [Q1-1.5*IQR, Q3+1.5*IQR].
diff --git a/translations/pl/1-Introduction/04-stats-and-probability/assignment.md b/translations/pl/1-Introduction/04-stats-and-probability/assignment.md
index 38309e0b..43c4e541 100644
--- a/translations/pl/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/pl/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Małe badanie nad cukrzycą
W tym zadaniu będziemy pracować z małym zestawem danych pacjentów z cukrzycą, pobranym z [tutaj](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/pl/1-Introduction/README.md b/translations/pl/1-Introduction/README.md
index 3e526786..51f8b533 100644
--- a/translations/pl/1-Introduction/README.md
+++ b/translations/pl/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Wprowadzenie do Data Science

diff --git a/translations/pl/2-Working-With-Data/05-relational-databases/README.md b/translations/pl/2-Working-With-Data/05-relational-databases/README.md
index ade3a687..2c985b06 100644
--- a/translations/pl/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/pl/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Praca z danymi: bazy danych relacyjne
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/pl/2-Working-With-Data/05-relational-databases/assignment.md b/translations/pl/2-Working-With-Data/05-relational-databases/assignment.md
index 6cda3be0..76ba8135 100644
--- a/translations/pl/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/pl/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Wyświetlanie danych lotnisk
Otrzymałeś [bazę danych](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) opartą na [SQLite](https://sqlite.org/index.html), która zawiera informacje o lotniskach. Schemat bazy danych jest przedstawiony poniżej. Użyjesz [rozszerzenia SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) w [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum), aby wyświetlić informacje o lotniskach w różnych miastach.
diff --git a/translations/pl/2-Working-With-Data/06-non-relational/README.md b/translations/pl/2-Working-With-Data/06-non-relational/README.md
index dff62e32..3346bf23 100644
--- a/translations/pl/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/pl/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Praca z danymi: Dane nierelacyjne
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/pl/2-Working-With-Data/06-non-relational/assignment.md b/translations/pl/2-Working-With-Data/06-non-relational/assignment.md
index 64df0879..9503138e 100644
--- a/translations/pl/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/pl/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Zyski z napojów gazowanych
## Instrukcje
diff --git a/translations/pl/2-Working-With-Data/07-python/README.md b/translations/pl/2-Working-With-Data/07-python/README.md
index db523f59..0e4af01a 100644
--- a/translations/pl/2-Working-With-Data/07-python/README.md
+++ b/translations/pl/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Praca z danymi: Python i biblioteka Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/pl/2-Working-With-Data/07-python/assignment.md b/translations/pl/2-Working-With-Data/07-python/assignment.md
index 43410cf3..cf400ec2 100644
--- a/translations/pl/2-Working-With-Data/07-python/assignment.md
+++ b/translations/pl/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Zadanie dotyczące przetwarzania danych w Pythonie
W tym zadaniu poprosimy Cię o rozwinięcie kodu, który zaczęliśmy tworzyć w naszych wyzwaniach. Zadanie składa się z dwóch części:
diff --git a/translations/pl/2-Working-With-Data/08-data-preparation/README.md b/translations/pl/2-Working-With-Data/08-data-preparation/README.md
index dc242e40..33b0caf3 100644
--- a/translations/pl/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/pl/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Praca z danymi: Przygotowanie danych
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/pl/2-Working-With-Data/08-data-preparation/assignment.md b/translations/pl/2-Working-With-Data/08-data-preparation/assignment.md
index 386f3d22..ce9847a6 100644
--- a/translations/pl/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/pl/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Ocena danych z formularza
Klient testował [mały formularz](../../../../2-Working-With-Data/08-data-preparation/index.html), aby zebrać podstawowe informacje o swojej bazie klientów. Przekazał Ci swoje wyniki, abyś zweryfikował dane, które zgromadzili. Możesz otworzyć stronę `index.html` w przeglądarce, aby zapoznać się z formularzem.
diff --git a/translations/pl/2-Working-With-Data/README.md b/translations/pl/2-Working-With-Data/README.md
index ba5e4136..231fb5de 100644
--- a/translations/pl/2-Working-With-Data/README.md
+++ b/translations/pl/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Praca z danymi

diff --git a/translations/pl/3-Data-Visualization/09-visualization-quantities/README.md b/translations/pl/3-Data-Visualization/09-visualization-quantities/README.md
index ee57b7d2..2c850a61 100644
--- a/translations/pl/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/pl/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Wizualizacja ilości
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/pl/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/pl/3-Data-Visualization/09-visualization-quantities/assignment.md
index c89f0e08..b564d504 100644
--- a/translations/pl/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/pl/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linie, wykresy punktowe i słupkowe
## Instrukcje
diff --git a/translations/pl/3-Data-Visualization/10-visualization-distributions/README.md b/translations/pl/3-Data-Visualization/10-visualization-distributions/README.md
index a30e8131..029322f3 100644
--- a/translations/pl/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/pl/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Wizualizacja rozkładów
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/pl/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/pl/3-Data-Visualization/10-visualization-distributions/assignment.md
index 54881333..68dfef32 100644
--- a/translations/pl/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/pl/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Zastosuj swoje umiejętności
## Instrukcje
diff --git a/translations/pl/3-Data-Visualization/11-visualization-proportions/README.md b/translations/pl/3-Data-Visualization/11-visualization-proportions/README.md
index f980ec97..6ae9e23c 100644
--- a/translations/pl/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/pl/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Wizualizacja proporcji
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/pl/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/pl/3-Data-Visualization/11-visualization-proportions/assignment.md
index ef9a4b75..2afefce2 100644
--- a/translations/pl/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/pl/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Wypróbuj to w Excelu
## Instrukcje
diff --git a/translations/pl/3-Data-Visualization/12-visualization-relationships/README.md b/translations/pl/3-Data-Visualization/12-visualization-relationships/README.md
index c4489682..c34ef17b 100644
--- a/translations/pl/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/pl/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Wizualizacja relacji: Wszystko o miodzie 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/pl/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/pl/3-Data-Visualization/12-visualization-relationships/assignment.md
index bede4559..ba807363 100644
--- a/translations/pl/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/pl/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Zanurkuj w ul
## Instrukcje
diff --git a/translations/pl/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/pl/3-Data-Visualization/13-meaningful-visualizations/README.md
index 7e39327f..a3a7d0b0 100644
--- a/translations/pl/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/pl/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Tworzenie Znaczących Wizualizacji
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/pl/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/pl/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 177481cc..e689d600 100644
--- a/translations/pl/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/pl/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Stwórz własną wizualizację
## Instrukcje
diff --git a/translations/pl/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/pl/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 3e510aa3..0870f4a3 100644
--- a/translations/pl/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/pl/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Projekt wizualizacji danych Dangerous Liaisons
Aby rozpocząć, upewnij się, że masz zainstalowane NPM i Node na swoim komputerze. Zainstaluj zależności (npm install), a następnie uruchom projekt lokalnie (npm run serve):
diff --git a/translations/pl/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/pl/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 4e23d5ea..d23991a0 100644
--- a/translations/pl/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/pl/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Projekt wizualizacji danych Dangerous Liaisons
Aby rozpocząć, upewnij się, że masz zainstalowane NPM i Node na swoim komputerze. Zainstaluj zależności (npm install), a następnie uruchom projekt lokalnie (npm run serve):
diff --git a/translations/pl/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/pl/3-Data-Visualization/R/09-visualization-quantities/README.md
index 87d8d1ab..5328ebd0 100644
--- a/translations/pl/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/pl/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Wizualizacja Ilości
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/pl/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/pl/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index a85c517d..a29f4cf0 100644
--- a/translations/pl/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/pl/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linie, wykresy punktowe i słupkowe
## Instrukcje
diff --git a/translations/pl/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/pl/3-Data-Visualization/R/10-visualization-distributions/README.md
index 499022c0..2d219356 100644
--- a/translations/pl/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/pl/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Wizualizacja rozkładów
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/pl/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/pl/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index fd9195a0..05682af7 100644
--- a/translations/pl/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/pl/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Zastosuj swoje umiejętności
## Instrukcje
diff --git a/translations/pl/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/pl/3-Data-Visualization/R/11-visualization-proportions/README.md
index 3c41b742..2fc5f084 100644
--- a/translations/pl/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/pl/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Wizualizacja proporcji
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/pl/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/pl/3-Data-Visualization/R/12-visualization-relationships/README.md
index 5f33e514..5eb59e6d 100644
--- a/translations/pl/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/pl/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Wizualizacja Zależności: Wszystko o Miodzie 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/pl/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/pl/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index ec076f53..030ff47a 100644
--- a/translations/pl/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/pl/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Tworzenie Znaczących Wizualizacji
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/pl/3-Data-Visualization/README.md b/translations/pl/3-Data-Visualization/README.md
index d74027df..e397cc9c 100644
--- a/translations/pl/3-Data-Visualization/README.md
+++ b/translations/pl/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Wizualizacje

diff --git a/translations/pl/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/pl/4-Data-Science-Lifecycle/14-Introduction/README.md
index 504be014..a15d1140 100644
--- a/translations/pl/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/pl/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Wprowadzenie do cyklu życia nauki o danych
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/pl/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/pl/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 7ccd5f31..422c4723 100644
--- a/translations/pl/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/pl/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Ocena Zbioru Danych
Klient zwrócił się do Twojego zespołu o pomoc w zbadaniu sezonowych nawyków wydatkowych klientów taksówek w Nowym Jorku.
diff --git a/translations/pl/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/pl/4-Data-Science-Lifecycle/15-analyzing/README.md
index 056fe820..c837a172 100644
--- a/translations/pl/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/pl/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Cykl życia danych: Analiza
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/pl/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/pl/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 34e000fc..e52ca4f3 100644
--- a/translations/pl/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/pl/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Poszukiwanie odpowiedzi
To jest kontynuacja [zadania](../14-Introduction/assignment.md) z poprzedniej lekcji, gdzie krótko przyjrzeliśmy się zbiorowi danych. Teraz przyjrzymy się danym bardziej szczegółowo.
diff --git a/translations/pl/4-Data-Science-Lifecycle/16-communication/README.md b/translations/pl/4-Data-Science-Lifecycle/16-communication/README.md
index 58ebf4be..8baacdb2 100644
--- a/translations/pl/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/pl/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Cykl życia Data Science: Komunikacja
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/pl/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/pl/4-Data-Science-Lifecycle/16-communication/assignment.md
index dd257936..c2be35f2 100644
--- a/translations/pl/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/pl/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Opowiedz historię
## Instrukcje
diff --git a/translations/pl/4-Data-Science-Lifecycle/README.md b/translations/pl/4-Data-Science-Lifecycle/README.md
index 2171940f..c05af975 100644
--- a/translations/pl/4-Data-Science-Lifecycle/README.md
+++ b/translations/pl/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Cykl życia Data Science

diff --git a/translations/pl/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/pl/5-Data-Science-In-Cloud/17-Introduction/README.md
index ac95298a..aebbe541 100644
--- a/translations/pl/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/pl/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Wprowadzenie do Data Science w Chmurze
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/pl/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/pl/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 3c06b0fa..7fe41319 100644
--- a/translations/pl/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/pl/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Badania Rynkowe
## Instrukcje
diff --git a/translations/pl/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/pl/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 4e3ad319..13834399 100644
--- a/translations/pl/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/pl/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Data Science w chmurze: Podejście "Low code/No code"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/pl/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/pl/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 1b04d264..f6e53412 100644
--- a/translations/pl/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/pl/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Projekt Data Science w stylu Low code/No code na Azure ML
## Instrukcje
diff --git a/translations/pl/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/pl/5-Data-Science-In-Cloud/19-Azure/README.md
index 8a02ad88..c8601de2 100644
--- a/translations/pl/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/pl/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Data Science w Chmurze: Podejście "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/pl/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/pl/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 1ae62c61..ed96dec4 100644
--- a/translations/pl/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/pl/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Projekt Data Science z użyciem Azure ML SDK
## Instrukcje
diff --git a/translations/pl/5-Data-Science-In-Cloud/README.md b/translations/pl/5-Data-Science-In-Cloud/README.md
index 31b39240..5ac038ec 100644
--- a/translations/pl/5-Data-Science-In-Cloud/README.md
+++ b/translations/pl/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Data Science w Chmurze

diff --git a/translations/pl/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/pl/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 4eb1a771..6d7b9ee1 100644
--- a/translations/pl/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/pl/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Data Science w Rzeczywistym Świecie
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/pl/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/pl/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 8fe264b0..a5665e6d 100644
--- a/translations/pl/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/pl/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Eksploracja zbioru danych Planetary Computer
## Instrukcje
diff --git a/translations/pl/6-Data-Science-In-Wild/README.md b/translations/pl/6-Data-Science-In-Wild/README.md
index 4f54211a..5077e51c 100644
--- a/translations/pl/6-Data-Science-In-Wild/README.md
+++ b/translations/pl/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Data Science w Praktyce
Zastosowania data science w różnych branżach.
diff --git a/translations/pl/AGENTS.md b/translations/pl/AGENTS.md
index 6ee2d688..6e3c75fe 100644
--- a/translations/pl/AGENTS.md
+++ b/translations/pl/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Przegląd projektu
diff --git a/translations/pl/CODE_OF_CONDUCT.md b/translations/pl/CODE_OF_CONDUCT.md
index efbb834a..e4541449 100644
--- a/translations/pl/CODE_OF_CONDUCT.md
+++ b/translations/pl/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Kodeks postępowania Microsoft Open Source
Ten projekt przyjął [Kodeks postępowania Microsoft Open Source](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/pl/CONTRIBUTING.md b/translations/pl/CONTRIBUTING.md
index a6405957..b61dfc12 100644
--- a/translations/pl/CONTRIBUTING.md
+++ b/translations/pl/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Współtworzenie Data Science dla Początkujących
Dziękujemy za zainteresowanie współtworzeniem programu nauczania Data Science dla Początkujących! Zapraszamy do współpracy całą społeczność.
diff --git a/translations/pl/INSTALLATION.md b/translations/pl/INSTALLATION.md
index bacb8fa0..44fd8850 100644
--- a/translations/pl/INSTALLATION.md
+++ b/translations/pl/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Przewodnik instalacji
Ten przewodnik pomoże Ci skonfigurować środowisko do pracy z programem nauczania "Data Science for Beginners".
diff --git a/translations/pl/README.md b/translations/pl/README.md
index 8f6054d3..1bc063cd 100644
--- a/translations/pl/README.md
+++ b/translations/pl/README.md
@@ -1,50 +1,41 @@
-
# Data Science dla Początkujących - Program Nauczania
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
[](https://aka.ms/foundry/forum)
-Zespół Azure Cloud Advocates w Microsoft z przyjemnością oferuje 10-tygodniowy, 20-lekcyjny program nauczania całkowicie poświęcony Data Science. Każda lekcja zawiera quizy przed i po lekcji, pisemne instrukcje do wykonania lekcji, rozwiązanie oraz zadanie do wykonania. Nasza projektowo-zorientowana metodologia pozwala uczyć się podczas tworzenia, co jest sprawdzonym sposobem na trwałe przyswojenie nowych umiejętności.
+Azure Cloud Advocates w Microsoft z przyjemnością oferują 10-tygodniowy, 20-lekcyjny program nauczania poświęcony Data Science. Każda lekcja zawiera quiz przed i po lekcji, pisemne instrukcje do wykonania lekcji, rozwiązanie oraz zadanie. Nasza oparta na projektach pedagogika pozwala uczyć się podczas tworzenia, co jest sprawdzonym sposobem, aby nowe umiejętności „pozostały”.
**Serdeczne podziękowania dla naszych autorów:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Specjalne podziękowania 🙏 dla naszych autorów, recenzentów i współtwórców treści z [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** w szczególności Aaryana Arory, [Aditya Garga](https://github.com/AdityaGarg00), [Alondry Sancheza](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankity Singh](https://www.linkedin.com/in/ankitasingh007), [Anupama Mishry](https://www.linkedin.com/in/anupam--mishra/), [Arpity Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishity Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majda Safiego](https://www.linkedin.com/in/majd-s/), [Maxa Bluma](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguela Correi](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalala](https://twitter.com/iftu119), [Nawrin Tabassuma](https://www.linkedin.com/in/nawrin-tabassum), [Raymonda Wangsy Putry](https://www.linkedin.com/in/raymond-wp/), [Rohita Yadava](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanyi Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
-[Sheeny Naruli](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeera Ahmada](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingha Pawara, [Vidushi Gupty](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleena Sondhiego](https://www.linkedin.com/in/jasleen-sondhi/)
+**🙏 Szczególne podziękowania 🙏 dla naszych autorów, recenzentów i współtwórców treści z [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** w szczególności Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
| Data Science dla Początkujących - _Sketchnote autorstwa [@nitya](https://twitter.com/nitya)_ |
-### 🌐 Wsparcie Wielojęzyczne
+### 🌐 Wielojęzyczne wsparcie
-#### Wspierane przez GitHub Action (Automatycznie & Zawsze Aktualne)
+#### Wsparcie poprzez GitHub Action (zautomatyzowane i zawsze aktualne)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bułgarski](../bg/README.md) | [Birmański (Myanmar)](../my/README.md) | [Chiński (Uproszczony)](../zh/README.md) | [Chiński (Tradycyjny, Hong Kong)](../hk/README.md) | [Chiński (Tradycyjny, Macau)](../mo/README.md) | [Chiński (Tradycyjny, Tajwan)](../tw/README.md) | [Chorwacki](../hr/README.md) | [Czeski](../cs/README.md) | [Duński](../da/README.md) | [Holenderski](../nl/README.md) | [Estoński](../et/README.md) | [Fiński](../fi/README.md) | [Francuski](../fr/README.md) | [Niemiecki](../de/README.md) | [Grecki](../el/README.md) | [Hebrajski](../he/README.md) | [Hindi](../hi/README.md) | [Węgierski](../hu/README.md) | [Indonezyjski](../id/README.md) | [Włoski](../it/README.md) | [Japoński](../ja/README.md) | [Kannada](../kn/README.md) | [Koreański](../ko/README.md) | [Litewski](../lt/README.md) | [Malajski](../ms/README.md) | [Malajalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepalski](../ne/README.md) | [Nigeryjski Pidgin](../pcm/README.md) | [Norweski](../no/README.md) | [Perski (Farsi)](../fa/README.md) | [Polski](./README.md) | [Portugalski (Brazylia)](../br/README.md) | [Portugalski (Portugalia)](../pt/README.md) | [Pendżabski (Gurmukhi)](../pa/README.md) | [Rumuński](../ro/README.md) | [Rosyjski](../ru/README.md) | [Serbski (Cyrylica)](../sr/README.md) | [Słowacki](../sk/README.md) | [Słoweński](../sl/README.md) | [Hiszpański](../es/README.md) | [Suahili](../sw/README.md) | [Szwedzki](../sv/README.md) | [Tagalog (Filipiński)](../tl/README.md) | [Tamilski](../ta/README.md) | [Telugu](../te/README.md) | [Tajski](../th/README.md) | [Turecki](../tr/README.md) | [Ukraiński](../uk/README.md) | [Urdu](../ur/README.md) | [Wietnamski](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bułgarski](../bg/README.md) | [Birmański (Myanmar)](../my/README.md) | [Chiński (uproszczony)](../zh-CN/README.md) | [Chiński (tradycyjny, Hong Kong)](../zh-HK/README.md) | [Chiński (tradycyjny, Macau)](../zh-MO/README.md) | [Chiński (tradycyjny, Tajwan)](../zh-TW/README.md) | [Chorwacki](../hr/README.md) | [Czeski](../cs/README.md) | [Duński](../da/README.md) | [Holenderski](../nl/README.md) | [Estoński](../et/README.md) | [Fiński](../fi/README.md) | [Francuski](../fr/README.md) | [Niemiecki](../de/README.md) | [Grecki](../el/README.md) | [Hebrajski](../he/README.md) | [Hindi](../hi/README.md) | [Węgierski](../hu/README.md) | [Indonezyjski](../id/README.md) | [Włoski](../it/README.md) | [Japoński](../ja/README.md) | [Kannada](../kn/README.md) | [Koreański](../ko/README.md) | [Litewski](../lt/README.md) | [Malajski](../ms/README.md) | [Malajalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepalski](../ne/README.md) | [Nigeryjski Pidgin](../pcm/README.md) | [Norweski](../no/README.md) | [Perski (Farsi)](../fa/README.md) | [Polski](./README.md) | [Portugalski (Brazylia)](../pt-BR/README.md) | [Portugalski (Portugalia)](../pt-PT/README.md) | [Pendżabski (Gurmukhi)](../pa/README.md) | [Rumuński](../ro/README.md) | [Rosyjski](../ru/README.md) | [Serbski (cyrylica)](../sr/README.md) | [Słowacki](../sk/README.md) | [Słoweński](../sl/README.md) | [Hiszpański](../es/README.md) | [Suahili](../sw/README.md) | [Szwedzki](../sv/README.md) | [Tagalog (Filipiński)](../tl/README.md) | [Tamilski](../ta/README.md) | [Telugu](../te/README.md) | [Tajski](../th/README.md) | [Turecki](../tr/README.md) | [Ukraiński](../uk/README.md) | [Urdu](../ur/README.md) | [Wietnamski](../vi/README.md)
-> **Wolisz Klonować Lokalnie?**
+> **Wolisz sklonować lokalnie?**
> To repozytorium zawiera ponad 50 tłumaczeń językowych, co znacznie zwiększa rozmiar pobierania. Aby sklonować bez tłumaczeń, użyj sparse checkout:
> ```bash
@@ -52,159 +43,159 @@ Zespół Azure Cloud Advocates w Microsoft z przyjemnością oferuje 10-tygodnio
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> To da Ci wszystko, czego potrzebujesz do ukończenia kursu z dużo szybszym pobieraniem.
+> To da Ci wszystko, czego potrzebujesz, aby ukończyć kurs z dużo szybszym pobraniem.
-**Jeśli chcesz, aby dodano wsparcie dla innych języków, są one wymienione [tutaj](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Jeśli chcesz, aby dodatkowe języki tłumaczeń były wspierane, są one wymienione [tutaj](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Dołącz do Naszej Społeczności
+#### Dołącz do naszej społeczności
[](https://discord.gg/nTYy5BXMWG)
-Mamy trwającą serię nauki z AI na Discordzie, dowiedz się więcej i dołącz do nas na [Learn with AI Series](https://aka.ms/learnwithai/discord) od 18 do 30 września 2025. Otrzymasz wskazówki i triki dotyczące korzystania z GitHub Copilot dla Data Science.
+Mamy trwającą serię Discord Learn with AI, dowiedz się więcej i dołącz do nas na [Learn with AI Series](https://aka.ms/learnwithai/discord) w dniach 18 - 30 września 2025. Otrzymasz wskazówki i triki dotyczące używania GitHub Copilot w Data Science.
-
+
# Jesteś studentem?
Zacznij od następujących zasobów:
-- [Strona Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na tej stronie znajdziesz materiały dla początkujących, pakiety dla studentów, a nawet sposoby na zdobycie darmowego bonu na certyfikat. To jedna ze stron, którą warto dodać do zakładek i od czasu do czasu sprawdzać, ponieważ regularnie zmieniamy zawartość, przynajmniej raz w miesiącu.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Dołącz do globalnej społeczności ambasadorów studentów, to może być Twoja droga do Microsoft.
+- [Strona Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na tej stronie znajdziesz zasoby dla początkujących, pakiety studenckie i nawet sposoby na zdobycie darmowego vouchera na certyfikat. To jedna strona, którą warto dodać do ulubionych i regularnie sprawdzać, ponieważ zawartość jest zmieniana co najmniej raz w miesiącu.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Dołącz do globalnej społeczności ambasadorów studenckich, może to być Twoja droga do Microsoft.
-# Rozpoczęcie
+# Zacznijmy
## 📚 Dokumentacja
- **[Przewodnik instalacji](INSTALLATION.md)** - Instrukcje krok po kroku dla początkujących
-- **[Przewodnik użytkowania](USAGE.md)** - Przykłady i powszechne schematy pracy
+- **[Przewodnik użytkowania](USAGE.md)** - Przykłady i popularne przepływy pracy
- **[Rozwiązywanie problemów](TROUBLESHOOTING.md)** - Rozwiązania typowych problemów
-- **[Przewodnik współpracy](CONTRIBUTING.md)** - Jak przyczynić się do tego projektu
-- **[Dla nauczycieli](for-teachers.md)** - Wskazówki dydaktyczne i zasoby do klasy
+- **[Przewodnik współtworzenia](CONTRIBUTING.md)** - Jak współtworzyć ten projekt
+- **[Dla nauczycieli](for-teachers.md)** - Wskazówki dydaktyczne i materiały do klasy
## 👨🎓 Dla studentów
-> **Całkowici początkujący**: Nowy w data science? Zacznij od naszych [przykładów dla początkujących](examples/README.md)! Te proste, dobrze skomentowane przykłady pomogą Ci zrozumieć podstawy zanim zanurzysz się w cały program.
-> **[Studenci](https://aka.ms/student-page)**: aby korzystać z tego programu samodzielnie, rozgałęź całe repozytorium i samodzielnie wykonaj ćwiczenia, zaczynając od quizu przed wykładem. Następnie przeczytaj wykład i wykonaj pozostałe aktywności. Staraj się tworzyć projekty, rozumiejąc lekcje, zamiast kopiować kod rozwiązań; jednak ten kod jest dostępny w folderach /solutions w każdej lekcji skoncentrowanej na projekcie. Innym pomysłem jest zorganizowanie grupy studenckiej z przyjaciółmi i przejście przez zawartość razem. Do dalszej nauki polecamy [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Całkowicie początkujący**: Nowy w data science? Zacznij od naszych [przykładów dla początkujących](examples/README.md)! Te proste, bogato komentowane przykłady pomogą Ci zrozumieć podstawy zanim przejdziesz do pełnego programu.
+> **[Studenci](https://aka.ms/student-page)**: aby korzystać z programu samodzielnie, utwórz fork całego repozytorium i wykonuj ćwiczenia samodzielnie, zaczynając od quizu przed wykładem. Następnie przeczytaj wykład i wykonaj pozostałe zadania. Staraj się tworzyć projekty rozumiejąc lekcje, a nie tylko kopiując kod rozwiązań; jednak ten kod jest dostępny w folderach /solutions w każdej lekcji skupionej na projekcie. Innym pomysłem jest utworzenie grupy nauki z przyjaciółmi i wspólne przerabianie materiału. Do dalszej nauki rekomendujemy [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Szybki start:**
-1. Sprawdź [Przewodnik instalacji](INSTALLATION.md), aby skonfigurować swoje środowisko
-2. Przejrzyj [Przewodnik użytkowania](USAGE.md), aby nauczyć się, jak korzystać z programu
-3. Zacznij od Lekcji 1 i przechodź po kolei
-4. Dołącz do naszej [społeczności Discord](https://aka.ms/ds4beginners/discord), aby uzyskać wsparcie
+1. Sprawdź [Przewodnik instalacji](INSTALLATION.md), aby skonfigurować środowisko
+2. Przejrzyj [Przewodnik użytkowania](USAGE.md), aby nauczyć się pracy z programem
+3. Zacznij od Lekcji 1 i pracuj po kolei
+4. Dołącz do naszej [społeczności Discord](https://aka.ms/ds4beginners/discord) po wsparcie
## 👩🏫 Dla nauczycieli
-> **Nauczyciele**: dołączyliśmy [kilka sugestii](for-teachers.md) dotyczących korzystania z tego programu. Chętnie poznamy Wasze opinie [na naszym forum dyskusyjnym](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+> **Nauczyciele**: zamieściliśmy [kilka sugestii](for-teachers.md) dotyczących korzystania z tego programu. Chętnie przyjmiemy Wasze opinie [na naszym forum dyskusyjnym](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## Poznaj Zespół
-## Poznaj zespół
-[](https://youtu.be/8mzavjQSMM4 "Promo video")
+[](https://youtu.be/8mzavjQSMM4 "Film promocyjny")
**Gif autorstwa** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Kliknij obraz powyżej, aby obejrzeć wideo o projekcie i ludziach, którzy go stworzyli!
+> 🎥 Kliknij powyższy obraz, aby zobaczyć film o projekcie i ludziach, którzy go stworzyli!
## Pedagogika
-W budowaniu tego programu nauczania wybraliśmy dwa założenia pedagogiczne: zapewnienie opartego na projektach charakteru oraz częste quizy. Po ukończeniu tej serii uczniowie poznają podstawowe zasady nauki o danych, w tym koncepcje etyczne, przygotowanie danych, różne sposoby pracy z danymi, wizualizację danych, analizę danych, realne zastosowania nauki o danych i więcej.
+Wybraliśmy dwie zasady pedagogiczne podczas tworzenia tego programu nauczania: zapewnienie, że jest oparty na projektach oraz że zawiera częste quizy. Pod koniec tej serii uczniowie poznają podstawowe zasady nauki o danych, w tym zagadnienia etyczne, przygotowanie danych, różne sposoby pracy z danymi, wizualizację danych, analizę danych, rzeczywiste przypadki użycia nauki o danych i więcej.
-Dodatkowo quiz o niskiej stawce przed zajęciami nastawia ucznia na naukę tematu, natomiast drugi quiz po zajęciach zapewnia lepsze utrwalenie wiedzy. Program ten został zaprojektowany tak, aby był elastyczny i przyjemny oraz można go realizować w całości lub częściowo. Projekty zaczynają się od małych i stają się coraz bardziej złożone w trakcie 10. tygodniowego cyklu.
+Dodatkowo, mało stresujący quiz przed lekcją nastawia ucznia na naukę danego tematu, podczas gdy drugi quiz po lekcji zapewnia lepsze zapamiętanie materiału. Ten program nauczania został zaprojektowany tak, aby był elastyczny i przyjemny, i można go realizować w całości lub częściowo. Projekty zaczynają się od małych i stają się coraz bardziej złożone pod koniec 10-tygodniowego cyklu.
-> Znajdź nasze [Zasady postępowania](CODE_OF_CONDUCT.md), [Wkład](CONTRIBUTING.md), [Tłumaczenia](TRANSLATIONS.md). Chętnie przyjmujemy Twoją konstruktywną opinię!
+> Znajdź nasze [Zasady zachowania](CODE_OF_CONDUCT.md), [Zasady współtworzenia](CONTRIBUTING.md), [Tłumaczenia](TRANSLATIONS.md). Czekamy na Twoją konstruktywną opinię!
## Każda lekcja zawiera:
-- Opcjonalną notatkę graficzną
-- Opcjonalne dodatkowe wideo
-- Quiz rozgrzewkowy przed lekcją
+- Opcjonalną notatkę wizualną (sketchnote)
+- Opcjonalny film uzupełniający
+- Quiz rozgrzewający przed lekcją
- Lekcję pisaną
-- W lekcjach opartych na projektach, przewodniki krok po kroku jak zbudować projekt
+- W przypadku lekcji opartych na projektach, instrukcje krok po kroku jak zbudować projekt
- Sprawdziany wiedzy
- Wyzwanie
-- Dodatkową lekturę
+- Materiały uzupełniające do czytania
- Zadanie domowe
- [Quiz po lekcji](https://ff-quizzes.netlify.app/en/)
-> **Uwagi o quizach**: Wszystkie quizy znajdują się w folderze Quiz-App, w sumie 40 quizów po trzy pytania każdy. Są one powiązane z lekcjami, ale aplikację quizową można uruchomić lokalnie lub wdrożyć na Azure; postępuj zgodnie z instrukcjami w folderze `quiz-app`. Są stopniowo lokalizowane.
+> **Uwaga na temat quizów**: Wszystkie quizy znajdują się w folderze Quiz-App, łącznie 40 quizów po trzy pytania każdy. Są one powiązane z lekcjami, ale aplikację quizową można uruchomić lokalnie lub wdrożyć na Azure; postępuj zgodnie z instrukcjami w folderze `quiz-app`. Są stopniowo lokalizowane.
## 🎓 Przykłady przyjazne dla początkujących
-**Nowy w nauce o danych?** Stworzyliśmy specjalny [katalog przykładów](examples/README.md) z prostym, dobrze komentowanym kodem, który pomoże Ci zacząć:
+**Nowy w nauce o danych?** Stworzyliśmy specjalny [katalog przykładów](examples/README.md) z prostym, dobrze skomentowanym kodem, aby pomóc Ci zacząć:
-- 🌟 **Hello World** - Twój pierwszy program w nauce o danych
-- 📂 **Ładowanie danych** - Naucz się czytać i eksplorować zestawy danych
-- 📊 **Prosta analiza** - Obliczaj statystyki i znajdź wzorce
-- 📈 **Podstawowa wizualizacja** - Twórz wykresy i diagramy
-- 🔬 **Projekt z prawdziwego świata** - Kompletny proces od początku do końca
+- 🌟 **Hello World** – Twój pierwszy program nauki o danych
+- 📂 **Ładowanie danych** – Naucz się czytać i eksplorować zbiory danych
+- 📊 **Prosta analiza** – Oblicz statystyki i znajdź wzorce
+- 📈 **Podstawowa wizualizacja** – Twórz wykresy i diagramy
+- 🔬 **Projekt z prawdziwego świata** – Kompletny przepływ pracy od początku do końca
-Każdy przykład zawiera szczegółowe komentarze wyjaśniające każdy krok, co czyni go idealnym dla całkowicie początkujących!
+Każdy przykład zawiera szczegółowe komentarze wyjaśniające każdy krok, co czyni go idealnym dla absolutnych początkujących!
👉 **[Zacznij od przykładów](examples/README.md)** 👈
## Lekcje
-||
+||
|:---:|
-| Nauka o danych dla początkujących: Plan nauki - _Notatka graficzna autorstwa [@nitya](https://twitter.com/nitya)_ |
+| Data Science dla początkujących: mapa drogowa - _Notatka wizualna autorstwa [@nitya](https://twitter.com/nitya)_ |
-| Numer lekcji | Temat | Grupa lekcji | Cele nauki | Powiązana lekcja | Autor |
+| Numer lekcji | Temat | Grupa lekcji | Cele nauczania | Powiązana lekcja | Autor |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Definiowanie nauki o danych | [Wprowadzenie](1-Introduction/README.md) | Poznaj podstawowe pojęcia nauki o danych i jej powiązania ze sztuczną inteligencją, uczeniem maszynowym oraz big data. | [lekcja](1-Introduction/01-defining-data-science/README.md) [wideo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 01 | Definicja nauki o danych | [Wprowadzenie](1-Introduction/README.md) | Poznaj podstawowe koncepcje nauki o danych oraz jak wiąże się ona ze sztuczną inteligencją, uczeniem maszynowym i big data. | [lekcja](1-Introduction/01-defining-data-science/README.md) [film](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Etyka w nauce o danych | [Wprowadzenie](1-Introduction/README.md) | Koncepcje etyki danych, wyzwania i ramy postępowania. | [lekcja](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Definiowanie danych | [Wprowadzenie](1-Introduction/README.md) | Jak dane są klasyfikowane i ich powszechne źródła. | [lekcja](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Wprowadzenie do statystyki i prawdopodobieństwa | [Wprowadzenie](1-Introduction/README.md) | Matematyczne techniki prawdopodobieństwa i statystyki do zrozumienia danych. | [lekcja](1-Introduction/04-stats-and-probability/README.md) [wideo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Praca z danymi relacyjnymi | [Praca z danymi](2-Working-With-Data/README.md) | Wprowadzenie do danych relacyjnych oraz podstawy eksploracji i analizy danych relacyjnych za pomocą Structured Query Language, znanego jako SQL (wym. „see-quell”). | [lekcja](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 03 | Definicja danych | [Wprowadzenie](1-Introduction/README.md) | Jak klasyfikowane są dane i ich typowe źródła. | [lekcja](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Wprowadzenie do statystyki i rachunku prawdopodobieństwa | [Wprowadzenie](1-Introduction/README.md) | Matematyczne techniki prawdopodobieństwa i statystyki do zrozumienia danych. | [lekcja](1-Introduction/04-stats-and-probability/README.md) [film](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Praca z danymi relacyjnymi | [Praca z danymi](2-Working-With-Data/README.md) | Wprowadzenie do danych relacyjnych oraz podstawy eksploracji i analizy danych relacyjnych przy użyciu języka Structured Query Language, znanego jako SQL (czyt. „si-kju-el”). | [lekcja](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Praca z danymi NoSQL | [Praca z danymi](2-Working-With-Data/README.md) | Wprowadzenie do danych nierelacyjnych, ich różnych typów oraz podstaw eksploracji i analizy baz dokumentów. | [lekcja](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Praca z Pythonem | [Praca z danymi](2-Working-With-Data/README.md) | Podstawy używania Pythona do eksploracji danych z wykorzystaniem bibliotek takich jak Pandas. Zalecane podstawowe rozumienie programowania w Pythonie. | [lekcja](2-Working-With-Data/07-python/README.md) [wideo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Przygotowanie danych | [Praca z danymi](2-Working-With-Data/README.md) | Tematy dotyczące technik czyszczenia i transformacji danych w celu radzenia sobie z brakującymi, niedokładnymi lub niekompletnymi danymi. | [lekcja](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Wizualizacja ilości | [Wizualizacja danych](3-Data-Visualization/README.md) | Nauka używania Matplotlib do wizualizacji danych o ptakach 🦆 | [lekcja](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 07 | Praca z Pythonem | [Praca z danymi](2-Working-With-Data/README.md) | Podstawy używania Pythona do eksploracji danych z użyciem bibliotek takich jak Pandas. Zalecane podstawy programowania w Pythonie. | [lekcja](2-Working-With-Data/07-python/README.md) [film](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Przygotowanie danych | [Praca z danymi](2-Working-With-Data/README.md) | Tematy dotyczące technik czyszczenia i przekształcania danych, aby radzić sobie z problemami brakujących, nieprawidłowych lub niekompletnych danych. | [lekcja](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Wizualizacja ilości | [Wizualizacja danych](3-Data-Visualization/README.md) | Naucz się używać Matplotlib do wizualizacji danych o ptakach 🦆 | [lekcja](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Wizualizacja rozkładów danych | [Wizualizacja danych](3-Data-Visualization/README.md) | Wizualizacja obserwacji i trendów w obrębie przedziału. | [lekcja](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Wizualizacja proporcji | [Wizualizacja danych](3-Data-Visualization/README.md) | Wizualizacja dyskretnych i grupowanych procentów. | [lekcja](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Wizualizacja zależności | [Wizualizacja danych](3-Data-Visualization/README.md) | Wizualizacja powiązań i korelacji pomiędzy zestawami danych oraz ich zmiennymi. | [lekcja](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Sensowne wizualizacje | [Wizualizacja danych](3-Data-Visualization/README.md) | Techniki i wskazówki, jak uczynić wizualizacje wartościowymi dla skutecznego rozwiązywania problemów i uzyskiwania wglądów. | [lekcja](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Wprowadzenie do cyklu życia nauki o danych | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Wprowadzenie do cyklu życia nauki o danych i jego pierwszego kroku, czyli pozyskiwania i ekstrakcji danych. | [lekcja](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analiza | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Faza cyklu życia nauki o danych skupiona na technikach analizy danych. | [lekcja](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Komunikacja | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Faza cyklu życia nauki o danych skoncentrowana na prezentowaniu spostrzeżeń z danych w sposób ułatwiający podejmowanie decyzji przez decydentów. | [lekcja](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Nauka o danych w chmurze | [Dane w chmurze](5-Data-Science-In-Cloud/README.md) | Seria lekcji wprowadzających naukę o danych w chmurze i jej korzyści. | [lekcja](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) oraz [Maud](https://twitter.com/maudstweets) |
-| 18 | Nauka o danych w chmurze | [Dane w chmurze](5-Data-Science-In-Cloud/README.md) | Trenowanie modeli za pomocą narzędzi Low Code. |[lekcja](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) oraz [Maud](https://twitter.com/maudstweets) |
-| 19 | Nauka o danych w chmurze | [Dane w chmurze](5-Data-Science-In-Cloud/README.md) | Wdrażanie modeli za pomocą Azure Machine Learning Studio. | [lekcja](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) oraz [Maud](https://twitter.com/maudstweets) |
-| 20 | Nauka o danych w praktyce | [W praktyce](6-Data-Science-In-Wild/README.md) | Projekty oparte na nauce o danych w rzeczywistym świecie. | [lekcja](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 12 | Wizualizacja zależności | [Wizualizacja danych](3-Data-Visualization/README.md) | Wizualizacja powiązań i korelacji między zestawami danych i ich zmiennymi. | [lekcja](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Znaczące wizualizacje | [Wizualizacja danych](3-Data-Visualization/README.md) | Techniki i wskazówki, jak tworzyć wizualizacje wartościowe dla skutecznego rozwiązywania problemów i uzyskiwania wglądów. | [lekcja](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Wprowadzenie do cyklu życia nauki o danych | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Wprowadzenie do cyklu życia nauki o danych i jego pierwszego kroku, pozyskiwania i ekstrakcji danych. | [lekcja](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Analiza | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Ta faza cyklu życia nauki o danych koncentruje się na technikach analizy danych. | [lekcja](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Komunikacja | [Cykl życia](4-Data-Science-Lifecycle/README.md) | Ta faza cyklu życia nauki o danych skupia się na prezentowaniu wniosków z danych w sposób ułatwiający zrozumienie decydentom. | [lekcja](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Nauka o danych w chmurze | [Dane w chmurze](5-Data-Science-In-Cloud/README.md) | Ta seria lekcji wprowadza naukę o danych w chmurze i jej korzyści. | [lekcja](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
+| 18 | Nauka o danych w chmurze | [Dane w chmurze](5-Data-Science-In-Cloud/README.md) | Trenowanie modeli przy użyciu narzędzi Low Code. |[lekcja](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
+| 19 | Nauka o danych w chmurze | [Dane w chmurze](5-Data-Science-In-Cloud/README.md) | Wdrażanie modeli przy pomocy Azure Machine Learning Studio. | [lekcja](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) i [Maud](https://twitter.com/maudstweets) |
+| 20 | Nauka o danych w praktyce | [W praktyce](6-Data-Science-In-Wild/README.md) | Projekty nauki o danych w świecie rzeczywistym. | [lekcja](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Wykonaj te kroki, aby otworzyć ten przykład w Codespace:
1. Kliknij menu rozwijane Code i wybierz opcję Open with Codespaces.
-2. W panelu na dole wybierz + New codespace.
+2. Wybierz + New codespace na dole panelu.
Więcej informacji znajdziesz w [dokumentacji GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Wykonaj te kroki, aby otworzyć to repozytorium w kontenerze korzystając z lokalnej maszyny i VSCode za pomocą rozszerzenia VS Code Remote - Containers:
+Wykonaj te kroki, aby otworzyć to repozytorium w kontenerze używając swojej lokalnej maszyny i VSCode oraz rozszerzenia VS Code Remote - Containers:
-1. Jeśli to Twój pierwszy raz używania kontenera deweloperskiego, upewnij się, że Twój system spełnia wymagania wstępne (np. ma zainstalowanego Dockera) w [dokumentacji startowej](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Jeśli używasz kontenera deweloperskiego po raz pierwszy, upewnij się, że Twój system spełnia wymagania wstępne (np. ma zainstalowany Docker) opisane w [dokumentacji rozpoczęcia pracy](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Aby korzystać z tego repozytorium, możesz albo otworzyć repozytorium w izolowanym wolumenie Dockera:
+Aby użyć tego repozytorium, możesz otworzyć repozytorium w izolowanym wolumenie Dockera:
-**Uwaga**: W tle będzie użyta komenda Remote-Containers: **Clone Repository in Container Volume...** aby sklonować kod źródłowy do wolumenu Dockera zamiast do lokalnego systemu plików. [Wolumeny](https://docs.docker.com/storage/volumes/) są preferowanym mechanizmem utrwalania danych kontenera.
+**Uwaga**: Pod spodem będzie używane polecenie Remote-Containers: **Clone Repository in Container Volume...**, które klonuje kod źródłowy do wolumenu Dockera zamiast do lokalnego systemu plików. [Wolumeny](https://docs.docker.com/storage/volumes/) są preferowanym mechanizmem do przechowywania danych kontenera.
-Lub otworzyć lokalnie sklonowaną lub pobraną wersję repozytorium:
+Lub otwórz lokalnie sklonowaną lub pobraną wersję repozytorium:
-- Sklonuj to repozytorium na lokalny dysk.
-- Naciśnij F1 i wybierz komendę **Remote-Containers: Open Folder in Container...**.
-- Wybierz sklonowany folder, poczekaj na uruchomienie kontenera i przetestuj.
+- Sklonuj to repozytorium na swój lokalny system plików.
+- Naciśnij F1 i wybierz polecenie **Remote-Containers: Open Folder in Container...**.
+- Wybierz sklonowaną kopię tego folderu, poczekaj, aż kontener się uruchomi, i rozpocznij pracę.
## Dostęp offline
-Możesz uruchomić tę dokumentację offline, używając [Docsify](https://docsify.js.org/#/). Sforkuj to repozytorium, [zainstaluj Docsify](https://docsify.js.org/#/quickstart) na lokalnym komputerze, a następnie w głównym folderze tego repo wpisz `docsify serve`. Strona zostanie udostępniona na porcie 3000 na Twoim localhost: `localhost:3000`.
+Możesz uruchomić tę dokumentację offline, używając [Docsify](https://docsify.js.org/#/). Sforkuj to repozytorium, [zainstaluj Docsify](https://docsify.js.org/#/quickstart) na swojej lokalnej maszynie, następnie w katalogu głównym tego repozytorium wpisz `docsify serve`. Strona będzie dostępna pod adresem localhost:3000.
-> Uwaga, notatniki (notebooks) nie będą renderowane przez Docsify, więc gdy potrzebujesz uruchomić notatnik, zrób to osobno w VS Code z uruchomionym jądrem Pythona.
+> Uwaga, notatniki (notebooks) nie będą renderowane przez Docsify, więc jeśli potrzebujesz uruchomić notatnik, zrób to oddzielnie w VS Code z uruchomionym kernellem Pythona.
## Inne programy nauczania
-Nasz zespół tworzy także inne programy! Sprawdź:
+Nasz zespół tworzy także inne programy nauczania! Sprawdź:
### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchain4j-for-beginners)
[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
@@ -213,10 +204,10 @@ Nasz zespół tworzy także inne programy! Sprawdź:
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-
+
### Seria Generatywnej AI
[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
@@ -224,9 +215,9 @@ Nasz zespół tworzy także inne programy! Sprawdź:
[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
-
-### Podstawowa nauka
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+
+### Core Learning
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
@@ -235,22 +226,22 @@ Nasz zespół tworzy także inne programy! Sprawdź:
[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-
+
### Seria Copilot
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-## Uzyskiwanie pomocy
+## Uzyskanie pomocy
-**Masz problemy?** Sprawdź nasz [Przewodnik rozwiązywania problemów](TROUBLESHOOTING.md) z rozwiązaniami najczęstszych problemów.
+**Napotykałeś problemy?** Sprawdź nasz [Przewodnik rozwiązywania problemów](TROUBLESHOOTING.md) z rozwiązaniami najczęstszych problemów.
-Jeśli utkniesz lub masz pytania dotyczące tworzenia aplikacji AI, dołącz do innych uczących się i doświadczonych programistów w dyskusjach na temat MCP. To wspierająca społeczność, gdzie pytania są mile widziane, a wiedza jest chętnie dzielona.
+Jeśli utkniesz lub masz pytania dotyczące tworzenia aplikacji AI, dołącz do innych uczących się i doświadczonych programistów, aby dyskutować o MCP. To wspierająca się społeczność, gdzie pytania są mile widziane, a wiedza jest swobodnie dzielona.
[](https://discord.gg/nTYy5BXMWG)
-Jeśli masz uwagi dotyczące produktu lub napotkasz błędy podczas tworzenia, odwiedź:
+Jeśli masz uwagi dotyczące produktu lub zauważysz błędy podczas tworzenia, odwiedź:
[](https://aka.ms/foundry/forum)
@@ -258,5 +249,5 @@ Jeśli masz uwagi dotyczące produktu lub napotkasz błędy podczas tworzenia, o
**Zastrzeżenie**:
-Niniejszy dokument został przetłumaczony za pomocą automatycznej usługi tłumaczeniowej [Co-op Translator](https://github.com/Azure/co-op-translator). Choć dokładamy starań, aby tłumaczenie było jak najbardziej precyzyjne, należy pamiętać, że tłumaczenia automatyczne mogą zawierać błędy lub nieścisłości. Oryginalny dokument w języku źródłowym należy uznać za źródło nadrzędne. W przypadku informacji o krytycznym znaczeniu zalecane jest skorzystanie z profesjonalnego tłumaczenia wykonanego przez człowieka. Nie ponosimy odpowiedzialności za jakiekolwiek nieporozumienia lub błędne interpretacje wynikające z korzystania z tego tłumaczenia.
+Dokument ten został przetłumaczony przy użyciu usługi tłumaczenia AI [Co-op Translator](https://github.com/Azure/co-op-translator). Chociaż dokładamy starań, aby tłumaczenie było jak najbardziej precyzyjne, prosimy mieć na uwadze, że automatyczne tłumaczenia mogą zawierać błędy lub nieścisłości. Oryginalny dokument w języku źródłowym należy traktować jako źródło nadrzędne. W przypadku istotnych informacji zaleca się skorzystanie z usług profesjonalnego tłumacza. Nie ponosimy odpowiedzialności za jakiekolwiek nieporozumienia lub błędne interpretacje wynikające z użycia tego tłumaczenia.
\ No newline at end of file
diff --git a/translations/pl/SECURITY.md b/translations/pl/SECURITY.md
index 826ff680..887ead2e 100644
--- a/translations/pl/SECURITY.md
+++ b/translations/pl/SECURITY.md
@@ -1,12 +1,3 @@
-
## Bezpieczeństwo
Microsoft traktuje bezpieczeństwo swoich produktów i usług bardzo poważnie, w tym wszystkich repozytoriów kodu źródłowego zarządzanych przez nasze organizacje na GitHubie, takie jak [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) oraz [nasze organizacje na GitHubie](https://opensource.microsoft.com/).
diff --git a/translations/pl/SUPPORT.md b/translations/pl/SUPPORT.md
index f9af9bb8..1f5d7167 100644
--- a/translations/pl/SUPPORT.md
+++ b/translations/pl/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Wsparcie
## Jak zgłaszać problemy i uzyskiwać pomoc
diff --git a/translations/pl/TROUBLESHOOTING.md b/translations/pl/TROUBLESHOOTING.md
index b764991e..25370d44 100644
--- a/translations/pl/TROUBLESHOOTING.md
+++ b/translations/pl/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Przewodnik rozwiązywania problemów
Ten przewodnik zawiera rozwiązania typowych problemów, które możesz napotkać podczas pracy z programem nauczania "Data Science for Beginners".
diff --git a/translations/pl/USAGE.md b/translations/pl/USAGE.md
index 56e38942..9e23c77f 100644
--- a/translations/pl/USAGE.md
+++ b/translations/pl/USAGE.md
@@ -1,12 +1,3 @@
-
# Przewodnik użytkowania
Ten przewodnik zawiera przykłady i typowe procesy pracy związane z korzystaniem z programu nauczania "Data Science for Beginners".
diff --git a/translations/pl/docs/_sidebar.md b/translations/pl/docs/_sidebar.md
index 74cb3e42..333a9dca 100644
--- a/translations/pl/docs/_sidebar.md
+++ b/translations/pl/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Wprowadzenie
- [Definiowanie Data Science](../1-Introduction/01-defining-data-science/README.md)
- [Etyka w Data Science](../1-Introduction/02-ethics/README.md)
diff --git a/translations/pl/examples/README.md b/translations/pl/examples/README.md
index d4584d04..1b666454 100644
--- a/translations/pl/examples/README.md
+++ b/translations/pl/examples/README.md
@@ -1,12 +1,3 @@
-
# Przykłady Data Science dla Początkujących
Witamy w katalogu przykładów! Ta kolekcja prostych, dobrze skomentowanych przykładów została zaprojektowana, aby pomóc Ci rozpocząć przygodę z data science, nawet jeśli jesteś zupełnym nowicjuszem.
diff --git a/translations/pl/for-teachers.md b/translations/pl/for-teachers.md
index 32a6ddeb..86a674d0 100644
--- a/translations/pl/for-teachers.md
+++ b/translations/pl/for-teachers.md
@@ -1,12 +1,3 @@
-
## Dla nauczycieli
Chcesz wykorzystać ten program nauczania w swojej klasie? Śmiało!
diff --git a/translations/pl/quiz-app/README.md b/translations/pl/quiz-app/README.md
index bca1049a..ffbe37dd 100644
--- a/translations/pl/quiz-app/README.md
+++ b/translations/pl/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Quizy
Te quizy to quizy przed i po wykładach w ramach programu nauczania data science dostępnego na stronie https://aka.ms/datascience-beginners
diff --git a/translations/pl/sketchnotes/README.md b/translations/pl/sketchnotes/README.md
index 57af7fd8..faeb767b 100644
--- a/translations/pl/sketchnotes/README.md
+++ b/translations/pl/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Znajdź wszystkie notatki wizualne tutaj!
## Podziękowania
diff --git a/translations/pt-BR/.co-op-translator.json b/translations/pt-BR/.co-op-translator.json
new file mode 100644
index 00000000..42fbb121
--- /dev/null
+++ b/translations/pt-BR/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:49:42+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "pt-BR"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-27T17:17:23+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-27T17:18:23+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:25:36+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "pt-BR"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-27T17:12:58+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-06T08:37:11+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "pt-BR"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-27T17:21:28+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:25:56+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "pt-BR"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-27T17:29:21+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-27T17:02:33+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "pt-BR"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:14:51+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "pt-BR"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:54:59+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-06T08:27:42+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "pt-BR"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-27T17:00:53+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:39:49+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "pt-BR"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-27T16:57:13+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-06T08:29:42+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "pt-BR"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-27T16:50:05+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-27T16:41:24+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-06T08:32:47+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-27T18:42:37+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-06T08:34:05+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-27T18:19:25+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-06T08:32:24+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-27T18:45:14+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:35:43+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-27T18:22:32+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-06T08:33:13+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-27T18:15:28+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T18:16:24+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T18:15:57+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-27T18:33:01+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-27T18:34:06+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-27T18:24:34+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-27T18:25:21+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-27T18:38:56+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-27T18:27:31+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-27T18:36:31+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "pt-BR"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-27T18:11:08+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "pt-BR"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:51:18+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "pt-BR"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-27T18:01:00+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:50:44+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "pt-BR"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-27T18:03:19+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:51:39+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "pt-BR"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-27T18:09:58+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-27T17:56:04+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "pt-BR"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-06T08:26:40+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "pt-BR"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-27T17:47:53+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-06T08:25:19+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "pt-BR"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-27T17:44:48+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-06T08:27:02+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "pt-BR"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-27T17:54:15+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-27T17:37:24+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "pt-BR"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:27:03+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "pt-BR"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-27T17:36:38+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "pt-BR"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-27T17:30:11+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "pt-BR"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:16:58+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "pt-BR"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-27T16:39:24+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "pt-BR"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:54:01+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "pt-BR"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:19:31+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "pt-BR"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:39:53+00:00",
+ "source_file": "README.md",
+ "language_code": "pt-BR"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-27T16:40:14+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "pt-BR"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-27T16:37:34+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "pt-BR"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:37:47+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "pt-BR"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:01:14+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "pt-BR"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-27T17:01:58+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "pt-BR"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:01:06+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "pt-BR"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:56:03+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "pt-BR"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-27T17:55:27+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "pt-BR"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-27T17:29:48+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "pt-BR"
+ }
+}
\ No newline at end of file
diff --git a/translations/br/1-Introduction/01-defining-data-science/README.md b/translations/pt-BR/1-Introduction/01-defining-data-science/README.md
similarity index 97%
rename from translations/br/1-Introduction/01-defining-data-science/README.md
rename to translations/pt-BR/1-Introduction/01-defining-data-science/README.md
index 8a56ceb2..2bd9d7d7 100644
--- a/translations/br/1-Introduction/01-defining-data-science/README.md
+++ b/translations/pt-BR/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Definindo Ciência de Dados
|  ](../../sketchnotes/01-Definitions.png) |
@@ -15,7 +6,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-[](https://youtu.be/beZ7Mb_oz9I)
+[](https://youtu.be/beZ7Mb_oz9I)
## [Quiz pré-aula](https://ff-quizzes.netlify.app/en/ds/quiz/0)
@@ -153,7 +144,7 @@ Se quisermos ser ainda mais detalhados, podemos traçar o tempo gasto em cada m
Neste desafio, tentaremos encontrar conceitos relevantes para o campo de Ciência de Dados analisando textos. Vamos pegar um artigo da Wikipedia sobre Ciência de Dados, baixar e processar o texto e, em seguida, construir uma nuvem de palavras como esta:
-
+
Visite [`notebook.ipynb`](../../../../1-Introduction/01-defining-data-science/notebook.ipynb ':ignore') para ler o código. Você também pode executar o código e ver como ele realiza todas as transformações de dados em tempo real.
diff --git a/translations/br/1-Introduction/01-defining-data-science/assignment.md b/translations/pt-BR/1-Introduction/01-defining-data-science/assignment.md
similarity index 90%
rename from translations/br/1-Introduction/01-defining-data-science/assignment.md
rename to translations/pt-BR/1-Introduction/01-defining-data-science/assignment.md
index a84880a8..68c7b2fb 100644
--- a/translations/br/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/pt-BR/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Tarefa: Cenários de Ciência de Dados
Nesta primeira tarefa, pedimos que você pense sobre algum processo ou problema da vida real em diferentes domínios de problemas e como você pode melhorá-lo utilizando o processo de Ciência de Dados. Pense no seguinte:
diff --git a/translations/br/1-Introduction/01-defining-data-science/notebook.ipynb b/translations/pt-BR/1-Introduction/01-defining-data-science/notebook.ipynb
similarity index 100%
rename from translations/br/1-Introduction/01-defining-data-science/notebook.ipynb
rename to translations/pt-BR/1-Introduction/01-defining-data-science/notebook.ipynb
diff --git a/translations/br/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/pt-BR/1-Introduction/01-defining-data-science/solution/assignment.md
similarity index 92%
rename from translations/br/1-Introduction/01-defining-data-science/solution/assignment.md
rename to translations/pt-BR/1-Introduction/01-defining-data-science/solution/assignment.md
index 6fde1d37..bd6cc31a 100644
--- a/translations/br/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/pt-BR/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Tarefa: Cenários de Ciência de Dados
Nesta primeira tarefa, pedimos que você pense em algum processo ou problema da vida real em diferentes domínios de problemas e como você pode melhorá-lo usando o processo de Ciência de Dados. Pense no seguinte:
diff --git a/translations/br/1-Introduction/01-defining-data-science/solution/notebook.ipynb b/translations/pt-BR/1-Introduction/01-defining-data-science/solution/notebook.ipynb
similarity index 100%
rename from translations/br/1-Introduction/01-defining-data-science/solution/notebook.ipynb
rename to translations/pt-BR/1-Introduction/01-defining-data-science/solution/notebook.ipynb
diff --git a/translations/br/1-Introduction/02-ethics/README.md b/translations/pt-BR/1-Introduction/02-ethics/README.md
similarity index 99%
rename from translations/br/1-Introduction/02-ethics/README.md
rename to translations/pt-BR/1-Introduction/02-ethics/README.md
index 0c822558..c3633f30 100644
--- a/translations/br/1-Introduction/02-ethics/README.md
+++ b/translations/pt-BR/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Introdução à Ética de Dados
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/br/1-Introduction/02-ethics/assignment.md b/translations/pt-BR/1-Introduction/02-ethics/assignment.md
similarity index 91%
rename from translations/br/1-Introduction/02-ethics/assignment.md
rename to translations/pt-BR/1-Introduction/02-ethics/assignment.md
index 7558a761..907c45cd 100644
--- a/translations/br/1-Introduction/02-ethics/assignment.md
+++ b/translations/pt-BR/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Escreva um Estudo de Caso sobre Ética em Dados
## Instruções
diff --git a/translations/br/1-Introduction/03-defining-data/README.md b/translations/pt-BR/1-Introduction/03-defining-data/README.md
similarity index 96%
rename from translations/br/1-Introduction/03-defining-data/README.md
rename to translations/pt-BR/1-Introduction/03-defining-data/README.md
index 4a08502b..7738e2bf 100644
--- a/translations/br/1-Introduction/03-defining-data/README.md
+++ b/translations/pt-BR/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Definindo Dados
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/br/1-Introduction/03-defining-data/assignment.md b/translations/pt-BR/1-Introduction/03-defining-data/assignment.md
similarity index 88%
rename from translations/br/1-Introduction/03-defining-data/assignment.md
rename to translations/pt-BR/1-Introduction/03-defining-data/assignment.md
index f29f17bf..e767e08c 100644
--- a/translations/br/1-Introduction/03-defining-data/assignment.md
+++ b/translations/pt-BR/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Classificando Conjuntos de Dados
## Instruções
diff --git a/translations/br/1-Introduction/04-stats-and-probability/README.md b/translations/pt-BR/1-Introduction/04-stats-and-probability/README.md
similarity index 94%
rename from translations/br/1-Introduction/04-stats-and-probability/README.md
rename to translations/pt-BR/1-Introduction/04-stats-and-probability/README.md
index cfc22ce7..492ffcfe 100644
--- a/translations/br/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/pt-BR/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Uma Breve Introdução à Estatística e Probabilidade
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -15,7 +6,7 @@ CO_OP_TRANSLATOR_METADATA:
A Teoria da Estatística e Probabilidade são duas áreas altamente relacionadas da Matemática que são extremamente relevantes para a Ciência de Dados. É possível trabalhar com dados sem um conhecimento profundo de matemática, mas ainda assim é melhor conhecer pelo menos alguns conceitos básicos. Aqui apresentaremos uma breve introdução que ajudará você a começar.
-[](https://youtu.be/Z5Zy85g4Yjw)
+[](https://youtu.be/Z5Zy85g4Yjw)
## [Quiz pré-aula](https://ff-quizzes.netlify.app/en/ds/quiz/6)
@@ -39,7 +30,7 @@ A distribuição discreta mais conhecida é a **distribuição uniforme**, na qu
Só podemos falar sobre a probabilidade de uma variável estar em um determinado intervalo de valores, por exemplo, P(t1≤X2). Nesse caso, a distribuição de probabilidade é descrita por uma **função densidade de probabilidade** p(x), tal que
-![P(t_1\le X
+
Aqui também calculamos o **intervalo interquartil** IQR=Q3-Q1, e os chamados **outliers** - valores que estão fora dos limites [Q1-1.5*IQR,Q3+1.5*IQR].
@@ -82,11 +73,11 @@ Quando analisamos dados do mundo real, eles frequentemente não são variáveis
Aqui está o box plot mostrando média, mediana e quartis para nossos dados:
-
+
Como nossos dados contêm informações sobre diferentes **funções** de jogadores, também podemos fazer o box plot por função - isso nos permitirá ter uma ideia de como os valores dos parâmetros diferem entre as funções. Desta vez, consideraremos a altura:
-
+
Este diagrama sugere que, em média, a altura dos jogadores de primeira base é maior que a altura dos jogadores de segunda base. Mais tarde nesta lição, aprenderemos como podemos testar essa hipótese de forma mais formal e como demonstrar que nossos dados são estatisticamente significativos para mostrar isso.
@@ -94,7 +85,7 @@ Este diagrama sugere que, em média, a altura dos jogadores de primeira base é
Para ver qual é a distribuição de nossos dados, podemos plotar um gráfico chamado **histograma**. O eixo X conteria um número de diferentes intervalos de peso (os chamados **bins**), e o eixo vertical mostraria o número de vezes que nossa amostra de variável aleatória esteve dentro de um determinado intervalo.
-
+
A partir deste histograma, você pode ver que todos os valores estão centrados em torno de um certo peso médio, e quanto mais nos afastamos desse peso - menos pesos desse valor são encontrados. Ou seja, é muito improvável que o peso de um jogador de beisebol seja muito diferente do peso médio. A variância dos pesos mostra a extensão em que os pesos provavelmente diferem da média.
@@ -111,7 +102,7 @@ samples = np.random.normal(mean,std,1000)
Se plotarmos o histograma das amostras geradas, veremos uma imagem muito semelhante à mostrada acima. E se aumentarmos o número de amostras e o número de bins, podemos gerar uma imagem de uma distribuição normal mais próxima do ideal:
-
+
*Distribuição Normal com média=0 e desvio padrão=1*
@@ -233,7 +224,7 @@ array([[1. , 0.52959196],
No nosso caso, o valor 0.53 indica que há alguma correlação entre o peso e a altura de uma pessoa. Também podemos fazer o gráfico de dispersão de um valor contra o outro para ver a relação visualmente:
-
+
> Mais exemplos de correlação e covariância podem ser encontrados no [notebook complementar](notebook.ipynb).
diff --git a/translations/br/1-Introduction/04-stats-and-probability/assignment.ipynb b/translations/pt-BR/1-Introduction/04-stats-and-probability/assignment.ipynb
similarity index 100%
rename from translations/br/1-Introduction/04-stats-and-probability/assignment.ipynb
rename to translations/pt-BR/1-Introduction/04-stats-and-probability/assignment.ipynb
diff --git a/translations/br/1-Introduction/04-stats-and-probability/assignment.md b/translations/pt-BR/1-Introduction/04-stats-and-probability/assignment.md
similarity index 87%
rename from translations/br/1-Introduction/04-stats-and-probability/assignment.md
rename to translations/pt-BR/1-Introduction/04-stats-and-probability/assignment.md
index 1186fc8e..2f0f559a 100644
--- a/translations/br/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/pt-BR/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Pequeno Estudo sobre Diabetes
Nesta tarefa, trabalharemos com um pequeno conjunto de dados de pacientes com diabetes retirado de [aqui](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/br/1-Introduction/04-stats-and-probability/notebook.ipynb b/translations/pt-BR/1-Introduction/04-stats-and-probability/notebook.ipynb
similarity index 100%
rename from translations/br/1-Introduction/04-stats-and-probability/notebook.ipynb
rename to translations/pt-BR/1-Introduction/04-stats-and-probability/notebook.ipynb
diff --git a/translations/br/1-Introduction/04-stats-and-probability/solution/assignment.ipynb b/translations/pt-BR/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
similarity index 100%
rename from translations/br/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
rename to translations/pt-BR/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
diff --git a/translations/br/1-Introduction/README.md b/translations/pt-BR/1-Introduction/README.md
similarity index 80%
rename from translations/br/1-Introduction/README.md
rename to translations/pt-BR/1-Introduction/README.md
index 49851040..99a61131 100644
--- a/translations/br/1-Introduction/README.md
+++ b/translations/pt-BR/1-Introduction/README.md
@@ -1,15 +1,6 @@
-
# Introdução à Ciência de Dados
-
+
> Foto por Stephen Dawson no Unsplash
Nestes módulos, você descobrirá como a Ciência de Dados é definida e aprenderá sobre as considerações éticas que devem ser levadas em conta por um cientista de dados. Você também aprenderá como os dados são definidos e terá uma introdução a estatística e probabilidade, os principais domínios acadêmicos da Ciência de Dados.
diff --git a/translations/br/2-Working-With-Data/05-relational-databases/README.md b/translations/pt-BR/2-Working-With-Data/05-relational-databases/README.md
similarity index 97%
rename from translations/br/2-Working-With-Data/05-relational-databases/README.md
rename to translations/pt-BR/2-Working-With-Data/05-relational-databases/README.md
index 201f3cd5..688daf2d 100644
--- a/translations/br/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/pt-BR/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Trabalhando com Dados: Bancos de Dados Relacionais
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/br/2-Working-With-Data/05-relational-databases/assignment.md b/translations/pt-BR/2-Working-With-Data/05-relational-databases/assignment.md
similarity index 93%
rename from translations/br/2-Working-With-Data/05-relational-databases/assignment.md
rename to translations/pt-BR/2-Working-With-Data/05-relational-databases/assignment.md
index c432f4d2..01323844 100644
--- a/translations/br/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/pt-BR/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Exibindo dados de aeroportos
Você recebeu um [banco de dados](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) baseado em [SQLite](https://sqlite.org/index.html), que contém informações sobre aeroportos. O esquema está exibido abaixo. Você usará a [extensão SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) no [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) para exibir informações sobre os aeroportos de diferentes cidades.
diff --git a/translations/br/2-Working-With-Data/06-non-relational/README.md b/translations/pt-BR/2-Working-With-Data/06-non-relational/README.md
similarity index 97%
rename from translations/br/2-Working-With-Data/06-non-relational/README.md
rename to translations/pt-BR/2-Working-With-Data/06-non-relational/README.md
index b2ae94b1..c2a852b2 100644
--- a/translations/br/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/pt-BR/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Trabalhando com Dados: Dados Não-Relacionais
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/br/2-Working-With-Data/06-non-relational/assignment.md b/translations/pt-BR/2-Working-With-Data/06-non-relational/assignment.md
similarity index 82%
rename from translations/br/2-Working-With-Data/06-non-relational/assignment.md
rename to translations/pt-BR/2-Working-With-Data/06-non-relational/assignment.md
index 8548902d..6b1727bc 100644
--- a/translations/br/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/pt-BR/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Lucros da Soda
## Instruções
diff --git a/translations/br/2-Working-With-Data/07-python/R/notebook.ipynb b/translations/pt-BR/2-Working-With-Data/07-python/R/notebook.ipynb
similarity index 100%
rename from translations/br/2-Working-With-Data/07-python/R/notebook.ipynb
rename to translations/pt-BR/2-Working-With-Data/07-python/R/notebook.ipynb
diff --git a/translations/br/2-Working-With-Data/07-python/README.md b/translations/pt-BR/2-Working-With-Data/07-python/README.md
similarity index 95%
rename from translations/br/2-Working-With-Data/07-python/README.md
rename to translations/pt-BR/2-Working-With-Data/07-python/README.md
index 6eab0009..03344d01 100644
--- a/translations/br/2-Working-With-Data/07-python/README.md
+++ b/translations/pt-BR/2-Working-With-Data/07-python/README.md
@@ -1,19 +1,10 @@
-
# Trabalhando com Dados: Python e a Biblioteca Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
| :-------------------------------------------------------------------------------------------------------: |
| Trabalhando com Python - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
-[](https://youtu.be/dZjWOGbsN4Y)
+[](https://youtu.be/dZjWOGbsN4Y)
Embora bancos de dados ofereçam maneiras muito eficientes de armazenar dados e consultá-los usando linguagens de consulta, a forma mais flexível de processar dados é escrever seu próprio programa para manipulá-los. Em muitos casos, realizar uma consulta em um banco de dados seria uma maneira mais eficaz. No entanto, em alguns casos, quando é necessário um processamento de dados mais complexo, isso não pode ser feito facilmente usando SQL.
O processamento de dados pode ser programado em qualquer linguagem de programação, mas existem certas linguagens que são mais adequadas para trabalhar com dados. Cientistas de dados geralmente preferem uma das seguintes linguagens:
@@ -73,7 +64,7 @@ print(f"Length of index is {len(idx)}")
items_sold = pd.Series(np.random.randint(25,50,size=len(idx)),index=idx)
items_sold.plot()
```
-
+
Agora suponha que, a cada semana, organizamos uma festa para amigos e levamos 10 pacotes adicionais de sorvete para a festa. Podemos criar outra série, indexada por semana, para demonstrar isso:
```python
@@ -84,7 +75,7 @@ Quando somamos duas séries, obtemos o número total:
total_items = items_sold.add(additional_items,fill_value=0)
total_items.plot()
```
-
+
> **Nota** que não estamos usando a sintaxe simples `total_items+additional_items`. Se fizéssemos isso, receberíamos muitos valores `NaN` (*Not a Number*) na série resultante. Isso ocorre porque há valores ausentes para alguns pontos do índice na série `additional_items`, e somar `NaN` a qualquer coisa resulta em `NaN`. Assim, precisamos especificar o parâmetro `fill_value` durante a soma.
@@ -93,7 +84,7 @@ Com séries temporais, também podemos **re-amostrar** a série com diferentes i
monthly = total_items.resample("1M").mean()
ax = monthly.plot(kind='bar')
```
-
+
### DataFrame
@@ -219,7 +210,7 @@ O primeiro problema em que vamos focar é o modelamento da propagação epidêmi
Como queremos demonstrar como lidar com dados, convidamos você a abrir [`notebook-covidspread.ipynb`](notebook-covidspread.ipynb) e lê-lo de cima a baixo. Você também pode executar as células e realizar alguns desafios que deixamos para você no final.
-
+
> Se você não sabe como executar código no Jupyter Notebook, confira [este artigo](https://soshnikov.com/education/how-to-execute-notebooks-from-github/).
@@ -241,7 +232,7 @@ Um exemplo completo de análise deste conjunto de dados usando o serviço cognit
Abra [`notebook-papers.ipynb`](notebook-papers.ipynb) e leia-o de cima a baixo. Você também pode executar as células e realizar alguns desafios que deixamos para você no final.
-
+
## Processando Dados de Imagem
diff --git a/translations/br/2-Working-With-Data/07-python/assignment.md b/translations/pt-BR/2-Working-With-Data/07-python/assignment.md
similarity index 90%
rename from translations/br/2-Working-With-Data/07-python/assignment.md
rename to translations/pt-BR/2-Working-With-Data/07-python/assignment.md
index 23f1811b..393a2e03 100644
--- a/translations/br/2-Working-With-Data/07-python/assignment.md
+++ b/translations/pt-BR/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Tarefa de Processamento de Dados em Python
Nesta tarefa, pediremos que você desenvolva o código que começamos a criar em nossos desafios. A tarefa consiste em duas partes:
diff --git a/translations/br/2-Working-With-Data/07-python/notebook-covidspread.ipynb b/translations/pt-BR/2-Working-With-Data/07-python/notebook-covidspread.ipynb
similarity index 100%
rename from translations/br/2-Working-With-Data/07-python/notebook-covidspread.ipynb
rename to translations/pt-BR/2-Working-With-Data/07-python/notebook-covidspread.ipynb
diff --git a/translations/br/2-Working-With-Data/07-python/notebook-papers.ipynb b/translations/pt-BR/2-Working-With-Data/07-python/notebook-papers.ipynb
similarity index 100%
rename from translations/br/2-Working-With-Data/07-python/notebook-papers.ipynb
rename to translations/pt-BR/2-Working-With-Data/07-python/notebook-papers.ipynb
diff --git a/translations/br/2-Working-With-Data/07-python/notebook.ipynb b/translations/pt-BR/2-Working-With-Data/07-python/notebook.ipynb
similarity index 100%
rename from translations/br/2-Working-With-Data/07-python/notebook.ipynb
rename to translations/pt-BR/2-Working-With-Data/07-python/notebook.ipynb
diff --git a/translations/br/2-Working-With-Data/08-data-preparation/README.md b/translations/pt-BR/2-Working-With-Data/08-data-preparation/README.md
similarity index 98%
rename from translations/br/2-Working-With-Data/08-data-preparation/README.md
rename to translations/pt-BR/2-Working-With-Data/08-data-preparation/README.md
index 3923fc3f..0b0d28ca 100644
--- a/translations/br/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/pt-BR/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Trabalhando com Dados: Preparação de Dados
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/br/2-Working-With-Data/08-data-preparation/assignment.ipynb b/translations/pt-BR/2-Working-With-Data/08-data-preparation/assignment.ipynb
similarity index 100%
rename from translations/br/2-Working-With-Data/08-data-preparation/assignment.ipynb
rename to translations/pt-BR/2-Working-With-Data/08-data-preparation/assignment.ipynb
diff --git a/translations/br/2-Working-With-Data/08-data-preparation/assignment.md b/translations/pt-BR/2-Working-With-Data/08-data-preparation/assignment.md
similarity index 83%
rename from translations/br/2-Working-With-Data/08-data-preparation/assignment.md
rename to translations/pt-BR/2-Working-With-Data/08-data-preparation/assignment.md
index b6952394..29f35f84 100644
--- a/translations/br/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/pt-BR/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Avaliando Dados de um Formulário
Um cliente tem testado um [formulário simples](../../../../2-Working-With-Data/08-data-preparation/index.html) para coletar alguns dados básicos sobre sua base de clientes. Eles trouxeram os resultados para você validar os dados que foram coletados. Você pode abrir a página `index.html` no navegador para dar uma olhada no formulário.
diff --git a/translations/br/2-Working-With-Data/08-data-preparation/notebook.ipynb b/translations/pt-BR/2-Working-With-Data/08-data-preparation/notebook.ipynb
similarity index 100%
rename from translations/br/2-Working-With-Data/08-data-preparation/notebook.ipynb
rename to translations/pt-BR/2-Working-With-Data/08-data-preparation/notebook.ipynb
diff --git a/translations/br/2-Working-With-Data/README.md b/translations/pt-BR/2-Working-With-Data/README.md
similarity index 80%
rename from translations/br/2-Working-With-Data/README.md
rename to translations/pt-BR/2-Working-With-Data/README.md
index e1dff327..cde5312f 100644
--- a/translations/br/2-Working-With-Data/README.md
+++ b/translations/pt-BR/2-Working-With-Data/README.md
@@ -1,15 +1,6 @@
-
# Trabalhando com Dados
-
+
> Foto por Alexander Sinn no Unsplash
Nestas lições, você aprenderá algumas das maneiras de gerenciar, manipular e usar dados em aplicações. Você aprenderá sobre bancos de dados relacionais e não relacionais e como os dados podem ser armazenados neles. Aprenderá os fundamentos de trabalhar com Python para gerenciar dados e descobrirá algumas das muitas formas de usar Python para gerenciar e explorar dados.
diff --git a/translations/br/3-Data-Visualization/09-visualization-quantities/README.md b/translations/pt-BR/3-Data-Visualization/09-visualization-quantities/README.md
similarity index 97%
rename from translations/br/3-Data-Visualization/09-visualization-quantities/README.md
rename to translations/pt-BR/3-Data-Visualization/09-visualization-quantities/README.md
index 9509a495..34250a13 100644
--- a/translations/br/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/pt-BR/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualizando Quantidades
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/br/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/pt-BR/3-Data-Visualization/09-visualization-quantities/assignment.md
similarity index 81%
rename from translations/br/3-Data-Visualization/09-visualization-quantities/assignment.md
rename to translations/pt-BR/3-Data-Visualization/09-visualization-quantities/assignment.md
index 81d0af7d..c23651e0 100644
--- a/translations/br/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/pt-BR/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linhas, Dispersões e Barras
## Instruções
diff --git a/translations/br/3-Data-Visualization/09-visualization-quantities/notebook.ipynb b/translations/pt-BR/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
similarity index 100%
rename from translations/br/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
rename to translations/pt-BR/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
diff --git a/translations/br/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb b/translations/pt-BR/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
similarity index 100%
rename from translations/br/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
rename to translations/pt-BR/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
diff --git a/translations/br/3-Data-Visualization/10-visualization-distributions/README.md b/translations/pt-BR/3-Data-Visualization/10-visualization-distributions/README.md
similarity index 97%
rename from translations/br/3-Data-Visualization/10-visualization-distributions/README.md
rename to translations/pt-BR/3-Data-Visualization/10-visualization-distributions/README.md
index b772328a..d1b2e12c 100644
--- a/translations/br/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/pt-BR/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualizando Distribuições
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/br/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/pt-BR/3-Data-Visualization/10-visualization-distributions/assignment.md
similarity index 81%
rename from translations/br/3-Data-Visualization/10-visualization-distributions/assignment.md
rename to translations/pt-BR/3-Data-Visualization/10-visualization-distributions/assignment.md
index d5d6510f..0475134d 100644
--- a/translations/br/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/pt-BR/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Aplique suas habilidades
## Instruções
diff --git a/translations/br/3-Data-Visualization/10-visualization-distributions/notebook.ipynb b/translations/pt-BR/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
similarity index 100%
rename from translations/br/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
rename to translations/pt-BR/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
diff --git a/translations/br/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb b/translations/pt-BR/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
similarity index 100%
rename from translations/br/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
rename to translations/pt-BR/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
diff --git a/translations/br/3-Data-Visualization/11-visualization-proportions/README.md b/translations/pt-BR/3-Data-Visualization/11-visualization-proportions/README.md
similarity index 97%
rename from translations/br/3-Data-Visualization/11-visualization-proportions/README.md
rename to translations/pt-BR/3-Data-Visualization/11-visualization-proportions/README.md
index 36a8e812..8d5ebbf9 100644
--- a/translations/br/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/pt-BR/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualizando Proporções
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/br/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/pt-BR/3-Data-Visualization/11-visualization-proportions/assignment.md
similarity index 81%
rename from translations/br/3-Data-Visualization/11-visualization-proportions/assignment.md
rename to translations/pt-BR/3-Data-Visualization/11-visualization-proportions/assignment.md
index d4bbfce2..986ae3af 100644
--- a/translations/br/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/pt-BR/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Experimente no Excel
## Instruções
diff --git a/translations/br/3-Data-Visualization/11-visualization-proportions/notebook.ipynb b/translations/pt-BR/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
similarity index 100%
rename from translations/br/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
rename to translations/pt-BR/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
diff --git a/translations/br/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb b/translations/pt-BR/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
similarity index 100%
rename from translations/br/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
rename to translations/pt-BR/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
diff --git a/translations/br/3-Data-Visualization/12-visualization-relationships/README.md b/translations/pt-BR/3-Data-Visualization/12-visualization-relationships/README.md
similarity index 90%
rename from translations/br/3-Data-Visualization/12-visualization-relationships/README.md
rename to translations/pt-BR/3-Data-Visualization/12-visualization-relationships/README.md
index 4df4abd3..a4dac5db 100644
--- a/translations/br/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/pt-BR/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualizando Relações: Tudo Sobre Mel 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
@@ -51,7 +42,7 @@ Crie um gráfico de dispersão básico para mostrar a relação entre o preço p
```python
sns.relplot(x="priceperlb", y="state", data=honey, height=15, aspect=.5);
```
-
+
Agora, mostre os mesmos dados com um esquema de cores de mel para mostrar como o preço evolui ao longo dos anos. Você pode fazer isso adicionando um parâmetro 'hue' para mostrar a mudança ano após ano:
@@ -60,7 +51,7 @@ Agora, mostre os mesmos dados com um esquema de cores de mel para mostrar como o
```python
sns.relplot(x="priceperlb", y="state", hue="year", palette="YlOrBr", data=honey, height=15, aspect=.5);
```
-
+
Com essa mudança de esquema de cores, você pode ver claramente uma forte progressão ao longo dos anos em termos de preço do mel por libra. De fato, se você observar um conjunto de amostra nos dados para verificar (escolha um estado, como o Arizona, por exemplo), pode ver um padrão de aumento de preço ano após ano, com poucas exceções:
@@ -89,7 +80,7 @@ sns.relplot(x="priceperlb", y="state", size="year", data=honey, height=15, aspec
```
Você pode ver o tamanho dos pontos aumentando gradualmente.
-
+
Isso é um caso simples de oferta e demanda? Devido a fatores como mudanças climáticas e colapso das colônias, há menos mel disponível para compra ano após ano, e, portanto, o preço aumenta?
@@ -104,7 +95,7 @@ sns.relplot(x="year", y="priceperlb", kind="line", data=honey);
```
Resposta: Sim, com algumas exceções em torno do ano de 2003:
-
+
✅ Como o Seaborn está agregando dados em torno de uma linha, ele exibe "as múltiplas medições em cada valor de x, plotando a média e o intervalo de confiança de 95% em torno da média". [Fonte](https://seaborn.pydata.org/tutorial/relational.html). Esse comportamento demorado pode ser desativado adicionando `ci=None`.
@@ -114,7 +105,7 @@ Pergunta: Bem, em 2003 também podemos ver um pico na oferta de mel? E se você
sns.relplot(x="year", y="totalprod", kind="line", data=honey);
```
-
+
Resposta: Não exatamente. Se você observar a produção total, parece que ela realmente aumentou naquele ano específico, embora, de forma geral, a quantidade de mel sendo produzida esteja em declínio durante esses anos.
@@ -139,7 +130,7 @@ sns.relplot(
```
Nesta visualização, você pode comparar o rendimento por colônia e o número de colônias ano após ano, lado a lado, com um wrap definido em 3 para as colunas:
-
+
Para este conjunto de dados, nada particularmente se destaca em relação ao número de colônias e seu rendimento, ano após ano e estado por estado. Existe uma maneira diferente de encontrar uma correlação entre essas duas variáveis?
@@ -162,7 +153,7 @@ sns.despine(right=False)
plt.ylabel('colony yield')
ax.figure.legend();
```
-
+
Embora nada salte aos olhos em torno do ano de 2003, isso nos permite terminar esta lição com uma nota um pouco mais feliz: embora o número de colônias esteja em declínio geral, ele está se estabilizando, mesmo que o rendimento por colônia esteja diminuindo.
diff --git a/translations/br/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/pt-BR/3-Data-Visualization/12-visualization-relationships/assignment.md
similarity index 84%
rename from translations/br/3-Data-Visualization/12-visualization-relationships/assignment.md
rename to translations/pt-BR/3-Data-Visualization/12-visualization-relationships/assignment.md
index 79c7fe6c..6c067305 100644
--- a/translations/br/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/pt-BR/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Mergulhe na colmeia
## Instruções
diff --git a/translations/br/3-Data-Visualization/12-visualization-relationships/notebook.ipynb b/translations/pt-BR/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
similarity index 100%
rename from translations/br/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
rename to translations/pt-BR/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
diff --git a/translations/br/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb b/translations/pt-BR/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
similarity index 100%
rename from translations/br/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
rename to translations/pt-BR/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
diff --git a/translations/br/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/pt-BR/3-Data-Visualization/13-meaningful-visualizations/README.md
similarity index 97%
rename from translations/br/3-Data-Visualization/13-meaningful-visualizations/README.md
rename to translations/pt-BR/3-Data-Visualization/13-meaningful-visualizations/README.md
index 0bd5974f..861935e0 100644
--- a/translations/br/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/pt-BR/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Criando Visualizações Significativas
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/br/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/pt-BR/3-Data-Visualization/13-meaningful-visualizations/assignment.md
similarity index 81%
rename from translations/br/3-Data-Visualization/13-meaningful-visualizations/assignment.md
rename to translations/pt-BR/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 422be55f..7be12216 100644
--- a/translations/br/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/pt-BR/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Crie sua própria visualização personalizada
## Instruções
diff --git a/translations/br/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb b/translations/pt-BR/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
similarity index 100%
rename from translations/br/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
rename to translations/pt-BR/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
diff --git a/translations/br/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/pt-BR/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
similarity index 78%
rename from translations/br/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
rename to translations/pt-BR/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 4dec9e0a..f839dc96 100644
--- a/translations/br/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/pt-BR/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Projeto de visualização de dados Dangerous Liaisons
Para começar, certifique-se de que você tem o NPM e o Node instalados e funcionando na sua máquina. Instale as dependências (npm install) e, em seguida, execute o projeto localmente (npm run serve):
diff --git a/translations/br/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/pt-BR/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
similarity index 78%
rename from translations/br/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
rename to translations/pt-BR/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 5d14b0b2..b2415820 100644
--- a/translations/br/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/pt-BR/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Projeto de visualização de dados Dangerous Liaisons
Para começar, você precisa garantir que o NPM e o Node estejam funcionando na sua máquina. Instale as dependências (npm install) e, em seguida, execute o projeto localmente (npm run serve):
diff --git a/translations/br/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/pt-BR/3-Data-Visualization/R/09-visualization-quantities/README.md
similarity index 91%
rename from translations/br/3-Data-Visualization/R/09-visualization-quantities/README.md
rename to translations/pt-BR/3-Data-Visualization/R/09-visualization-quantities/README.md
index b2a97f17..63a6ad4e 100644
--- a/translations/br/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/pt-BR/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualizando Quantidades
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
@@ -66,7 +57,7 @@ ggplot(data=birds, aes(x=Name, y=MaxWingspan,group=1)) +
```
Aqui, você instala o pacote `ggplot2` e o importa para o ambiente de trabalho usando o comando `library("ggplot2")`. Para plotar qualquer gráfico no ggplot, a função `ggplot()` é usada, e você especifica o conjunto de dados, as variáveis x e y como atributos. Neste caso, usamos a função `geom_line()` porque queremos plotar um gráfico de linha.
-
+
O que você percebe imediatamente? Parece haver pelo menos um outlier - que envergadura impressionante! Uma envergadura de mais de 2000 centímetros equivale a mais de 20 metros - será que há Pterodáctilos em Minnesota? Vamos investigar.
@@ -84,7 +75,7 @@ ggplot(data=birds, aes(x=Name, y=MaxWingspan,group=1)) +
```
Especificamos o ângulo no `theme` e definimos os rótulos dos eixos x e y em `xlab()` e `ylab()`, respectivamente. O `ggtitle()` dá um nome ao gráfico.
-
+
Mesmo com a rotação dos rótulos ajustada para 45 graus, ainda há muitos para ler. Vamos tentar uma estratégia diferente: rotular apenas os outliers e definir os rótulos dentro do gráfico. Você pode usar um gráfico de dispersão para criar mais espaço para os rótulos:
@@ -100,7 +91,7 @@ O que está acontecendo aqui? Você usou a função `geom_point()` para plotar p
O que você descobre?
-
+
## Filtre seus dados
@@ -119,7 +110,7 @@ ggplot(data=birds_filtered, aes(x=Name, y=MaxWingspan,group=1)) +
```
Criamos um novo dataframe `birds_filtered` e, em seguida, plotamos um gráfico de dispersão. Ao filtrar os outliers, seus dados agora estão mais coesos e compreensíveis.
-
+
Agora que temos um conjunto de dados mais limpo, pelo menos em termos de envergadura, vamos descobrir mais sobre esses pássaros.
@@ -161,7 +152,7 @@ birds_filtered %>% group_by(Category) %>%
```
No trecho a seguir, instalamos os pacotes [dplyr](https://www.rdocumentation.org/packages/dplyr/versions/0.7.8) e [lubridate](https://www.rdocumentation.org/packages/lubridate/versions/1.8.0) para ajudar a manipular e agrupar dados a fim de plotar um gráfico de barras empilhadas. Primeiro, agrupamos os dados pela `Categoria` do pássaro e, em seguida, resumimos as colunas `MinLength`, `MaxLength`, `MinBodyMass`, `MaxBodyMass`, `MinWingspan`, `MaxWingspan`. Depois, plotamos o gráfico de barras usando o pacote `ggplot2`, especificando as cores para as diferentes categorias e os rótulos.
-
+
Este gráfico de barras, no entanto, é ilegível porque há muitos dados não agrupados. Você precisa selecionar apenas os dados que deseja plotar, então vamos observar o comprimento dos pássaros com base em sua categoria.
@@ -176,7 +167,7 @@ ggplot(birds_count,aes(Category,n))+geom_bar(stat="identity")+coord_flip()
```
Primeiro, contamos os valores únicos na coluna `Categoria` e, em seguida, os classificamos em um novo dataframe `birds_count`. Esses dados classificados são então organizados no mesmo nível para que sejam plotados de forma ordenada. Usando o `ggplot2`, você então plota os dados em um gráfico de barras. O `coord_flip()` plota barras horizontais.
-
+
Este gráfico de barras mostra uma boa visão do número de pássaros em cada categoria. Em um piscar de olhos, você vê que o maior número de pássaros nesta região está na categoria Patos/Gansos/AvesAquáticas. Minnesota é a "terra dos 10.000 lagos", então isso não é surpreendente!
@@ -199,7 +190,7 @@ ggplot(birds_grouped,aes(Category,MaxLength))+geom_bar(stat="identity")+coord_fl
```
Agrupamos os dados `birds_filtered` por `Categoria` e, em seguida, plotamos um gráfico de barras.
-
+
Nada surpreendente aqui: beija-flores têm o menor ComprimentoMáximo em comparação com Pelicanos ou Gansos. É bom quando os dados fazem sentido lógico!
@@ -211,7 +202,7 @@ ggplot(data=birds_grouped, aes(x=Category)) +
geom_bar(aes(y=MinLength), stat="identity", position="identity", fill='orange')+
coord_flip()
```
-
+
## 🚀 Desafio
diff --git a/translations/br/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/pt-BR/3-Data-Visualization/R/09-visualization-quantities/assignment.md
similarity index 80%
rename from translations/br/3-Data-Visualization/R/09-visualization-quantities/assignment.md
rename to translations/pt-BR/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 8ff7bde7..5d6be21b 100644
--- a/translations/br/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/pt-BR/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linhas, Dispersões e Barras
## Instruções
diff --git a/translations/br/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/pt-BR/3-Data-Visualization/R/10-visualization-distributions/README.md
similarity index 87%
rename from translations/br/3-Data-Visualization/R/10-visualization-distributions/README.md
rename to translations/pt-BR/3-Data-Visualization/R/10-visualization-distributions/README.md
index 1cfddf12..6080fa95 100644
--- a/translations/br/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/pt-BR/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualizando Distribuições
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
@@ -45,7 +36,7 @@ ggplot(data=birds_filtered, aes(x=Order, y=MaxLength,group=1)) +
geom_point() +
ggtitle("Max Length per order") + coord_flip()
```
-
+
Isso fornece uma visão geral da distribuição do comprimento corporal por ordem de pássaros, mas não é a maneira ideal de exibir distribuições reais. Essa tarefa geralmente é realizada criando um histograma.
@@ -57,7 +48,7 @@ O `ggplot2` oferece ótimas maneiras de visualizar a distribuição de dados usa
ggplot(data = birds_filtered, aes(x = MaxBodyMass)) +
geom_histogram(bins=10)+ylab('Frequency')
```
-
+
Como você pode ver, a maioria dos 400+ pássaros neste conjunto de dados está na faixa de menos de 2000 para sua massa corporal máxima. Obtenha mais informações sobre os dados alterando o parâmetro `bins` para um número maior, algo como 30:
@@ -65,7 +56,7 @@ Como você pode ver, a maioria dos 400+ pássaros neste conjunto de dados está
ggplot(data = birds_filtered, aes(x = MaxBodyMass)) + geom_histogram(bins=30)+ylab('Frequency')
```
-
+
Este gráfico mostra a distribuição de forma um pouco mais detalhada. Um gráfico menos inclinado para a esquerda poderia ser criado garantindo que você selecione apenas dados dentro de um determinado intervalo:
@@ -77,7 +68,7 @@ ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_histogram(bins=30)+ylab('Frequency')
```
-
+
✅ Experimente outros filtros e pontos de dados. Para ver a distribuição completa dos dados, remova o filtro `['MaxBodyMass']` para mostrar distribuições rotuladas.
@@ -91,7 +82,7 @@ ggplot(data=birds_filtered_1, aes(x=MaxBodyMass, y=MaxLength) ) +
```
Parece haver uma correlação esperada entre esses dois elementos ao longo de um eixo esperado, com um ponto de convergência particularmente forte:
-
+
Os histogramas funcionam bem por padrão para dados numéricos. E se você precisar ver distribuições de acordo com dados textuais?
## Explore o conjunto de dados para distribuições usando dados textuais
@@ -122,7 +113,7 @@ ggplot(data=birds_filtered_1, aes(x = MinWingspan, fill = ConservationStatus)) +
scale_fill_manual(name="Conservation Status",values=c("red","green","blue","pink"),labels=c("Endangered","Near Threathened","Vulnerable","Least Concern"))
```
-
+
Não parece haver uma boa correlação entre envergadura mínima e status de conservação. Teste outros elementos do conjunto de dados usando este método. Você encontra alguma correlação?
@@ -136,7 +127,7 @@ Vamos trabalhar com gráficos de densidade agora!
ggplot(data = birds_filtered_1, aes(x = MinWingspan)) +
geom_density()
```
-
+
Você pode ver como o gráfico reflete o anterior para os dados de envergadura mínima; é apenas um pouco mais suave. Se você quisesse revisitar aquela linha irregular de MaxBodyMass no segundo gráfico que construiu, poderia suavizá-la muito bem recriando-a usando este método:
@@ -144,7 +135,7 @@ Você pode ver como o gráfico reflete o anterior para os dados de envergadura m
ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_density()
```
-
+
Se você quisesse uma linha suave, mas não muito suave, edite o parâmetro `adjust`:
@@ -152,7 +143,7 @@ Se você quisesse uma linha suave, mas não muito suave, edite o parâmetro `adj
ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_density(adjust = 1/5)
```
-
+
✅ Leia sobre os parâmetros disponíveis para este tipo de gráfico e experimente!
@@ -162,7 +153,7 @@ Este tipo de gráfico oferece visualizações explicativas muito bonitas. Com al
ggplot(data=birds_filtered_1,aes(x = MaxBodyMass, fill = Order)) +
geom_density(alpha=0.5)
```
-
+
## 🚀 Desafio
diff --git a/translations/br/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/pt-BR/3-Data-Visualization/R/10-visualization-distributions/assignment.md
similarity index 81%
rename from translations/br/3-Data-Visualization/R/10-visualization-distributions/assignment.md
rename to translations/pt-BR/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 7768f385..4f8e936b 100644
--- a/translations/br/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/pt-BR/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Aplique suas habilidades
## Instruções
diff --git a/translations/br/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/pt-BR/3-Data-Visualization/R/11-visualization-proportions/README.md
similarity index 94%
rename from translations/br/3-Data-Visualization/R/11-visualization-proportions/README.md
rename to translations/pt-BR/3-Data-Visualization/R/11-visualization-proportions/README.md
index 6ca7b72e..c83bff80 100644
--- a/translations/br/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/pt-BR/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualizando Proporções
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
@@ -92,7 +83,7 @@ pie(grouped$count,grouped$class, main="Edible?")
```
Voilá, um gráfico de pizza mostrando as proporções desses dados de acordo com essas duas classes de cogumelos. É muito importante obter a ordem correta dos rótulos, especialmente aqui, então certifique-se de verificar a ordem com a qual o array de rótulos foi construído!
-
+
## Roscas!
@@ -126,7 +117,7 @@ library(webr)
PieDonut(habitat, aes(habitat, count=count))
```
-
+
Este código usa duas bibliotecas - ggplot2 e webr. Usando a função PieDonut da biblioteca webr, podemos criar um gráfico de rosca facilmente!
@@ -164,7 +155,7 @@ waffle((cap_color$count/10), rows = 7, title = "Waffle Chart")+scale_fill_manual
Usando um gráfico de waffle, você pode ver claramente as proporções das cores dos chapéus neste conjunto de dados de cogumelos. Curiosamente, há muitos cogumelos com chapéus verdes!
-
+
Nesta lição, você aprendeu três maneiras de visualizar proporções. Primeiro, você precisa agrupar seus dados em categorias e, em seguida, decidir qual é a melhor maneira de exibir os dados - pizza, rosca ou waffle. Todas são deliciosas e proporcionam ao usuário uma visão instantânea de um conjunto de dados.
diff --git a/translations/br/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/pt-BR/3-Data-Visualization/R/12-visualization-relationships/README.md
similarity index 90%
rename from translations/br/3-Data-Visualization/R/12-visualization-relationships/README.md
rename to translations/pt-BR/3-Data-Visualization/R/12-visualization-relationships/README.md
index 3da07c7c..877c00c2 100644
--- a/translations/br/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/pt-BR/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualizando Relações: Tudo Sobre o Mel 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
@@ -51,7 +42,7 @@ library(ggplot2)
ggplot(honey, aes(x = priceperlb, y = state)) +
geom_point(colour = "blue")
```
-
+
Agora, mostre os mesmos dados com um esquema de cores de mel para ilustrar como o preço evolui ao longo dos anos. Você pode fazer isso adicionando um parâmetro 'scale_color_gradientn' para mostrar a mudança, ano após ano:
@@ -61,7 +52,7 @@ Agora, mostre os mesmos dados com um esquema de cores de mel para ilustrar como
ggplot(honey, aes(x = priceperlb, y = state, color=year)) +
geom_point()+scale_color_gradientn(colours = colorspace::heat_hcl(7))
```
-
+
Com essa mudança no esquema de cores, você pode ver claramente uma forte progressão ao longo dos anos no preço do mel por libra. De fato, se você observar um conjunto de amostra nos dados para verificar (escolha um estado, como o Arizona, por exemplo), verá um padrão de aumento de preços ano após ano, com poucas exceções:
@@ -92,7 +83,7 @@ ggplot(honey, aes(x = priceperlb, y = state)) +
```
Você pode ver o tamanho dos pontos aumentando gradualmente.
-
+
Isso é um caso simples de oferta e demanda? Devido a fatores como mudanças climáticas e colapso das colônias, há menos mel disponível para compra ano após ano, e, portanto, o preço aumenta?
@@ -107,7 +98,7 @@ qplot(honey$year,honey$priceperlb, geom='smooth', span =0.5, xlab = "year",ylab
```
Resposta: Sim, com algumas exceções por volta do ano de 2003:
-
+
Pergunta: Bem, em 2003 também podemos ver um aumento na oferta de mel? E se você observar a produção total ano após ano?
@@ -115,7 +106,7 @@ Pergunta: Bem, em 2003 também podemos ver um aumento na oferta de mel? E se voc
qplot(honey$year,honey$totalprod, geom='smooth', span =0.5, xlab = "year",ylab = "totalprod")
```
-
+
Resposta: Não exatamente. Se você observar a produção total, parece que ela realmente aumentou naquele ano específico, embora, de forma geral, a quantidade de mel produzida esteja em declínio durante esses anos.
@@ -135,7 +126,7 @@ ggplot(honey, aes(x=yieldpercol, y = numcol,group = 1)) +
```
Nesta visualização, você pode comparar o rendimento por colônia e o número de colônias ano após ano, lado a lado, com um wrap configurado para 3 colunas:
-
+
Para este conjunto de dados, nada particularmente se destaca em relação ao número de colônias e seu rendimento, ano após ano e estado por estado. Existe uma maneira diferente de encontrar uma correlação entre essas duas variáveis?
@@ -152,7 +143,7 @@ plot(honey$year, honey$yieldpercol, pch = 17, col = 3,
axis(side = 4, at = pretty(range(y2)))
mtext("colony yield", side = 4, line = 3)
```
-
+
Embora nada salte aos olhos em torno do ano de 2003, isso nos permite terminar esta lição com uma nota um pouco mais feliz: embora o número de colônias esteja em declínio geral, ele está se estabilizando, mesmo que o rendimento por colônia esteja diminuindo.
diff --git a/translations/br/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/pt-BR/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
similarity index 89%
rename from translations/br/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
rename to translations/pt-BR/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 938b3c9d..e7afbc8a 100644
--- a/translations/br/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/pt-BR/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Criando Visualizações Significativas
|](../../../sketchnotes/13-MeaningfulViz.png)|
@@ -47,25 +38,25 @@ Em lições anteriores, você experimentou criar vários tipos interessantes de
Mesmo que um cientista de dados seja cuidadoso ao escolher o gráfico certo para os dados certos, há muitas maneiras de exibir dados de forma a provar um ponto, muitas vezes às custas de comprometer os próprios dados. Existem muitos exemplos de gráficos e infográficos enganosos!
-[](https://www.youtube.com/watch?v=oX74Nge8Wkw "Como os gráficos mentem")
+[](https://www.youtube.com/watch?v=oX74Nge8Wkw "Como os gráficos mentem")
> 🎥 Clique na imagem acima para assistir a uma palestra sobre gráficos enganosos
Este gráfico inverte o eixo X para mostrar o oposto da verdade, com base na data:
-
+
[Este gráfico](https://media.firstcoastnews.com/assets/WTLV/images/170ae16f-4643-438f-b689-50d66ca6a8d8/170ae16f-4643-438f-b689-50d66ca6a8d8_1140x641.jpg) é ainda mais enganoso, pois o olhar é atraído para a direita, levando à conclusão de que, ao longo do tempo, os casos de COVID diminuíram nos vários condados. Na verdade, se você olhar atentamente para as datas, verá que elas foram reorganizadas para criar essa tendência enganosa de queda.
-
+
Este exemplo notório usa cor E um eixo Y invertido para enganar: em vez de concluir que as mortes por armas aumentaram após a aprovação de uma legislação favorável às armas, o olhar é enganado para pensar que o oposto é verdadeiro:
-
+
Este gráfico estranho mostra como a proporção pode ser manipulada, de forma hilária:
-
+
Comparar o incomparável é mais um truque duvidoso. Existe um [site maravilhoso](https://tylervigen.com/spurious-correlations) dedicado a 'correlações espúrias', exibindo 'fatos' que correlacionam coisas como a taxa de divórcio no Maine e o consumo de margarina. Um grupo no Reddit também coleta os [usos feios](https://www.reddit.com/r/dataisugly/top/?t=all) de dados.
@@ -100,13 +91,13 @@ Rotule seus eixos, forneça uma legenda, se necessário, e ofereça tooltips par
Se seus dados forem textuais e extensos no eixo X, você pode inclinar o texto para melhorar a legibilidade. [plot3D](https://cran.r-project.org/web/packages/plot3D/index.html) oferece gráficos em 3D, se seus dados suportarem. Visualizações de dados sofisticadas podem ser produzidas usando essa ferramenta.
-
+
## Exibição de gráficos animados e em 3D
Algumas das melhores visualizações de dados hoje em dia são animadas. Shirley Wu tem exemplos incríveis feitos com D3, como '[film flowers](http://bl.ocks.org/sxywu/raw/d612c6c653fb8b4d7ff3d422be164a5d/)', onde cada flor é uma visualização de um filme. Outro exemplo para o Guardian é 'bussed out', uma experiência interativa que combina visualizações com Greensock e D3, além de um formato de artigo com narrativa para mostrar como NYC lida com seu problema de moradores de rua, enviando pessoas para fora da cidade.
-
+
> "Bussed Out: Como os EUA Movem seus Moradores de Rua" do [Guardian](https://www.theguardian.com/us-news/ng-interactive/2017/dec/20/bussed-out-america-moves-homeless-people-country-study). Visualizações por Nadieh Bremer & Shirley Wu
@@ -116,7 +107,7 @@ Embora esta lição não seja suficiente para ensinar essas poderosas biblioteca
Você completará um aplicativo web que exibirá uma visão animada dessa rede social. Ele usa uma biblioteca criada para gerar uma [visualização de uma rede](https://github.com/emiliorizzo/vue-d3-network) usando Vue.js e D3. Quando o aplicativo estiver em execução, você poderá mover os nós na tela para reorganizar os dados.
-
+
## Projeto: Crie um gráfico para mostrar uma rede usando D3.js
diff --git a/translations/br/3-Data-Visualization/README.md b/translations/pt-BR/3-Data-Visualization/README.md
similarity index 92%
rename from translations/br/3-Data-Visualization/README.md
rename to translations/pt-BR/3-Data-Visualization/README.md
index 1e9e2dbd..ae63725a 100644
--- a/translations/br/3-Data-Visualization/README.md
+++ b/translations/pt-BR/3-Data-Visualization/README.md
@@ -1,15 +1,6 @@
-
# Visualizações
-
+
> Foto por Jenna Lee no Unsplash
Visualizar dados é uma das tarefas mais importantes de um cientista de dados. Imagens valem mais que mil palavras, e uma visualização pode ajudar você a identificar diversos aspectos interessantes dos seus dados, como picos, valores atípicos, agrupamentos, tendências e muito mais, que podem ajudar a entender a história que seus dados estão tentando contar.
diff --git a/translations/br/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/pt-BR/4-Data-Science-Lifecycle/14-Introduction/README.md
similarity index 93%
rename from translations/br/4-Data-Science-Lifecycle/14-Introduction/README.md
rename to translations/pt-BR/4-Data-Science-Lifecycle/14-Introduction/README.md
index f0a36625..1295ab78 100644
--- a/translations/br/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/pt-BR/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introdução ao Ciclo de Vida da Ciência de Dados
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
@@ -25,7 +16,7 @@ Neste ponto, você provavelmente já percebeu que a ciência de dados é um proc
Esta lição foca em 3 partes do ciclo de vida: captura, processamento e manutenção.
-
+
> Foto por [Berkeley School of Information](https://ischoolonline.berkeley.edu/data-science/what-is-data-science/)
## Captura
@@ -101,7 +92,7 @@ Explore o [Ciclo de Vida do Processo de Ciência de Dados em Equipe](https://doc
|Processo de Ciência de Dados em Equipe (TDSP)|Processo padrão da indústria para mineração de dados (CRISP-DM)|
|--|--|
-| |  |
+| |  |
| Imagem por [Microsoft](https://docs.microsoft.comazure/architecture/data-science-process/lifecycle) | Imagem por [Data Science Process Alliance](https://www.datascience-pm.com/crisp-dm-2/) |
## [Quiz Pós-Aula](https://ff-quizzes.netlify.app/en/ds/quiz/27)
diff --git a/translations/br/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/pt-BR/4-Data-Science-Lifecycle/14-Introduction/assignment.md
similarity index 88%
rename from translations/br/4-Data-Science-Lifecycle/14-Introduction/assignment.md
rename to translations/pt-BR/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 2114bdad..c325d7c5 100644
--- a/translations/br/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/pt-BR/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Avaliando um Conjunto de Dados
Um cliente procurou sua equipe para ajudar a investigar os hábitos sazonais de gastos de clientes de táxi em Nova York.
diff --git a/translations/br/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb b/translations/pt-BR/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
similarity index 100%
rename from translations/br/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
rename to translations/pt-BR/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
diff --git a/translations/br/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/pt-BR/4-Data-Science-Lifecycle/15-analyzing/README.md
similarity index 95%
rename from translations/br/4-Data-Science-Lifecycle/15-analyzing/README.md
rename to translations/pt-BR/4-Data-Science-Lifecycle/15-analyzing/README.md
index b4ad658f..92835a70 100644
--- a/translations/br/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/pt-BR/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# O Ciclo de Vida da Ciência de Dados: Análise
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/br/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb b/translations/pt-BR/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
similarity index 100%
rename from translations/br/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
rename to translations/pt-BR/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
diff --git a/translations/br/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/pt-BR/4-Data-Science-Lifecycle/15-analyzing/assignment.md
similarity index 88%
rename from translations/br/4-Data-Science-Lifecycle/15-analyzing/assignment.md
rename to translations/pt-BR/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 6503e56b..9ad37c9e 100644
--- a/translations/br/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/pt-BR/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Explorando respostas
Esta é uma continuação da [atividade](../14-Introduction/assignment.md) da lição anterior, onde examinamos brevemente o conjunto de dados. Agora, vamos analisar o conjunto de dados de forma mais aprofundada.
diff --git a/translations/br/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb b/translations/pt-BR/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
similarity index 100%
rename from translations/br/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
rename to translations/pt-BR/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
diff --git a/translations/br/4-Data-Science-Lifecycle/16-communication/README.md b/translations/pt-BR/4-Data-Science-Lifecycle/16-communication/README.md
similarity index 98%
rename from translations/br/4-Data-Science-Lifecycle/16-communication/README.md
rename to translations/pt-BR/4-Data-Science-Lifecycle/16-communication/README.md
index ff5c9e17..fcf4eb89 100644
--- a/translations/br/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/pt-BR/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# O Ciclo de Vida da Ciência de Dados: Comunicação
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/br/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/pt-BR/4-Data-Science-Lifecycle/16-communication/assignment.md
similarity index 82%
rename from translations/br/4-Data-Science-Lifecycle/16-communication/assignment.md
rename to translations/pt-BR/4-Data-Science-Lifecycle/16-communication/assignment.md
index b844d982..1a5117ce 100644
--- a/translations/br/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/pt-BR/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Conte uma história
## Instruções
diff --git a/translations/br/4-Data-Science-Lifecycle/README.md b/translations/pt-BR/4-Data-Science-Lifecycle/README.md
similarity index 75%
rename from translations/br/4-Data-Science-Lifecycle/README.md
rename to translations/pt-BR/4-Data-Science-Lifecycle/README.md
index 38994183..4ee13328 100644
--- a/translations/br/4-Data-Science-Lifecycle/README.md
+++ b/translations/pt-BR/4-Data-Science-Lifecycle/README.md
@@ -1,15 +1,6 @@
-
# O Ciclo de Vida da Ciência de Dados
-
+
> Foto por Headway no Unsplash
Nestes módulos, você explorará alguns aspectos do ciclo de vida da Ciência de Dados, incluindo análise e comunicação de dados.
diff --git a/translations/br/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/pt-BR/5-Data-Science-In-Cloud/17-Introduction/README.md
similarity index 97%
rename from translations/br/5-Data-Science-In-Cloud/17-Introduction/README.md
rename to translations/pt-BR/5-Data-Science-In-Cloud/17-Introduction/README.md
index fd054db3..a2029aa2 100644
--- a/translations/br/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/pt-BR/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introdução à Ciência de Dados na Nuvem
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/br/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/pt-BR/5-Data-Science-In-Cloud/17-Introduction/assignment.md
similarity index 79%
rename from translations/br/5-Data-Science-In-Cloud/17-Introduction/assignment.md
rename to translations/pt-BR/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index ce81399b..95d837fc 100644
--- a/translations/br/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/pt-BR/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Pesquisa de Mercado
## Instruções
diff --git a/translations/br/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/pt-BR/5-Data-Science-In-Cloud/18-Low-Code/README.md
similarity index 98%
rename from translations/br/5-Data-Science-In-Cloud/18-Low-Code/README.md
rename to translations/pt-BR/5-Data-Science-In-Cloud/18-Low-Code/README.md
index f61db7ab..38030384 100644
--- a/translations/br/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/pt-BR/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Ciência de Dados na Nuvem: O caminho "Low code/No code"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/br/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/pt-BR/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
similarity index 85%
rename from translations/br/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
rename to translations/pt-BR/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index c670f70f..a710810e 100644
--- a/translations/br/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/pt-BR/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Projeto de Ciência de Dados com Baixo Código/Sem Código no Azure ML
## Instruções
diff --git a/translations/br/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/pt-BR/5-Data-Science-In-Cloud/19-Azure/README.md
similarity index 98%
rename from translations/br/5-Data-Science-In-Cloud/19-Azure/README.md
rename to translations/pt-BR/5-Data-Science-In-Cloud/19-Azure/README.md
index d0bd81d9..cecef2d7 100644
--- a/translations/br/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/pt-BR/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Ciência de Dados na Nuvem: O caminho do "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/br/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/pt-BR/5-Data-Science-In-Cloud/19-Azure/assignment.md
similarity index 86%
rename from translations/br/5-Data-Science-In-Cloud/19-Azure/assignment.md
rename to translations/pt-BR/5-Data-Science-In-Cloud/19-Azure/assignment.md
index c5d08e08..c46e4ace 100644
--- a/translations/br/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/pt-BR/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Projeto de Ciência de Dados usando Azure ML SDK
## Instruções
diff --git a/translations/br/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb b/translations/pt-BR/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
similarity index 100%
rename from translations/br/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
rename to translations/pt-BR/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
diff --git a/translations/br/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb b/translations/pt-BR/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
similarity index 100%
rename from translations/br/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
rename to translations/pt-BR/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
diff --git a/translations/br/5-Data-Science-In-Cloud/README.md b/translations/pt-BR/5-Data-Science-In-Cloud/README.md
similarity index 79%
rename from translations/br/5-Data-Science-In-Cloud/README.md
rename to translations/pt-BR/5-Data-Science-In-Cloud/README.md
index 8596371e..e02fd915 100644
--- a/translations/br/5-Data-Science-In-Cloud/README.md
+++ b/translations/pt-BR/5-Data-Science-In-Cloud/README.md
@@ -1,21 +1,12 @@
-
# Ciência de Dados na Nuvem
-
+
> Foto de [Jelleke Vanooteghem](https://unsplash.com/@ilumire) no [Unsplash](https://unsplash.com/s/photos/cloud?orientation=landscape)
Quando se trata de fazer ciência de dados com big data, a nuvem pode ser um divisor de águas. Nas próximas três lições, vamos entender o que é a nuvem e por que ela pode ser tão útil. Também vamos explorar um conjunto de dados sobre insuficiência cardíaca e construir um modelo para ajudar a avaliar a probabilidade de alguém sofrer uma insuficiência cardíaca. Usaremos o poder da nuvem para treinar, implantar e consumir um modelo de duas maneiras diferentes. Uma delas utilizando apenas a interface do usuário em um formato de Baixo Código/Sem Código, e a outra utilizando o Azure Machine Learning Software Developer Kit (Azure ML SDK).
-
+
### Tópicos
diff --git a/translations/br/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/pt-BR/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
similarity index 97%
rename from translations/br/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
rename to translations/pt-BR/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 3875f853..035c511f 100644
--- a/translations/br/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/pt-BR/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Ciência de Dados no Mundo Real
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
@@ -41,7 +32,7 @@ Graças à democratização da IA, os desenvolvedores estão encontrando mais fa
* [Ciência de Dados na Saúde](https://data-flair.training/blogs/data-science-in-healthcare/) - destaca aplicações como imagem médica (e.g., ressonância magnética, raio-X, tomografia), genômica (sequenciamento de DNA), desenvolvimento de medicamentos (avaliação de risco, previsão de sucesso), análise preditiva (cuidados com pacientes e logística de suprimentos), rastreamento e prevenção de doenças etc.
- Crédito da Imagem: [Data Flair: 6 Amazing Data Science Applications ](https://data-flair.training/blogs/data-science-applications/)
+ Crédito da Imagem: [Data Flair: 6 Amazing Data Science Applications ](https://data-flair.training/blogs/data-science-applications/)
A figura mostra outros domínios e exemplos de aplicação de técnicas de ciência de dados. Quer explorar outras aplicações? Confira a seção [Revisão e Autoestudo](../../../../6-Data-Science-In-Wild/20-Real-World-Examples) abaixo.
diff --git a/translations/br/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/pt-BR/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
similarity index 89%
rename from translations/br/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
rename to translations/pt-BR/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 4961b59d..465104bf 100644
--- a/translations/br/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/pt-BR/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Explore um Conjunto de Dados do Planetary Computer
## Instruções
@@ -22,7 +13,7 @@ A interface do Explorer (mostrada na captura de tela abaixo) permite que você s
2. Explorar o [Catálogo de conjuntos de dados](https://planetarycomputer.microsoft.com/catalog) - aprender o propósito de cada conjunto de dados.
3. Usar o Explorer - escolher um conjunto de dados de interesse, selecionar uma consulta relevante e uma opção de renderização.
-
+
`Sua Tarefa:`
Agora, estude a visualização que foi gerada no navegador e responda às seguintes perguntas:
diff --git a/translations/br/6-Data-Science-In-Wild/README.md b/translations/pt-BR/6-Data-Science-In-Wild/README.md
similarity index 74%
rename from translations/br/6-Data-Science-In-Wild/README.md
rename to translations/pt-BR/6-Data-Science-In-Wild/README.md
index 2669373d..f95403e1 100644
--- a/translations/br/6-Data-Science-In-Wild/README.md
+++ b/translations/pt-BR/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Ciência de Dados na Prática
Aplicações reais de ciência de dados em diferentes indústrias.
diff --git a/translations/br/AGENTS.md b/translations/pt-BR/AGENTS.md
similarity index 98%
rename from translations/br/AGENTS.md
rename to translations/pt-BR/AGENTS.md
index 0f7cdca8..d328892a 100644
--- a/translations/br/AGENTS.md
+++ b/translations/pt-BR/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Visão Geral do Projeto
diff --git a/translations/br/CODE_OF_CONDUCT.md b/translations/pt-BR/CODE_OF_CONDUCT.md
similarity index 79%
rename from translations/br/CODE_OF_CONDUCT.md
rename to translations/pt-BR/CODE_OF_CONDUCT.md
index da534ae2..aeaf8b1d 100644
--- a/translations/br/CODE_OF_CONDUCT.md
+++ b/translations/pt-BR/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Código de Conduta de Código Aberto da Microsoft
Este projeto adotou o [Código de Conduta de Código Aberto da Microsoft](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/br/CONTRIBUTING.md b/translations/pt-BR/CONTRIBUTING.md
similarity index 96%
rename from translations/br/CONTRIBUTING.md
rename to translations/pt-BR/CONTRIBUTING.md
index 2c00e1c5..14f683f9 100644
--- a/translations/br/CONTRIBUTING.md
+++ b/translations/pt-BR/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Contribuindo para Ciência de Dados para Iniciantes
Obrigado pelo seu interesse em contribuir para o currículo de Ciência de Dados para Iniciantes! Agradecemos contribuições da comunidade.
@@ -316,7 +307,7 @@ Inclua na descrição do seu PR:
```
````
-- Adicione texto alternativo às imagens: ``
+- Adicione texto alternativo às imagens: ``
- Mantenha os comprimentos das linhas razoáveis (cerca de 80-100 caracteres)
### Python
diff --git a/translations/br/INSTALLATION.md b/translations/pt-BR/INSTALLATION.md
similarity index 96%
rename from translations/br/INSTALLATION.md
rename to translations/pt-BR/INSTALLATION.md
index 9de4068e..37b461b7 100644
--- a/translations/br/INSTALLATION.md
+++ b/translations/pt-BR/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Guia de Instalação
Este guia ajudará você a configurar seu ambiente para trabalhar com o currículo de Ciência de Dados para Iniciantes.
diff --git a/translations/pt-BR/README.md b/translations/pt-BR/README.md
new file mode 100644
index 00000000..02a1abe6
--- /dev/null
+++ b/translations/pt-BR/README.md
@@ -0,0 +1,253 @@
+# Ciência de Dados para Iniciantes - Um Currículo
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+
+
+[](https://discord.gg/nTYy5BXMWG)
+
+[](https://aka.ms/foundry/forum)
+
+Os Azure Cloud Advocates da Microsoft têm o prazer de oferecer um currículo de 10 semanas, com 20 aulas, inteiramente sobre Ciência de Dados. Cada aula inclui questionários antes e depois da aula, instruções escritas para completar a aula, uma solução e uma tarefa. Nossa pedagogia baseada em projetos permite que você aprenda enquanto constrói, uma forma comprovada para novas habilidades "ficarem".
+
+**Agradecimentos especiais aos nossos autores:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+
+**🙏 Agradecimentos especiais 🙏 aos nossos autores, revisores e colaboradores de conteúdo do [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** notavelmente Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
+
+||
+|:---:|
+| Ciência de Dados para Iniciantes - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
+
+### 🌐 Suporte Multilíngue
+
+#### Suportado via GitHub Action (Automatizado e Sempre Atualizado)
+
+
+[Árabe](../ar/README.md) | [Bengali](../bn/README.md) | [Búlgaro](../bg/README.md) | [Birmanês (Myanmar)](../my/README.md) | [Chinês (Simplificado)](../zh-CN/README.md) | [Chinês (Tradicional, Hong Kong)](../zh-HK/README.md) | [Chinês (Tradicional, Macau)](../zh-MO/README.md) | [Chinês (Tradicional, Taiwan)](../zh-TW/README.md) | [Croata](../hr/README.md) | [Tcheco](../cs/README.md) | [Dinamarquês](../da/README.md) | [Holandês](../nl/README.md) | [Estoniano](../et/README.md) | [Finlandês](../fi/README.md) | [Francês](../fr/README.md) | [Alemão](../de/README.md) | [Grego](../el/README.md) | [Hebraico](../he/README.md) | [Hindi](../hi/README.md) | [Húngaro](../hu/README.md) | [Indonésio](../id/README.md) | [Italiano](../it/README.md) | [Japonês](../ja/README.md) | [Kannada](../kn/README.md) | [Coreano](../ko/README.md) | [Lituano](../lt/README.md) | [Malaio](../ms/README.md) | [Malaiala](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Pidgin Nigeriano](../pcm/README.md) | [Norueguês](../no/README.md) | [Persa (Farsi)](../fa/README.md) | [Polonês](../pl/README.md) | [Português (Brasil)](./README.md) | [Português (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romeno](../ro/README.md) | [Russo](../ru/README.md) | [Sérvio (Cirílico)](../sr/README.md) | [Eslovaco](../sk/README.md) | [Esloveno](../sl/README.md) | [Espanhol](../es/README.md) | [Suaíli](../sw/README.md) | [Sueco](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tâmil](../ta/README.md) | [Telugu](../te/README.md) | [Tailandês](../th/README.md) | [Turco](../tr/README.md) | [Ucraniano](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamita](../vi/README.md)
+
+> **Prefere Clonar Localmente?**
+
+> Este repositório inclui mais de 50 traduções de idiomas, o que aumenta significativamente o tamanho do download. Para clonar sem traduções, use checkout esparso:
+> ```bash
+> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
+> cd Data-Science-For-Beginners
+> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
+> ```
+> Isso fornece tudo o que você precisa para concluir o curso com um download muito mais rápido.
+
+
+**Se desejar suportar idiomas adicionais, as línguas suportadas estão listadas [aqui](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+
+#### Junte-se à Nossa Comunidade
+[](https://discord.gg/nTYy5BXMWG)
+
+Estamos com uma série no Discord de aprender com IA, saiba mais e junte-se a nós em [Learn with AI Series](https://aka.ms/learnwithai/discord) de 18 a 30 de setembro de 2025. Você receberá dicas e truques de como usar o GitHub Copilot para Ciência de Dados.
+
+
+
+# Você é um estudante?
+
+Comece com os seguintes recursos:
+
+- [Página do Hub do Estudante](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Nesta página, você encontrará recursos para iniciantes, pacotes estudantis e até maneiras de conseguir um voucher de certificação gratuito. Esta é uma página que você vai querer adicionar aos favoritos e verificar de vez em quando, pois trocamos o conteúdo pelo menos mensalmente.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Junte-se a uma comunidade global de embaixadores estudantis, essa pode ser sua porta de entrada para a Microsoft.
+
+# Começando
+
+## 📚 Documentação
+
+- **[Guia de Instalação](INSTALLATION.md)** - Instruções passo a passo para iniciantes
+- **[Guia de Uso](USAGE.md)** - Exemplos e fluxos de trabalho comuns
+- **[Solução de Problemas](TROUBLESHOOTING.md)** - Soluções para problemas comuns
+- **[Guia de Contribuição](CONTRIBUTING.md)** - Como contribuir para este projeto
+- **[Para Professores](for-teachers.md)** - Orientações de ensino e recursos para salas de aula
+
+## 👨🎓 Para Estudantes
+> **Iniciantes completos**: Novo em ciência de dados? Comece com nossos [exemplos amigáveis para iniciantes](examples/README.md)! Estes exemplos simples e bem comentados ajudarão você a entender o básico antes de mergulhar no currículo completo.
+> **[Estudantes](https://aka.ms/student-page)**: para usar esse currículo por conta própria, faça um fork de todo o repositório e complete os exercícios sozinho, começando com um questionário antes da aula. Depois, leia a aula e complete o restante das atividades. Tente criar os projetos compreendendo as lições em vez de copiar o código da solução; no entanto, esse código está disponível nas pastas /solutions em cada aula orientada a projetos. Outra ideia seria formar um grupo de estudos com amigos e passar pelo conteúdo juntos. Para estudo adicional, recomendamos o [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+
+**Início rápido:**
+1. Verifique o [Guia de Instalação](INSTALLATION.md) para configurar seu ambiente
+2. Revise o [Guia de Uso](USAGE.md) para aprender como trabalhar com o currículo
+3. Comece pela Aula 1 e siga sequencialmente
+4. Junte-se à nossa [comunidade no Discord](https://aka.ms/ds4beginners/discord) para suporte
+
+## 👩🏫 Para Professores
+
+> **Professores**: incluímos [algumas sugestões](for-teachers.md) sobre como usar este currículo. Adoraríamos seu feedback [em nosso fórum de discussão](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## Conheça a Equipe
+
+[](https://youtu.be/8mzavjQSMM4 "Vídeo promocional")
+
+**Gif por** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+
+> 🎥 Clique na imagem acima para um vídeo sobre o projeto e as pessoas que o criaram!
+
+## Pedagogia
+
+Escolhemos dois princípios pedagógicos ao construir este currículo: garantir que seja baseado em projetos e que inclua quizzes frequentes. Ao final desta série, os alunos terão aprendido princípios básicos de ciência de dados, incluindo conceitos éticos, preparação de dados, diferentes formas de trabalhar com dados, visualização de dados, análise de dados, casos de uso reais de ciência de dados e mais.
+
+Além disso, um quiz de baixo risco antes da aula define a intenção do aluno em aprender um tópico, enquanto um segundo quiz após a aula garante uma maior retenção. Este currículo foi projetado para ser flexível e divertido e pode ser feito integralmente ou em partes. Os projetos começam pequenos e se tornam progressivamente mais complexos ao final do ciclo de 10 semanas.
+
+> Encontre nosso [Código de Conduta](CODE_OF_CONDUCT.md), [Contribuição](CONTRIBUTING.md), diretrizes de [Tradução](TRANSLATIONS.md). Agradecemos seu feedback construtivo!
+
+## Cada lição inclui:
+
+- Esboço opcional (sketchnote)
+- Vídeo suplementar opcional
+- Quiz de aquecimento pré-aula
+- Lição escrita
+- Para lições baseadas em projetos, guias passo a passo sobre como construir o projeto
+- Verificações de conhecimento
+- Um desafio
+- Leitura suplementar
+- Tarefa
+- [Quiz pós-aula](https://ff-quizzes.netlify.app/en/)
+
+> **Uma nota sobre os quizzes**: Todos os quizzes estão contidos na pasta Quiz-App, totalizando 40 quizzes de três perguntas cada. Eles estão vinculados dentro das lições, mas o aplicativo de quizzes pode ser executado localmente ou implantado no Azure; siga as instruções na pasta `quiz-app`. Eles estão sendo gradualmente localizados.
+
+## 🎓 Exemplos para Iniciantes
+
+**Novo em Ciência de Dados?** Criamos um diretório especial de [exemplos](examples/README.md) com código simples e bem comentado para ajudar você a começar:
+
+- 🌟 **Hello World** - Seu primeiro programa de ciência de dados
+- 📂 **Carregando Dados** - Aprenda a ler e explorar conjuntos de dados
+- 📊 **Análise Simples** - Calcule estatísticas e encontre padrões
+- 📈 **Visualização Básica** - Crie gráficos e diagramas
+- 🔬 **Projeto do Mundo Real** - Fluxo de trabalho completo do início ao fim
+
+Cada exemplo inclui comentários detalhados explicando cada passo, tornando-o perfeito para iniciantes absolutos!
+
+👉 **[Comece pelos exemplos](examples/README.md)** 👈
+
+## Lições
+
+
+||
+|:---:|
+| Ciência de Dados para Iniciantes: Roteiro - _Esboço por [@nitya](https://twitter.com/nitya)_ |
+
+
+| Número da Lição | Tópico | Grupo da Lição | Objetivos de Aprendizagem | Lição Vinculada | Autor |
+| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
+| 01 | Definindo Ciência de Dados | [Introdução](1-Introduction/README.md) | Aprenda os conceitos básicos por trás da ciência de dados e como ela está relacionada à inteligência artificial, aprendizado de máquina e big data. | [lesson](1-Introduction/01-defining-data-science/README.md) [vídeo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Ética em Ciência de Dados | [Introdução](1-Introduction/README.md) | Conceitos, desafios e estruturas da ética em dados. | [lesson](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Definindo Dados | [Introdução](1-Introduction/README.md) | Como os dados são classificados e suas fontes comuns. | [lesson](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Introdução a Estatística & Probabilidade | [Introdução](1-Introduction/README.md) | Técnicas matemáticas de probabilidade e estatística para entender dados. | [lesson](1-Introduction/04-stats-and-probability/README.md) [vídeo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Trabalhando com Dados Relacionais | [Trabalhando com Dados](2-Working-With-Data/README.md) | Introdução aos dados relacionais e o básico sobre explorar e analisar dados relacionais com a Linguagem de Consulta Estruturada, também conhecida como SQL (pronuncia-se "see-quell"). | [lesson](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Trabalhando com Dados NoSQL | [Trabalhando com Dados](2-Working-With-Data/README.md) | Introdução aos dados não relacionais, seus diversos tipos e o básico sobre explorar e analisar bancos de dados de documentos. | [lesson](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 07 | Trabalhando com Python | [Trabalhando com Dados](2-Working-With-Data/README.md) | Noções básicas do uso de Python para exploração de dados com bibliotecas como Pandas. É recomendada uma compreensão fundamental da programação em Python. | [lesson](2-Working-With-Data/07-python/README.md) [vídeo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Preparação de Dados | [Trabalhando com Dados](2-Working-With-Data/README.md) | Tópicos sobre técnicas de dados para limpar e transformar dados para lidar com desafios de dados ausentes, imprecisos ou incompletos. | [lesson](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Visualizando Quantidades | [Visualização de Dados](3-Data-Visualization/README.md) | Aprenda a usar Matplotlib para visualizar dados de pássaros 🦆 | [lesson](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Visualizando Distribuições de Dados | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizando observações e tendências dentro de um intervalo. | [lesson](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Visualizando Proporções | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizando porcentagens discretas e agrupadas. | [lesson](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Visualizando Relações | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizando conexões e correlações entre conjuntos de dados e suas variáveis. | [lesson](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Visualizações Significativas | [Visualização de Dados](3-Data-Visualization/README.md) | Técnicas e orientações para tornar suas visualizações valiosas para solução eficaz de problemas e insights. | [lesson](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Introdução ao ciclo de vida da Ciência de Dados | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Introdução ao ciclo de vida da ciência de dados e sua primeira etapa: adquirir e extrair dados. | [lesson](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Análise | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase do ciclo de vida da ciência de dados foca em técnicas para analisar dados. | [lesson](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Comunicação | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase do ciclo de vida da ciência de dados foca em apresentar os insights dos dados de forma que seja mais fácil para os tomadores de decisão entenderem. | [lesson](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Esta série de lições introduz ciência de dados na nuvem e seus benefícios. | [lesson](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
+| 18 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Treinamento de modelos usando ferramentas Low Code. |[lesson](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
+| 19 | Ciência de Dados na Nuvem | [Dados na Nuvem](5-Data-Science-In-Cloud/README.md) | Implantação de modelos com Azure Machine Learning Studio. | [lesson](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
+| 20 | Ciência de Dados na Prática | [Na Prática](6-Data-Science-In-Wild/README.md) | Projetos impulsionados por ciência de dados no mundo real. | [lesson](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+
+## GitHub Codespaces
+
+Siga estes passos para abrir este exemplo em um Codespace:
+1. Clique no menu suspenso Code e selecione a opção Abrir com Codespaces.
+2. Selecione + Novo codespace na parte inferior do painel.
+Para mais informações, confira a [documentação do GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+
+## VSCode Remote - Containers
+Siga estes passos para abrir este repositório em um contêiner usando sua máquina local e VSCode usando a extensão VS Code Remote - Containers:
+
+1. Se esta for sua primeira vez usando um contêiner de desenvolvimento, certifique-se de que seu sistema atende aos pré-requisitos (ou seja, ter o Docker instalado) na [documentação de introdução](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+
+Para usar este repositório, você pode abrir o repositório em um volume Docker isolado:
+
+**Nota**: Nos bastidores, isso usará o comando Remote-Containers: **Clone Repository in Container Volume...** para clonar o código-fonte em um volume Docker em vez do sistema de arquivos local. [Volumes](https://docs.docker.com/storage/volumes/) são o mecanismo preferido para persistência de dados em contêineres.
+
+Ou abra uma versão clonada ou baixada localmente do repositório:
+
+- Clone este repositório para seu sistema de arquivos local.
+- Pressione F1 e selecione o comando **Remote-Containers: Open Folder in Container...**.
+- Selecione a cópia clonada desta pasta, aguarde o contêiner iniciar e experimente.
+
+## Acesso Offline
+
+Você pode executar esta documentação offline usando [Docsify](https://docsify.js.org/#/). Faça um fork deste repositório, [instale o Docsify](https://docsify.js.org/#/quickstart) em sua máquina local, então no diretório raiz deste repositório, digite `docsify serve`. O site será servido na porta 3000 em seu localhost: `localhost:3000`.
+
+> Nota, notebooks não serão renderizados via Docsify, então quando precisar rodar um notebook, faça isso separadamente no VS Code executando um kernel Python.
+
+## Outros Currículos
+
+Nossa equipe produz outros currículos! Confira:
+
+
+### LangChain
+[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+
+---
+
+### Azure / Edge / MCP / Agentes
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### Série de IA Generativa
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### Aprendizado Básico
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### Série Copilot
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+
+
+## Obtendo Ajuda
+
+**Encontrando problemas?** Consulte nosso [Guia de Solução de Problemas](TROUBLESHOOTING.md) para soluções de problemas comuns.
+
+Se você ficar travado ou tiver alguma dúvida sobre como criar aplicativos de IA. Junte-se a outros aprendizes e desenvolvedores experientes em discussões sobre MCP. É uma comunidade de apoio onde perguntas são bem-vindas e o conhecimento é compartilhado livremente.
+
+[](https://discord.gg/nTYy5BXMWG)
+
+Se você tiver feedback sobre o produto ou erros durante a construção, visite:
+
+[](https://aka.ms/foundry/forum)
+
+---
+
+
+**Aviso Legal**:
+Este documento foi traduzido usando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos pela precisão, por favor, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original, em seu idioma nativo, deve ser considerado a fonte autorizada. Para informações críticas, recomenda-se tradução profissional humana. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas decorrentes do uso desta tradução.
+
\ No newline at end of file
diff --git a/translations/br/SECURITY.md b/translations/pt-BR/SECURITY.md
similarity index 93%
rename from translations/br/SECURITY.md
rename to translations/pt-BR/SECURITY.md
index c80a8c0b..20681d5e 100644
--- a/translations/br/SECURITY.md
+++ b/translations/pt-BR/SECURITY.md
@@ -1,12 +1,3 @@
-
## Segurança
A Microsoft leva a segurança de seus produtos e serviços de software muito a sério, o que inclui todos os repositórios de código-fonte gerenciados por meio de nossas organizações no GitHub, que incluem [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) e [nossas organizações no GitHub](https://opensource.microsoft.com/).
diff --git a/translations/br/SUPPORT.md b/translations/pt-BR/SUPPORT.md
similarity index 80%
rename from translations/br/SUPPORT.md
rename to translations/pt-BR/SUPPORT.md
index 9705b54a..6944c604 100644
--- a/translations/br/SUPPORT.md
+++ b/translations/pt-BR/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Suporte
## Como registrar problemas e obter ajuda
diff --git a/translations/br/TROUBLESHOOTING.md b/translations/pt-BR/TROUBLESHOOTING.md
similarity index 98%
rename from translations/br/TROUBLESHOOTING.md
rename to translations/pt-BR/TROUBLESHOOTING.md
index d0bebbec..6c49a5a6 100644
--- a/translations/br/TROUBLESHOOTING.md
+++ b/translations/pt-BR/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Guia de Solução de Problemas
Este guia fornece soluções para problemas comuns que você pode encontrar ao trabalhar com o currículo de Ciência de Dados para Iniciantes.
diff --git a/translations/br/USAGE.md b/translations/pt-BR/USAGE.md
similarity index 97%
rename from translations/br/USAGE.md
rename to translations/pt-BR/USAGE.md
index 0352f5e9..bd868ba8 100644
--- a/translations/br/USAGE.md
+++ b/translations/pt-BR/USAGE.md
@@ -1,12 +1,3 @@
-
# Guia de Uso
Este guia fornece exemplos e fluxos de trabalho comuns para usar o currículo de Ciência de Dados para Iniciantes.
diff --git a/translations/br/docs/_sidebar.md b/translations/pt-BR/docs/_sidebar.md
similarity index 89%
rename from translations/br/docs/_sidebar.md
rename to translations/pt-BR/docs/_sidebar.md
index 1b8726c1..565d3c6c 100644
--- a/translations/br/docs/_sidebar.md
+++ b/translations/pt-BR/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Introdução
- [Definindo Ciência de Dados](../1-Introduction/01-defining-data-science/README.md)
- [Ética na Ciência de Dados](../1-Introduction/02-ethics/README.md)
diff --git a/translations/br/examples/README.md b/translations/pt-BR/examples/README.md
similarity index 95%
rename from translations/br/examples/README.md
rename to translations/pt-BR/examples/README.md
index 44d6752f..4cc2e9d6 100644
--- a/translations/br/examples/README.md
+++ b/translations/pt-BR/examples/README.md
@@ -1,12 +1,3 @@
-
# Exemplos de Ciência de Dados para Iniciantes
Bem-vindo ao diretório de exemplos! Esta coleção de exemplos simples e bem comentados foi criada para ajudar você a começar com ciência de dados, mesmo que seja um completo iniciante.
diff --git a/translations/br/for-teachers.md b/translations/pt-BR/for-teachers.md
similarity index 94%
rename from translations/br/for-teachers.md
rename to translations/pt-BR/for-teachers.md
index bf4a0a19..0545bdd7 100644
--- a/translations/br/for-teachers.md
+++ b/translations/pt-BR/for-teachers.md
@@ -1,12 +1,3 @@
-
## Para Educadores
Gostaria de usar este currículo em sua sala de aula? Fique à vontade!
diff --git a/translations/br/quiz-app/README.md b/translations/pt-BR/quiz-app/README.md
similarity index 95%
rename from translations/br/quiz-app/README.md
rename to translations/pt-BR/quiz-app/README.md
index e36fcc84..816bf08a 100644
--- a/translations/br/quiz-app/README.md
+++ b/translations/pt-BR/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Questionários
Esses questionários são os questionários pré e pós-aula para o currículo de ciência de dados em https://aka.ms/datascience-beginners
diff --git a/translations/br/sketchnotes/README.md b/translations/pt-BR/sketchnotes/README.md
similarity index 60%
rename from translations/br/sketchnotes/README.md
rename to translations/pt-BR/sketchnotes/README.md
index 9cb5e895..ee4bad7b 100644
--- a/translations/br/sketchnotes/README.md
+++ b/translations/pt-BR/sketchnotes/README.md
@@ -1,19 +1,10 @@
-
Encontre todos os sketchnotes aqui!
## Créditos
Nitya Narasimhan, artista
-
+
---
diff --git a/translations/pt-PT/.co-op-translator.json b/translations/pt-PT/.co-op-translator.json
new file mode 100644
index 00000000..38fbe9c0
--- /dev/null
+++ b/translations/pt-PT/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:48:59+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "pt-PT"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-24T21:30:44+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-24T21:31:37+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:24:25+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "pt-PT"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-24T21:24:48+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T13:28:26+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "pt-PT"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-24T21:35:18+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:24:01+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "pt-PT"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-24T21:43:58+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-24T21:14:50+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "pt-PT"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:12:33+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "pt-PT"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:54:50+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T13:15:48+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "pt-PT"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-24T21:13:13+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:38:59+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "pt-PT"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-24T21:08:50+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T13:18:39+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "pt-PT"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-24T21:01:53+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-24T20:52:00+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T13:22:08+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-24T23:03:32+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T13:23:37+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-24T22:37:51+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T13:21:41+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-24T23:07:06+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:35:11+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-24T22:41:51+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T13:22:36+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-24T22:33:17+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-24T22:34:24+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-24T22:33:52+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-24T22:48:55+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-24T22:53:31+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-24T22:42:28+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-24T22:45:09+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-24T22:57:22+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-24T22:45:47+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-24T22:54:08+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "pt-PT"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-24T22:28:29+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "pt-PT"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:49:16+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "pt-PT"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-24T22:17:01+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:48:39+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "pt-PT"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-24T22:19:44+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:49:37+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "pt-PT"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-24T22:27:53+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-24T22:13:38+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "pt-PT"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T13:13:56+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "pt-PT"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-24T22:04:45+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T13:12:51+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "pt-PT"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-24T22:01:20+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T13:15:05+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "pt-PT"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-24T22:11:16+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-24T21:52:21+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "pt-PT"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:26:19+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "pt-PT"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-24T21:51:21+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "pt-PT"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-24T21:45:23+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "pt-PT"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:15:58+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "pt-PT"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-24T20:49:27+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "pt-PT"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:52:25+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "pt-PT"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:19:15+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "pt-PT"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:38:26+00:00",
+ "source_file": "README.md",
+ "language_code": "pt-PT"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-24T20:50:01+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "pt-PT"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-24T20:47:20+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "pt-PT"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:37:19+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "pt-PT"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:00:52+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "pt-PT"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-24T21:13:53+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "pt-PT"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:00:51+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "pt-PT"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:55:49+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "pt-PT"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-24T22:12:01+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "pt-PT"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-24T21:44:55+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "pt-PT"
+ }
+}
\ No newline at end of file
diff --git a/translations/pt/1-Introduction/01-defining-data-science/README.md b/translations/pt-PT/1-Introduction/01-defining-data-science/README.md
similarity index 97%
rename from translations/pt/1-Introduction/01-defining-data-science/README.md
rename to translations/pt-PT/1-Introduction/01-defining-data-science/README.md
index abec1d7e..695ed084 100644
--- a/translations/pt/1-Introduction/01-defining-data-science/README.md
+++ b/translations/pt-PT/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Definindo Ciência de Dados
| ](../../sketchnotes/01-Definitions.png) |
@@ -15,7 +6,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-[](https://youtu.be/beZ7Mb_oz9I)
+[](https://youtu.be/beZ7Mb_oz9I)
## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ds/quiz/0)
@@ -153,7 +144,7 @@ Se quisermos ser ainda mais detalhados, podemos traçar o tempo gasto em cada m
Neste desafio, vamos tentar encontrar conceitos relevantes para o campo da Ciência de Dados analisando textos. Vamos pegar um artigo da Wikipédia sobre Ciência de Dados, descarregar e processar o texto e, em seguida, criar uma nuvem de palavras como esta:
-
+
Visite [`notebook.ipynb`](../../../../1-Introduction/01-defining-data-science/notebook.ipynb ':ignore') para ler o código. Também pode executar o código e ver como ele realiza todas as transformações de dados em tempo real.
diff --git a/translations/pt/1-Introduction/01-defining-data-science/assignment.md b/translations/pt-PT/1-Introduction/01-defining-data-science/assignment.md
similarity index 91%
rename from translations/pt/1-Introduction/01-defining-data-science/assignment.md
rename to translations/pt-PT/1-Introduction/01-defining-data-science/assignment.md
index ae0d30af..c21bc408 100644
--- a/translations/pt/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/pt-PT/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Tarefa: Cenários de Ciência de Dados
Nesta primeira tarefa, pedimos que pense em algum processo ou problema da vida real em diferentes domínios de problemas, e como pode melhorá-lo utilizando o processo de Ciência de Dados. Pense no seguinte:
diff --git a/translations/pt/1-Introduction/01-defining-data-science/notebook.ipynb b/translations/pt-PT/1-Introduction/01-defining-data-science/notebook.ipynb
similarity index 100%
rename from translations/pt/1-Introduction/01-defining-data-science/notebook.ipynb
rename to translations/pt-PT/1-Introduction/01-defining-data-science/notebook.ipynb
diff --git a/translations/pt/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/pt-PT/1-Introduction/01-defining-data-science/solution/assignment.md
similarity index 92%
rename from translations/pt/1-Introduction/01-defining-data-science/solution/assignment.md
rename to translations/pt-PT/1-Introduction/01-defining-data-science/solution/assignment.md
index cf86e7f2..d8ac04ac 100644
--- a/translations/pt/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/pt-PT/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Tarefa: Cenários de Ciência de Dados
Nesta primeira tarefa, pedimos que pense em algum processo ou problema da vida real em diferentes domínios de problemas, e como pode melhorá-lo utilizando o processo de Ciência de Dados. Pense no seguinte:
diff --git a/translations/pt/1-Introduction/01-defining-data-science/solution/notebook.ipynb b/translations/pt-PT/1-Introduction/01-defining-data-science/solution/notebook.ipynb
similarity index 100%
rename from translations/pt/1-Introduction/01-defining-data-science/solution/notebook.ipynb
rename to translations/pt-PT/1-Introduction/01-defining-data-science/solution/notebook.ipynb
diff --git a/translations/pt/1-Introduction/02-ethics/README.md b/translations/pt-PT/1-Introduction/02-ethics/README.md
similarity index 99%
rename from translations/pt/1-Introduction/02-ethics/README.md
rename to translations/pt-PT/1-Introduction/02-ethics/README.md
index 465bb089..c8920990 100644
--- a/translations/pt/1-Introduction/02-ethics/README.md
+++ b/translations/pt-PT/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Introdução à Ética de Dados
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/pt/1-Introduction/02-ethics/assignment.md b/translations/pt-PT/1-Introduction/02-ethics/assignment.md
similarity index 91%
rename from translations/pt/1-Introduction/02-ethics/assignment.md
rename to translations/pt-PT/1-Introduction/02-ethics/assignment.md
index 4b1f1acc..a0160618 100644
--- a/translations/pt/1-Introduction/02-ethics/assignment.md
+++ b/translations/pt-PT/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Escreva um Estudo de Caso sobre Ética de Dados
## Instruções
diff --git a/translations/pt/1-Introduction/03-defining-data/README.md b/translations/pt-PT/1-Introduction/03-defining-data/README.md
similarity index 97%
rename from translations/pt/1-Introduction/03-defining-data/README.md
rename to translations/pt-PT/1-Introduction/03-defining-data/README.md
index b2d875f0..0c4703ee 100644
--- a/translations/pt/1-Introduction/03-defining-data/README.md
+++ b/translations/pt-PT/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Definindo Dados
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/pt/1-Introduction/03-defining-data/assignment.md b/translations/pt-PT/1-Introduction/03-defining-data/assignment.md
similarity index 88%
rename from translations/pt/1-Introduction/03-defining-data/assignment.md
rename to translations/pt-PT/1-Introduction/03-defining-data/assignment.md
index 4282d138..a8cbfc37 100644
--- a/translations/pt/1-Introduction/03-defining-data/assignment.md
+++ b/translations/pt-PT/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Classificação de Conjuntos de Dados
## Instruções
diff --git a/translations/pt/1-Introduction/04-stats-and-probability/README.md b/translations/pt-PT/1-Introduction/04-stats-and-probability/README.md
similarity index 95%
rename from translations/pt/1-Introduction/04-stats-and-probability/README.md
rename to translations/pt-PT/1-Introduction/04-stats-and-probability/README.md
index 04c312ca..53edf882 100644
--- a/translations/pt/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/pt-PT/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Uma Breve Introdução à Estatística e Probabilidade
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -15,7 +6,7 @@ CO_OP_TRANSLATOR_METADATA:
A Teoria da Estatística e Probabilidade são duas áreas altamente relacionadas da Matemática que têm grande relevância para a Ciência de Dados. É possível trabalhar com dados sem um conhecimento profundo de matemática, mas é sempre melhor conhecer pelo menos alguns conceitos básicos. Aqui apresentaremos uma breve introdução que o ajudará a começar.
-[](https://youtu.be/Z5Zy85g4Yjw)
+[](https://youtu.be/Z5Zy85g4Yjw)
## [Questionário pré-aula](https://ff-quizzes.netlify.app/en/ds/quiz/6)
@@ -39,7 +30,7 @@ A distribuição discreta mais conhecida é a **distribuição uniforme**, na qu
Só podemos falar sobre a probabilidade de uma variável cair em um determinado intervalo de valores, por exemplo, P(t1≤X2). Nesse caso, a distribuição de probabilidade é descrita por uma **função densidade de probabilidade** p(x), tal que
-![P(t_1\le X
+
Aqui também calculamos o **intervalo interquartil** IQR=Q3-Q1, e os chamados **outliers** - valores que estão fora dos limites [Q1-1.5*IQR,Q3+1.5*IQR].
@@ -82,11 +73,11 @@ Quando analisamos dados da vida real, eles frequentemente não são variáveis a
Aqui está o box plot mostrando média, mediana e quartis para os nossos dados:
-
+
Como os nossos dados contêm informações sobre diferentes **funções** dos jogadores, também podemos fazer o box plot por função - isso permitirá que tenhamos uma ideia de como os valores dos parâmetros diferem entre as funções. Desta vez, consideraremos a altura:
-
+
Este diagrama sugere que, em média, a altura dos jogadores de primeira base é maior que a altura dos jogadores de segunda base. Mais tarde nesta lição, aprenderemos como podemos testar esta hipótese de forma mais formal e como demonstrar que os nossos dados são estatisticamente significativos para mostrar isso.
@@ -94,7 +85,7 @@ Este diagrama sugere que, em média, a altura dos jogadores de primeira base é
Para ver qual é a distribuição dos nossos dados, podemos traçar um gráfico chamado **histograma**. O eixo X conterá um número de diferentes intervalos de peso (os chamados **bins**), e o eixo vertical mostrará o número de vezes que a amostra da variável aleatória esteve dentro de um determinado intervalo.
-
+
A partir deste histograma, pode-se ver que todos os valores estão centrados em torno de um certo peso médio, e quanto mais nos afastamos desse peso - menos pesos desse valor são encontrados. Ou seja, é muito improvável que o peso de um jogador de basebol seja muito diferente do peso médio. A variância dos pesos mostra a extensão em que os pesos provavelmente diferem da média.
@@ -111,7 +102,7 @@ samples = np.random.normal(mean,std,1000)
Se traçarmos o histograma das amostras geradas, veremos uma imagem muito semelhante à mostrada acima. E se aumentarmos o número de amostras e o número de bins, podemos gerar uma imagem de uma distribuição normal mais próxima do ideal:
-
+
*Distribuição Normal com média=0 e desvio padrão=1*
@@ -233,7 +224,7 @@ array([[1. , 0.52959196],
No nosso caso, o valor 0.53 indica que há alguma correlação entre o peso e a altura de uma pessoa. Podemos também fazer o gráfico de dispersão de um valor contra o outro para ver a relação visualmente:
-
+
> Mais exemplos de correlação e covariância podem ser encontrados no [notebook associado](notebook.ipynb).
diff --git a/translations/pt/1-Introduction/04-stats-and-probability/assignment.ipynb b/translations/pt-PT/1-Introduction/04-stats-and-probability/assignment.ipynb
similarity index 100%
rename from translations/pt/1-Introduction/04-stats-and-probability/assignment.ipynb
rename to translations/pt-PT/1-Introduction/04-stats-and-probability/assignment.ipynb
diff --git a/translations/pt/1-Introduction/04-stats-and-probability/assignment.md b/translations/pt-PT/1-Introduction/04-stats-and-probability/assignment.md
similarity index 88%
rename from translations/pt/1-Introduction/04-stats-and-probability/assignment.md
rename to translations/pt-PT/1-Introduction/04-stats-and-probability/assignment.md
index 30c4a6a7..436ac2ad 100644
--- a/translations/pt/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/pt-PT/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Pequeno Estudo sobre Diabetes
Nesta tarefa, iremos trabalhar com um pequeno conjunto de dados de pacientes com diabetes retirado de [aqui](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/pt/1-Introduction/04-stats-and-probability/notebook.ipynb b/translations/pt-PT/1-Introduction/04-stats-and-probability/notebook.ipynb
similarity index 100%
rename from translations/pt/1-Introduction/04-stats-and-probability/notebook.ipynb
rename to translations/pt-PT/1-Introduction/04-stats-and-probability/notebook.ipynb
diff --git a/translations/pt/1-Introduction/04-stats-and-probability/solution/assignment.ipynb b/translations/pt-PT/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
similarity index 100%
rename from translations/pt/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
rename to translations/pt-PT/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
diff --git a/translations/pt/1-Introduction/README.md b/translations/pt-PT/1-Introduction/README.md
similarity index 80%
rename from translations/pt/1-Introduction/README.md
rename to translations/pt-PT/1-Introduction/README.md
index e909d25e..891b3779 100644
--- a/translations/pt/1-Introduction/README.md
+++ b/translations/pt-PT/1-Introduction/README.md
@@ -1,15 +1,6 @@
-
# Introdução à Ciência de Dados
-
+
> Foto de Stephen Dawson no Unsplash
Nestes módulos, irá descobrir como a Ciência de Dados é definida e aprender sobre as considerações éticas que devem ser tidas em conta por um cientista de dados. Também irá aprender como os dados são definidos e explorar um pouco de estatística e probabilidade, os domínios académicos centrais da Ciência de Dados.
diff --git a/translations/pt/2-Working-With-Data/05-relational-databases/README.md b/translations/pt-PT/2-Working-With-Data/05-relational-databases/README.md
similarity index 97%
rename from translations/pt/2-Working-With-Data/05-relational-databases/README.md
rename to translations/pt-PT/2-Working-With-Data/05-relational-databases/README.md
index 12f1e9d8..68802453 100644
--- a/translations/pt/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/pt-PT/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Trabalhar com Dados: Bases de Dados Relacionais
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/pt/2-Working-With-Data/05-relational-databases/assignment.md b/translations/pt-PT/2-Working-With-Data/05-relational-databases/assignment.md
similarity index 93%
rename from translations/pt/2-Working-With-Data/05-relational-databases/assignment.md
rename to translations/pt-PT/2-Working-With-Data/05-relational-databases/assignment.md
index 9f9b01a0..d6d1d4ac 100644
--- a/translations/pt/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/pt-PT/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Exibindo dados de aeroportos
Foi fornecida uma [base de dados](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) construída em [SQLite](https://sqlite.org/index.html) que contém informações sobre aeroportos. O esquema está exibido abaixo. Você usará a [extensão SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) no [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) para exibir informações sobre os aeroportos de diferentes cidades.
diff --git a/translations/pt/2-Working-With-Data/06-non-relational/README.md b/translations/pt-PT/2-Working-With-Data/06-non-relational/README.md
similarity index 97%
rename from translations/pt/2-Working-With-Data/06-non-relational/README.md
rename to translations/pt-PT/2-Working-With-Data/06-non-relational/README.md
index 70565976..d6f7f7ac 100644
--- a/translations/pt/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/pt-PT/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Trabalhar com Dados: Dados Não-Relacionais
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/pt/2-Working-With-Data/06-non-relational/assignment.md b/translations/pt-PT/2-Working-With-Data/06-non-relational/assignment.md
similarity index 82%
rename from translations/pt/2-Working-With-Data/06-non-relational/assignment.md
rename to translations/pt-PT/2-Working-With-Data/06-non-relational/assignment.md
index 97119e21..77ad46b9 100644
--- a/translations/pt/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/pt-PT/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Lucros da Soda
## Instruções
diff --git a/translations/pt/2-Working-With-Data/07-python/R/notebook.ipynb b/translations/pt-PT/2-Working-With-Data/07-python/R/notebook.ipynb
similarity index 100%
rename from translations/pt/2-Working-With-Data/07-python/R/notebook.ipynb
rename to translations/pt-PT/2-Working-With-Data/07-python/R/notebook.ipynb
diff --git a/translations/pt/2-Working-With-Data/07-python/README.md b/translations/pt-PT/2-Working-With-Data/07-python/README.md
similarity index 95%
rename from translations/pt/2-Working-With-Data/07-python/README.md
rename to translations/pt-PT/2-Working-With-Data/07-python/README.md
index 429c880a..9c776342 100644
--- a/translations/pt/2-Working-With-Data/07-python/README.md
+++ b/translations/pt-PT/2-Working-With-Data/07-python/README.md
@@ -1,19 +1,10 @@
-
# Trabalhar com Dados: Python e a Biblioteca Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
| :-------------------------------------------------------------------------------------------------------: |
| Trabalhar com Python - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
-[](https://youtu.be/dZjWOGbsN4Y)
+[](https://youtu.be/dZjWOGbsN4Y)
Embora bases de dados ofereçam formas muito eficientes de armazenar e consultar dados usando linguagens de consulta, a maneira mais flexível de processar dados é escrever o seu próprio programa para manipulá-los. Em muitos casos, realizar uma consulta em uma base de dados seria mais eficaz. No entanto, em alguns casos, quando é necessário um processamento de dados mais complexo, isso não pode ser feito facilmente usando SQL.
O processamento de dados pode ser programado em qualquer linguagem de programação, mas há certas linguagens que são mais adequadas para trabalhar com dados. Cientistas de dados geralmente preferem uma das seguintes linguagens:
@@ -73,7 +64,7 @@ print(f"Length of index is {len(idx)}")
items_sold = pd.Series(np.random.randint(25,50,size=len(idx)),index=idx)
items_sold.plot()
```
-
+
Agora suponha que, a cada semana, organizamos uma festa para amigos e levamos 10 pacotes adicionais de sorvete para a festa. Podemos criar outra série, indexada por semana, para demonstrar isso:
```python
@@ -84,7 +75,7 @@ Quando somamos duas séries, obtemos o número total:
total_items = items_sold.add(additional_items,fill_value=0)
total_items.plot()
```
-
+
> **Nota** que não estamos usando a sintaxe simples `total_items+additional_items`. Se o fizéssemos, receberíamos muitos valores `NaN` (*Not a Number*) na série resultante. Isso ocorre porque há valores ausentes para alguns dos pontos de índice na série `additional_items`, e somar `NaN` a qualquer coisa resulta em `NaN`. Assim, precisamos especificar o parâmetro `fill_value` durante a soma.
@@ -93,7 +84,7 @@ Com séries temporais, também podemos **reamostrar** a série com diferentes in
monthly = total_items.resample("1M").mean()
ax = monthly.plot(kind='bar')
```
-
+
### DataFrame
@@ -219,7 +210,7 @@ O primeiro problema em que nos vamos focar é o modelo de propagação epidémic
Como queremos demonstrar como lidar com dados, convidamo-lo a abrir [`notebook-covidspread.ipynb`](notebook-covidspread.ipynb) e lê-lo de cima para baixo. Pode também executar as células e realizar alguns desafios que deixámos para si no final.
-
+
> Se não sabe como executar código no Jupyter Notebook, veja [este artigo](https://soshnikov.com/education/how-to-execute-notebooks-from-github/).
@@ -241,7 +232,7 @@ Um exemplo completo de análise deste conjunto de dados usando o serviço cognit
Abra [`notebook-papers.ipynb`](notebook-papers.ipynb) e leia-o de cima para baixo. Pode também executar as células e realizar alguns desafios que deixámos para si no final.
-
+
## Processamento de Dados de Imagem
diff --git a/translations/pt/2-Working-With-Data/07-python/assignment.md b/translations/pt-PT/2-Working-With-Data/07-python/assignment.md
similarity index 92%
rename from translations/pt/2-Working-With-Data/07-python/assignment.md
rename to translations/pt-PT/2-Working-With-Data/07-python/assignment.md
index cd278e34..cdf921e2 100644
--- a/translations/pt/2-Working-With-Data/07-python/assignment.md
+++ b/translations/pt-PT/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Tarefa de Processamento de Dados em Python
Nesta tarefa, pedimos que desenvolvas o código que começámos a criar nos nossos desafios. A tarefa consiste em duas partes:
diff --git a/translations/pt/2-Working-With-Data/07-python/notebook-covidspread.ipynb b/translations/pt-PT/2-Working-With-Data/07-python/notebook-covidspread.ipynb
similarity index 100%
rename from translations/pt/2-Working-With-Data/07-python/notebook-covidspread.ipynb
rename to translations/pt-PT/2-Working-With-Data/07-python/notebook-covidspread.ipynb
diff --git a/translations/pt/2-Working-With-Data/07-python/notebook-papers.ipynb b/translations/pt-PT/2-Working-With-Data/07-python/notebook-papers.ipynb
similarity index 100%
rename from translations/pt/2-Working-With-Data/07-python/notebook-papers.ipynb
rename to translations/pt-PT/2-Working-With-Data/07-python/notebook-papers.ipynb
diff --git a/translations/pt/2-Working-With-Data/07-python/notebook.ipynb b/translations/pt-PT/2-Working-With-Data/07-python/notebook.ipynb
similarity index 100%
rename from translations/pt/2-Working-With-Data/07-python/notebook.ipynb
rename to translations/pt-PT/2-Working-With-Data/07-python/notebook.ipynb
diff --git a/translations/pt/2-Working-With-Data/08-data-preparation/README.md b/translations/pt-PT/2-Working-With-Data/08-data-preparation/README.md
similarity index 98%
rename from translations/pt/2-Working-With-Data/08-data-preparation/README.md
rename to translations/pt-PT/2-Working-With-Data/08-data-preparation/README.md
index 556bf911..ceba03a4 100644
--- a/translations/pt/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/pt-PT/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Trabalhar com Dados: Preparação de Dados
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/pt/2-Working-With-Data/08-data-preparation/assignment.ipynb b/translations/pt-PT/2-Working-With-Data/08-data-preparation/assignment.ipynb
similarity index 100%
rename from translations/pt/2-Working-With-Data/08-data-preparation/assignment.ipynb
rename to translations/pt-PT/2-Working-With-Data/08-data-preparation/assignment.ipynb
diff --git a/translations/pt/2-Working-With-Data/08-data-preparation/assignment.md b/translations/pt-PT/2-Working-With-Data/08-data-preparation/assignment.md
similarity index 83%
rename from translations/pt/2-Working-With-Data/08-data-preparation/assignment.md
rename to translations/pt-PT/2-Working-With-Data/08-data-preparation/assignment.md
index e63e2f60..fa26cc13 100644
--- a/translations/pt/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/pt-PT/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Avaliar Dados de um Formulário
Um cliente tem estado a testar um [pequeno formulário](../../../../2-Working-With-Data/08-data-preparation/index.html) para recolher alguns dados básicos sobre a sua base de clientes. Eles trouxeram os resultados para que valides os dados que recolheram. Podes abrir a página `index.html` no navegador para dar uma olhada no formulário.
diff --git a/translations/pt/2-Working-With-Data/08-data-preparation/notebook.ipynb b/translations/pt-PT/2-Working-With-Data/08-data-preparation/notebook.ipynb
similarity index 100%
rename from translations/pt/2-Working-With-Data/08-data-preparation/notebook.ipynb
rename to translations/pt-PT/2-Working-With-Data/08-data-preparation/notebook.ipynb
diff --git a/translations/pt/2-Working-With-Data/README.md b/translations/pt-PT/2-Working-With-Data/README.md
similarity index 80%
rename from translations/pt/2-Working-With-Data/README.md
rename to translations/pt-PT/2-Working-With-Data/README.md
index c7f7314a..01bdda09 100644
--- a/translations/pt/2-Working-With-Data/README.md
+++ b/translations/pt-PT/2-Working-With-Data/README.md
@@ -1,15 +1,6 @@
-
# Trabalhar com Dados
-
+
> Foto por Alexander Sinn no Unsplash
Nestes módulos, vais aprender algumas formas de gerir, manipular e utilizar dados em aplicações. Vais aprender sobre bases de dados relacionais e não relacionais e como os dados podem ser armazenados nelas. Vais aprender os fundamentos de trabalhar com Python para gerir dados e descobrir algumas das muitas maneiras de usar Python para gerir e explorar dados.
diff --git a/translations/pt/3-Data-Visualization/09-visualization-quantities/README.md b/translations/pt-PT/3-Data-Visualization/09-visualization-quantities/README.md
similarity index 97%
rename from translations/pt/3-Data-Visualization/09-visualization-quantities/README.md
rename to translations/pt-PT/3-Data-Visualization/09-visualization-quantities/README.md
index faa0f02f..860eb5ab 100644
--- a/translations/pt/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/pt-PT/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualizar Quantidades
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/pt/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/pt-PT/3-Data-Visualization/09-visualization-quantities/assignment.md
similarity index 80%
rename from translations/pt/3-Data-Visualization/09-visualization-quantities/assignment.md
rename to translations/pt-PT/3-Data-Visualization/09-visualization-quantities/assignment.md
index 43bfc1f2..dffe6149 100644
--- a/translations/pt/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/pt-PT/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linhas, Dispersões e Barras
## Instruções
diff --git a/translations/pt/3-Data-Visualization/09-visualization-quantities/notebook.ipynb b/translations/pt-PT/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
similarity index 100%
rename from translations/pt/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
rename to translations/pt-PT/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
diff --git a/translations/pt/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb b/translations/pt-PT/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
similarity index 100%
rename from translations/pt/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
rename to translations/pt-PT/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
diff --git a/translations/pt/3-Data-Visualization/10-visualization-distributions/README.md b/translations/pt-PT/3-Data-Visualization/10-visualization-distributions/README.md
similarity index 97%
rename from translations/pt/3-Data-Visualization/10-visualization-distributions/README.md
rename to translations/pt-PT/3-Data-Visualization/10-visualization-distributions/README.md
index 2d69c48a..dea86026 100644
--- a/translations/pt/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/pt-PT/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualizar Distribuições
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/pt/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/pt-PT/3-Data-Visualization/10-visualization-distributions/assignment.md
similarity index 81%
rename from translations/pt/3-Data-Visualization/10-visualization-distributions/assignment.md
rename to translations/pt-PT/3-Data-Visualization/10-visualization-distributions/assignment.md
index 4ea3edd6..914b7e6c 100644
--- a/translations/pt/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/pt-PT/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Aplique as suas competências
## Instruções
diff --git a/translations/pt/3-Data-Visualization/10-visualization-distributions/notebook.ipynb b/translations/pt-PT/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
similarity index 100%
rename from translations/pt/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
rename to translations/pt-PT/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
diff --git a/translations/pt/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb b/translations/pt-PT/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
similarity index 100%
rename from translations/pt/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
rename to translations/pt-PT/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
diff --git a/translations/pt/3-Data-Visualization/11-visualization-proportions/README.md b/translations/pt-PT/3-Data-Visualization/11-visualization-proportions/README.md
similarity index 97%
rename from translations/pt/3-Data-Visualization/11-visualization-proportions/README.md
rename to translations/pt-PT/3-Data-Visualization/11-visualization-proportions/README.md
index 84b8fad8..8286fc11 100644
--- a/translations/pt/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/pt-PT/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualizar Proporções
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/pt/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/pt-PT/3-Data-Visualization/11-visualization-proportions/assignment.md
similarity index 82%
rename from translations/pt/3-Data-Visualization/11-visualization-proportions/assignment.md
rename to translations/pt-PT/3-Data-Visualization/11-visualization-proportions/assignment.md
index 83d8433e..2712e238 100644
--- a/translations/pt/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/pt-PT/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Experimente no Excel
## Instruções
diff --git a/translations/pt/3-Data-Visualization/11-visualization-proportions/notebook.ipynb b/translations/pt-PT/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
similarity index 100%
rename from translations/pt/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
rename to translations/pt-PT/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
diff --git a/translations/pt/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb b/translations/pt-PT/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
similarity index 100%
rename from translations/pt/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
rename to translations/pt-PT/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
diff --git a/translations/pt/3-Data-Visualization/12-visualization-relationships/README.md b/translations/pt-PT/3-Data-Visualization/12-visualization-relationships/README.md
similarity index 90%
rename from translations/pt/3-Data-Visualization/12-visualization-relationships/README.md
rename to translations/pt-PT/3-Data-Visualization/12-visualization-relationships/README.md
index 36efdee2..f590f72e 100644
--- a/translations/pt/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/pt-PT/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualizar Relações: Tudo Sobre Mel 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
@@ -51,7 +42,7 @@ Crie um gráfico de dispersão básico para mostrar a relação entre o preço p
```python
sns.relplot(x="priceperlb", y="state", data=honey, height=15, aspect=.5);
```
-
+
Agora, mostre os mesmos dados com um esquema de cores de mel para ilustrar como o preço evolui ao longo dos anos. Pode-se fazer isso adicionando um parâmetro 'hue' para mostrar a mudança, ano após ano:
@@ -60,7 +51,7 @@ Agora, mostre os mesmos dados com um esquema de cores de mel para ilustrar como
```python
sns.relplot(x="priceperlb", y="state", hue="year", palette="YlOrBr", data=honey, height=15, aspect=.5);
```
-
+
Com esta mudança no esquema de cores, é possível perceber claramente uma forte progressão ao longo dos anos no preço do mel por libra. De fato, ao verificar um conjunto de amostras nos dados (escolha um estado, como o Arizona, por exemplo), é possível observar um padrão de aumento de preços ano após ano, com poucas exceções:
@@ -89,7 +80,7 @@ sns.relplot(x="priceperlb", y="state", size="year", data=honey, height=15, aspec
```
Pode-se observar que o tamanho dos pontos aumenta gradualmente.
-
+
Será este um caso simples de oferta e procura? Devido a fatores como mudanças climáticas e o colapso das colónias, haverá menos mel disponível para compra ano após ano, e, assim, o preço aumenta?
@@ -104,7 +95,7 @@ sns.relplot(x="year", y="priceperlb", kind="line", data=honey);
```
Resposta: Sim, com algumas exceções por volta do ano 2003:
-
+
✅ Como o Seaborn está a agregar dados numa única linha, ele exibe "as múltiplas medições em cada valor de x, traçando a média e o intervalo de confiança de 95% em torno da média". [Fonte](https://seaborn.pydata.org/tutorial/relational.html). Este comportamento, que consome tempo, pode ser desativado adicionando `ci=None`.
@@ -114,7 +105,7 @@ Pergunta: Bem, em 2003 também podemos observar um pico na oferta de mel? E se a
sns.relplot(x="year", y="totalprod", kind="line", data=honey);
```
-
+
Resposta: Não exatamente. Ao observar a produção total, parece que ela realmente aumentou naquele ano específico, embora, de forma geral, a quantidade de mel produzido esteja em declínio durante esses anos.
@@ -139,7 +130,7 @@ sns.relplot(
```
Nesta visualização, pode-se comparar a produção por colmeia e o número de colmeias ano após ano, lado a lado, com um limite de 3 colunas:
-
+
Para este conjunto de dados, nada particularmente se destaca em relação ao número de colmeias e sua produção, ano após ano e estado por estado. Existe uma forma diferente de encontrar uma correlação entre estas duas variáveis?
@@ -162,7 +153,7 @@ sns.despine(right=False)
plt.ylabel('colony yield')
ax.figure.legend();
```
-
+
Embora nada salte aos olhos em relação ao ano de 2003, isso permite encerrar esta lição com uma nota um pouco mais feliz: embora o número de colmeias esteja em declínio geral, ele está a estabilizar, mesmo que a produção por colmeia esteja a diminuir.
diff --git a/translations/pt/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/pt-PT/3-Data-Visualization/12-visualization-relationships/assignment.md
similarity index 87%
rename from translations/pt/3-Data-Visualization/12-visualization-relationships/assignment.md
rename to translations/pt-PT/3-Data-Visualization/12-visualization-relationships/assignment.md
index 6c06e040..8e15ef07 100644
--- a/translations/pt/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/pt-PT/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Mergulhe na colmeia
## Instruções
diff --git a/translations/pt/3-Data-Visualization/12-visualization-relationships/notebook.ipynb b/translations/pt-PT/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
similarity index 100%
rename from translations/pt/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
rename to translations/pt-PT/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
diff --git a/translations/pt/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb b/translations/pt-PT/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
similarity index 100%
rename from translations/pt/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
rename to translations/pt-PT/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
diff --git a/translations/pt/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/pt-PT/3-Data-Visualization/13-meaningful-visualizations/README.md
similarity index 97%
rename from translations/pt/3-Data-Visualization/13-meaningful-visualizations/README.md
rename to translations/pt-PT/3-Data-Visualization/13-meaningful-visualizations/README.md
index 0c2bfc6f..1cda1a8d 100644
--- a/translations/pt/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/pt-PT/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Criando Visualizações Significativas
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/pt/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/pt-PT/3-Data-Visualization/13-meaningful-visualizations/assignment.md
similarity index 84%
rename from translations/pt/3-Data-Visualization/13-meaningful-visualizations/assignment.md
rename to translations/pt-PT/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 44b6453e..a9ad0ab7 100644
--- a/translations/pt/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/pt-PT/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Crie a sua própria visualização personalizada
## Instruções
diff --git a/translations/pt/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb b/translations/pt-PT/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
similarity index 100%
rename from translations/pt/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
rename to translations/pt-PT/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
diff --git a/translations/pt/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/pt-PT/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
similarity index 78%
rename from translations/pt/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
rename to translations/pt-PT/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 2db4dd9f..d773d0d9 100644
--- a/translations/pt/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/pt-PT/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Projeto de visualização de dados Dangerous Liaisons
Para começar, certifique-se de que tem o NPM e o Node instalados e a funcionar na sua máquina. Instale as dependências (npm install) e, em seguida, execute o projeto localmente (npm run serve):
diff --git a/translations/pt/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/pt-PT/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
similarity index 82%
rename from translations/pt/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
rename to translations/pt-PT/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 5e8c7709..98e0db4c 100644
--- a/translations/pt/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/pt-PT/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Projeto de visualização de dados Dangerous Liaisons
Para começar, certifique-se de que tem o NPM e o Node instalados e a funcionar na sua máquina. Instale as dependências (npm install) e depois execute o projeto localmente (npm run serve):
diff --git a/translations/pt/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/pt-PT/3-Data-Visualization/R/09-visualization-quantities/README.md
similarity index 91%
rename from translations/pt/3-Data-Visualization/R/09-visualization-quantities/README.md
rename to translations/pt-PT/3-Data-Visualization/R/09-visualization-quantities/README.md
index 6a060e6b..2485234c 100644
--- a/translations/pt/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/pt-PT/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualizar Quantidades
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
@@ -66,7 +57,7 @@ ggplot(data=birds, aes(x=Name, y=MaxWingspan,group=1)) +
```
Aqui, instalas o pacote `ggplot2` e depois importas para o ambiente de trabalho usando o comando `library("ggplot2")`. Para criar qualquer gráfico no ggplot, usa-se a função `ggplot()` e especifica-se o conjunto de dados, as variáveis x e y como atributos. Neste caso, usamos a função `geom_line()` porque queremos criar um gráfico de linhas.
-
+
O que notas imediatamente? Parece haver pelo menos um valor atípico - que envergadura impressionante! Uma envergadura de mais de 2000 centímetros equivale a mais de 20 metros - será que há Pterodáctilos a voar em Minnesota? Vamos investigar.
@@ -84,7 +75,7 @@ ggplot(data=birds, aes(x=Name, y=MaxWingspan,group=1)) +
```
Especificamos o ângulo no `theme` e definimos os rótulos dos eixos x e y em `xlab()` e `ylab()` respetivamente. O `ggtitle()` dá um nome ao gráfico.
-
+
Mesmo com a rotação dos rótulos definida para 45 graus, há demasiados para ler. Vamos tentar uma estratégia diferente: rotular apenas os valores atípicos e definir os rótulos dentro do gráfico. Podes usar um gráfico de dispersão para criar mais espaço para os rótulos:
@@ -100,7 +91,7 @@ O que está a acontecer aqui? Usaste a função `geom_point()` para criar pontos
O que descobres?
-
+
## Filtrar os teus dados
@@ -119,7 +110,7 @@ ggplot(data=birds_filtered, aes(x=Name, y=MaxWingspan,group=1)) +
```
Criámos um novo dataframe `birds_filtered` e depois representámos um gráfico de dispersão. Ao filtrar os valores atípicos, os teus dados tornam-se mais coesos e compreensíveis.
-
+
Agora que temos um conjunto de dados mais limpo, pelo menos em termos de envergadura, vamos descobrir mais sobre estas aves.
@@ -161,7 +152,7 @@ birds_filtered %>% group_by(Category) %>%
```
No seguinte trecho, instalamos os pacotes [dplyr](https://www.rdocumentation.org/packages/dplyr/versions/0.7.8) e [lubridate](https://www.rdocumentation.org/packages/lubridate/versions/1.8.0) para ajudar a manipular e agrupar dados para criar um gráfico de barras empilhado. Primeiro, agrupas os dados pela `Categoria` das aves e depois resumes as colunas `MinLength`, `MaxLength`, `MinBodyMass`, `MaxBodyMass`, `MinWingspan`, `MaxWingspan`. Em seguida, crias o gráfico de barras usando o pacote `ggplot2` e especificas as cores para as diferentes categorias e os rótulos.
-
+
Este gráfico de barras, no entanto, é ilegível porque há demasiados dados não agrupados. Precisamos de selecionar apenas os dados que queremos representar, então vamos observar o comprimento das aves com base na sua categoria.
@@ -176,7 +167,7 @@ ggplot(birds_count,aes(Category,n))+geom_bar(stat="identity")+coord_flip()
```
Primeiro, contas os valores únicos na coluna `Categoria` e depois ordenas num novo dataframe `birds_count`. Estes dados ordenados são então considerados no mesmo nível para que sejam representados de forma ordenada. Usando o `ggplot2`, crias o gráfico de barras. O `coord_flip()` cria barras horizontais.
-
+
Este gráfico de barras mostra uma boa visão do número de aves em cada categoria. Num piscar de olhos, vês que o maior número de aves nesta região pertence à categoria de Patos/Gansos/AvesAquáticas. Minnesota é a 'terra dos 10.000 lagos', então isto não é surpreendente!
@@ -199,7 +190,7 @@ ggplot(birds_grouped,aes(Category,MaxLength))+geom_bar(stat="identity")+coord_fl
```
Agrupamos os dados `birds_filtered` pela `Categoria` e depois criamos um gráfico de barras.
-
+
Nada é surpreendente aqui: os beija-flores têm o menor MaxLength em comparação com os Pelicanos ou Gansos. É bom quando os dados fazem sentido lógico!
@@ -211,7 +202,7 @@ ggplot(data=birds_grouped, aes(x=Category)) +
geom_bar(aes(y=MinLength), stat="identity", position="identity", fill='orange')+
coord_flip()
```
-
+
## 🚀 Desafio
diff --git a/translations/pt/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/pt-PT/3-Data-Visualization/R/09-visualization-quantities/assignment.md
similarity index 81%
rename from translations/pt/3-Data-Visualization/R/09-visualization-quantities/assignment.md
rename to translations/pt-PT/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index b015f3d9..23b0f6b0 100644
--- a/translations/pt/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/pt-PT/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linhas, Dispersões e Barras
## Instruções
diff --git a/translations/pt/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/pt-PT/3-Data-Visualization/R/10-visualization-distributions/README.md
similarity index 88%
rename from translations/pt/3-Data-Visualization/R/10-visualization-distributions/README.md
rename to translations/pt-PT/3-Data-Visualization/R/10-visualization-distributions/README.md
index 324a33de..3057ef89 100644
--- a/translations/pt/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/pt-PT/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualizar Distribuições
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
@@ -45,7 +36,7 @@ ggplot(data=birds_filtered, aes(x=Order, y=MaxLength,group=1)) +
geom_point() +
ggtitle("Max Length per order") + coord_flip()
```
-
+
Isto dá uma visão geral da distribuição do comprimento corporal por Ordem de aves, mas não é a forma ideal de exibir distribuições reais. Essa tarefa é geralmente realizada criando um Histograma.
@@ -57,7 +48,7 @@ O `ggplot2` oferece ótimas formas de visualizar a distribuição de dados usand
ggplot(data = birds_filtered, aes(x = MaxBodyMass)) +
geom_histogram(bins=10)+ylab('Frequency')
```
-
+
Como podes ver, a maioria das mais de 400 aves neste conjunto de dados tem uma Massa Corporal Máxima inferior a 2000. Obtém mais informações sobre os dados alterando o parâmetro `bins` para um número maior, como 30:
@@ -65,7 +56,7 @@ Como podes ver, a maioria das mais de 400 aves neste conjunto de dados tem uma M
ggplot(data = birds_filtered, aes(x = MaxBodyMass)) + geom_histogram(bins=30)+ylab('Frequency')
```
-
+
Este gráfico mostra a distribuição de forma um pouco mais detalhada. Um gráfico menos enviesado para a esquerda pode ser criado garantindo que apenas selecionas dados dentro de um determinado intervalo:
@@ -77,7 +68,7 @@ ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_histogram(bins=30)+ylab('Frequency')
```
-
+
✅ Experimenta outros filtros e pontos de dados. Para ver a distribuição completa dos dados, remove o filtro `['MaxBodyMass']` para mostrar distribuições rotuladas.
@@ -91,7 +82,7 @@ ggplot(data=birds_filtered_1, aes(x=MaxBodyMass, y=MaxLength) ) +
```
Parece haver uma correlação esperada entre estes dois elementos ao longo de um eixo esperado, com um ponto de convergência particularmente forte:
-
+
Os histogramas funcionam bem por padrão para dados numéricos. E se precisares de ver distribuições de acordo com dados textuais?
@@ -123,7 +114,7 @@ ggplot(data=birds_filtered_1, aes(x = MinWingspan, fill = ConservationStatus)) +
scale_fill_manual(name="Conservation Status",values=c("red","green","blue","pink"),labels=c("Endangered","Near Threathened","Vulnerable","Least Concern"))
```
-
+
Não parece haver uma boa correlação entre a envergadura mínima e o estado de conservação. Testa outros elementos do conjunto de dados usando este método. Podes experimentar diferentes filtros também. Encontras alguma correlação?
@@ -137,7 +128,7 @@ Vamos trabalhar agora com gráficos de densidade!
ggplot(data = birds_filtered_1, aes(x = MinWingspan)) +
geom_density()
```
-
+
Podes ver como o gráfico reflete o anterior para os dados de Envergadura Mínima; é apenas um pouco mais suave. Se quisesses revisitar aquela linha irregular de MaxBodyMass no segundo gráfico que construíste, poderias suavizá-la muito bem recriando-a usando este método:
@@ -145,7 +136,7 @@ Podes ver como o gráfico reflete o anterior para os dados de Envergadura Mínim
ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_density()
```
-
+
Se quiseres uma linha suave, mas não demasiado suave, edita o parâmetro `adjust`:
@@ -153,7 +144,7 @@ Se quiseres uma linha suave, mas não demasiado suave, edita o parâmetro `adjus
ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_density(adjust = 1/5)
```
-
+
✅ Lê sobre os parâmetros disponíveis para este tipo de gráfico e experimenta!
@@ -163,7 +154,7 @@ Este tipo de gráfico oferece visualizações explicativas muito bonitas. Com al
ggplot(data=birds_filtered_1,aes(x = MaxBodyMass, fill = Order)) +
geom_density(alpha=0.5)
```
-
+
## 🚀 Desafio
diff --git a/translations/pt/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/pt-PT/3-Data-Visualization/R/10-visualization-distributions/assignment.md
similarity index 84%
rename from translations/pt/3-Data-Visualization/R/10-visualization-distributions/assignment.md
rename to translations/pt-PT/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 63d82f92..12af256d 100644
--- a/translations/pt/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/pt-PT/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Aplique as suas competências
## Instruções
diff --git a/translations/pt/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/pt-PT/3-Data-Visualization/R/11-visualization-proportions/README.md
similarity index 93%
rename from translations/pt/3-Data-Visualization/R/11-visualization-proportions/README.md
rename to translations/pt-PT/3-Data-Visualization/R/11-visualization-proportions/README.md
index bd0d65ec..c15f4ede 100644
--- a/translations/pt/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/pt-PT/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualizar Proporções
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
@@ -92,7 +83,7 @@ pie(grouped$count,grouped$class, main="Edible?")
```
Voilà, um gráfico de pizza que mostra as proporções destes dados de acordo com estas duas classes de cogumelos. É muito importante garantir que a ordem das etiquetas esteja correta, especialmente aqui, por isso verifica sempre a ordem com que o array de etiquetas é construído!
-
+
## Roscas!
@@ -126,7 +117,7 @@ library(webr)
PieDonut(habitat, aes(habitat, count=count))
```
-
+
Este código utiliza duas bibliotecas - ggplot2 e webr. Usando a função PieDonut da biblioteca webr, podemos criar um gráfico de rosca facilmente!
@@ -164,7 +155,7 @@ waffle((cap_color$count/10), rows = 7, title = "Waffle Chart")+scale_fill_manual
Usando um gráfico de waffle, podes ver claramente as proporções das cores dos chapéus neste conjunto de dados de cogumelos. Curiosamente, existem muitos cogumelos com chapéus verdes!
-
+
Nesta lição, aprendeste três formas de visualizar proporções. Primeiro, precisas de agrupar os teus dados em categorias e depois decidir qual é a melhor forma de exibir os dados - pizza, rosca ou waffle. Todas são deliciosas e oferecem ao utilizador uma visão instantânea de um conjunto de dados.
diff --git a/translations/pt/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/pt-PT/3-Data-Visualization/R/12-visualization-relationships/README.md
similarity index 90%
rename from translations/pt/3-Data-Visualization/R/12-visualization-relationships/README.md
rename to translations/pt-PT/3-Data-Visualization/R/12-visualization-relationships/README.md
index 5d1daad1..50e71a48 100644
--- a/translations/pt/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/pt-PT/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualizar Relações: Tudo Sobre Mel 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
@@ -51,7 +42,7 @@ library(ggplot2)
ggplot(honey, aes(x = priceperlb, y = state)) +
geom_point(colour = "blue")
```
-
+
Agora, mostre os mesmos dados com um esquema de cores de mel para ilustrar como o preço evolui ao longo dos anos. Pode fazer isso adicionando o parâmetro 'scale_color_gradientn' para mostrar a mudança, ano após ano:
@@ -61,7 +52,7 @@ Agora, mostre os mesmos dados com um esquema de cores de mel para ilustrar como
ggplot(honey, aes(x = priceperlb, y = state, color=year)) +
geom_point()+scale_color_gradientn(colours = colorspace::heat_hcl(7))
```
-
+
Com esta mudança de esquema de cores, é possível ver claramente uma forte progressão ao longo dos anos no preço do mel por libra. De facto, ao verificar um conjunto de amostra nos dados (escolha um estado, como o Arizona), pode-se observar um padrão de aumento de preço ano após ano, com poucas exceções:
@@ -92,7 +83,7 @@ ggplot(honey, aes(x = priceperlb, y = state)) +
```
Pode ver o tamanho dos pontos aumentando gradualmente.
-
+
Será este um caso simples de oferta e procura? Devido a fatores como mudanças climáticas e colapso de colónias, há menos mel disponível para compra ano após ano, e assim o preço aumenta?
@@ -107,7 +98,7 @@ qplot(honey$year,honey$priceperlb, geom='smooth', span =0.5, xlab = "year",ylab
```
Resposta: Sim, com algumas exceções por volta do ano de 2003:
-
+
Pergunta: Bem, em 2003 também podemos ver um pico na oferta de mel? E se observarmos a produção total ano após ano?
@@ -115,7 +106,7 @@ Pergunta: Bem, em 2003 também podemos ver um pico na oferta de mel? E se observ
qplot(honey$year,honey$totalprod, geom='smooth', span =0.5, xlab = "year",ylab = "totalprod")
```
-
+
Resposta: Não exatamente. Se observar a produção total, parece que ela realmente aumentou nesse ano específico, embora, de forma geral, a quantidade de mel produzida esteja em declínio durante esses anos.
@@ -135,7 +126,7 @@ ggplot(honey, aes(x=yieldpercol, y = numcol,group = 1)) +
```
Nesta visualização, pode comparar o rendimento por colónia e o número de colónias ano após ano, lado a lado, com uma disposição de 3 colunas:
-
+
Para este conjunto de dados, nada particularmente se destaca em relação ao número de colónias e ao seu rendimento, ano após ano e estado por estado. Existe uma forma diferente de encontrar uma correlação entre estas duas variáveis?
@@ -152,7 +143,7 @@ plot(honey$year, honey$yieldpercol, pch = 17, col = 3,
axis(side = 4, at = pretty(range(y2)))
mtext("colony yield", side = 4, line = 3)
```
-
+
Embora nada salte aos olhos em torno do ano de 2003, isso permite terminar esta lição com uma nota um pouco mais feliz: embora o número de colónias esteja em declínio geral, ele está a estabilizar, mesmo que o rendimento por colónia esteja a diminuir.
diff --git a/translations/pt/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/pt-PT/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
similarity index 89%
rename from translations/pt/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
rename to translations/pt-PT/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index a4c855dd..c6c75b39 100644
--- a/translations/pt/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/pt-PT/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Criando Visualizações Significativas
| ](../../../sketchnotes/13-MeaningfulViz.png)|
@@ -47,25 +38,25 @@ Em lições anteriores, você experimentou criar diversos tipos de visualizaçõ
Mesmo que um cientista de dados seja cuidadoso ao escolher o gráfico certo para os dados certos, existem muitas maneiras de exibir dados de forma a provar um ponto, muitas vezes às custas de comprometer os próprios dados. Há muitos exemplos de gráficos e infográficos enganosos!
-[](https://www.youtube.com/watch?v=oX74Nge8Wkw "Como os gráficos enganam")
+[](https://www.youtube.com/watch?v=oX74Nge8Wkw "Como os gráficos enganam")
> 🎥 Clique na imagem acima para assistir a uma palestra sobre gráficos enganosos
Este gráfico inverte o eixo X para mostrar o oposto da verdade, com base na data:
-
+
[Este gráfico](https://media.firstcoastnews.com/assets/WTLV/images/170ae16f-4643-438f-b689-50d66ca6a8d8/170ae16f-4643-438f-b689-50d66ca6a8d8_1140x641.jpg) é ainda mais enganoso, pois o olhar é atraído para a direita, levando à conclusão de que, ao longo do tempo, os casos de COVID diminuíram nos vários condados. Na verdade, ao observar atentamente as datas, percebe-se que elas foram reorganizadas para criar essa tendência descendente enganosa.
-
+
Este exemplo notório usa cor E um eixo Y invertido para enganar: em vez de concluir que as mortes por armas aumentaram após a aprovação de uma legislação favorável às armas, o olhar é enganado para pensar que o oposto é verdadeiro:
-
+
Este gráfico estranho mostra como a proporção pode ser manipulada, com efeito hilário:
-
+
Comparar o incomparável é mais um truque duvidoso. Existe um [site maravilhoso](https://tylervigen.com/spurious-correlations) dedicado a 'correlações espúrias', exibindo 'fatos' que correlacionam coisas como a taxa de divórcio no Maine e o consumo de margarina. Um grupo no Reddit também coleta os [usos feios](https://www.reddit.com/r/dataisugly/top/?t=all) de dados.
@@ -100,13 +91,13 @@ Rotule os seus eixos, forneça uma legenda, se necessário, e ofereça tooltips
Se os seus dados forem textuais e extensos no eixo X, você pode inclinar o texto para melhorar a legibilidade. [plot3D](https://cran.r-project.org/web/packages/plot3D/index.html) oferece gráficos em 3D, se os seus dados suportarem. Visualizações de dados sofisticadas podem ser produzidas usando esta biblioteca.
-
+
## Exibição de gráficos animados e em 3D
Algumas das melhores visualizações de dados hoje em dia são animadas. Shirley Wu tem exemplos incríveis feitos com D3, como '[film flowers](http://bl.ocks.org/sxywu/raw/d612c6c653fb8b4d7ff3d422be164a5d/)', onde cada flor é uma visualização de um filme. Outro exemplo para o Guardian é 'bussed out', uma experiência interativa que combina visualizações com Greensock e D3, além de um formato de artigo com narrativa para mostrar como NYC lida com o problema dos sem-teto, enviando pessoas para fora da cidade.
-
+
> "Bussed Out: Como a América Move os Sem-Teto" do [Guardian](https://www.theguardian.com/us-news/ng-interactive/2017/dec/20/bussed-out-america-moves-homeless-people-country-study). Visualizações por Nadieh Bremer & Shirley Wu
@@ -116,7 +107,7 @@ Embora esta lição não seja suficiente para ensinar em profundidade essas pode
Você completará um aplicativo web que exibirá uma visão animada dessa rede social. Ele utiliza uma biblioteca criada para gerar uma [visualização de uma rede](https://github.com/emiliorizzo/vue-d3-network) usando Vue.js e D3. Quando o aplicativo estiver em execução, você pode mover os nós na tela para reorganizar os dados.
-
+
## Projeto: Crie um gráfico para mostrar uma rede usando D3.js
diff --git a/translations/pt/3-Data-Visualization/README.md b/translations/pt-PT/3-Data-Visualization/README.md
similarity index 93%
rename from translations/pt/3-Data-Visualization/README.md
rename to translations/pt-PT/3-Data-Visualization/README.md
index a4813d4f..fd8c8f2a 100644
--- a/translations/pt/3-Data-Visualization/README.md
+++ b/translations/pt-PT/3-Data-Visualization/README.md
@@ -1,15 +1,6 @@
-
# Visualizações
-
+
> Foto de Jenna Lee no Unsplash
Visualizar dados é uma das tarefas mais importantes de um cientista de dados. Imagens valem mais do que mil palavras, e uma visualização pode ajudá-lo a identificar vários aspetos interessantes dos seus dados, como picos, valores atípicos, agrupamentos, tendências e muito mais, que podem ajudá-lo a compreender a história que os seus dados estão a tentar contar.
diff --git a/translations/pt/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/pt-PT/4-Data-Science-Lifecycle/14-Introduction/README.md
similarity index 93%
rename from translations/pt/4-Data-Science-Lifecycle/14-Introduction/README.md
rename to translations/pt-PT/4-Data-Science-Lifecycle/14-Introduction/README.md
index bbb6763d..69e4ee1f 100644
--- a/translations/pt/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/pt-PT/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introdução ao Ciclo de Vida da Ciência de Dados
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
@@ -25,7 +16,7 @@ Neste ponto, provavelmente já percebeu que a ciência de dados é um processo.
Esta lição foca-se em 3 partes do ciclo de vida: captura, processamento e manutenção.
-
+
> Foto por [Berkeley School of Information](https://ischoolonline.berkeley.edu/data-science/what-is-data-science/)
## Captura
@@ -101,7 +92,7 @@ Explore o [Ciclo de Vida do Processo de Ciência de Dados em Equipa](https://doc
|Processo de Ciência de Dados em Equipa (TDSP)|Processo padrão da indústria para mineração de dados (CRISP-DM)|
|--|--|
-| |  |
+| |  |
| Imagem por [Microsoft](https://docs.microsoft.comazure/architecture/data-science-process/lifecycle) | Imagem por [Data Science Process Alliance](https://www.datascience-pm.com/crisp-dm-2/) |
## [Questionário Pós-Aula](https://ff-quizzes.netlify.app/en/ds/quiz/27)
diff --git a/translations/pt/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/pt-PT/4-Data-Science-Lifecycle/14-Introduction/assignment.md
similarity index 90%
rename from translations/pt/4-Data-Science-Lifecycle/14-Introduction/assignment.md
rename to translations/pt-PT/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 82570fe3..008403d9 100644
--- a/translations/pt/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/pt-PT/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Avaliando um Conjunto de Dados
Um cliente procurou a sua equipa para obter ajuda na investigação dos hábitos sazonais de gastos dos clientes de táxi em Nova Iorque.
diff --git a/translations/pt/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb b/translations/pt-PT/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
similarity index 100%
rename from translations/pt/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
rename to translations/pt-PT/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
diff --git a/translations/pt/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/pt-PT/4-Data-Science-Lifecycle/15-analyzing/README.md
similarity index 95%
rename from translations/pt/4-Data-Science-Lifecycle/15-analyzing/README.md
rename to translations/pt-PT/4-Data-Science-Lifecycle/15-analyzing/README.md
index 2c9df5bc..e218131c 100644
--- a/translations/pt/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/pt-PT/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# O Ciclo de Vida da Ciência de Dados: Análise
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/pt/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb b/translations/pt-PT/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
similarity index 100%
rename from translations/pt/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
rename to translations/pt-PT/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
diff --git a/translations/pt/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/pt-PT/4-Data-Science-Lifecycle/15-analyzing/assignment.md
similarity index 90%
rename from translations/pt/4-Data-Science-Lifecycle/15-analyzing/assignment.md
rename to translations/pt-PT/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 172d4d19..b981a4f0 100644
--- a/translations/pt/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/pt-PT/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Explorando respostas
Esta é uma continuação do [exercício](../14-Introduction/assignment.md) da lição anterior, onde analisámos brevemente o conjunto de dados. Agora vamos aprofundar a análise dos dados.
diff --git a/translations/pt/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb b/translations/pt-PT/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
similarity index 100%
rename from translations/pt/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
rename to translations/pt-PT/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
diff --git a/translations/pt/4-Data-Science-Lifecycle/16-communication/README.md b/translations/pt-PT/4-Data-Science-Lifecycle/16-communication/README.md
similarity index 98%
rename from translations/pt/4-Data-Science-Lifecycle/16-communication/README.md
rename to translations/pt-PT/4-Data-Science-Lifecycle/16-communication/README.md
index 60e805b4..c28c8c79 100644
--- a/translations/pt/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/pt-PT/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# O Ciclo de Vida da Ciência de Dados: Comunicação
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/pt/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/pt-PT/4-Data-Science-Lifecycle/16-communication/assignment.md
similarity index 81%
rename from translations/pt/4-Data-Science-Lifecycle/16-communication/assignment.md
rename to translations/pt-PT/4-Data-Science-Lifecycle/16-communication/assignment.md
index 9ab8dacf..f4406cde 100644
--- a/translations/pt/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/pt-PT/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Conte uma história
## Instruções
diff --git a/translations/pt/4-Data-Science-Lifecycle/README.md b/translations/pt-PT/4-Data-Science-Lifecycle/README.md
similarity index 76%
rename from translations/pt/4-Data-Science-Lifecycle/README.md
rename to translations/pt-PT/4-Data-Science-Lifecycle/README.md
index e1317a8e..8d1288ea 100644
--- a/translations/pt/4-Data-Science-Lifecycle/README.md
+++ b/translations/pt-PT/4-Data-Science-Lifecycle/README.md
@@ -1,15 +1,6 @@
-
# O Ciclo de Vida da Ciência de Dados
-
+
> Foto por Headway no Unsplash
Nestes conteúdos, vais explorar alguns dos aspetos do ciclo de vida da Ciência de Dados, incluindo análise e comunicação de dados.
diff --git a/translations/pt/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/pt-PT/5-Data-Science-In-Cloud/17-Introduction/README.md
similarity index 97%
rename from translations/pt/5-Data-Science-In-Cloud/17-Introduction/README.md
rename to translations/pt-PT/5-Data-Science-In-Cloud/17-Introduction/README.md
index db0db979..c12404a1 100644
--- a/translations/pt/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/pt-PT/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introdução à Ciência de Dados na Cloud
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/pt/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/pt-PT/5-Data-Science-In-Cloud/17-Introduction/assignment.md
similarity index 79%
rename from translations/pt/5-Data-Science-In-Cloud/17-Introduction/assignment.md
rename to translations/pt-PT/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index c0f3e03b..201f3a36 100644
--- a/translations/pt/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/pt-PT/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Pesquisa de Mercado
## Instruções
diff --git a/translations/pt/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/pt-PT/5-Data-Science-In-Cloud/18-Low-Code/README.md
similarity index 98%
rename from translations/pt/5-Data-Science-In-Cloud/18-Low-Code/README.md
rename to translations/pt-PT/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 32a1e4c6..b727ae48 100644
--- a/translations/pt/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/pt-PT/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Ciência de Dados na Nuvem: O método "Low code/No code"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/pt/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/pt-PT/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
similarity index 85%
rename from translations/pt/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
rename to translations/pt-PT/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 03d47d90..e16bb053 100644
--- a/translations/pt/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/pt-PT/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Projeto de Ciência de Dados Low code/No code no Azure ML
## Instruções
diff --git a/translations/pt/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/pt-PT/5-Data-Science-In-Cloud/19-Azure/README.md
similarity index 98%
rename from translations/pt/5-Data-Science-In-Cloud/19-Azure/README.md
rename to translations/pt-PT/5-Data-Science-In-Cloud/19-Azure/README.md
index 8787d060..74ad9c86 100644
--- a/translations/pt/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/pt-PT/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Ciência de Dados na Nuvem: O caminho do "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/pt/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/pt-PT/5-Data-Science-In-Cloud/19-Azure/assignment.md
similarity index 88%
rename from translations/pt/5-Data-Science-In-Cloud/19-Azure/assignment.md
rename to translations/pt-PT/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 64c8c7ac..ccf3cbfd 100644
--- a/translations/pt/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/pt-PT/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Projeto de Ciência de Dados usando Azure ML SDK
## Instruções
diff --git a/translations/pt/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb b/translations/pt-PT/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
similarity index 100%
rename from translations/pt/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
rename to translations/pt-PT/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
diff --git a/translations/hk/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb b/translations/pt-PT/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
similarity index 100%
rename from translations/hk/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
rename to translations/pt-PT/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
diff --git a/translations/pt/5-Data-Science-In-Cloud/README.md b/translations/pt-PT/5-Data-Science-In-Cloud/README.md
similarity index 81%
rename from translations/pt/5-Data-Science-In-Cloud/README.md
rename to translations/pt-PT/5-Data-Science-In-Cloud/README.md
index 50002682..60a93171 100644
--- a/translations/pt/5-Data-Science-In-Cloud/README.md
+++ b/translations/pt-PT/5-Data-Science-In-Cloud/README.md
@@ -1,21 +1,12 @@
-
# Ciência de Dados na Cloud
-
+
> Foto de [Jelleke Vanooteghem](https://unsplash.com/@ilumire) no [Unsplash](https://unsplash.com/s/photos/cloud?orientation=landscape)
Quando se trata de fazer ciência de dados com big data, a cloud pode ser um divisor de águas. Nas próximas três lições, vamos explorar o que é a cloud e por que ela pode ser tão útil. Também vamos analisar um conjunto de dados sobre insuficiência cardíaca e construir um modelo para ajudar a avaliar a probabilidade de alguém sofrer de insuficiência cardíaca. Utilizaremos o poder da cloud para treinar, implementar e consumir um modelo de duas formas diferentes. Uma forma será utilizando apenas a interface de utilizador, num estilo de "Low code/No code", e a outra será através do Azure Machine Learning Software Developer Kit (Azure ML SDK).
-
+
### Tópicos
diff --git a/translations/pt/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/pt-PT/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
similarity index 97%
rename from translations/pt/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
rename to translations/pt-PT/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index ca4bbc1b..78be09ad 100644
--- a/translations/pt/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/pt-PT/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Ciência de Dados no Mundo Real
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
@@ -41,7 +32,7 @@ Graças à democratização da IA, os desenvolvedores estão a encontrar formas
* [Ciência de Dados na Saúde](https://data-flair.training/blogs/data-science-in-healthcare/) - destaca aplicações como imagiologia médica (e.g., ressonância magnética, raio-X, tomografia), genómica (sequenciamento de DNA), desenvolvimento de medicamentos (avaliação de risco, previsão de sucesso), análise preditiva (cuidados ao paciente e logística de fornecimento), rastreamento e prevenção de doenças, etc.
- Crédito da Imagem: [Data Flair: 6 Amazing Data Science Applications ](https://data-flair.training/blogs/data-science-applications/)
+ Crédito da Imagem: [Data Flair: 6 Amazing Data Science Applications ](https://data-flair.training/blogs/data-science-applications/)
A figura mostra outros domínios e exemplos de aplicação de técnicas de ciência de dados. Queres explorar outras aplicações? Consulta a secção [Revisão e Autoestudo](../../../../6-Data-Science-In-Wild/20-Real-World-Examples) abaixo.
diff --git a/translations/pt/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/pt-PT/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
similarity index 91%
rename from translations/pt/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
rename to translations/pt-PT/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index e7a834e5..e2552ef2 100644
--- a/translations/pt/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/pt-PT/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Explorar um Conjunto de Dados do Planetary Computer
## Instruções
@@ -22,7 +13,7 @@ A interface do Explorer (mostrada na imagem abaixo) permite-te selecionar um con
2. Explorar o [Catálogo](https://planetarycomputer.microsoft.com/catalog) de conjuntos de dados - aprender o propósito de cada um.
3. Usar o Explorer - escolher um conjunto de dados do teu interesse, selecionar uma consulta relevante e uma opção de renderização.
-
+
`A Tua Tarefa:`
Agora analisa a visualização que foi gerada no navegador e responde às seguintes questões:
diff --git a/translations/pt/6-Data-Science-In-Wild/README.md b/translations/pt-PT/6-Data-Science-In-Wild/README.md
similarity index 75%
rename from translations/pt/6-Data-Science-In-Wild/README.md
rename to translations/pt-PT/6-Data-Science-In-Wild/README.md
index 523df3bd..bd3818e6 100644
--- a/translations/pt/6-Data-Science-In-Wild/README.md
+++ b/translations/pt-PT/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Ciência de Dados na Prática
Aplicações reais de ciência de dados em diferentes indústrias.
diff --git a/translations/pt/AGENTS.md b/translations/pt-PT/AGENTS.md
similarity index 98%
rename from translations/pt/AGENTS.md
rename to translations/pt-PT/AGENTS.md
index 1f4929ab..51d7022d 100644
--- a/translations/pt/AGENTS.md
+++ b/translations/pt-PT/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Visão Geral do Projeto
diff --git a/translations/pt/CODE_OF_CONDUCT.md b/translations/pt-PT/CODE_OF_CONDUCT.md
similarity index 80%
rename from translations/pt/CODE_OF_CONDUCT.md
rename to translations/pt-PT/CODE_OF_CONDUCT.md
index 3873e9e6..f8250c1d 100644
--- a/translations/pt/CODE_OF_CONDUCT.md
+++ b/translations/pt-PT/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Código de Conduta de Código Aberto da Microsoft
Este projeto adotou o [Código de Conduta de Código Aberto da Microsoft](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/pt/CONTRIBUTING.md b/translations/pt-PT/CONTRIBUTING.md
similarity index 96%
rename from translations/pt/CONTRIBUTING.md
rename to translations/pt-PT/CONTRIBUTING.md
index c49d3ac3..9734d494 100644
--- a/translations/pt/CONTRIBUTING.md
+++ b/translations/pt-PT/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Contribuir para Data Science para Principiantes
Obrigado pelo seu interesse em contribuir para o currículo de Data Science para Principiantes! Agradecemos as contribuições da comunidade.
@@ -316,7 +307,7 @@ Inclua na descrição do seu PR:
```
````
-- Adicione texto alternativo às imagens: ``
+- Adicione texto alternativo às imagens: ``
- Mantenha comprimentos de linha razoáveis (cerca de 80-100 caracteres)
### Python
diff --git a/translations/pt/INSTALLATION.md b/translations/pt-PT/INSTALLATION.md
similarity index 96%
rename from translations/pt/INSTALLATION.md
rename to translations/pt-PT/INSTALLATION.md
index 618b3d92..2f341e13 100644
--- a/translations/pt/INSTALLATION.md
+++ b/translations/pt-PT/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Guia de Instalação
Este guia irá ajudá-lo a configurar o seu ambiente para trabalhar com o currículo de Ciência de Dados para Iniciantes.
diff --git a/translations/pt-PT/README.md b/translations/pt-PT/README.md
new file mode 100644
index 00000000..1f530321
--- /dev/null
+++ b/translations/pt-PT/README.md
@@ -0,0 +1,253 @@
+# Ciência de Dados para Iniciantes - Um Currículo
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+
+
+[](https://discord.gg/nTYy5BXMWG)
+
+[](https://aka.ms/foundry/forum)
+
+Os Azure Cloud Advocates da Microsoft têm o prazer de oferecer um currículo de 10 semanas e 20 lições totalmente dedicado à Ciência de Dados. Cada lição inclui questionários pré e pós-lição, instruções escritas para completar a lição, uma solução e um trabalho prático. A nossa pedagogia baseada em projetos permite que aprenda enquanto constrói, uma forma comprovada para que as novas competências 'fiquem'.
+
+**Um enorme agradecimento aos nossos autores:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+
+**🙏 Agradecimentos especiais 🙏 aos nossos autores, revisores e colaboradores de conteúdo do [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** nomeadamente Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
+
+||
+|:---:|
+| Ciência de Dados para Iniciantes - _Sketchnote de [@nitya](https://twitter.com/nitya)_ |
+
+### 🌐 Suporte Multilíngue
+
+#### Suportado via GitHub Action (Automático e Sempre Atualizado)
+
+
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](./README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+
+> **Prefere Clonar Localmente?**
+
+> Este repositório inclui traduções para mais de 50 idiomas, o que aumenta significativamente o tamanho do download. Para clonar sem as traduções, use sparse checkout:
+> ```bash
+> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
+> cd Data-Science-For-Beginners
+> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
+> ```
+> Isto dá-lhe tudo o que precisa para completar o curso com um download muito mais rápido.
+
+
+**Se desejar suportar línguas adicionais, estão listadas [aqui](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+
+#### Junte-se à Nossa Comunidade
+[](https://discord.gg/nTYy5BXMWG)
+
+Temos uma série de aprender com IA a decorrer no Discord, saiba mais e junte-se a nós em [Série Learn with AI](https://aka.ms/learnwithai/discord) de 18 a 30 de setembro de 2025. Receberá dicas e truques para usar o GitHub Copilot para Ciência de Dados.
+
+
+
+# É estudante?
+
+Comece com os seguintes recursos:
+
+- [Página Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Nesta página, encontrará recursos para iniciantes, pacotes para estudantes e até formas de obter um voucher de certificação grátis. Esta é uma página que deve guardar nos favoritos e consultar de vez em quando, pois alteramos o conteúdo pelo menos mensalmente.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Junte-se a uma comunidade global de embaixadores estudantis, esta pode ser a sua porta de entrada para a Microsoft.
+
+# Começar
+
+## 📚 Documentação
+
+- **[Guia de Instalação](INSTALLATION.md)** - Instruções passo a passo para iniciantes
+- **[Guia de Uso](USAGE.md)** - Exemplos e fluxos de trabalho comuns
+- **[Resolução de Problemas](TROUBLESHOOTING.md)** - Soluções para problemas comuns
+- **[Guia de Contribuição](CONTRIBUTING.md)** - Como contribuir para este projeto
+- **[Para Professores](for-teachers.md)** - Orientações para ensino e recursos para sala de aula
+
+## 👨🎓 Para Estudantes
+> **Iniciantes Completos**: Novo na ciência dos dados? Comece com os nossos [exemplos amigáveis para iniciantes](examples/README.md)! Estes exemplos simples e bem comentados ajudarão a entender o básico antes de se aprofundar no currículo completo.
+> **[Estudantes](https://aka.ms/student-page)**: para usar este currículo por conta própria, faça um fork do repositório completo e execute os exercícios sozinho, começando por um questionário pré-aula. Depois leia a aula e complete o resto das atividades. Tente criar os projetos compreendendo as lições em vez de copiar o código solução; no entanto, esse código está disponível nas pastas /solutions em cada lição orientada a projetos. Outra ideia seria formar um grupo de estudo com amigos e passar pelo conteúdo juntos. Para estudo adicional, recomendamos [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+
+**Início Rápido:**
+1. Consulte o [Guia de Instalação](INSTALLATION.md) para configurar o seu ambiente
+2. Revise o [Guia de Uso](USAGE.md) para aprender a trabalhar com o currículo
+3. Comece pela Lição 1 e siga sequencialmente
+4. Junte-se à nossa [comunidade Discord](https://aka.ms/ds4beginners/discord) para apoio
+
+## 👩🏫 Para Professores
+
+> **Professores**: incluímos [algumas sugestões](for-teachers.md) sobre como usar este currículo. Gostaríamos muito de receber o seu feedback [no nosso fórum de discussão](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## Conheça a Equipa
+
+[](https://youtu.be/8mzavjQSMM4 "Vídeo promocional")
+
+**Gif por** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+
+> 🎥 Clique na imagem acima para ver um vídeo sobre o projeto e as pessoas que o criaram!
+
+## Pedagogia
+
+Escolhemos dois princípios pedagógicos ao construir este currículo: garantir que é baseado em projetos e que inclui quizzes frequentes. Ao final desta série, os alunos terão aprendido princípios básicos de ciência de dados, incluindo conceitos éticos, preparação de dados, diferentes maneiras de trabalhar com dados, visualização de dados, análise de dados, casos reais de uso da ciência de dados e muito mais.
+
+Além disso, um quiz de baixo risco antes da aula define a intenção do aluno em aprender um tópico, enquanto um segundo quiz após a aula garante maior retenção. Este currículo foi projetado para ser flexível e divertido, podendo ser feito na totalidade ou apenas em partes. Os projetos começam pequenos e tornam-se progressivamente mais complexos ao longo do ciclo de 10 semanas.
+
+> Encontre as nossas [Regras de Conduta](CODE_OF_CONDUCT.md), diretivas de [Contribuição](CONTRIBUTING.md), e de [Tradução](TRANSLATIONS.md). Agradecemos o seu feedback construtivo!
+
+## Cada aula inclui:
+
+- Sketchnote opcional
+- Vídeo suplementar opcional
+- Quiz de aquecimento pré-aula
+- Aula escrita
+- Para as aulas baseadas em projetos, guias passo a passo para construção do projeto
+- Verificações de conhecimento
+- Um desafio
+- Leitura suplementar
+- Trabalho para casa
+- [Quiz pós-aula](https://ff-quizzes.netlify.app/en/)
+
+> **Uma nota sobre os quizzes**: Todos os quizzes estão contidos na pasta Quiz-App, num total de 40 quizzes com três perguntas cada. Eles estão ligados dentro das aulas, mas a aplicação de quizzes pode ser executada localmente ou implantada no Azure; siga as instruções na pasta `quiz-app`. Estão gradualmente a ser localizados.
+
+## 🎓 Exemplos Amigáveis para Iniciantes
+
+**É novo em Ciência de Dados?** Criámos um diretório especial de [exemplos](examples/README.md) com código simples e bem comentado para ajudar você a começar:
+
+- 🌟 **Olá Mundo** - O seu primeiro programa de ciência de dados
+- 📂 **Carregando Dados** - Aprenda a ler e explorar conjuntos de dados
+- 📊 **Análise Simples** - Calcule estatísticas e encontre padrões
+- 📈 **Visualização Básica** - Crie gráficos e diagramas
+- 🔬 **Projeto do Mundo Real** - Fluxo completo do início ao fim
+
+Cada exemplo inclui comentários detalhados explicando cada passo, tornando-o perfeito para iniciantes absolutos!
+
+👉 **[Comece pelos exemplos](examples/README.md)** 👈
+
+## Aulas
+
+
+||
+|:---:|
+| Ciência de Dados Para Iniciantes: Roteiro - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
+
+
+| Número da Aula | Tópico | Agrupamento da Aula | Objetivos de Aprendizagem | Aula Ligada | Autor |
+| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
+| 01 | Definição de Ciência de Dados | [Introdução](1-Introduction/README.md) | Aprenda os conceitos básicos por detrás da ciência de dados e como esta se relaciona com a inteligência artificial, aprendizagem automática e big data. | [aula](1-Introduction/01-defining-data-science/README.md) [vídeo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Ética em Ciência de Dados | [Introdução](1-Introduction/README.md) | Conceitos, desafios e estruturas da ética em dados. | [aula](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Definição de Dados | [Introdução](1-Introduction/README.md) | Como os dados são classificados e suas fontes comuns. | [aula](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Introdução a Estatísticas & Probabilidades | [Introdução](1-Introduction/README.md) | As técnicas matemáticas de probabilidade e estatística para compreender dados. | [aula](1-Introduction/04-stats-and-probability/README.md) [vídeo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Trabalho com Dados Relacionais | [Trabalho com Dados](2-Working-With-Data/README.md) | Introdução aos dados relacionais e conhecimentos básicos sobre exploração e análise de dados relacionais com a Structured Query Language, também conhecida como SQL (pronúncia “see-quell”). | [aula](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Trabalho com Dados NoSQL | [Trabalho com Dados](2-Working-With-Data/README.md) | Introdução aos dados não relacionais, seus vários tipos e o básico da exploração e análise de bases de dados de documentos. | [aula](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Trabalho com Python | [Trabalho com Dados](2-Working-With-Data/README.md) | Noções básicas do uso de Python para exploração de dados com bibliotecas como Pandas. Compreensão fundamental da programação em Python é recomendada. | [aula](2-Working-With-Data/07-python/README.md) [vídeo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Preparação de Dados | [Trabalho com Dados](2-Working-With-Data/README.md) | Tópicos sobre técnicas de dados para limpeza e transformação de dados para lidar com desafios de dados em falta, incorretos ou incompletos. | [aula](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Visualização de Quantidades | [Visualização de Dados](3-Data-Visualization/README.md) | Aprenda como usar Matplotlib para visualizar dados de aves 🦆 | [aula](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Visualização de Distribuições de Dados | [Visualização de Dados](3-Data-Visualization/README.md) | Visualização de observações e tendências dentro de um intervalo. | [aula](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Visualização de Proporções | [Visualização de Dados](3-Data-Visualization/README.md) | Visualização de percentagens discretas e agrupadas. | [aula](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Visualização de Relações | [Visualização de Dados](3-Data-Visualization/README.md) | Visualização de conexões e correlações entre conjuntos de dados e suas variáveis. | [aula](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Visualizações Significativas | [Visualização de Dados](3-Data-Visualization/README.md) | Técnicas e orientações para tornar as suas visualizações valiosas para a resolução eficaz de problemas e obtenção de insights. | [aula](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Introdução ao ciclo de vida da Ciência de Dados | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Introdução ao ciclo de vida da ciência de dados e o seu primeiro passo de aquisição e extração de dados. | [aula](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Análise | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase do ciclo de vida da ciência de dados foca-se em técnicas para analisar dados. | [aula](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Comunicação | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase do ciclo de vida da ciência de dados foca-se em apresentar os insights dos dados de forma que facilite o entendimento por parte dos decisores. | [aula](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Ciência de Dados na Cloud | [Dados na Cloud](5-Data-Science-In-Cloud/README.md) | Esta série de aulas apresenta a ciência de dados na cloud e os seus benefícios. | [aula](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
+| 18 | Ciência de Dados na Cloud | [Dados na Cloud](5-Data-Science-In-Cloud/README.md) | Treino de modelos usando ferramentas Low Code. |[aula](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
+| 19 | Ciência de Dados na Cloud | [Dados na Cloud](5-Data-Science-In-Cloud/README.md) | Implantação de modelos com Azure Machine Learning Studio. | [aula](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
+| 20 | Ciência de Dados na Prática | [Na Prática](6-Data-Science-In-Wild/README.md) | Projetos de ciência de dados no mundo real. | [aula](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+
+## GitHub Codespaces
+
+Siga estes passos para abrir este exemplo num Codespace:
+1. Clique no menu suspenso Código e selecione a opção Abrir com Codespaces.
+2. Selecione + Novo codespace na parte inferior do painel.
+Para mais informações, consulte a [documentação do GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+
+## VSCode Remote - Containers
+Siga estes passos para abrir este repositório num container usando a sua máquina local e o VSCode através da extensão VS Code Remote - Containers:
+
+1. Se esta for a primeira vez que usa um container de desenvolvimento, certifique-se de que o seu sistema cumpre os pré-requisitos (por exemplo, ter o Docker instalado) em [a documentação para começar](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+
+Para usar este repositório, pode abrir diretamente o repositório num volume Docker isolado:
+
+**Nota**: Por baixo do capô, isto usará o comando Remote-Containers: **Clonar repositório num volume de container...** para clonar o código-fonte num volume Docker em vez do sistema de ficheiros local. [Volumes](https://docs.docker.com/storage/volumes/) são o mecanismo preferido para persistir dados dos containers.
+
+Ou abra uma cópia clonada ou descarregada do repositório localmente:
+
+- Clone este repositório no seu sistema de ficheiros local.
+- Pressione F1 e selecione o comando **Remote-Containers: Open Folder in Container...**.
+- Selecione a cópia clonada desta pasta, aguarde o início do container e experimente.
+
+## Acesso Offline
+
+Pode executar esta documentação offline usando [Docsify](https://docsify.js.org/#/). Faça fork deste repositório, [instale o Docsify](https://docsify.js.org/#/quickstart) na sua máquina local e, na pasta raiz deste repositório, digite `docsify serve`. O site será servido na porta 3000 no seu localhost: `localhost:3000`.
+
+> Nota, notebooks não serão apresentados via Docsify, assim, quando precisar de executar um notebook, faça isso separadamente no VS Code a correr um kernel Python.
+
+## Outros Currículos
+
+A nossa equipa produz outros currículos! Veja:
+
+
+### LangChain
+[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+
+---
+
+### Azure / Edge / MCP / Agentes
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### Série de IA Generativa
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### Aprendizagem Core
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### Série Copilot
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+
+
+## Obter Ajuda
+
+**Está a ter problemas?** Consulte o nosso [Guia de Resolução de Problemas](TROUBLESHOOTING.md) para soluções aos problemas comuns.
+
+Se ficar preso ou tiver dúvidas sobre como construir aplicações de IA, junte-se a outros aprendizes e desenvolvedores experientes em discussões sobre MCP. É uma comunidade solidária onde as perguntas são bem-vindas e o conhecimento é partilhado livremente.
+
+[](https://discord.gg/nTYy5BXMWG)
+
+Se tiver feedback sobre o produto ou encontrar erros enquanto desenvolve, visite:
+
+[](https://aka.ms/foundry/forum)
+
+---
+
+
+**Aviso Legal**:
+Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, por favor tenha em atenção que traduções automáticas podem conter erros ou imprecisões. O documento original, no seu idioma nativo, deve ser considerado a fonte autorizada. Para informações críticas, recomenda-se a tradução profissional humana. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução.
+
\ No newline at end of file
diff --git a/translations/pt/SECURITY.md b/translations/pt-PT/SECURITY.md
similarity index 93%
rename from translations/pt/SECURITY.md
rename to translations/pt-PT/SECURITY.md
index 62b8e9b0..1a4be772 100644
--- a/translations/pt/SECURITY.md
+++ b/translations/pt-PT/SECURITY.md
@@ -1,12 +1,3 @@
-
## Segurança
A Microsoft leva a segurança dos seus produtos e serviços de software muito a sério, incluindo todos os repositórios de código-fonte geridos através das nossas organizações no GitHub, que incluem [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) e [as nossas organizações no GitHub](https://opensource.microsoft.com/).
diff --git a/translations/pt/SUPPORT.md b/translations/pt-PT/SUPPORT.md
similarity index 80%
rename from translations/pt/SUPPORT.md
rename to translations/pt-PT/SUPPORT.md
index 142a8fea..f7c5960d 100644
--- a/translations/pt/SUPPORT.md
+++ b/translations/pt-PT/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Suporte
## Como reportar problemas e obter ajuda
diff --git a/translations/pt/TROUBLESHOOTING.md b/translations/pt-PT/TROUBLESHOOTING.md
similarity index 98%
rename from translations/pt/TROUBLESHOOTING.md
rename to translations/pt-PT/TROUBLESHOOTING.md
index 67479271..987854fb 100644
--- a/translations/pt/TROUBLESHOOTING.md
+++ b/translations/pt-PT/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Guia de Resolução de Problemas
Este guia fornece soluções para problemas comuns que pode encontrar ao trabalhar com o currículo de Data Science para Principiantes.
diff --git a/translations/pt/USAGE.md b/translations/pt-PT/USAGE.md
similarity index 98%
rename from translations/pt/USAGE.md
rename to translations/pt-PT/USAGE.md
index c2ecb2ed..3e63a0a1 100644
--- a/translations/pt/USAGE.md
+++ b/translations/pt-PT/USAGE.md
@@ -1,12 +1,3 @@
-
# Guia de Utilização
Este guia fornece exemplos e fluxos de trabalho comuns para utilizar o currículo de Ciência de Dados para Iniciantes.
diff --git a/translations/pt/docs/_sidebar.md b/translations/pt-PT/docs/_sidebar.md
similarity index 89%
rename from translations/pt/docs/_sidebar.md
rename to translations/pt-PT/docs/_sidebar.md
index 26b89b10..c20246c4 100644
--- a/translations/pt/docs/_sidebar.md
+++ b/translations/pt-PT/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Introdução
- [Definir Ciência de Dados](../1-Introduction/01-defining-data-science/README.md)
- [Ética na Ciência de Dados](../1-Introduction/02-ethics/README.md)
diff --git a/translations/pt/examples/README.md b/translations/pt-PT/examples/README.md
similarity index 95%
rename from translations/pt/examples/README.md
rename to translations/pt-PT/examples/README.md
index ee7aa0c6..60a48496 100644
--- a/translations/pt/examples/README.md
+++ b/translations/pt-PT/examples/README.md
@@ -1,12 +1,3 @@
-
# Exemplos de Ciência de Dados para Iniciantes
Bem-vindo ao diretório de exemplos! Esta coleção de exemplos simples e bem comentados foi criada para ajudar-te a começar com ciência de dados, mesmo que sejas um completo principiante.
diff --git a/translations/pt/for-teachers.md b/translations/pt-PT/for-teachers.md
similarity index 94%
rename from translations/pt/for-teachers.md
rename to translations/pt-PT/for-teachers.md
index 78f5f2c3..b2d48e17 100644
--- a/translations/pt/for-teachers.md
+++ b/translations/pt-PT/for-teachers.md
@@ -1,12 +1,3 @@
-
## Para Educadores
Gostaria de usar este currículo na sua sala de aula? Sinta-se à vontade!
diff --git a/translations/pt/quiz-app/README.md b/translations/pt-PT/quiz-app/README.md
similarity index 96%
rename from translations/pt/quiz-app/README.md
rename to translations/pt-PT/quiz-app/README.md
index e619dd90..515a7d12 100644
--- a/translations/pt/quiz-app/README.md
+++ b/translations/pt-PT/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Questionários
Estes questionários são os questionários pré e pós-aula para o currículo de ciência de dados em https://aka.ms/datascience-beginners
diff --git a/translations/pt/sketchnotes/README.md b/translations/pt-PT/sketchnotes/README.md
similarity index 60%
rename from translations/pt/sketchnotes/README.md
rename to translations/pt-PT/sketchnotes/README.md
index 0a2e90d4..fcc39ddc 100644
--- a/translations/pt/sketchnotes/README.md
+++ b/translations/pt-PT/sketchnotes/README.md
@@ -1,19 +1,10 @@
-
Encontre todas as sketchnotes aqui!
## Créditos
Nitya Narasimhan, artista
-
+
**Aviso Legal**:
Este documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução.
\ No newline at end of file
diff --git a/translations/pt/README.md b/translations/pt/README.md
deleted file mode 100644
index 8fde8075..00000000
--- a/translations/pt/README.md
+++ /dev/null
@@ -1,262 +0,0 @@
-
-# Data Science for Beginners - Um Currículo
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
-
-
-[](https://discord.gg/nTYy5BXMWG)
-
-[](https://aka.ms/foundry/forum)
-
-Os Azure Cloud Advocates na Microsoft têm o prazer de oferecer um currículo de 10 semanas e 20 lições totalmente dedicado à Ciência de Dados. Cada lição inclui questionários pré-lição e pós-lição, instruções escritas para completar a lição, uma solução e um exercício. A nossa pedagogia baseada em projetos permite que aprenda enquanto constrói, uma forma comprovada de fazer as novas competências "ficarem".
-
-**Muitos agradecimentos aos nossos autores:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-
-**🙏 Agradecimentos especiais 🙏 aos nossos autores, revisores e contribuintes de conteúdos do [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** nomeadamente Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
-[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-
-||
-|:---:|
-| Data Science For Beginners - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
-
-### 🌐 Suporte Multilíngue
-
-#### Suportado via GitHub Action (Automatizado & Sempre Atualizado)
-
-
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](./README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-
-> **Prefere Clonar Localmente?**
-
-> Este repositório inclui traduções em mais de 50 idiomas, o que aumenta significativamente o tamanho do download. Para clonar sem traduções, use sparse checkout:
-> ```bash
-> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
-> cd Data-Science-For-Beginners
-> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
-> ```
-> Isto oferece tudo o que precisa para completar o curso com um download muito mais rápido.
-
-
-**Se desejar que idiomas adicionais sejam suportados, estão listados [aqui](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-
-#### Junte-se à Nossa Comunidade
-[](https://discord.gg/nTYy5BXMWG)
-
-Temos uma série de aprendizagem com IA no Discord em andamento, saiba mais e junte-se a nós em [Série Learn with AI](https://aka.ms/learnwithai/discord) entre 18 e 30 de setembro de 2025. Vai receber dicas e truques sobre como usar o GitHub Copilot para Ciência de Dados.
-
-
-
-# É estudante?
-
-Comece com os seguintes recursos:
-
-- [Página Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Nesta página encontrará recursos para iniciantes, packs para estudantes e até formas de obter um voucher de certificação gratuito. Esta é uma página que deve guardar nos favoritos e consultar regularmente, pois trocamos o conteúdo pelo menos uma vez por mês.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Junte-se a uma comunidade global de embaixadores estudantes, esta pode ser a sua porta de entrada para a Microsoft.
-
-# Começar
-
-## 📚 Documentação
-
-- **[Guia de Instalação](INSTALLATION.md)** - Instruções passo a passo para iniciantes
-- **[Guia de Utilização](USAGE.md)** - Exemplos e fluxos de trabalho comuns
-- **[Resolução de Problemas](TROUBLESHOOTING.md)** - Soluções para problemas comuns
-- **[Guia de Contribuição](CONTRIBUTING.md)** - Como contribuir para este projeto
-- **[Para Professores](for-teachers.md)** - Orientação para ensino e recursos para sala de aula
-
-## 👨🎓 Para Estudantes
-> **Iniciantes Totais**: Novo na ciência de dados? Comece com os nossos [exemplos para iniciantes](examples/README.md)! Estes exemplos simples e bem comentados irão ajudá-lo a compreender o básico antes de avançar para o currículo completo.
-> **[Estudantes](https://aka.ms/student-page)**: para usar este currículo por conta própria, faça fork de todo o repositório e complete os exercícios sozinho, começando por um questionário pré-palestra. Depois leia a palestra e complete o resto das atividades. Tente criar os projetos compreendendo as lições e não copiando o código da solução; contudo, esse código está disponível nas pastas /solutions em cada lição orientada a projetos. Outra ideia seria formar um grupo de estudo com amigos e passar juntos pelo conteúdo. Para estudo adicional, recomendamos [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
-
-**Início Rápido:**
-1. Consulte o [Guia de Instalação](INSTALLATION.md) para configurar o seu ambiente
-2. Reveja o [Guia de Utilização](USAGE.md) para aprender a trabalhar com o currículo
-3. Comece pela Lição 1 e avance sequencialmente
-4. Junte-se à nossa [comunidade no Discord](https://aka.ms/ds4beginners/discord) para suporte
-
-## 👩🏫 Para Professores
-
-> **Professores**: incluímos algumas [sugestões](for-teachers.md) sobre como usar este currículo. Adoraríamos receber o seu feedback [no nosso fórum de discussão](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
-## Conheça a Equipa
-[](https://youtu.be/8mzavjQSMM4 "Vídeo promocional")
-
-**Gif por** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-
-> 🎥 Clique na imagem acima para um vídeo sobre o projeto e as pessoas que o criaram!
-
-## Pedagogia
-
-Escolhemos dois princípios pedagógicos ao construir este currículo: garantir que seja baseado em projetos e que inclua questionários frequentes. No final desta série, os estudantes terão aprendido os princípios básicos da ciência de dados, incluindo conceitos éticos, preparação de dados, diferentes formas de trabalhar com dados, visualização de dados, análise de dados, casos práticos do mundo real da ciência de dados e mais.
-
-Além disso, um questionário de baixo risco antes da aula define a intenção do estudante para aprender um tema, enquanto um segundo questionário após a aula assegura uma maior retenção. Este currículo foi desenhado para ser flexível e divertido, podendo ser realizado na íntegra ou em partes. Os projetos começam pequenos e tornam-se progressivamente mais complexos até ao final do ciclo de 10 semanas.
-
-> Encontre o nosso [Código de Conduta](CODE_OF_CONDUCT.md), as diretrizes de [Contributo](CONTRIBUTING.md) e de [Tradução](TRANSLATIONS.md). Agradecemos o seu feedback construtivo!
-
-## Cada aula inclui:
-
-- Sketchnote opcional
-- Vídeo suplementar opcional
-- Questionário pré-aula para aquecimento
-- Aula escrita
-- Para aulas baseadas em projetos, guias passo-a-passo de como construir o projeto
-- Verificações de conhecimento
-- Um desafio
-- Leitura suplementar
-- Trabalho de casa
-- [Questionário pós-aula](https://ff-quizzes.netlify.app/en/)
-
-> **Uma nota sobre os questionários**: Todos os questionários estão contidos na pasta Quiz-App, perfazendo 40 questionários com três perguntas cada. Estão ligados nas aulas, mas a aplicação de questionários pode ser executada localmente ou implementada no Azure; siga as instruções na pasta `quiz-app`. Estão a ser gradualmente localizados.
-
-## 🎓 Exemplos Amigáveis para Iniciantes
-
-**Novo na Ciência de Dados?** Criámos um diretório especial de [exemplos](examples/README.md) com código simples e bem comentado para o ajudar a começar:
-
-- 🌟 **Olá Mundo** - O seu primeiro programa de ciência de dados
-- 📂 **Carregando Dados** - Aprenda a ler e explorar conjuntos de dados
-- 📊 **Análise Simples** - Calcule estatísticas e descubra padrões
-- 📈 **Visualização Básica** - Crie gráficos e diagramas
-- 🔬 **Projeto do Mundo Real** - Fluxo completo do projeto do início ao fim
-
-Cada exemplo inclui comentários detalhados que explicam cada passo, tornando-o perfeito para iniciantes absolutos!
-
-👉 **[Comece pelos exemplos](examples/README.md)** 👈
-
-## Aulas
-
-
-||
-|:---:|
-| Ciência de Dados para Iniciantes: Roteiro - _Sketchnote por [@nitya](https://twitter.com/nitya)_ |
-
-
-| Número da Aula | Tema | Agrupamento da Aula | Objetivos de Aprendizagem | Aula Ligada | Autor |
-| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Definir Ciência de Dados | [Introdução](1-Introduction/README.md) | Aprender os conceitos básicos por trás da ciência de dados e como esta está relacionada com inteligência artificial, aprendizagem automática e big data. | [aula](1-Introduction/01-defining-data-science/README.md) [vídeo](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Ética na Ciência de Dados | [Introdução](1-Introduction/README.md) | Conceitos, desafios e estruturas da ética dos dados. | [aula](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Definir Dados | [Introdução](1-Introduction/README.md) | Como os dados são classificados e suas fontes comuns. | [aula](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Introdução à Estatística e Probabilidade | [Introdução](1-Introduction/README.md) | Técnicas matemáticas de probabilidade e estatística para compreender dados. | [aula](1-Introduction/04-stats-and-probability/README.md) [vídeo](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Trabalhar com Dados Relacionais | [Trabalhar com Dados](2-Working-With-Data/README.md) | Introdução a dados relacionais e o básico de explorar e analisar dados relacionais com a Structured Query Language, também conhecida como SQL (pronuncia-se “si-cuel”). | [aula](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Trabalhar com Dados NoSQL | [Trabalhar com Dados](2-Working-With-Data/README.md) | Introdução a dados não relacionais, os seus vários tipos e o básico de explorar e analisar bases de dados de documentos. | [aula](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Trabalhar com Python | [Trabalhar com Dados](2-Working-With-Data/README.md) | Noções básicas de usar Python para exploração de dados com bibliotecas como Pandas. Recomenda-se conhecimento fundamental em programação Python. | [aula](2-Working-With-Data/07-python/README.md) [vídeo](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Preparação de Dados | [Trabalhar com Dados](2-Working-With-Data/README.md) | Temas sobre técnicas de dados para limpeza e transformação para lidar com desafios como dados em falta, incorretos ou incompletos. | [aula](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Visualizar Quantidades | [Visualização de Dados](3-Data-Visualization/README.md) | Aprenda a usar Matplotlib para visualizar dados de aves 🦆 | [aula](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Visualizar Distribuições de Dados | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizar observações e tendências dentro de um intervalo. | [aula](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Visualizar Proporções | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizar percentagens discretas e agrupadas. | [aula](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Visualizar Relações | [Visualização de Dados](3-Data-Visualization/README.md) | Visualizar ligações e correlações entre conjuntos de dados e suas variáveis. | [aula](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Visualizações Significativas | [Visualização de Dados](3-Data-Visualization/README.md) | Técnicas e orientações para tornar suas visualizações valiosas para resolução eficaz de problemas e descobertas. | [aula](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Introdução ao ciclo de vida da Ciência de Dados | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Introdução ao ciclo de vida da ciência de dados e seu primeiro passo de adquirir e extrair dados. | [aula](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analisar | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase do ciclo de vida da ciência de dados centra-se nas técnicas de análise de dados. | [aula](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Comunicação | [Ciclo de Vida](4-Data-Science-Lifecycle/README.md) | Esta fase do ciclo de vida da ciência de dados centra-se na apresentação dos conhecimentos dos dados de forma a facilitar a compreensão para os decisores. | [aula](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Ciência de Dados na Cloud | [Dados na Cloud](5-Data-Science-In-Cloud/README.md) | Esta série de aulas introduz a ciência de dados na cloud e os seus benefícios. | [aula](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
-| 18 | Ciência de Dados na Cloud | [Dados na Cloud](5-Data-Science-In-Cloud/README.md) | Treinar modelos utilizando ferramentas Low Code. |[aula](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
-| 19 | Ciência de Dados na Cloud | [Dados na Cloud](5-Data-Science-In-Cloud/README.md) | Implementar modelos com Azure Machine Learning Studio. | [aula](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
-| 20 | Ciência de Dados na Prática | [Na Prática](6-Data-Science-In-Wild/README.md) | Projetos de ciência de dados aplicados no mundo real. | [aula](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
-
-## GitHub Codespaces
-
-Siga estes passos para abrir este exemplo num Codespace:
-1. Clique no menu suspenso Código e selecione a opção Abrir com Codespaces.
-2. Selecione + Novo codespace na parte inferior do painel.
-Para mais informações, consulte a [documentação do GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
-
-## VSCode Remote - Containers
-Siga estes passos para abrir este repositório num contentor usando a sua máquina local e o VSCode com a extensão VS Code Remote - Containers:
-
-1. Se for a sua primeira vez a usar um contentor de desenvolvimento, por favor assegure que o seu sistema cumpre os pré-requisitos (ex. ter o Docker instalado) na [documentação de início rápido](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-
-Para usar este repositório, pode abrir o repositório num volume Docker isolado:
-
-**Nota**: Por trás dos bastidores, isto usa o comando Remote-Containers: **Clonar Repositório em Volume de Contentor...** para clonar o código fonte num volume Docker em vez do sistema de ficheiros local. [Volumes](https://docs.docker.com/storage/volumes/) são o mecanismo preferido para persistência de dados de contentores.
-
-Ou abrir uma versão do repositório clonada ou descarregada localmente:
-
-- Clone este repositório para o seu sistema de ficheiros local.
-- Pressione F1 e selecione o comando **Remote-Containers: Abrir Pasta no Contentor...**.
-- Selecione a cópia clonada desta pasta, aguarde o contentor iniciar e experimente.
-
-## Acesso offline
-
-Pode executar esta documentação offline utilizando o [Docsify](https://docsify.js.org/#/). Faça um fork deste repositório, [instale o Docsify](https://docsify.js.org/#/quickstart) na sua máquina local e depois, na pasta raiz deste repositório, escreva `docsify serve`. O site será servido na porta 3000 no seu localhost: `localhost:3000`.
-
-> Nota, notebooks não serão renderizados via Docsify, por isso quando precisar de executar um notebook, faça-o separadamente no VS Code executando um kernel Python.
-
-## Outros Currículos
-
-A nossa equipa produz outros currículos! Veja:
-
-
-### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
-
----
-
-### Azure / Edge / MCP / Agentes
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
-
----
-
-### Série de IA Generativa
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
-
----
-
-### Aprendizagem Base
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
-
----
-
-### Série Copilot
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-
-
-## Obter Ajuda
-
-**Está a ter problemas?** Consulte o nosso [Guia de Resolução de Problemas](TROUBLESHOOTING.md) para soluções aos problemas mais comuns.
-
-Se ficar bloqueado ou tiver alguma dúvida sobre a construção de aplicações de IA, junte-se a outros aprendizes e programadores experientes em discussões sobre o MCP. É uma comunidade de apoio onde as perguntas são bem-vindas e o conhecimento é livremente partilhado.
-
-[](https://discord.gg/nTYy5BXMWG)
-
-Se tiver feedback sobre produtos ou erros enquanto programa, visite:
-
-[](https://aka.ms/foundry/forum)
-
----
-
-
-**Aviso Legal**:
-Este documento foi traduzido utilizando o serviço de tradução automática [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos pela precisão, por favor note que traduções automáticas podem conter erros ou imprecisões. O documento original na sua língua nativa deve ser considerado a fonte autoritária. Para informações críticas, recomenda-se a tradução profissional por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações erradas decorrentes do uso desta tradução.
-
\ No newline at end of file
diff --git a/translations/ro/.co-op-translator.json b/translations/ro/.co-op-translator.json
new file mode 100644
index 00000000..fbb9a0bf
--- /dev/null
+++ b/translations/ro/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:06:43+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-26T15:25:11+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-26T15:26:51+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:57:37+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-26T15:17:31+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T18:32:53+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-26T15:31:51+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T14:07:21+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-26T15:42:57+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "ro"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-26T15:00:05+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "ro"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T12:09:33+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "ro"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:58:11+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "ro"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T18:21:08+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "ro"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-26T14:58:05+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "ro"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:58:53+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "ro"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-26T14:51:58+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "ro"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T18:23:34+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "ro"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-26T14:41:56+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "ro"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-26T14:27:54+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T18:27:27+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-26T17:27:11+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T18:29:10+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-26T16:53:03+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T18:26:56+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-26T17:31:05+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:46:46+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-26T16:57:52+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T18:27:57+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-26T16:47:25+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T16:48:46+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T16:48:07+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-26T17:10:28+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-26T17:13:57+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-26T17:00:55+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-26T17:02:29+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-26T17:21:01+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-26T17:05:23+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-26T17:17:06+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "ro"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-26T16:42:00+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "ro"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:35:48+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "ro"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-26T16:28:21+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "ro"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:35:06+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "ro"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-26T16:32:03+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "ro"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:36:16+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "ro"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-26T16:40:27+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "ro"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-26T16:21:06+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "ro"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T18:19:52+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "ro"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-26T16:10:16+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "ro"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T18:18:42+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "ro"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-26T16:04:48+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "ro"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T18:20:20+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "ro"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-26T16:17:32+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "ro"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-26T15:53:22+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "ro"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:43:35+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "ro"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-26T15:52:11+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "ro"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-26T15:44:16+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "ro"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:39:12+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "ro"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-26T14:24:09+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "ro"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:35:31+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "ro"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:25:21+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "ro"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:23:25+00:00",
+ "source_file": "README.md",
+ "language_code": "ro"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-26T14:25:54+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "ro"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-26T14:21:31+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "ro"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:47:08+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "ro"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:09:27+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "ro"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-26T14:59:04+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "ro"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:07:21+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "ro"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T20:00:59+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "ro"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-26T16:19:53+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "ro"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-26T15:43:41+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "ro"
+ }
+}
\ No newline at end of file
diff --git a/translations/ro/1-Introduction/01-defining-data-science/README.md b/translations/ro/1-Introduction/01-defining-data-science/README.md
index e98f15ef..eec3c1ce 100644
--- a/translations/ro/1-Introduction/01-defining-data-science/README.md
+++ b/translations/ro/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Definirea Științei Datelor
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/ro/1-Introduction/01-defining-data-science/assignment.md b/translations/ro/1-Introduction/01-defining-data-science/assignment.md
index a8e517b8..d5854630 100644
--- a/translations/ro/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/ro/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Tema: Scenarii de Știința Datelor
În această primă temă, vă rugăm să vă gândiți la un proces sau o problemă din viața reală în diferite domenii și cum puteți să o îmbunătățiți folosind procesul de Știința Datelor. Gândiți-vă la următoarele:
diff --git a/translations/ro/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/ro/1-Introduction/01-defining-data-science/solution/assignment.md
index 4fa60075..f91ad456 100644
--- a/translations/ro/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/ro/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Tema: Scenarii de Știința Datelor
În această primă temă, vă rugăm să vă gândiți la un proces sau o problemă din viața reală în diferite domenii și cum puteți îmbunătăți acest proces folosind metodele Științei Datelor. Gândiți-vă la următoarele:
diff --git a/translations/ro/1-Introduction/02-ethics/README.md b/translations/ro/1-Introduction/02-ethics/README.md
index 0ef208b1..fa8fc96b 100644
--- a/translations/ro/1-Introduction/02-ethics/README.md
+++ b/translations/ro/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Introducere în Etica Datelor
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/ro/1-Introduction/02-ethics/assignment.md b/translations/ro/1-Introduction/02-ethics/assignment.md
index 18ea13b5..cfe3cf37 100644
--- a/translations/ro/1-Introduction/02-ethics/assignment.md
+++ b/translations/ro/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Scrie un Studiu de Caz despre Etica Datelor
## Instrucțiuni
diff --git a/translations/ro/1-Introduction/03-defining-data/README.md b/translations/ro/1-Introduction/03-defining-data/README.md
index 8fd179e0..711776e4 100644
--- a/translations/ro/1-Introduction/03-defining-data/README.md
+++ b/translations/ro/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Definirea Datelor
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/ro/1-Introduction/03-defining-data/assignment.md b/translations/ro/1-Introduction/03-defining-data/assignment.md
index 4f3eb13f..4a37b2af 100644
--- a/translations/ro/1-Introduction/03-defining-data/assignment.md
+++ b/translations/ro/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Clasificarea Seturilor de Date
## Instrucțiuni
diff --git a/translations/ro/1-Introduction/04-stats-and-probability/README.md b/translations/ro/1-Introduction/04-stats-and-probability/README.md
index 30e5cb79..69e8f8db 100644
--- a/translations/ro/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/ro/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# O scurtă introducere în statistică și probabilitate
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Pentru a ne ajuta să înțelegem distribuția datelor, este util să vorbim des
Grafic, putem reprezenta relația dintre mediană și quartile într-un diagramă numită **box plot**:
-
+
Aici calculăm și **intervalul inter-quartil** IQR=Q3-Q1 și așa-numitele **valori extreme** - valori care se află în afara limitelor [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/ro/1-Introduction/04-stats-and-probability/assignment.md b/translations/ro/1-Introduction/04-stats-and-probability/assignment.md
index b12e5c97..6cbe1295 100644
--- a/translations/ro/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/ro/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Studiu Mic despre Diabet
În această temă, vom lucra cu un set de date mic despre pacienți cu diabet, preluat de [aici](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/ro/1-Introduction/README.md b/translations/ro/1-Introduction/README.md
index 9dc885b6..434ee7ca 100644
--- a/translations/ro/1-Introduction/README.md
+++ b/translations/ro/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introducere în Știința Datelor

diff --git a/translations/ro/2-Working-With-Data/05-relational-databases/README.md b/translations/ro/2-Working-With-Data/05-relational-databases/README.md
index b4e3c1bf..96384415 100644
--- a/translations/ro/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/ro/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Lucrul cu date: baze de date relaționale
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/ro/2-Working-With-Data/05-relational-databases/assignment.md b/translations/ro/2-Working-With-Data/05-relational-databases/assignment.md
index 702629e7..76b0a45d 100644
--- a/translations/ro/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/ro/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Afișarea datelor despre aeroporturi
Vi s-a oferit o [bază de date](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) construită pe [SQLite](https://sqlite.org/index.html) care conține informații despre aeroporturi. Schema este afișată mai jos. Veți utiliza [extensia SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) în [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) pentru a afișa informații despre aeroporturile din diferite orașe.
diff --git a/translations/ro/2-Working-With-Data/06-non-relational/README.md b/translations/ro/2-Working-With-Data/06-non-relational/README.md
index c0abbdfb..6188017a 100644
--- a/translations/ro/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/ro/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Lucrul cu Date: Date Non-Relationale
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/ro/2-Working-With-Data/06-non-relational/assignment.md b/translations/ro/2-Working-With-Data/06-non-relational/assignment.md
index e5443545..dc3015d7 100644
--- a/translations/ro/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/ro/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Profituri Soda
## Instrucțiuni
diff --git a/translations/ro/2-Working-With-Data/07-python/README.md b/translations/ro/2-Working-With-Data/07-python/README.md
index 259c379f..f6a305a8 100644
--- a/translations/ro/2-Working-With-Data/07-python/README.md
+++ b/translations/ro/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Lucrul cu Date: Python și Biblioteca Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/ro/2-Working-With-Data/07-python/assignment.md b/translations/ro/2-Working-With-Data/07-python/assignment.md
index 1b860b44..93de0b9f 100644
--- a/translations/ro/2-Working-With-Data/07-python/assignment.md
+++ b/translations/ro/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Temă pentru Procesarea Datelor în Python
În această temă, vă vom cere să dezvoltați codul pe care l-am început în provocările noastre. Tema constă din două părți:
diff --git a/translations/ro/2-Working-With-Data/08-data-preparation/README.md b/translations/ro/2-Working-With-Data/08-data-preparation/README.md
index 51abb613..9a46b5ff 100644
--- a/translations/ro/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/ro/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Lucrul cu Date: Pregătirea Datelor
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/ro/2-Working-With-Data/08-data-preparation/assignment.md b/translations/ro/2-Working-With-Data/08-data-preparation/assignment.md
index 639ce37c..91fd0bc4 100644
--- a/translations/ro/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/ro/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Evaluarea Datelor dintr-un Formular
Un client a testat un [formular simplu](../../../../2-Working-With-Data/08-data-preparation/index.html) pentru a colecta câteva informații de bază despre baza lor de clienți. Ei ți-au adus rezultatele pentru a valida datele pe care le-au colectat. Poți deschide pagina `index.html` în browser pentru a arunca o privire asupra formularului.
diff --git a/translations/ro/2-Working-With-Data/README.md b/translations/ro/2-Working-With-Data/README.md
index 5189badf..94f96773 100644
--- a/translations/ro/2-Working-With-Data/README.md
+++ b/translations/ro/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Lucrul cu Date

diff --git a/translations/ro/3-Data-Visualization/09-visualization-quantities/README.md b/translations/ro/3-Data-Visualization/09-visualization-quantities/README.md
index ff2d7880..5872428f 100644
--- a/translations/ro/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/ro/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Vizualizarea Cantităților
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/ro/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/ro/3-Data-Visualization/09-visualization-quantities/assignment.md
index 1a1a1171..41972490 100644
--- a/translations/ro/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/ro/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linii, Puncte și Bare
## Instrucțiuni
diff --git a/translations/ro/3-Data-Visualization/10-visualization-distributions/README.md b/translations/ro/3-Data-Visualization/10-visualization-distributions/README.md
index 3806bdbf..b0f7d8cc 100644
--- a/translations/ro/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/ro/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizarea distribuțiilor
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ro/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/ro/3-Data-Visualization/10-visualization-distributions/assignment.md
index 35e0b656..47e1b55f 100644
--- a/translations/ro/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/ro/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Aplică-ți abilitățile
## Instrucțiuni
diff --git a/translations/ro/3-Data-Visualization/11-visualization-proportions/README.md b/translations/ro/3-Data-Visualization/11-visualization-proportions/README.md
index e0e29b48..f7b5d880 100644
--- a/translations/ro/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/ro/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizarea Proporțiilor
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ro/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/ro/3-Data-Visualization/11-visualization-proportions/assignment.md
index 991ee8e8..7f8ef29c 100644
--- a/translations/ro/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/ro/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Încearcă în Excel
## Instrucțiuni
diff --git a/translations/ro/3-Data-Visualization/12-visualization-relationships/README.md b/translations/ro/3-Data-Visualization/12-visualization-relationships/README.md
index 343f0561..a19ad6cb 100644
--- a/translations/ro/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/ro/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Vizualizarea Relațiilor: Totul despre Miere 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ro/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/ro/3-Data-Visualization/12-visualization-relationships/assignment.md
index ac4a2213..6c1e0313 100644
--- a/translations/ro/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/ro/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Explorează stupul
## Instrucțiuni
diff --git a/translations/ro/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/ro/3-Data-Visualization/13-meaningful-visualizations/README.md
index ba8d59a1..abe94c35 100644
--- a/translations/ro/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/ro/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Crearea Vizualizărilor Semnificative
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ro/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/ro/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 1be91720..479c532d 100644
--- a/translations/ro/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/ro/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Creează-ți propria vizualizare personalizată
## Instrucțiuni
diff --git a/translations/ro/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/ro/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 7e0e13a4..62116a09 100644
--- a/translations/ro/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/ro/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Proiect de vizualizare a datelor Dangerous Liaisons
Pentru a începe, trebuie să te asiguri că ai NPM și Node instalate pe mașina ta. Instalează dependențele (npm install) și apoi rulează proiectul local (npm run serve):
diff --git a/translations/ro/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/ro/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index d1a745cd..58bb5183 100644
--- a/translations/ro/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/ro/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Proiect de vizualizare a datelor Dangerous Liaisons
Pentru a începe, trebuie să te asiguri că ai NPM și Node instalate și funcționale pe calculatorul tău. Instalează dependențele (npm install) și apoi rulează proiectul local (npm run serve):
diff --git a/translations/ro/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/ro/3-Data-Visualization/R/09-visualization-quantities/README.md
index bc0a8479..3e11deef 100644
--- a/translations/ro/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/ro/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Vizualizarea Cantităților
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/ro/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/ro/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 1efc0e2c..c0d2b7cb 100644
--- a/translations/ro/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/ro/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linii, Dispersii și Bare
## Instrucțiuni
diff --git a/translations/ro/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/ro/3-Data-Visualization/R/10-visualization-distributions/README.md
index 6b70b4f1..e6ce8529 100644
--- a/translations/ro/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/ro/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizarea distribuțiilor
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ro/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/ro/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index f8a68bc9..b537b497 100644
--- a/translations/ro/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/ro/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Aplică-ți abilitățile
## Instrucțiuni
diff --git a/translations/ro/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/ro/3-Data-Visualization/R/11-visualization-proportions/README.md
index 49646b5d..2c726554 100644
--- a/translations/ro/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/ro/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizarea Proporțiilor
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ro/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/ro/3-Data-Visualization/R/12-visualization-relationships/README.md
index 8c1d0819..de17b893 100644
--- a/translations/ro/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/ro/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Vizualizarea Relațiilor: Totul Despre Miere 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ro/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/ro/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index a4ef0b25..1d922b06 100644
--- a/translations/ro/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/ro/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Crearea Vizualizărilor Semnificative
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ro/3-Data-Visualization/README.md b/translations/ro/3-Data-Visualization/README.md
index ad6e6a67..cd52688a 100644
--- a/translations/ro/3-Data-Visualization/README.md
+++ b/translations/ro/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Vizualizări

diff --git a/translations/ro/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/ro/4-Data-Science-Lifecycle/14-Introduction/README.md
index 41adcf9e..6413a2e4 100644
--- a/translations/ro/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/ro/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introducere în Ciclu de Viață al Științei Datelor
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/ro/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/ro/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 3d4bf163..738830c9 100644
--- a/translations/ro/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/ro/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Evaluarea unui set de date
Un client a contactat echipa ta pentru ajutor în investigarea obiceiurilor sezoniere de cheltuieli ale clienților de taxi din New York City.
diff --git a/translations/ro/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/ro/4-Data-Science-Lifecycle/15-analyzing/README.md
index 9bdb91dd..4c696cd2 100644
--- a/translations/ro/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/ro/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Ciclu de viață al științei datelor: Analiză
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/ro/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/ro/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 66bed814..27b047b8 100644
--- a/translations/ro/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/ro/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Explorarea răspunsurilor
Aceasta este o continuare a [temei](../14-Introduction/assignment.md) din lecția anterioară, unde am analizat pe scurt setul de date. Acum vom analiza mai în detaliu datele.
diff --git a/translations/ro/4-Data-Science-Lifecycle/16-communication/README.md b/translations/ro/4-Data-Science-Lifecycle/16-communication/README.md
index f02b3814..f6e35f50 100644
--- a/translations/ro/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/ro/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Ciclul de viață al științei datelor: Comunicarea
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/ro/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/ro/4-Data-Science-Lifecycle/16-communication/assignment.md
index 23af6e10..0fe50b5d 100644
--- a/translations/ro/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/ro/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Spune o poveste
## Instrucțiuni
diff --git a/translations/ro/4-Data-Science-Lifecycle/README.md b/translations/ro/4-Data-Science-Lifecycle/README.md
index af3c9ba5..38e4a08c 100644
--- a/translations/ro/4-Data-Science-Lifecycle/README.md
+++ b/translations/ro/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Ciclu de Viață în Știința Datelor

diff --git a/translations/ro/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/ro/5-Data-Science-In-Cloud/17-Introduction/README.md
index fc823c4c..41d9b208 100644
--- a/translations/ro/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/ro/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introducere în Știința Datelor în Cloud
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/ro/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/ro/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 1f329a4e..33162b39 100644
--- a/translations/ro/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/ro/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Cercetare de Piață
## Instrucțiuni
diff --git a/translations/ro/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/ro/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 9f74f8c1..374b1f6b 100644
--- a/translations/ro/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/ro/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Știința Datelor în Cloud: Metoda "Low code/No code"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/ro/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/ro/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 983b6143..65827315 100644
--- a/translations/ro/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/ro/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Proiect de Data Science cu cod redus/fără cod pe Azure ML
## Instrucțiuni
diff --git a/translations/ro/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/ro/5-Data-Science-In-Cloud/19-Azure/README.md
index fa8d9b18..5ce62fc8 100644
--- a/translations/ro/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/ro/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Știința Datelor în Cloud: Metoda "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/ro/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/ro/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 24dd8340..12ed3438 100644
--- a/translations/ro/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/ro/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Proiect de Data Science folosind Azure ML SDK
## Instrucțiuni
diff --git a/translations/ro/5-Data-Science-In-Cloud/README.md b/translations/ro/5-Data-Science-In-Cloud/README.md
index 29f72fb4..38b7e4b7 100644
--- a/translations/ro/5-Data-Science-In-Cloud/README.md
+++ b/translations/ro/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Știința Datelor în Cloud

diff --git a/translations/ro/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/ro/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index f0205fc3..b30170f1 100644
--- a/translations/ro/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/ro/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Știința Datelor în Lumea Reală
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/ro/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/ro/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 55adbf4e..a917dcfa 100644
--- a/translations/ro/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/ro/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Explorează un Set de Date din Planetary Computer
## Instrucțiuni
diff --git a/translations/ro/6-Data-Science-In-Wild/README.md b/translations/ro/6-Data-Science-In-Wild/README.md
index 6b49f8fe..26a3583c 100644
--- a/translations/ro/6-Data-Science-In-Wild/README.md
+++ b/translations/ro/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Știința Datelor în Lumea Reală
Aplicații reale ale științei datelor în diverse industrii.
diff --git a/translations/ro/AGENTS.md b/translations/ro/AGENTS.md
index 6a03adcb..d2ef1c98 100644
--- a/translations/ro/AGENTS.md
+++ b/translations/ro/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Prezentare Generală a Proiectului
diff --git a/translations/ro/CODE_OF_CONDUCT.md b/translations/ro/CODE_OF_CONDUCT.md
index fc10139c..5be110a6 100644
--- a/translations/ro/CODE_OF_CONDUCT.md
+++ b/translations/ro/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Codul de Conduită pentru Proiectele Open Source Microsoft
Acest proiect a adoptat [Codul de Conduită pentru Proiectele Open Source Microsoft](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/ro/CONTRIBUTING.md b/translations/ro/CONTRIBUTING.md
index 69bec4ce..e24e1ccc 100644
--- a/translations/ro/CONTRIBUTING.md
+++ b/translations/ro/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Contribuind la Data Science pentru Începători
Mulțumim pentru interesul de a contribui la curriculumul Data Science pentru Începători! Salutăm contribuțiile din partea comunității.
diff --git a/translations/ro/INSTALLATION.md b/translations/ro/INSTALLATION.md
index f8b30bc0..f8b816fb 100644
--- a/translations/ro/INSTALLATION.md
+++ b/translations/ro/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Ghid de Instalare
Acest ghid te va ajuta să configurezi mediul pentru a lucra cu curriculumul Data Science pentru Începători.
diff --git a/translations/ro/README.md b/translations/ro/README.md
index ecf718e0..b25a7263 100644
--- a/translations/ro/README.md
+++ b/translations/ro/README.md
@@ -1,12 +1,3 @@
-
# Data Science pentru Începători - Un Curriculum
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,27 +17,27 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Avocații Azure Cloud de la Microsoft sunt încântați să ofere un curriculum de 10 săptămâni, cu 20 de lecții, despre Data Science. Fiecare lecție include chestionare înainte și după lecție, instrucțiuni scrise pentru a finaliza lecția, o soluție și o temă. Pedagogia noastră bazată pe proiecte vă permite să învățați în timp ce construiți, o metodă dovedită pentru ca noile abilități să „se fixeze”.
+Azure Cloud Advocates de la Microsoft sunt încântați să ofere un curriculum de 10 săptămâni, cu 20 de lecții, despre Data Science. Fiecare lecție include teste înainte și după lecție, instrucțiuni scrise pentru completarea lecției, o soluție și un exercițiu. Pedagogia noastră bazată pe proiect vă permite să învățați în timp ce construiți, o metodă dovedită ca noile abilități să se „fixeze”.
**Mulțumiri călduroase autorilor noștri:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Mulțumiri speciale 🙏 autorilor, recenzorilor și colaboratorilor de conținut ai [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** în special Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Mulțumiri speciale 🙏 autorilor, recenzorilor și colaboratorilor de conținut [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** în special Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Data Science pentru Începători - _Sketchnote de [@nitya](https://twitter.com/nitya)_ |
+| Data Science Pentru Începători - _Sketchnote de [@nitya](https://twitter.com/nitya)_ |
### 🌐 Suport Multilingv
-#### Susținut prin GitHub Action (Automatizat & Întotdeauna Actualizat)
+#### Suportat prin GitHub Action (Automat și Întotdeauna Actualizat)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](./README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](./README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
> **Preferi să clonezi local?**
-> Acest depozit include traduceri în peste 50 de limbi care cresc semnificativ dimensiunea descărcării. Pentru a clona fără traduceri, folosește sparse checkout:
+> Acest depozit include peste 50 de traduceri în limbi care cresc semnificativ dimensiunea descărcării. Pentru a clona fără traduceri, folosește sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
@@ -55,60 +46,60 @@ Avocații Azure Cloud de la Microsoft sunt încântați să ofere un curriculum
> Acest lucru îți oferă tot ce ai nevoie pentru a finaliza cursul cu o descărcare mult mai rapidă.
-**Dacă dorești să existe și alte limbi de traducere suportate, acestea sunt listate [aici](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Dacă dorești să fie suportate limbi suplimentare de traducere, acestea sunt listate [aici](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Alătură-te Comunității Noastre
+#### Alătură-te Comunității Noastre
[](https://discord.gg/nTYy5BXMWG)
-Avem o serie Discord de învățare cu AI în desfășurare, află mai multe și alătură-te la [Learn with AI Series](https://aka.ms/learnwithai/discord) în perioada 18 - 30 septembrie 2025. Vei primi sfaturi și trucuri despre folosirea GitHub Copilot pentru Data Science.
+Avem în desfășurare o serie Discord "Learn with AI", află mai multe și alătură-te la [Learn with AI Series](https://aka.ms/learnwithai/discord) între 18 - 30 septembrie 2025. Vei primi sfaturi și trucuri pentru folosirea GitHub Copilot în Data Science.
-
+
# Ești student?
Începe cu următoarele resurse:
-- [Pagina Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Pe această pagină vei găsi resurse pentru începători, pachete pentru Studenți și chiar modalități de a obține un voucher de certificare gratuit. Aceasta este o pagină pe care vrei să o adaugi la favorite și să o verifici din când în când deoarece conținutul se schimbă cel puțin lunar.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Alătură-te unei comunități globale de ambasadori studenți, aceasta ar putea fi calea ta către Microsoft.
+- [Pagina Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Pe această pagină găsești resurse pentru începători, pachete pentru studenți și chiar modalități de a obține un voucher gratuit pentru certificare. Aceasta este o pagină pe care vrei să o marchezi și să o verifici din când în când deoarece înlocuim conținutul cel puțin lunar.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Alătură-te unei comunități globale de ambasadori studenți, acest lucru ar putea fi calea ta spre Microsoft.
-# Începutul
+# Începe
## 📚 Documentație
-- **[Ghid de Instalare](INSTALLATION.md)** - Instrucțiuni pas cu pas pentru configurare pentru începători
-- **[Ghid de Utilizare](USAGE.md)** - Exemple și fluxuri de lucru comune
-- **[Depanare](TROUBLESHOOTING.md)** - Soluții pentru probleme comune
-- **[Ghid de Contribuire](CONTRIBUTING.md)** - Cum să contribui la acest proiect
-- **[Pentru Profesori](for-teachers.md)** - Ghid pentru predare și resurse pentru clasă
+- **[Ghid de instalare](INSTALLATION.md)** - Instrucțiuni pas cu pas pentru configurația începătorilor
+- **[Ghid de utilizare](USAGE.md)** - Exemple și fluxuri de lucru comune
+- **[Depanare](TROUBLESHOOTING.md)** - Soluții pentru probleme frecvente
+- **[Ghid pentru contribuții](CONTRIBUTING.md)** - Cum să contribui la acest proiect
+- **[Pentru profesori](for-teachers.md)** - Ghidare pentru predare și resurse pentru clasă
## 👨🎓 Pentru Studenți
-> **Începători Completi**: Ești nou în data science? Începe cu [exemplele prietenoase pentru începători](examples/README.md)! Aceste exemple simple și bine comentate te vor ajuta să înțelegi bazele înainte de a te avânta în curriculumul complet.
-> **[Studenți](https://aka.ms/student-page)**: pentru a folosi acest curriculum pe cont propriu, dă fork întregului repo și finalizează exercițiile de unul singur, începând cu un chestionar pre-lectură. Apoi citește lecția și finalizează restul activităților. Încearcă să creezi proiectele înțelegând lecțiile și nu copiază codul soluției; totuși, codul este disponibil în directoarele /solutions din fiecare lecție orientată pe proiecte. O altă idee ar fi să formezi un grup de studiu cu prietenii și să parcurgeți conținutul împreună. Pentru studiu suplimentar, recomandăm [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Începători Compleți**: Ești nou în data science? Începe cu [exemplele noastre prietenoase pentru începători](examples/README.md)! Aceste exemple simple, bine comentate, te vor ajuta să înțelegi bazele înainte de a începe curriculum-ul complet.
+> **[Studenți](https://aka.ms/student-page)**: pentru a folosi acest curriculum pe cont propriu, fă fork la tot repo-ul și realizează singur exercițiile, începând cu un quiz pre-lectură. Apoi citește lecția și realizează restul activităților. Încearcă să creezi proiectele înțelegând lecțiile, nu copiază codul soluției; totuși, codul este disponibil în folderele /solutions din fiecare lecție orientată pe proiect. O altă idee ar fi să formezi un grup de studiu cu prietenii și să parcurgeți conținutul împreună. Pentru studii suplimentare, recomandăm [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
-**Start rapid:**
-1. Verifică [Ghidul de Instalare](INSTALLATION.md) pentru a-ți configura mediul
-2. Consultă [Ghidul de Utilizare](USAGE.md) pentru a învăța cum să lucrezi cu curriculumul
-3. Începe cu Lecția 1 și continuă secvențial
+**Pornire rapidă:**
+1. Consultă [Ghidul de instalare](INSTALLATION.md) pentru configurarea mediului
+2. Revizuiește [Ghidul de utilizare](USAGE.md) pentru a învăța cum să folosești curriculum-ul
+3. Începe cu Lecția 1 și lucrează în ordine
4. Alătură-te comunității noastre [Discord](https://aka.ms/ds4beginners/discord) pentru suport
## 👩🏫 Pentru Profesori
-> **Profesori**: am inclus [câteva sugestii](for-teachers.md) despre cum să folosiți acest curriculum. Ne-ar plăcea să primim feedback de la voi [în forumul nostru de discuții](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+> **Profesori**: am [inclus câteva sugestii](for-teachers.md) despre cum să folosiți acest curriculum. Ne-ar plăcea să primim feedback [în forumul nostru de discuții](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## Cunoaște Echipa
-## Echipa
-[](https://youtu.be/8mzavjQSMM4 "Promo video")
+[](https://youtu.be/8mzavjQSMM4 "Video promo")
**Gif de** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Dă clic pe imaginea de mai sus pentru un videoclip despre proiect și persoanele care l-au creat!
+> 🎥 Apasă pe imaginea de mai sus pentru un video despre proiect și oamenii care l-au creat!
## Pedagogie
-Am ales două principii pedagogice în construirea acestui curriculum: să fie bazat pe proiecte și să includă chestionare frecvente. La finalul acestei serii, studenții vor fi învățat principii de bază ale științei datelor, inclusiv concepte etice, pregătirea datelor, diverse moduri de a lucra cu datele, vizualizarea datelor, analiza datelor, cazuri de utilizare din lumea reală a științei datelor și multe altele.
+Am ales două principii pedagogice în construirea acestui curriculum: asigurarea că este bazat pe proiecte și că include frecvent chestionare. La finalul acestei serii, studenții vor fi învățat principiile de bază ale științei datelor, inclusiv concepte etice, pregătirea datelor, diferite moduri de a lucra cu date, vizualizarea datelor, analiza datelor, cazuri de utilizare în lumea reală a științei datelor și altele.
-În plus, un chestionar cu miză redusă înaintea unei ore setează intenția studentului de a învăța un subiect, iar un al doilea chestionar după oră asigură o reținere suplimentară. Acest curriculum a fost conceput să fie flexibil și distractiv și poate fi parcurse integral sau parțial. Proiectele încep mici și devin din ce în ce mai complexe până la sfârșitul ciclului de 10 săptămâni.
+În plus, un chestionar cu miză redusă înaintea unei clase setează intenția studentului către învățarea unui subiect, în timp ce un al doilea chestionar după clasă asigură o retenție suplimentară. Acest curriculum a fost conceput să fie flexibil și distractiv și poate fi urmat integral sau parțial. Proiectele încep mic și devin din ce în ce mai complexe până la finalul ciclului de 10 săptămâni.
-> Găsiți [Codul nostru de conduită](CODE_OF_CONDUCT.md), [Contribuire](CONTRIBUTING.md), [Ghidurile de traducere](TRANSLATIONS.md). Apreciem feedback-ul vostru constructiv!
+> Găsește [Codul nostru de conduită](CODE_OF_CONDUCT.md), [Ghidul de contribuție](CONTRIBUTING.md), [Ghidul de traduceri](TRANSLATIONS.md). Așteptăm cu drag feedback-ul tău constructiv!
## Fiecare lecție include:
@@ -116,95 +107,95 @@ Am ales două principii pedagogice în construirea acestui curriculum: să fie b
- Video suplimentar opțional
- Chestionar de încălzire înainte de lecție
- Lecție scrisă
-- Pentru lecțiile bazate pe proiecte, ghiduri pas cu pas pentru construirea proiectului
+- Pentru lecțiile bazate pe proiect, ghid pas cu pas pentru realizarea proiectului
- Verificări de cunoștințe
-- Provocare
-- Lectură suplimentară
+- O provocare
+- Lecturi suplimentare
- Temă
-- [Chestionar post-lectie](https://ff-quizzes.netlify.app/en/)
+- [Chestionar post-lecție](https://ff-quizzes.netlify.app/en/)
-> **O notă despre chestionare**: Toate chestionarele se găsesc în folderul Quiz-App, în total 40 de chestionare cu câte trei întrebări fiecare. Sunt legate din lecții, dar aplicația se poate rula local sau implementa pe Azure; urmați instrucțiunile din folderul `quiz-app`. Se traduc treptat.
+> **O notă despre chestionare**: Toate chestionarele sunt conținute în folderul Quiz-App, pentru un total de 40 de chestionare a câte trei întrebări fiecare. Ele sunt linkate din interiorul lecțiilor, dar aplicația de chestionare poate fi rulată local sau implementată în Azure; urmează instrucțiunile din folderul `quiz-app`. Acestea sunt localizate treptat.
-## 🎓 Exemple prietenoase pentru începători
+## 🎓 Exemple Prietenoase pentru Începători
-**Ești nou în Știința Datelor?** Am creat un director special cu [exemple](examples/README.md) cu cod simplu și bine comentat pentru a te ajuta să începi:
+**Ești nou în Știința Datelor?** Am creat un director special [exemple](examples/README.md) cu cod simplu și bine comentat pentru a te ajuta să începi:
- 🌟 **Hello World** - Primul tău program de știință a datelor
-- 📂 **Încărcarea datelor** - Învață să citești și să explorezi seturi de date
-- 📊 **Analiză simplă** - Calculează statistici și găsește tipare
-- 📈 **Vizualizare de bază** - Creează grafice și diagrame
-- 🔬 **Proiect din lumea reală** - Flux complet de lucru de la început până la final
+- 📂 **Încărcarea Datelor** - Învață să citești și să explorezi seturi de date
+- 📊 **Analiză Simplă** - Calculează statistici și găsește tipare
+- 📈 **Vizualizare de Bază** - Creează grafice și diagrame
+- 🔬 **Proiect din Lumea Reală** - Flux complet de lucru de la început până la sfârșit
-Fiecare exemplu include comentarii detaliate care explică fiecare pas, fiind perfect pentru începători absoluți!
+Fiecare exemplu include comentarii detaliate care explică fiecare pas, fiind perfect pentru începătorii absoluți!
👉 **[Începe cu exemplele](examples/README.md)** 👈
## Lecții
-||
+||
|:---:|
-| Știința Datelor Pentru Începători: Roadmap - _Sketchnote de [@nitya](https://twitter.com/nitya)_ |
+| Știința Datelor pentru Începători: Plan - _Sketchnote de [@nitya](https://twitter.com/nitya)_ |
-| Numărul lecției | Subiect | Grupare lecție | Obiective de învățare | Lecție legată | Autor |
-| :-------------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Definirea Științei Datelor | [Introducere](1-Introduction/README.md) | Învață conceptele de bază din spatele științei datelor și cum este aceasta legată de inteligența artificială, învățarea automată și big data. | [lecție](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| Număr Lecție | Subiect | Grupare Lecție | Obiective de Învățare | Lecție Linkuită | Autor |
+| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
+| 01 | Definirea Științei Datelor | [Introducere](1-Introduction/README.md) | Învață conceptele de bază din spatele științei datelor și cum este legată de inteligența artificială, învățarea automată și big data. | [lecție](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Etica în Știința Datelor | [Introducere](1-Introduction/README.md) | Concepte, provocări și cadre etice în știința datelor. | [lecție](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Definirea Datelor | [Introducere](1-Introduction/README.md) | Cum se clasifică datele și sursele lor comune. | [lecție](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Introducere în Statistică & Probabilitate | [Introducere](1-Introduction/README.md) | Tehnicile matematice ale probabilității și statisticii pentru a înțelege datele. | [lecție](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Lucrul cu date relaționale | [Lucrul cu date](2-Working-With-Data/README.md) | Introducere în date relaționale și elementele de bază ale explorării și analizei datelor relaționale cu SQL (limbajul de interogare structurat, pronunțat „see-quell”). | [lecție](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Lucrul cu date NoSQL | [Lucrul cu date](2-Working-With-Data/README.md) | Introducere în date non-relaționale, tipurile lor diverse și elementele de bază ale explorării și analizei bazelor de date document. | [lecție](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Lucrul cu Python | [Lucrul cu date](2-Working-With-Data/README.md) | Elemente de bază ale utilizării Python pentru explorarea datelor cu biblioteci precum Pandas. Se recomandă o înțelegere de bază a programării în Python. | [lecție](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Pregătirea datelor | [Lucrul cu date](2-Working-With-Data/README.md) | Tehnici de curățare și transformare a datelor pentru a face față provocărilor legate de date lipsă, inexacte sau incomplete. | [lecție](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Vizualizarea cantităților | [Vizualizare date](3-Data-Visualization/README.md) | Învață să folosești Matplotlib pentru a vizualiza date despre păsări 🦆 | [lecție](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Vizualizarea distribuțiilor de date | [Vizualizare date](3-Data-Visualization/README.md) | Vizualizarea observațiilor și tendințelor într-un interval. | [lecție](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Vizualizarea proporțiilor | [Vizualizare date](3-Data-Visualization/README.md) | Vizualizarea procentajelor discrete și grupate. | [lecție](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Vizualizarea relațiilor | [Vizualizare date](3-Data-Visualization/README.md) | Vizualizarea conexiunilor și corelațiilor între seturi de date și variabilele lor. | [lecție](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Vizualizări relevante | [Vizualizare date](3-Data-Visualization/README.md) | Tehnici și îndrumări pentru a face vizualizările tale valoroase pentru rezolvarea eficientă a problemelor și obținerea de insight-uri. | [lecție](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Introducere în ciclul de viață al științei datelor | [Ciclu de viață](4-Data-Science-Lifecycle/README.md) | Introducerea ciclului de viață al științei datelor și primul pas al acestuia: obținerea și extragerea datelor. | [lecție](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analiza | [Ciclu de viață](4-Data-Science-Lifecycle/README.md) | Această fază a ciclului de viață al științei datelor se concentrează pe tehnici de analiză a datelor. | [lecție](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Comunicare | [Ciclu de viață](4-Data-Science-Lifecycle/README.md) | Această fază a ciclului de viață al științei datelor se concentrează pe prezentarea insight-urilor extrase din date într-un mod ce ușurează înțelegerea decidenților. | [lecție](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Știința datelor în cloud | [Date în cloud](5-Data-Science-In-Cloud/README.md) | Această serie de lecții introduce știința datelor în cloud și beneficiile acesteia. | [lecție](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) și [Maud](https://twitter.com/maudstweets) |
-| 18 | Știința datelor în cloud | [Date în cloud](5-Data-Science-In-Cloud/README.md) | Antrenarea modelelor folosind unelte Low Code. |[lecție](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) și [Maud](https://twitter.com/maudstweets) |
-| 19 | Știința datelor în cloud | [Date în cloud](5-Data-Science-In-Cloud/README.md) | Deployarea modelelor cu Azure Machine Learning Studio. | [lecție](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) și [Maud](https://twitter.com/maudstweets) |
-| 20 | Știința datelor în teren | [În teren](6-Data-Science-In-Wild/README.md) | Proiecte bazate pe știința datelor în lumea reală. | [lecție](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Definirea Datelor | [Introducere](1-Introduction/README.md) | Cum sunt clasificate datele și sursele comune ale acestora. | [lecție](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Introducere în Statistică & Probabilitate | [Introducere](1-Introduction/README.md) | Tehnici matematice de probabilitate și statistică pentru a înțelege datele. | [lecție](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Lucrul cu Date Relaționale | [Lucrul cu Date](2-Working-With-Data/README.md) | Introducere în date relaționale și elemente de bază pentru explorarea și analiza datelor relaționale cu limbajul Structured Query Language, cunoscut și ca SQL (pronunțat "see-quell"). | [lecție](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Lucrul cu Date NoSQL | [Lucrul cu Date](2-Working-With-Data/README.md) | Introducere în datele non-relaționale, tipurile acestora și elementele de bază ale explorării și analizei bazelor de date de tip document. | [lecție](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Lucrul cu Python | [Lucrul cu Date](2-Working-With-Data/README.md) | Elemente de bază pentru utilizarea Python în explorarea datelor folosind biblioteci precum Pandas. Se recomandă înțelegerea de bază a programării în Python. | [lecție](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Pregătirea Datelor | [Lucrul cu Date](2-Working-With-Data/README.md) | Subiecte despre tehnici de curățare și transformare a datelor pentru a face față provocărilor legate de date lipsă, inexacte sau incomplete. | [lecție](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Vizualizarea Cantităților | [Vizualizarea Datelor](3-Data-Visualization/README.md) | Învață să folosești Matplotlib pentru a vizualiza date despre păsări 🦆 | [lecție](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Vizualizarea Distribuțiilor Datelor | [Vizualizarea Datelor](3-Data-Visualization/README.md) | Vizualizarea observațiilor și tendințelor într-un interval. | [lecție](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Vizualizarea Proporțiilor | [Vizualizarea Datelor](3-Data-Visualization/README.md) | Vizualizarea procentajelor discrete și grupate. | [lecție](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Vizualizarea Relațiilor | [Vizualizarea Datelor](3-Data-Visualization/README.md) | Vizualizarea conexiunilor și corelațiilor între seturi de date și variabilele acestora. | [lecție](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Vizualizări Semnificative | [Vizualizarea Datelor](3-Data-Visualization/README.md) | Tehnici și recomandări pentru a face vizualizările valoroase pentru rezolvarea eficientă a problemelor și obținerea de perspective. | [lecție](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Introducere în ciclul de viață al științei datelor | [Ciclu de Viață](4-Data-Science-Lifecycle/README.md) | Introducere în ciclul de viață al științei datelor și prima etapă de achiziție și extragere a datelor. | [lecție](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Analiză | [Ciclu de Viață](4-Data-Science-Lifecycle/README.md) | Această fază a ciclului de viață al științei datelor se concentrează pe tehnici de analiză a datelor. | [lecție](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Comunicare | [Ciclu de Viață](4-Data-Science-Lifecycle/README.md) | Această fază a ciclului de viață al științei datelor se concentrează pe prezentarea insight-urilor din date într-un mod care facilitează înțelegerea de către factorii de decizie. | [lecție](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Știința Datelor în Cloud | [Date în Cloud](5-Data-Science-In-Cloud/README.md) | Această serie de lecții introduce știința datelor în cloud și beneficiile sale. | [lecție](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) și [Maud](https://twitter.com/maudstweets) |
+| 18 | Știința Datelor în Cloud | [Date în Cloud](5-Data-Science-In-Cloud/README.md) | Antrenarea modelelor folosind instrumente Low Code. |[lecție](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) și [Maud](https://twitter.com/maudstweets) |
+| 19 | Știința Datelor în Cloud | [Date în Cloud](5-Data-Science-In-Cloud/README.md) | Implementarea modelelor cu Azure Machine Learning Studio. | [lecție](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) și [Maud](https://twitter.com/maudstweets) |
+| 20 | Știința Datelor în Lumea Reală | [În Lumea Reală](6-Data-Science-In-Wild/README.md) | Proiecte conduse de știința datelor în lumea reală. | [lecție](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Urmărește acești pași pentru a deschide acest exemplu într-un Codespace:
-1. Fă clic pe meniul derulant Code și selectează opțiunea Open with Codespaces.
+Urmează acești pași pentru a deschide acest exemplu într-un Codespace:
+1. Apasă meniul derulant Code și selectează opțiunea Open with Codespaces.
2. Selectează + New codespace în partea de jos a panoului.
-Pentru mai multe informații, consultă [documentația GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+Pentru mai multe informații, vezi [documentația GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
-## VSCode Remote - Containere
-Urmărește acești pași pentru a deschide acest repo într-un container folosind mașina ta locală și VSCode prin extensia VS Code Remote - Containers:
+## VSCode Remote - Containers
+Urmează acești pași pentru a deschide acest depozit într-un container folosind mașina ta locală și VSCode cu extensia VS Code Remote - Containers:
-1. Dacă folosești pentru prima dată un container de dezvoltare, asigură-te că sistemul tău îndeplinește cerințele necesare (ex. Docker instalat) conform [documentației de început](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Dacă folosești pentru prima dată un container de dezvoltare, asigură-te că sistemul tău îndeplinește cerințele prealabile (adică ai instalat Docker) în [documentația de introducere](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Pentru a folosi acest depozit, poți deschide fie depozitul într-un volum Docker izolat:
-**Notă**: În fundal, acest lucru va folosi comanda Remote-Containers: **Clone Repository in Container Volume...** pentru a clona codul sursă într-un volum Docker în loc de sistemul de fișiere local. [Volumele](https://docs.docker.com/storage/volumes/) sunt mecanismul preferat pentru persistența datelor containerelor.
+**Notă**: În spate, acest lucru va folosi comanda Remote-Containers: **Clone Repository in Container Volume...** pentru a clona codul sursă într-un volum Docker în loc de sistemul local de fișiere. [Volumele](https://docs.docker.com/storage/volumes/) sunt mecanismul preferat pentru persistarea datelor containerului.
-Sau poți deschide o versiune clonată local sau descărcată a depozitului:
+Sau deschide o versiune clonată sau descărcată local a depozitului:
-- Clonează acest depozit în sistemul tău local.
+- Clonează acest depozit pe sistemul tău local.
- Apasă F1 și selectează comanda **Remote-Containers: Open Folder in Container...**.
-- Selectează copia clonată a acestui folder, așteaptă să pornească containerul și încearcă funcționalitățile.
+- Selectează copie clonată a acestui folder, așteaptă să pornească containerul și încearcă.
## Acces offline
-Poți rula această documentație offline folosind [Docsify](https://docsify.js.org/#/). Fă fork la acest repo, [instalează Docsify](https://docsify.js.org/#/quickstart) pe mașina ta locală, apoi în dosarul rădăcină al acestui repo scrie `docsify serve`. Site-ul va fi servit pe portul 3000 de pe localhost: `localhost:3000`.
+Poți rula această documentație offline folosind [Docsify](https://docsify.js.org/#/). Fork-uiește acest repo, [instalează Docsify](https://docsify.js.org/#/quickstart) pe mașina ta locală, apoi în folderul rădăcină al acestui repo, tastează `docsify serve`. Site-ul va fi servit pe portul 3000 la localhost-ul tău: `localhost:3000`.
-> Notă, notebook-urile nu vor fi redate prin Docsify, deci când ai nevoie să rulezi un notebook, fă acest lucru separat în VS Code folosind un kernel Python.
+> Atenție, notebook-urile nu vor fi randate prin Docsify, așa că când trebuie să rulezi un notebook, fă-o separat în VS Code folosind un kernel Python.
-## Alte curriculumuri
+## Alte Curriculumuri
Echipa noastră produce și alte curriculumuri! Vezi:
### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchain4j-for-beginners)
[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
@@ -217,11 +208,11 @@ Echipa noastră produce și alte curriculumuri! Vezi:
---
-### Seria AI Generativă
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+### Seria Inteligenței Generative
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
@@ -237,26 +228,26 @@ Echipa noastră produce și alte curriculumuri! Vezi:
---
### Seria Copilot
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Obținerea Ajutorului
-**Întâmpinați probleme?** Consultați [Ghidul pentru Rezolvarea Problemelor](TROUBLESHOOTING.md) pentru soluții la probleme comune.
+**Întâmpini probleme?** Consultă [Ghidul de depanare](TROUBLESHOOTING.md) pentru soluții la probleme frecvente.
-Dacă întâmpinați dificultăți sau aveți întrebări despre crearea aplicațiilor AI, alăturați-vă altor cursanți și dezvoltatori experimentați în discuții despre MCP. Este o comunitate de susținere unde întrebările sunt binevenite și cunoștințele sunt împărtășite liber.
+Dacă te blochezi sau ai întrebări legate de crearea aplicațiilor AI. Alătură-te altor învățăcei și dezvoltatori experimentați în discuții despre MCP. Este o comunitate de sprijin unde întrebările sunt binevenite și cunoștințele sunt împărtășite liber.
[](https://discord.gg/nTYy5BXMWG)
-Dacă aveți sugestii de produs sau întâmpinați erori în timpul dezvoltării, vizitați:
+Dacă ai feedback despre produs sau erori în timpul dezvoltării vizitează:
[](https://aka.ms/foundry/forum)
---
-**Declinare de responsabilitate**:
-Acest document a fost tradus folosind serviciul de traducere automată AI [Co-op Translator](https://github.com/Azure/co-op-translator). Deși ne străduim să oferim acuratețe, vă rugăm să rețineți că traducerile automate pot conține erori sau inexactități. Documentul original, în limba sa nativă, trebuie considerat sursa autorizată. Pentru informații critice, se recomandă traducerea profesională realizată de un traducător uman. Nu ne asumăm responsabilitatea pentru eventualele neînțelegeri sau interpretări greșite care pot apărea în urma utilizării acestei traduceri.
+**Declinare a responsabilității**:
+Acest document a fost tradus folosind serviciul de traducere automată AI [Co-op Translator](https://github.com/Azure/co-op-translator). Deși ne străduim pentru acuratețe, vă rugăm să rețineți că traducerile automate pot conține erori sau inexactități. Documentul original în limba sa nativă trebuie considerat sursa autoritară. Pentru informații critice, se recomandă traducerea profesională realizată de un specialist uman. Nu ne asumăm responsabilitatea pentru eventualele neînțelegeri sau interpretări greșite care pot apărea în urma utilizării acestei traduceri.
\ No newline at end of file
diff --git a/translations/ro/SECURITY.md b/translations/ro/SECURITY.md
index 3d55bf87..4a1ed9b3 100644
--- a/translations/ro/SECURITY.md
+++ b/translations/ro/SECURITY.md
@@ -1,12 +1,3 @@
-
## Securitate
Microsoft tratează cu maximă seriozitate securitatea produselor și serviciilor noastre software, inclusiv toate depozitele de cod sursă gestionate prin organizațiile noastre GitHub, care includ [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) și [organizațiile noastre GitHub](https://opensource.microsoft.com/).
diff --git a/translations/ro/SUPPORT.md b/translations/ro/SUPPORT.md
index 2111c9e8..e199771e 100644
--- a/translations/ro/SUPPORT.md
+++ b/translations/ro/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Suport
## Cum să raportezi probleme și să obții ajutor
diff --git a/translations/ro/TROUBLESHOOTING.md b/translations/ro/TROUBLESHOOTING.md
index 53504a8e..1b3f6621 100644
--- a/translations/ro/TROUBLESHOOTING.md
+++ b/translations/ro/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Ghid de depanare
Acest ghid oferă soluții pentru problemele comune pe care le puteți întâmpina în timp ce lucrați cu curriculumul Data Science for Beginners.
diff --git a/translations/ro/USAGE.md b/translations/ro/USAGE.md
index 0abff1f9..c5066c32 100644
--- a/translations/ro/USAGE.md
+++ b/translations/ro/USAGE.md
@@ -1,12 +1,3 @@
-
# Ghid de Utilizare
Acest ghid oferă exemple și fluxuri de lucru comune pentru utilizarea curriculumului „Data Science for Beginners”.
diff --git a/translations/ro/docs/_sidebar.md b/translations/ro/docs/_sidebar.md
index c6cd5208..5aef8570 100644
--- a/translations/ro/docs/_sidebar.md
+++ b/translations/ro/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Introducere
- [Definirea Științei Datelor](../1-Introduction/01-defining-data-science/README.md)
- [Etica în Știința Datelor](../1-Introduction/02-ethics/README.md)
diff --git a/translations/ro/examples/README.md b/translations/ro/examples/README.md
index 33b6a459..5a97bc95 100644
--- a/translations/ro/examples/README.md
+++ b/translations/ro/examples/README.md
@@ -1,12 +1,3 @@
-
# Exemple de Știința Datelor pentru Începători
Bine ai venit în directorul de exemple! Această colecție de exemple simple, bine comentate, este concepută pentru a te ajuta să începi cu știința datelor, chiar dacă ești complet începător.
diff --git a/translations/ro/for-teachers.md b/translations/ro/for-teachers.md
index 761b0319..7619a65d 100644
--- a/translations/ro/for-teachers.md
+++ b/translations/ro/for-teachers.md
@@ -1,12 +1,3 @@
-
## Pentru Educatori
Doriți să folosiți acest curriculum în sala de clasă? Vă rugăm, simțiți-vă liberi!
diff --git a/translations/ro/quiz-app/README.md b/translations/ro/quiz-app/README.md
index 9d530bec..8471b9fb 100644
--- a/translations/ro/quiz-app/README.md
+++ b/translations/ro/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Chestionare
Aceste chestionare sunt chestionarele de dinaintea și de după lecții pentru curriculumul de știința datelor de la https://aka.ms/datascience-beginners
diff --git a/translations/ro/sketchnotes/README.md b/translations/ro/sketchnotes/README.md
index 3b3cd645..dd2b2bea 100644
--- a/translations/ro/sketchnotes/README.md
+++ b/translations/ro/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Găsește toate notițele schițate aici!
## Credite
diff --git a/translations/ru/.co-op-translator.json b/translations/ru/.co-op-translator.json
new file mode 100644
index 00000000..edd8619a
--- /dev/null
+++ b/translations/ru/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:35:13+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "ru"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-27T09:03:14+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "ru"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-27T09:04:08+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "ru"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:01:10+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "ru"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-27T08:55:56+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "ru"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-06T06:17:27+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "ru"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-27T09:07:55+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "ru"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T12:52:34+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "ru"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-27T09:16:47+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "ru"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-27T08:43:29+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "ru"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T10:29:14+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "ru"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:52:20+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "ru"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-06T06:06:54+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "ru"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-27T08:41:22+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "ru"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:22:44+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "ru"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-27T08:36:40+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "ru"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-06T06:08:48+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "ru"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-27T08:29:31+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "ru"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-27T08:18:41+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-06T06:12:38+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-27T10:45:47+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-06T06:14:11+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-27T10:15:54+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-06T06:12:09+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-27T10:49:55+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:27:03+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-27T10:20:30+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-06T06:13:10+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-27T10:10:36+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T10:11:49+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T10:11:15+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-27T10:29:24+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-27T10:33:59+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-27T10:21:07+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-27T10:24:18+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-27T10:38:07+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-27T10:24:55+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-27T10:34:36+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "ru"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-27T10:05:32+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "ru"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:18:40+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "ru"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-27T09:53:36+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "ru"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:18:01+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "ru"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-27T09:57:12+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "ru"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:19:01+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "ru"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-27T10:04:50+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "ru"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-27T09:47:43+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "ru"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-06T06:05:51+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "ru"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-27T09:38:35+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "ru"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-06T06:04:27+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "ru"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-27T09:33:32+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "ru"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-06T06:06:16+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "ru"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-27T09:45:21+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "ru"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-27T09:25:32+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "ru"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:13:22+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "ru"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-27T09:24:24+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "ru"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-27T09:18:09+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "ru"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:01:41+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "ru"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-27T08:15:53+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "ru"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:22:06+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "ru"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:14:25+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "ru"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:06:40+00:00",
+ "source_file": "README.md",
+ "language_code": "ru"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-27T08:16:27+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "ru"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-27T08:13:52+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "ru"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:29:52+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "ru"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:52:49+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "ru"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-27T08:42:08+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "ru"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:56:07+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "ru"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:51:59+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "ru"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-27T09:46:09+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "ru"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-27T09:17:43+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "ru"
+ }
+}
\ No newline at end of file
diff --git a/translations/ru/1-Introduction/01-defining-data-science/README.md b/translations/ru/1-Introduction/01-defining-data-science/README.md
index a2bf3624..309265e5 100644
--- a/translations/ru/1-Introduction/01-defining-data-science/README.md
+++ b/translations/ru/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Определение науки о данных
| ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/ru/1-Introduction/01-defining-data-science/assignment.md b/translations/ru/1-Introduction/01-defining-data-science/assignment.md
index 4d406660..e69f91d2 100644
--- a/translations/ru/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/ru/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Задание: Сценарии использования науки о данных
В этом первом задании мы предлагаем вам подумать о каком-либо реальном процессе или проблеме в различных областях и о том, как вы можете улучшить их с помощью процесса науки о данных. Подумайте о следующем:
diff --git a/translations/ru/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/ru/1-Introduction/01-defining-data-science/solution/assignment.md
index 8d8a9095..0c48d115 100644
--- a/translations/ru/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/ru/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Задание: Сценарии использования Data Science
В этом первом задании мы просим вас подумать о каком-либо реальном процессе или проблеме в различных областях, и о том, как вы можете улучшить их с помощью процесса Data Science. Подумайте о следующем:
diff --git a/translations/ru/1-Introduction/02-ethics/README.md b/translations/ru/1-Introduction/02-ethics/README.md
index 5693af38..0b075c2e 100644
--- a/translations/ru/1-Introduction/02-ethics/README.md
+++ b/translations/ru/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Введение в этику данных
|](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/ru/1-Introduction/02-ethics/assignment.md b/translations/ru/1-Introduction/02-ethics/assignment.md
index 7073d6e5..71f3a80b 100644
--- a/translations/ru/1-Introduction/02-ethics/assignment.md
+++ b/translations/ru/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Напишите кейс по этике данных
## Инструкции
diff --git a/translations/ru/1-Introduction/03-defining-data/README.md b/translations/ru/1-Introduction/03-defining-data/README.md
index 8b69b23e..4e2accbd 100644
--- a/translations/ru/1-Introduction/03-defining-data/README.md
+++ b/translations/ru/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Определение данных
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/ru/1-Introduction/03-defining-data/assignment.md b/translations/ru/1-Introduction/03-defining-data/assignment.md
index 59d9ec76..3bdb3ca9 100644
--- a/translations/ru/1-Introduction/03-defining-data/assignment.md
+++ b/translations/ru/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Классификация наборов данных
## Инструкции
diff --git a/translations/ru/1-Introduction/04-stats-and-probability/README.md b/translations/ru/1-Introduction/04-stats-and-probability/README.md
index 9bca718e..611b57ed 100644
--- a/translations/ru/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/ru/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Краткое введение в статистику и теорию вероятностей
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
Графически мы можем представить связь между медианой и квартилями в диаграмме, называемой **боксплот**:
-
+
Здесь мы также вычисляем **межквартильный размах** IQR=Q3-Q1 и так называемые **выбросы** — значения, которые лежат за пределами [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/ru/1-Introduction/04-stats-and-probability/assignment.md b/translations/ru/1-Introduction/04-stats-and-probability/assignment.md
index 3c05ceed..782ea77b 100644
--- a/translations/ru/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/ru/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Небольшое исследование диабета
В этом задании мы будем работать с небольшим набором данных пациентов с диабетом, взятых [здесь](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/ru/1-Introduction/README.md b/translations/ru/1-Introduction/README.md
index a3b95d47..b2efa0c4 100644
--- a/translations/ru/1-Introduction/README.md
+++ b/translations/ru/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Введение в науку о данных

diff --git a/translations/ru/2-Working-With-Data/05-relational-databases/README.md b/translations/ru/2-Working-With-Data/05-relational-databases/README.md
index 321700df..cb424453 100644
--- a/translations/ru/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/ru/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Работа с данными: реляционные базы данных
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/ru/2-Working-With-Data/05-relational-databases/assignment.md b/translations/ru/2-Working-With-Data/05-relational-databases/assignment.md
index 8ee943b2..737e98bf 100644
--- a/translations/ru/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/ru/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Отображение данных аэропортов
Вам предоставлена [база данных](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db), созданная на основе [SQLite](https://sqlite.org/index.html), которая содержит информацию об аэропортах. Схема базы данных представлена ниже. Вы будете использовать [расширение SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) в [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) для отображения информации об аэропортах различных городов.
diff --git a/translations/ru/2-Working-With-Data/06-non-relational/README.md b/translations/ru/2-Working-With-Data/06-non-relational/README.md
index 874855bf..e6df424f 100644
--- a/translations/ru/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/ru/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Работа с данными: Нереляционные данные
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/ru/2-Working-With-Data/06-non-relational/assignment.md b/translations/ru/2-Working-With-Data/06-non-relational/assignment.md
index 5bbbd988..534223f0 100644
--- a/translations/ru/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/ru/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Прибыль от продажи газировки
## Инструкции
diff --git a/translations/ru/2-Working-With-Data/07-python/README.md b/translations/ru/2-Working-With-Data/07-python/README.md
index ee3dbf9a..83aef5ce 100644
--- a/translations/ru/2-Working-With-Data/07-python/README.md
+++ b/translations/ru/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Работа с данными: Python и библиотека Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/ru/2-Working-With-Data/07-python/assignment.md b/translations/ru/2-Working-With-Data/07-python/assignment.md
index d24123fc..cb7ba2c8 100644
--- a/translations/ru/2-Working-With-Data/07-python/assignment.md
+++ b/translations/ru/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Задание по обработке данных на Python
В этом задании вам предстоит доработать код, который мы начали разрабатывать в наших упражнениях. Задание состоит из двух частей:
diff --git a/translations/ru/2-Working-With-Data/08-data-preparation/README.md b/translations/ru/2-Working-With-Data/08-data-preparation/README.md
index afc15002..c697cc39 100644
--- a/translations/ru/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/ru/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Работа с данными: Подготовка данных
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/ru/2-Working-With-Data/08-data-preparation/assignment.md b/translations/ru/2-Working-With-Data/08-data-preparation/assignment.md
index 6a451740..bdc5699f 100644
--- a/translations/ru/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/ru/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Оценка данных из формы
Клиент тестировал [небольшую форму](../../../../2-Working-With-Data/08-data-preparation/index.html) для сбора базовой информации о своей клиентской базе. Они предоставили вам свои результаты для проверки собранных данных. Вы можете открыть страницу `index.html` в браузере, чтобы ознакомиться с формой.
diff --git a/translations/ru/2-Working-With-Data/README.md b/translations/ru/2-Working-With-Data/README.md
index 7d8ee1e8..7d331ae6 100644
--- a/translations/ru/2-Working-With-Data/README.md
+++ b/translations/ru/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Работа с данными

diff --git a/translations/ru/3-Data-Visualization/09-visualization-quantities/README.md b/translations/ru/3-Data-Visualization/09-visualization-quantities/README.md
index a9840a7a..e3bc9f5b 100644
--- a/translations/ru/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/ru/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Визуализация количеств
|](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/ru/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/ru/3-Data-Visualization/09-visualization-quantities/assignment.md
index 5fe094fc..5d2f3531 100644
--- a/translations/ru/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/ru/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Линии, точки и столбцы
## Инструкции
diff --git a/translations/ru/3-Data-Visualization/10-visualization-distributions/README.md b/translations/ru/3-Data-Visualization/10-visualization-distributions/README.md
index 50f3e218..e4e9c7b9 100644
--- a/translations/ru/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/ru/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Визуализация распределений
|](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ru/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/ru/3-Data-Visualization/10-visualization-distributions/assignment.md
index 8b5a2439..4fa87f44 100644
--- a/translations/ru/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/ru/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Примените свои навыки
## Инструкции
diff --git a/translations/ru/3-Data-Visualization/11-visualization-proportions/README.md b/translations/ru/3-Data-Visualization/11-visualization-proportions/README.md
index 24df2812..f8d6aad4 100644
--- a/translations/ru/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/ru/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Визуализация пропорций
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ru/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/ru/3-Data-Visualization/11-visualization-proportions/assignment.md
index 452c8340..ecb9ecf4 100644
--- a/translations/ru/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/ru/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Попробуйте в Excel
## Инструкции
diff --git a/translations/ru/3-Data-Visualization/12-visualization-relationships/README.md b/translations/ru/3-Data-Visualization/12-visualization-relationships/README.md
index f69b3eb5..7bd1d6f8 100644
--- a/translations/ru/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/ru/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Визуализация связей: всё о мёде 🍯
|](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ru/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/ru/3-Data-Visualization/12-visualization-relationships/assignment.md
index ddf2f960..f775f25f 100644
--- a/translations/ru/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/ru/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Погружение в пчелиный улей
## Инструкции
diff --git a/translations/ru/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/ru/3-Data-Visualization/13-meaningful-visualizations/README.md
index f5fab00d..a04259e3 100644
--- a/translations/ru/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/ru/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Создание значимых визуализаций
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ru/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/ru/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index becabac2..e1e28b0f 100644
--- a/translations/ru/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/ru/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Создайте свою собственную визуализацию
## Инструкции
diff --git a/translations/ru/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/ru/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 5eda0dfa..d65d166d 100644
--- a/translations/ru/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/ru/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Проект визуализации данных "Опасные связи"
Чтобы начать работу, убедитесь, что у вас установлены NPM и Node на вашем компьютере. Установите зависимости (npm install), а затем запустите проект локально (npm run serve):
diff --git a/translations/ru/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/ru/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 54e3eb89..b990f9be 100644
--- a/translations/ru/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/ru/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Проект визуализации данных "Опасные связи"
Чтобы начать работу, убедитесь, что у вас установлены NPM и Node на вашем компьютере. Установите зависимости (npm install), а затем запустите проект локально (npm run serve):
diff --git a/translations/ru/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/ru/3-Data-Visualization/R/09-visualization-quantities/README.md
index 61b5a175..28844d74 100644
--- a/translations/ru/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/ru/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Визуализация количеств
|](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/ru/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/ru/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 1921600a..d1446242 100644
--- a/translations/ru/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/ru/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Линии, точечные диаграммы и столбцы
## Инструкции
diff --git a/translations/ru/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/ru/3-Data-Visualization/R/10-visualization-distributions/README.md
index 1a20d154..5bc0729b 100644
--- a/translations/ru/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/ru/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Визуализация распределений
|](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ru/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/ru/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 5a34c958..e39aacba 100644
--- a/translations/ru/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/ru/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Примените свои навыки
## Инструкции
diff --git a/translations/ru/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/ru/3-Data-Visualization/R/11-visualization-proportions/README.md
index e0017746..ebd8fcfa 100644
--- a/translations/ru/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/ru/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Визуализация пропорций
|](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ru/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/ru/3-Data-Visualization/R/12-visualization-relationships/README.md
index b072dd6a..0ea5943c 100644
--- a/translations/ru/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/ru/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Визуализация связей: всё о мёде 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ru/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/ru/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 91a26a39..e743a635 100644
--- a/translations/ru/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/ru/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Создание значимых визуализаций
|](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ru/3-Data-Visualization/README.md b/translations/ru/3-Data-Visualization/README.md
index 4f32403d..4c6e3591 100644
--- a/translations/ru/3-Data-Visualization/README.md
+++ b/translations/ru/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Визуализации

diff --git a/translations/ru/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/ru/4-Data-Science-Lifecycle/14-Introduction/README.md
index 0925001b..9d181172 100644
--- a/translations/ru/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/ru/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Введение в жизненный цикл Data Science
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/ru/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/ru/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 94662c13..c75586df 100644
--- a/translations/ru/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/ru/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Оценка набора данных
Клиент обратился к вашей команде за помощью в исследовании сезонных привычек расходов пассажиров такси в Нью-Йорке.
diff --git a/translations/ru/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/ru/4-Data-Science-Lifecycle/15-analyzing/README.md
index 163610d3..3df9e79d 100644
--- a/translations/ru/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/ru/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Жизненный цикл Data Science: Анализ
|](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/ru/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/ru/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 5f1ab3de..0e425d1a 100644
--- a/translations/ru/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/ru/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Исследование ответов
Это продолжение [задания](../14-Introduction/assignment.md) из предыдущего урока, где мы кратко ознакомились с набором данных. Теперь мы будем изучать данные более подробно.
diff --git a/translations/ru/4-Data-Science-Lifecycle/16-communication/README.md b/translations/ru/4-Data-Science-Lifecycle/16-communication/README.md
index 37dd24f1..a5a5df34 100644
--- a/translations/ru/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/ru/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Жизненный цикл Data Science: Коммуникация
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/ru/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/ru/4-Data-Science-Lifecycle/16-communication/assignment.md
index 1e7cff92..5421a7ee 100644
--- a/translations/ru/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/ru/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Расскажите историю
## Инструкции
diff --git a/translations/ru/4-Data-Science-Lifecycle/README.md b/translations/ru/4-Data-Science-Lifecycle/README.md
index 1b4e05fb..7d02e285 100644
--- a/translations/ru/4-Data-Science-Lifecycle/README.md
+++ b/translations/ru/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Жизненный цикл Data Science

diff --git a/translations/ru/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/ru/5-Data-Science-In-Cloud/17-Introduction/README.md
index a1396678..549ea439 100644
--- a/translations/ru/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/ru/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Введение в науку о данных в облаке
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/ru/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/ru/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 50096b0b..cf11de41 100644
--- a/translations/ru/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/ru/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Исследование рынка
## Инструкции
diff --git a/translations/ru/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/ru/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 28f6f2f2..41ea51d9 100644
--- a/translations/ru/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/ru/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Data Science в облаке: подход "Low code/No code"
|](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/ru/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/ru/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 11e7c934..6e219e9e 100644
--- a/translations/ru/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/ru/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Проект Data Science с использованием Low code/No code на Azure ML
## Инструкции
diff --git a/translations/ru/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/ru/5-Data-Science-In-Cloud/19-Azure/README.md
index a2fd979b..1cd1a071 100644
--- a/translations/ru/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/ru/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Data Science в облаке: подход "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/ru/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/ru/5-Data-Science-In-Cloud/19-Azure/assignment.md
index df634192..9bbc454e 100644
--- a/translations/ru/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/ru/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Проект Data Science с использованием Azure ML SDK
## Инструкции
diff --git a/translations/ru/5-Data-Science-In-Cloud/README.md b/translations/ru/5-Data-Science-In-Cloud/README.md
index ab71317e..26cc497c 100644
--- a/translations/ru/5-Data-Science-In-Cloud/README.md
+++ b/translations/ru/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Наука о данных в облаке

diff --git a/translations/ru/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/ru/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index b33d93cb..09063ff6 100644
--- a/translations/ru/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/ru/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Data Science в реальном мире
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/ru/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/ru/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index b4d2feae..a6212b88 100644
--- a/translations/ru/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/ru/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Изучение набора данных Planetary Computer
## Инструкции
diff --git a/translations/ru/6-Data-Science-In-Wild/README.md b/translations/ru/6-Data-Science-In-Wild/README.md
index 000ce620..4021b093 100644
--- a/translations/ru/6-Data-Science-In-Wild/README.md
+++ b/translations/ru/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Data Science в реальном мире
Применение науки о данных в различных отраслях.
diff --git a/translations/ru/AGENTS.md b/translations/ru/AGENTS.md
index b8925120..7c530a22 100644
--- a/translations/ru/AGENTS.md
+++ b/translations/ru/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Обзор проекта
diff --git a/translations/ru/CODE_OF_CONDUCT.md b/translations/ru/CODE_OF_CONDUCT.md
index 9cd01865..a83767d7 100644
--- a/translations/ru/CODE_OF_CONDUCT.md
+++ b/translations/ru/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Кодекс поведения Microsoft для проектов с открытым исходным кодом
Этот проект принял [Кодекс поведения Microsoft для проектов с открытым исходным кодом](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/ru/CONTRIBUTING.md b/translations/ru/CONTRIBUTING.md
index a29d66fa..0d866e23 100644
--- a/translations/ru/CONTRIBUTING.md
+++ b/translations/ru/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Вклад в проект "Основы Data Science"
Спасибо за ваш интерес к участию в разработке учебного курса "Основы Data Science"! Мы приветствуем вклад от сообщества.
diff --git a/translations/ru/INSTALLATION.md b/translations/ru/INSTALLATION.md
index 7eea1385..0c92b8e2 100644
--- a/translations/ru/INSTALLATION.md
+++ b/translations/ru/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Руководство по установке
Это руководство поможет вам настроить среду для работы с учебной программой «Основы Data Science».
diff --git a/translations/ru/README.md b/translations/ru/README.md
index b8250fb4..70a0e325 100644
--- a/translations/ru/README.md
+++ b/translations/ru/README.md
@@ -1,206 +1,197 @@
-
-# Data Science для начинающих - учебный план
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+# Data Science для начинающих — Учебная программа
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
[](http://makeapullrequest.com)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
-Адвокаты облаков Azure в Microsoft рады предложить учебный план по Data Science длительностью 10 недель и включающий 20 уроков. Каждый урок включает тесты до и после урока, письменные инструкции для выполнения, решение и задание. Наш проектно-ориентированный подход позволяет учиться на практике, что доказано помогает новым навыкам "закрепиться".
+Azure Cloud Advocates в Microsoft рады предложить 10-недельную программу из 20 уроков по Data Science. Каждый урок включает опросы до и после урока, письменные инструкции для выполнения урока, решение и задание. Наша проектно-ориентированная педагогика позволяет учиться на практике — проверенный способ закрепления новых навыков.
-**Искренняя благодарность нашим авторам:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Большая благодарность нашим авторам:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Особая благодарность 🙏 нашим авторам, рецензентам и контентным участникам из [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** в частности Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Особая благодарность 🙏 нашим авторам, рецензентам и участникам контента из числа [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** в частности Аариану Арора, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Data Science для начинающих - _Скетчноут от [@nitya](https://twitter.com/nitya)_ |
+| Data Science Для начинающих — _Скетчноут от [@nitya](https://twitter.com/nitya)_ |
### 🌐 Многоязычная поддержка
-#### Поддерживается через GitHub Action (автоматически и всегда актуально)
+#### Поддерживается через GitHub Action (автоматизировано и всегда актуально)
-[Арабский](../ar/README.md) | [Бенгальский](../bn/README.md) | [Болгарский](../bg/README.md) | [Бирманский (Мьянма)](../my/README.md) | [Китайский (упрощённый)](../zh/README.md) | [Китайский (традиционный, Гонконг)](../hk/README.md) | [Китайский (традиционный, Макао)](../mo/README.md) | [Китайский (традиционный, Тайвань)](../tw/README.md) | [Хорватский](../hr/README.md) | [Чешский](../cs/README.md) | [Датский](../da/README.md) | [Голландский](../nl/README.md) | [Эстонский](../et/README.md) | [Финский](../fi/README.md) | [Французский](../fr/README.md) | [Немецкий](../de/README.md) | [Греческий](../el/README.md) | [Иврит](../he/README.md) | [Хинди](../hi/README.md) | [Венгерский](../hu/README.md) | [Индонезийский](../id/README.md) | [Итальянский](../it/README.md) | [Японский](../ja/README.md) | [Каннада](../kn/README.md) | [Корейский](../ko/README.md) | [Литовский](../lt/README.md) | [Малайский](../ms/README.md) | [Малаялам](../ml/README.md) | [Маратхи](../mr/README.md) | [Непальский](../ne/README.md) | [Нигерийский пиджин](../pcm/README.md) | [Норвежский](../no/README.md) | [Персидский (фарси)](../fa/README.md) | [Польский](../pl/README.md) | [Португальский (Бразилия)](../br/README.md) | [Португальский (Португалия)](../pt/README.md) | [Панджаби (Гурмукхи)](../pa/README.md) | [Румынский](../ro/README.md) | [Русский](./README.md) | [Сербский (кириллица)](../sr/README.md) | [Словацкий](../sk/README.md) | [Словенский](../sl/README.md) | [Испанский](../es/README.md) | [Свахили](../sw/README.md) | [Шведский](../sv/README.md) | [Тагальский (Филиппины)](../tl/README.md) | [Тамильский](../ta/README.md) | [Телугу](../te/README.md) | [Тайский](../th/README.md) | [Турецкий](../tr/README.md) | [Украинский](../uk/README.md) | [Урду](../ur/README.md) | [Вьетнамский](../vi/README.md)
+[Арабский](../ar/README.md) | [Бенгальский](../bn/README.md) | [Болгарский](../bg/README.md) | [Бирманский (Мьянма)](../my/README.md) | [Китайский (упрощённый)](../zh-CN/README.md) | [Китайский (традиционный, Гонконг)](../zh-HK/README.md) | [Китайский (традиционный, Макао)](../zh-MO/README.md) | [Китайский (традиционный, Тайвань)](../zh-TW/README.md) | [Хорватский](../hr/README.md) | [Чешский](../cs/README.md) | [Датский](../da/README.md) | [Нидерландский](../nl/README.md) | [Эстонский](../et/README.md) | [Финский](../fi/README.md) | [Французский](../fr/README.md) | [Немецкий](../de/README.md) | [Греческий](../el/README.md) | [Иврит](../he/README.md) | [Хинди](../hi/README.md) | [Венгерский](../hu/README.md) | [Индонезийский](../id/README.md) | [Итальянский](../it/README.md) | [Японский](../ja/README.md) | [Каннада](../kn/README.md) | [Корейский](../ko/README.md) | [Литовский](../lt/README.md) | [Малайский](../ms/README.md) | [Малаялам](../ml/README.md) | [Маратхи](../mr/README.md) | [Непальский](../ne/README.md) | [Нигерийский пиджин](../pcm/README.md) | [Норвежский](../no/README.md) | [Персидский (Фарси)](../fa/README.md) | [Польский](../pl/README.md) | [Португальский (Бразилия)](../pt-BR/README.md) | [Португальский (Португалия)](../pt-PT/README.md) | [Пенджаби (Гурмукхи)](../pa/README.md) | [Румынский](../ro/README.md) | [Русский](./README.md) | [Сербский (кириллица)](../sr/README.md) | [Словацкий](../sk/README.md) | [Словенский](../sl/README.md) | [Испанский](../es/README.md) | [Суахили](../sw/README.md) | [Шведский](../sv/README.md) | [Тагалог (филиппинский)](../tl/README.md) | [Тамильский](../ta/README.md) | [Телугу](../te/README.md) | [Тайский](../th/README.md) | [Турецкий](../tr/README.md) | [Украинский](../uk/README.md) | [Урду](../ur/README.md) | [Вьетнамский](../vi/README.md)
> **Предпочитаете клонировать локально?**
-> Этот репозиторий включает более 50 языков переводов, что значительно увеличивает размер загрузки. Чтобы клонировать без переводов, используйте sparse checkout:
+> Этот репозиторий содержит более 50 языковых переводов, что сильно увеличивает размер загрузки. Чтобы клонировать без переводов, используйте sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Это даёт всё необходимое для прохождения курса с гораздо более быстрой загрузкой.
+> Это даст вам всё необходимое для прохождения курса с гораздо более быстрой загрузкой.
-**Если вы хотите добавить поддержку дополнительных языков перевода, они перечислены [здесь](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Если вы хотите, чтобы были добавлены дополнительные языки переводов, их список доступен [здесь](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Присоединяйтесь к нашему сообществу
+#### Присоединяйтесь к нашему сообществу
[](https://discord.gg/nTYy5BXMWG)
-У нас продолжается серия занятий в Discord "Учимся с ИИ", узнайте больше и присоединяйтесь к нам на [Learn with AI Series](https://aka.ms/learnwithai/discord) с 18 по 30 сентября 2025 года. Вы получите советы и рекомендации по использованию GitHub Copilot для Data Science.
+У нас идет серия обучения с AI в Discord, узнайте больше и присоединяйтесь к нам на [Learn with AI Series](https://aka.ms/learnwithai/discord) с 18 по 30 сентября 2025 года. Вы получите советы и хитрости по использованию GitHub Copilot для Data Science.
-
+
# Вы студент?
Начните с следующих ресурсов:
-- [Страница студента](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) На этой странице вы найдете ресурсы для начинающих, комплекты для студентов и даже способы получить бесплатный сертификат. Это страница, которую стоит добавить в закладки и периодически проверять, так как мы обновляем контент минимум раз в месяц.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Присоединяйтесь к глобальному сообществу студенческих послов, это может стать вашим входом в Microsoft.
+- [Страница Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) На этой странице вы найдете ресурсы для начинающих, наборы для студентов и даже способы получить бесплатный ваучер на сертификацию. Это страница, которую стоит добавить в закладки и периодически проверять, так как мы обновляем контент как минимум раз в месяц.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Присоединяйтесь к глобальному сообществу студенческих послов, это может быть вашим входом в Microsoft.
# Начало работы
## 📚 Документация
-- **[Руководство по установке](INSTALLATION.md)** - Пошаговые инструкции по настройке для начинающих
-- **[Руководство по использованию](USAGE.md)** - Примеры и распространённые рабочие процессы
-- **[Устранение неполадок](TROUBLESHOOTING.md)** - Решения распространённых проблем
-- **[Руководство по внесению вклада](CONTRIBUTING.md)** - Как внести свой вклад в этот проект
-- **[Для преподавателей](for-teachers.md)** - Руководство по преподаванию и материалы для класса
+- **[Руководство по установке](INSTALLATION.md)** — Пошаговые инструкции для начинающих
+- **[Руководство пользователя](USAGE.md)** — Примеры и распространённые сценарии работы
+- **[Устранение неполадок](TROUBLESHOOTING.md)** — Решения распространённых проблем
+- **[Руководство для контрибьюторов](CONTRIBUTING.md)** — Как внести вклад в этот проект
+- **[Для преподавателей](for-teachers.md)** — Рекомендации по преподаванию и материалы для класса
## 👨🎓 Для студентов
-> **Полные новички**: Новичок в Data Science? Начните с наших [простых примеров для начинающих](examples/README.md)! Эти простые, хорошо комментируемые примеры помогут вам понять основы перед тем, как углубиться в учебный план.
-> **[Студенты](https://aka.ms/student-page)**: чтобы использовать этот учебный план самостоятельно, форкните весь репозиторий и выполняйте упражнения самостоятельно, начиная с теста перед лекцией. Затем читайте лекцию и выполняйте остальные задания. Старайтесь создавать проекты, понимая уроки, а не просто копируя код решения; однако код доступен в папках /solutions в каждом ориентированном на проекты уроке. Еще одна идея — сформировать учебную группу с друзьями и изучать материал вместе. Для дальнейшего изучения рекомендуем [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Абсолютные новички**: новичок в data science? Начните с наших [примеров для начинающих](examples/README.md)! Эти простые, хорошо прокомментированные примеры помогут вам понять основы перед изучением всей программы.
+> **[Студенты](https://aka.ms/student-page)**: чтобы использовать эту учебную программу самостоятельно, сделайте форк всего репозитория и выполните упражнения самостоятельно, начиная с викторины перед лекцией. Затем прочитайте лекцию и выполните остальные задания. Старайтесь создавать проекты, понимая уроки, а не просто копируя код решений; однако этот код доступен в папках /solutions для каждого урока, ориентированного на проекты. Ещё одна идея — объединиться в учебную группу с друзьями и проходить материал вместе. Для дальнейшего изучения мы рекомендуем [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Быстрый старт:**
-1. Ознакомьтесь с [Руководством по установке](INSTALLATION.md) для настройки окружения
-2. Просмотрите [Руководство по использованию](USAGE.md), чтобы узнать, как работать с учебным планом
-3. Начинайте с Урока 1 и проходите уроки по порядку
-4. Присоединяйтесь к нашему [сообществу в Discord](https://aka.ms/ds4beginners/discord) для поддержки
+1. Ознакомьтесь с [Руководством по установке](INSTALLATION.md), чтобы настроить среду
+2. Изучите [Руководство пользователя](USAGE.md), чтобы узнать, как работать с программой
+3. Начните с урока 1 и проходите уроки последовательно
+4. Присоединяйтесь к нашему [сообществу Discord](https://aka.ms/ds4beginners/discord) для поддержки
## 👩🏫 Для преподавателей
-> **Преподаватели**: мы включили [несколько предложений](for-teachers.md) по использованию этого учебного плана. Мы будем рады вашему отзыву [в нашем форуме обсуждений](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+> **Преподавателям**: мы подготовили [некоторые рекомендации](for-teachers.md) по использованию этой учебной программы. Нам будет приятно получить ваш отзыв [в нашем форуме обсуждений](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## Встречайте Команду
-## Познакомьтесь с командой
[](https://youtu.be/8mzavjQSMM4 "Промо видео")
-**Гифка от** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+**GIF от** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
> 🎥 Нажмите на изображение выше, чтобы посмотреть видео о проекте и людях, которые его создали!
## Педагогика
-Мы выбрали два педагогических принципа при создании этой учебной программы: обеспечение того, чтобы она была проектно-ориентированной и включала частые викторины. К концу этой серии студенты изучат основные принципы науки о данных, включая этические концепции, подготовку данных, различные способы работы с данными, визуализацию данных, анализ данных, реальные примеры использования науки о данных и многое другое.
+Мы выбрали два педагогических принципа при создании этой учебной программы: обеспечить её проектно-ориентированным подходом и включить частые викторины. К концу этого курса студенты освоят базовые принципы науки о данных, включая этические концепции, подготовку данных, различные способы работы с данными, визуализацию данных, анализ данных, реальные примеры применения науки о данных и многое другое.
-Кроме того, викторина с низкой степенью риска перед занятием настраивает студента на изучение темы, а вторая викторина после занятия гарантирует лучшее усвоение материала. Эта учебная программа была разработана так, чтобы быть гибкой и увлекательной, и может проходиться полностью или частично. Проекты начинаются с малого и становятся всё более сложными к концу 10-недельного цикла.
+Кроме того, викторина с низкой ставкой перед занятием настраивает студента на изучение темы, а вторая викторина после занятия обеспечивает лучшее усвоение материала. Эта учебная программа была разработана таким образом, чтобы быть гибкой и увлекательной, её можно проходить полностью или частично. Проекты начинаются с небольших и постепенно усложняются к концу 10-недельного цикла.
-> Найдите наши [Правила поведения](CODE_OF_CONDUCT.md), [Руководство по сотрудничеству](CONTRIBUTING.md), [Руководство по переводу](TRANSLATIONS.md). Мы приветствуем ваши конструктивные отзывы!
+> Ознакомьтесь с нашими [Правилами поведения](CODE_OF_CONDUCT.md), [Руководством по участию](CONTRIBUTING.md), [Руководством по переводу](TRANSLATIONS.md). Мы приветствуем ваши конструктивные отзывы!
-## Каждый урок включает:
+## Каждое занятие включает:
-- Необязательный скетчноут
-- Необязательное дополнительное видео
-- Викторину для разминки перед уроком
-- Текстовый урок
-- Для уроков с проектами, пошаговые инструкции по созданию проекта
+- Необязательная зарисовка
+- Необязательное видео с дополнительным материалом
+- Викторину для разогрева перед занятием
+- Письменный урок
+- Для занятий с проектами – пошаговые руководства по созданию проекта
- Проверки знаний
-- Задачу
+- Задание на вызов
- Дополнительное чтение
- Домашнее задание
- [Викторину после урока](https://ff-quizzes.netlify.app/en/)
-> **Примечание о викторинах**: Все викторины находятся в папке Quiz-App, всего 40 викторин по три вопроса каждая. Они связаны внутри уроков, но приложение викторин можно запустить локально или развернуть в Azure; следуйте инструкциям в папке `quiz-app`. Постепенно происходит их локализация.
+> **Заметка о викторинах**: Все викторины находятся в папке Quiz-App, всего 40 викторин по три вопроса каждая. Ссылки на них размещены в уроках, но приложение викторин можно запустить локально или развернуть в Azure; следуйте инструкциям в папке `quiz-app`. Они постепенно локализуются.
## 🎓 Примеры для начинающих
-**Новый в науке о данных?** Мы создали специальный [каталог примеров](examples/README.md) с простым, хорошо прокомментированным кодом, чтобы помочь вам начать:
+**Новичок в науке о данных?** Мы создали специальную [директорию с примерами](examples/README.md) с простым, хорошо комментированным кодом, чтобы помочь вам начать:
-- 🌟 **Hello World** — Ваша первая программа по науке о данных
-- 📂 **Загрузка данных** — Научитесь читать и исследовать наборы данных
-- 📊 **Простой анализ** — Рассчитывайте статистику и находите закономерности
-- 📈 **Базовая визуализация** — Создавайте диаграммы и графики
-- 🔬 **Реальный проект** — Полный рабочий процесс от начала до конца
+- 🌟 **Hello World** - Ваша первая программа по науке о данных
+- 📂 **Загрузка данных** - Научитесь читать и изучать наборы данных
+- 📊 **Простой анализ** - Вычисление статистики и поиск закономерностей
+- 📈 **Базовая визуализация** - Создание диаграмм и графиков
+- 🔬 **Реальный проект** - Полный рабочий процесс от начала до конца
-Каждый пример содержит подробные комментарии, объясняющие каждый шаг, что делает его идеальным для абсолютных новичков!
+Каждый пример содержит подробные комментарии, объясняющие каждый шаг, что делает их идеальными для абсолютных новичков!
👉 **[Начните с примеров](examples/README.md)** 👈
## Уроки
-||
+||
|:---:|
-| Наука о данных для начинающих: Дорожная карта - _Скетчноут от [@nitya](https://twitter.com/nitya)_ |
+| Наука о данных для начинающих: дорожная карта - _Скетчноут от [@nitya](https://twitter.com/nitya)_ |
| Номер урока | Тема | Группа уроков | Цели обучения | Связанный урок | Автор |
| :---------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Определение науки о данных | [Введение](1-Introduction/README.md) | Изучить основные концепции науки о данных и её связь с искусственным интеллектом, машинным обучением и большими данными. | [урок](1-Introduction/01-defining-data-science/README.md) [видео](https://youtu.be/beZ7Mb_oz9I) | [Дмитрий](http://soshnikov.com) |
-| 02 | Этика науки о данных | [Введение](1-Introduction/README.md) | Концепции этики данных, вызовы и рамки. | [урок](1-Introduction/02-ethics/README.md) | [Нития](https://twitter.com/nitya) |
-| 03 | Определение данных | [Введение](1-Introduction/README.md) | Как классифицируются данные и их распространённые источники. | [урок](1-Introduction/03-defining-data/README.md) | [Жасмин](https://www.twitter.com/paladique) |
+| 01 | Определение науки о данных | [Введение](1-Introduction/README.md) | Изучите основные понятия науки о данных и её связь с искусственным интеллектом, машинным обучением и большими данными. | [урок](1-Introduction/01-defining-data-science/README.md) [видео](https://youtu.be/beZ7Mb_oz9I) | [Дмитрий](http://soshnikov.com) |
+| 02 | Этика в науке о данных | [Введение](1-Introduction/README.md) | Концепции этики данных, вызовы и рамки. | [урок](1-Introduction/02-ethics/README.md) | [Нития](https://twitter.com/nitya) |
+| 03 | Определение данных | [Введение](1-Introduction/README.md) | Как классифицируются данные и их основные источники. | [урок](1-Introduction/03-defining-data/README.md) | [Жасмин](https://www.twitter.com/paladique) |
| 04 | Введение в статистику и вероятность | [Введение](1-Introduction/README.md) | Математические методы вероятности и статистики для понимания данных. | [урок](1-Introduction/04-stats-and-probability/README.md) [видео](https://youtu.be/Z5Zy85g4Yjw) | [Дмитрий](http://soshnikov.com) |
-| 05 | Работа с реляционными данными | [Работа с данными](2-Working-With-Data/README.md) | Введение в реляционные данные и основы исследования и анализа реляционных данных с помощью языка структурированных запросов, известного как SQL (произносится «си-квел»). | [урок](2-Working-With-Data/05-relational-databases/README.md) | [Кристофер](https://www.twitter.com/geektrainer) | | |
-| 06 | Работа с NoSQL-данными | [Работа с данными](2-Working-With-Data/README.md) | Введение в нереляционные данные, их различные типы и основы исследования и анализа документальных баз данных. | [урок](2-Working-With-Data/06-non-relational/README.md) | [Жасмин](https://twitter.com/paladique)|
-| 07 | Работа с Python | [Работа с данными](2-Working-With-Data/README.md) | Основы использования Python для исследования данных с библиотеками, такими как Pandas. Рекомендуется базовое понимание программирования на Python. | [урок](2-Working-With-Data/07-python/README.md) [видео](https://youtu.be/dZjWOGbsN4Y) | [Дмитрий](http://soshnikov.com) |
-| 08 | Подготовка данных | [Работа с данными](2-Working-With-Data/README.md) | Темы по методам подготовки данных для очистки и преобразования данных для решения проблем с пропущенными, неточными или неполными данными. | [урок](2-Working-With-Data/08-data-preparation/README.md) | [Жасмин](https://www.twitter.com/paladique) |
-| 09 | Визуализация количеств | [Визуализация данных](3-Data-Visualization/README.md) | Научитесь использовать Matplotlib для визуализации данных о птицах 🦆 | [урок](3-Data-Visualization/09-visualization-quantities/README.md) | [Джен](https://twitter.com/jenlooper) |
-| 10 | Визуализация распределений данных | [Визуализация данных](3-Data-Visualization/README.md) | Визуализация наблюдений и тенденций в интервале. | [урок](3-Data-Visualization/10-visualization-distributions/README.md) | [Джен](https://twitter.com/jenlooper) |
+| 05 | Работа с реляционными данными | [Работа с Данных](2-Working-With-Data/README.md) | Введение в реляционные данные и основы их исследования и анализа с помощью структурированного языка запросов, также известного как SQL (произносится «си-квел»). | [урок](2-Working-With-Data/05-relational-databases/README.md) | [Кристофер](https://www.twitter.com/geektrainer) | | |
+| 06 | Работа с NoSQL данными | [Работа с Данных](2-Working-With-Data/README.md) | Введение в нереляционные данные, их различные типы и основы исследования и анализа документных баз данных. | [урок](2-Working-With-Data/06-non-relational/README.md) | [Жасмин](https://twitter.com/paladique)|
+| 07 | Работа с Python | [Работа с Данных](2-Working-With-Data/README.md) | Основы использования Python для изучения данных с библиотеками, такими как Pandas. Рекомендуется базовое понимание программирования на Python. | [урок](2-Working-With-Data/07-python/README.md) [видео](https://youtu.be/dZjWOGbsN4Y) | [Дмитрий](http://soshnikov.com) |
+| 08 | Подготовка данных | [Работа с Данных](2-Working-With-Data/README.md) | Темы, касающиеся техник очистки и трансформации данных для решения проблем отсутствующих, неточных или неполных данных. | [урок](2-Working-With-Data/08-data-preparation/README.md) | [Жасмин](https://www.twitter.com/paladique) |
+| 09 | Визуализация количественных данных | [Визуализация данных](3-Data-Visualization/README.md) | Научитесь использовать Matplotlib для визуализации данных о птицах 🦆 | [урок](3-Data-Visualization/09-visualization-quantities/README.md) | [Джен](https://twitter.com/jenlooper) |
+| 10 | Визуализация распределения данных | [Визуализация данных](3-Data-Visualization/README.md) | Визуализация наблюдений и трендов в интервале. | [урок](3-Data-Visualization/10-visualization-distributions/README.md) | [Джен](https://twitter.com/jenlooper) |
| 11 | Визуализация пропорций | [Визуализация данных](3-Data-Visualization/README.md) | Визуализация дискретных и сгруппированных процентов. | [урок](3-Data-Visualization/11-visualization-proportions/README.md) | [Джен](https://twitter.com/jenlooper) |
| 12 | Визуализация взаимосвязей | [Визуализация данных](3-Data-Visualization/README.md) | Визуализация связей и корреляций между наборами данных и их переменными. | [урок](3-Data-Visualization/12-visualization-relationships/README.md) | [Джен](https://twitter.com/jenlooper) |
-| 13 | Значимые визуализации | [Визуализация данных](3-Data-Visualization/README.md) | Техники и рекомендации для создания ценных визуализаций для эффективного решения проблем и получения инсайтов. | [урок](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Джен](https://twitter.com/jenlooper) |
-| 14 | Введение в жизненный цикл науки о данных | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Введение в жизненный цикл науки о данных и первый этап получения и извлечения данных. | [урок](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Жасмин](https://twitter.com/paladique) |
-| 15 | Анализ | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Эта фаза жизненного цикла науки о данных фокусируется на методах анализа данных. | [урок](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Жасмин](https://twitter.com/paladique) | | |
-| 16 | Коммуникация | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Эта фаза жизненного цикла науки о данных фокусируется на представлении выводов из данных так, чтобы лица, принимающие решения, могли их легче понять. | [урок](4-Data-Science-Lifecycle/16-communication/README.md) | [Джейлен](https://twitter.com/JalenMcG) | | |
+| 13 | Значимые визуализации | [Визуализация данных](3-Data-Visualization/README.md) | Техники и рекомендации для создания ценных визуализаций для эффективного решения задач и получения инсайтов. | [урок](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Джен](https://twitter.com/jenlooper) |
+| 14 | Введение в жизненный цикл науки о данных | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Введение в жизненный цикл науки о данных и первый шаг — получение и извлечение данных. | [урок](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Жасмин](https://twitter.com/paladique) |
+| 15 | Анализ | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Эта фаза жизненного цикла науки о данных сосредоточена на техниках анализа данных. | [урок](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Жасмин](https://twitter.com/paladique) | | |
+| 16 | Коммуникация | [Жизненный цикл](4-Data-Science-Lifecycle/README.md) | Эта фаза жизненного цикла науки о данных сосредоточена на представлении инсайтов из данных таким образом, чтобы упростить понимание для принимающих решения. | [урок](4-Data-Science-Lifecycle/16-communication/README.md) | [Джейлен](https://twitter.com/JalenMcG) | | |
| 17 | Наука о данных в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Эта серия уроков знакомит с наукой о данных в облаке и её преимуществами. | [урок](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Тиффани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
-| 18 | Наука о данных в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Обучение моделей с помощью Low Code инструментов. |[урок](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Тиффани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
-| 19 | Наука о данных в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Развёртывание моделей с помощью Azure Machine Learning Studio. | [урок](5-Data-Science-In-Cloud/19-Azure/README.md)| [Тиффани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
-| 20 | Наука о данных в реальном мире | [В реальном мире](6-Data-Science-In-Wild/README.md) | Проекты, основанные на науке о данных в реальном мире. | [урок](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Нития](https://twitter.com/nitya) |
+| 18 | Наука о данных в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Обучение моделей с использованием Low Code инструментов. |[урок](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Тиффани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
+| 19 | Наука о данных в облаке | [Облачные данные](5-Data-Science-In-Cloud/README.md) | Развертывание моделей с помощью Azure Machine Learning Studio. | [урок](5-Data-Science-In-Cloud/19-Azure/README.md)| [Тиффани](https://twitter.com/TiffanySouterre) и [Мод](https://twitter.com/maudstweets) |
+| 20 | Наука о данных в реальной жизни | [В реальной жизни](6-Data-Science-In-Wild/README.md) | Проекты, основанные на науке о данных в реальном мире. | [урок](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Нития](https://twitter.com/nitya) |
## GitHub Codespaces
-Следуйте этим шагам, чтобы открыть этот пример в Codespace:
+Выполните следующие шаги, чтобы открыть этот пример в Codespace:
1. Нажмите на меню Code и выберите опцию Open with Codespaces.
-2. Выберите + New codespace внизу панели.
-Для получения дополнительной информации ознакомьтесь с [документацией GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+2. Внизу панели выберите + New codespace.
+Для дополнительной информации ознакомьтесь с [документацией GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
-## VSCode Remote - Containers
-Следуйте этим шагам, чтобы открыть этот репозиторий в контейнере, используя ваш локальный компьютер и VSCode с расширением VS Code Remote - Containers:
+## VSCode Remote - Контейнеры
+Следуйте этим шагам, чтобы открыть этот репозиторий в контейнере с использованием вашей локальной машины и VSCode с расширением VS Code Remote - Containers:
-1. Если вы впервые используете контейнеры разработки, убедитесь, что ваша система соответствует требованиям (например, установлен Docker) в [документации по началу работы](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Если вы впервые используете контейнер для разработки, убедитесь, что ваша система соответствует требованиям (например, установлен Docker) в [документации для начала работы](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Чтобы использовать этот репозиторий, вы можете открыть его либо в изолированном Docker-томе:
+Чтобы использовать этот репозиторий, вы можете либо открыть репозиторий в изолированном Docker томе:
-**Примечание**: Под капотом будет использоваться команда Remote-Containers: **Clone Repository in Container Volume...** для клонирования исходного кода в Docker-том вместо локальной файловой системы. [Томы](https://docs.docker.com/storage/volumes/) — предпочтительный механизм для сохранения данных контейнера.
+**Примечание**: В основе будет использована команда Remote-Containers: **Clone Repository in Container Volume...**, чтобы клонировать исходный код в Docker том вместо локальной файловой системы. [Томы](https://docs.docker.com/storage/volumes/) — предпочтительный механизм для сохранения данных контейнера.
-Или открыть локально склонированную или загруженную версию репозитория:
+Или открыть локально клонированную или загруженную версию репозитория:
-- Клонируйте этот репозиторий в локальную файловую систему.
+- Клонируйте этот репозиторий на ваш локальный диск.
- Нажмите F1 и выберите команду **Remote-Containers: Open Folder in Container...**.
-- Выберите склонированную копию этой папки, дождитесь запуска контейнера и попробуйте работать.
+- Выберите склонированную копию этой папки, дождитесь запуска контейнера и пробуйте.
-## Оффлайн-доступ
+## Офлайн-доступ
-Вы можете запускать эту документацию офлайн, используя [Docsify](https://docsify.js.org/#/). Форкните этот репозиторий, [установите Docsify](https://docsify.js.org/#/quickstart) на локальной машине, затем в корневой папке репозитория введите `docsify serve`. Веб-сайт будет доступен на порту 3000 на вашем локальном хосте: `localhost:3000`.
+Вы можете запускать эту документацию офлайн с помощью [Docsify](https://docsify.js.org/#/). Форкните этот репозиторий, [установите Docsify](https://docsify.js.org/#/quickstart) на вашу локальную машину, затем в корневой папке этого репозитория введите `docsify serve`. Веб-сайт будет доступен по адресу порта 3000 на вашем локальном хосте: `localhost:3000`.
-> Обратите внимание, что блокноты не будут отображаться через Docsify, поэтому при необходимости запускать блокнот делайте это отдельно в VS Code с запущенным Python ядром.
+> Обратите внимание, блокноты не будут отображаться через Docsify, поэтому для запуска блокнота делайте это отдельно в VS Code с запущенным Python-ядром.
## Другие учебные курсы
-Наша команда выпускает и другие учебные курсы! Ознакомьтесь с:
+Наша команда создаёт и другие учебные программы! Ознакомьтесь:
### LangChain
@@ -209,7 +200,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-### Azure / Edge / MCP / Agenty
+### Azure / Edge / MCP / Агенты
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
@@ -225,13 +216,13 @@ CO_OP_TRANSLATOR_METADATA:
---
-### Основы обучения
+### Основное обучение
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
@@ -244,13 +235,13 @@ CO_OP_TRANSLATOR_METADATA:
## Получение помощи
-**Возникли проблемы?** Ознакомьтесь с нашим [Руководством по устранению неполадок](TROUBLESHOOTING.md) для решения распространённых проблем.
+**Возникли проблемы?** Ознакомьтесь с нашим [руководством по устранению неполадок](TROUBLESHOOTING.md) для поиска решений распространённых проблем.
-Если вы застряли или у вас есть вопросы по созданию приложений с ИИ, присоединяйтесь к другим учащимся и опытным разработчикам для обсуждений MCP. Это поддерживающее сообщество, где вопросы приветствуются, а знания свободно делятся.
+Если вы застряли или у вас есть вопросы по созданию приложений с ИИ, присоединяйтесь к другим обучающимся и опытным разработчикам для обсуждений по MCP. Это поддерживающее сообщество, где приветствуются вопросы и свободно делятся знаниями.
[](https://discord.gg/nTYy5BXMWG)
-Если у вас есть отзывы о продукте или ошибки во время разработки, посетите:
+Если у вас есть отзывы о продукте или обнаружены ошибки при разработке, посетите:
[](https://aka.ms/foundry/forum)
@@ -258,5 +249,5 @@ CO_OP_TRANSLATOR_METADATA:
**Отказ от ответственности**:
-Этот документ был переведен с помощью сервиса автоматического перевода [Co-op Translator](https://github.com/Azure/co-op-translator). Несмотря на наши усилия обеспечить точность, имейте в виду, что автоматические переводы могут содержать ошибки или неточности. Оригинальный документ на его исходном языке следует считать авторитетным источником. Для критически важной информации рекомендуется профессиональный перевод человеком. Мы не несем ответственности за любые недоразумения или неправильные толкования, возникшие в результате использования данного перевода.
+Этот документ был переведен с помощью сервиса автоматического перевода [Co-op Translator](https://github.com/Azure/co-op-translator). Несмотря на наши усилия по обеспечению точности, просим учитывать, что автоматический перевод может содержать ошибки или неточности. Оригинальный документ на его исходном языке следует считать достоверным и официальным источником. Для получения критически важной информации рекомендуется обращаться к профессиональному переводу, выполненному человеком. Мы не несем ответственности за любые недоразумения или неправильные толкования, возникшие в результате использования данного перевода.
\ No newline at end of file
diff --git a/translations/ru/SECURITY.md b/translations/ru/SECURITY.md
index 4dfa6d53..a37501e2 100644
--- a/translations/ru/SECURITY.md
+++ b/translations/ru/SECURITY.md
@@ -1,12 +1,3 @@
-
## Безопасность
Microsoft серьезно относится к безопасности своих программных продуктов и услуг, включая все репозитории исходного кода, управляемые через наши организации на GitHub, такие как [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) и [наши организации на GitHub](https://opensource.microsoft.com/).
diff --git a/translations/ru/SUPPORT.md b/translations/ru/SUPPORT.md
index c9802383..dd67f25d 100644
--- a/translations/ru/SUPPORT.md
+++ b/translations/ru/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Поддержка
## Как сообщить о проблемах и получить помощь
diff --git a/translations/ru/TROUBLESHOOTING.md b/translations/ru/TROUBLESHOOTING.md
index 6c760056..0779ec71 100644
--- a/translations/ru/TROUBLESHOOTING.md
+++ b/translations/ru/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Руководство по устранению неполадок
Это руководство предлагает решения для распространенных проблем, которые могут возникнуть при работе с учебной программой "Data Science for Beginners".
diff --git a/translations/ru/USAGE.md b/translations/ru/USAGE.md
index 6425c5f5..061614c5 100644
--- a/translations/ru/USAGE.md
+++ b/translations/ru/USAGE.md
@@ -1,12 +1,3 @@
-
# Руководство по использованию
Это руководство содержит примеры и распространенные рабочие процессы для использования учебной программы "Основы Data Science".
diff --git a/translations/ru/docs/_sidebar.md b/translations/ru/docs/_sidebar.md
index 9b37bc61..396b1f69 100644
--- a/translations/ru/docs/_sidebar.md
+++ b/translations/ru/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Введение
- [Определение науки о данных](../1-Introduction/01-defining-data-science/README.md)
- [Этика науки о данных](../1-Introduction/02-ethics/README.md)
diff --git a/translations/ru/examples/README.md b/translations/ru/examples/README.md
index ab37bec4..ff57815e 100644
--- a/translations/ru/examples/README.md
+++ b/translations/ru/examples/README.md
@@ -1,12 +1,3 @@
-
# Примеры для начинающих в области Data Science
Добро пожаловать в каталог примеров! Эта коллекция простых, хорошо прокомментированных примеров создана, чтобы помочь вам начать изучение Data Science, даже если вы полный новичок.
diff --git a/translations/ru/for-teachers.md b/translations/ru/for-teachers.md
index 7482b4d7..6fc6af28 100644
--- a/translations/ru/for-teachers.md
+++ b/translations/ru/for-teachers.md
@@ -1,12 +1,3 @@
-
## Для преподавателей
Хотите использовать эту учебную программу в своем классе? Пожалуйста, не стесняйтесь!
diff --git a/translations/ru/quiz-app/README.md b/translations/ru/quiz-app/README.md
index 8dd604c2..abcf7235 100644
--- a/translations/ru/quiz-app/README.md
+++ b/translations/ru/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Викторины
Эти викторины являются предварительными и итоговыми тестами для учебной программы по науке о данных на https://aka.ms/datascience-beginners.
diff --git a/translations/ru/sketchnotes/README.md b/translations/ru/sketchnotes/README.md
index 7dcd761f..b5e1a700 100644
--- a/translations/ru/sketchnotes/README.md
+++ b/translations/ru/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Найдите все скетчноты здесь!
## Благодарности
diff --git a/translations/sk/.co-op-translator.json b/translations/sk/.co-op-translator.json
new file mode 100644
index 00000000..5186e0e5
--- /dev/null
+++ b/translations/sk/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:05:52+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-26T15:24:59+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-26T15:26:36+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:56:19+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-26T15:17:19+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T18:15:42+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-26T15:31:34+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T14:04:58+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-26T15:42:44+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "sk"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-26T14:59:56+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "sk"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T12:06:48+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "sk"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:58:01+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "sk"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T18:03:05+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "sk"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-26T14:57:57+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "sk"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:57:52+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "sk"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-26T14:51:44+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "sk"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T18:05:51+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "sk"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-26T14:41:48+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "sk"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-26T14:27:44+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T18:09:51+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-26T17:27:03+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T18:11:39+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-26T16:52:56+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T18:09:22+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-26T17:30:58+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:46:10+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-26T16:57:44+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T18:10:26+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-26T16:47:18+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T16:48:39+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T16:48:00+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-26T17:09:49+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-26T17:13:49+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-26T17:00:10+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-26T17:02:23+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-26T17:20:18+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-26T17:04:34+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-26T17:16:23+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "sk"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-26T16:41:43+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "sk"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:33:41+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "sk"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-26T16:28:12+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "sk"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:32:53+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "sk"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-26T16:31:51+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "sk"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:34:10+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "sk"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-26T16:40:18+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "sk"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-26T16:21:00+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "sk"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T18:01:24+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "sk"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-26T16:10:08+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "sk"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T18:00:08+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "sk"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-26T16:04:38+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "sk"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T18:02:04+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "sk"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-26T16:17:24+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "sk"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-26T15:53:10+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "sk"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:42:44+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "sk"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-26T15:51:58+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "sk"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-26T15:44:11+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "sk"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:38:05+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "sk"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-26T14:24:02+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "sk"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:33:05+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "sk"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:25:03+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "sk"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:21:38+00:00",
+ "source_file": "README.md",
+ "language_code": "sk"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-26T14:25:32+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "sk"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-26T14:21:24+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "sk"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:46:35+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "sk"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:09:05+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "sk"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-26T14:58:55+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "sk"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:07:02+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "sk"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T20:00:43+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "sk"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-26T16:19:26+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "sk"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-26T15:43:36+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "sk"
+ }
+}
\ No newline at end of file
diff --git a/translations/sk/1-Introduction/01-defining-data-science/README.md b/translations/sk/1-Introduction/01-defining-data-science/README.md
index a2a1a447..fc8f83ca 100644
--- a/translations/sk/1-Introduction/01-defining-data-science/README.md
+++ b/translations/sk/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Definícia dátovej vedy
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/sk/1-Introduction/01-defining-data-science/assignment.md b/translations/sk/1-Introduction/01-defining-data-science/assignment.md
index b59b961b..2401a20f 100644
--- a/translations/sk/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/sk/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Zadanie: Scenáre dátovej vedy
V tomto prvom zadaní vás žiadame, aby ste premýšľali o nejakom reálnom procese alebo probléme v rôznych oblastiach a o tom, ako ho môžete zlepšiť pomocou procesu dátovej vedy. Zamyslite sa nad nasledujúcimi otázkami:
diff --git a/translations/sk/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/sk/1-Introduction/01-defining-data-science/solution/assignment.md
index c3b3196b..b57f7443 100644
--- a/translations/sk/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/sk/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Zadanie: Scenáre dátovej vedy
V tomto prvom zadaní vás žiadame, aby ste premýšľali o nejakom reálnom procese alebo probléme v rôznych oblastiach a o tom, ako ho môžete zlepšiť pomocou procesu dátovej vedy. Zamyslite sa nad nasledujúcimi otázkami:
diff --git a/translations/sk/1-Introduction/02-ethics/README.md b/translations/sk/1-Introduction/02-ethics/README.md
index 8d128e84..42a57da1 100644
--- a/translations/sk/1-Introduction/02-ethics/README.md
+++ b/translations/sk/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Úvod do dátovej etiky
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/sk/1-Introduction/02-ethics/assignment.md b/translations/sk/1-Introduction/02-ethics/assignment.md
index 52ffe39c..06202c0a 100644
--- a/translations/sk/1-Introduction/02-ethics/assignment.md
+++ b/translations/sk/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Napíšte prípadovú štúdiu o etike dát
## Pokyny
diff --git a/translations/sk/1-Introduction/03-defining-data/README.md b/translations/sk/1-Introduction/03-defining-data/README.md
index b07e3b77..9869f9e1 100644
--- a/translations/sk/1-Introduction/03-defining-data/README.md
+++ b/translations/sk/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Definovanie údajov
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/sk/1-Introduction/03-defining-data/assignment.md b/translations/sk/1-Introduction/03-defining-data/assignment.md
index 4b8355e4..4389b789 100644
--- a/translations/sk/1-Introduction/03-defining-data/assignment.md
+++ b/translations/sk/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Klasifikácia dátových súborov
## Pokyny
diff --git a/translations/sk/1-Introduction/04-stats-and-probability/README.md b/translations/sk/1-Introduction/04-stats-and-probability/README.md
index 55bec872..7b648a68 100644
--- a/translations/sk/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/sk/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Stručný úvod do štatistiky a pravdepodobnosti
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Na lepšie pochopenie rozdelenia dát je užitočné hovoriť o **kvartiloch**:
Graficky môžeme vzťah medzi mediánom a kvartilmi znázorniť v diagrame nazývanom **boxplot**:
-
+
Tu tiež počítame **medzikvartilové rozpätie** IQR=Q3-Q1 a tzv. **odľahlé hodnoty** - hodnoty, ktoré ležia mimo hraníc [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/sk/1-Introduction/04-stats-and-probability/assignment.md b/translations/sk/1-Introduction/04-stats-and-probability/assignment.md
index c3cb4e54..ad77e8d0 100644
--- a/translations/sk/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/sk/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Malá štúdia o cukrovke
V tejto úlohe budeme pracovať s malým datasetom pacientov s cukrovkou, ktorý je prevzatý z [tohto odkazu](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/sk/1-Introduction/README.md b/translations/sk/1-Introduction/README.md
index 9e79125f..6857561d 100644
--- a/translations/sk/1-Introduction/README.md
+++ b/translations/sk/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Úvod do dátovej vedy

diff --git a/translations/sk/2-Working-With-Data/05-relational-databases/README.md b/translations/sk/2-Working-With-Data/05-relational-databases/README.md
index 4bf624d0..9641cd02 100644
--- a/translations/sk/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/sk/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Práca s údajmi: Relačné databázy
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/sk/2-Working-With-Data/05-relational-databases/assignment.md b/translations/sk/2-Working-With-Data/05-relational-databases/assignment.md
index e126b5fa..47821095 100644
--- a/translations/sk/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/sk/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Zobrazenie údajov o letiskách
Dostali ste [databázu](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) postavenú na [SQLite](https://sqlite.org/index.html), ktorá obsahuje informácie o letiskách. Schéma je zobrazená nižšie. Použijete [rozšírenie SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) v [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) na zobrazenie informácií o letiskách v rôznych mestách.
diff --git a/translations/sk/2-Working-With-Data/06-non-relational/README.md b/translations/sk/2-Working-With-Data/06-non-relational/README.md
index 6ceece75..64628350 100644
--- a/translations/sk/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/sk/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Práca s dátami: Nerelačné dáta
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/sk/2-Working-With-Data/06-non-relational/assignment.md b/translations/sk/2-Working-With-Data/06-non-relational/assignment.md
index 2a3c4834..ac8228f2 100644
--- a/translations/sk/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/sk/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Zisky zo sódy
## Pokyny
diff --git a/translations/sk/2-Working-With-Data/07-python/README.md b/translations/sk/2-Working-With-Data/07-python/README.md
index 0bcb6528..a6ee2f8c 100644
--- a/translations/sk/2-Working-With-Data/07-python/README.md
+++ b/translations/sk/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Práca s dátami: Python a knižnica Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/sk/2-Working-With-Data/07-python/assignment.md b/translations/sk/2-Working-With-Data/07-python/assignment.md
index fd40aafd..cbf65e92 100644
--- a/translations/sk/2-Working-With-Data/07-python/assignment.md
+++ b/translations/sk/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Zadanie na spracovanie údajov v Pythone
V tomto zadaní vás požiadame, aby ste rozpracovali kód, ktorý sme začali vyvíjať v našich výzvach. Zadanie pozostáva z dvoch častí:
diff --git a/translations/sk/2-Working-With-Data/08-data-preparation/README.md b/translations/sk/2-Working-With-Data/08-data-preparation/README.md
index 1b9a48cb..7863e751 100644
--- a/translations/sk/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/sk/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Práca s dátami: Príprava dát
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/sk/2-Working-With-Data/08-data-preparation/assignment.md b/translations/sk/2-Working-With-Data/08-data-preparation/assignment.md
index e15ca331..2e59fe50 100644
--- a/translations/sk/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/sk/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Hodnotenie údajov z formulára
Klient testoval [malý formulár](../../../../2-Working-With-Data/08-data-preparation/index.html) na zhromažďovanie základných údajov o svojej klientele. Priniesli vám svoje zistenia, aby ste overili údaje, ktoré zhromaždili. Stránku `index.html` si môžete otvoriť v prehliadači a pozrieť si formulár.
diff --git a/translations/sk/2-Working-With-Data/README.md b/translations/sk/2-Working-With-Data/README.md
index 129f0db7..ff6f40fa 100644
--- a/translations/sk/2-Working-With-Data/README.md
+++ b/translations/sk/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Práca s dátami

diff --git a/translations/sk/3-Data-Visualization/09-visualization-quantities/README.md b/translations/sk/3-Data-Visualization/09-visualization-quantities/README.md
index 4122a96a..00215899 100644
--- a/translations/sk/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/sk/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Vizualizácia množstiev
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/sk/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/sk/3-Data-Visualization/09-visualization-quantities/assignment.md
index b08c5682..475d7f63 100644
--- a/translations/sk/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/sk/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Čiary, bodové grafy a stĺpcové grafy
## Pokyny
diff --git a/translations/sk/3-Data-Visualization/10-visualization-distributions/README.md b/translations/sk/3-Data-Visualization/10-visualization-distributions/README.md
index 6e906a40..286960cb 100644
--- a/translations/sk/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/sk/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizácia distribúcií
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/sk/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/sk/3-Data-Visualization/10-visualization-distributions/assignment.md
index f27fcb43..b4d07eaf 100644
--- a/translations/sk/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/sk/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Uplatnite svoje zručnosti
## Pokyny
diff --git a/translations/sk/3-Data-Visualization/11-visualization-proportions/README.md b/translations/sk/3-Data-Visualization/11-visualization-proportions/README.md
index c536ffa7..de518f25 100644
--- a/translations/sk/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/sk/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizácia proporcií
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/sk/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/sk/3-Data-Visualization/11-visualization-proportions/assignment.md
index 4d83ae64..041dcdff 100644
--- a/translations/sk/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/sk/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Vyskúšajte to v Exceli
## Pokyny
diff --git a/translations/sk/3-Data-Visualization/12-visualization-relationships/README.md b/translations/sk/3-Data-Visualization/12-visualization-relationships/README.md
index 5d53c6e9..1f5caa1d 100644
--- a/translations/sk/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/sk/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Vizualizácia vzťahov: Všetko o mede 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/sk/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/sk/3-Data-Visualization/12-visualization-relationships/assignment.md
index 3e437d92..354373e3 100644
--- a/translations/sk/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/sk/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Ponorte sa do úľa
## Pokyny
diff --git a/translations/sk/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/sk/3-Data-Visualization/13-meaningful-visualizations/README.md
index d8a25389..6a0b1b74 100644
--- a/translations/sk/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/sk/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Tvorba zmysluplných vizualizácií
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/sk/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/sk/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index a5415bcc..fb82cc3f 100644
--- a/translations/sk/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/sk/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Vytvorte si vlastnú vlastnú vizualizáciu
## Pokyny
diff --git a/translations/sk/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/sk/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index cf4aa5db..359d1b12 100644
--- a/translations/sk/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/sk/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Projekt vizualizácie dát Dangerous Liaisons
Aby ste mohli začať, musíte mať na svojom počítači nainštalované NPM a Node. Nainštalujte závislosti (npm install) a potom spustite projekt lokálne (npm run serve):
diff --git a/translations/sk/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/sk/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index b7a003f1..fd12da8e 100644
--- a/translations/sk/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/sk/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Projekt vizualizácie dát Dangerous Liaisons
Aby ste mohli začať, musíte sa uistiť, že máte na svojom počítači nainštalované NPM a Node. Nainštalujte závislosti (npm install) a potom spustite projekt lokálne (npm run serve):
diff --git a/translations/sk/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/sk/3-Data-Visualization/R/09-visualization-quantities/README.md
index db4f95d6..faeec508 100644
--- a/translations/sk/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/sk/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Vizualizácia množstiev
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/sk/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/sk/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index ff8b2c97..763b15c8 100644
--- a/translations/sk/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/sk/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Čiary, bodové grafy a stĺpcové grafy
## Pokyny
diff --git a/translations/sk/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/sk/3-Data-Visualization/R/10-visualization-distributions/README.md
index 2e3d0086..0f238169 100644
--- a/translations/sk/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/sk/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizácia distribúcií
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/sk/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/sk/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 2e9d5190..6bbab6bc 100644
--- a/translations/sk/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/sk/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Uplatnite svoje zručnosti
## Pokyny
diff --git a/translations/sk/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/sk/3-Data-Visualization/R/11-visualization-proportions/README.md
index 349803cc..d449ec3f 100644
--- a/translations/sk/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/sk/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizácia proporcií
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/sk/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/sk/3-Data-Visualization/R/12-visualization-relationships/README.md
index d2545972..6396aa84 100644
--- a/translations/sk/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/sk/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Vizualizácia vzťahov: Všetko o mede 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/sk/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/sk/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index b4ff24c8..15fc98fd 100644
--- a/translations/sk/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/sk/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Tvorba zmysluplných vizualizácií
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/sk/3-Data-Visualization/README.md b/translations/sk/3-Data-Visualization/README.md
index 86ecc0b9..c8e99c8d 100644
--- a/translations/sk/3-Data-Visualization/README.md
+++ b/translations/sk/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Vizualizácie

diff --git a/translations/sk/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/sk/4-Data-Science-Lifecycle/14-Introduction/README.md
index 3c909617..f6384f3f 100644
--- a/translations/sk/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/sk/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Úvod do životného cyklu dátovej vedy
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/sk/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/sk/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 3e8c61a0..8246bc27 100644
--- a/translations/sk/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/sk/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Posúdenie datasetu
Klient sa obrátil na váš tím s prosbou o pomoc pri skúmaní sezónnych výdavkov zákazníkov taxislužby v New Yorku.
diff --git a/translations/sk/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/sk/4-Data-Science-Lifecycle/15-analyzing/README.md
index 0b32dcf7..c0b2b2fb 100644
--- a/translations/sk/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/sk/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Životný cyklus dátovej vedy: Analyzovanie
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/sk/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/sk/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 5d9e49a7..83442bcf 100644
--- a/translations/sk/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/sk/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Hľadanie odpovedí
Toto je pokračovanie [zadania](../14-Introduction/assignment.md) z predchádzajúcej lekcie, kde sme si stručne prezreli dátovú sadu. Teraz sa na dáta pozrieme podrobnejšie.
diff --git a/translations/sk/4-Data-Science-Lifecycle/16-communication/README.md b/translations/sk/4-Data-Science-Lifecycle/16-communication/README.md
index b3a8439c..34f4f797 100644
--- a/translations/sk/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/sk/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Životný cyklus dátovej vedy: Komunikácia
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/sk/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/sk/4-Data-Science-Lifecycle/16-communication/assignment.md
index 782815ea..a3957927 100644
--- a/translations/sk/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/sk/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Rozprávaj príbeh
## Pokyny
diff --git a/translations/sk/4-Data-Science-Lifecycle/README.md b/translations/sk/4-Data-Science-Lifecycle/README.md
index 0b8b4b8e..d31587de 100644
--- a/translations/sk/4-Data-Science-Lifecycle/README.md
+++ b/translations/sk/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Životný cyklus dátovej vedy

diff --git a/translations/sk/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/sk/5-Data-Science-In-Cloud/17-Introduction/README.md
index 4f3d64ca..ad610c9a 100644
--- a/translations/sk/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/sk/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Úvod do dátovej vedy v cloude
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/sk/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/sk/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index a71f65b3..7169ff1d 100644
--- a/translations/sk/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/sk/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Prieskum trhu
## Pokyny
diff --git a/translations/sk/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/sk/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 6841d65c..ed7325ff 100644
--- a/translations/sk/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/sk/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Data Science v cloude: Cesta "Low code/No code"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/sk/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/sk/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 1b474f5f..4921ba75 100644
--- a/translations/sk/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/sk/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Projekt Data Science s nízkym alebo žiadnym kódom na Azure ML
## Pokyny
diff --git a/translations/sk/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/sk/5-Data-Science-In-Cloud/19-Azure/README.md
index 00e79242..c8e019c0 100644
--- a/translations/sk/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/sk/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Data Science v cloude: Cesta "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/sk/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/sk/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 78ca1884..732bff8d 100644
--- a/translations/sk/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/sk/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Projekt Data Science pomocou Azure ML SDK
## Pokyny
diff --git a/translations/sk/5-Data-Science-In-Cloud/README.md b/translations/sk/5-Data-Science-In-Cloud/README.md
index 8be31ce0..2fe5f44e 100644
--- a/translations/sk/5-Data-Science-In-Cloud/README.md
+++ b/translations/sk/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Data Science v cloude

diff --git a/translations/sk/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/sk/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 3b39a286..42cf4356 100644
--- a/translations/sk/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/sk/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Data Science v reálnom svete
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/sk/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/sk/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index b9d3c9ee..0401d4dc 100644
--- a/translations/sk/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/sk/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Preskúmajte dataset Planetary Computer
## Pokyny
diff --git a/translations/sk/6-Data-Science-In-Wild/README.md b/translations/sk/6-Data-Science-In-Wild/README.md
index 136bb314..d2bdc901 100644
--- a/translations/sk/6-Data-Science-In-Wild/README.md
+++ b/translations/sk/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Data Science v praxi
Reálne aplikácie dátovej vedy naprieč odvetviami.
diff --git a/translations/sk/AGENTS.md b/translations/sk/AGENTS.md
index 022a52ee..1d9c5e5d 100644
--- a/translations/sk/AGENTS.md
+++ b/translations/sk/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Prehľad projektu
diff --git a/translations/sk/CODE_OF_CONDUCT.md b/translations/sk/CODE_OF_CONDUCT.md
index 21aab8d7..8a0502b7 100644
--- a/translations/sk/CODE_OF_CONDUCT.md
+++ b/translations/sk/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Kódex správania pre otvorený zdroj od Microsoftu
Tento projekt prijal [Kódex správania pre otvorený zdroj od Microsoftu](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/sk/CONTRIBUTING.md b/translations/sk/CONTRIBUTING.md
index b5e2ff87..a0c917a3 100644
--- a/translations/sk/CONTRIBUTING.md
+++ b/translations/sk/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Prispievanie do Data Science for Beginners
Ďakujeme za váš záujem prispieť do učebných osnov Data Science for Beginners! Radi privítame príspevky od komunity.
diff --git a/translations/sk/INSTALLATION.md b/translations/sk/INSTALLATION.md
index ba75dbd1..411df1f1 100644
--- a/translations/sk/INSTALLATION.md
+++ b/translations/sk/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Inštalačný návod
Tento návod vám pomôže nastaviť prostredie na prácu s učebnými materiálmi Data Science for Beginners.
diff --git a/translations/sk/README.md b/translations/sk/README.md
index f63a2891..abda1360 100644
--- a/translations/sk/README.md
+++ b/translations/sk/README.md
@@ -1,102 +1,93 @@
-
-# Data Science pre začiatočníkov - učebný plán
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+# Data Science pre začiatočníkov - Učebný plán
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
+[](http://makeapullrequest.com)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
[](https://aka.ms/foundry/forum)
-Azure Cloud Advocates v Microsoft s potešením ponúkajú 10-týždňový, 20-lekčný učebný plán o Data Science. Každá lekcia obsahuje predlekčné a po-lekčné kvízy, písomné pokyny na dokončenie lekcie, riešenie a zadanie. Naša projektovo orientovaná pedagogika vám umožňuje učiť sa pri tvorbe, čo je osvedčený spôsob, ako nové zručnosti „uchytiť“.
+Azure Cloud Advocates v Microsoft s potešením ponúkajú 10-týždňový, 20-lekčný kurz venovaný Data Science. Každá lekcia obsahuje kvízy pred a po lekcii, písomné inštrukcie na dokončenie lekcie, riešenie a zadanie. Naša projektovo orientovaná pedagogika vám umožní učiť sa pri tvorbe, čo je overený spôsob, ako si nové zručnosti udržať.
-**Srdečne ďakujeme našim autorom:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Srdečná vďaka našim autorom:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Špeciálne poďakovanie 🙏 patrí našim [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) autorom, recenzentom a prispievateľom obsahu,** osobitne Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Špeciálna vďaka 🙏 našim autorom, recenzentom a prispievateľom obsahu z [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** najmä Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Data Science pre začiatočníkov - _Skica od [@nitya](https://twitter.com/nitya)_ |
+| Data Science pre začiatočníkov - _Sketchnote od [@nitya](https://twitter.com/nitya)_ |
### 🌐 Podpora viacerých jazykov
-#### Podporované cez GitHub Action (automatizované a vždy aktuálne)
+#### Podporované cez GitHub Action (Automatizované a vždy aktuálne)
-[Arabic](../ar/README.md) | [Bengalčina](../bn/README.md) | [Bulharčina](../bg/README.md) | [Barmčina (Mjanmarsko)](../my/README.md) | [Čínština (zjednodušená)](../zh/README.md) | [Čínština (tradičná, Hongkong)](../hk/README.md) | [Čínština (tradičná, Macao)](../mo/README.md) | [Čínština (tradičná, Taiwan)](../tw/README.md) | [Chorvátčina](../hr/README.md) | [Čeština](../cs/README.md) | [Dánčina](../da/README.md) | [Holandčina](../nl/README.md) | [Estónčina](../et/README.md) | [Fínčina](../fi/README.md) | [Francúzština](../fr/README.md) | [Nemčina](../de/README.md) | [Gréčtina](../el/README.md) | [Hebrejčina](../he/README.md) | [Hindčina](../hi/README.md) | [Maďarčina](../hu/README.md) | [Indonézština](../id/README.md) | [Taliančina](../it/README.md) | [Japončina](../ja/README.md) | [Kannadčina](../kn/README.md) | [Kórejčina](../ko/README.md) | [Litovčina](../lt/README.md) | [Malajčina](../ms/README.md) | [Malajalámčina](../ml/README.md) | [Maratčina](../mr/README.md) | [Nepálčina](../ne/README.md) | [Nigerijská pidžin](../pcm/README.md) | [Nórčina](../no/README.md) | [Perzština (Farsi)](../fa/README.md) | [Poľština](../pl/README.md) | [Portugalčina (Brazília)](../br/README.md) | [Portugalčina (Portugalsko)](../pt/README.md) | [Paňdžábčina (Gurmukhi)](../pa/README.md) | [Rumunčina](../ro/README.md) | [Ruština](../ru/README.md) | [Srbčina (cyrilika)](../sr/README.md) | [Slovenčina](./README.md) | [Slovinčina](../sl/README.md) | [Španielčina](../es/README.md) | [Suahelčina](../sw/README.md) | [Švédčina](../sv/README.md) | [Tagalog (Filipíny)](../tl/README.md) | [Tamilčina](../ta/README.md) | [Telugčina](../te/README.md) | [Thajčina](../th/README.md) | [Turečtina](../tr/README.md) | [Ukrajinčina](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamčina](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](./README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
> **Radšej klonovať lokálne?**
-> Tento repozitár obsahuje vyše 50 jazykových prekladov, čo výrazne zvyšuje veľkosť na stiahnutie. Ak chcete klonovať bez prekladov, použite sparse checkout:
+> Tento repozitár obsahuje viac ako 50 prekladov jazykov, čo výrazne zväčšuje veľkosť sťahovania. Ak chcete klonovať bez prekladov, použite sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Toto vám poskytne všetko potrebné na dokončenie kurzu s výrazne rýchlejším sťahovaním.
+> Toto vám poskytne všetko potrebné na dokončenie kurzu s oveľa rýchlejším sťahovaním.
-**Ak si prajete podporu ďalších prekladových jazykov, zoznam je uvedený [tu](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Ak si prajete podporu ďalších jazykov, sú uvedené [tu](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Pridajte sa do našej komunity
+#### Pridajte sa k našej komunite
[](https://discord.gg/nTYy5BXMWG)
-Máme prebiehajúcu sériu Learn with AI na Discorde, dozviete sa viac a pripojte sa k nám na [Learn with AI Series](https://aka.ms/learnwithai/discord) od 18. do 30. septembra 2025. Dostanete tipy a triky na používanie GitHub Copilot pre Data Science.
+Máme prebiehajúcu Discord sériu Learn with AI, dozviete sa viac a pridajte sa k nám na [Learn with AI Series](https://aka.ms/learnwithai/discord) od 18. do 30. septembra 2025. Dostanete tipy a triky na používanie GitHub Copilot pre Data Science.
-
+
# Ste študent?
Začnite s nasledujúcimi zdrojmi:
-- [Stránka Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na tejto stránke nájdete zdroje pre začiatočníkov, študentské balíčky a dokonca spôsoby, ako získať bezplatný certifikátový poukaz. Túto stránku si určite pridajte do záložiek a občas ju skontrolujte, pretože obsah meníme aspoň raz mesačne.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Pripojte sa k globálnej komunite študentských ambasádorov, môže to byť vaša cesta do Microsoftu.
+- [Stránka študenta](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na tejto stránke nájdete zdroje pre začiatočníkov, študentské balíčky a dokonca možnosti na získanie certifikátového voucheru zadarmo. Toto je stránka, ktorú si chcete uložiť do záložiek a občas skontrolovať, pretože obsah pravidelne meníme aspoň raz do mesiaca.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Pridajte sa k globálnej komunite študentských ambasádorov, toto môže byť vaša cesta do Microsoftu.
# Začíname
## 📚 Dokumentácia
-- **[Inštalačný návod](INSTALLATION.md)** - Podrobný návod na nastavenie pre začiatočníkov
-- **[Používateľský návod](USAGE.md)** - Príklady a bežné postupy
+- **[Inštalačný sprievodca](INSTALLATION.md)** - Krok za krokom nastavenie pre začiatočníkov
+- **[Používateľský sprievodca](USAGE.md)** - Ukážky a bežné pracovné postupy
- **[Riešenie problémov](TROUBLESHOOTING.md)** - Riešenia bežných problémov
-- **[Návod na prispievanie](CONTRIBUTING.md)** - Ako prispieť do tohto projektu
-- **[Pre učiteľov](for-teachers.md)** - Pokyny na vyučovanie a zdroje do triedy
+- **[Sprievodca prispievaním](CONTRIBUTING.md)** - Ako prispieť do tohto projektu
+- **[Pre učiteľov](for-teachers.md)** - Pokyny pre výučbu a zdroje pre triedu
## 👨🎓 Pre študentov
-> **Úplní začiatočníci**: Noví v Data Science? Začnite s našimi [príkladmi vhodnými pre začiatočníkov](examples/README.md)! Tieto jednoduché, dobre okomentované príklady vám pomôžu pochopiť základy predtým, než sa pustíte do celého učebného plánu.
-> **[Študenti](https://aka.ms/student-page)**: ak chcete použiť tento učebný plán sami, rozkonzte celý repozitár a riešte cvičenia sami, začnite prednáškovým kvízom. Potom si prečítajte prednášku a dokončite zvyšné aktivity. Pokúste sa vytvárané projekty pochopiť a vytvoriť ich, namiesto kopírovania riešení; kód je však dostupný v priečinkoch /solutions v každej projektovo zameranej lekcii. Ďalšou možnosťou je založiť si študijnú skupinu s priateľmi a prejsť obsah spoločne. Na ďalšie štúdium odporúčame [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Úplní začiatočníci**: Nový v oblasti data science? Začnite s našimi [príkladmi pre začiatočníkov](examples/README.md)! Tieto jednoduché, dobre komentované príklady vám pomôžu pochopiť základy predtým, než sa pustíte do celého učebného plánu.
+> **[Študenti](https://aka.ms/student-page)**: pre samostatné používanie tohto učebného plánu, forkujte celý repozitár a dokončite cvičenia samostatne, začínajúc kvízom pred prednáškou. Potom si prečítajte prednášku a dokončite zvyšok aktivít. Snažte sa vytvárať projekty pochopením lekcií namiesto kopírovania kódu riešenia; kód však nájdete v priečinkoch /solutions v každej lekcii orientovanej na projekt. Ďalšou možnosťou je vytvoriť študijnú skupinu s priateľmi a prejsť obsah spolu. Na ďalšie štúdium odporúčame [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
-**Rýchly začiatok:**
-1. Prezrite si [inštalačný návod](INSTALLATION.md) na nastavenie prostredia
-2. Prejdite si [používateľský návod](USAGE.md), aby ste sa naučili pracovať s učebným plánom
-3. Začnite Lekciou 1 a postupujte postupne
-4. Pridajte sa k našej [Discord komunite](https://aka.ms/ds4beginners/discord) pre podporu
+**Rýchly štart:**
+1. Skontrolujte [Inštalačný sprievodca](INSTALLATION.md), ako nastaviť svoje prostredie
+2. Prezrite si [Používateľský sprievodca](USAGE.md), aby ste sa naučili pracovať s učebným plánom
+3. Začnite Lekciou 1 a pracujte postupne
+4. Pridajte sa do našej [Discord komunity](https://aka.ms/ds4beginners/discord) pre podporu
## 👩🏫 Pre učiteľov
-> **Učitelia**: zahrnuli sme [niekoľko návrhov](for-teachers.md) ako používať tento učebný plán. Radi privítame vašu spätnú väzbu [v našom diskusnom fóre](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+> **Učitelia**: zahrnuli sme [niektoré návrhy](for-teachers.md), ako používať tento učebný plán. Radi by sme mali vašu spätnú väzbu [v našom diskusnom fóre](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## Spoznajte Tím
-## Zoznámte sa s tímom
-[](https://youtu.be/8mzavjQSMM4 "Promo video")
+[](https://youtu.be/8mzavjQSMM4 "Propagačné video")
**Gif od** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
@@ -104,107 +95,107 @@ Začnite s nasledujúcimi zdrojmi:
## Pedagogika
-Pri tvorbe tohto kurikula sme zvolili dva pedagogické princípy: zabezpečiť, aby bolo založené na projektoch a aby obsahovalo časté kvízy. Na konci tejto série študenti nadobudnú základné poznatky o dátovej vede, vrátane etických konceptov, prípravy dát, rôznych spôsobov práce s dátami, vizualizácie dát, analýzy dát, reálnych prípadov použitia dátovej vedy a ďalších.
+Pri tvorbe tohoto kurikula sme si zvolili dve pedagogické zásady: zabezpečenie projektovo orientovaného prístupu a zahrnutie častých kvízov. Na konci tejto série študenti osvojia základné princípy dátovej vedy, vrátane etických konceptov, prípravy dát, rôznych spôsobov práce s dátami, vizualizácie dát, analýzy dát, reálnych prípadov použitia dátovej vedy a ďalšie.
-Okrem toho, nízkonákladový kvíz pred hodinou nastavuje študijný zámer študenta na učenie sa témy, zatiaľ čo druhý kvíz po vyučovaní zabezpečuje lepšie zapamätanie. Toto kurikulum bolo navrhnuté tak, aby bolo flexibilné a zábavné, a môžete ho absolvovať celé alebo čiastočne. Projekty začínajú malé a postupne sa počas 10-týždňového cyklu stávajú zložitejšími.
+Okrem toho, nízkorizikový kvíz pred prednáškou nastavuje zámer študenta učiť sa danú tému, zatiaľ čo druhý kvíz po prednáške zabezpečuje lepšie zapamätanie. Toto kurikulum bolo navrhnuté tak, aby bolo flexibilné a zábavné, a môže byť absolvované celé alebo iba čiastočne. Projekty začínajú malé a postupne sa stávajú zložitejšími v priebehu 10-týždňového cyklu.
-> Nájdite náš [Kodeks správania](CODE_OF_CONDUCT.md), [Príspevky](CONTRIBUTING.md), [Preklady](TRANSLATIONS.md) a pravidlá. Radi privítame vaše konštruktívne pripomienky!
+> Nájdite náš [Kódex správania](CODE_OF_CONDUCT.md), [Pokyny pre prispievateľov](CONTRIBUTING.md), [Pokyny na preklady](TRANSLATIONS.md). Radi uvítame vašu konštruktívnu spätnú väzbu!
## Každá lekcia obsahuje:
-- Voliteľnú poznámku v štýle sketchnote
+- Voliteľnú náčrtnú poznámku (sketchnote)
- Voliteľné doplnkové video
-- Kvíz na rozcvičenie pred lekciou
-- Písomnú lekciu
-- Pre lekcie založené na projektoch, krok za krokom návody na vytvorenie projektu
-- Overovanie vedomostí
+- Kvíz na zahriatie pred lekciou
+- Písanú lekciu
+- Pre projektovo zamerané lekcie, krok za krokom návody ako vytvoriť projekt
+- Overovanie znalostí
- Výzvu
-- Doplnkové čítanie
-- Zadanie
+- Dodatočné čítanie
+- Zadanie úlohy
- [Kvíz po lekcii](https://ff-quizzes.netlify.app/en/)
-> **Poznámka o kvízoch**: Všetky kvízy sú obsiahnuté v priečinku Quiz-App, spolu 40 kvízov s tromi otázkami v každom. Sú prepojené v rámci lekcií, ale aplikáciu kvízov je možné spustiť lokálne alebo nasadiť do Azure; postupujte podľa pokynov v priečinku `quiz-app`. Postupne sa lokalizujú.
+> **Poznámka o kvízoch**: Všetky kvízy sú obsiahnuté v priečinku Quiz-App, celkovo 40 kvízov so 3 otázkami každý. Sú prepojené v rámci lekcií, no aplikáciu kvízov možno spustiť lokálne alebo nasadiť na Azure; postupujte podľa pokynov v priečinku `quiz-app`. Postupne sa lokalizujú.
## 🎓 Príklady priateľské pre začiatočníkov
**Nový v dátovej vede?** Vytvorili sme špeciálny [adresár príkladov](examples/README.md) s jednoduchým, dobre komentovaným kódom, ktorý vám pomôže začať:
-- 🌟 **Hello World** - Váš prvý program pre dátovú vedu
-- 📂 **Nahrávanie dát** - Naučte sa čítať a skúmať dátové súbory
+- 🌟 **Hello World** - Váš prvý dátovo-viedny program
+- 📂 **Nahrávanie dát** - Naučte sa čítať a skúmať dátové sady
- 📊 **Jednoduchá analýza** - Vypočítajte štatistiky a nájdite vzory
- 📈 **Základná vizualizácia** - Vytvorte grafy a diagramy
- 🔬 **Reálny projekt** - Kompletný pracovný postup od začiatku do konca
-Každý príklad obsahuje podrobné komentáre vysvetľujúce každý krok, ideálne pre úplných začiatočníkov!
+Každý príklad obsahuje podrobné komentáre vysvetľujúce každý krok, takže je ideálny pre úplných začiatočníkov!
👉 **[Začnite s príkladmi](examples/README.md)** 👈
## Lekcie
-||
+||
|:---:|
-| Dátová veda pre začiatočníkov: Plán - _Sketchnote od [@nitya](https://twitter.com/nitya)_ |
+| Dátová veda pre začiatočníkov: Plán cesty - _Náčrtná poznámka od [@nitya](https://twitter.com/nitya)_ |
| Číslo lekcie | Téma | Skupina lekcií | Ciele učenia | Prepojená lekcia | Autor |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Definovanie dátovej vedy | [Úvod](1-Introduction/README.md) | Naučte sa základné koncepty dátovej vedy a jej vzťah k umelej inteligencii, strojovému učeniu a veľkým dátam. | [lekcia](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Etika v dátovej vede | [Úvod](1-Introduction/README.md) | Koncepty dátaovej etiky, výzvy a rámce. | [lekcia](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | Definovanie dátovej vedy | [Úvod](1-Introduction/README.md) | Naučte sa základné koncepty dátovej vedy a ako súvisí s umelej inteligencie, strojovým učením a veľkými dátami. | [lekcia](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Etika v dátovej vede | [Úvod](1-Introduction/README.md) | Koncepty, výzvy a rámce etiky dát. | [lekcia](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definovanie dát | [Úvod](1-Introduction/README.md) | Ako sa dáta klasifikujú a ich bežné zdroje. | [lekcia](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Úvod do štatistiky a pravdepodobnosti | [Úvod](1-Introduction/README.md) | Matematické techniky pravdepodobnosti a štatistiky na pochopenie dát. | [lekcia](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Práca s relačnými dátami | [Práca s dátami](2-Working-With-Data/README.md) | Úvod do relačných dát a základy skúmania a analýzy relačných dát pomocou štruktúrovaného dotazovacieho jazyka, známeho ako SQL (vyslovuje sa "síkuel"). | [lekcia](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Práca s NoSQL dátami | [Práca s dátami](2-Working-With-Data/README.md) | Úvod do nerelačných dát, ich rôzne typy a základy skúmania a analýzy databáz dokumentov. | [lekcia](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Práca s Python | [Práca s dátami](2-Working-With-Data/README.md) | Základy používania Pythonu na prieskum dát s knižnicami ako Pandas. Odporúčané je základné porozumenie programovaniu v Pythone. | [lekcia](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Príprava dát | [Práca s dátami](2-Working-With-Data/README.md) | Témy o technikách čistenia a transformácie dát na riešenie problémov s chýbajúcimi, nepresnými alebo nekompletnými dátami. | [lekcia](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Vizualizácia množstiev | [Vizualizácia dát](3-Data-Visualization/README.md) | Naučte sa používať Matplotlib na vizualizáciu údajov o vtákoch 🦆 | [lekcia](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Vizualizácia rozdelenia dát | [Vizualizácia dát](3-Data-Visualization/README.md) | Vizualizácia pozorovaní a trendov v rámci intervalu. | [lekcia](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Vizualizácia pomerov | [Vizualizácia dát](3-Data-Visualization/README.md) | Vizualizácia diskrétnych a zoskupených percentuálnych hodnôt. | [lekcia](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Vizualizácia vzťahov | [Vizualizácia dát](3-Data-Visualization/README.md) | Vizualizácia spojení a korelácií medzi súbormi dát a ich premennými. | [lekcia](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Významné vizualizácie | [Vizualizácia dát](3-Data-Visualization/README.md) | Techniky a rady pre tvorbu hodnotných vizualizácií na efektívne riešenie problémov a získavanie poznatkov. | [lekcia](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 04 | Úvod do štatistiky a pravdepodobnosti | [Úvod](1-Introduction/README.md) | Matematické techniky pravdepodobnosti a štatistiky pre pochopenie dát. | [lekcia](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Práca s relačnými dátami | [Práca s dátami](2-Working-With-Data/README.md) | Úvod do relačných dát a základy skúmania a analýzy relačných dát pomocou štruktúrovaného dotazovacieho jazyka (SQL, vyslovuje sa "sí-kveil"). | [lekcia](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Práca s NoSQL dátami | [Práca s dátami](2-Working-With-Data/README.md) | Úvod do nereľačných dát, ich typov a základy skúmania a analýzy dokumentových databáz. | [lekcia](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Práca s Pythonom | [Práca s dátami](2-Working-With-Data/README.md) | Základy používania Pythonu na prieskum dát s knižnicami ako Pandas. Odporúča sa základné porozumenie programovaniu v Pythone. | [lekcia](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Príprava dát | [Práca s dátami](2-Working-With-Data/README.md) | Témy týkajúce sa techník čistenia a transformácie dát na riešenie problémov chýbajúcich, nepresných alebo neúplných dát. | [lekcia](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Vizualizácia kvantít | [Vizualizácia dát](3-Data-Visualization/README.md) | Naučte sa používať Matplotlib na vizualizáciu dát o vtákoch 🦆 | [lekcia](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Vizualizácia distribúcií dát | [Vizualizácia dát](3-Data-Visualization/README.md) | Vizualizácia pozorovaní a trendov v intervale. | [lekcia](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Vizualizácia pomerov | [Vizualizácia dát](3-Data-Visualization/README.md) | Vizualizácia diskrétnych a zoskupených percentuálnych podielov. | [lekcia](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Vizualizácia vzťahov | [Vizualizácia dát](3-Data-Visualization/README.md) | Vizualizácia spojení a korelácií medzi množinami dát a ich premennými. | [lekcia](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Významné vizualizácie | [Vizualizácia dát](3-Data-Visualization/README.md) | Techniky a rady, ako spraviť vaše vizualizácie hodnotnými pre efektívne riešenie problémov a získavanie poznatkov. | [lekcia](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Úvod do životného cyklu dátovej vedy | [Životný cyklus](4-Data-Science-Lifecycle/README.md) | Úvod do životného cyklu dátovej vedy a jeho prvého kroku získavania a extrakcie dát. | [lekcia](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analýza | [Životný cyklus](4-Data-Science-Lifecycle/README.md) | Táto fáza životného cyklu dátovej vedy sa zameriava na techniky analýzy dát. | [lekcia](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Komunikácia | [Životný cyklus](4-Data-Science-Lifecycle/README.md) | Táto fáza životného cyklu dátovej vedy sa zameriava na prezentáciu poznatkov z dát tak, aby bolo pre rozhodovateľov ľahšie ich porozumieť. | [lekcia](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Dátová veda v cloude | [Dáta v cloude](5-Data-Science-In-Cloud/README.md) | Táto séria lekcií predstavuje dátovú vedu v cloude a jej výhody. | [lekcia](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) a [Maud](https://twitter.com/maudstweets) |
-| 18 | Dátová veda v cloude | [Dáta v cloude](5-Data-Science-In-Cloud/README.md) | Tréning modelov pomocou nástrojov Low Code. |[lekcia](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) a [Maud](https://twitter.com/maudstweets) |
-| 19 | Dátová veda v cloude | [Dáta v cloude](5-Data-Science-In-Cloud/README.md) | Nasadenie modelov pomocou Azure Machine Learning Studio. | [lekcia](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) a [Maud](https://twitter.com/maudstweets) |
-| 20 | Dátová veda v praxi | [V praxi](6-Data-Science-In-Wild/README.md) | Projekty riadené dátovou vedou v reálnom svete. | [lekcia](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 16 | Komunikácia | [Životný cyklus](4-Data-Science-Lifecycle/README.md) | Táto fáza životného cyklu dátovej vedy sa zameriava na prezentáciu poznatkov z dát spôsobom, ktorý uľahčuje rozhodovacím činiteľom porozumenie. | [lekcia](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Dátová veda v cloude | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Táto séria lekcií predstavuje dátovú vedu v cloude a jej výhody. | [lekcia](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) a [Maud](https://twitter.com/maudstweets) |
+| 18 | Dátová veda v cloude | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Tréning modelov pomocou Low Code nástrojov. |[lekcia](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) a [Maud](https://twitter.com/maudstweets) |
+| 19 | Dátová veda v cloude | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Nasadzovanie modelov pomocou Azure Machine Learning Studio. | [lekcia](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) a [Maud](https://twitter.com/maudstweets) |
+| 20 | Dátová veda v praxi | [In the Wild](6-Data-Science-In-Wild/README.md) | Projekty založené na dátovej vede v reálnom svete. | [lekcia](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Postupujte podľa týchto krokov, aby ste otvorili tento príklad v Codespace:
-1. Kliknite na rozbaľovacie menu Code a vyberte možnosť Open with Codespaces.
+Postupujte podľa týchto krokov, aby ste otvorili túto ukážku v Codespace:
+1. Kliknite na rozbaľovaciu ponuku Kód (Code) a vyberte možnosť Open with Codespaces.
2. Vyberte + New codespace v spodnej časti panela.
-Pre viac informácií si pozrite [dokumentáciu GitHubu](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+Viac informácií nájdete v [GitHub dokumentácii](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Postupujte podľa týchto krokov, aby ste otvorili toto repozitórium v kontajneri pomocou vášho lokálneho počítača a VSCode s rozšírením VS Code Remote - Containers:
+Postupujte podľa týchto krokov, aby ste otvorili tento repozitár v kontajneri pomocou vášho lokálneho počítača a VSCode s rozšírením VS Code Remote - Containers:
-1. Ak používate vývojový kontajner prvýkrát, uistite sa, že váš systém spĺňa predpoklady (napr. máte nainštalovaný Docker) podľa [dokumentácie pre začínajúcich používateľov](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Ak používate vývojový kontajner prvýkrát, uistite sa, že váš systém spĺňa požiadavky (napr. že máte nainštalovaný Docker) podľa [dokumentácie na začiatok](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Na použitie tohto repozitára môžete buď otvoriť repozitár v izolovanom Docker volume:
+Ak chcete použiť tento repozitár, môžete ho buď otvoriť v izolovanom Docker zväzku:
-**Poznámka**: Pod kapotou sa použije príkaz Remote-Containers: **Clone Repository in Container Volume...**, ktorý skopíruje zdrojový kód do Docker volume namiesto lokálneho súborového systému. [Volume](https://docs.docker.com/storage/volumes/) sú preferovaný spôsob pre trvalé ukladanie dát v kontajneri.
+**Poznámka**: Pod kapotou sa použije príkaz Remote-Containers: **Clone Repository in Container Volume...** na naklonovanie zdrojového kódu do Docker zväzku namiesto lokálneho súborového systému. [Zväzky](https://docs.docker.com/storage/volumes/) sú preferovaným mechanizmom na trvalé ukladanie dát kontajnera.
-Alebo otvorte lokálne klonovanú alebo stiahnutú verziu repozitára:
+Alebo otvorte lokálne naklonovanú alebo stiahnutú verziu repozitára:
-- Klonujte tento repozitár do vášho lokálneho súborového systému.
+- Naklonujte tento repozitár do vášho lokálneho súborového systému.
- Stlačte F1 a vyberte príkaz **Remote-Containers: Open Folder in Container...**.
-- Vyberte skopírovanú kópiu tejto zložky, počkajte na spustenie kontajnera a vyskúšajte si to.
+- Vyberte naklonovanú kópiu tejto zložky, počkajte, kým kontajner spustí, a vyskúšajte to.
-## Prístup offline
+## Offline prístup
-Túto dokumentáciu môžete spustiť offline pomocou [Docsify](https://docsify.js.org/#/). Vytvorte si fork tohto repozitára, [nainštalujte Docsify](https://docsify.js.org/#/quickstart) na vašom lokálnom počítači, potom v koreňovej zložke tohto repozitára zadajte príkaz `docsify serve`. Webová stránka bude dostupná na porte 3000 na vašom localhoste: `localhost:3000`.
+Túto dokumentáciu môžete spustiť offline pomocou [Docsify](https://docsify.js.org/#/). Vytvorte fork tohto repozitára, [nainštalujte Docsify](https://docsify.js.org/#/quickstart) na vašom lokálnom počítači, potom v koreňovom adresári tohto repozitára spustite príkaz `docsify serve`. Webová stránka bude servírovaná na porte 3000 na vašom localhoste: `localhost:3000`.
-> Poznámka, poznámkové bloky nebudú renderované cez Docsify, takže keď potrebujete spustiť notebook, urobte to samostatne vo VS Code so spusteným Python kernelom.
+> Poznámka, poznámkové bloky (notebooks) nebudú rendrované cez Docsify, takže keď potrebujete spustiť notebook, spravte to samostatne vo VS Code s bežiacim Python jadrom.
## Iné kurikuly
-Náš tím vytvára aj iné kurikuly! Pozrite si:
+Náš tím vytvára ďalšie kurikuly! Pozrite si:
### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchain4j-for-beginners)
[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
@@ -213,7 +204,7 @@ Náš tím vytvára aj iné kurikuly! Pozrite si:
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
@@ -225,28 +216,28 @@ Náš tím vytvára aj iné kurikuly! Pozrite si:
---
-### Základné vzdelávanie
+### Základné učenie
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### Séria Copilot
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Získanie pomoci
-**Máte problémy?** Skontrolujte náš [Sprievodca riešením problémov](TROUBLESHOOTING.md) pre riešenia bežných problémov.
+**Máte problémy?** Pozrite si náš [Sprievodca riešením problémov](TROUBLESHOOTING.md) pre riešenia bežných problémov.
-Ak sa zaseknete alebo máte otázky týkajúce sa tvorby AI aplikácií, pridajte sa k ostatným študentom a skúseným vývojárom v diskusiách o MCP. Je to podporujúca komunita, kde sú otázky vítané a vedomosti sa slobodne zdieľajú.
+Ak ste zaseknutí alebo máte otázky o vytváraní AI aplikácií, pridajte sa k ostatným študentom a skúseným vývojárom v diskusiách o MCP. Je to podporná komunita, kde sú otázky vítané a znalosti sa voľne zdieľajú.
[](https://discord.gg/nTYy5BXMWG)
@@ -257,6 +248,6 @@ Ak máte spätnú väzbu k produktu alebo chyby počas vývoja, navštívte:
---
-**Zrieknutie sa zodpovednosti**:
-Tento dokument bol preložený pomocou AI prekladateľskej služby [Co-op Translator](https://github.com/Azure/co-op-translator). Aj keď sa snažíme o presnosť, majte na pamäti, že automatizované preklady môžu obsahovať chyby alebo nepresnosti. Originálny dokument v jeho pôvodnom jazyku by mal byť považovaný za autoritatívny zdroj. Pre kritické informácie sa odporúča profesionálny ľudský preklad. Za akékoľvek nedorozumenia alebo nesprávne výklady vyplývajúce z použitia tohto prekladu nenesieme zodpovednosť.
+**Vylúčenie zodpovednosti**:
+Tento dokument bol preložený pomocou AI prekladateľskej služby [Co-op Translator](https://github.com/Azure/co-op-translator). Hoci sa snažíme o presnosť, majte prosím na pamäti, že automatizované preklady môžu obsahovať chyby alebo nepresnosti. Pôvodný dokument v jeho rodnom jazyku by mal byť považovaný za autoritatívny zdroj. Pre dôležité informácie sa odporúča odborný ľudský preklad. Nezodpovedáme za akékoľvek nedorozumenia alebo nesprávne výklady vyplývajúce z použitia tohto prekladu.
\ No newline at end of file
diff --git a/translations/sk/SECURITY.md b/translations/sk/SECURITY.md
index 953c1843..033cd194 100644
--- a/translations/sk/SECURITY.md
+++ b/translations/sk/SECURITY.md
@@ -1,12 +1,3 @@
-
## Bezpečnosť
Spoločnosť Microsoft berie bezpečnosť našich softvérových produktov a služieb vážne, čo zahŕňa aj všetky repozitáre zdrojového kódu spravované prostredníctvom našich organizácií na GitHube, medzi ktoré patria [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) a [naše GitHub organizácie](https://opensource.microsoft.com/).
diff --git a/translations/sk/SUPPORT.md b/translations/sk/SUPPORT.md
index 3eb2fe90..abe3588d 100644
--- a/translations/sk/SUPPORT.md
+++ b/translations/sk/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Podpora
## Ako nahlásiť problémy a získať pomoc
diff --git a/translations/sk/TROUBLESHOOTING.md b/translations/sk/TROUBLESHOOTING.md
index e6130baa..9263bfd5 100644
--- a/translations/sk/TROUBLESHOOTING.md
+++ b/translations/sk/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Príručka na riešenie problémov
Táto príručka poskytuje riešenia bežných problémov, s ktorými sa môžete stretnúť pri práci s učebnými materiálmi Data Science for Beginners.
diff --git a/translations/sk/USAGE.md b/translations/sk/USAGE.md
index 6a0ab05c..cc48f13e 100644
--- a/translations/sk/USAGE.md
+++ b/translations/sk/USAGE.md
@@ -1,12 +1,3 @@
-
# Návod na použitie
Tento návod poskytuje príklady a bežné pracovné postupy na používanie učebných osnov Data Science for Beginners.
diff --git a/translations/sk/docs/_sidebar.md b/translations/sk/docs/_sidebar.md
index 7c4cd1c8..611f68d8 100644
--- a/translations/sk/docs/_sidebar.md
+++ b/translations/sk/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Úvod
- [Definovanie dátovej vedy](../1-Introduction/01-defining-data-science/README.md)
- [Etika dátovej vedy](../1-Introduction/02-ethics/README.md)
diff --git a/translations/sk/examples/README.md b/translations/sk/examples/README.md
index 22060c9b..d3b17af6 100644
--- a/translations/sk/examples/README.md
+++ b/translations/sk/examples/README.md
@@ -1,12 +1,3 @@
-
# Príklady pre začiatočníkov v dátovej vede
Vitajte v adresári s príkladmi! Táto kolekcia jednoduchých, dobre okomentovaných príkladov je navrhnutá tak, aby vám pomohla začať s dátovou vedou, aj keď ste úplný začiatočník.
diff --git a/translations/sk/for-teachers.md b/translations/sk/for-teachers.md
index c49c967b..b467a512 100644
--- a/translations/sk/for-teachers.md
+++ b/translations/sk/for-teachers.md
@@ -1,12 +1,3 @@
-
## Pre pedagógov
Chceli by ste použiť tento učebný plán vo svojej triede? Neváhajte!
diff --git a/translations/sk/quiz-app/README.md b/translations/sk/quiz-app/README.md
index f505dd5e..44ffc199 100644
--- a/translations/sk/quiz-app/README.md
+++ b/translations/sk/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Kvízy
Tieto kvízy sú prednáškové a povýučbové kvízy pre učebný plán dátovej vedy na https://aka.ms/datascience-beginners
diff --git a/translations/sk/sketchnotes/README.md b/translations/sk/sketchnotes/README.md
index ad2514d7..f55e768f 100644
--- a/translations/sk/sketchnotes/README.md
+++ b/translations/sk/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Nájdite všetky sketchnoty tu!
## Kredity
diff --git a/translations/sl/.co-op-translator.json b/translations/sl/.co-op-translator.json
new file mode 100644
index 00000000..2f320ea2
--- /dev/null
+++ b/translations/sl/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:10:19+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "sl"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-30T19:32:30+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "sl"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-30T19:33:33+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "sl"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T17:04:57+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "sl"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-30T19:49:04+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "sl"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T19:45:08+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "sl"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-30T19:37:04+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "sl"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T14:17:07+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "sl"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-30T19:26:25+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "sl"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-30T19:17:54+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "sl"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T12:20:51+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "sl"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:58:53+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "sl"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T19:34:05+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "sl"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-30T18:04:02+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "sl"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T16:02:54+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "sl"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-30T18:10:25+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "sl"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T19:36:12+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "sl"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-30T18:21:01+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "sl"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-30T18:00:06+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T19:39:49+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-30T19:04:37+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T19:41:29+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-30T19:17:17+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T19:39:22+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-30T19:00:06+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:49:12+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-30T19:13:43+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T19:40:22+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-30T19:08:44+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-30T19:09:18+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-30T19:09:52+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-30T18:43:44+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-30T18:46:39+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-30T18:51:14+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-30T18:53:45+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-30T18:40:59+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-30T18:48:10+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-30T18:55:30+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "sl"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-30T18:39:02+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "sl"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:45:47+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "sl"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-30T18:31:03+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "sl"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:45:04+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "sl"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-30T18:25:23+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "sl"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:46:45+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "sl"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-30T18:37:56+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "sl"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-30T18:22:31+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "sl"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T19:32:48+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "sl"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-30T17:50:29+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "sl"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T19:31:11+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "sl"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-30T17:45:02+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "sl"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T19:33:17+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "sl"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-30T17:59:21+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "sl"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-30T17:37:26+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "sl"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:47:03+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "sl"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-30T19:56:55+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "sl"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-30T19:51:27+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "sl"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:43:35+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "sl"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-30T17:36:51+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "sl"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:43:35+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "sl"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:26:36+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "sl"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:32:20+00:00",
+ "source_file": "README.md",
+ "language_code": "sl"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-30T17:34:34+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "sl"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-30T17:33:09+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "sl"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:48:59+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "sl"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:11:09+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "sl"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-30T18:21:42+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "sl"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:08:47+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "sl"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T20:02:03+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "sl"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-30T19:50:15+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "sl"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-30T19:57:49+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "sl"
+ }
+}
\ No newline at end of file
diff --git a/translations/sl/1-Introduction/01-defining-data-science/README.md b/translations/sl/1-Introduction/01-defining-data-science/README.md
index 1fd1b871..35116243 100644
--- a/translations/sl/1-Introduction/01-defining-data-science/README.md
+++ b/translations/sl/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Definiranje podatkovne znanosti
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/sl/1-Introduction/01-defining-data-science/assignment.md b/translations/sl/1-Introduction/01-defining-data-science/assignment.md
index 6556d5d2..69714ed0 100644
--- a/translations/sl/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/sl/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Naloga: Scenariji podatkovne znanosti
V tej prvi nalogi vas prosimo, da razmislite o nekem resničnem procesu ali problemu v različnih problematičnih domenah in kako ga lahko izboljšate z uporabo procesa podatkovne znanosti. Razmislite o naslednjem:
diff --git a/translations/sl/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/sl/1-Introduction/01-defining-data-science/solution/assignment.md
index 6e721dc4..4321c4f1 100644
--- a/translations/sl/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/sl/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Naloga: Scenariji podatkovne znanosti
V tej prvi nalogi vas prosimo, da razmislite o nekem resničnem procesu ali problemu v različnih problematičnih domenah in kako bi ga lahko izboljšali s procesom podatkovne znanosti. Razmislite o naslednjem:
diff --git a/translations/sl/1-Introduction/02-ethics/README.md b/translations/sl/1-Introduction/02-ethics/README.md
index 9e0427d2..e800babb 100644
--- a/translations/sl/1-Introduction/02-ethics/README.md
+++ b/translations/sl/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Uvod v podatkovno etiko
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/sl/1-Introduction/02-ethics/assignment.md b/translations/sl/1-Introduction/02-ethics/assignment.md
index 1d4ba6b0..7fc30dc9 100644
--- a/translations/sl/1-Introduction/02-ethics/assignment.md
+++ b/translations/sl/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Napišite študijo primera o etiki podatkov
## Navodila
diff --git a/translations/sl/1-Introduction/03-defining-data/README.md b/translations/sl/1-Introduction/03-defining-data/README.md
index db9f1e9a..f813543f 100644
--- a/translations/sl/1-Introduction/03-defining-data/README.md
+++ b/translations/sl/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Definiranje podatkov
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/sl/1-Introduction/03-defining-data/assignment.md b/translations/sl/1-Introduction/03-defining-data/assignment.md
index b3a10e66..5c171da8 100644
--- a/translations/sl/1-Introduction/03-defining-data/assignment.md
+++ b/translations/sl/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Razvrščanje podatkovnih nizov
## Navodila
diff --git a/translations/sl/1-Introduction/04-stats-and-probability/README.md b/translations/sl/1-Introduction/04-stats-and-probability/README.md
index feb9b9da..4d601efd 100644
--- a/translations/sl/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/sl/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Kratek uvod v statistiko in verjetnost
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Za boljše razumevanje porazdelitve podatkov je koristno govoriti o **kvartilih*
Grafično lahko razmerje med mediano in kvartili predstavimo v diagramu, imenovanem **škatlasti diagram**:
-
+
Tukaj prav tako izračunamo **interkvartilni razpon** IQR=Q3-Q1 in tako imenovane **izstopajoče vrednosti** - vrednosti, ki ležijo zunaj meja [Q1-1.5*IQR, Q3+1.5*IQR].
diff --git a/translations/sl/1-Introduction/04-stats-and-probability/assignment.md b/translations/sl/1-Introduction/04-stats-and-probability/assignment.md
index c18615bc..cd463986 100644
--- a/translations/sl/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/sl/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Majhna študija o diabetesu
V tej nalogi bomo delali z majhnim naborom podatkov o bolnikih z diabetesom, ki je vzet iz [tukaj](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/sl/1-Introduction/README.md b/translations/sl/1-Introduction/README.md
index 9c87268d..2ed190ec 100644
--- a/translations/sl/1-Introduction/README.md
+++ b/translations/sl/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Uvod v podatkovno znanost

diff --git a/translations/sl/2-Working-With-Data/05-relational-databases/README.md b/translations/sl/2-Working-With-Data/05-relational-databases/README.md
index 1874dc01..0d9bb968 100644
--- a/translations/sl/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/sl/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Delo s podatki: Relacijske baze podatkov
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/sl/2-Working-With-Data/05-relational-databases/assignment.md b/translations/sl/2-Working-With-Data/05-relational-databases/assignment.md
index a313b4ef..22fe7970 100644
--- a/translations/sl/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/sl/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Prikaz podatkov o letališčih
Na voljo imate [bazo podatkov](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db), zgrajeno na [SQLite](https://sqlite.org/index.html), ki vsebuje informacije o letališčih. Shema je prikazana spodaj. Uporabili boste [razširitev SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) v [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) za prikaz informacij o letališčih v različnih mestih.
diff --git a/translations/sl/2-Working-With-Data/06-non-relational/README.md b/translations/sl/2-Working-With-Data/06-non-relational/README.md
index d0580db2..86c64214 100644
--- a/translations/sl/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/sl/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Delo z podatki: Nerelacijski podatki
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/sl/2-Working-With-Data/06-non-relational/assignment.md b/translations/sl/2-Working-With-Data/06-non-relational/assignment.md
index cd7b174a..42b93f27 100644
--- a/translations/sl/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/sl/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Dobički od sode
## Navodila
diff --git a/translations/sl/2-Working-With-Data/07-python/README.md b/translations/sl/2-Working-With-Data/07-python/README.md
index ef02ac6f..874cc395 100644
--- a/translations/sl/2-Working-With-Data/07-python/README.md
+++ b/translations/sl/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Delo z podatki: Python in knjižnica Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/sl/2-Working-With-Data/07-python/assignment.md b/translations/sl/2-Working-With-Data/07-python/assignment.md
index 8d8450b2..67664b9d 100644
--- a/translations/sl/2-Working-With-Data/07-python/assignment.md
+++ b/translations/sl/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Naloga za obdelavo podatkov v Pythonu
V tej nalogi vas bomo prosili, da razširite kodo, ki smo jo začeli razvijati v naših izzivih. Naloga je sestavljena iz dveh delov:
diff --git a/translations/sl/2-Working-With-Data/08-data-preparation/README.md b/translations/sl/2-Working-With-Data/08-data-preparation/README.md
index 00ea83a9..b8e33ddb 100644
--- a/translations/sl/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/sl/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Delo z podatki: Priprava podatkov
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/sl/2-Working-With-Data/08-data-preparation/assignment.md b/translations/sl/2-Working-With-Data/08-data-preparation/assignment.md
index dec5addc..bc5da78b 100644
--- a/translations/sl/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/sl/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Vrednotenje podatkov iz obrazca
Stranka je testirala [majhen obrazec](../../../../2-Working-With-Data/08-data-preparation/index.html) za zbiranje osnovnih podatkov o svoji bazi strank. Svoje ugotovitve so prinesli k vam, da preverite zbrane podatke. Stran `index.html` lahko odprete v brskalniku, da si ogledate obrazec.
diff --git a/translations/sl/2-Working-With-Data/README.md b/translations/sl/2-Working-With-Data/README.md
index 54750fe5..5a7a709d 100644
--- a/translations/sl/2-Working-With-Data/README.md
+++ b/translations/sl/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Delo s podatki

diff --git a/translations/sl/3-Data-Visualization/09-visualization-quantities/README.md b/translations/sl/3-Data-Visualization/09-visualization-quantities/README.md
index cd7dd36f..bb92a8ef 100644
--- a/translations/sl/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/sl/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija količin
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/sl/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/sl/3-Data-Visualization/09-visualization-quantities/assignment.md
index 4f97c633..a4f9dd0a 100644
--- a/translations/sl/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/sl/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Črte, razpršene točke in stolpci
## Navodila
diff --git a/translations/sl/3-Data-Visualization/10-visualization-distributions/README.md b/translations/sl/3-Data-Visualization/10-visualization-distributions/README.md
index f16d46b5..32814476 100644
--- a/translations/sl/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/sl/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija porazdelitev
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/sl/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/sl/3-Data-Visualization/10-visualization-distributions/assignment.md
index db9ec6d4..83a2b2d0 100644
--- a/translations/sl/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/sl/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Uporabite svoje veščine
## Navodila
diff --git a/translations/sl/3-Data-Visualization/11-visualization-proportions/README.md b/translations/sl/3-Data-Visualization/11-visualization-proportions/README.md
index 04806e6f..cc8108e5 100644
--- a/translations/sl/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/sl/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija deležev
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/sl/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/sl/3-Data-Visualization/11-visualization-proportions/assignment.md
index d3a3f27b..7c7bdae1 100644
--- a/translations/sl/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/sl/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Poskusite v Excelu
## Navodila
diff --git a/translations/sl/3-Data-Visualization/12-visualization-relationships/README.md b/translations/sl/3-Data-Visualization/12-visualization-relationships/README.md
index a2acc3fe..8341481e 100644
--- a/translations/sl/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/sl/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija odnosov: Vse o medu 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/sl/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/sl/3-Data-Visualization/12-visualization-relationships/assignment.md
index cc2646a0..17d37c0d 100644
--- a/translations/sl/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/sl/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Potopite se v čebelnjak
## Navodila
diff --git a/translations/sl/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/sl/3-Data-Visualization/13-meaningful-visualizations/README.md
index 9ccc8152..e2d6c712 100644
--- a/translations/sl/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/sl/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Ustvarjanje smiselnih vizualizacij
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/sl/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/sl/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 4ca916c6..ac942dc9 100644
--- a/translations/sl/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/sl/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Ustvarite svojo prilagojeno vizualizacijo
## Navodila
diff --git a/translations/sl/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/sl/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index a50e1b22..252d025f 100644
--- a/translations/sl/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/sl/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Projekt vizualizacije podatkov Dangerous Liaisons
Za začetek se prepričajte, da imate na svojem računalniku nameščena NPM in Node. Namestite odvisnosti (npm install) in nato projekt zaženite lokalno (npm run serve):
diff --git a/translations/sl/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/sl/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index fdac1598..f4195e0a 100644
--- a/translations/sl/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/sl/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Projekt vizualizacije podatkov Dangerous Liaisons
Za začetek se prepričajte, da imate na svojem računalniku nameščena NPM in Node. Namestite odvisnosti (npm install) in nato zaženite projekt lokalno (npm run serve):
diff --git a/translations/sl/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/sl/3-Data-Visualization/R/09-visualization-quantities/README.md
index 3e08da8f..3ebe3c58 100644
--- a/translations/sl/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/sl/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija količin
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/sl/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/sl/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 57c49207..97fe6fd1 100644
--- a/translations/sl/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/sl/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Črte, razpršitve in stolpci
## Navodila
diff --git a/translations/sl/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/sl/3-Data-Visualization/R/10-visualization-distributions/README.md
index 10fb9081..1e2e21df 100644
--- a/translations/sl/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/sl/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija porazdelitev
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/sl/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/sl/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 3cbe4aba..611bb2a3 100644
--- a/translations/sl/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/sl/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Uporabite svoje veščine
## Navodila
diff --git a/translations/sl/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/sl/3-Data-Visualization/R/11-visualization-proportions/README.md
index f11ee1f8..f0ae099e 100644
--- a/translations/sl/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/sl/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija deležev
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/sl/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/sl/3-Data-Visualization/R/12-visualization-relationships/README.md
index 5ac7107c..0c11679b 100644
--- a/translations/sl/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/sl/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacija odnosov: Vse o medu 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/sl/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/sl/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index d6652e6d..70674650 100644
--- a/translations/sl/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/sl/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Ustvarjanje smiselnih vizualizacij
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/sl/3-Data-Visualization/README.md b/translations/sl/3-Data-Visualization/README.md
index 7e673d9d..f0d8d2ce 100644
--- a/translations/sl/3-Data-Visualization/README.md
+++ b/translations/sl/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Vizualizacije

diff --git a/translations/sl/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/sl/4-Data-Science-Lifecycle/14-Introduction/README.md
index 5f107de0..d22297b8 100644
--- a/translations/sl/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/sl/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Uvod v življenjski cikel podatkovne znanosti
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/sl/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/sl/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index c4d5931a..4e63387e 100644
--- a/translations/sl/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/sl/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Ocena podatkovnega nabora
Stranka se je obrnila na vašo ekipo za pomoč pri preučevanju sezonskih navad porabe taksi strank v New Yorku.
diff --git a/translations/sl/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/sl/4-Data-Science-Lifecycle/15-analyzing/README.md
index 193a9de0..b3c8b0d9 100644
--- a/translations/sl/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/sl/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Življenjski cikel podatkovne znanosti: Analiza
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/sl/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/sl/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 121a91c1..ae3ef9b0 100644
--- a/translations/sl/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/sl/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Iskanje odgovorov
To je nadaljevanje [naloge](../14-Introduction/assignment.md) iz prejšnje lekcije, kjer smo na kratko pregledali podatkovni niz. Zdaj bomo podatke podrobneje analizirali.
diff --git a/translations/sl/4-Data-Science-Lifecycle/16-communication/README.md b/translations/sl/4-Data-Science-Lifecycle/16-communication/README.md
index aaa97cea..d82b2de1 100644
--- a/translations/sl/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/sl/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Življenjski cikel podatkovne znanosti: Komunikacija
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/sl/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/sl/4-Data-Science-Lifecycle/16-communication/assignment.md
index a8b54785..6d48dda7 100644
--- a/translations/sl/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/sl/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Povej zgodbo
## Navodila
diff --git a/translations/sl/4-Data-Science-Lifecycle/README.md b/translations/sl/4-Data-Science-Lifecycle/README.md
index 4e4d319a..5edb6e9a 100644
--- a/translations/sl/4-Data-Science-Lifecycle/README.md
+++ b/translations/sl/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Življenjski cikel podatkovne znanosti

diff --git a/translations/sl/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/sl/5-Data-Science-In-Cloud/17-Introduction/README.md
index 5fbae8ad..26e1a630 100644
--- a/translations/sl/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/sl/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Uvod v podatkovno znanost v oblaku
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/sl/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/sl/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index b36303d0..effbc7a2 100644
--- a/translations/sl/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/sl/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Raziskava trga
## Navodila
diff --git a/translations/sl/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/sl/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 499d5f09..70bad3a7 100644
--- a/translations/sl/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/sl/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Podatkovna znanost v oblaku: Način "Low code/No code"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/sl/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/sl/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 3c8c65ad..a6a2caf9 100644
--- a/translations/sl/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/sl/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Projekt podatkovne znanosti z malo ali brez kode na Azure ML
## Navodila
diff --git a/translations/sl/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/sl/5-Data-Science-In-Cloud/19-Azure/README.md
index ee3a1268..69ece2ea 100644
--- a/translations/sl/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/sl/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Podatkovna znanost v oblaku: Način "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/sl/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/sl/5-Data-Science-In-Cloud/19-Azure/assignment.md
index ed678a73..d3143ba0 100644
--- a/translations/sl/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/sl/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Projekt podatkovne znanosti z uporabo Azure ML SDK
## Navodila
diff --git a/translations/sl/5-Data-Science-In-Cloud/README.md b/translations/sl/5-Data-Science-In-Cloud/README.md
index d371fec3..6c0ce0eb 100644
--- a/translations/sl/5-Data-Science-In-Cloud/README.md
+++ b/translations/sl/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Podatkovna znanost v oblaku

diff --git a/translations/sl/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/sl/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index fe161588..3d2aef3c 100644
--- a/translations/sl/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/sl/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Podatkovna znanost v resničnem svetu
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/sl/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/sl/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 2cbbd958..5e3c8e89 100644
--- a/translations/sl/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/sl/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Raziskovanje podatkovne zbirke Planetary Computer
## Navodila
diff --git a/translations/sl/6-Data-Science-In-Wild/README.md b/translations/sl/6-Data-Science-In-Wild/README.md
index 90e48e1c..28496522 100644
--- a/translations/sl/6-Data-Science-In-Wild/README.md
+++ b/translations/sl/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Podatkovna znanost v praksi
Resnične uporabe podatkovne znanosti v različnih panogah.
diff --git a/translations/sl/AGENTS.md b/translations/sl/AGENTS.md
index 04cb241b..e12ab79e 100644
--- a/translations/sl/AGENTS.md
+++ b/translations/sl/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Pregled projekta
diff --git a/translations/sl/CODE_OF_CONDUCT.md b/translations/sl/CODE_OF_CONDUCT.md
index 272526f6..8ad8dcdf 100644
--- a/translations/sl/CODE_OF_CONDUCT.md
+++ b/translations/sl/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoftov kodeks ravnanja za odprtokodno programsko opremo
Ta projekt je sprejel [Microsoftov kodeks ravnanja za odprtokodno programsko opremo](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/sl/CONTRIBUTING.md b/translations/sl/CONTRIBUTING.md
index 17b3ddda..c512f648 100644
--- a/translations/sl/CONTRIBUTING.md
+++ b/translations/sl/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Prispevanje k Data Science za začetnike
Hvala za vaše zanimanje za prispevanje k učnemu načrtu Data Science za začetnike! Veseli smo prispevkov iz skupnosti.
diff --git a/translations/sl/INSTALLATION.md b/translations/sl/INSTALLATION.md
index 93fc9f21..61b0296a 100644
--- a/translations/sl/INSTALLATION.md
+++ b/translations/sl/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Vodnik za namestitev
Ta vodnik vam bo pomagal nastaviti okolje za delo s kurikulumom "Data Science for Beginners".
diff --git a/translations/sl/README.md b/translations/sl/README.md
index 6b1152da..2acd3eb4 100644
--- a/translations/sl/README.md
+++ b/translations/sl/README.md
@@ -1,206 +1,197 @@
-
-# Podatkovna znanost za začetnike - učni načrt
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+# Data Science za začetnike - učni načrt
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
-Azure Cloud zagovorniki pri Microsoftu z veseljem ponujajo 10-tedenski učni načrt s 20 lekcijami o podatkovni znanosti. Vsaka lekcija vključuje kvize pred in po lekciji, pisna navodila za dokončanje lekcije, rešitev in nalogo. Naša učna metoda, ki temelji na projektih, vam omogoča učenje med gradnjo, kar je dokazano učinkovit način, da nove veščine "prilepijo".
+Azure Cloud zagovorniki pri Microsoftu z veseljem ponujajo 10-tedenski učni načrt s 20 lekcijami, vse o podatkovni znanosti. Vsaka lekcija vključuje kvize pred in po lekciji, pisna navodila za dokončanje lekcije, rešitev in nalogo. Naše pedagoško načelo temelji na projektih, ki vam omogoča učenje med gradnjo; dokazano je, da nove veščine tako bolje 'pridejo do izraza'.
-**Iskrena hvala našim avtorjem:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Iskrena zahvala našim avtorjem:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Posebna zahvala 🙏 našim avtorjem, recenzentom in vsebinskim prispevkarjem [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** zlasti Aaryanu Arori, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Posebna zahvala 🙏 našim [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) avtorjem, recenzentom in sodelavcem pri vsebinah,** še posebej Aaryanu Arori, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Podatkovna znanost za začetnike - _Sketchnote avtor [@nitya](https://twitter.com/nitya)_ |
+| Data Science za začetnike - _Sketchnote avtor [@nitya](https://twitter.com/nitya)_ |
-### 🌐 Podpora za več jezikov
+### 🌐 Podpora več jezikom
-#### Podprto prek GitHub Action (samodejno in vedno posodobljeno)
+#### Podprto prek GitHub Action (avtomatsko in vedno posodobljeno)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](./README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](./README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
> **Raje želite klonirati lokalno?**
-> To skladišče vsebuje več kot 50 jezikovnih prevodov, kar znatno poveča velikost prenosa. Za kloniranje brez prevodov uporabite sparse checkout:
+> To repozitorij vsebuje več kot 50 prevodov jezikov, kar znatno poveča velikost prenosa. Za kloniranje brez prevodov uporabite sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> To vam omogoča vse, kar potrebujete za dokončanje tečaja, in veliko hitrejši prenos.
+> Tako dobite vse, kar potrebujete za dokončanje tečaja z veliko hitrejšim prenosom.
-**Če želite podpreti dodatne jezike prevodov, so podprti jeziki navedeni [tukaj](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Če želite dodatno podporo za prevode jezikov, so podprti jeziki navedeni [tukaj](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Pridružite se naši skupnosti
+#### Pridružite se naši skupnosti
[](https://discord.gg/nTYy5BXMWG)
-Imamo tekočo Discord serijo učenja z AI, več o tem ter pridružite se nam na [Learn with AI Series](https://aka.ms/learnwithai/discord) od 18. do 30. septembra 2025. Prejeli boste nasvete in trike za uporabo GitHub Copilota za podatkovno znanost.
+Imamo tekočo Discord serijo učenja z AI, izvedite več in se nam pridružite na [Learn with AI Series](https://aka.ms/learnwithai/discord) od 18. do 30. septembra 2025. Dobite nasvete in trike za uporabo GitHub Copilot pri podatkovni znanosti.
-
+
# Ste študent?
Začnite z naslednjimi viri:
-- [Student Hub stran](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na tej strani boste našli začetniške vire, študentske pakete in celo načine, kako dobiti brezplačen certifikatno kupon. To je stran, ki si jo želite shraniti med zaznamke in jo občasno preverjati, saj redno posodabljamo vsebino.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Pridružite se globalni skupnosti študentskih ambasadorjev, to bi lahko bila vaša pot v Microsoft.
+- [Stran za študente](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na tej strani boste našli začetniške vire, pakete za študente in celo načine, kako priti do brezplačnega certifikata. To stran si želite označiti in jo redno obiskovati, saj vsak mesec posodabljamo vsebine.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Pridružite se globalni skupnosti študentskih ambasadorjev, to bi lahko bil vaš prehod v Microsoft.
# Začetek
## 📚 Dokumentacija
-- **[Vodnik za namestitev](INSTALLATION.md)** - korak za korakom navodila za začetnike
-- **[Vodnik za uporabo](USAGE.md)** - primeri in pogosti delovni tokovi
-- **[Reševanje težav](TROUBLESHOOTING.md)** - rešitve pogostih težav
-- **[Vodnik za prispevanje](CONTRIBUTING.md)** - kako prispevati k temu projektu
-- **[Za učitelje](for-teachers.md)** - navodila za poučevanje in učni viri
+- **[Navodila za namestitev](INSTALLATION.md)** - Korak za korakom navodila za začetnike
+- **[Navodila za uporabo](USAGE.md)** - Primeri in pogosti delovni procesi
+- **[Reševanje težav](TROUBLESHOOTING.md)** - Rešitve pogostih težav
+- **[Navodila za prispevanje](CONTRIBUTING.md)** - Kako prispevati k temu projektu
+- **[Za učitelje](for-teachers.md)** - Navodila za poučevanje in viri za učilnice
## 👨🎓 Za študente
-> **Popolni začetniki**: Novinec v podatkovni znanosti? Začnite z našimi [primeri za začetnike](examples/README.md)! Ti preprosti, dobro komentirani primeri vam bodo pomagali razumeti osnove, preden se poglobite v celoten učni načrt.
-> **[Študentje](https://aka.ms/student-page)**: za samostojno uporabo tega učnega načrta si naredite fork celotnega repozitorija in samostojno zaključite vaje, začnite s kvizom pred predavanjem. Nato preberite predavanje in dokončajte ostale aktivnosti. Poskusite ustvariti projekte tako, da razumete lekcije in ne le kopirate izvorno kodo rešitve; ta koda pa je na voljo v mapah /solutions v vsaki lekciji, usmerjeni bolj na projekte. Druga možnost je, da oblikujete učni skupino s prijatelji in skupaj prelistate vsebino. Za nadaljnje učenje priporočamo [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Popolni začetniki**: Nova v podatkovni znanosti? Začnite z našimi [primeri za začetnike](examples/README.md)! Ti preprosti, dobro komentirani primeri vam bodo pomagali razumeti osnove, preden se poglobite v celoten učni načrt.
+> **[Študentje](https://aka.ms/student-page)**: za samostojno uporabo učnega načrta, ustvarite fork celotnega repozitorija in dokončajte vaje sami, začnite s kvizom pred predavanjem. Potem preberite predavanje in dokončajte ostale dejavnosti. Poskušajte ustvariti projekte z razumevanjem lekcij, namesto da kopirate kodo rešitve; ta koda pa je na voljo v mapah /solutions v vsakem lekcijskem projektu. Druga ideja je, da oblikujete študijsko skupino s prijatelji in se skupaj učite. Za nadaljnje študije priporočamo [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Hiter začetek:**
-1. Preverite [Vodnik za namestitev](INSTALLATION.md) za nastavitev okolja
-2. Preglejte [Vodnik za uporabo](USAGE.md), da se naučite uporabljati učni načrt
-3. Začnite z Lekcijo 1 in pojdite zaporedno
+1. Preverite [Navodila za namestitev](INSTALLATION.md), da nastavite okolje
+2. Preglejte [Navodila za uporabo](USAGE.md), da se naučite delati z učnim načrtom
+3. Začnite z Lekcijo 1 in nadaljujte zaporedno
4. Pridružite se naši [Discord skupnosti](https://aka.ms/ds4beginners/discord) za podporo
## 👩🏫 Za učitelje
-> **Učitelji**: vključili smo [nekaj predlogov](for-teachers.md) o tem, kako uporabljati ta učni načrt. Veseli bomo vaših povratnih informacij [na našem forumu](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
+> **Učitelji**: vključili smo [nekaj predlogov](for-teachers.md) kako uporabljati ta učni načrt. Veseli bomo vaših povratnih informacij [v našem diskusijskem forumu](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Spoznajte ekipo
+
[](https://youtu.be/8mzavjQSMM4 "Promo video")
**Gif avtor:** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Kliknite zgornjo sliko za video o projektu in ljudeh, ki so ga ustvarili!
+> 🎥 Kliknite na zgornjo sliko za video o projektu in ljudeh, ki so ga ustvarili!
## Pedagogika
-Pri oblikovanju tega učnega načrta smo izbrali dve pedagoški vodili: zagotoviti, da je projektno naravnan in da vključuje pogoste kvize. Ob koncu te serije bodo študenti poznali osnovna načela podatkovne znanosti, vključno z etičnimi pojmi, pripravo podatkov, različnimi načini dela s podatki, vizualizacijo podatkov, analizo podatkov, primeri uporabe podatkovne znanosti v resničnem svetu in še več.
+Pri oblikovanju tega učnega načrta smo izbrali dve pedagoški načeli: zagotoviti, da je projektno usmerjen in da vključuje pogoste kvize. Do konca te serije bodo študenti spoznali osnovna načela podatkovne znanosti, vključno z etičnimi koncepti, pripravo podatkov, različnimi načini dela s podatki, vizualizacijo podatkov, analizo podatkov, primeri uporabe podatkovne znanosti v resničnem svetu in še več.
-Poleg tega nizko tvegani kviz pred predavanjem usmeri študentovo pozornost k učenju določene teme, medtem ko drugi kviz po predavanju zagotovi dodatno zadržanje znanja. Ta učni načrt je zasnovan kot prilagodljiv in zabaven ter ga je mogoče opraviti v celoti ali delno. Projekti se začnejo majhni in postopoma postajajo vedno bolj kompleksni do konca 10-tedenskega cikla.
+Poleg tega kviz z nizkimi vložki pred poukom usmeri študenta k učenju teme, medtem ko drugi kviz po pouku zagotavlja dodatno zadrževanje znanja. Ta učni načrt je zasnovan tako, da je prilagodljiv in zabaven ter ga je mogoče opraviti v celoti ali delno. Projekti se začnejo majhni in se do konca 10-tedenskega cikla postopoma zapletejo.
-> Najdete naše [Kodeks ravnanja](CODE_OF_CONDUCT.md), [Pravila za prispevke](CONTRIBUTING.md) in [Navodila za prevode](TRANSLATIONS.md). Veselimo se vaših konstruktivnih povratnih informacij!
+> Najdete naša [Pravila vedenja](CODE_OF_CONDUCT.md), [Prispevke](CONTRIBUTING.md), [Prevajalska](TRANSLATIONS.md) navodila. Veseli smo vaše konstruktivne povratne informacije!
## Vsaka lekcija vključuje:
-- Neobvezno skicno beležko
+- Neobvezno skiciranje
- Neobvezni dodatni video
-- Kratek kviz za ogrevanje pred lekcijo
+- Kviz za ogrevanje pred lekcijo
- Pisno lekcijo
-- Za lekcije, ki temeljijo na projektu, navodila korak za korakom, kako zgraditi projekt
+- Za projektno usmerjene lekcije, vodnike korak za korakom, kako zgraditi projekt
- Preverjanje znanja
- Izziv
- Dodatno branje
- Nalogo
- [Kviz po lekciji](https://ff-quizzes.netlify.app/en/)
-> **Opomba o kvizih**: Vsi kvizi so v mapi Quiz-App, skupno 40 kvizov s po tremi vprašanji. Povezani so znotraj lekcij, a aplikacijo za kviz je mogoče zagnati lokalno ali pa jo namestiti na Azure; sledite navodilom v mapi `quiz-app`. Postopoma poteka lokalizacija.
+> **Opomba o kvizih**: Vsi kvizi so shranjeni v mapi Quiz-App, skupaj 40 kvizov s po tremi vprašanji. Povezani so znotraj lekcij, vendar lahko kviz aplikacijo zaganjate lokalno ali namestite na Azure; sledite navodilom v mapi `quiz-app`. Postopoma jih lokaliziramo.
-## 🎓 Primeri, prijazni do začetnikov
+## 🎓 Primeri prijazni do začetnikov
-**Ste novi v podatkovni znanosti?** Ustvarili smo poseben [imenik primerov](examples/README.md) z enostavno, dobro komentirano kodo, ki vam pomaga začeti:
+**Ste novi v podatkovni znanosti?** Ustvarili smo poseben [primeri direktorij](examples/README.md) z enostavno in dobro komentirano kodo, ki vam bo pomagala začeti:
-- 🌟 **Hello World** - vaš prvi program podatkovne znanosti
-- 📂 **Nalaganje podatkov** - naučite se brati in raziskovati nize podatkov
+- 🌟 **Pozdravljen svet** - vaš prvi program za podatkovno znanost
+- 📂 **Nalaganje podatkov** - naučite se brati in raziskovati podatkovne nize
- 📊 **Preprosta analiza** - izračunajte statistiko in poiščite vzorce
- 📈 **Osnovna vizualizacija** - ustvarite diagrame in grafe
-- 🔬 **Projekt iz resničnega sveta** - celoten potek dela od začetka do konca
+- 🔬 **Projekt iz resničnega sveta** - celoten potek od začetka do konca
-Vsak primer vsebuje podrobne komentarje, ki razlagajo vsak korak, zato je idealen za popolne začetnike!
+Vsak primer vključuje podrobne komentarje, ki razlagajo vsak korak, zato je popoln za popolne začetnike!
👉 **[Začnite s primeri](examples/README.md)** 👈
## Lekcije
-||
+||
|:---:|
-| Podatkovna znanost za začetnike: Načrt poti - _skicna beležka avtorja [@nitya](https://twitter.com/nitya)_ |
+| Podatkovna znanost za začetnike: Načrt poti - _Sketchnote avtor: [@nitya](https://twitter.com/nitya)_ |
-| Št. lekcije | Tema | Skupina lekcije | Cilji učenja | Povezana lekcija | Avtor |
+| Število lekcije | Tema | Skupina lekcij | Cilji učenja | Povezana lekcija | Avtor |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Definiranje podatkovne znanosti | [Uvod](1-Introduction/README.md) | Naučite se osnovnih pojmov podatkovne znanosti in kako je povezana z umetno inteligenco, strojno učenje in velikimi podatki. | [lekcija](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Etika podatkovne znanosti | [Uvod](1-Introduction/README.md) | Pojmi, izzivi in okviri etike podatkov. | [lekcija](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Definiranje podatkov | [Uvod](1-Introduction/README.md) | Kako so podatki razvrščeni in njihovi pogosti viri. | [lekcija](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 01 | Določanje podatkovne znanosti | [Uvod](1-Introduction/README.md) | Spoznajte osnovne koncepte podatkovne znanosti in kako je povezana z umetno inteligenco, strojno učenje in velikimi podatki. | [lekcija](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Etika podatkovne znanosti | [Uvod](1-Introduction/README.md) | Koncepti, izzivi in okviri podatkovne etike. | [lekcija](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Določanje podatkov | [Uvod](1-Introduction/README.md) | Kako so podatki razvrščeni in njihovi pogosti viri. | [lekcija](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Uvod v statistiko in verjetnost | [Uvod](1-Introduction/README.md) | Matematične tehnike verjetnosti in statistike za razumevanje podatkov. | [lekcija](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Delo z relacijskimi podatki | [Delo s podatki](2-Working-With-Data/README.md) | Uvod v relacijske podatke in osnove raziskovanja in analize relacijskih podatkov z jezikom Structured Query Language, znanim tudi kot SQL (izgovarja se "si-kvel"). | [lekcija](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Delo z NoSQL podatki | [Delo s podatki](2-Working-With-Data/README.md) | Uvod v nerelacijske podatke, njihove različne tipe in osnove raziskovanja ter analiziranja dokumentacijskih baz podatkov. | [lekcija](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Delo s Python | [Delo s podatki](2-Working-With-Data/README.md) | Osnove uporabe Pythona za raziskovanje podatkov z uporabo knjižnic, kot je Pandas. Priporočeno osnovno poznavanje programiranja v Pythonu. | [lekcija](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Priprava podatkov | [Delo s podatki](2-Working-With-Data/README.md) | Teme o tehnikah čiščenja in pretvorbe podatkov za obvladovanje izzivov manjkajočih, netočnih ali nepopolnih podatkov. | [lekcija](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 05 | Delo z relacijskimi podatki | [Delo s podatki](2-Working-With-Data/README.md) | Uvod v relacijske podatke in osnove raziskovanja ter analize relacijskih podatkov z jezikom Structured Query Language, znanim tudi kot SQL (izgovori se “si-kvel”). | [lekcija](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Delo z NoSQL podatki | [Delo s podatki](2-Working-With-Data/README.md) | Uvod v norelacijske podatke, njihove različne tipe in osnove raziskovanja ter analize podatkovnih baz dokumentov. | [lekcija](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Delo s Pythonom | [Delo s podatki](2-Working-With-Data/README.md) | Osnove uporabe Pythona za raziskovanje podatkov z uporabo knjižnic, kot je Pandas. Priporočeno je osnovno razumevanje programiranja v Pythonu. | [lekcija](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Priprava podatkov | [Delo s podatki](2-Working-With-Data/README.md) | Teme o tehnikah čiščenja in pretvorbe podatkov za obvladovanje izzivov manjkajočih, nepravilnih ali nepopolnih podatkov. | [lekcija](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Vizualizacija količin | [Vizualizacija podatkov](3-Data-Visualization/README.md) | Naučite se uporabljati Matplotlib za vizualizacijo podatkov o pticah 🦆 | [lekcija](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Vizualizacija porazdelitev podatkov | [Vizualizacija podatkov](3-Data-Visualization/README.md) | Vizualizacija opazovanj in trendov znotraj intervala. | [lekcija](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Vizualizacija razmerij | [Vizualizacija podatkov](3-Data-Visualization/README.md) | Vizualizacija diskretnih in združenih odstotkov. | [lekcija](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Vizualizacija odnosov | [Vizualizacija podatkov](3-Data-Visualization/README.md) | Vizualiziranje povezav in korelacij med sklopi podatkov in njihovimi spremenljivkami. | [lekcija](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Pomenljive vizualizacije | [Vizualizacija podatkov](3-Data-Visualization/README.md) | Tehnike in smernice za ustvarjanje vizualizacij, ki so dragocene za učinkovito reševanje problemov in spoznanja. | [lekcija](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Uvod v življenjski cikel podatkovne znanosti | [Življenjski cikel](4-Data-Science-Lifecycle/README.md) | Uvod v življenjski cikel podatkovne znanosti in njegov prvi korak, pridobivanje in ekstrakcija podatkov. | [lekcija](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 10 | Vizualizacija porazdelitev podatkov | [Vizualizacija podatkov](3-Data-Visualization/README.md) | Vizualizacija opažanj in trendov znotraj intervala. | [lekcija](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Vizualizacija deležev | [Vizualizacija podatkov](3-Data-Visualization/README.md) | Vizualizacija diskretnih in združenih odstotkov. | [lekcija](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Vizualizacija povezav | [Vizualizacija podatkov](3-Data-Visualization/README.md) | Vizualizacija povezav in korelacij med nizi podatkov in njihovimi spremenljivkami. | [lekcija](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Pomenljive vizualizacije | [Vizualizacija podatkov](3-Data-Visualization/README.md) | Tehnike in smernice za ustvarjanje vizualizacij, ki so koristne za učinkovito reševanje problemov in vpoglede. | [lekcija](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Uvod v življenjski cikel podatkovne znanosti | [Življenjski cikel](4-Data-Science-Lifecycle/README.md) | Uvod v življenjski cikel podatkovne znanosti in prvi korak – pridobivanje in zajemanje podatkov. | [lekcija](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analiza | [Življenjski cikel](4-Data-Science-Lifecycle/README.md) | Ta faza življenjskega cikla podatkovne znanosti se osredotoča na tehnike analize podatkov. | [lekcija](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Komunikacija | [Življenjski cikel](4-Data-Science-Lifecycle/README.md) | Ta faza življenjskega cikla podatkovne znanosti se osredotoča na predstavitev spoznanj iz podatkov na način, ki olajša razumevanje odločevalcem. | [lekcija](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Podatkovna znanost v oblaku | [Podatki v oblaku](5-Data-Science-In-Cloud/README.md) | Ta serija lekcij uvaja podatkovno znanost v oblaku in njene prednosti. | [lekcija](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) in [Maud](https://twitter.com/maudstweets) |
-| 18 | Podatkovna znanost v oblaku | [Podatki v oblaku](5-Data-Science-In-Cloud/README.md) | Usposabljanje modelov z orodji z nizko kodo. |[lekcija](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) in [Maud](https://twitter.com/maudstweets) |
-| 19 | Podatkovna znanost v oblaku | [Podatki v oblaku](5-Data-Science-In-Cloud/README.md) | Nameščanje modelov z Azure Machine Learning Studio. | [lekcija](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) in [Maud](https://twitter.com/maudstweets) |
-| 20 | Podatkovna znanost v praksi | [V praksi](6-Data-Science-In-Wild/README.md) | Projekti, vodeni s podatkovno znanostjo, v resničnem svetu. | [lekcija](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 16 | Komunikacija | [Življenjski cikel](4-Data-Science-Lifecycle/README.md) | Ta faza življenjskega cikla podatkovne znanosti se osredotoča na predstavitev ugotovitev iz podatkov na način, ki olajša razumevanje odločevalcem. | [lekcija](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Podatkovna znanost v oblaku | [Oblak podatkov](5-Data-Science-In-Cloud/README.md) | Ta serija lekcij uvaja podatkovno znanost v oblaku in njene koristi. | [lekcija](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) in [Maud](https://twitter.com/maudstweets) |
+| 18 | Podatkovna znanost v oblaku | [Oblak podatkov](5-Data-Science-In-Cloud/README.md) | Učenje modelov z uporabo orodij Low Code. |[lekcija](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) in [Maud](https://twitter.com/maudstweets) |
+| 19 | Podatkovna znanost v oblaku | [Oblak podatkov](5-Data-Science-In-Cloud/README.md) | Zaganjanje modelov z Azure Machine Learning Studio. | [lekcija](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) in [Maud](https://twitter.com/maudstweets) |
+| 20 | Podatkovna znanost v divjini | [V divjini](6-Data-Science-In-Wild/README.md) | Projekti na osnovi podatkovne znanosti v resničnem svetu. | [lekcija](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Sledite tem korakom, da odprete ta vzorec v Codespace:
+Sledite tem korakom za odpiranje tega vzorca v Codespace:
1. Kliknite na spustni meni Code in izberite možnost Open with Codespaces.
2. Na dnu plošče izberite + New codespace.
-Za več informacij si oglejte [dokumentacijo GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+Za več informacij si oglejte [GitHub dokumentacijo](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Sledite tem korakom, da odprete ta repozitorij v vsebniku na lokalnem računalniku z VSCode z razširitvijo VS Code Remote - Containers:
+Sledite tem korakom za odpiranje tega repozitorija v vsebniku z uporabo vašega lokalnega računalnika in VSCode z razširitvijo VS Code Remote - Containers:
-1. Če prvič uporabljate razvojni vsebnik, poskrbite, da vaš sistem izpolnjuje predpogoje (na primer, da je nameščen Docker) v [navodilih za začetek](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Če je to vaš prvič za uporabo razvojnega vsebnika, poskrbite, da vaš sistem izpolnjuje predpogoje (npr. da imate nameščen Docker) v [dokumentaciji za začetek](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Za uporabo tega repozitorija lahko bodisi odprete repozitorij v izoliranem Docker volumnu:
+Za uporabo tega repozitorija ga lahko odprete bodisi v izoliranem Docker volumnu:
-**Opomba**: V ozadju se bo uporabila ukaz Remote-Containers: **Clone Repository in Container Volume...** za kloniranje izvorne kode v Docker volumen namesto v lokalni datotečni sistem. [Volumni](https://docs.docker.com/storage/volumes/) so priporočeni mehanizem za shranjevanje podatkov v vsebniku.
+**Opomba**: Pod pokrovom bo ta uporabil ukaz Remote-Containers: **Clone Repository in Container Volume...**, ki izvorno kodo klonira v Docker volume namesto v lokalni datotečni sistem. [Volumni](https://docs.docker.com/storage/volumes/) so priporočeni mehanizem za trajno shranjevanje podatkov vsebnikov.
-Ali odprete lokalno klonirano ali preneseno različico repozitorija:
+Ali odprite lokalno klonirano ali preneseno različico repozitorija:
-- Klonirajte ta repozitorij na lokalni datotečni sistem.
+- Klonirajte ta repozitorij na vaš lokalni datotečni sistem.
- Pritisnite F1 in izberite ukaz **Remote-Containers: Open Folder in Container...**.
- Izberite klonirano kopijo te mape, počakajte, da se vsebnik zažene, in preizkusite.
## Dostop brez povezave
-To dokumentacijo lahko zaženete brez povezave z uporabo [Docsify](https://docsify.js.org/#/). Razvežite ta repozitorij, [namestite Docsify](https://docsify.js.org/#/quickstart) na vaš lokalni računalnik, nato pa v korenski mapi tega repozitorija vnesite `docsify serve`. Spletna stran bo na voljo na vratih 3000 na vašem lokalnem strežniku: `localhost:3000`.
+To dokumentacijo lahko uporabljate brez povezave z uporabo [Docsify](https://docsify.js.org/#/). Forkajte ta repozitorij, [namestite Docsify](https://docsify.js.org/#/quickstart) na vaš lokalni računalnik, nato v korenski mapi repozitorija zaženite `docsify serve`. Spletno mesto bo dostopno na vratih 3000 na vašem lokalnem strežniku: `localhost:3000`.
-> Opomba, zvezki (notebooks) ne bodo prikazani preko Docsify, zato jih za zagon odprite posebej v VS Code z zagonom Python jedra.
+> Opomba, beležnice se ne bodo prikazovale preko Docsify, zato kadar potrebujete zagnati beležnico, to storite ločeno v VS Code z zagonom Python jedra.
## Drugi učni načrti
-Naša ekipa ustvarja tudi druge učne načrte! Oglejte si:
+Naša ekipa izdaja tudi druge učne načrte! Oglejte si:
### LangChain
@@ -209,7 +200,7 @@ Naša ekipa ustvarja tudi druge učne načrte! Oglejte si:
---
-### Azure / Edge / MCP / Agent
+### Azure / Edge / MCP / Agentje
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
@@ -217,46 +208,46 @@ Naša ekipa ustvarja tudi druge učne načrte! Oglejte si:
---
-### Serija generativne umetne inteligence
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+### Serija Generativna AI
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
### Osnovno učenje
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### Serija Copilot
[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Pridobivanje pomoči
**Se srečujete s težavami?** Oglejte si naš [Vodnik za odpravljanje težav](TROUBLESHOOTING.md) za rešitve pogostih problemov.
-Če se zataknete ali imate kakršnakoli vprašanja o izdelavi AI aplikacij, se pridružite sošolcem in izkušenim razvijalcem ter sodelujte v razpravah o MCP. To je podporna skupnost, kjer so vprašanja dobrodošla in se znanje prosto deli.
+Če se zataknete ali imate kakršnakoli vprašanja glede razvoja AI aplikacij. Pridružite se drugim učencem in izkušenim razvijalcem v razpravah o MCP. To je podporna skupnost, kjer so vprašanja dobrodošla in se znanje prosto deli.
[](https://discord.gg/nTYy5BXMWG)
-Če imate povratne informacije o izdelku ali pa naletite na napake med izdelavo, obiščite:
+Če imate povratne informacije o izdelku ali naletite na napake med razvojem, obiščite:
[](https://aka.ms/foundry/forum)
---
-**Opozorilo**:
-Ta dokument je bil preveden z uporabo AI prevajalske storitve [Co-op Translator](https://github.com/Azure/co-op-translator). Čeprav si prizadevamo za natančnost, upoštevajte, da lahko avtomatizirani prevodi vsebujejo napake ali netočnosti. Izvirni dokument v njegovem maternem jeziku naj velja za avtoritativni vir. Za pomembne informacije priporočamo strokovni človeški prevod. Ne odgovarjamo za morebitna nerazumevanja ali napačne razlage, ki izhajajo iz uporabe tego prevoda.
+**Izjava o omejitvi odgovornosti**:
+Ta dokument je bil preveden z uporabo storitve za prevajanje z umetno inteligenco [Co-op Translator](https://github.com/Azure/co-op-translator). Čeprav si prizadevamo za natančnost, vas opozarjamo, da avtomatizirani prevodi lahko vsebujejo napake ali netočnosti. Izvirni dokument v njegovem izvorno jeziku je treba šteti za avtoritativni vir. Za ključne informacije priporočamo strokovni človeški prevod. Nismo odgovorni za kakršna koli nesporazume ali napačne razlage, ki izhajajo iz uporabe tega prevoda.
\ No newline at end of file
diff --git a/translations/sl/SECURITY.md b/translations/sl/SECURITY.md
index 2da29103..aaf9d0eb 100644
--- a/translations/sl/SECURITY.md
+++ b/translations/sl/SECURITY.md
@@ -1,12 +1,3 @@
-
## Varnost
Microsoft jemlje varnost svojih programske opreme in storitev resno, kar vključuje vse repozitorije izvorne kode, ki jih upravljajo naše GitHub organizacije, med katerimi so [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) in [naše GitHub organizacije](https://opensource.microsoft.com/).
diff --git a/translations/sl/SUPPORT.md b/translations/sl/SUPPORT.md
index 278a1b48..5375a213 100644
--- a/translations/sl/SUPPORT.md
+++ b/translations/sl/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Podpora
## Kako prijaviti težave in dobiti pomoč
diff --git a/translations/sl/TROUBLESHOOTING.md b/translations/sl/TROUBLESHOOTING.md
index 3b04246c..0091882d 100644
--- a/translations/sl/TROUBLESHOOTING.md
+++ b/translations/sl/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Vodnik za odpravljanje težav
Ta vodnik ponuja rešitve za pogoste težave, s katerimi se lahko srečate med delom s kurikulumom "Data Science for Beginners".
diff --git a/translations/sl/USAGE.md b/translations/sl/USAGE.md
index 023fa095..cbf71e25 100644
--- a/translations/sl/USAGE.md
+++ b/translations/sl/USAGE.md
@@ -1,12 +1,3 @@
-
# Vodnik za uporabo
Ta vodnik ponuja primere in običajne delovne tokove za uporabo učnega načrta "Data Science for Beginners".
diff --git a/translations/sl/docs/_sidebar.md b/translations/sl/docs/_sidebar.md
index e148b4b4..e7426121 100644
--- a/translations/sl/docs/_sidebar.md
+++ b/translations/sl/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Uvod
- [Definiranje podatkovne znanosti](../1-Introduction/01-defining-data-science/README.md)
- [Etika podatkovne znanosti](../1-Introduction/02-ethics/README.md)
diff --git a/translations/sl/examples/README.md b/translations/sl/examples/README.md
index a2b9db1c..d28157ff 100644
--- a/translations/sl/examples/README.md
+++ b/translations/sl/examples/README.md
@@ -1,12 +1,3 @@
-
# Primeri za začetnike v podatkovni znanosti
Dobrodošli v imeniku primerov! Ta zbirka preprostih, dobro komentiranih primerov je zasnovana tako, da vam pomaga začeti s podatkovno znanostjo, tudi če ste popolni začetnik.
diff --git a/translations/sl/for-teachers.md b/translations/sl/for-teachers.md
index 58a22d4b..a2ba1174 100644
--- a/translations/sl/for-teachers.md
+++ b/translations/sl/for-teachers.md
@@ -1,12 +1,3 @@
-
## Za učitelje
Bi radi uporabili ta učni načrt v svojem razredu? Kar izvolite!
diff --git a/translations/sl/quiz-app/README.md b/translations/sl/quiz-app/README.md
index 402735af..4fc0af7d 100644
--- a/translations/sl/quiz-app/README.md
+++ b/translations/sl/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Kvizi
Ti kvizi so predhodni in zaključni kvizi za učni načrt podatkovne znanosti na https://aka.ms/datascience-beginners
diff --git a/translations/sl/sketchnotes/README.md b/translations/sl/sketchnotes/README.md
index 7229727b..ea1e209b 100644
--- a/translations/sl/sketchnotes/README.md
+++ b/translations/sl/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Poiščite vse skicopise tukaj!
## Zasluge
diff --git a/translations/sr/.co-op-translator.json b/translations/sr/.co-op-translator.json
new file mode 100644
index 00000000..c1993aca
--- /dev/null
+++ b/translations/sr/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:08:33+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "sr"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-30T19:32:07+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "sr"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-30T19:33:03+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "sr"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T17:02:03+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "sr"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-30T19:48:41+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "sr"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T19:10:29+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "sr"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-30T19:36:43+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "sr"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T14:12:18+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "sr"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-30T19:26:05+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "sr"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-30T19:17:39+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "sr"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T12:14:57+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "sr"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:58:31+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "sr"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T18:57:22+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "sr"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-30T18:03:46+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "sr"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T16:00:52+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "sr"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-30T18:10:03+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "sr"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T18:59:52+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "sr"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-30T18:20:47+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "sr"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-30T17:59:47+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T19:04:23+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-30T19:04:24+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T19:06:18+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-30T19:17:03+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T19:03:52+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-30T18:59:53+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:47:58+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-30T19:13:28+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T19:04:59+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-30T19:08:29+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-30T19:09:06+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-30T19:09:39+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-30T18:42:30+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-30T18:46:26+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-30T18:50:13+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-30T18:53:31+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-30T18:39:55+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-30T18:47:02+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-30T18:54:07+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "sr"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-30T18:38:20+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "sr"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:40:45+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "sr"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-30T18:30:42+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "sr"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:39:55+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "sr"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-30T18:25:02+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "sr"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:41:58+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "sr"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-30T18:37:42+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "sr"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-30T18:22:14+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "sr"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T18:56:00+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "sr"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-30T17:50:16+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "sr"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T18:54:12+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "sr"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-30T17:44:41+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "sr"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T18:56:32+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "sr"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-30T17:59:04+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "sr"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-30T17:37:08+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "sr"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:45:16+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "sr"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-30T19:56:30+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "sr"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-30T19:51:16+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "sr"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:41:29+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "sr"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-30T17:36:41+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "sr"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:39:58+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "sr"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:25:59+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "sr"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:28:46+00:00",
+ "source_file": "README.md",
+ "language_code": "sr"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-30T17:34:09+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "sr"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-30T17:32:59+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "sr"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:48:11+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "sr"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:10:18+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "sr"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-30T18:21:23+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "sr"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:08:07+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "sr"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T20:01:32+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "sr"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-30T19:49:43+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "sr"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-30T19:57:39+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "sr"
+ }
+}
\ No newline at end of file
diff --git a/translations/sr/1-Introduction/01-defining-data-science/README.md b/translations/sr/1-Introduction/01-defining-data-science/README.md
index 33a60866..d74912e4 100644
--- a/translations/sr/1-Introduction/01-defining-data-science/README.md
+++ b/translations/sr/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Дефинисање науке о подацима
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/sr/1-Introduction/01-defining-data-science/assignment.md b/translations/sr/1-Introduction/01-defining-data-science/assignment.md
index bcab955d..57c1cb9c 100644
--- a/translations/sr/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/sr/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Задатак: Сценарији из области науке о подацима
У овом првом задатку, од вас се тражи да размислите о неком стварном процесу или проблему у различитим доменима проблема и како можете да га побољшате користећи процес науке о подацима. Размислите о следећем:
diff --git a/translations/sr/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/sr/1-Introduction/01-defining-data-science/solution/assignment.md
index 1b4c0200..1dd5c28c 100644
--- a/translations/sr/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/sr/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Задатак: Сценарији из области науке о подацима
У овом првом задатку, од вас се тражи да размислите о неком стварном процесу или проблему у различитим доменима и како можете да га побољшате користећи процес науке о подацима. Размислите о следећем:
diff --git a/translations/sr/1-Introduction/02-ethics/README.md b/translations/sr/1-Introduction/02-ethics/README.md
index c5cebf56..1c1bb7f2 100644
--- a/translations/sr/1-Introduction/02-ethics/README.md
+++ b/translations/sr/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Увод у етику података
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/sr/1-Introduction/02-ethics/assignment.md b/translations/sr/1-Introduction/02-ethics/assignment.md
index dc1ceb27..888e01b1 100644
--- a/translations/sr/1-Introduction/02-ethics/assignment.md
+++ b/translations/sr/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Напишите студију случаја о етици података
## Упутства
diff --git a/translations/sr/1-Introduction/03-defining-data/README.md b/translations/sr/1-Introduction/03-defining-data/README.md
index 3016d8f4..e9fdb9f6 100644
--- a/translations/sr/1-Introduction/03-defining-data/README.md
+++ b/translations/sr/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Дефинисање података
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/sr/1-Introduction/03-defining-data/assignment.md b/translations/sr/1-Introduction/03-defining-data/assignment.md
index ef1d977c..ffdfc197 100644
--- a/translations/sr/1-Introduction/03-defining-data/assignment.md
+++ b/translations/sr/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Класификација скупова података
## Упутства
diff --git a/translations/sr/1-Introduction/04-stats-and-probability/README.md b/translations/sr/1-Introduction/04-stats-and-probability/README.md
index 958dbb41..de4d6617 100644
--- a/translations/sr/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/sr/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Кратак увод у статистику и вероватноћу
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
Графички можемо представити однос између медијане и квартила у дијаграму који се назива **бокс плот**:
-
+
Овде такође израчунавамо **интерквартилни опсег** IQR=Q3-Q1, и такозване **изузетке** - вредности које леже ван граница [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/sr/1-Introduction/04-stats-and-probability/assignment.md b/translations/sr/1-Introduction/04-stats-and-probability/assignment.md
index 54ab6afa..00b753c0 100644
--- a/translations/sr/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/sr/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Мала студија о дијабетесу
У овом задатку, радићемо са малим скупом података о пацијентима са дијабетесом преузетим са [овог линка](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/sr/1-Introduction/README.md b/translations/sr/1-Introduction/README.md
index bc3f36d3..9f10bcf1 100644
--- a/translations/sr/1-Introduction/README.md
+++ b/translations/sr/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Увод у науку о подацима

diff --git a/translations/sr/2-Working-With-Data/05-relational-databases/README.md b/translations/sr/2-Working-With-Data/05-relational-databases/README.md
index b83a33a5..a8d3349b 100644
--- a/translations/sr/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/sr/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Рад са подацима: Релационе базе података
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/sr/2-Working-With-Data/05-relational-databases/assignment.md b/translations/sr/2-Working-With-Data/05-relational-databases/assignment.md
index aaf0d139..a25578ff 100644
--- a/translations/sr/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/sr/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Приказивање података о аеродромима
Добијена вам је [база података](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) заснована на [SQLite](https://sqlite.org/index.html) која садржи информације о аеродромима. Шема је приказана испод. Користићете [SQLite екстензију](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) у [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) за приказивање информација о аеродромима у различитим градовима.
diff --git a/translations/sr/2-Working-With-Data/06-non-relational/README.md b/translations/sr/2-Working-With-Data/06-non-relational/README.md
index 662b85d6..ee68d170 100644
--- a/translations/sr/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/sr/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Рад са подацима: Нерелациони подаци
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/sr/2-Working-With-Data/06-non-relational/assignment.md b/translations/sr/2-Working-With-Data/06-non-relational/assignment.md
index 54ce5dc8..b69d2a6b 100644
--- a/translations/sr/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/sr/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Профит од Соде
## Упутства
diff --git a/translations/sr/2-Working-With-Data/07-python/README.md b/translations/sr/2-Working-With-Data/07-python/README.md
index ca1f241a..b2a00041 100644
--- a/translations/sr/2-Working-With-Data/07-python/README.md
+++ b/translations/sr/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Рад са подацима: Python и библиотека Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/sr/2-Working-With-Data/07-python/assignment.md b/translations/sr/2-Working-With-Data/07-python/assignment.md
index 802e9b88..31c4704b 100644
--- a/translations/sr/2-Working-With-Data/07-python/assignment.md
+++ b/translations/sr/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Задатак за обраду података у Пајтону
У овом задатку, од вас се тражи да разрадите код који смо започели у нашим изазовима. Задатак се састоји из два дела:
diff --git a/translations/sr/2-Working-With-Data/08-data-preparation/README.md b/translations/sr/2-Working-With-Data/08-data-preparation/README.md
index 8be2d87d..62242824 100644
--- a/translations/sr/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/sr/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Рад са подацима: Припрема података
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/sr/2-Working-With-Data/08-data-preparation/assignment.md b/translations/sr/2-Working-With-Data/08-data-preparation/assignment.md
index c491ecb1..9cfac0b7 100644
--- a/translations/sr/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/sr/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Процена података из формулара
Клијент је тестирао [мали формулар](../../../../2-Working-With-Data/08-data-preparation/index.html) за прикупљање основних података о својој бази клијената. Донели су своје налазе како би потврдили податке које су прикупили. Можете отворити страницу `index.html` у прегледачу да бисте погледали формулар.
diff --git a/translations/sr/2-Working-With-Data/README.md b/translations/sr/2-Working-With-Data/README.md
index 5868f4e4..d5610aaf 100644
--- a/translations/sr/2-Working-With-Data/README.md
+++ b/translations/sr/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Рад са подацима

diff --git a/translations/sr/3-Data-Visualization/09-visualization-quantities/README.md b/translations/sr/3-Data-Visualization/09-visualization-quantities/README.md
index f6755431..3aa5096c 100644
--- a/translations/sr/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/sr/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Визуелизација количина
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/sr/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/sr/3-Data-Visualization/09-visualization-quantities/assignment.md
index 4650f8eb..e0c6d54c 100644
--- a/translations/sr/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/sr/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Линије, Расејања и Стубови
## Упутства
diff --git a/translations/sr/3-Data-Visualization/10-visualization-distributions/README.md b/translations/sr/3-Data-Visualization/10-visualization-distributions/README.md
index 991afa08..e2de74be 100644
--- a/translations/sr/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/sr/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Визуализација дистрибуција
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/sr/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/sr/3-Data-Visualization/10-visualization-distributions/assignment.md
index 31c2c1bd..01199df0 100644
--- a/translations/sr/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/sr/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Примените своје вештине
## Упутства
diff --git a/translations/sr/3-Data-Visualization/11-visualization-proportions/README.md b/translations/sr/3-Data-Visualization/11-visualization-proportions/README.md
index 6804a0b1..3d562bef 100644
--- a/translations/sr/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/sr/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Визуализација пропорција
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/sr/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/sr/3-Data-Visualization/11-visualization-proportions/assignment.md
index 20daa6fb..f5f60fcb 100644
--- a/translations/sr/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/sr/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Пробајте у Excel-у
## Упутства
diff --git a/translations/sr/3-Data-Visualization/12-visualization-relationships/README.md b/translations/sr/3-Data-Visualization/12-visualization-relationships/README.md
index e5ac1df4..7aef75a7 100644
--- a/translations/sr/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/sr/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Визуелизација односа: Све о меду 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/sr/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/sr/3-Data-Visualization/12-visualization-relationships/assignment.md
index f1f9053e..cbb43c3f 100644
--- a/translations/sr/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/sr/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Уроните у кошницу
## Упутства
diff --git a/translations/sr/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/sr/3-Data-Visualization/13-meaningful-visualizations/README.md
index 2d8df288..d76203fb 100644
--- a/translations/sr/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/sr/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Прављење смислених визуализација
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/sr/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/sr/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 59e1a4bd..8e57c920 100644
--- a/translations/sr/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/sr/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Направите своју прилагођену визуализацију
## Упутства
diff --git a/translations/sr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/sr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 61068202..c28162a7 100644
--- a/translations/sr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/sr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Пројекат визуализације података Dangerous Liaisons
Да бисте започели, потребно је да се уверите да су NPM и Node инсталирани и покренути на вашем рачунару. Инсталирајте зависности (npm install) и затим покрените пројекат локално (npm run serve):
diff --git a/translations/sr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/sr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 407308f9..917a4fec 100644
--- a/translations/sr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/sr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Пројекат визуализације података Dangerous Liaisons
Да бисте започели, потребно је да се уверите да имате инсталиране NPM и Node на вашем рачунару. Инсталирајте зависности (npm install) и затим покрените пројекат локално (npm run serve):
diff --git a/translations/sr/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/sr/3-Data-Visualization/R/09-visualization-quantities/README.md
index ae3dbd3b..9f2635fb 100644
--- a/translations/sr/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/sr/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Визуелизација количина
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/sr/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/sr/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 14d14d28..ecf63083 100644
--- a/translations/sr/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/sr/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Линије, Расејања и Стубови
## Упутства
diff --git a/translations/sr/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/sr/3-Data-Visualization/R/10-visualization-distributions/README.md
index 6407a724..8ed29584 100644
--- a/translations/sr/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/sr/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Визуализација дистрибуција
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/sr/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/sr/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 08c2a570..7d979e28 100644
--- a/translations/sr/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/sr/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Примените своје вештине
## Упутства
diff --git a/translations/sr/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/sr/3-Data-Visualization/R/11-visualization-proportions/README.md
index e1fc366c..d3f314bd 100644
--- a/translations/sr/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/sr/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Визуализација Пропорција
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/sr/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/sr/3-Data-Visualization/R/12-visualization-relationships/README.md
index 334d949d..207db830 100644
--- a/translations/sr/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/sr/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Визуализација односа: Све о меду 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/sr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/sr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 017834e9..b46cce55 100644
--- a/translations/sr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/sr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Прављење смислених визуализација
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/sr/3-Data-Visualization/README.md b/translations/sr/3-Data-Visualization/README.md
index 66d54d3f..7a270511 100644
--- a/translations/sr/3-Data-Visualization/README.md
+++ b/translations/sr/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Визуализације

diff --git a/translations/sr/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/sr/4-Data-Science-Lifecycle/14-Introduction/README.md
index c6d125a2..10da18c2 100644
--- a/translations/sr/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/sr/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Увод у животни циклус науке о подацима
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/sr/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/sr/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 16167773..26b0cb82 100644
--- a/translations/sr/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/sr/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Процена скупа података
Клијент се обратио вашем тиму за помоћ у истраживању сезонских навика потрошње корисника такси услуга у Њујорку.
diff --git a/translations/sr/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/sr/4-Data-Science-Lifecycle/15-analyzing/README.md
index 313d9fef..fa85e29b 100644
--- a/translations/sr/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/sr/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Животни циклус науке о подацима: Анализа
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/sr/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/sr/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index a5494f64..791d562d 100644
--- a/translations/sr/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/sr/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Истраживање одговора
Ово је наставак [задатка](../14-Introduction/assignment.md) из претходне лекције, где смо укратко погледали скуп података. Сада ћемо детаљније анализирати податке.
diff --git a/translations/sr/4-Data-Science-Lifecycle/16-communication/README.md b/translations/sr/4-Data-Science-Lifecycle/16-communication/README.md
index 75e58524..1d8b1b24 100644
--- a/translations/sr/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/sr/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Животни циклус науке о подацима: Комуникација
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/sr/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/sr/4-Data-Science-Lifecycle/16-communication/assignment.md
index 573d57e1..56ab4ce9 100644
--- a/translations/sr/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/sr/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Испричај причу
## Упутства
diff --git a/translations/sr/4-Data-Science-Lifecycle/README.md b/translations/sr/4-Data-Science-Lifecycle/README.md
index f662ad53..5114af96 100644
--- a/translations/sr/4-Data-Science-Lifecycle/README.md
+++ b/translations/sr/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Животни циклус науке о подацима

diff --git a/translations/sr/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/sr/5-Data-Science-In-Cloud/17-Introduction/README.md
index ae3ff139..73baf7c9 100644
--- a/translations/sr/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/sr/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Увод у науку о подацима у облаку
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/sr/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/sr/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 4315a920..977b9fe8 100644
--- a/translations/sr/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/sr/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Истраживање тржишта
## Упутства
diff --git a/translations/sr/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/sr/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 26be5565..fc1dc070 100644
--- a/translations/sr/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/sr/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Наука о подацима у облаку: "Low code/No code" приступ
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/sr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/sr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index c56ff4ef..3cf7980a 100644
--- a/translations/sr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/sr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Пројекат за науку о подацима без или са мало кода на Azure ML
## Упутства
diff --git a/translations/sr/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/sr/5-Data-Science-In-Cloud/19-Azure/README.md
index e584fd9c..6422256f 100644
--- a/translations/sr/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/sr/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Наука о подацима у облаку: Пут "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/sr/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/sr/5-Data-Science-In-Cloud/19-Azure/assignment.md
index a4348bf6..c6f10d85 100644
--- a/translations/sr/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/sr/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Пројекат из науке о подацима користећи Azure ML SDK
## Упутства
diff --git a/translations/sr/5-Data-Science-In-Cloud/README.md b/translations/sr/5-Data-Science-In-Cloud/README.md
index 28c1cf4a..287f50e5 100644
--- a/translations/sr/5-Data-Science-In-Cloud/README.md
+++ b/translations/sr/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Наука о подацима у облаку

diff --git a/translations/sr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/sr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 1d7bebd3..4ede918c 100644
--- a/translations/sr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/sr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Наука о подацима у стварном свету
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/sr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/sr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 8ebff98d..44e2b431 100644
--- a/translations/sr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/sr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Истражите скуп података Planetary Computer
## Упутства
diff --git a/translations/sr/6-Data-Science-In-Wild/README.md b/translations/sr/6-Data-Science-In-Wild/README.md
index 910eb5c9..5a8d5f5c 100644
--- a/translations/sr/6-Data-Science-In-Wild/README.md
+++ b/translations/sr/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Наука о подацима у стварном свету
Примена науке о подацима у различитим индустријама.
diff --git a/translations/sr/AGENTS.md b/translations/sr/AGENTS.md
index 470b9900..a7d97a21 100644
--- a/translations/sr/AGENTS.md
+++ b/translations/sr/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Преглед пројекта
diff --git a/translations/sr/CODE_OF_CONDUCT.md b/translations/sr/CODE_OF_CONDUCT.md
index 33a74a2c..cd62a7e2 100644
--- a/translations/sr/CODE_OF_CONDUCT.md
+++ b/translations/sr/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft Кодекс понашања за отворени код
Овај пројекат је усвојио [Microsoft Кодекс понашања за отворени код](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/sr/CONTRIBUTING.md b/translations/sr/CONTRIBUTING.md
index ed697976..a9932409 100644
--- a/translations/sr/CONTRIBUTING.md
+++ b/translations/sr/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Допринос курикулуму "Основе науке о подацима"
Хвала вам на интересовању за допринос курикулуму "Основе науке о подацима"! Добродошли су сви доприноси из заједнице.
diff --git a/translations/sr/INSTALLATION.md b/translations/sr/INSTALLATION.md
index 780cffa9..6b1140e0 100644
--- a/translations/sr/INSTALLATION.md
+++ b/translations/sr/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Водич за инсталацију
Овај водич ће вам помоћи да подесите окружење за рад са наставним планом "Наука о подацима за почетнике".
diff --git a/translations/sr/README.md b/translations/sr/README.md
index 0a0b2700..6f20dc99 100644
--- a/translations/sr/README.md
+++ b/translations/sr/README.md
@@ -1,13 +1,4 @@
-
-# Наука о подацима за почетнике - Наставни план
+# Data Science za Početnike - Nastavni Plan
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,185 +17,185 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Заступници Azure Cloud у Microsoft-у имају задовољство да понуде наставни програм од 10 недеља, 20 лекција, у потпуности посвећен Науци о подацима. Свакa лекцијa укључује квиз пре и после лекције, писане инструкције за завршетак лекције, решење и задатак. Наш пројектно-оријентисани приступ омогућава вам учење кроз рад, што је доказано као ефикасан начин за трајно усвајање нових вештина.
+Azure Cloud Advocates u Microsoftu sa zadovoljstvom nude 10-nedeljni, 20-lekciona nastavni plan u potpunosti o Data Science-u. Svaka lekcija uključuje kvizove pre i posle lekcije, pisane instrukcije za izvođenje lekcije, rešenje i zadatak. Naša pedagoška metoda zasnovana na projektima omogućava vam učenje kroz pravljenje, što je dokazani način da nove veštine 'ostanu'.
-**Велика захвалност нашим ауторима:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Veliko hvala našim autorima:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Посебне благодарности 🙏 нашим [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) ауторима, рецензентима и сарадницима,** нарочито Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Posebna zahvalnost 🙏 našim [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) autorima, recenzentima i saradnicima na sadržaju,** naročito Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Наука о подацима за почетнике - _Скетчнот од [@nitya](https://twitter.com/nitya)_ |
+| Data Science Za Početnike - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
-### 🌐 Подршка за више језика
+### 🌐 Višejezička Podrška
-#### Подржано преко GitHub Action (аутоматски и увек ажурно)
+#### Podržano putem GitHub Akcije (Automatski & Uvek Ažurirano)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](./README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](./README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
> **Више волите да клонирате локално?**
-> Ово складиште садржи преко 50 превода што значајно повећава величину преузимања. Да бисте клонирали без превода, користите sparse checkout:
+> Ово складиште укључује преводе на преко 50 језика, што знатно повећава величину преузимања. Да бисте клонирали без превода, користите sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Ово вам пружа све што је потребно за завршетак курса са много бржим преузимањем.
+> Ово вам даје све што је потребно да завршите курс са знатно бржим преузимањем.
-**Ако желите да додатно подржимо преводе на језике, можете их пронаћи на [овој страници](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Ако желите додатне језике превода, они су наведени [овде](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Придружите се нашој заједници
[](https://discord.gg/nTYy5BXMWG)
-Имамо текућу серију Learn with AI на Discord-у, сазнајте више и придружите нам се на [Learn with AI Series](https://aka.ms/learnwithai/discord) од 18. до 30. септембра 2025. Уз то ћете добијати савете и трикове за коришћење GitHub Copilot-а за Науку о подацима.
+Имамо текућу серију Learn with AI на Discord-у, сазнајте више и придружите нам се на [Learn with AI Series](https://aka.ms/learnwithai/discord) од 18. до 30. септембра, 2025. Ту ћете добијати савете и трикове о коришћењу GitHub Copilot за Data Science.
-
+
-# Да ли сте студент?
+# Јесте ли студент?
-Започните са следећим ресурсима:
+Почните са следећим ресурсима:
-- [Страница студентског центра](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) На овој страници ћете пронаћи ресурсе за почетнике, студентске пакете, па чак и начине да добијете бесплатан сертификат. Ово је страница коју желите означити као обележивач и повремено проверавати јер мењамо садржај најмање месечно.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Придружите се глобалној заједници студентских амбасадора, ово може бити ваш улаз у Microsoft.
+- [Student Hub страница](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) На овој страници ћете пронаћи ресурсе за почетнике, студентске пакете и чак могућности да добијете бесплатан сертификат ваучер. Ово је страница коју требате додати у фаворите и повремено проверавати јер садржај мењамо барем месечно.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Придружите се глобалној заједници студентских амбасадора, то може бити ваш пут у Microsoft.
-# Почетак рада
+# Почетак
## 📚 Документација
-- **[Водич за инсталацију](INSTALLATION.md)** - Упутства корак по корак за почетнике
+- **[Водич за инсталацију](INSTALLATION.md)** - Корак по корак упутства за подешавање за почетнике
- **[Водич за коришћење](USAGE.md)** - Примери и уобичајени радни токови
-- **[Решавање проблема](TROUBLESHOOTING.md)** - Решења за честе проблеме
-- **[Водич за допринос пројекту](CONTRIBUTING.md)** - Како допринети овом пројекту
-- **[За наставнике](for-teachers.md)** - Упутства за предавање и ресурси за учионицу
+- **[Приклад вођење](TROUBLESHOOTING.md)** - Решавање уобичајених проблема
+- **[Упутство за допринос](CONTRIBUTING.md)** - Како допринети овом пројекту
+- **[За наставнике](for-teachers.md)** - Водич за предавање и ресурси за учионицу
## 👨🎓 За студенте
-> **Потпуни почетници**: Нови сте у науци о подацима? Почните са нашим [примерама прилагођеним почетницима](examples/README.md)! Ови једноставни, добро коментарисани примери ће вам помоћи да разумете основе пре него што се упустите у цео наставни план.
-> **[Студенти](https://aka.ms/student-page)**: да бисте користили овај наставни план сами, форкујте цео репозиторијум и завршите вежбе самостално, почињући са квизом пре предавања. Затим прочитајте предавање и завршите остале активности. Покушајте да правите пројекте разумевајући лекције уместо да директно копирате код решења; међутим, тај код је доступан у фасциклама /solutions у свакој лекцији оријентисаној на пројекте. Још једна идеја је да формирате групу за учење са пријатељима и заједно прођете кроз материјал. За даљу студију препоручујемо [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Потпуни почетници**: Нови сте у Data Science? Почните са нашим [примерама прилагођеним почетницима](examples/README.md)! Ови једноставни, добро коментарисани примери ће вам помоћи да разумете основе пре него што кренете у цео наставни план.
+> **[Студенти](https://aka.ms/student-page)**: да користите овај наставни план самостално, форкујте цео репо и радите вежбе сами, почевши са квизом пре предавања. Затим прочитајте предавање и завршите остале активности. Покушајте да креирате пројекте разумејући лекције, а не копирајући код решења; ипак, ти кодови су доступни у фолдерима /solutions за сваку лекцију оријентисану на пројекте. Друга идеја је да формирате студијску групу са пријатељима и прођете кроз садржај заједно. За даље учење препоручујемо [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
-**Брзи старт:**
-1. Погледајте [Водич за инсталацију](INSTALLATION.md) за подешавање окружења
-2. Прегледајте [Водич за коришћење](USAGE.md) да бисте научили како се користи наставни програм
-3. Почните од Лекције 1 и радите редом
+**Брзи почетак:**
+1. Проверите [Водич за инсталацију](INSTALLATION.md) да подесите ваше окружење
+2. Прегледајте [Водич за коришћење](USAGE.md) да научите како да користите наставни план
+3. Почните са Лецијом 1 и радите редом
4. Придружите се нашој [Discord заједници](https://aka.ms/ds4beginners/discord) за подршку
## 👩🏫 За наставнике
-> **Наставници**: укључили смо [неке предлоге](for-teachers.md) како користити овај наставни програм. Волећемо ваше повратне информације [у нашем дискусионом форуму](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
+> **Наставници**: укључили смо [неке предлоге](for-teachers.md) како да користите овај наставни план. Волели бисмо ваше повратне информације [у нашем форуму за дискусију](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Упознајте тим
-[](https://youtu.be/8mzavjQSMM4 "Promo video")
-**GIF од** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+[](https://youtu.be/8mzavjQSMM4 "Промо видео")
+
+**Гиф од** [Мохит Џаисал](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Кликните на слику изнад за видео о пројекту и људима који су га направили!
+> 🎥 Кликните на слику изнад за видео о пројекту и људима који су га креирали!
-## Педагошија
+## Педагошка метода
-Изабрали смо два педагошка принципа приликом израде овог курикулума: обезбеђивање да је базиран на пројектима и да укључује честе квизове. До краја ове серије, студенти ће научити основне принципе науке о подацима, укључујући етичке концепте, припрему података, различите начине рада са подацима, визуелизацију података, анализу података, стварне примене науке о подацима и још много тога.
+Изабрали смо два педагошка принципа током израде овог курикулума: да буде заснован на пројектима и да укључује честе квизове. На крају ове серије, ученици ће научити основне принципе науке о подацима, укључујући етичке концепте, припрему података, различите начине рада са подацима, визуализацију података, анализа података, примере из стварног света у науци о подацима и још много тога.
-Поред тога, квиз са малом укупном важности пре часа поставља студенту намеру за учење теме, док други квиз после часа обезбеђује боље задржавање знања. Овај курикулум је дизајниран да буде флексибилан и забаван и може се пратити у целини или делимично. Пројекти почињу мали и постају све сложенији до краја циклуса од 10 недеља.
+Поред тога, квиз са малим утицајем пре часа поставља студенту циљ учења теме, док други квиз након часа осигурава боље задржавање знања. Овај курикулум је креиран да буде флексибилан и забаван и може се узимати у целини или делимично. Пројекти почињу мали, а на крају 10-недељног циклуса постају све сложенији.
-> Пронађите наш [Кодекс понашања](CODE_OF_CONDUCT.md), упутства за [допринoс](CONTRIBUTING.md), [превод](TRANSLATIONS.md). Добродошли су ваши конструктивни коментари!
+> Пронађите наше [кодекс понашања](CODE_OF_CONDUCT.md), [упутства за допринос](CONTRIBUTING.md), [превођење](TRANSLATIONS.md) смернице. Добродошли су вам конструктивни коментари!
-## Свака лекција укључује:
+## Свако поглавље укључује:
-- Опциони скичнот
+- Опциони скицнот
- Опциони додатни видео
-- Квиз за загревање пре лекције
+- Предчасовни квиз као загревање
- Писана лекција
-- За лекције базиране на пројектима, водиче корак по корак како изградити пројекат
+- За поглавља заснована на пројектима, корак по корак упутства како направити пројекат
- Провере знања
- Изазов
-- Допунско читање
+- Додатно читање
- Задатак
-- [Квиз после лекције](https://ff-quizzes.netlify.app/en/)
+- [Квиз након часа](https://ff-quizzes.netlify.app/en/)
-> **Напомена о квизовима**: Сви квизови се налазе у фасцикли Quiz-App, укупно 40 квизова са по три питања сваки. Линкови су уграђени у лекције, али квиз апликација може да се покреће локално или да се објави на Azure; пратите упутства у фасцикли `quiz-app`. Они се постепено преводе.
+> **Напомена о квизовима**: Сви квизови се налазе у фасцикли Quiz-App, укупно 40 квизова са по три питања. Они су повезани унутар лекција, али квиз апликација може да се покреће локално или да се имплементира у Azure; следите упутства у фасцикли `quiz-app`. Квизови се постепено локализују.
-## 🎓 Примери прилагођени почетницима
+## 🎓 Примери погодни за почетнике
-**Нове у науци о подацима?** Направили смо посебан [директоријум примера](examples/README.md) са једноставним, добро коментарисаним кодом како бисмо вам помогли да почнете:
+**Нови сте у науци о подацима?** Направили смо посебан [директоријум са примерима](examples/README.md) са једноставним, добро коментарисаним кодом да вам помогне да започнете:
-- 🌟 **Hello World** - Ваш први програм научне обраде података
-- 📂 **Учитавање података** - Научите како читати и истраживати скупове података
-- 📊 **Једноставна анализа** - Израчунавање статистика и проналажење образаца
-- 📈 **Основна визуелизација** - Направите дијаграме и графиконе
-- 🔬 **Пројекат из стварног света** - Потпун радни ток од почетка до краја
+- 🌟 **Hello World** - Ваш први програм из науке о подацима
+- 📂 **Учитавање података** - Научите како да читате и истражујете скупове података
+- 📊 **Једноставна анализа** - Израчунајте статистике и пронађите обрасце
+- 📈 **Основна визуализација** - Креирајте графиконе и дијаграме
+- 🔬 **Стварни пројекат** - Комплетан радни ток од почетка до краја
-Сваки пример укључује детаљне коментаре који објашњавају сваки корак, што га чини савршеним за потпуне почетнике!
+Сваки пример укључује детаљне коментаре који објашњавају сваки корак, што га чини савршеним за апсолутне почетнике!
-👉 **[Почните са примерима](examples/README.md)** 👈
+👉 **[Започните са примерима](examples/README.md)** 👈
## Лекције
-||
+||
|:---:|
-| Наука о подацима за почетнике: Путоказ - _Скичнот од [@nitya](https://twitter.com/nitya)_ |
+| Наука о подацима за почетнике: План - _Скицнот од [@nitya](https://twitter.com/nitya)_ |
-| Број лекције | Тема | Груписање лекције | Циљеви учења | Повезана лекција | Аутор |
+| Број лекције | Тема | Група лекција | Циљеви учења | Повезана лекција | Аутор |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Дефинисање науке о подацима | [Увод](1-Introduction/README.md) | Научите основне појмове иза науке о подацима и како је она повезана са вештачком интелигенцијом, машинским учењем и великим подацима. | [лекција](1-Introduction/01-defining-data-science/README.md) [видео](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Етика у науци о подацима | [Увод](1-Introduction/README.md) | Пojmovi из етике података, изазови и оквири. | [лекција](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Дефинисање података | [Увод](1-Introduction/README.md) | Како се подаци класификују и њихови уобичајени извори. | [лекција](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Увод у статистику и верovatноћу | [Увод](1-Introduction/README.md) | Математичке технике вероватноће и статистике за разумевање података. | [лекција](1-Introduction/04-stats-and-probability/README.md) [видео](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Рад са релaционим подацима | [Рад са подацима](2-Working-With-Data/README.md) | Увод у релaционе податке и основе истраживања и анализе релaционих података помоћу структурног језика упита, познатог и као SQL (изговара се „скиуел“). | [лекција](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Рад са NoSQL подацима | [Рад са подацима](2-Working-With-Data/README.md) | Увод у нерелационе податке, њихове различите врсте и основе истраживања и анализе докумената у базама података. | [лекција](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Рад са Python-ом | [Рад са подацима](2-Working-With-Data/README.md) | Основе коришћења Python-а за истраживање података уз библиотеке као што је Pandas. Препоручује се основно разумевање програмирања у Python-у. | [лекција](2-Working-With-Data/07-python/README.md) [видео](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Припрема података | [Рад са подацима](2-Working-With-Data/README.md) | Теме о техникама за чишћење и трансформацију података како би се решили изазови као што су недостајући, нетачни или непотпуни подаци. | [лекција](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Визуелизација количина | [Визуелизација података](3-Data-Visualization/README.md) | Научите како користити Matplotlib за визуелизацију података о птицама 🦆 | [лекција](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Визуелизација расподела података | [Визуелизација података](3-Data-Visualization/README.md) | Визуелизација посматрања и трендова унутар интервала. | [лекција](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Визуелизација пропорција | [Визуелизација података](3-Data-Visualization/README.md) | Визуелизација дискретних и груписаних процената. | [лекција](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Визуелизација односа | [Визуелизација података](3-Data-Visualization/README.md) | Визуелизација веза и корелација између скупова података и њихових променљивих. | [лекција](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Значајне визуелизације | [Визуелизација података](3-Data-Visualization/README.md) | Технике и смернице за прављење вредних визуелизација за ефикасно решавање проблема и увиде. | [лекција](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Увод у животни циклус науке о подацима | [Животни циклус](4-Data-Science-Lifecycle/README.md) | Увод у животни циклус науке о подацима и његов први корак - стицање и извлачење података. | [лекција](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Анализа | [Животни циклус](4-Data-Science-Lifecycle/README.md) | Ова фаза животног циклуса науке о подацима фокусира се на технике анализе података. | [лекција](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Комуникација | [Животни циклус](4-Data-Science-Lifecycle/README.md) | Ова фаза животног циклуса науке о подацима фокусира се на презентовање увида из података на начин који олакшава разумевање одлука донесеоцима. | [лекција](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Наука о подацима у облаку | [Облак подаци](5-Data-Science-In-Cloud/README.md) | Ова серија лекција уводи науку о подацима у облаку и њене предности. | [лекција](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) и [Maud](https://twitter.com/maudstweets) |
-| 18 | Наука о подацима у облаку | [Облак подаци](5-Data-Science-In-Cloud/README.md) | Тренирање модела уз помоћ алата са малим кодом. |[лекција](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) и [Maud](https://twitter.com/maudstweets) |
-| 19 | Наука о подацима у облаку | [Облак подаци](5-Data-Science-In-Cloud/README.md) | Деплојовање модела помоћу Azure Machine Learning Studio. | [лекција](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) и [Maud](https://twitter.com/maudstweets) |
-| 20 | Наука о подацима у пракси | [У пракси](6-Data-Science-In-Wild/README.md) | Пројекти вођени науком о подацима у стварном свету. | [лекција](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | Дефинисање науке о подацима | [Увод](1-Introduction/README.md) | Научите основне појмове иза науке о подацима и како је повезана са вештачком интелигенцијом, машинским учењем и великим подацима. | [лекција](1-Introduction/01-defining-data-science/README.md) [видео](https://youtu.be/beZ7Mb_oz9I) | [Дмитриј](http://soshnikov.com) |
+| 02 | Етика у науци о подацима | [Увод](1-Introduction/README.md) | Концепти, изазови и оквири етике података. | [лекција](1-Introduction/02-ethics/README.md) | [Нитја](https://twitter.com/nitya) |
+| 03 | Дефинисање података | [Увод](1-Introduction/README.md) | Како се подаци класификују и њихови уобичајени извори. | [лекција](1-Introduction/03-defining-data/README.md) | [Џасмин](https://www.twitter.com/paladique) |
+| 04 | Увод у статистику и вероватноћу | [Увод](1-Introduction/README.md) | Математичке технике вероватноће и статистике за разумевање података. | [лекција](1-Introduction/04-stats-and-probability/README.md) [видео](https://youtu.be/Z5Zy85g4Yjw) | [Дмитриј](http://soshnikov.com) |
+| 05 | Рад са релационим подацима | [Рад са подацима](2-Working-With-Data/README.md) | Увод у релационе податке и основе истраживања и анализе релационих података помоћу језика структурисаних упита, познатог као SQL (изговара се „си-квел“). | [лекција](2-Working-With-Data/05-relational-databases/README.md) | [Кристофер](https://www.twitter.com/geektrainer) | | |
+| 06 | Рад са NoSQL подацима | [Рад са подацима](2-Working-With-Data/README.md) | Увод у нерелационе податке, њихове различите типове и основе истраживања и анализе докумената у базама података. | [лекција](2-Working-With-Data/06-non-relational/README.md) | [Џасмин](https://twitter.com/paladique)|
+| 07 | Рад са Python-ом | [Рад са подацима](2-Working-With-Data/README.md) | Основе коришћења Python-а за истраживање података уз помоћ библиотека као што је Pandas. Препоручује се основно разумевање програмирања у Python-у. | [лекција](2-Working-With-Data/07-python/README.md) [видео](https://youtu.be/dZjWOGbsN4Y) | [Дмитриј](http://soshnikov.com) |
+| 08 | Припрема података | [Рад са подацима](2-Working-With-Data/README.md) | Теме о техникама чишћења и трансформације података како би се решавали изазови недостајућих, нетачних или непотпуних података. | [лекција](2-Working-With-Data/08-data-preparation/README.md) | [Џасмин](https://www.twitter.com/paladique) |
+| 09 | Визуализација количина | [Визуализација података](3-Data-Visualization/README.md) | Научите како да користите Matplotlib за визуализацију података о птицама 🦆 | [лекција](3-Data-Visualization/09-visualization-quantities/README.md) | [Џен](https://twitter.com/jenlooper) |
+| 10 | Визуализација расподеле података | [Визуализација података](3-Data-Visualization/README.md) | Визуализација посматрања и трендова унутар интервала. | [лекција](3-Data-Visualization/10-visualization-distributions/README.md) | [Џен](https://twitter.com/jenlooper) |
+| 11 | Визуализација пропорција | [Визуализација података](3-Data-Visualization/README.md) | Визуализација дискретних и груписаних процената. | [лекција](3-Data-Visualization/11-visualization-proportions/README.md) | [Џен](https://twitter.com/jenlooper) |
+| 12 | Визуализација односа | [Визуализација података](3-Data-Visualization/README.md) | Визуализација веза и корелација између скупова података и њихових варијабли. | [лекција](3-Data-Visualization/12-visualization-relationships/README.md) | [Џен](https://twitter.com/jenlooper) |
+| 13 | Значајне визуализације | [Визуализација података](3-Data-Visualization/README.md) | Технике и смернице за прављење вредних визуализација за ефикасно решавање проблема и стицање увида. | [лекција](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Џен](https://twitter.com/jenlooper) |
+| 14 | Увод у животни циклус науке о подацима | [Животни циклус](4-Data-Science-Lifecycle/README.md) | Увод у животни циклус науке о подацима и његов први корак – прибављање и екстракцију података. | [лекција](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Џасмин](https://twitter.com/paladique) |
+| 15 | Анализа | [Животни циклус](4-Data-Science-Lifecycle/README.md) | Ова фаза животног циклуса науке о подацима фокусира се на технике анализе података. | [лекција](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Џасмин](https://twitter.com/paladique) | | |
+| 16 | Комуникација | [Животни циклус](4-Data-Science-Lifecycle/README.md) | Ова фаза животног циклуса науке о подацима фокусира се на представљање увида из података на начин да буде лакше разумљиво доносилацима одлука. | [лекција](4-Data-Science-Lifecycle/16-communication/README.md) | [Џејлен](https://twitter.com/JalenMcG) | | |
+| 17 | Наука о подацима у облаку | [Облак подаци](5-Data-Science-In-Cloud/README.md) | Ова серија лекција уводи науку о подацима у облаку и њене предности. | [лекција](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Тифани](https://twitter.com/TiffanySouterre) и [Мауд](https://twitter.com/maudstweets) |
+| 18 | Наука о подацима у облаку | [Облак подаци](5-Data-Science-In-Cloud/README.md) | Тренирање модела користећи Low Code алате. |[лекција](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Тифани](https://twitter.com/TiffanySouterre) и [Мауд](https://twitter.com/maudstweets) |
+| 19 | Наука о подацима у облаку | [Облак подаци](5-Data-Science-In-Cloud/README.md) | Деплоирање модела уз помоћ Azure Machine Learning Studio. | [лекција](5-Data-Science-In-Cloud/19-Azure/README.md)| [Тифани](https://twitter.com/TiffanySouterre) и [Мауд](https://twitter.com/maudstweets) |
+| 20 | Наука о подацима у стварном свету | [У природи](6-Data-Science-In-Wild/README.md) | Пројекти засновани на науци о подацима у стварном свету. | [лекција](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Нитја](https://twitter.com/nitya) |
## GitHub Codespaces
Пратите ове кораке да бисте отворили овај пример у Codespace-у:
-1. Кликните на падајући мени Кôд и изаберите опцију Open with Codespaces.
+1. Кликните на падајући мени Code и изаберите опцију Open with Codespaces.
2. Изаберите + New codespace на дну панела.
-За више информација, погледајте [GitHub документацију](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+За више информација погледајте [GitHub документацију](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Пратите ове кораке да бисте отворили овај репозиторијум у контејнеру користећи свој локални рачунар и VSCode уз помоћ екстензије VS Code Remote - Containers:
+Пратите ове кораке да бисте отворили овај репозиторијум у контејнеру користећи ваш локални рачунар и VSCode помоћу екстензије VS Code Remote - Containers:
-1. Ако први пут користите девелоперски контејнер, уверите се да ваш систем испуњава предуслове (нпр. да имате инсталиран Docker) у [упутствима за почетак рада](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Уколико први пут користите развојни контејнер, проверите да ли ваш систем испуњава предуслове (нпр. да ли је Docker инсталиран) у [документацији за почетак рада](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Да бисте користили овај репозиторијум, можете или отворити репозиторијум у изолованом Docker волумену:
-**Напомена**: У позадини ће се користити команда Remote-Containers: **Clone Repository in Container Volume...** за клонирање изворног кода у Docker волумен уместо у локални фајл систем. [Волумени](https://docs.docker.com/storage/volumes/) су препоручени механизам за перзистенцију података контејнера.
+**Напомена**: У позадини, ово ће користити команду Remote-Containers: **Clone Repository in Container Volume...** да клонира изворни код у Docker волумен уместо у локални фајл систем. [Volumeni](https://docs.docker.com/storage/volumes/) су препоручени механизам за трајно чување података контејнера.
-Или отворити локално клонирану или скинуту верзију репозиторијума:
+Или отворите локално клониран или скинут пример:
-- Клонирајте овај репозиторијум на свој локални фајл систем.
+- Клонирајте овај репозиторијум на ваш локални фајл систем.
- Притисните F1 и изаберите команду **Remote-Containers: Open Folder in Container...**.
-- Изаберите клонирану копију ове фасцикле, сачекајте да се покрене контејнер и испробајте.
+- Изаберите клонирану копију ове фасцикле, сачекајте да се контејнер покрене и испробајте.
-## Офлајн приступ
+## Оффлине приступ
-Можете покретати ову документацију офлајн користећи [Docsify](https://docsify.js.org/#/). Форк-ујте овај репозиторијум, [инсталирајте Docsify](https://docsify.js.org/#/quickstart) на свој локални рачунар, након тога у коренском фолдеру овог репозиторијума укуцајте `docsify serve`. Веб сајт ће бити сервирао на порту 3000 на вашем локалхосту: `localhost:3000`.
+Можете покретати ову документацију оффлине користећи [Docsify](https://docsify.js.org/#/). Направите форк овог репозиторијума, [инсталирајте Docsify](https://docsify.js.org/#/quickstart) на вашем локалном рачунару, а затим у коренској фасцикли овог репозиторијума укуцајте `docsify serve`. Вебсајт ће бити доступан на порту 3000 на вашем локалном серверу: `localhost:3000`.
-> Имајте у виду, notebook-ови се не приказују преко Docsify-а, па када треба да покренете notebook, урадите то одвојено у VS Code-у са покренутим Python кернелом.
+> Напомена, белешке се неће приказивати преко Docsify-а, тако да када треба да користите белешку, покрените је посебно у VS Code користећи Python кернел.
-## Остали курикулуми
+## Други курикулуми
Наш тим производи и друге курикулуме! Погледајте:
### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchain4j-for-beginners)
[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
@@ -213,22 +204,22 @@ CO_OP_TRANSLATOR_METADATA:
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-### Серја генеритивне вештачке интелигенције
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+### Сериија генеративне AI
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
### Основно учење
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
@@ -236,27 +227,27 @@ CO_OP_TRANSLATOR_METADATA:
---
-### Серја Копилот
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+### Сериија Copilot
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-## Добијање помоћи
+## Како добити помоћ
-**Имате проблема?** Погледајте наш [Водич за решавање проблема](TROUBLESHOOTING.md) за решења уобичајених проблема.
+**Имате проблем?** Погледајте наш [Водич за решавање проблема](TROUBLESHOOTING.md) за решења уобичајених проблема.
-Уколико сте заглавили или имате било каквих питања о прављењу AI апликација, придружите се другим ученицима и искусним програмерима у дискусијама о MCP-у. То је подржавајућа заједница у којој су питања добродошла и знање се слободно дели.
+Ако запнете или имате питања о грађењу AI апликација, придружите се другим ученицима и искусним програмерима у дискусијама о MCP. То је подржана заједница где су питања добродошла, а знање се слободно дели.
[](https://discord.gg/nTYy5BXMWG)
-Ако имате повратне информације о производу или наиђете на грешке током развоја, посетите:
+Ако имате повратне информације о производу или наиђете на грешке током израде, посетите:
[](https://aka.ms/foundry/forum)
---
-**Изјава о одрицању одговорности**:
-Овaј документ је преведен помоћу AI преводилачке услуге [Co-op Translator](https://github.com/Azure/co-op-translator). Иако тежимо тачности, молимо вас имајте у виду да аутоматски преводи могу садржати грешке или нетачности. Изворни документ на његовом матерњем језику треба сматрати ауторитетним извором. За критичне информације препоручује се професионални људски превод. Нисмо одговорни за било каква неспоразума или погрешне тумачења која настају коришћењем овог превода.
+**Изјава о ограничењу одговорности**:
+Овај документ је преведен коришћењем услуге аутоматског превођења [Co-op Translator](https://github.com/Azure/co-op-translator). Иако се трудимо да обезбедимо тачност, молимо имајте у виду да аутоматски преводи могу садржати грешке или нетачности. Изворни документ на његовом матичном језику треба сматрати званичним и ауторитетним извором. За критичне информације препоручује се професионални превод од стране стручног лица. Нисмо одговорни за било какве неспоразуме или погрешна тумачења настала коришћењем овог превода.
\ No newline at end of file
diff --git a/translations/sr/SECURITY.md b/translations/sr/SECURITY.md
index e835b207..d5fb6182 100644
--- a/translations/sr/SECURITY.md
+++ b/translations/sr/SECURITY.md
@@ -1,12 +1,3 @@
-
## Безбедност
Мајкрософт озбиљно приступа безбедности наших софтверских производа и услуга, што укључује све репозиторијуме изворног кода којима управљамо кроз наше GitHub организације, као што су [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) и [наше GitHub организације](https://opensource.microsoft.com/).
diff --git a/translations/sr/SUPPORT.md b/translations/sr/SUPPORT.md
index 5129bed5..00284598 100644
--- a/translations/sr/SUPPORT.md
+++ b/translations/sr/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Подршка
## Како пријавити проблеме и добити помоћ
diff --git a/translations/sr/TROUBLESHOOTING.md b/translations/sr/TROUBLESHOOTING.md
index 430013d2..b9049ab4 100644
--- a/translations/sr/TROUBLESHOOTING.md
+++ b/translations/sr/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Водич за решавање проблема
Овај водич пружа решења за уобичајене проблеме на које можете наићи док радите са наставним планом и програмом "Наука о подацима за почетнике".
diff --git a/translations/sr/USAGE.md b/translations/sr/USAGE.md
index 6ca7966c..e9116bbf 100644
--- a/translations/sr/USAGE.md
+++ b/translations/sr/USAGE.md
@@ -1,12 +1,3 @@
-
# Водич за коришћење
Овај водич пружа примере и уобичајене радне токове за коришћење наставног програма „Наука о подацима за почетнике“.
diff --git a/translations/sr/docs/_sidebar.md b/translations/sr/docs/_sidebar.md
index a5dddac5..b973aab1 100644
--- a/translations/sr/docs/_sidebar.md
+++ b/translations/sr/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Увод
- [Дефинисање науке о подацима](../1-Introduction/01-defining-data-science/README.md)
- [Етика науке о подацима](../1-Introduction/02-ethics/README.md)
diff --git a/translations/sr/examples/README.md b/translations/sr/examples/README.md
index ac71e237..85f9feba 100644
--- a/translations/sr/examples/README.md
+++ b/translations/sr/examples/README.md
@@ -1,12 +1,3 @@
-
# Примери за почетнике у области науке о подацима
Добродошли у директоријум са примерима! Ова колекција једноставних, добро коментарисаних примера је осмишљена да вам помогне да започнете са науком о подацима, чак и ако сте потпуни почетник.
diff --git a/translations/sr/for-teachers.md b/translations/sr/for-teachers.md
index b107abca..4f08f11c 100644
--- a/translations/sr/for-teachers.md
+++ b/translations/sr/for-teachers.md
@@ -1,12 +1,3 @@
-
## За едукаторе
Желите ли да користите овај курикулум у вашој учионици? Слободно га користите!
diff --git a/translations/sr/quiz-app/README.md b/translations/sr/quiz-app/README.md
index 3a873c89..28569035 100644
--- a/translations/sr/quiz-app/README.md
+++ b/translations/sr/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Квизови
Ови квизови су пред- и пост-предавачки квизови за наставни план и програм науке о подацима на https://aka.ms/datascience-beginners
diff --git a/translations/sr/sketchnotes/README.md b/translations/sr/sketchnotes/README.md
index 58940b17..7d37ed8b 100644
--- a/translations/sr/sketchnotes/README.md
+++ b/translations/sr/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Пронађите све скицноте овде!
## Захвалнице
diff --git a/translations/sv/.co-op-translator.json b/translations/sv/.co-op-translator.json
new file mode 100644
index 00000000..365cd974
--- /dev/null
+++ b/translations/sv/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:54:45+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "sv"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-26T21:34:28+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "sv"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-26T21:35:37+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "sv"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:36:54+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "sv"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-26T21:27:17+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "sv"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T21:53:17+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "sv"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-26T21:39:43+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "sv"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:36:56+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "sv"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-26T21:47:59+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "sv"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-26T21:13:53+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "sv"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:30:36+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "sv"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:55:56+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "sv"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T21:43:31+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "sv"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-26T21:12:06+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "sv"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:45:37+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "sv"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-26T21:07:16+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "sv"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T21:45:19+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "sv"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-26T20:59:29+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "sv"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-26T20:47:09+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T21:48:45+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-26T23:19:25+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T21:50:11+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-26T22:51:07+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T21:48:17+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-26T23:24:03+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:39:15+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-26T22:55:24+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T21:49:11+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-26T22:45:47+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T22:47:05+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T22:46:28+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-26T23:05:28+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-26T23:09:06+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-26T22:57:19+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-26T22:59:32+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-26T23:14:19+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-26T23:01:28+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-26T23:11:01+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "sv"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-26T22:40:35+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "sv"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:06:22+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "sv"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-26T22:28:02+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "sv"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:05:41+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "sv"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-26T22:30:58+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "sv"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:06:46+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "sv"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-26T22:39:27+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "sv"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-26T22:20:43+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "sv"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T21:42:23+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "sv"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-26T22:11:08+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "sv"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T21:41:19+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "sv"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-26T22:05:55+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "sv"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T21:42:49+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "sv"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-26T22:18:00+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "sv"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-26T21:57:10+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "sv"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:32:07+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "sv"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-26T21:55:58+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "sv"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-26T21:49:21+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "sv"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:24:03+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "sv"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-26T20:44:35+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "sv"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:06:35+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "sv"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:21:18+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "sv"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:52:27+00:00",
+ "source_file": "README.md",
+ "language_code": "sv"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-26T20:45:24+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "sv"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-26T20:42:24+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "sv"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:40:48+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "sv"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:04:04+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "sv"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-26T21:12:58+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "sv"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:03:11+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "sv"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:57:32+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "sv"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-26T22:19:06+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "sv"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-26T21:48:51+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "sv"
+ }
+}
\ No newline at end of file
diff --git a/translations/sv/1-Introduction/01-defining-data-science/README.md b/translations/sv/1-Introduction/01-defining-data-science/README.md
index 42110beb..8fede1fc 100644
--- a/translations/sv/1-Introduction/01-defining-data-science/README.md
+++ b/translations/sv/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Definition av Data Science
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/sv/1-Introduction/01-defining-data-science/assignment.md b/translations/sv/1-Introduction/01-defining-data-science/assignment.md
index 36bae8b0..89f4d5c2 100644
--- a/translations/sv/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/sv/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Uppgift: Scenarier inom Data Science
I denna första uppgift ber vi dig att fundera på några verkliga processer eller problem inom olika problemområden, och hur du kan förbättra dem med hjälp av Data Science-processen. Fundera på följande:
diff --git a/translations/sv/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/sv/1-Introduction/01-defining-data-science/solution/assignment.md
index 10ded119..8b9f96dc 100644
--- a/translations/sv/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/sv/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Uppgift: Scenarier inom Data Science
I denna första uppgift ber vi dig att tänka på några verkliga processer eller problem inom olika problemområden, och hur du kan förbättra dem med hjälp av Data Science-processen. Fundera på följande:
diff --git a/translations/sv/1-Introduction/02-ethics/README.md b/translations/sv/1-Introduction/02-ethics/README.md
index e16f38c4..e3afc5e6 100644
--- a/translations/sv/1-Introduction/02-ethics/README.md
+++ b/translations/sv/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Introduktion till Dataetik
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/sv/1-Introduction/02-ethics/assignment.md b/translations/sv/1-Introduction/02-ethics/assignment.md
index 8450b5fb..e1cc0da6 100644
--- a/translations/sv/1-Introduction/02-ethics/assignment.md
+++ b/translations/sv/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Skriv en fallstudie om dataetik
## Instruktioner
diff --git a/translations/sv/1-Introduction/03-defining-data/README.md b/translations/sv/1-Introduction/03-defining-data/README.md
index b97c4786..f5ac83d3 100644
--- a/translations/sv/1-Introduction/03-defining-data/README.md
+++ b/translations/sv/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Definiera Data
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/sv/1-Introduction/03-defining-data/assignment.md b/translations/sv/1-Introduction/03-defining-data/assignment.md
index 337ad308..6f1e2c29 100644
--- a/translations/sv/1-Introduction/03-defining-data/assignment.md
+++ b/translations/sv/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Klassificering av dataset
## Instruktioner
diff --git a/translations/sv/1-Introduction/04-stats-and-probability/README.md b/translations/sv/1-Introduction/04-stats-and-probability/README.md
index 629b5fb4..32abf623 100644
--- a/translations/sv/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/sv/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# En kort introduktion till statistik och sannolikhet
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ För att förstå fördelningen av data är det också användbart att prata om
Grafiskt kan vi representera förhållandet mellan median och kvartiler i ett diagram som kallas **låddiagram**:
-
+
Här beräknar vi också **interkvartilavstånd** IQR=Q3-Q1, och så kallade **uteliggare** - värden som ligger utanför gränserna [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/sv/1-Introduction/04-stats-and-probability/assignment.md b/translations/sv/1-Introduction/04-stats-and-probability/assignment.md
index 432ad3b8..29f64674 100644
--- a/translations/sv/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/sv/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Liten Diabetesstudie
I denna uppgift kommer vi att arbeta med en liten dataset av diabetespatienter hämtad från [här](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/sv/1-Introduction/README.md b/translations/sv/1-Introduction/README.md
index a29416ce..cada0950 100644
--- a/translations/sv/1-Introduction/README.md
+++ b/translations/sv/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduktion till Data Science

diff --git a/translations/sv/2-Working-With-Data/05-relational-databases/README.md b/translations/sv/2-Working-With-Data/05-relational-databases/README.md
index 16ff39d6..a68476d7 100644
--- a/translations/sv/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/sv/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Arbeta med data: Relationsdatabaser
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/sv/2-Working-With-Data/05-relational-databases/assignment.md b/translations/sv/2-Working-With-Data/05-relational-databases/assignment.md
index 4c007c2c..ed21c7aa 100644
--- a/translations/sv/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/sv/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Visa flygplatsdata
Du har fått en [databas](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) byggd på [SQLite](https://sqlite.org/index.html) som innehåller information om flygplatser. Schemat visas nedan. Du kommer att använda [SQLite-tillägget](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) i [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) för att visa information om olika städers flygplatser.
diff --git a/translations/sv/2-Working-With-Data/06-non-relational/README.md b/translations/sv/2-Working-With-Data/06-non-relational/README.md
index 148515c3..3729cd65 100644
--- a/translations/sv/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/sv/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Arbeta med data: Icke-relationell data
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/sv/2-Working-With-Data/06-non-relational/assignment.md b/translations/sv/2-Working-With-Data/06-non-relational/assignment.md
index a41e980e..c2dd9ff3 100644
--- a/translations/sv/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/sv/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Soda Vinster
## Instruktioner
diff --git a/translations/sv/2-Working-With-Data/07-python/README.md b/translations/sv/2-Working-With-Data/07-python/README.md
index 1cd74bc3..6f23cd12 100644
--- a/translations/sv/2-Working-With-Data/07-python/README.md
+++ b/translations/sv/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Arbeta med data: Python och Pandas-biblioteket
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/sv/2-Working-With-Data/07-python/assignment.md b/translations/sv/2-Working-With-Data/07-python/assignment.md
index 6baed57d..ba9b661e 100644
--- a/translations/sv/2-Working-With-Data/07-python/assignment.md
+++ b/translations/sv/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Uppgift för Databehandling i Python
I denna uppgift kommer vi att be dig utveckla vidare på den kod vi har börjat skapa i våra utmaningar. Uppgiften består av två delar:
diff --git a/translations/sv/2-Working-With-Data/08-data-preparation/README.md b/translations/sv/2-Working-With-Data/08-data-preparation/README.md
index d8eaa955..7abef3fa 100644
--- a/translations/sv/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/sv/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Arbeta med data: Databeredning
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/sv/2-Working-With-Data/08-data-preparation/assignment.md b/translations/sv/2-Working-With-Data/08-data-preparation/assignment.md
index 58b9096e..4e8684e0 100644
--- a/translations/sv/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/sv/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Utvärdera data från ett formulär
En kund har testat ett [litet formulär](../../../../2-Working-With-Data/08-data-preparation/index.html) för att samla in grundläggande information om sin kundbas. De har tagit med sina resultat till dig för att validera den data de har samlat in. Du kan öppna sidan `index.html` i webbläsaren för att titta på formuläret.
diff --git a/translations/sv/2-Working-With-Data/README.md b/translations/sv/2-Working-With-Data/README.md
index f5168ddf..52e0b2f4 100644
--- a/translations/sv/2-Working-With-Data/README.md
+++ b/translations/sv/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Arbeta med data

diff --git a/translations/sv/3-Data-Visualization/09-visualization-quantities/README.md b/translations/sv/3-Data-Visualization/09-visualization-quantities/README.md
index 9f7df28e..7e8bb3f3 100644
--- a/translations/sv/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/sv/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualisera kvantiteter
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/sv/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/sv/3-Data-Visualization/09-visualization-quantities/assignment.md
index 18f20438..fac59e7c 100644
--- a/translations/sv/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/sv/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linjer, Spridningsdiagram och Stapeldiagram
## Instruktioner
diff --git a/translations/sv/3-Data-Visualization/10-visualization-distributions/README.md b/translations/sv/3-Data-Visualization/10-visualization-distributions/README.md
index c937bc52..b9be1d2d 100644
--- a/translations/sv/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/sv/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualisera distributioner
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/sv/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/sv/3-Data-Visualization/10-visualization-distributions/assignment.md
index 408f8c1b..2ea90003 100644
--- a/translations/sv/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/sv/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Tillämpa dina färdigheter
## Instruktioner
diff --git a/translations/sv/3-Data-Visualization/11-visualization-proportions/README.md b/translations/sv/3-Data-Visualization/11-visualization-proportions/README.md
index 3a37f19c..2e07bceb 100644
--- a/translations/sv/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/sv/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualisera Proportioner
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/sv/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/sv/3-Data-Visualization/11-visualization-proportions/assignment.md
index 172ea1ea..2da22f2d 100644
--- a/translations/sv/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/sv/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Prova det i Excel
## Instruktioner
diff --git a/translations/sv/3-Data-Visualization/12-visualization-relationships/README.md b/translations/sv/3-Data-Visualization/12-visualization-relationships/README.md
index bc78e6d7..16bc7c24 100644
--- a/translations/sv/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/sv/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualisera relationer: Allt om honung 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/sv/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/sv/3-Data-Visualization/12-visualization-relationships/assignment.md
index dd1e6a18..7ae8df5e 100644
--- a/translations/sv/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/sv/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Utforska bikupan
## Instruktioner
diff --git a/translations/sv/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/sv/3-Data-Visualization/13-meaningful-visualizations/README.md
index 9c5d78e4..5333cfd4 100644
--- a/translations/sv/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/sv/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Skapa Meningsfulla Visualiseringar
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/sv/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/sv/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 88ffbe9b..507284c1 100644
--- a/translations/sv/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/sv/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Bygg din egen anpassade visualisering
## Instruktioner
diff --git a/translations/sv/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/sv/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index da6793f5..2714638f 100644
--- a/translations/sv/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/sv/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Projekt för datavisualisering av Dangerous Liaisons
För att komma igång behöver du säkerställa att du har NPM och Node installerade på din dator. Installera beroenden (npm install) och kör sedan projektet lokalt (npm run serve):
diff --git a/translations/sv/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/sv/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index dd1bf5f9..4ab968bf 100644
--- a/translations/sv/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/sv/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Dangerous Liaisons datavisualiseringsprojekt
För att komma igång behöver du se till att du har NPM och Node installerade på din dator. Installera beroenden (npm install) och kör sedan projektet lokalt (npm run serve):
diff --git a/translations/sv/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/sv/3-Data-Visualization/R/09-visualization-quantities/README.md
index 877c1856..01e36408 100644
--- a/translations/sv/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/sv/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Visualisera kvantiteter
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/sv/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/sv/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 39f9abb6..70427838 100644
--- a/translations/sv/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/sv/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Linjer, Spridningsdiagram och Stapeldiagram
## Instruktioner
diff --git a/translations/sv/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/sv/3-Data-Visualization/R/10-visualization-distributions/README.md
index efa74d44..425ab628 100644
--- a/translations/sv/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/sv/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Visualisera distributioner
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/sv/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/sv/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 8a304734..87fcdbaf 100644
--- a/translations/sv/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/sv/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Använd dina färdigheter
## Instruktioner
diff --git a/translations/sv/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/sv/3-Data-Visualization/R/11-visualization-proportions/README.md
index c85cbc0d..7bce406b 100644
--- a/translations/sv/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/sv/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualisera Proportioner
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/sv/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/sv/3-Data-Visualization/R/12-visualization-relationships/README.md
index d3beea00..7db00c43 100644
--- a/translations/sv/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/sv/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Visualisera relationer: Allt om honung 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/sv/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/sv/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 7cce0235..10a784f4 100644
--- a/translations/sv/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/sv/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Skapa Meningsfulla Visualiseringar
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/sv/3-Data-Visualization/README.md b/translations/sv/3-Data-Visualization/README.md
index abf2c709..4a3a3088 100644
--- a/translations/sv/3-Data-Visualization/README.md
+++ b/translations/sv/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Visualiseringar

diff --git a/translations/sv/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/sv/4-Data-Science-Lifecycle/14-Introduction/README.md
index 66b9f97d..03884bc5 100644
--- a/translations/sv/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/sv/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduktion till livscykeln för dataanalys
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/sv/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/sv/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 9b8cb7b9..0e6889b6 100644
--- a/translations/sv/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/sv/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Bedömning av dataset
En klient har kontaktat ditt team för hjälp med att undersöka en taxikunds säsongsbetonade utgiftsvanor i New York City.
diff --git a/translations/sv/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/sv/4-Data-Science-Lifecycle/15-analyzing/README.md
index 83acf29e..687f2314 100644
--- a/translations/sv/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/sv/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Livscykeln för datavetenskap: Analysera
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/sv/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/sv/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 2de76785..8c2f5279 100644
--- a/translations/sv/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/sv/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Utforska för svar
Detta är en fortsättning på den föregående lektionens [uppgift](../14-Introduction/assignment.md), där vi kort tittade på datasetet. Nu ska vi ta en djupare titt på datan.
diff --git a/translations/sv/4-Data-Science-Lifecycle/16-communication/README.md b/translations/sv/4-Data-Science-Lifecycle/16-communication/README.md
index 9e81e25a..372baec9 100644
--- a/translations/sv/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/sv/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Livscykeln för Data Science: Kommunikation
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/sv/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/sv/4-Data-Science-Lifecycle/16-communication/assignment.md
index 7ba73031..c54f5332 100644
--- a/translations/sv/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/sv/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Berätta en historia
## Instruktioner
diff --git a/translations/sv/4-Data-Science-Lifecycle/README.md b/translations/sv/4-Data-Science-Lifecycle/README.md
index b8da4d37..b251acc0 100644
--- a/translations/sv/4-Data-Science-Lifecycle/README.md
+++ b/translations/sv/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Livscykeln för Data Science

diff --git a/translations/sv/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/sv/5-Data-Science-In-Cloud/17-Introduction/README.md
index e95efd7b..738f8111 100644
--- a/translations/sv/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/sv/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Introduktion till Data Science i Molnet
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/sv/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/sv/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 7ebd2a76..31eb3691 100644
--- a/translations/sv/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/sv/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Marknadsundersökning
## Instruktioner
diff --git a/translations/sv/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/sv/5-Data-Science-In-Cloud/18-Low-Code/README.md
index aa393ac7..a3dbefc2 100644
--- a/translations/sv/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/sv/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Data Science i molnet: "Low code/No code"-metoden
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/sv/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/sv/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 09660488..2ed425f1 100644
--- a/translations/sv/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/sv/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Low code/No code Data Science-projekt på Azure ML
## Instruktioner
diff --git a/translations/sv/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/sv/5-Data-Science-In-Cloud/19-Azure/README.md
index ed81d641..10c4bf36 100644
--- a/translations/sv/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/sv/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Data Science i molnet: "Azure ML SDK"-metoden
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/sv/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/sv/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 5c5d5982..898c77af 100644
--- a/translations/sv/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/sv/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Datavetenskapsprojekt med Azure ML SDK
## Instruktioner
diff --git a/translations/sv/5-Data-Science-In-Cloud/README.md b/translations/sv/5-Data-Science-In-Cloud/README.md
index bdc039d2..5ba8e3f8 100644
--- a/translations/sv/5-Data-Science-In-Cloud/README.md
+++ b/translations/sv/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Data Science i molnet

diff --git a/translations/sv/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/sv/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 2d4fd1e9..76659a1f 100644
--- a/translations/sv/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/sv/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Data Science i Verkligheten
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/sv/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/sv/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index fc6b6514..c988608c 100644
--- a/translations/sv/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/sv/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Utforska en dataset från Planetary Computer
## Instruktioner
diff --git a/translations/sv/6-Data-Science-In-Wild/README.md b/translations/sv/6-Data-Science-In-Wild/README.md
index c8126673..d1896611 100644
--- a/translations/sv/6-Data-Science-In-Wild/README.md
+++ b/translations/sv/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Data Science i det Vilda
Praktiska tillämpningar av data science inom olika branscher.
diff --git a/translations/sv/AGENTS.md b/translations/sv/AGENTS.md
index 5f8b3f6e..414fe224 100644
--- a/translations/sv/AGENTS.md
+++ b/translations/sv/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Projektöversikt
diff --git a/translations/sv/CODE_OF_CONDUCT.md b/translations/sv/CODE_OF_CONDUCT.md
index 864b417d..4c7f20a1 100644
--- a/translations/sv/CODE_OF_CONDUCT.md
+++ b/translations/sv/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft Open Source Uppförandekod
Det här projektet har antagit [Microsoft Open Source Uppförandekod](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/sv/CONTRIBUTING.md b/translations/sv/CONTRIBUTING.md
index cf978929..2ba166cb 100644
--- a/translations/sv/CONTRIBUTING.md
+++ b/translations/sv/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Bidra till Data Science för Nybörjare
Tack för ditt intresse av att bidra till Data Science för Nybörjare-kursen! Vi välkomnar bidrag från communityn.
diff --git a/translations/sv/INSTALLATION.md b/translations/sv/INSTALLATION.md
index c6d1e608..623e2867 100644
--- a/translations/sv/INSTALLATION.md
+++ b/translations/sv/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Installationsguide
Den här guiden hjälper dig att ställa in din miljö för att arbeta med Data Science for Beginners-kursen.
diff --git a/translations/sv/README.md b/translations/sv/README.md
index a547a7b9..2c6347d7 100644
--- a/translations/sv/README.md
+++ b/translations/sv/README.md
@@ -1,13 +1,4 @@
-
-# Data Science för nybörjare - En kursplan
+# Data Science för nybörjare - En läroplan
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,14 +17,14 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Azure Cloud Advocates på Microsoft erbjuder glatt en 10-veckors, 20-lektioners kursplan helt om Data Science. Varje lektion inkluderar för- och efter-lektionsquiz, skriftliga instruktioner för att genomföra lektionen, en lösning och en uppgift. Vår projektbaserade pedagogik låter dig lära medan du bygger, ett beprövat sätt för nya färdigheter att "fästa".
+Azure Cloud Advocates på Microsoft är glada att erbjuda en 10-veckors, 20-lektioners läroplan helt om Data Science. Varje lektion innehåller för- och efter-lektionsquiz, skriftliga instruktioner för att genomföra lektionen, en lösning och en uppgift. Vår projektbaserade pedagogik låter dig lära dig medan du bygger, ett beprövat sätt för nya färdigheter att "fästa".
**Stort tack till våra författare:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Särskilt tack 🙏 till våra författare, granskare och innehållsbidragare från [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** särskilt Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Speciellt tack 🙏 till våra [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) författare, granskare och innehållsmedverkande,** särskilt Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
| Data Science för nybörjare - _Sketchnote av [@nitya](https://twitter.com/nitya)_ |
@@ -42,60 +33,60 @@ Azure Cloud Advocates på Microsoft erbjuder glatt en 10-veckors, 20-lektioners
#### Stöds via GitHub Action (Automatiserat & Alltid Uppdaterat)
-[Arabiska](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgariska](../bg/README.md) | [Burmesiska (Myanmar)](../my/README.md) | [Kinesiska (Förenklad)](../zh/README.md) | [Kinesiska (Traditionell, Hong Kong)](../hk/README.md) | [Kinesiska (Traditionell, Macau)](../mo/README.md) | [Kinesiska (Traditionell, Taiwan)](../tw/README.md) | [Kroatiska](../hr/README.md) | [Tjeckiska](../cs/README.md) | [Danska](../da/README.md) | [Holländska](../nl/README.md) | [Estniska](../et/README.md) | [Finska](../fi/README.md) | [Franska](../fr/README.md) | [Tyska](../de/README.md) | [Grekiska](../el/README.md) | [Hebreiska](../he/README.md) | [Hindi](../hi/README.md) | [Ungerska](../hu/README.md) | [Indonesiska](../id/README.md) | [Italienska](../it/README.md) | [Japanska](../ja/README.md) | [Kannada](../kn/README.md) | [Koreanska](../ko/README.md) | [Litauiska](../lt/README.md) | [Malajiska](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigeriansk Pidgin](../pcm/README.md) | [Norska](../no/README.md) | [Persiska (Farsi)](../fa/README.md) | [Polska](../pl/README.md) | [Portugisiska (Brasilien)](../br/README.md) | [Portugisiska (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Rumänska](../ro/README.md) | [Ryska](../ru/README.md) | [Serbiska (Kyrilliska)](../sr/README.md) | [Slovakiska](../sk/README.md) | [Slovenska](../sl/README.md) | [Spanska](../es/README.md) | [Swahili](../sw/README.md) | [Svenska](./README.md) | [Tagalog (Filippinska)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thailändska](../th/README.md) | [Turkiska](../tr/README.md) | [Ukrainska](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamesiska](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Kinesiska (Förenklad)](../zh-CN/README.md) | [Kinesiska (Traditionell, Hongkong)](../zh-HK/README.md) | [Kinesiska (Traditionell, Macau)](../zh-MO/README.md) | [Kinesiska (Traditionell, Taiwan)](../zh-TW/README.md) | [Kroatiska](../hr/README.md) | [Tjeckiska](../cs/README.md) | [Danska](../da/README.md) | [Holländska](../nl/README.md) | [Estniska](../et/README.md) | [Finska](../fi/README.md) | [Franska](../fr/README.md) | [Tyska](../de/README.md) | [Grekiska](../el/README.md) | [Hebreiska](../he/README.md) | [Hindi](../hi/README.md) | [Ungerska](../hu/README.md) | [Indonesiska](../id/README.md) | [Italienska](../it/README.md) | [Japanska](../ja/README.md) | [Kannada](../kn/README.md) | [Koreanska](../ko/README.md) | [Litauiska](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigeriansk Pidgin](../pcm/README.md) | [Norska](../no/README.md) | [Persiska (Farsi)](../fa/README.md) | [Polska](../pl/README.md) | [Portugisiska (Brasilien)](../pt-BR/README.md) | [Portugisiska (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Rumänska](../ro/README.md) | [Ryska](../ru/README.md) | [Serbiska (Kyrilliska)](../sr/README.md) | [Slovakiska](../sk/README.md) | [Slovenska](../sl/README.md) | [Spanska](../es/README.md) | [Swahili](../sw/README.md) | [Svenska](./README.md) | [Tagalog (Filippinska)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thailändska](../th/README.md) | [Turkiska](../tr/README.md) | [Ukrainska](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamesiska](../vi/README.md)
-> **Föredrar du att klona lokalt?**
+> **Föredrar att klona lokalt?**
-> Detta repository inkluderar över 50 språköversättningar vilket avsevärt ökar nedladdningsstorleken. För att klona utan översättningar, använd sparsamt uttag:
+> Detta repository inkluderar över 50 språköversättningar vilket kraftigt ökar nedladdningsstorleken. För att klona utan översättningar, använd sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Detta ger dig allt du behöver för att slutföra kursen med betydligt snabbare nedladdning.
+> Detta ger dig allt du behöver för att genomföra kursen med en mycket snabbare nedladdning.
-**Om du önskar att fler översättningsspråk ska stödjas finns en lista [här](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Om du önskar att få stöd för ytterligare översättningsspråk finns de listade [här](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Gå med i vårt community
+#### Gå med i vår gemenskap
[](https://discord.gg/nTYy5BXMWG)
-Vi har en pågående Discord-serie om att lära sig med AI, lär dig mer och gå med oss på [Learn with AI Series](https://aka.ms/learnwithai/discord) från 18 - 30 september 2025. Du får tips och tricks om att använda GitHub Copilot för Data Science.
+Vi har en pågående Discord-serie "Learn with AI", lär dig mer och gå med oss på [Learn with AI Series](https://aka.ms/learnwithai/discord) från 18 - 30 september 2025. Du får tips och tricks om att använda GitHub Copilot för Data Science.
-
+
# Är du student?
Kom igång med följande resurser:
-- [Student Hub-sida](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) På denna sida hittar du resurser för nybörjare, studentpaket och till och med sätt att få en gratis certifikatkupong. Detta är en sida du vill bokmärka och kolla regelbundet eftersom vi byter ut innehållet minst en gång i månaden.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Gå med i ett globalt community av studentambassadörer, detta kan vara din väg in i Microsoft.
+- [Student Hub-sida](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) På denna sida hittar du nybörjarresurser, studentpaket och till och med sätt att få en gratis certifikatsvoucher. Detta är en sida du vill bokmärka och kolla in då och då eftersom innehållet byts ut minst varje månad.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Gå med i ett globalt community av studentambassadörer, detta kan vara din väg in till Microsoft.
# Komma igång
## 📚 Dokumentation
-- **[Installationsguide](INSTALLATION.md)** - Steg-för-steg installationsinstruktioner för nybörjare
+- **[Installationsguide](INSTALLATION.md)** - Steg-för-steg instruktioner för nybörjare
- **[Användarguide](USAGE.md)** - Exempel och vanliga arbetsflöden
- **[Felsökning](TROUBLESHOOTING.md)** - Lösningar på vanliga problem
- **[Bidragsguide](CONTRIBUTING.md)** - Hur man bidrar till detta projekt
-- **[För lärare](for-teachers.md)** - Undervisningsvägledning och material för klassrummet
+- **[För lärare](for-teachers.md)** - Undervisningsvägledning och klassrumsresurser
## 👨🎓 För studenter
-> **Fullständiga nybörjare**: Ny inom data science? Börja med våra [nybörjarvänliga exempel](examples/README.md)! Dessa enkla, välkommenterade exempel hjälper dig att förstå grunderna innan du går vidare med hela kursplanen.
-> **[Studenter](https://aka.ms/student-page)**: för att använda denna kursplan på egen hand, förg hela repo och gör övningarna på egen hand, börja med ett för-föreläsningsquiz. Läs sedan föreläsningen och gör resten av aktiviteterna. Försök skapa projekten genom att förstå lektionerna istället för att bara kopiera lösningskoden; den koden finns dock tillgänglig i /solutions-mapparna i varje projektorienterad lektion. Ett annat tips är att bilda en studiegrupp med vänner och gå igenom innehållet tillsammans. För fortsatt studier rekommenderar vi [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Totalt nybörjare**: Ny inom data science? Börja med våra [nybörjarvänliga exempel](examples/README.md)! Dessa enkla, välkommenterade exempel hjälper dig att förstå grunderna innan du går vidare till hela läroplanen.
+> **[Studenter](https://aka.ms/student-page)**: för att använda denna läroplan på egen hand, fork hela repot och gör övningarna själv, med början med ett quiz före lektionen. Läs sedan lektionen och gör resten av aktiviteterna. Försök att skapa projekten genom att förstå lektionerna snarare än att kopiera lösningskoden; dock finns den koden tillgänglig i /solutions-mapparna i varje projektorienterad lektion. Ett annat förslag är att bilda en studiecirkeln med vänner och gå igenom innehållet tillsammans. För vidare studier rekommenderar vi [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Snabbstart:**
-1. Kolla in [Installationsguiden](INSTALLATION.md) för att sätta upp din miljö
-2. Gå igenom [Användarguiden](USAGE.md) för att lära dig hur du arbetar med kursplanen
+1. Kolla [Installationsguiden](INSTALLATION.md) för att sätta upp din miljö
+2. Läs [Användarguiden](USAGE.md) för att lära dig arbeta med läroplanen
3. Börja med Lektion 1 och arbeta dig igenom i ordning
-4. Gå med i vår [Discord-community](https://aka.ms/ds4beginners/discord) för stöd
+4. Gå med i vår [Discord-gemenskap](https://aka.ms/ds4beginners/discord) för stöd
## 👩🏫 För lärare
-> **Lärare**: vi har [inkluderat förslag](for-teachers.md) på hur denna kursplan kan användas. Vi tar gärna emot din feedback [i vårt diskussionsforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
+> **Lärare**: vi har [inkluderat några förslag](for-teachers.md) på hur denna läroplan kan användas. Vi tar gärna emot dina synpunkter [i vårt diskussionsforum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Möt teamet
+
[](https://youtu.be/8mzavjQSMM4 "Promo video")
**Gif av** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
@@ -104,9 +95,9 @@ Kom igång med följande resurser:
## Pedagogik
-Vi har valt två pedagogiska principer när vi byggde denna läroplan: att säkerställa att den är projektbaserad och att den innehåller frekventa quiz. I slutet av denna serie kommer studenterna ha lärt sig grundläggande principer för datavetenskap, inklusive etiska koncept, datapreparation, olika sätt att arbeta med data, datavisualisering, dataanalys, verkliga användningsfall för datavetenskap och mer.
+Vi har valt två pedagogiska principer när vi byggde denna kursplan: att säkerställa att den är projektbaserad och att den innehåller frekventa quiz. I slutet av denna serie kommer studenterna ha lärt sig grundläggande principer för datavetenskap, inklusive etiska koncept, dataförberedelse, olika sätt att arbeta med data, datavisualisering, dataanalys, verkliga användningsfall av datavetenskap och mer.
-Dessutom sätter ett låginsats-quiz före en lektion studentens intention mot att lära sig ett ämne, medan ett andra quiz efter lektionen säkerställer ytterligare retention. Den här läroplanen är designad för att vara flexibel och rolig och kan tas helt eller delvis. Projekten startar små och blir gradvis mer komplexa i slutet av 10-veckorscykeln.
+Dessutom sätter ett lågriskquiz före en lektion studentens intention mot att lära sig ett ämne, medan ett andra quiz efter lektionen säkerställer ytterligare retention. Denna kursplan är utformad för att vara flexibel och rolig och kan tas som helhet eller delvis. Projekten börjar små och blir alltmer komplexa vid slutet av den 10 veckors cykeln.
> Hitta vår [uppförandekod](CODE_OF_CONDUCT.md), [bidragsriktlinjer](CONTRIBUTING.md), [översättningsriktlinjer](TRANSLATIONS.md). Vi välkomnar din konstruktiva feedback!
@@ -114,16 +105,16 @@ Dessutom sätter ett låginsats-quiz före en lektion studentens intention mot a
- Valfritt skissanteckning
- Valfri kompletterande video
-- Quiz som uppvärmning före lektion
-- Skriven lektion
-- För projektbaserade lektioner, steg-för-steg-guider för att bygga projektet
+- Quiz innan lektionen som uppvärmning
+- Skriftlig lektion
+- För projektbaserade lektioner, steg-för-steg-guider för hur man bygger projektet
- Kunskapskontroller
- En utmaning
- Kompletterande läsning
- Uppgift
- [Quiz efter lektion](https://ff-quizzes.netlify.app/en/)
-> **En not om quiz**: Alla quiz finns i Quiz-App mappen, totalt 40 quiz med tre frågor vardera. De länkas från lektionerna men quiz-appen kan köras lokalt eller distribueras till Azure; följ instruktionerna i `quiz-app` mappen. De lokaliseras gradvis.
+> **En notis om quiz**: Alla quiz finns i quiz-app-mappen, totalt 40 quiz med tre frågor vardera. De är länkade från lektionerna, men quiz-appen kan köras lokalt eller distribueras till Azure; följ instruktionerna i `quiz-app`-mappen. De håller på att lokaliseras gradvis.
## 🎓 Nybörjarvänliga exempel
@@ -133,78 +124,78 @@ Dessutom sätter ett låginsats-quiz före en lektion studentens intention mot a
- 📂 **Ladda data** - Lär dig läsa och utforska dataset
- 📊 **Enkel analys** - Beräkna statistik och hitta mönster
- 📈 **Grundläggande visualisering** - Skapa diagram och grafer
-- 🔬 **Verklighetsnära projekt** - Komplett arbetsflöde från start till slut
+- 🔬 **Verkligt projekt** - Komplett arbetsflöde från början till slut
-Varje exempel innehåller detaljerade kommentarer som förklarar varje steg, perfekt för absoluta nybörjare!
+Varje exempel innehåller detaljerade kommentarer som förklarar varje steg, vilket gör det perfekt för absoluta nybörjare!
👉 **[Börja med exemplen](examples/README.md)** 👈
## Lektioner
-||
+||
|:---:|
-| Datavetenskap för nybörjare: Färdplan - _Skissanteckning av [@nitya](https://twitter.com/nitya)_ |
+| Datavetenskap för nybörjare: Färdplan – _Skissanteckning av [@nitya](https://twitter.com/nitya)_ |
-| Lektionnummer | Ämne | Lektion Grupp | Inlärningsmål | Länkad lektion | Författare |
+| Lektionnummer | Ämne | Lektion Grupp | Lärandemål | Länkad lektion | Författare |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Definiera datavetenskap | [Introduktion](1-Introduction/README.md) | Lär dig grundläggande koncept bakom datavetenskap och dess koppling till artificiell intelligens, maskininlärning och big data. | [lektion](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Dataetik | [Introduktion](1-Introduction/README.md) | Koncept, utmaningar & ramverk inom dataetik. | [lektion](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | Definiera datavetenskap | [Introduktion](1-Introduction/README.md) | Lär dig grundläggande koncept bakom datavetenskap och hur det relaterar till artificiell intelligens, maskininlärning och big data. | [lektion](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Etik inom datavetenskap | [Introduktion](1-Introduction/README.md) | Koncept, utmaningar och ramverk för dataetik. | [lektion](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definiera data | [Introduktion](1-Introduction/README.md) | Hur data klassificeras och dess vanliga källor. | [lektion](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Introduktion till statistik & sannolikhet | [Introduktion](1-Introduction/README.md) | Matematiska tekniker inom sannolikhet och statistik för att förstå data. | [lektion](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Arbeta med relationsdata | [Arbeta med data](2-Working-With-Data/README.md) | Introduktion till relationsdata och grunderna för att utforska och analysera relationsdata med Structured Query Language, även kallat SQL (uttalas “se-quell”). | [lektion](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 04 | Introduktion till statistik & sannolikhet | [Introduktion](1-Introduction/README.md) | De matematiska teknikerna sannolikhet och statistik för att förstå data. | [lektion](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Arbeta med relationsdata | [Arbeta med data](2-Working-With-Data/README.md) | Introduktion till relationsdata och grunderna för att utforska och analysera relationsdata med Structured Query Language, även känt som SQL (uttalas ”se-kväll”). | [lektion](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Arbeta med NoSQL-data | [Arbeta med data](2-Working-With-Data/README.md) | Introduktion till icke-relationsdata, dess olika typer och grunderna för att utforska och analysera dokumentdatabaser. | [lektion](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Arbeta med Python | [Arbeta med data](2-Working-With-Data/README.md) | Grunder för att använda Python för datautforskning med bibliotek som Pandas. Grundläggande förståelse av Python-programmering rekommenderas. | [lektion](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Datapreparation | [Arbeta med data](2-Working-With-Data/README.md) | Ämnen om datatekniker för att rensa och transformera data för att hantera utmaningar med saknad, felaktig eller ofullständig data. | [lektion](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Visualisera kvantiteter | [Datavisualisering](3-Data-Visualization/README.md) | Lär dig använda Matplotlib för att visualisera fågeldatan 🦆 | [lektion](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Visualisera datadistributioner | [Datavisualisering](3-Data-Visualization/README.md) | Visualisering av observationer och trender inom ett intervall. | [lektion](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Visualisera proportioner | [Datavisualisering](3-Data-Visualization/README.md) | Visualisera diskreta och grupperade procentandelar. | [lektion](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 07 | Arbeta med Python | [Arbeta med data](2-Working-With-Data/README.md) | Grunder för att använda Python för datautforskning med bibliotek som Pandas. Grundläggande förståelse för Python-programmering rekommenderas. | [lektion](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Dataförberedelse | [Arbeta med data](2-Working-With-Data/README.md) | Ämnen om datatekniker för rengöring och omvandling av data för att hantera utmaningar med saknad, felaktig eller ofullständig data. | [lektion](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Visualisera kvantiteter | [Datavisualisering](3-Data-Visualization/README.md) | Lär dig använda Matplotlib för att visualisera fågeldatum 🦆 | [lektion](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Visualisera datafördelningar | [Datavisualisering](3-Data-Visualization/README.md) | Visualisera observationer och trender inom ett intervall. | [lektion](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Visualisera proportioner | [Datavisualisering](3-Data-Visualization/README.md) | Visualisering av diskreta och grupperade procentandelar. | [lektion](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualisera relationer | [Datavisualisering](3-Data-Visualization/README.md) | Visualisera kopplingar och korrelationer mellan datamängder och deras variabler. | [lektion](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Meningsfulla visualiseringar | [Datavisualisering](3-Data-Visualization/README.md) | Tekniker och vägledning för att göra dina visualiseringar värdefulla för effektiv problemlösning och insikter. | [lektion](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Introduktion till datavetenskapens livscykel | [Livscykel](4-Data-Science-Lifecycle/README.md) | Introduktion till datavetenskapens livscykel och dess första steg att förvärva och extrahera data. | [lektion](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analysera | [Livscykel](4-Data-Science-Lifecycle/README.md) | Denna fas i datavetenskapens livscykel fokuserar på tekniker för att analysera data. | [lektion](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Kommunikation | [Livscykel](4-Data-Science-Lifecycle/README.md) | Denna fas i datavetenskapens livscykel fokuserar på att presentera insikter från data på ett sätt som gör det lättare för beslutsfattare att förstå. | [lektion](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 14 | Introduktion till datavetenskaps livscykel | [Livscykel](4-Data-Science-Lifecycle/README.md) | Introduktion till datavetenskaps livscykel och dess första steg att förvärva och extrahera data. | [lektion](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Analysera | [Livscykel](4-Data-Science-Lifecycle/README.md) | Denna fas av datavetenskaps livscykel fokuserar på tekniker för att analysera data. | [lektion](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Kommunikation | [Livscykel](4-Data-Science-Lifecycle/README.md) | Denna fas av datavetenskaps livscykel fokuserar på att presentera insikter från data på ett sätt som gör det enklare för beslutsfattare att förstå. | [lektion](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Datavetenskap i molnet | [Molndata](5-Data-Science-In-Cloud/README.md) | Denna serie lektioner introducerar datavetenskap i molnet och dess fördelar. | [lektion](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) och [Maud](https://twitter.com/maudstweets) |
-| 18 | Datavetenskap i molnet | [Molndata](5-Data-Science-In-Cloud/README.md) | Träning av modeller med Low Code-verktyg. |[lektion](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) och [Maud](https://twitter.com/maudstweets) |
-| 19 | Datavetenskap i molnet | [Molndata](5-Data-Science-In-Cloud/README.md) | Distribuera modeller med Azure Machine Learning Studio. | [lektion](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) och [Maud](https://twitter.com/maudstweets) |
-| 20 | Datavetenskap i verkligheten | [I det vilda](6-Data-Science-In-Wild/README.md) | Datavetenskapsdrivna projekt i verkliga världen. | [lektion](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 18 | Datavetenskap i molnet | [Molndata](5-Data-Science-In-Cloud/README.md) | Träna modeller med Low Code-verktyg. |[lektion](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) och [Maud](https://twitter.com/maudstweets) |
+| 19 | Datavetenskap i molnet | [Molndata](5-Data-Science-In-Cloud/README.md) | Driftsätt modeller med Azure Machine Learning Studio. | [lektion](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) och [Maud](https://twitter.com/maudstweets) |
+| 20 | Datavetenskap i verkligheten | [I det vilda](6-Data-Science-In-Wild/README.md) | Datavetenskapsstyrda projekt i verkliga världen. | [lektion](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Följ dessa steg för att öppna detta exempel i en Codespace:
-1. Klicka på Code-rullgardinsmenyn och välj alternativet Open with Codespaces.
-2. Välj + New codespace längst ner i fönstret.
-För mer information, se [GitHub-dokumentationen](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+1. Klicka på rullgardinsmenyn Code och välj alternativet Open with Codespaces.
+2. Välj + New codespace längst ner i panelen.
+För mer info, kolla in [GitHub-dokumentationen](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Följ dessa steg för att öppna detta repo i en container med din lokala maskin och VSCode med hjälp av VS Code Remote - Containers-tillägget:
-1. Om detta är första gången du använder en utvecklingscontainer, se till att ditt system uppfyller förkraven (d.v.s. har Docker installerat) i [introduktionsdokumentationen](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Om detta är första gången du använder en utvecklingscontainer, se till att ditt system uppfyller förutsättningarna (dvs. har Docker installerat) i [kom igång-dokumentationen](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-För att använda detta repository kan du antingen öppna repositoryn i en isolerad Docker-volym:
+För att använda detta repository kan du antingen öppna repositoryt i ett isolerat Docker-volym:
-**Obs**: Under huven används kommandot Remote-Containers: **Clone Repository in Container Volume...** för att klona källkoden i en Docker-volym i stället för i det lokala filsystemet. [Volymer](https://docs.docker.com/storage/volumes/) är den föredragna mekanismen för att spara containerdata.
+**Notera**: Under huven kommer detta använda kommandot Remote-Containers: **Clone Repository in Container Volume...** för att klona källkoden i en Docker-volym istället för lokala filsystemet. [Volymer](https://docs.docker.com/storage/volumes/) är den föredragna mekanismen för att bevara container-data.
-Eller öppna en lokalt klonad eller nedladdad version av repositoryn:
+Eller öppna en lokalt klonad eller nedladdad version av repositoryt:
-- Klona detta repository till ditt lokala filsystem.
-- Tryck på F1 och välj kommandot **Remote-Containers: Open Folder in Container...**.
-- Välj den klonade kopian av denna mapp, vänta på att containern startar och prova.
+- Klona detta repo till ditt lokala filsystem.
+- Tryck F1 och välj kommandot **Remote-Containers: Open Folder in Container...**.
+- Välj den klonade kopian av denna mapp, vänta på att containern startar och testa.
-## Offline åtkomst
+## Offline-åtkomst
-Du kan köra denna dokumentation offline med hjälp av [Docsify](https://docsify.js.org/#/). Forka detta repo, [installera Docsify](https://docsify.js.org/#/quickstart) på din lokala dator, och skriv sedan `docsify serve` i rotmappen för detta repo. Webbplatsen kommer att serveras på port 3000 på din localhost: `localhost:3000`.
+Du kan köra denna dokumentation offline med hjälp av [Docsify](https://docsify.js.org/#/). Forka detta repo, [installera Docsify](https://docsify.js.org/#/quickstart) på din lokala maskin, sedan i rotmappen av detta repo, skriv `docsify serve`. Webbplatsen kommer att vara tillgänglig på port 3000 på din localhost: `localhost:3000`.
-> Observera, notebooks renderas inte via Docsify, så när du behöver köra en notebook, gör det separat i VS Code med en Python-kärna.
+> Observera att notebooks inte kommer att renderas via Docsify, så när du behöver köra en notebook, gör det separat i VS Code som kör en Python-kärna.
-## Andra läroplaner
+## Andra kursplaner
-Vårt team producerar andra läroplaner! Kolla in:
+Vårt team producerar andra kursplaner! Kolla in:
### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchain4j-for-beginners)
[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
@@ -225,32 +216,32 @@ Vårt team producerar andra läroplaner! Kolla in:
---
-### Kärnlära
+### Kärninlärning
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### Copilot-serie
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Få hjälp
**Stöter du på problem?** Kolla vår [Felsökningsguide](TROUBLESHOOTING.md) för lösningar på vanliga problem.
-Om du fastnar eller har frågor om att skapa AI-appar, gå med bland andra elever och erfarna utvecklare i diskussioner om MCP. Det är en stödjande gemenskap där frågor är välkomna och kunskap delas fritt.
+Om du fastnar eller har frågor om att bygga AI-appar. Gå med i diskussioner med andra lärande och erfarna utvecklare om MCP. Det är en stödjande gemenskap där frågor är välkomna och kunskap delas fritt.
[](https://discord.gg/nTYy5BXMWG)
-Om du har produktfeedback eller stöter på fel under byggandet, besök:
+Om du har produktfeedback eller stöter på fel vid utveckling, besök:
[](https://aka.ms/foundry/forum)
@@ -258,5 +249,5 @@ Om du har produktfeedback eller stöter på fel under byggandet, besök:
**Ansvarsfriskrivning**:
-Detta dokument har översatts med hjälp av AI-översättningstjänsten [Co-op Translator](https://github.com/Azure/co-op-translator). Även om vi strävar efter noggrannhet, vänligen var medveten om att automatiska översättningar kan innehålla fel eller brister. Det ursprungliga dokumentet på dess modersmål ska betraktas som den auktoritativa källan. För kritisk information rekommenderas professionell mänsklig översättning. Vi ansvarar inte för några missförstånd eller feltolkningar som uppstår från användningen av denna översättning.
+Detta dokument har översatts med hjälp av AI-översättningstjänsten [Co-op Translator](https://github.com/Azure/co-op-translator). Även om vi strävar efter noggrannhet, vänligen var medveten om att automatiska översättningar kan innehålla fel eller brister. Det ursprungliga dokumentet på dess modersmål ska betraktas som den auktoritativa källan. För kritisk information rekommenderas professionell mänsklig översättning. Vi ansvarar inte för några missförstånd eller feltolkningar som uppstår vid användning av denna översättning.
\ No newline at end of file
diff --git a/translations/sv/SECURITY.md b/translations/sv/SECURITY.md
index 92b42c7b..0d8ced3e 100644
--- a/translations/sv/SECURITY.md
+++ b/translations/sv/SECURITY.md
@@ -1,12 +1,3 @@
-
## Säkerhet
Microsoft tar säkerheten för våra mjukvaruprodukter och tjänster på största allvar, vilket inkluderar alla källkodsförråd som hanteras genom våra GitHub-organisationer, såsom [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) och [våra GitHub-organisationer](https://opensource.microsoft.com/).
diff --git a/translations/sv/SUPPORT.md b/translations/sv/SUPPORT.md
index f5b55bb7..5d2253ad 100644
--- a/translations/sv/SUPPORT.md
+++ b/translations/sv/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Support
## Hur man rapporterar problem och får hjälp
diff --git a/translations/sv/TROUBLESHOOTING.md b/translations/sv/TROUBLESHOOTING.md
index c297980a..243f62dc 100644
--- a/translations/sv/TROUBLESHOOTING.md
+++ b/translations/sv/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Felsökningsguide
Den här guiden ger lösningar på vanliga problem som du kan stöta på när du arbetar med Data Science for Beginners-kursen.
diff --git a/translations/sv/USAGE.md b/translations/sv/USAGE.md
index 3df8dbff..e7961e9d 100644
--- a/translations/sv/USAGE.md
+++ b/translations/sv/USAGE.md
@@ -1,12 +1,3 @@
-
# Användningsguide
Den här guiden ger exempel och vanliga arbetsflöden för att använda läroplanen "Data Science for Beginners".
diff --git a/translations/sv/docs/_sidebar.md b/translations/sv/docs/_sidebar.md
index aff437dd..dddb0bef 100644
--- a/translations/sv/docs/_sidebar.md
+++ b/translations/sv/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Introduktion
- [Definiera Data Science](../1-Introduction/01-defining-data-science/README.md)
- [Etik inom Data Science](../1-Introduction/02-ethics/README.md)
diff --git a/translations/sv/examples/README.md b/translations/sv/examples/README.md
index b4901dbf..6e69188b 100644
--- a/translations/sv/examples/README.md
+++ b/translations/sv/examples/README.md
@@ -1,12 +1,3 @@
-
# Nybörjarvänliga Exempel på Data Science
Välkommen till exempelbiblioteket! Denna samling av enkla, välkommenterade exempel är utformad för att hjälpa dig komma igång med data science, även om du är helt nybörjare.
diff --git a/translations/sv/for-teachers.md b/translations/sv/for-teachers.md
index 9f91c533..22924684 100644
--- a/translations/sv/for-teachers.md
+++ b/translations/sv/for-teachers.md
@@ -1,12 +1,3 @@
-
## För Lärare
Vill du använda denna läroplan i ditt klassrum? Varsågod!
diff --git a/translations/sv/quiz-app/README.md b/translations/sv/quiz-app/README.md
index 89e791cf..a761fe7e 100644
--- a/translations/sv/quiz-app/README.md
+++ b/translations/sv/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Quizzer
Dessa quizzer är för- och efterföreläsningsquizzer för datavetenskapsutbildningen på https://aka.ms/datascience-beginners
diff --git a/translations/sv/sketchnotes/README.md b/translations/sv/sketchnotes/README.md
index 75aa9fab..b89f055e 100644
--- a/translations/sv/sketchnotes/README.md
+++ b/translations/sv/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Hitta alla sketchnotes här!
## Krediter
diff --git a/translations/sw/.co-op-translator.json b/translations/sw/.co-op-translator.json
new file mode 100644
index 00000000..fc1cad7d
--- /dev/null
+++ b/translations/sw/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:02:59+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "sw"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-26T15:24:22+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "sw"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-26T15:25:48+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "sw"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:50:20+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "sw"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-26T15:16:34+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "sw"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T17:19:11+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "sw"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-26T15:31:00+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "sw"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:58:55+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "sw"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-26T15:42:07+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "sw"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-26T14:59:30+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "sw"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:57:49+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "sw"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:57:27+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "sw"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T17:06:25+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "sw"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-26T14:57:34+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "sw"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:54:48+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "sw"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-26T14:51:05+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "sw"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T17:08:39+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "sw"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-26T14:41:23+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "sw"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-26T14:27:17+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T17:13:05+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-26T17:26:41+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T17:14:52+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-26T16:52:32+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T17:12:34+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-26T17:30:39+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:44:30+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-26T16:57:22+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T17:13:37+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-26T16:46:57+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T16:48:20+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T16:47:41+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-26T17:07:10+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-26T17:13:26+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-26T16:58:41+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-26T17:01:56+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-26T17:18:48+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-26T17:02:43+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-26T17:14:12+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "sw"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-26T16:40:41+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "sw"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:26:48+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "sw"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-26T16:27:27+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "sw"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:26:09+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "sw"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-26T16:31:12+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "sw"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:27:19+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "sw"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-26T16:39:57+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "sw"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-26T16:20:35+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "sw"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T17:05:10+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "sw"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-26T16:09:44+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "sw"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T17:03:46+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "sw"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-26T16:04:08+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "sw"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T17:05:40+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "sw"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-26T16:17:00+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "sw"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-26T15:52:36+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "sw"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:40:03+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "sw"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-26T15:51:19+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "sw"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-26T15:43:53+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "sw"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:34:03+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "sw"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-26T14:23:43+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "sw"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:26:18+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "sw"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:24:04+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "sw"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:15:04+00:00",
+ "source_file": "README.md",
+ "language_code": "sw"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-26T14:24:23+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "sw"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-26T14:21:03+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "sw"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:45:04+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "sw"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:07:51+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "sw"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-26T14:58:20+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "sw"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:06:07+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "sw"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:59:56+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "sw"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-26T16:17:50+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "sw"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-26T15:43:19+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "sw"
+ }
+}
\ No newline at end of file
diff --git a/translations/sw/1-Introduction/01-defining-data-science/README.md b/translations/sw/1-Introduction/01-defining-data-science/README.md
index 8c9a3bad..5e07746b 100644
--- a/translations/sw/1-Introduction/01-defining-data-science/README.md
+++ b/translations/sw/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Kufafanua Sayansi ya Takwimu
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/sw/1-Introduction/01-defining-data-science/assignment.md b/translations/sw/1-Introduction/01-defining-data-science/assignment.md
index dcdaaca9..f9461fb9 100644
--- a/translations/sw/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/sw/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Kazi: Matukio ya Sayansi ya Takwimu
Katika kazi hii ya kwanza, tunakuomba ufikirie kuhusu mchakato au tatizo la maisha halisi katika nyanja tofauti za matatizo, na jinsi unavyoweza kuboresha kwa kutumia mchakato wa Sayansi ya Takwimu. Fikiria yafuatayo:
diff --git a/translations/sw/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/sw/1-Introduction/01-defining-data-science/solution/assignment.md
index 1c017695..8180efd2 100644
--- a/translations/sw/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/sw/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Kazi: Matukio ya Sayansi ya Takwimu
Katika kazi hii ya kwanza, tunakuomba ufikirie kuhusu mchakato au tatizo la maisha halisi katika nyanja tofauti za matatizo, na jinsi unavyoweza kuboresha kwa kutumia mchakato wa Sayansi ya Takwimu. Fikiria yafuatayo:
diff --git a/translations/sw/1-Introduction/02-ethics/README.md b/translations/sw/1-Introduction/02-ethics/README.md
index 1d0c99ba..156fa3f0 100644
--- a/translations/sw/1-Introduction/02-ethics/README.md
+++ b/translations/sw/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Utangulizi wa Maadili ya Takwimu
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/sw/1-Introduction/02-ethics/assignment.md b/translations/sw/1-Introduction/02-ethics/assignment.md
index 2ccdcaf5..38b63c6e 100644
--- a/translations/sw/1-Introduction/02-ethics/assignment.md
+++ b/translations/sw/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Andika Uchunguzi wa Kesi ya Maadili ya Takwimu
## Maelekezo
diff --git a/translations/sw/1-Introduction/03-defining-data/README.md b/translations/sw/1-Introduction/03-defining-data/README.md
index 136fbb11..e1572a1c 100644
--- a/translations/sw/1-Introduction/03-defining-data/README.md
+++ b/translations/sw/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Kufafanua Data
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/sw/1-Introduction/03-defining-data/assignment.md b/translations/sw/1-Introduction/03-defining-data/assignment.md
index ac6c03b7..28e3afc1 100644
--- a/translations/sw/1-Introduction/03-defining-data/assignment.md
+++ b/translations/sw/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Kuainisha Seti za Data
## Maelekezo
diff --git a/translations/sw/1-Introduction/04-stats-and-probability/README.md b/translations/sw/1-Introduction/04-stats-and-probability/README.md
index 4bcda432..ec0a4374 100644
--- a/translations/sw/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/sw/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Utangulizi Mfupi wa Takwimu na Uwezekano
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Ili kutusaidia kuelewa usambazaji wa data, ni muhimu kuzungumzia **robo**:
Kigrafu tunaweza kuwakilisha uhusiano kati ya median na robo katika mchoro unaoitwa **box plot**:
-
+
Hapa pia tunahesabu **nafasi ya kati ya robo** IQR=Q3-Q1, na kinachoitwa **outliers** - thamani ambazo ziko nje ya mipaka [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/sw/1-Introduction/04-stats-and-probability/assignment.md b/translations/sw/1-Introduction/04-stats-and-probability/assignment.md
index eb498bdc..16b1eeaf 100644
--- a/translations/sw/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/sw/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Utafiti Mdogo wa Kisukari
Katika kazi hii, tutafanya kazi na seti ndogo ya data ya wagonjwa wa kisukari iliyochukuliwa kutoka [hapa](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/sw/1-Introduction/README.md b/translations/sw/1-Introduction/README.md
index 1be682ec..ba5d7cb7 100644
--- a/translations/sw/1-Introduction/README.md
+++ b/translations/sw/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Utangulizi wa Sayansi ya Takwimu

diff --git a/translations/sw/2-Working-With-Data/05-relational-databases/README.md b/translations/sw/2-Working-With-Data/05-relational-databases/README.md
index 9cfcfa26..4b9091c9 100644
--- a/translations/sw/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/sw/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Kufanya kazi na Data: Hifadhidata za Uhusiano
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/sw/2-Working-With-Data/05-relational-databases/assignment.md b/translations/sw/2-Working-With-Data/05-relational-databases/assignment.md
index 6bac2cfb..daea118f 100644
--- a/translations/sw/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/sw/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Kuonyesha data za viwanja vya ndege
Umepewa [hifadhidata](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) iliyojengwa kwa [SQLite](https://sqlite.org/index.html) ambayo ina taarifa kuhusu viwanja vya ndege. Muundo wa hifadhidata umeonyeshwa hapa chini. Utatumia [kiendelezi cha SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) katika [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) kuonyesha taarifa kuhusu viwanja vya ndege vya miji mbalimbali.
diff --git a/translations/sw/2-Working-With-Data/06-non-relational/README.md b/translations/sw/2-Working-With-Data/06-non-relational/README.md
index cfc6a6ad..43566728 100644
--- a/translations/sw/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/sw/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Kufanya Kazi na Data: Data Isiyo ya Kihusiano
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/sw/2-Working-With-Data/06-non-relational/assignment.md b/translations/sw/2-Working-With-Data/06-non-relational/assignment.md
index a027f1cd..6b9eae8b 100644
--- a/translations/sw/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/sw/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Faida za Soda
## Maelekezo
diff --git a/translations/sw/2-Working-With-Data/07-python/README.md b/translations/sw/2-Working-With-Data/07-python/README.md
index 29a5b535..64203074 100644
--- a/translations/sw/2-Working-With-Data/07-python/README.md
+++ b/translations/sw/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Kufanya Kazi na Data: Python na Maktaba ya Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/sw/2-Working-With-Data/07-python/assignment.md b/translations/sw/2-Working-With-Data/07-python/assignment.md
index c690eb2b..c88f9fbe 100644
--- a/translations/sw/2-Working-With-Data/07-python/assignment.md
+++ b/translations/sw/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Kazi ya Usindikaji wa Takwimu kwa Python
Katika kazi hii, tutakuomba uelezee zaidi kuhusu msimbo ambao tumeanza kuunda katika changamoto zetu. Kazi hii ina sehemu mbili:
diff --git a/translations/sw/2-Working-With-Data/08-data-preparation/README.md b/translations/sw/2-Working-With-Data/08-data-preparation/README.md
index ce4e1ae5..b02db4bb 100644
--- a/translations/sw/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/sw/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Kufanya Kazi na Data: Maandalizi ya Data
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/sw/2-Working-With-Data/08-data-preparation/assignment.md b/translations/sw/2-Working-With-Data/08-data-preparation/assignment.md
index ba4b6f9f..cb182806 100644
--- a/translations/sw/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/sw/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Kutathmini Data kutoka Fomu
Mteja amekuwa akijaribu [fomu ndogo](../../../../2-Working-With-Data/08-data-preparation/index.html) kukusanya data ya msingi kuhusu wateja wao. Wameleta matokeo yao kwako ili uthibitishe data waliyokusanya. Unaweza kufungua ukurasa wa `index.html` kwenye kivinjari ili kuangalia fomu hiyo.
diff --git a/translations/sw/2-Working-With-Data/README.md b/translations/sw/2-Working-With-Data/README.md
index b434d267..63e2ecce 100644
--- a/translations/sw/2-Working-With-Data/README.md
+++ b/translations/sw/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Kufanya Kazi na Data

diff --git a/translations/sw/3-Data-Visualization/09-visualization-quantities/README.md b/translations/sw/3-Data-Visualization/09-visualization-quantities/README.md
index 9e042b5e..809cc7e2 100644
--- a/translations/sw/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/sw/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Kuonyesha Kiasi
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/sw/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/sw/3-Data-Visualization/09-visualization-quantities/assignment.md
index 70d56344..008ea1df 100644
--- a/translations/sw/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/sw/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Mistari, Mchoro wa Nukta na Mchoro wa Mstari wa Nguzo
## Maelekezo
diff --git a/translations/sw/3-Data-Visualization/10-visualization-distributions/README.md b/translations/sw/3-Data-Visualization/10-visualization-distributions/README.md
index 3bc5172a..7da036e7 100644
--- a/translations/sw/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/sw/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Kuonyesha Usambazaji
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/sw/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/sw/3-Data-Visualization/10-visualization-distributions/assignment.md
index 8d002047..1132ffed 100644
--- a/translations/sw/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/sw/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Tumia Ujuzi Wako
## Maelekezo
diff --git a/translations/sw/3-Data-Visualization/11-visualization-proportions/README.md b/translations/sw/3-Data-Visualization/11-visualization-proportions/README.md
index b1204f60..cb7e8de2 100644
--- a/translations/sw/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/sw/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Kuonyesha Uwiano
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/sw/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/sw/3-Data-Visualization/11-visualization-proportions/assignment.md
index 556f70c4..9d9da277 100644
--- a/translations/sw/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/sw/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Jaribu katika Excel
## Maelekezo
diff --git a/translations/sw/3-Data-Visualization/12-visualization-relationships/README.md b/translations/sw/3-Data-Visualization/12-visualization-relationships/README.md
index 4a3f3a9d..fa35d45d 100644
--- a/translations/sw/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/sw/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Kuonyesha Mahusiano: Yote Kuhusu Asali 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/sw/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/sw/3-Data-Visualization/12-visualization-relationships/assignment.md
index 89981399..9a679b90 100644
--- a/translations/sw/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/sw/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Chunguza mzinga wa nyuki
## Maelekezo
diff --git a/translations/sw/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/sw/3-Data-Visualization/13-meaningful-visualizations/README.md
index fe7ca709..9de787e0 100644
--- a/translations/sw/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/sw/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Kutengeneza Uwasilishaji wa Takwimu wa Maana
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/sw/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/sw/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index f8c5e4ea..78c87dfb 100644
--- a/translations/sw/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/sw/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Jenga vis yako maalum
## Maelekezo
diff --git a/translations/sw/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/sw/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index d42f9a0a..ff8a7cdb 100644
--- a/translations/sw/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/sw/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Mradi wa taswira ya data ya Dangerous Liaisons
Ili kuanza, hakikisha kuwa una NPM na Node zinazoendesha kwenye kompyuta yako. Sakinisha utegemezi (npm install) kisha endesha mradi huo kwa ndani (npm run serve):
diff --git a/translations/sw/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/sw/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index abdc0f08..98bc3289 100644
--- a/translations/sw/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/sw/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Mradi wa taswira ya data ya Dangerous Liaisons
Ili kuanza, unahitaji kuhakikisha kuwa NPM na Node zinafanya kazi kwenye kompyuta yako. Sakinisha utegemezi (npm install) kisha endesha mradi huu kwa ndani (npm run serve):
diff --git a/translations/sw/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/sw/3-Data-Visualization/R/09-visualization-quantities/README.md
index 8a0e9bf8..a9fb7651 100644
--- a/translations/sw/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/sw/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Kuonyesha Kiasi
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/sw/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/sw/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 1ec2c223..408bab74 100644
--- a/translations/sw/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/sw/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Mistari, Mchoro wa Nukta na Mchoro wa Mstari wa Nguzo
## Maelekezo
diff --git a/translations/sw/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/sw/3-Data-Visualization/R/10-visualization-distributions/README.md
index 6cdd7cba..95f4457e 100644
--- a/translations/sw/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/sw/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Kuonyesha Usambazaji wa Takwimu
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/sw/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/sw/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 28319512..9826be09 100644
--- a/translations/sw/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/sw/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Tumia Ujuzi Wako
## Maelekezo
diff --git a/translations/sw/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/sw/3-Data-Visualization/R/11-visualization-proportions/README.md
index 3cb38dd3..ec017541 100644
--- a/translations/sw/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/sw/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Kuonyesha Uwiano
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/sw/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/sw/3-Data-Visualization/R/12-visualization-relationships/README.md
index 44ff06a8..e629e81c 100644
--- a/translations/sw/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/sw/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Kuonyesha Mahusiano: Yote Kuhusu Asali 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/sw/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/sw/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 3333c355..1c7b9f7a 100644
--- a/translations/sw/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/sw/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Kutengeneza Uwasilishaji wa Takwimu Wenye Maana
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/sw/3-Data-Visualization/README.md b/translations/sw/3-Data-Visualization/README.md
index 2f975e7d..d4bcf16d 100644
--- a/translations/sw/3-Data-Visualization/README.md
+++ b/translations/sw/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Uakisi

diff --git a/translations/sw/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/sw/4-Data-Science-Lifecycle/14-Introduction/README.md
index 16a68e57..4a886876 100644
--- a/translations/sw/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/sw/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Utangulizi wa Mzunguko wa Maisha wa Sayansi ya Takwimu
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/sw/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/sw/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 28be70ff..1a25bd27 100644
--- a/translations/sw/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/sw/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Kutathmini Seti ya Data
Mteja amewasiliana na timu yako kwa msaada wa kuchunguza tabia za matumizi ya msimu za wateja wa teksi huko New York City.
diff --git a/translations/sw/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/sw/4-Data-Science-Lifecycle/15-analyzing/README.md
index 82f358da..f8d9322e 100644
--- a/translations/sw/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/sw/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Mzunguko wa Sayansi ya Takwimu: Kuchambua
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/sw/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/sw/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 6b4662fa..d146a6a6 100644
--- a/translations/sw/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/sw/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Kuchunguza Majibu
Hii ni mwendelezo wa [kazi](../14-Introduction/assignment.md) ya somo lililopita, ambapo tulichunguza kwa ufupi seti ya data. Sasa tutachunguza kwa undani zaidi data hiyo.
diff --git a/translations/sw/4-Data-Science-Lifecycle/16-communication/README.md b/translations/sw/4-Data-Science-Lifecycle/16-communication/README.md
index 53ba9cda..e37a13f4 100644
--- a/translations/sw/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/sw/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Mzunguko wa Maisha wa Sayansi ya Takwimu: Mawasiliano
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/sw/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/sw/4-Data-Science-Lifecycle/16-communication/assignment.md
index 2be14728..cc07be27 100644
--- a/translations/sw/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/sw/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Simulia Hadithi
## Maelekezo
diff --git a/translations/sw/4-Data-Science-Lifecycle/README.md b/translations/sw/4-Data-Science-Lifecycle/README.md
index 281b4c22..ad72c274 100644
--- a/translations/sw/4-Data-Science-Lifecycle/README.md
+++ b/translations/sw/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Mzunguko wa Maisha wa Sayansi ya Takwimu

diff --git a/translations/sw/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/sw/5-Data-Science-In-Cloud/17-Introduction/README.md
index 8436694f..5b1e556e 100644
--- a/translations/sw/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/sw/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Utangulizi wa Sayansi ya Takwimu katika Wingu
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/sw/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/sw/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 5d7bbd37..4efc7109 100644
--- a/translations/sw/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/sw/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Utafiti wa Soko
## Maelekezo
diff --git a/translations/sw/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/sw/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 9fa8567a..883e380c 100644
--- a/translations/sw/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/sw/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Sayansi ya Takwimu katika Wingu: Njia ya "Low code/No code"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/sw/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/sw/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 003e3969..fe32ecd8 100644
--- a/translations/sw/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/sw/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Mradi wa Sayansi ya Takwimu wa Low code/No code kwenye Azure ML
## Maelekezo
diff --git a/translations/sw/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/sw/5-Data-Science-In-Cloud/19-Azure/README.md
index 2acdffd0..a0464dc9 100644
--- a/translations/sw/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/sw/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Sayansi ya Takwimu katika Wingu: Njia ya "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/sw/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/sw/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 379380b3..096dd6b6 100644
--- a/translations/sw/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/sw/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Mradi wa Sayansi ya Takwimu kwa kutumia Azure ML SDK
## Maelekezo
diff --git a/translations/sw/5-Data-Science-In-Cloud/README.md b/translations/sw/5-Data-Science-In-Cloud/README.md
index 56cbd84c..9a37083b 100644
--- a/translations/sw/5-Data-Science-In-Cloud/README.md
+++ b/translations/sw/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Sayansi ya Takwimu kwenye Wingu

diff --git a/translations/sw/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/sw/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 9fc30957..c8f7277b 100644
--- a/translations/sw/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/sw/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Sayansi ya Takwimu Katika Ulimwengu Halisi
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/sw/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/sw/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index b6d2e2f5..b57615ec 100644
--- a/translations/sw/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/sw/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Chunguza Dataset ya Kompyuta ya Sayari
## Maelekezo
diff --git a/translations/sw/6-Data-Science-In-Wild/README.md b/translations/sw/6-Data-Science-In-Wild/README.md
index 85a46bfc..25d4183f 100644
--- a/translations/sw/6-Data-Science-In-Wild/README.md
+++ b/translations/sw/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Sayansi ya Takwimu Katika Mazingira Halisi
Matumizi ya sayansi ya takwimu katika sekta mbalimbali za maisha halisi.
diff --git a/translations/sw/AGENTS.md b/translations/sw/AGENTS.md
index d4278fd8..6aaddbf8 100644
--- a/translations/sw/AGENTS.md
+++ b/translations/sw/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Muhtasari wa Mradi
diff --git a/translations/sw/CODE_OF_CONDUCT.md b/translations/sw/CODE_OF_CONDUCT.md
index 90515f09..41651052 100644
--- a/translations/sw/CODE_OF_CONDUCT.md
+++ b/translations/sw/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Kanuni za Maadili ya Microsoft Open Source
Mradi huu umechukua [Kanuni za Maadili za Microsoft Open Source](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/sw/CONTRIBUTING.md b/translations/sw/CONTRIBUTING.md
index 3c67cefd..0c667465 100644
--- a/translations/sw/CONTRIBUTING.md
+++ b/translations/sw/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Kuchangia Data Science kwa Kompyuta
Asante kwa nia yako ya kuchangia mtaala wa Data Science kwa Kompyuta! Tunakaribisha michango kutoka kwa jamii.
diff --git a/translations/sw/INSTALLATION.md b/translations/sw/INSTALLATION.md
index 0bc1ad48..558ea9b7 100644
--- a/translations/sw/INSTALLATION.md
+++ b/translations/sw/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Mwongozo wa Ufungaji
Mwongozo huu utakusaidia kuandaa mazingira yako ili kufanya kazi na mtaala wa Data Science kwa Kompyuta.
diff --git a/translations/sw/README.md b/translations/sw/README.md
index 5c0ea2f9..dd05fa8b 100644
--- a/translations/sw/README.md
+++ b/translations/sw/README.md
@@ -1,13 +1,4 @@
-
-# Sayansi ya Takwimu kwa Waanze - Mtaala
+# Sayansi ya Data kwa Waanzilishi - Mtaala
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,181 +17,181 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Watangazaji wa Wingu la Azure huko Microsoft wanafurahia kutoa mtaala wa wiki 10, masomo 20 yote kuhusu Sayansi ya Takwimu. Kila somo lina vipimo kabla na baada ya somo, maelekezo yaliyoandikwa kwa ajili ya kumaliza somo, suluhisho, na kazi ya nyumbani. Njia yetu ya kuoana kujifunza na kuanzisha miradi inaruhusu ujifunzaji unapotokea kwa kufanya, njia iliyothibitishwa ya kuufanya ujuzi mpya 'ushikike'.
+Wakili wa Wingu la Azure katika Microsoft wanafurahia kutoa mtaala wa wiki 10, masomo 20 yote kuhusu Sayansi ya Data. Kila somo linajumuisha mtihani wa kabla na baada ya somo, maelekezo ya maandishi ya kumaliza somo, suluhisho, na kazi. Mbinu yetu ya kujifunza inayotegemea mradi inakuwezesha kujifunza wakati unajenga, njia iliyothibitishwa ya ujuzi mpya 'kubaki'.
-**Shukrani za dhati kwa waandishi wetu:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Shukrani nyingi kwa waandishi wetu:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Shukrani maalum 🙏 kwa waandishi, wachunguzi na wachangiaji wa maudhui wa [Ubalozi wa Wanafunzi wa Microsoft](https://studentambassadors.microsoft.com/),** hasa Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Shukrani maalum 🙏 kwa waandishi, wakaguzi na wataalamu wa maudhui wa [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** hasa Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Sayansi ya Takwimu kwa Waanze - _Sketchnote na [@nitya](https://twitter.com/nitya)_ |
+| Sayansi ya Data kwa Waanzilishi - _Sketchnote na [@nitya](https://twitter.com/nitya)_ |
### 🌐 Msaada wa Lugha Nyingi
-#### Inasaidiwa kupitia Hatua ya GitHub (Kiotomatiki & Daima Kifanyike)
+#### Imesaidiwa kupitia GitHub Action (Moja kwa Moja & daima Imesasishwa)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](./README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](./README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **Unapendelea Kuclone Moja kwa Moja?**
+> **Unapendelea Kukopa Kwenye Kompyuta Yako?**
-> Hifadhi hii ina tafsiri zaidi ya 50 za lugha ambayo huongeza sana ukubwa wa kupakua. Ili kuclone bila tafsiri, tumia sparse checkout:
+> Hifadhi hii ina tafsiri zaidi ya 50 za lugha ambazo huongeza ukubwa wa kupakua kwa kiasi kikubwa. Ili kukopa bila tafsiri, tumia sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Hii inakupa kila unachohitaji kukamilisha kozi kwa kupakua kwa haraka zaidi.
+> Hii inakupa kila kitu unachohitaji kukamilisha kozi kwa upakua wa haraka zaidi.
-**Ikiwa ungependa kuongeza lugha za tafsiri zinazosaidiwa zipo [hapa](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Ikiwa unataka lugha za tafsiri za ziada zinazozungumzwa zinapatikana [hapa](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Jiunge na Jamii Yetu
+#### Jiunge na Jamii Yetu
[](https://discord.gg/nTYy5BXMWG)
-Tuna mfululizo wa kujifunza Discord na AI unaoendelea, jifunze zaidi na jiunge nasi kwenye [Mfululizo wa Kujifunza na AI](https://aka.ms/learnwithai/discord) kuanzia 18 - 30 Septemba, 2025. Utapata vidokezo na mbinu za kutumia GitHub Copilot kwa Sayansi ya Takwimu.
+Tunayo mfululizo wa kujifunza kwenye Discord na AI unaoendelea, jifunze zaidi na jiunge nasi kwenye [Mfululizo wa Kujifunza na AI](https://aka.ms/learnwithai/discord) kuanzia 18 - 30 Septemba, 2025. Utapata vidokezo na mbinu za kutumia GitHub Copilot kwa Sayansi ya Data.
-
+
# Je, wewe ni mwanafunzi?
Anza na rasilimali zifuatazo:
-- [Ukurasa wa Kituo cha Wanafunzi](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Katika ukurasa huu, utapata rasilimali za wanaoanza, vifurushi vya wanafunzi na hata njia za kupata risiti ya bure ya cheti. Huu ni ukurasa mmoja unayopaswa kuiweka alama na kuangalia mara kwa mara tunapobadilisha maudhui kila mwezi.
-- [Ubalozi wa Wanafunzi wa Microsoft Learn](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Jiunge na jamii ya ubalozi wa wanafunzi duniani kote, hii inaweza kuwa njia yako ya kuingia Microsoft.
+- [Ukubwa wa Mwanafunzi](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Katika ukurasa huu, utapata rasilimali kwa waanzilishi, vifurushi vya Wanafunzi na hata njia za kupata vocha ya cheti bure. Huu ni ukurasa unayetaka kuihifadhi na kuangalia mara kwa mara tunapobadilisha maudhui angalau kila mwezi.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Jiunge na jamii ya kimataifa ya balozi wa wanafunzi, hii inaweza kuwa njia yako ya kuingia Microsoft.
# Kuanzia
## 📚 Nyaraka
-- **[Mwongozo wa Usanidi](INSTALLATION.md)** - Maelekezo hatua kwa hatua kwa waanze
-- **[Mwongozo wa Matumizi](USAGE.md)** - Mifano na mtiririko wa kawaida wa kazi
-- **[Kutatua Matatizo](TROUBLESHOOTING.md)** - Suluhisho za matatizo ya kawaida
+- **[Mwongozo wa Usakinishaji](INSTALLATION.md)** - Maelekezo ya hatua kwa hatua kwa waanzilishi
+- **[Mwongozo wa Matumizi](USAGE.md)** - Mifano na mtiririko ya kawaida wa kazi
+- **[Utatuzi wa Matatizo](TROUBLESHOOTING.md)** - Suluhisho za matatizo ya kawaida
- **[Mwongozo wa Kuchangia](CONTRIBUTING.md)** - Jinsi ya kuchangia mradi huu
-- **[Kwa Walimu](for-teachers.md)** - Mwongozo wa kufundisha na rasilimali za darasa
+- **[Kwa Walimu](for-teachers.md)** - Mwongozo wa kufundisha na rasilimali za darasani
## 👨🎓 Kwa Wanafunzi
-> **Waanze Wamiliki:** Mpya katika sayansi ya takwimu? Anza na [mifano rahisi kwa waanze](examples/README.md)! Mifano hii rahisi, iliyo na maelezo itakusaidia kuelewa misingi kabla ya kuingia mtaalani mzima.
-> **[Wanafunzi](https://aka.ms/student-page)**: ili kutumia mtaala huu peke yako, fanya nakala ya repo nzima na maliza mazoezi peke yako, ukianza na kipimo kabla ya mihadhara. Kisha soma mihadhara na kamilisha shughuli nyingine. Jaribu kuunda miradi kwa kuelewa masomo badala ya kunakili msimbo wa suluhisho; hata hivyo, msimbo huo upo katika folda za /solutions katika kila somo la mradi. Wazo jingine ni kuunda kikundi cha kujifunza na marafiki na kupitia maudhui pamoja. Kwa ziada ya kujifunza, tunapendekeza [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Waanzilishi Kamili**: Hujui sayansi ya data? Anza na [mifano rahisi kwa waanzilishi](examples/README.md)! Mifano hii rahisi, yenye maoni vizuri itakusaidia kuelewa misingi kabla ya kuingia mtaala mzima.
+> **[Wanafunzi](https://aka.ms/student-page)**: kutumia mtaala huu mwenyewe, tengeneza nakala ya hifadhi yote na kamilisha mazoezi peke yako, kuanzia na mtihani kabla ya mihadhara. Kisha soma mihadhara na kamilisha shughuli zote. Jaribu kuunda miradi kwa kuelewa masomo badala ya kunakili msimbo wa suluhisho; hata hivyo, msimbo huo upo kwenye folda za /solutions katika kila somo linalolenga mradi. Wazo jingine ni kuunda kikundi cha masomo na marafiki na kupitia maudhui pamoja. Kwa masomo zaidi, tunapendekeza [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Anza Haraka:**
-1. Angalia [Mwongozo wa Usanidi](INSTALLATION.md) ili kuweka mazingira yako
-2. Kagua [Mwongozo wa Matumizi](USAGE.md) kujifunza jinsi ya kufanya kazi na mtaala
-3. Anza na Somo la 1 na ufanye kwa mpangilio
+1. Angalia [Mwongozo wa Usakinishaji](INSTALLATION.md) kuweka mazingira yako
+2. Pitia [Mwongozo wa Matumizi](USAGE.md) kujifunza jinsi ya kufanya kazi na mtaala
+3. Anza na Somo la 1 na fanya hatua kwa hatua
4. Jiunge na [jamii yetu ya Discord](https://aka.ms/ds4beginners/discord) kwa msaada
## 👩🏫 Kwa Walimu
-> **Walimu:** tumejumuisha [mapendekezo kadhaa](for-teachers.md) juu ya jinsi ya kutumia mtaala huu. Tunapenda maoni yako [katika jukwaa letu la majadiliano](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
+> **Walimu**: tumewajumuisha [mapendekezo kadhaa](for-teachers.md) juu ya jinsi ya kutumia mtaala huu. Tunapenda maoni yako [katika jukwaa letu la majadiliano](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Kutana na Timu
+
[](https://youtu.be/8mzavjQSMM4 "Video ya Promo")
**Gif na** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Bonyeza picha hapo juu kuona video kuhusu mradi na watu waliouunda!
+> 🎥 Bonyeza picha hapo juu kwa video kuhusu mradi na watu waliouunda!
-## Mafunzo
+## Pedagojia
-Tumekuwa tukichagua mafundisho mawili ya kihadharia wakati wa kuandaa mtaala huu: kuhakikisha kuwa unategemea miradi na kwamba unajumuisha maswali ya mara kwa mara. Mwisho wa mfululizo huu, wanafunzi watakuwa wamejifunza misingi ya sayansi ya data, ikiwa ni pamoja na dhana za kimaadili, maandalizi ya data, njia tofauti za kufanya kazi na data, uonyeshaji wa data, uchambuzi wa data, matumizi halisi ya sayansi ya data, na zaidi.
+Tumechagua misingi miwili ya kifundisho tunapojenga mtaala huu: kuhakikisha kuwa ni msingi wa miradi na kwamba unajumuisha maswali ya mara kwa mara. Mwisho wa mfululizo huu, wanafunzi watakuwa wamejifunza kanuni za msingi za sayansi ya data, ikiwa ni pamoja na dhana za kimaadili, uandaaji wa data, njia tofauti za kufanya kazi na data, uwasilishaji wa data, uchambuzi wa data, matumizi halisi ya sayansi ya data, na zaidi.
-Zaidi ya hayo, jaribio la chini kabla ya darasa linaweka nia ya mwanafunzi kuelekea kujifunza somo, wakati jaribio la pili baada ya darasa linahakikisha kumbukumbu zaidi. Mtaala huu uliundwa kuwa na kubadilika na kufurahisha na unaweza kuchukuliwa kwa jumla au kwa sehemu. Miradi huanza ndogo na kuwa ngumu zaidi mwishoni mwa mzunguko wa wiki 10.
+Zaidi ya hayo, mtihani mdogo kabla ya darasa huweka nia ya mwanafunzi kuelekea kujifunza mada, wakati mtihani wa pili baada ya darasa huhakikisha kumbukumbu zaidi. Mtaala huu umetengenezwa kuwa rahisi kubadilika na kufurahisha na unaweza kuchukuliwa kwa jumla au kwa sehemu. Miradi huanza ndogo na kuongezeka kuwa changamoto zaidi kufikia mwisho wa mzunguko wa wiki 10.
-> Pata [Kanuni Yetu za Maadili](CODE_OF_CONDUCT.md), [Michango](CONTRIBUTING.md), [Miongozo ya Tafsiri](TRANSLATIONS.md). Tunakaribisha mrejesho wako wa kujenga!
+> Tafuta [Kanuni Zetu za Maadili](CODE_OF_CONDUCT.md), [Kushiriki](CONTRIBUTING.md), [Miongozo ya Tafsiri](TRANSLATIONS.md). Tunakaribisha maoni yako yenye ujenzi!
## Kila somo linajumuisha:
-- Sketi ya hiari
-- Video ya ziada ya hiari
-- Jaribio la kujiandaa kabla ya somo
+- Sketchnote hiari
+- Video ya ziada hiari
+- Mtihani wa mazoezi kabla ya somo
- Somo lililoandikwa
-- Kwa masomo yanayotegemea mradi, miongozo kwa hatua juu ya jinsi ya kuunda mradi
+- Kwa masomo ya msingi wa miradi, mwongozo hatua kwa hatua juu ya jinsi ya kujenga mradi
- Ukaguzi wa maarifa
- Changamoto
- Kusoma kwa ziada
- Kazi ya nyumbani
-- [Jaribio baada ya somo](https://ff-quizzes.netlify.app/en/)
+- [Mtihani baada ya somo](https://ff-quizzes.netlify.app/en/)
-> **Kumbuka kuhusu maswali**: Maswali yote yapo kwenye folda ya Quiz-App, kwa jumla ya maswali 40 yenye maswali matatu kila moja. Yameunganishwa kutoka ndani ya masomo, lakini programu ya jaribio inaweza kuendeshwa kwa mtaa au kupelekwa Azure; fuata maelekezo kwenye folda ya `quiz-app`. Yanaendelea kutafsiriwa kidogo kidogo.
+> **Kumbuka kuhusu mitihani**: Mitihani yote ipo katika folda ya Quiz-App, kwa jumla ya mitihani 40 wenye maswali matatu kila mmoja. Inahusishwa kutoka ndani ya masomo, lakini programu ya mtihani inaweza kuendeshwa ndani au kuwekwa Azure; fuata maelekezo katika folda ya `quiz-app`. Zinatafsiriwa polepole.
-## 🎓 Mifano Rafiki kwa Waanzilishi
+## 🎓 Mifano Rafiki kwa Maanzo
-**Mpya kwa Sayansi ya Data?** Tumetengeneza [directory ya mifano](examples/README.md) maalum yenye msimbo rahisi, uliofafanuliwa vizuri kukusaidia kuanza:
+**Mpya kwa Sayansi ya Data?** Tumetengeneza [folda ya mifano](examples/README.md) maalum yenye msimbo rahisi na maelezo mazuri kusaidia kuanza:
- 🌟 **Hello World** - Programu yako ya kwanza ya sayansi ya data
-- 📂 **Kupakia Data** - Jifunze kusoma na kuchunguza datasets
-- 📊 **Uchambuzi Rahisi** - Hesabu takwimu na gundua mifumo
-- 📈 **Uonyeshaji wa Msingi** - Tengeneza chati na michoro
-- 🔬 **Mradi Halisi wa Dunia** - Mtiririko kamili kutoka mwanzo hadi mwisho
+- 📂 **Kupakia Data** - Jifunze kusoma na kuchunguza seti za data
+- 📊 **Uchambuzi Rahisi** - Hesabu takwimu na pata mifumo
+- 📈 **Uwasilishaji wa Msingi** - Tengeneza chati na grafu
+- 🔬 **Mradi Halisi** - Mchakato kamili kutoka mwanzo hadi mwisho
-Mfano kila mmoja una maelezo ya kina kueleza kila hatua, ukifanya iwe kamili kwa wanaoanza kabisa!
+Kila mfano unajumuisha maelezo ya kina yanayoelezea kila hatua, hivyo ni kamili kwa wanaoanza kabisa!
👉 **[Anza na mifano](examples/README.md)** 👈
## Masomo
-||
+||
|:---:|
| Sayansi ya Data Kwa Waanzilishi: Ramani ya Njia - _Sketchnote na [@nitya](https://twitter.com/nitya)_ |
-| Nambari ya Somo | Mada | Kikundi cha Somo | Malengo ya Kujifunza | Somo linalounganishwa | Mwandishi |
+| Nambari ya Somo | Mada | Kundi la Somo | Malengo ya Kujifunza | Somo Lililohusishwa | Mwandishi |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Kufafanua Sayansi ya Data | [Utangulizi](1-Introduction/README.md) | Jifunze dhana za msingi nyuma ya sayansi ya data na jinsi inavyohusiana na akili bandia, kujifunza mashine, na data kubwa. | [somo](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Maadili katika Sayansi ya Data | [Utangulizi](1-Introduction/README.md) | Dhana za Maadili ya Data, Changamoto & Mifumo. | [somo](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | Kufafanua Sayansi ya Data | [Utangulizi](1-Introduction/README.md) | Jifunze dhana za msingi nyuma ya sayansi ya data na jinsi inavyohusiana na akili bandia, kujifunza kwa mashine, na data kubwa. | [somo](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Maadili ya Sayansi ya Data | [Utangulizi](1-Introduction/README.md) | Dhana za Maadili ya Data, Changamoto na Misingi. | [somo](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Kufafanua Data | [Utangulizi](1-Introduction/README.md) | Jinsi data inavyopangwa na vyanzo vyake vya kawaida. | [somo](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Utangulizi wa Takwimu & Uwezekano | [Utangulizi](1-Introduction/README.md) | Mbinu za hisabati za uwezekano na takwimu kuelewa data. | [somo](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Kufanya kazi na Data ya Mahusiano | [Kufanya Kazi na Data](2-Working-With-Data/README.md) | Utangulizi wa data ya mahusiano na misingi ya kuchunguza na kuchambua data ya mahusiano kwa lugha ya Structured Query Language, pia inayojulikana kama SQL (inasemwa “see-quell”). | [somo](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Kufanya kazi na Data isiyo ya NoSQL | [Kufanya Kazi na Data](2-Working-With-Data/README.md) | Utangulizi wa data isiyo ya mahusiano, aina zake mbalimbali na misingi ya kuchunguza na kuchambua hifadhidata za hati. | [somo](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Kufanya kazi na Python | [Kufanya Kazi na Data](2-Working-With-Data/README.md) | Misingi ya kutumia Python kwa uchunguzi wa data na maktaba kama Pandas. Uelewa wa msingi wa programu ya Python unashauriwa. | [somo](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Maandalizi ya Data | [Kufanya Kazi na Data](2-Working-With-Data/README.md) | Mada za mbinu za data za kusafisha na kubadilisha data kushughulikia changamoto za data zinazokosekana, zisizo sahihi, au zisizokamilika. | [somo](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Kuonyesha Kiwango cha Kiasi | [Uonyeshaji wa Data](3-Data-Visualization/README.md) | Jifunze jinsi ya kutumia Matplotlib kuonyesha data za ndege 🦆 | [somo](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Kuonyesha Mwinuko wa Data | [Uonyeshaji wa Data](3-Data-Visualization/README.md) | Kionyesho cha maamuzi na mwenendo ndani ya kipindi. | [somo](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Kuonyesha Proteni | [Uonyeshaji wa Data](3-Data-Visualization/README.md) | Kuonyesha asilimia zilizounganishwa na zilizogawanywa. | [somo](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Kuonyesha Uhusiano | [Uonyeshaji wa Data](3-Data-Visualization/README.md) | Kuonyesha uhusiano na uhusiano kati ya seti za data na vigezo vyake. | [somo](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Uonyeshaji wenye Maana | [Uonyeshaji wa Data](3-Data-Visualization/README.md) | Mbinu na mwongozo wa kufanya uonyeshaji wako kuwa wa thamani kwa kusuluhisha matatizo kwa ufanisi na uelewa. | [somo](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 04 | Utangulizi wa Takwimu na Uwezekano | [Utangulizi](1-Introduction/README.md) | Mbinu za kihesabu za uwezekano na takwimu kuelewa data. | [somo](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Kufanya kazi na Data ya Uhusiano | [Kufanya kazi na Data](2-Working-With-Data/README.md) | Utangulizi wa data ya uhusiano na misingi ya kuchunguza na kuchambua data ya uhusiano kwa kutumia Structured Query Language, inayojulikana kama SQL (inavyosomwa “see-quell”). | [somo](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Kufanya kazi na Data ya NoSQL | [Kufanya kazi na Data](2-Working-With-Data/README.md) | Utangulizi wa data isiyo ya uhusiano, aina zake mbalimbali na misingi ya kuchunguza na kuchambua hifadhidata za nyaraka. | [somo](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Kufanya kazi na Python | [Kufanya kazi na Data](2-Working-With-Data/README.md) | Misingi ya kutumia Python kuchunguza data kwa maktaba kama Pandas. Uelewa wa msingi wa programu ya Python unashauriwa. | [somo](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Kuandaa Data | [Kufanya kazi na Data](2-Working-With-Data/README.md) | Mada juu ya mbinu za kusafisha na kubadilisha data kushughulikia changamoto za data kupatikana kwa kiasi kidogo, isiyo sahihi, au isiyo kamilifu. | [somo](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Kuonyesha Idadi | [Uwasilishaji wa Data](3-Data-Visualization/README.md) | Jifunze jinsi ya kutumia Matplotlib kuonyesha data ya ndege 🦆 | [somo](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Kuonyesha Mzabibu wa Data | [Uwasilishaji wa Data](3-Data-Visualization/README.md) | Kuonyesha uchunguzi na mwelekeo ndani ya kipindi. | [somo](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Kuonyesha Sehemu | [Uwasilishaji wa Data](3-Data-Visualization/README.md) | Kuonyesha asilimia zilizogawanyika na zilizokusanyika. | [somo](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Kuonyesha Mahusiano | [Uwasilishaji wa Data](3-Data-Visualization/README.md) | Kuonyesha uhusiano na mwelekeo kati ya seti za data na vigezo vyake. | [somo](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Uwasilishaji wenye Maana | [Uwasilishaji wa Data](3-Data-Visualization/README.md) | Mbinu na miongozo ya kufanya uwasilishaji wako kuwa wa thamani kwa suluhisho bora la matatizo na ufahamu. | [somo](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Utangulizi wa mzunguko wa maisha wa Sayansi ya Data | [Mzunguko wa Maisha](4-Data-Science-Lifecycle/README.md) | Utangulizi wa mzunguko wa maisha wa sayansi ya data na hatua yake ya kwanza ya kupata na kutoa data. | [somo](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Kuchambua | [Mzunguko wa Maisha](4-Data-Science-Lifecycle/README.md) | Kipindi hiki cha mzunguko wa maisha wa sayansi ya data kinajadili mbinu za kuchambua data. | [somo](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Mawasiliano | [Mzunguko wa Maisha](4-Data-Science-Lifecycle/README.md) | Kipindi hiki cha mzunguko wa maisha wa sayansi ya data kinahusu kuwasilisha maarifa kutoka kwa data kwa njia inayorahisisha watunga maamuzi kuelewa. | [somo](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Sayansi ya Data katika Wingu | [Data za Wingu](5-Data-Science-In-Cloud/README.md) | Mfululizo huu wa masomo unaanzisha sayansi ya data katika wingu na faida zake. | [somo](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) na [Maud](https://twitter.com/maudstweets) |
-| 18 | Sayansi ya Data katika Wingu | [Data za Wingu](5-Data-Science-In-Cloud/README.md) | Mafunzo ya kutumia zana za Low Code kufundisha mifano. |[somo](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) na [Maud](https://twitter.com/maudstweets) |
-| 19 | Sayansi ya Data katika Wingu | [Data za Wingu](5-Data-Science-In-Cloud/README.md) | Kuweka mifano kwa kutumia Azure Machine Learning Studio. | [somo](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) na [Maud](https://twitter.com/maudstweets) |
-| 20 | Sayansi ya Data Dunia Halisi | [Katika Dunia Halisi](6-Data-Science-In-Wild/README.md) | Miradi inayotegemea sayansi ya data katika dunia halisi. | [somo](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 15 | Kuchambua | [Mzunguko wa Maisha](4-Data-Science-Lifecycle/README.md) | Awamu hii ya mzunguko wa maisha wa sayansi ya data inalenga mbinu za kuchambua data. | [somo](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Mawasiliano | [Mzunguko wa Maisha](4-Data-Science-Lifecycle/README.md) | Awamu hii ya mzunguko wa maisha wa sayansi ya data inalenga kuwasilisha ufahamu kutoka kwa data kwa njia inayorahisisha wanafanya maamuzi kuelewa. | [somo](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Sayansi ya Data katika Wingu | [Data ya Wingu](5-Data-Science-In-Cloud/README.md) | Mfululizo huu wa masomo unatambulisha sayansi ya data katika wingu na faida zake. | [somo](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) na [Maud](https://twitter.com/maudstweets) |
+| 18 | Sayansi ya Data katika Wingu | [Data ya Wingu](5-Data-Science-In-Cloud/README.md) | Mafunzo ya mifano kwa kutumia Zana za Low Code. |[somo](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) na [Maud](https://twitter.com/maudstweets) |
+| 19 | Sayansi ya Data katika Wingu | [Data ya Wingu](5-Data-Science-In-Cloud/README.md) | Kuweka mifano katika Azure Machine Learning Studio. | [somo](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) na [Maud](https://twitter.com/maudstweets) |
+| 20 | Sayansi ya Data katika Mazingira Halisi | [Katika Mazingira Halisi](6-Data-Science-In-Wild/README.md) | Miradi inayotegemea sayansi ya data katika ulimwengu halisi. | [somo](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Fuata hatua hizi kufungua sampuli hii katika Codespace:
-1. Bonyeza menyu ya Code na chagua chaguo la Open with Codespaces.
-2. Chagua + New codespace chini ya dirisha.
+Fuata hatua hizi kufungua mfano huu katika Codespace:
+1. Bonyeza menyu ya Kushuka ya Code na chagua chaguo la Open with Codespaces.
+2. Chagua + New codespace hapo chini kwenye dirisha.
Kwa maelezo zaidi, angalia [nyaraka za GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Fuata hatua hizi kufungua repo hii dalam kasha la kuitumia kwenye mashine yako ya sekondari na VSCode kwa kutumia nyongeza ya VS Code Remote - Containers:
+Fuata hatua hizi kufungua repo hii ndani ya kontena kwa kutumia kompyuta yako ya eneo na VSCode kwa kutumia ugani wa VS Code Remote - Containers:
-1. Ikiwa ni mara yako ya kwanza kutumia kasha la maendeleo, hakikisha mfumo wako unakidhi mahitaji ya awali (yaani, kuwa na Docker imewekwa) katika [nyaraka za kuanzia](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Ikiwa ni mara ya kwanza kutumia kontena ya maendeleo, tafadhali hakikisha mfumo wako unakidhi mahitaji ya awali (yaani kuwa na Docker imewekwa) katika [nyaraka za kuanza](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Ili kutumia hazina hii, unaweza kufungua hazina hiyo kwenye eneo la Docker:
+Ili kutumia hazina hii, unaweza kufungua hazina kwenye eneo lililotengwa la Docker:
-**Kumbuka**: Nyuma, hii itatumia amri ya Remote-Containers: **Clone Repository in Container Volume...** kunakili msimbo wa chanzo kwenye eneo la Docker badala ya mfumo wa faili wa eneo la karibu. [Volumes](https://docs.docker.com/storage/volumes/) ni njia inayopendekezwa kuhifadhi data za kasha.
+**Kumbuka**: Chini ya pazia, hii itatumia amri ya Remote-Containers: **Clone Repository in Container Volume...** kunakili msimbo wa chanzo katika eneo la Docker badala ya mfumo wa faili wa eneo. [Eneo la Kuchukua Nguvu](https://docs.docker.com/storage/volumes/) ni njia inayopendelea kuhifadhi data ya kontena.
-Au fungua toleo lililokamilishwa au kupakuliwa la hazina kwa eneo lako:
+Au fungua nakala iliyopakuliwa au kuokolewa ya hazina:
-- Nakili hazina hii kwa mfumo wako wa faili wa eneo la karibu.
+- Nakili hazina hii kwenye mfumo wako wa faili wa eneo.
- Bonyeza F1 na chagua amri ya **Remote-Containers: Open Folder in Container...**.
-- Chagua nakala iliyonakiliwa ya folda hii, subiri kasha lianze, na jaribu mambo.
+- Chagua nakala iliyokopiwa ya folda hii, ngoja kontena ianze, na jaribu mambo.
-## Kufikia bila mtandao
+## Ufikiaji wa Offline
-Unaweza kuendesha nyaraka hii bila mtandao kwa kutumia [Docsify](https://docsify.js.org/#/). Nakili repo hii, [weka Docsify](https://docsify.js.org/#/quickstart) kwenye mashine yako ya eneo la karibu, kisha katika folda ya mizizi ya repo hii, andika `docsify serve`. Tovuti itakuwa inapatikana kwenye lango 3000 kwenye localhost yako: `localhost:3000`.
+Unaweza kuendesha nyaraka hizi bila mtandao kwa kutumia [Docsify](https://docsify.js.org/#/). Nakili repo hii, [weka Docsify](https://docsify.js.org/#/quickstart) kwenye kompyuta yako ya eneo, kisha katika folda kuu ya repo hii, waza `docsify serve`. Tovuti itakuwa hai kwenye bandari 3000 kwenye localhost yako: `localhost:3000`.
-> Kumbuka, daftari hazitatangazwa kupitia Docsify, hivyo ukihitaji kuendesha daftari, fanya hivyo kando katika VS Code ukiendesha kiini cha Python.
+> Kumbuka, daftari zitaletwa siyo kupitia Docsify, kwa hivyo unapohitaji kuendesha daftari, fanya hivyo tofauti ndani ya VS Code na kernel ya Python.
-## Mitaala mingine
+## Mtaala Mwingine
-Timu yetu inatengeneza mitaala mingine! Angalia:
+Timu yetu hutoa mitaala mingine! Angalia:
### LangChain
@@ -213,50 +204,50 @@ Timu yetu inatengeneza mitaala mingine! Angalia:
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-### Mfululizo wa AI Inayozalisha
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+### Mfululizo wa AI Inayotengeneza
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
-### Maarifa Msingi
+### Kujifunza Msingi
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
### Mfululizo wa Copilot
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Kupata Msaada
-**Kukutana na matatizo?** Angalia [Mwongozo wa Kutatua Matatizo](TROUBLESHOOTING.md) kwa suluhisho za matatizo ya kawaida.
+**Unakutana na matatizo?** Angalia [Mwongozo wa Utatuzi wa Matatizo](TROUBLESHOOTING.md) kwa suluhisho za matatizo ya kawaida.
-Ikiwa unashindwa au una maswali kuhusu jinsi ya kujenga programu za AI. Jiunge na wapenzi wa kujifunza na watengenezaji wenye uzoefu katika mjadala kuhusu MCP. Ni jamii inayounga mkono ambapo maswali yanakaribishwa na maarifa hubadilishanwa kwa uhuru.
+Ikiwa umekwama au una maswali yoyote kuhusu kujenga programu za AI. Jiunge na wanafunzi wenzako na waendelezaji wenye uzoefu katika mijadala kuhusu MCP. Ni jamii inayounga mkono ambapo maswali yanakaribishwa na maarifa huishirikishwa kwa hiari.
[](https://discord.gg/nTYy5BXMWG)
-Ikiwa una maoni juu ya bidhaa au makosa wakati wa kujenga tembelea:
+Ikiwa una maoni kuhusu bidhaa au makosa wakati wa ujenzi tembelea:
[](https://aka.ms/foundry/forum)
---
-**Hofu ya Kutokubalika**:
-Hati hii imetafsiriwa kwa kutumia huduma ya tafsiri ya AI [Co-op Translator](https://github.com/Azure/co-op-translator). Ingawa tunajitahidi kuwa sahihi, tafadhali fahamu kwamba tafsiri za moja kwa moja zinaweza kuwa na makosa au kutokamilika. Hati ya asili kwa lugha yake ya asili inapaswa kuzingatiwa kama chanzo halali. Kwa taarifa muhimu, tafsiri ya mtaalamu wa binadamu inapendekezwa. Hatubeba dhamana yoyote kwa kutoelewana au tafsiri zisizo sahihi zinazotokana na matumizi ya tafsiri hii.
+**Tangazo la Kutojibu**:
+Hati hii imetafsiriwa kwa kutumia huduma ya tafsiri ya AI [Co-op Translator](https://github.com/Azure/co-op-translator). Ingawa tunajitahidi kupata usahihi, tafadhali fahamu kwamba tafsiri za kiotomatiki zinaweza kuwa na makosa au kasoro. Hati ya asili katika lugha yake ya asili inapaswa kuchukuliwa kama chanzo chenye mamlaka. Kwa taarifa za muhimu sana, tafsiri ya kitaalamu ya binadamu inapendekezwa. Hatuhusiki kwa kutoelewana au tafsiri potofu zinazotokana na matumizi ya tafsiri hii.
\ No newline at end of file
diff --git a/translations/sw/SECURITY.md b/translations/sw/SECURITY.md
index 58aa3f66..649ada5a 100644
--- a/translations/sw/SECURITY.md
+++ b/translations/sw/SECURITY.md
@@ -1,12 +1,3 @@
-
## Usalama
Microsoft inachukua usalama wa bidhaa na huduma zetu kwa uzito, ikiwa ni pamoja na hifadhi zote za msimbo wa chanzo zinazodhibitiwa kupitia mashirika yetu ya GitHub, ambayo ni pamoja na [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), na [mashirika yetu ya GitHub](https://opensource.microsoft.com/).
diff --git a/translations/sw/SUPPORT.md b/translations/sw/SUPPORT.md
index aa0e3499..9e7b8c10 100644
--- a/translations/sw/SUPPORT.md
+++ b/translations/sw/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Msaada
## Jinsi ya kuripoti matatizo na kupata msaada
diff --git a/translations/sw/TROUBLESHOOTING.md b/translations/sw/TROUBLESHOOTING.md
index e8e2ae6d..d32bb7fe 100644
--- a/translations/sw/TROUBLESHOOTING.md
+++ b/translations/sw/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Mwongozo wa Kutatua Matatizo
Mwongozo huu unatoa suluhisho kwa matatizo ya kawaida unayoweza kukutana nayo unapotumia mtaala wa Data Science for Beginners.
diff --git a/translations/sw/USAGE.md b/translations/sw/USAGE.md
index 14ee1136..84cfe49c 100644
--- a/translations/sw/USAGE.md
+++ b/translations/sw/USAGE.md
@@ -1,12 +1,3 @@
-
# Mwongozo wa Matumizi
Mwongozo huu unatoa mifano na mchakato wa kawaida wa kutumia mtaala wa Data Science kwa Kompyuta.
diff --git a/translations/sw/docs/_sidebar.md b/translations/sw/docs/_sidebar.md
index c0bd5360..55c14347 100644
--- a/translations/sw/docs/_sidebar.md
+++ b/translations/sw/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Utangulizi
- [Kufafanua Sayansi ya Takwimu](../1-Introduction/01-defining-data-science/README.md)
- [Maadili ya Sayansi ya Takwimu](../1-Introduction/02-ethics/README.md)
diff --git a/translations/sw/examples/README.md b/translations/sw/examples/README.md
index 38b703a7..d617badc 100644
--- a/translations/sw/examples/README.md
+++ b/translations/sw/examples/README.md
@@ -1,12 +1,3 @@
-
# Mifano Rahisi ya Sayansi ya Takwimu
Karibu kwenye saraka ya mifano! Mkusanyiko huu wa mifano rahisi, yenye maelezo ya kina, umeundwa kukusaidia kuanza na sayansi ya takwimu, hata kama wewe ni mwanzilishi kabisa.
diff --git a/translations/sw/for-teachers.md b/translations/sw/for-teachers.md
index 64e2679d..2cbcb60e 100644
--- a/translations/sw/for-teachers.md
+++ b/translations/sw/for-teachers.md
@@ -1,12 +1,3 @@
-
## Kwa Walimu
Je, ungependa kutumia mtaala huu darasani kwako? Tafadhali jisikie huru!
diff --git a/translations/sw/quiz-app/README.md b/translations/sw/quiz-app/README.md
index 99aa0919..0506aa6b 100644
--- a/translations/sw/quiz-app/README.md
+++ b/translations/sw/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Maswali ya Quiz
Maswali haya ya quiz ni ya kabla na baada ya mihadhara katika mtaala wa sayansi ya data kwenye https://aka.ms/datascience-beginners
diff --git a/translations/sw/sketchnotes/README.md b/translations/sw/sketchnotes/README.md
index d72520fc..e1c7b29a 100644
--- a/translations/sw/sketchnotes/README.md
+++ b/translations/sw/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Pata sketchnoti zote hapa!
## Shukrani
diff --git a/translations/ta/.co-op-translator.json b/translations/ta/.co-op-translator.json
new file mode 100644
index 00000000..33803050
--- /dev/null
+++ b/translations/ta/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:15:07+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "ta"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-10-11T15:34:03+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "ta"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-10-11T15:34:20+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "ta"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-11T15:37:09+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "ta"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-10-11T15:40:59+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "ta"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-10-11T15:34:43+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "ta"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-10-11T15:35:35+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "ta"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-10-11T15:42:40+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "ta"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-10-11T15:44:30+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "ta"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-10-11T15:32:24+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "ta"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T12:33:47+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "ta"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:59:38+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "ta"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-10-11T15:22:27+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "ta"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-10-11T15:23:33+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "ta"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-10-11T15:18:34+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "ta"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-10-11T15:20:28+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "ta"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-10-11T15:20:48+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "ta"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-10-11T15:22:15+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "ta"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-10-11T15:17:22+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-10-11T16:04:30+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-10-11T16:05:30+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-10-11T15:53:35+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-10-11T15:54:29+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-10-11T15:54:42+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-10-11T15:55:38+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-10-11T16:03:04+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-10-11T16:04:17+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-10-11T15:55:49+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-10-11T15:56:51+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-10-11T15:57:02+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-10-11T15:57:13+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-10-11T16:01:27+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-10-11T16:02:32+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-10-11T15:57:24+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-10-11T15:58:15+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-10-11T15:58:27+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-10-11T16:00:23+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-10-11T15:59:18+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "ta"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-10-11T15:53:07+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "ta"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-10-11T15:47:35+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "ta"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-10-11T15:48:33+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "ta"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-10-11T15:48:49+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "ta"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-10-11T15:49:29+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "ta"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-10-11T15:50:35+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "ta"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-10-11T15:52:35+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "ta"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-10-11T15:46:57+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "ta"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-10-11T15:28:51+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "ta"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-10-11T15:29:43+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "ta"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-10-11T15:26:38+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "ta"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-10-11T15:28:38+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "ta"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-10-11T15:30:38+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "ta"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-10-11T15:32:10+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "ta"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-10-11T15:25:18+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "ta"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-10-11T15:45:00+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "ta"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-10-11T15:46:36+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "ta"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-10-11T15:44:51+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "ta"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-11T15:09:22+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "ta"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-10-11T15:14:58+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "ta"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-11T15:07:16+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "ta"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-11T15:14:27+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "ta"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:44:03+00:00",
+ "source_file": "README.md",
+ "language_code": "ta"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-10-11T15:15:59+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "ta"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-10-11T15:14:17+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "ta"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-11T15:15:08+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "ta"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-11T15:11:11+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "ta"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-10-11T15:52:48+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "ta"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-11T15:16:47+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "ta"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-10-11T15:06:43+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "ta"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-10-11T15:16:20+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "ta"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-10-11T15:25:10+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "ta"
+ }
+}
\ No newline at end of file
diff --git a/translations/ta/1-Introduction/01-defining-data-science/README.md b/translations/ta/1-Introduction/01-defining-data-science/README.md
index d58e3c97..d9e6e67e 100644
--- a/translations/ta/1-Introduction/01-defining-data-science/README.md
+++ b/translations/ta/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# தரவியல் அறிவியல் வரையறை
|  உருவாக்கிய ஸ்கெட்ச் நோட் ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/ta/1-Introduction/01-defining-data-science/assignment.md b/translations/ta/1-Introduction/01-defining-data-science/assignment.md
index 5f3ee4ff..c0e87d15 100644
--- a/translations/ta/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/ta/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Assignment: Data Science Scenarios
இந்த முதல் பணியில், நீங்கள் பல்வேறு பிரச்சினை துறைகளில் உள்ள ஒரு உண்மையான செயல்முறை அல்லது பிரச்சினையைப் பற்றி சிந்திக்க வேண்டும், மேலும் அதை Data Science செயல்முறையைப் பயன்படுத்தி எவ்வாறு மேம்படுத்தலாம் என்பதைப் பற்றி சிந்திக்க வேண்டும். கீழே உள்ளவற்றைப் பற்றி சிந்திக்கவும்:
diff --git a/translations/ta/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/ta/1-Introduction/01-defining-data-science/solution/assignment.md
index 69973524..7a654d2d 100644
--- a/translations/ta/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/ta/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# பணிக்கட்டளை: தரவியல் அறிவியல் சூழல்கள்
இந்த முதல் பணிக்கட்டளையில், நீங்கள் பல்வேறு பிரச்சனை துறைகளில் உள்ள ஒரு உண்மையான செயல்முறை அல்லது பிரச்சனையைப் பற்றி சிந்திக்கவும், அதை தரவியல் அறிவியல் செயல்முறையைப் பயன்படுத்தி எவ்வாறு மேம்படுத்தலாம் என்பதைப் பற்றி சிந்திக்கவும் கேட்டுக்கொள்கிறோம். கீழே உள்ளவற்றைப் பற்றி சிந்திக்கவும்:
diff --git a/translations/ta/1-Introduction/02-ethics/README.md b/translations/ta/1-Introduction/02-ethics/README.md
index ace82735..27df1b8e 100644
--- a/translations/ta/1-Introduction/02-ethics/README.md
+++ b/translations/ta/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# தரவுத் தார்மீகத்தின் அறிமுகம்
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/ta/1-Introduction/02-ethics/assignment.md b/translations/ta/1-Introduction/02-ethics/assignment.md
index cbf5c937..8b3fbd80 100644
--- a/translations/ta/1-Introduction/02-ethics/assignment.md
+++ b/translations/ta/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## தரவுத் தார்மீகக் கேஸ் ஸ்டடி எழுதுங்கள்
## வழிமுறைகள்
diff --git a/translations/ta/1-Introduction/03-defining-data/README.md b/translations/ta/1-Introduction/03-defining-data/README.md
index fbce2ec8..a6bb2c4a 100644
--- a/translations/ta/1-Introduction/03-defining-data/README.md
+++ b/translations/ta/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# தரவுகளை வரையறுத்தல்
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/ta/1-Introduction/03-defining-data/assignment.md b/translations/ta/1-Introduction/03-defining-data/assignment.md
index bf30cff8..bc81be50 100644
--- a/translations/ta/1-Introduction/03-defining-data/assignment.md
+++ b/translations/ta/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# தரவுத்தொகுப்புகளை வகைப்படுத்துதல்
## வழிமுறைகள்
diff --git a/translations/ta/1-Introduction/04-stats-and-probability/README.md b/translations/ta/1-Introduction/04-stats-and-probability/README.md
index cd2a3435..1906d73b 100644
--- a/translations/ta/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/ta/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# புள்ளியியல் மற்றும் சாத்தியக்கூறுகளின் சுருக்கமான அறிமுகம்
| ](../../sketchnotes/04-Statistics-Probability.png)|
diff --git a/translations/ta/1-Introduction/04-stats-and-probability/assignment.md b/translations/ta/1-Introduction/04-stats-and-probability/assignment.md
index 3e298fb6..440eb50a 100644
--- a/translations/ta/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/ta/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# சிறிய நீரிழிவு நோய் ஆய்வு
இந்த பணியில், [இங்கு](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) இருந்து எடுக்கப்பட்ட ஒரு சிறிய நீரிழிவு நோயாளிகளின் தரவுத்தொகுப்புடன் வேலை செய்யப் போகிறோம்.
diff --git a/translations/ta/1-Introduction/README.md b/translations/ta/1-Introduction/README.md
index 08fb37c2..5588e58e 100644
--- a/translations/ta/1-Introduction/README.md
+++ b/translations/ta/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# தரவியல் அறிவியலுக்கான அறிமுகம்

diff --git a/translations/ta/2-Working-With-Data/05-relational-databases/README.md b/translations/ta/2-Working-With-Data/05-relational-databases/README.md
index 3e93cc25..ef66be04 100644
--- a/translations/ta/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/ta/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# தரவுடன் வேலை செய்வது: தொடர்புடைய தரவுத்தளங்கள்
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/ta/2-Working-With-Data/05-relational-databases/assignment.md b/translations/ta/2-Working-With-Data/05-relational-databases/assignment.md
index ec5e07b3..230a5ecf 100644
--- a/translations/ta/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/ta/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# விமான நிலைய தரவுகளை காட்டுதல்
உங்களுக்கு [SQLite](https://sqlite.org/index.html) அடிப்படையில் உருவாக்கப்பட்ட [தரவுத்தளம்](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) வழங்கப்பட்டுள்ளது, இது விமான நிலையங்கள் பற்றிய தகவல்களை கொண்டுள்ளது. கீழே உள்ள ஸ்கீமா காட்டப்பட்டுள்ளது. [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) இல் [SQLite extension](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) பயன்படுத்தி, பல நகரங்களின் விமான நிலையங்களின் தகவல்களை நீங்கள் காட்டுவீர்கள்.
diff --git a/translations/ta/2-Working-With-Data/06-non-relational/README.md b/translations/ta/2-Working-With-Data/06-non-relational/README.md
index b7085107..b60f46cc 100644
--- a/translations/ta/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/ta/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# தரவுடன் வேலை செய்வது: தொடர்பற்ற தரங்கள்
| இன் ஸ்கெட்ச்நோட்](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/ta/2-Working-With-Data/06-non-relational/assignment.md b/translations/ta/2-Working-With-Data/06-non-relational/assignment.md
index af635b88..cf743435 100644
--- a/translations/ta/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/ta/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# சோடா லாபங்கள்
## வழிமுறைகள்
diff --git a/translations/ta/2-Working-With-Data/07-python/README.md b/translations/ta/2-Working-With-Data/07-python/README.md
index ee25c480..9ea93b76 100644
--- a/translations/ta/2-Working-With-Data/07-python/README.md
+++ b/translations/ta/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# தரவுடன் வேலை செய்வது: Python மற்றும் Pandas நூலகம்
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/ta/2-Working-With-Data/07-python/assignment.md b/translations/ta/2-Working-With-Data/07-python/assignment.md
index 846339ef..b5f08632 100644
--- a/translations/ta/2-Working-With-Data/07-python/assignment.md
+++ b/translations/ta/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# பைதான் மூலம் தரவுகளை செயல்படுத்தும் பணிக்கான ஒதுக்கீடு
இந்த பணியில், நாங்கள் சவால்களில் உருவாக்கத் தொடங்கிய கோடுகளை விரிவாக்குமாறு உங்களை கேட்டுக்கொள்கிறோம். இந்த பணியில் இரண்டு பகுதிகள் உள்ளன:
diff --git a/translations/ta/2-Working-With-Data/08-data-preparation/README.md b/translations/ta/2-Working-With-Data/08-data-preparation/README.md
index 50db11e2..faca39df 100644
--- a/translations/ta/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/ta/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# தரவுடன் வேலை செய்வது: தரவு தயாரிப்பு
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/ta/2-Working-With-Data/08-data-preparation/assignment.md b/translations/ta/2-Working-With-Data/08-data-preparation/assignment.md
index 8683880d..f2b4aafc 100644
--- a/translations/ta/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/ta/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# படிவத்திலிருந்து தரவுகளை மதிப்பீடு செய்தல்
ஒரு வாடிக்கையாளர் தங்கள் வாடிக்கையாளர் அடிப்படையைப் பற்றிய சில அடிப்படை தகவல்களை சேகரிக்க [சிறிய படிவம்](../../../../2-Working-With-Data/08-data-preparation/index.html) ஒன்றை சோதித்துள்ளார். அவர்கள் சேகரித்த தகவல்களை சரிபார்க்க உங்களிடம் கொண்டு வந்துள்ளனர். படிவத்தைப் பார்ப்பதற்கு `index.html` பக்கத்தை உலாவியில் திறக்கலாம்.
diff --git a/translations/ta/2-Working-With-Data/README.md b/translations/ta/2-Working-With-Data/README.md
index a1eac1a0..1e5f50a7 100644
--- a/translations/ta/2-Working-With-Data/README.md
+++ b/translations/ta/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# தரவுடன் வேலை செய்வது

diff --git a/translations/ta/3-Data-Visualization/09-visualization-quantities/README.md b/translations/ta/3-Data-Visualization/09-visualization-quantities/README.md
index 7ce875ff..93af52fa 100644
--- a/translations/ta/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/ta/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# அளவுகளை காட்சிப்படுத்துதல்
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/ta/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/ta/3-Data-Visualization/09-visualization-quantities/assignment.md
index ee0a020d..672677ad 100644
--- a/translations/ta/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/ta/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# கோடுகள், சிதறல்கள் மற்றும் பட்டைகள்
## வழிமுறைகள்
diff --git a/translations/ta/3-Data-Visualization/10-visualization-distributions/README.md b/translations/ta/3-Data-Visualization/10-visualization-distributions/README.md
index 168acfe5..9c5ae4f1 100644
--- a/translations/ta/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/ta/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# விநியோகங்களை காட்சிப்படுத்துதல்
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ta/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/ta/3-Data-Visualization/10-visualization-distributions/assignment.md
index 98c6824e..3ebbf3c2 100644
--- a/translations/ta/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/ta/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# உங்கள் திறன்களை பயன்படுத்துங்கள்
## வழிமுறைகள்
diff --git a/translations/ta/3-Data-Visualization/11-visualization-proportions/README.md b/translations/ta/3-Data-Visualization/11-visualization-proportions/README.md
index b018455f..9e546a15 100644
--- a/translations/ta/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/ta/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# விகிதங்களை காட்சிப்படுத்துதல்
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ta/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/ta/3-Data-Visualization/11-visualization-proportions/assignment.md
index 663a4798..c4a05e64 100644
--- a/translations/ta/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/ta/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# எக்செல்-ல் முயற்சிக்கவும்
## வழிமுறைகள்
diff --git a/translations/ta/3-Data-Visualization/12-visualization-relationships/README.md b/translations/ta/3-Data-Visualization/12-visualization-relationships/README.md
index 90fe1e5e..9300e7e4 100644
--- a/translations/ta/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/ta/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# உறவுகளை காட்சிப்படுத்தல்: தேனின் அழகிய உலகம் 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ta/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/ta/3-Data-Visualization/12-visualization-relationships/assignment.md
index 5497fd39..6dc710bb 100644
--- a/translations/ta/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/ta/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# தேனீக்களின் கூட்டத்தில் ஆழமாக செல்வோம்
## வழிமுறைகள்
diff --git a/translations/ta/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/ta/3-Data-Visualization/13-meaningful-visualizations/README.md
index 8a737083..028fd75d 100644
--- a/translations/ta/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/ta/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# அர்த்தமுள்ள காட்சிப்படுத்தல்கள்
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ta/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/ta/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 840e976a..1e0f91cf 100644
--- a/translations/ta/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/ta/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# உங்கள் சொந்த தனிப்பயன் காட்சியை உருவாக்குங்கள்
## வழிமுறைகள்
diff --git a/translations/ta/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/ta/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index f494ccb4..7d25bffb 100644
--- a/translations/ta/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/ta/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# அபாயகரமான தொடர்புகள் தரவுக் காட்சிப்படுத்தல் திட்டம்
தொடங்குவதற்கு, உங்கள் கணினியில் NPM மற்றும் Node இயங்குகிறதா என்பதை உறுதிப்படுத்த வேண்டும். சார்புகளை நிறுவவும் (npm install) மற்றும் பின்னர் திட்டத்தை உள்ளூரில் இயக்கவும் (npm run serve):
diff --git a/translations/ta/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/ta/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 639bb19d..e20d60d1 100644
--- a/translations/ta/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/ta/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# அபாயகரமான தொடர்புகள் தரவுக் காட்சிப்படுத்தல் திட்டம்
தொடங்குவதற்கு, உங்கள் கணினியில் NPM மற்றும் Node இயங்குகிறதா என்பதை உறுதிப்படுத்த வேண்டும். சார்புகளை நிறுவவும் (npm install) மற்றும் பின்னர் திட்டத்தை உள்ளூரில் இயக்கவும் (npm run serve):
diff --git a/translations/ta/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/ta/3-Data-Visualization/R/09-visualization-quantities/README.md
index 84ce25f8..4c9c3b6f 100644
--- a/translations/ta/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/ta/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# அளவுகளை காட்சிப்படுத்துதல்
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/ta/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/ta/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 0dfb43e5..acd04864 100644
--- a/translations/ta/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/ta/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# கோடுகள், சிதறல்கள் மற்றும் பட்டைகள்
## வழிமுறைகள்
diff --git a/translations/ta/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/ta/3-Data-Visualization/R/10-visualization-distributions/README.md
index a93aaa4d..8acfc634 100644
--- a/translations/ta/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/ta/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# விநியோகங்களை காட்சிப்படுத்துதல்
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ta/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/ta/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index ca1037b0..dcae003b 100644
--- a/translations/ta/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/ta/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# உங்கள் திறன்களை பயன்படுத்துங்கள்
## வழிமுறைகள்
diff --git a/translations/ta/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/ta/3-Data-Visualization/R/11-visualization-proportions/README.md
index c3bd30e5..2b7399d0 100644
--- a/translations/ta/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/ta/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# விகிதங்களை காட்சிப்படுத்துதல்
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ta/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/ta/3-Data-Visualization/R/12-visualization-relationships/README.md
index c06eb0c6..560a6610 100644
--- a/translations/ta/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/ta/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# உறவுகளை காட்சிப்படுத்துதல்: தேனின் அழகிய உலகம் 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ta/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/ta/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index a161aa31..e0665386 100644
--- a/translations/ta/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/ta/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# அர்த்தமுள்ள காட்சிப்படுத்தல்கள் உருவாக்குதல்
| என்பவரின் ஸ்கெட்ச் நோட்](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ta/3-Data-Visualization/README.md b/translations/ta/3-Data-Visualization/README.md
index 8d93f9fa..65321719 100644
--- a/translations/ta/3-Data-Visualization/README.md
+++ b/translations/ta/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# காட்சிப்படுத்தல்கள்

diff --git a/translations/ta/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/ta/4-Data-Science-Lifecycle/14-Introduction/README.md
index fd89cece..4b65d5a6 100644
--- a/translations/ta/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/ta/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# தரவியல் அறிவியல் வாழ்க்கைச் சுழற்சியின் அறிமுகம்
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/ta/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/ta/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index e26ae5ac..531ba160 100644
--- a/translations/ta/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/ta/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# தரவுத்தொகுப்பை மதிப்பீடு செய்வது
ஒரு வாடிக்கையாளர் உங்கள் குழுவை அணுகி, நியூயார்க் நகரத்தில் டாக்ஸி பயணிகளின் பருவத்திற்கேற்ப செலவழிப்பு பழக்கங்களை ஆராய உதவி கேட்டுள்ளார்.
diff --git a/translations/ta/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/ta/4-Data-Science-Lifecycle/15-analyzing/README.md
index c036b7bf..c3151601 100644
--- a/translations/ta/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/ta/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# தரவியல் அறிவியல் வாழ்க்கைச் சுழற்சி: பகுப்பாய்வு
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/ta/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/ta/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index e41e5c07..c121acaa 100644
--- a/translations/ta/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/ta/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# பதில்களைத் தேடுதல்
இது முந்தைய பாடத்தின் [பணி](../14-Introduction/assignment.md) தொடர்ச்சியாகும், இதில் தரவுத்தொகுப்பைப் பொறாமையாகப் பார்த்தோம். இப்போது, தரவுகளை ஆழமாகப் பார்க்கப் போகிறோம்.
diff --git a/translations/ta/4-Data-Science-Lifecycle/16-communication/README.md b/translations/ta/4-Data-Science-Lifecycle/16-communication/README.md
index ada79a93..3f2a04fb 100644
--- a/translations/ta/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/ta/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# தரவியல் அறிவியல் வாழ்க்கைச்சுழற்சி: தகவல்தொடர்பு
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/ta/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/ta/4-Data-Science-Lifecycle/16-communication/assignment.md
index 89a8eb4e..c606c093 100644
--- a/translations/ta/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/ta/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# ஒரு கதை சொல்லுங்கள்
## வழிமுறைகள்
diff --git a/translations/ta/4-Data-Science-Lifecycle/README.md b/translations/ta/4-Data-Science-Lifecycle/README.md
index 3fd961dc..ac91b042 100644
--- a/translations/ta/4-Data-Science-Lifecycle/README.md
+++ b/translations/ta/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# தரவியல் அறிவியல் வாழ்க்கைச் சுழற்சி

diff --git a/translations/ta/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/ta/5-Data-Science-In-Cloud/17-Introduction/README.md
index cce8e4e6..c24b102a 100644
--- a/translations/ta/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/ta/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# மேகத்தில் தரவியல் அறிவியல் அறிமுகம்
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/ta/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/ta/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index c2c8ade8..328a611f 100644
--- a/translations/ta/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/ta/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# சந்தை ஆராய்ச்சி
## வழிமுறைகள்
diff --git a/translations/ta/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/ta/5-Data-Science-In-Cloud/18-Low-Code/README.md
index f64be6e1..2e604902 100644
--- a/translations/ta/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/ta/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# கிளவுடில் தரவியல் அறிவியல்: "குறைந்த குறியீடு/குறியீடு இல்லாமல்"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/ta/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/ta/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 94cad681..8dc358b4 100644
--- a/translations/ta/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/ta/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML-ல் குறைந்த குறியீடு/குறியீடு இல்லாத தரவியல் திட்டம்
## வழிமுறைகள்
diff --git a/translations/ta/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/ta/5-Data-Science-In-Cloud/19-Azure/README.md
index e5a11924..43c03579 100644
--- a/translations/ta/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/ta/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# கிளவுடில் தரவியல் அறிவியல்: "Azure ML SDK" முறையில்
| உருவாக்கிய ஸ்கெட்ச் நோட் ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/ta/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/ta/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 70631d79..8762ffb4 100644
--- a/translations/ta/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/ta/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML SDK பயன்படுத்தி தரவியல் அறிவியல் திட்டம்
## வழிமுறைகள்
diff --git a/translations/ta/5-Data-Science-In-Cloud/README.md b/translations/ta/5-Data-Science-In-Cloud/README.md
index dbe629b1..8a56ff4a 100644
--- a/translations/ta/5-Data-Science-In-Cloud/README.md
+++ b/translations/ta/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# கிளவுடில் தரவியல் அறிவியல்

diff --git a/translations/ta/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/ta/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index bff03bcb..8ceff4c5 100644
--- a/translations/ta/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/ta/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# உண்மையான உலகில் தரவியல் அறிவியல்
|  மூலம் உருவாக்கப்பட்ட ஸ்கெட்ச் ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/ta/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/ta/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 725bbcdf..91426b4c 100644
--- a/translations/ta/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/ta/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# ஒரு கோள் கணினி தரவுத்தொகுப்பை ஆராயுங்கள்
## வழிமுறைகள்
diff --git a/translations/ta/6-Data-Science-In-Wild/README.md b/translations/ta/6-Data-Science-In-Wild/README.md
index 751f9fb1..241849c5 100644
--- a/translations/ta/6-Data-Science-In-Wild/README.md
+++ b/translations/ta/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# காட்டில் தரவியல் அறிவியல்
தொழில்துறைகளில் தரவியல் அறிவியலின் நிஜ உலக பயன்பாடுகள்.
diff --git a/translations/ta/AGENTS.md b/translations/ta/AGENTS.md
index 74e91afe..8c4739ea 100644
--- a/translations/ta/AGENTS.md
+++ b/translations/ta/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## திட்டத்தின் மேற்பார்வை
diff --git a/translations/ta/CODE_OF_CONDUCT.md b/translations/ta/CODE_OF_CONDUCT.md
index 3d58bbde..7fbfe02d 100644
--- a/translations/ta/CODE_OF_CONDUCT.md
+++ b/translations/ta/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# மைக்ரோசாஃப்ட் திறந்த மூல நடத்தை விதிமுறை
இந்த திட்டம் [மைக்ரோசாஃப்ட் திறந்த மூல நடத்தை விதிமுறையை](https://opensource.microsoft.com/codeofconduct/) ஏற்றுக்கொண்டுள்ளது.
diff --git a/translations/ta/CONTRIBUTING.md b/translations/ta/CONTRIBUTING.md
index e4c47dd8..3e4a6a43 100644
--- a/translations/ta/CONTRIBUTING.md
+++ b/translations/ta/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# தொடக்கநிலை தரவியல் அறிவியல் பாடத்திட்டத்திற்கு பங்களிப்பு
தரவியல் அறிவியல் தொடக்கநிலை பாடத்திட்டத்திற்கு பங்களிக்க ஆர்வம் காட்டியதற்கு நன்றி! சமூகத்திலிருந்து பங்களிப்புகளை வரவேற்கிறோம்.
diff --git a/translations/ta/INSTALLATION.md b/translations/ta/INSTALLATION.md
index ab76cdd6..66f91c0a 100644
--- a/translations/ta/INSTALLATION.md
+++ b/translations/ta/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# நிறுவல் வழிகாட்டி
இந்த வழிகாட்டி, Data Science for Beginners பாடத்திட்டத்துடன் வேலை செய்ய உங்கள் சூழலை அமைக்க உதவுகிறது.
diff --git a/translations/ta/README.md b/translations/ta/README.md
index cc210878..114b741c 100644
--- a/translations/ta/README.md
+++ b/translations/ta/README.md
@@ -1,13 +1,4 @@
-
-# தொடக்கத்திற்கான தரவியல் அறிவியல் - ஒரு பாடத்திட்டம்
+# தொடக்க நிலை தரவு அறிவியல் - பாடத்திட்டம்
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,181 +17,181 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Microsoft இல் உள்ள Azure Cloud வழிகாட்டிகள் தரவியல் அறிவியல் பற்றிய 10 வாரம், 20 பாடங்களைக் கொண்ட ஒரு பாடத்திட்டத்தை வழங்க மகிழ்ச்சியடைகிறார்கள். ஒவ்வொரு பாடத்திலும் முன்-பாடத் தொலைவை மற்றும் பின்-பாடத் தொலைவை, பாடத்தை முடிக்க எழுதப்பட்ட வழிமுறைகள், ஒரு தீர்வு மற்றும் ஒரு பணிக்கொடுத்தல் உள்ளடக்கம் ஆகும். எங்கள் திட்டம் சார்ந்த பாணி, புதிய திறன்களை ‘இடம் பிடிக்கும்’ வகையில் கற்றுக்கொள்ளுவதற்கான மிகவும் நம்பகமான வழி ஆகும்.
+மைக்ரோசாஃப்ட்-இல் Azure Cloud Advocates தரவு அறிவியலைப் பற்றி 10 வாரங்கள், 20 பாடங்கள் கொண்ட பாடத்திட்டத்தை வழங்கும்போது மகிழ்ச்சியாக உள்ளனர். ஒவ்வொரு பாடத்திலும் முன்-பாடம் மற்றும் பின்-பாடம் விசைப்பாட்கள், பாடத்தை நிறைவேற்ற எழுத்து விளக்கங்கள், தீர்வு மற்றும் பணியின்கள் ஆகியவை உள்ளடக்கமாக உள்ளன. எங்கள் திட்ட அடிப்படையிலான கற்பித்தல் முறை, புதிய திறன்கள் 'பிடிக்க' சான்றளிக்கப்பட்ட வழி அமைப்பை உருவாக்கிக் கற்றுக்கொள்ள உதவுகிறது.
-**எங்கள் ஆசிரியர்களுக்கு இதயம் பூர்வமான நன்றி:** [ஜாஸ்மின் கிரீனவே](https://www.twitter.com/paladique), [ட்மிட்ரி சோஷ்னிகோவ்](http://soshnikov.com), [நித்யா நரசிம்மன்](https://twitter.com/nitya), [ஜேலன் மெக்கீ](https://twitter.com/JalenMcG), [ஜென் லூபர்](https://twitter.com/jenlooper), [மாஉட் லெவி](https://twitter.com/maudstweets), [டிஃபனி சௌட்டெரேர்](https://twitter.com/TiffanySouterre), [கிரிஸ்டோபர் ஹாரிசன்](https://www.twitter.com/geektrainer).
+**எங்களது ஆசிரியர்களுக்கு உள் உள்ளார்ந்த நன்றி:** [ஜாஸ்மின் க்ரீனவே](https://www.twitter.com/paladique), [ட்மிட்ரி ஸோஷ்னிக்கோவ்](http://soshnikov.com), [நித்யா நரசிமன்](https://twitter.com/nitya), [ஜேலன் மெகீ](https://twitter.com/JalenMcG), [ஜென் லூப்பர்](https://twitter.com/jenlooper), [மாட் லேவி](https://twitter.com/maudstweets), [டிகேனி சௌட்டர்](https://twitter.com/TiffanySouterre), [கிறிஸ்டோபர் ஹாரிசன்](https://www.twitter.com/geektrainer).
-**🙏 சிறப்பான நன்றி 🙏 எங்கள் [Microsoft மாணவர் தூதர்கள்](https://studentambassadors.microsoft.com/) ஆசிரியர்கள், மதிப்பாய்வாளர்கள் மற்றும் உள்ளடக்க பங்களிப்பாளர்களுக்கு,** குறிப்பாக ஆர்யன் அரோராக, [அதித்யா கார்க்](https://github.com/AdityaGarg00), [அலோன்றா சான்செஸ்](https://www.linkedin.com/in/alondra-sanchez-molina/), [அங்கீதா சிங்](https://www.linkedin.com/in/ankitasingh007), [அனுபம் மிஷ்ரா](https://www.linkedin.com/in/anupam--mishra/), [ஆர்பிதா தாஸ்](https://www.linkedin.com/in/arpitadas01/), சஹைல் பಿಹாரி டுபே, [டிப்ரி ந்ஸோஃபோர்](https://www.linkedin.com/in/dibrinsofor), [டிஷிட்டா பாசின்](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [மஜித் சஃபீ](https://www.linkedin.com/in/majd-s/), [மேக்ஸ் பிளம்](https://www.linkedin.com/in/max-blum-6036a1186/), [மிகேல் கோரியா](https://www.linkedin.com/in/miguelmque/), [மொஹம்மா இஃப்தேகர்ஹர் (இஃப்டூ) எப்னே ஜலால்](https://twitter.com/iftu119), [நவரின் தபாச்சும்](https://www.linkedin.com/in/nawrin-tabassum), [ரெய்மண்ட் வங்சா புட்ரா](https://www.linkedin.com/in/raymond-wp/), [ரோஹித் யாதவ்](https://www.linkedin.com/in/rty2423), அம்ரிதி சர்மா, [சந்யா சின்ஹா](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
-[ஷீனா நரூலா](https://www.linkedin.com/in/sheena-narua-n/), [தாக்கீர் அஹ்மத்](https://www.linkedin.com/in/tauqeerahmad5201/), யோகேந்திரசிங் பவர் , [விதுஷி குப்தா](https://www.linkedin.com/in/vidushi-gupta07/), [ஜஸ்லீன் சொந்தி](https://www.linkedin.com/in/jasleen-sondhi/)
+**🙏 சிறப்பு நன்றி 🙏 எங்களது [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) ஆசிரியர்கள், பரிசீலனையாளர்கள் மற்றும் உள்ளடக்கக் கொடுப்பாளர்களுக்கு,** குறிப்பாக ஆர்யான் அரோறா, [ஆதித்ய கார்](https://github.com/AdityaGarg00), [அலோன்ரா சांचெஸ்](https://www.linkedin.com/in/alondra-sanchez-molina/), [அங்கீதா சிங்](https://www.linkedin.com/in/ankitasingh007), [அநுபம் மிஷ்ரா](https://www.linkedin.com/in/anupam--mishra/), [அர்பிதா தாஸ்](https://www.linkedin.com/in/arpitadas01/), ச்ஹைல் பிஹாரி டுவே, [டிப்ரி ந்ஸோபர்](https://www.linkedin.com/in/dibrinsofor), [டிஷிதா பாஸின்](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [மாஜ்த் சாஃபி](https://www.linkedin.com/in/majd-s/), [மாக்ஸ் புளம்](https://www.linkedin.com/in/max-blum-6036a1186/), [மிகேல் கொர்ரியா](https://www.linkedin.com/in/miguelmque/), [மொஹம்மா இப்தேகர் (இப்டூ) எப்னே ஜலால்](https://twitter.com/iftu119), [நவரின் டபாச்சும்](https://www.linkedin.com/in/nawrin-tabassum), [ரெய்மாண்ட் வாங்க்சா புட்ரா](https://www.linkedin.com/in/raymond-wp/), [ரோஹித்யாதவ்](https://www.linkedin.com/in/rty2423), சம்ரித்தி ஷர்மா, [சன்யா சின்ஹா](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+[ஷீனா நருலா](https://www.linkedin.com/in/sheena-narua-n/), [தவ்கீர் அக்மத்](https://www.linkedin.com/in/tauqeerahmad5201/), யோகேந்திரசிங் பவர் , [விடுஷி குப்தா](https://www.linkedin.com/in/vidushi-gupta07/), [ஜஸ்லீன் சோந்தி](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| தொடக்கத்திற்கான தரவியல் அறிவியல் - _ஸ்கெட்ச் நோட் [@nitya](https://twitter.com/nitya) மூலம்_ |
+| தொடக்க நிலை தரவு அறிவியல் - _ஸ்கெட்ச் நோட் [@nitya](https://twitter.com/nitya)_ |
-### 🌐 பன்மொழி ஆதரவு
+### 🌐 பல மொழி ஆதரவு
-#### GitHub Action மூலம் ஆதரிக்கப்படுகிறது (தானியங்கி மற்றும் எப்போதும் புதுப்பிக்கப்படும்)
+#### GitHub அகஷன் மூலம் ஆதரிக்கப்படுகிறது (சுயமெய்யாக்கப்பட்ட மற்றும் எப்போதும் புதுப்பிக்கப்படும்)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](./README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](./README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **உள்ளூர் கிளோன் செய்ய விரும்புகிறீர்களா?**
+> **உடனடியாக கிளோன் செய்ய விரும்புகிறீர்களா?**
-> இந்த தொகுப்பில் 50+ மொழிபெயர்ப்புகள் அடங்கியுள்ளதால், பதிவிறக்க அளவு பெருகுகிறது. மொழிபெயர்ப்புகளைத் தவிர்த்து கிளோன் செய்ய sparse checkout பயன்படுத்தவும்:
+> இந்த பதிவகம் 50+ மொழி மொழிபெயர்ப்புகளை கொண்டுள்ளது, இது பதிவிறக்கம் அளவை வலுவாக அதிகரிக்கும். மொழிபெயர்ப்புகள் இல்லாமல் கிளோன் செய்ய sparse checkout பயன்படுத்தவும்:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> இது பாடத்திட்டத்தை முடிக்க தேவையான அனைத்தையும் துரிதமாக தருகிறது.
+> இது நீங்கள் பாடத்திட்டத்தை முடிக்க தேவையான அனைத்தை விரைவில் பெற உதவும்.
-**மேலும் மொழிபெயர்ப்புகளை விரும்பினால் இங்கே பட்டியலிடப்பட்டுள்ள [பயன்படுத்தப்பட்ட மொழிகள்](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) காணவும்**
+**மேலும் மொழி ஆதரவு வேண்டும் என்றால் இங்கு பார்வையிடவும் [here](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### எங்கள் சமூகத்தில் கலந்துகொள்ளவும்
+#### எங்கள் சமூகத்தில் சேருங்கள்
[](https://discord.gg/nTYy5BXMWG)
-நாம் தற்போது Discord இல் AI தொடர் கற்று கொண்டிருக்கிறோம், மேலும் அறிய மற்றும் 2025 செப்டம்பர் 18 - 30 வரை நடைபெறும் [Learn with AI Series](https://aka.ms/learnwithai/discord) இல் எங்களைச் சேரவும். நீங்கள் GitHub Copilot ஐ Data Scienceக்காக பயன்படுத்தும் குறிப்புகள் மற்றும் நுட்பங்களை பெறுவீர்கள்.
+நாம் ஒரு Discord AI கற்பித்தல் தொடரினை நடத்தியிருக்கின்றோம், மேலும் அறிந்து [Learn with AI Series](https://aka.ms/learnwithai/discord) இணையதளத்தில் 2025, செப்டம்பர் 18 - 30 வரை எங்கள் குழுவுடன் இணையுங்கள். தரவு அறிவியலுக்கான GitHub Copilot ஐ பயன்படுத்த சிறந்த குறிப்புகளையும் வழிகாட்டல்களையும் பெறுவீர்கள்.
-
+
-# நீங்கள் மாணவர் தானா?
+# நீங்கள் ஒரு மாணவரா?
-பின்வரும் வளங்களுடன் துவங்கவும்:
+பின்வரும் வளங்களுடன் துவங்குங்கள்:
-- [மாணவர் மனையப் பக்கம்](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) இதில் தொடக்கத்திற்கான வளங்கள், மாணவர் தொகுப்புகள் மற்றும் இலவச சான்றிதழ் கூப்பன் பெறும் வழிகளும் உள்ளன. இது நீங்கள் வாராந்திர விதியில் குறிப்பிட்டு பார்வையிட விரும்பும் ஒரு பக்கம்.
-- [Microsoft Learn மாணவர் தூதர்கள்](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) உலகளாவிய மாணவர் தூதர் சமூகத்தில் சேரவும், இது Microsoft க்கு உங்களை கொண்டு செல்லும் வழியாக இருக்கலாம்.
+- [மாணவர் ஹப் பக்கம்](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) இதில் நீங்கள் தொடக்கத்திற்கான வளங்கள், மாணவர் தொகுதிகள் மற்றும் இலவச சான்று வாய்ப்பு பற்றிய தகவல்களை காணலாம். இது ஒரு பக்கம், அதைப்பதிவுசெய்து திட்டத்தின் உள்ளடக்கம் மாதத்திற்கு ஒரு முறையே மாற்றப்படுவதால் அவ்வப்போது சரிபார்க்கவும்.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) உலகளாவிய மாணவர் தூதர்களின் சமூகத்தில் சேர்ந்துகொள்ளுங்கள், இது உங்கள் மைக்ரோசாஃப்ட் புகுபதிகைக்கு வாயிலாக இருக்கலாம்.
# துவக்கம்
## 📚 ஆவணங்கள்
-- **[நிறுவல் வழிகாட்டு](INSTALLATION.md)** - தொடக்கத்திற்கான படிப்படியாக அமைப்பு வழிமுறைகள்
-- **[பயன்பாட்டு வழிகாட்டு](USAGE.md)** - எடுத்துக்காட்டுகள் மற்றும் பொதுவான பணிவழிகள்
-- **[சிக்கல்களைத் தீர்க்கும் வழிகாட்டு](TROUBLESHOOTING.md)** - பொதுவான பிரச்சினைகளுக்கான தீர்வுகள்
-- **[பங்களிப்பு வழிகாட்டு](CONTRIBUTING.md)** - இந்த திட்டத்திற்கு எப்படி பங்களிப்பது
-- **[ஆசிரியர்களுக்காக](for-teachers.md)** - கற்பித்தல் வழிகாட்டி மற்றும் வகுப்பு வளங்கள்
+- **[இன்ஸ்டாலேஷன் வழிகாட்டு](INSTALLATION.md)** - தொடக்கங்களுக்கான படி படியாக அமைக்கும் அறிவுரைகள்
+- **[பயன்பாடு வழிகாட்டு](USAGE.md)** - உதாரணங்கள் மற்றும் பொதுவான பணிகள்
+- **[பிரச்சனைகள் நீக்கம்](TROUBLESHOOTING.md)** - பொதுவான பிரச்சனைகள் மற்றும் தீர்வுகள்
+- **[சேரும் விதிமுறைகள்](CONTRIBUTING.md)** - இந்த திட்டத்திற்கு எப்படி பங்களிக்க வேண்டும்
+- **[ஆசிரியர்களுக்காக](for-teachers.md)** - கற்பிக்கும் வழிகாட்டல்கள் மற்றும் வகுப்பு வளங்கள்
## 👨🎓 மாணவர்களுக்கு
-> **முழுமையான தொடக்கத்திற்கானவர்கள்**: தரவியல் அறிவியலில் புதியவரா? எங்கள் [தொடக்கத்திற்கான எளிய எடுத்துக்காட்டுகள்](examples/README.md) இல் இருந்து தொடங்குங்கள்! இந்த எளிய, நன்கு விளக்கப்பட்ட எடுத்துக்காட்டுகள் அடிப்படைகளை புரிந்துகொள்ள உதவும்.
-> **[மாணவர்கள்](https://aka.ms/student-page)**: இந்த பாடத்திட்டத்தை தனியாக பயன்படுத்த, முழு ரெப்போவை கிளோன் செய்து, முன்-உபநாடக் கேள்வியுடன் தொடங்கி, பாடங்களை படித்து மற்ற செயல்பாடுகளை முடிக்கவும். தீர்வு குறியீட்டைக் நகலெடுப்பதற்கு பதில் பாடங்களைப் புரிந்து கொண்டு திட்டங்களை உருவாக்க முயலவும்; அதிபோதும் அந்த குறியீடு /solutions கோப்பகங்களில் திறக்கப் பெற்றிருக்கிறது. மேலும் ஒரு யோசனை, நண்பர்களுடன் படிப்புக் குழுவை அமைத்து உள்ளடக்கத்தை ஒன்றாக ஆய்வு செய்வது. மேலதிக படிப்பு க்காக, [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) பரிந்துரைக்கப்படுகிறது.
+> **முழு புதியவர்கள்**: தரவு அறிவியலில் புதியவரா? எங்கள் [தொடக்க நண்பர்களுக்கான உதாரணங்கள்](examples/README.md) கொண்டு துவங்குங்கள்! இவைகள் எளிய, நன்கு கருத்துக்கணிக்கப்பட்ட உதாரணங்களாகும், முழு பாடத்திட்டத்தில் செல்வதற்கு முன் அடிப்படைகளை புரிந்துகொள்ள உதவும்.
+> **[மாணவர்கள்](https://aka.ms/student-page)**: இந்த பாடத்திட்டத்தை தனியாக பயன்படுத்த, முழு பதிவகத்தை fork செய்து, முன்-பாட வாசிப்பு விசைப்பாடுகளுடன் துவங்கி, பிறகு பாடத்தையும் செயல்பாடுகளையும் தயார் செய்க. தீர்வு குறியீட்டை நகலெடுக்காமல் பாடங்களை உணர்ந்து திட்டங்களை உருவாக்க முயலவும்; இருப்பினும், அந்த குறியீடு /solutions கோப்புறைகளில் ஒவ்வொரு திட்டமயமாக்கப்பட்ட பாடத்திலும் கிடைக்கும். மற்றொரு வழி, நண்பர்களுடன் ஒரு படிப்பு குழுவை உருவாக்கி ஒன்றிணைந்து பாடங்களைப் பார்க்கவும். மேலதிக படிப்புக்கு, [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) பரிந்துரைக்கப்படுகிறது.
-**விரைவு துவக்கம்:**
-1. உங்கள் சூழலை அமைக்க [நிறுவல் வழிகாட்டி](INSTALLATION.md) ஐ பார்வையிடவும்
-2. பாடத்திட்டத்துடன் வேலை செய்ய [பயன்பாட்டு வழிகாட்டி](USAGE.md) ஐ ஆய்வு செய்யவும்
-3. பாடம் 1 இலிருந்து தொடங்கி தொடர்ச்சியாக செயல்படவும்
-4. ஆதரவு பெற எங்கள் [Discord சமூகத்துடன்](https://aka.ms/ds4beginners/discord) இணையுங்கள்
+**விரைவான துவக்கம்:**
+1. உங்கள் சூழலை அமைக்க [இன்ஸ்டாலேஷன் வழிகாட்டை](INSTALLATION.md) பார்க்கவும்
+2. பாடத்திட்டத்துடன் வேலை பார்க்க [பயன்பாடு வழிகாட்டை](USAGE.md) மதிப்பாய்வு செய்யவும்
+3. முதலாம் பாடத்துடன் துவங்கி வரிசைப்படி பணியாற்றவும்
+4. உதவிக்காக எங்கள் [Discord சமூகத்தில்](https://aka.ms/ds4beginners/discord) சேரவும்
## 👩🏫 ஆசிரியர்களுக்காக
-> **ஆசிரியர்கள்**: இந்த பாடத்திட்டத்தை எப்படி பயன்படுத்துவது என்பதைப் பற்றி சில பரிந்துரைகள் [இங்கே](for-teachers.md) உள்ளன. உங்கள் கருத்துக்களை எங்கள் [விமர்சன மன்றத்தில்](https://github.com/microsoft/Data-Science-For-Beginners/discussions) பகிருங்கள்!
+> **ஆசிரியர்கள்**: இந்த பாடத்திட்டத்தை பயன்படுத்த சில பரிந்துரைகளை [நாங்கள் சேர்த்துள்ளோம்](for-teachers.md). உங்கள் கருத்துக்களை எங்கள் [சர்ச்சை மன்றத்தில்](https://github.com/microsoft/Data-Science-For-Beginners/discussions) பகிர்ந்து கொள்ளவும்!
+## அணியினரை சந்திக்கவும்
-## குழுவை சந்திக்கவும்
-[](https://youtu.be/8mzavjQSMM4 "Promo video")
+[](https://youtu.be/8mzavjQSMM4 "விளம்பரக் காணொளி")
-**GIF எழுதியவர்** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+**ஜிஃப் செய்தவர்** [மோகித் ஜைசால்](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 மேலுள்ள படத்தை கிளிக் செய்து இந்த திட்டத்தையும், அதனை உருவாக்கியவர்களையும் பற்றிய வீடியோவை பாருங்கள்!
+> 🎥 மேலே உள்ள படத்தை கிளிக் செய்து இந்தத் திட்டம் மற்றும் இதை உருவாக்கியவர்களைப் பற்றிய ஒரு வீடியோவைப் பார்க்கலாம்!
-## கல்வி தத்துவம்
+## கற்றல் முறைகள்
-இந்த பாடத்திட்டத்தை உருவாக்கும் போது, இரு கல்வி தத்துவக் கொள்கைகளை நாம் கருத்து கொண்டுள்ளோம்: அது திட்ட அடிப்படையிலானதாக இருக்க வேண்டும் மற்றும் அதில் அடிக்கடி வினாடி வினா தேர்வுகள் இடம்பெறும். இந்த தொடரின் முடிவில், மாணவர்கள் தரவியல் அறிவியலின் அடிப்படைக் கொள்கைகளையும், ஒழுக்க நெறிமுறைகளையும், தரவு சமரசம், தரவுடன் வேறுபட்ட முறைகளில் பணியாற்றுவது, தரவு காட்சிப்படுத்தல், தரவு பகுப்பாய்வு, தரவியல் அறிவியலின் நடைமுறை பயன்பாடுகள் மற்றும் பலவற்றை கற்றுக் கொள்வார்கள்.
+இந்த பாடத்திட்டத்தை உருவாக்குவதில் இரண்டு கற்றல் கோட்பாடுகளை தேர்ந்தெடுத்துள்ளோம்: அது திட்டாசாரமானதாக இருக்கும் என்பதும் அடிக்கடி வினாடி வினாக்களைச் சேர்க்க வேண்டும் என்பதும். இந்த தொடர் முடிவில், மாணவர்கள் தரவுத்துறையின் அடிப்படை 원理களை கற்றுக்கொள்வர், அதில் குற்றவியல் கருத்துக்களும், தரவு தயார் செய்தல், தரவு வேலை செய்யும் பல வழிகள், தரவு காட்சிப்படுத்தல், தரவு பகுப்பாய்வு, தரவுத்துறையின் உண்மையான பயன்பாடுகள் மற்றும் பல உள்ளன.
-மேலும், வகுப்புக்கு முன் குறைந்த மதிப்புள்ள வினாடி வினா மாணவனின் படிக்க வேண்டிய பொருளுக்கு தீவிரம் செலுத்தும், வகுப்புக்கு பின்பு இரண்டாம் வினாடி வினா மேலும் வைத்திருப்பை உறுதி செய்கிறது. இந்த பாடத்திட்டம் திடீரெனவும் மற்றும் ரசிப்புக்கு ஏற்ப வடிவமைக்கப்பட்டுள்ளதாம் மற்றும் முழுக்கவோ பகுதி வடிவிலும் எடுத்துக்கொள்ளலாம். திட்டங்கள் சிறியதாகத் தொடங்கி, 10 வார சுழற்சி முடிவடையும் வரை சிக்கலாக மாறுகின்றன.
+மேலும், வகுப்புக்கு முன் ஒரு குறைவான முக்கியத்துவம் கொண்ட வினாடி வினா மாணவரின் ஒரு தலைப்பை கற்றுக்கொள்ளும் நோக்கத்தை அமைக்கும், பின்னர் ஒரு இரண்டாவது வினாடி வினா வகுப்புக்குப் பிறகு மேலும் நினைவில் வைத்திருக்க உதவும். இந்த பாடத்திட்டம் நெகிழ்ச்சி மற்றும் வேடிக்கையானதாக வடிவமைக்கப்பட்டுள்ளது மற்றும் முழுமையாகவோ அல்லது பகுதி ஒன்றாகவோ எடுக்கலாம். திட்டங்கள் சிறியதாக தொடங்கி 10 வார சுற்றின் இறுதியில் அதிகமாக சிக்கலாக மாறுகின்றன.
-> எங்கள் [நெறிமுறை குறிப்பு](CODE_OF_CONDUCT.md), [ஒத்துழைப்பு வழிகாட்டிகள்](CONTRIBUTING.md), மற்றும் [மொழிபெயர்ப்பு வழிகாட்டிகளை](TRANSLATIONS.md) இங்கு காணலாம். உங்கள் கட்டுமான கருத்துக்களையும் வரவேற்கின்றோம்!
+> எங்கள் [நடத்தை விதிகள்](CODE_OF_CONDUCT.md), [பங்களிப்பு](CONTRIBUTING.md), [மொழிபெயர்ப்பு](TRANSLATIONS.md) வழிகாட்டுதல்களைப் பார்க்கவும். உங்கள் கட்டுரையான கருத்துக்களை வரவேற்கிறோம்!
-## ஒவ்வொரு பாடத்திலும்:
+## ஒவ்வொரு பாடத்திலும் உள்ளவை:
-- விருப்ப ஸ்கெட்ச் நோட்
-- விருப்ப மேலதிக வீடியோ
-- பாடத்திற்குப் முன் ஓர் சூடுபிடிப்பு வினாடி வினா
-- எழுத்துப்படி பாடம்
-- திட்ட அடிப்படையிலான பாடங்களுக்கு, திட்டத்தை கட்டும் படி படியில் வழிகாட்டல்கள்
-- அறிவு சோதனைகள்
-- ஒரு சவால்
-- மேலதிக வாசிப்பு
-- பணியிடம்
-- [பாடத்திற்குப் பின் வினாடி வினா](https://ff-quizzes.netlify.app/en/)
+- விருப்பமான ஸ்கெட்ச் நோட்
+- விருப்பமான கூடுதல் வீடியோ
+- பாடத்துக்கு முன் ஒரு ஆர்வக் வினா
+- எழுதப்பட்ட பாடம்
+- திட்டாசாரமான பாடங்களுக்கு, திட்டத்தை உருவாக்கும் படிகள்
+- அறிவுத் தேர்வுகள்
+- ஒரு சவால்
+- கூடுதல் வாசிப்பு
+- பணிகள்
+- [பாடத்துக்குப் பிறகு வினாடி வினா](https://ff-quizzes.netlify.app/en/)
-> **வினாடி வினாக்கள் குறித்த குறிப்பு**: அனைத்து வினாடிவினாக்களும் Quiz-App கோப்பகத்தில் உள்ளன, ஒவ்வொன்றும் மூன்று கேள்விகளைக் கொண்ட 40 மொத்த வினாடி வினாக்கள் உள்ளன. அவை பாடங்களில் இருந்து இணைக்கப்பட்டுள்ளன, ஆனால் Quiz App ஐ உள்ளூர் முறையில் இயக்கவோ Azure-ல் பரப்பவோ செய்யலாம்; `quiz-app` கோப்பகத்தில் உள்ள விளக்கங்களை பின்பற்றவும். அவை படிப்படியாக உள்ளூர் மொழிக்கு மாற்றப்படுகின்றன.
+> **வினாடி வினாக்கள் குறித்த ஒரு குறிப்பு**: அனைத்து வினாடிகள் Quiz-App கோப்புறையில் உள்ளன, ஒரே வினாடி வினாவில் மூன்று கேள்விகள் கொண்ட 40 வினா உள்ளது. அவை பாடங்களில் இணைக்கப்பட்டுள்ளன, ஆனால் வினா செயலி உள்ளூரிலும் இயக்கலாம் அல்லது Azure இல் பயன்படுத்தலாம்; அறிவுறுத்தல்களை `quiz-app` கோப்புறையில் பின்பற்றவும். அவை படிப்படியாக உள்ளூர் மொழிபெயர்க்கப்படுகின்றன.
-## 🎓 தொடக்கத்திற்கான உதாரணங்கள்
+## 🎓 தொடக்க நிலையமைவுக்கு ஏற்ற உதாரணங்கள்
-**தரவியல் அறிவியலுக்கு புதியவரா?** நாங்கள் ஒரு சிறப்பு [உதாரணங்கள் கோப்பகம்](examples/README.md) உருவாக்கியுள்ளோம்,ச் சுலபமாகவும் விளக்கப்பட்ட குறியீடுகளுடன், உங்கள் பயணத்தைத் தொடங்க உதவுகிறது:
+**தரவு அறிவியலில் புதியவாயா?** எளிய மற்றும் நன்கு விளக்கப்பட்ட குறியீட்டுடன் சிறப்பு [உதாரணங்கள் அடைவு](examples/README.md) உருவாக்கியுள்ளோம், உங்களைத் தொடங்க உதவ:
-- 🌟 **ஹலோ வேர்ல்டு** - உங்கள் முதலாவது தரவியல் அறிவியல் நிரல்
-- 📂 **தரவு ஏற்றுதல்** - தரவுத்தொகுப்புகளைப் பிழைத்தறிந்து மற்றும் பரிசீலிக்க கற்றுக்கொள்ளுங்கள்
-- 📊 **எளிய பகுப்பாய்வு** - புள்ளிவிவரங்களை கணக்கிடவும் மற்றும் நிலைகள் கண்டுபிடிக்கவும்
-- 📈 **அடிப்படையான காட்சிப்படுத்தல்** - பட்டியல்கள் மற்றும் வரைபடங்கள் உருவாக்கவும்
-- 🔬 **நடைமுறைத் திட்டம்** - தொடக்கம் முதல் முடிவுக்கு முழுமையான செயல்முறை
+- 🌟 **ஹெலோ வெர்ல்ட்** - உங்கள் முதல் தரவு அறிவியல் திட்டம்
+- 📂 **தரவை ஏற்றுதல்** - தரவுகளைக் கற்றுக்கொண்டு ஆராயவும்
+- 📊 **எளிய பகுப்பாய்வு** - புள்ளியியல் கணக்கிடவும் மற்றும் மாதிரிகளை காணவும்
+- 📈 **அடிப்படை காட்சிப்படுத்தல்** - படங்கள் மற்றும் வரைபடங்களை உருவாக்கவும்
+- 🔬 **உண்மை உலகத் திட்டம்** - தொடக்கம் முதல் முடிவுவரை பணிமுறை ஐந்து மணி நேர மேலாண்மை
-ஒவ்வொரு உதாரணத்திற்கும் ஒவ்வொரு படியும் தெளிவான கருத்துக்களுடன் விளக்கப்பட்டுள்ளது, இது முற்றிலும் புதியவர்களுக்கு உகந்த வகையில் உள்ளது!
+ஒவ்வொரு உதாரணமும் ஒவ்வொரு படியையும் விரிவாக விளக்குகிறது, இது முற்றிலும் புதியவர்களுக்கே தகுந்தது!
👉 **[உதாரணங்களுடன் தொடங்கவும்](examples/README.md)** 👈
## பாடங்கள்
-||
+||
|:---:|
-| Data Science For Beginners: Roadmap - _Sketchnote எழுதியவர் [@nitya](https://twitter.com/nitya)_ |
+| தொடக்கர்களுக்கான தரவு அறிவியல்: வழிகாட்டி - _ஸ்கெட்ச் நோட் [@nitya](https://twitter.com/nitya) வழங்கியது_ |
-| பாடத்தேருக்கான எண் | பொருள் | பாடக்குழு | கற்றல் இலக்குகள் | இணைக்கப்பட்ட பாடம் | ஆசிரியர் |
+| பாடம் எண் | தலைப்பு | பாடத் தொகுப்பு | கற்றல் துலக்குகள் | இணைக்கப்பட்ட பாடம் | ஆசிரியர் |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | தரவியல் அறிவியலை வரையறு | [அறிமுகம்](1-Introduction/README.md) | தரவியல் அறிவியலின் அடிப்படைக் கொள்கைகளை மற்றும் அது செயற்கை நுண்ணறிவு, இயந்திரக் கற்றல் மற்றும் பெரும் தரவுடன் எவ்வாறு தொடர்புடையதென அறிந்து கொள் | [பாடம்](1-Introduction/01-defining-data-science/README.md) [வீடியோ](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | தரவியல் ஒழுக்க நெறிகள் | [அறிமுகம்](1-Introduction/README.md) | தரவியல் ஒழுக்க நெறி கொள்கைகள், சவால்கள் மற்றும் கட்டமைப்புகள். | [பாடம்](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | தரவை வரையறு | [அறிமுகம்](1-Introduction/README.md) | தரவு எவ்வாறு வகைப்படுத்தப்படுகிறது மற்றும் பொதுவான மூலங்கள். | [பாடம்](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | புள்ளிவிவரக் கணிதமும் பரிகாரமும் | [அறிமுகம்](1-Introduction/README.md) | தரவை புரிந்து கொள்ள பரிகார மற்றும் புள்ளிவிவரக் கணித நுட்பங்கள். | [பாடம்](1-Introduction/04-stats-and-probability/README.md) [வீடியோ](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | தொடர்புடைய தரவுடன் பணியாற்றுதல் | [தரவு உடன் பணியாற்றுதல்](2-Working-With-Data/README.md) | தொடர்புடைய தரவிற்கு அறிமுகம் மற்றும் அமைந்தவொய்ந்த வினா மொழி SQL (பிரொனவுன்ஸ் "சீ-க்குவல்") மூலம் தொடர்புடைய தரவை பின்வட்டச்செயலில்லை மற்றும் பகுப்பாய்வு அடிப்படைகள் | [பாடம்](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | NoSQL தரவுடன் பணியாற்றுதல் | [தரவு உடன் பணியாற்றுதல்](2-Working-With-Data/README.md) | தொடர்பில்லாத தரவிற்கு அறிமுகம், அதன் பலவகைகள் மற்றும் ஆவண தரவுத்தளங்களைக் கண்டு ஆராயும் அடிப்படை | [பாடம்](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Python உடன் பணியாற்றுதல் | [தரவு உடன் பணியாற்றுதல்](2-Working-With-Data/README.md) | Pandas போன்ற நூலகங்களுடன் தரவு ஆராய்ச்சிக்கான Python அடிப்படைகள். Python நிரலாக்க அடிப்படைகளை புரிந்து கொண்டிருப்பது நன்றாகும். | [பாடம்](2-Working-With-Data/07-python/README.md) [வீடியோ](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | தரவு தயாரிப்பு | [தரவு உடன் பணியாற்றுதல்](2-Working-With-Data/README.md) | தரவை சுத்தப்படுத்துதல் மற்றும் மாற்றுவதற்கான நுட்பங்கள், காணாமலிருக்கும், தவறான அல்லது முழுமையற்ற தரவு சவால்களை கையாளுவதற்கானது. | [பாடம்](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | அளவுகோல்களைக் காப்பு | [தரவு காட்சிப்படுத்துதல்](3-Data-Visualization/README.md) | Matplotlib பயன்படுத்தி பருந்து தரவை காட்சியாக்க கற்றுக் கொள்ளுங்கள் 🦆 | [பாடம்](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | தரவின் விநியோகத்தை காட்சிப்படுத்துதல் | [தரவு காட்சிப்படுத்துதல்](3-Data-Visualization/README.md) | ஒரு இடைவெளியில் பார்வைகள் மற்றும் प्रवणताओं காட்சியளித்தல். | [பாடம்](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | விகிதங்களை காட்சிப்படுத்துதல் | [தரவு காட்சிப்படுத்துதல்](3-Data-Visualization/README.md) | வெறுமனே மற்றும் குழுக்களாக்கப்பட்ட சதவீதங்களை காட்சிப்படுத்துதல். | [பாடம்](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | தொடர்புகளை காட்சிப்படுத்துதல் | [தரவு காட்சிப்படுத்துதல்](3-Data-Visualization/README.md) | தரவு குழுக்களும் அவர்களின் மாறிலிகளும் இடையேயான இணைப்புகள் மற்றும் தொடர்புகளை காட்சிப்படுத்துதல். | [பாடம்](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | அர்த்தமுள்ள காட்சிப்படுத்தல்கள் | [தரவு காட்சிப்படுத்துதல்](3-Data-Visualization/README.md) | உங்கள் காட்சிப்படுத்தல்களை பயனுள்ள பிரச்சனையினை தீர்க்கும் மற்றும் அறிவுரைகளை உருவாக்கும் முறைகள் மற்றும் வழிகாட்டிகள். | [பாடம்](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | தரவியலின் ஆயுள் வளைய அறிமுகம் | [ஆயுள் வளையம்](4-Data-Science-Lifecycle/README.md) | தரவியல் ஆயுள் வளையத்தின் அறிமுகம் மற்றும் தரவைப் பெறுதல் மற்றும் எடுக்கும் முதலாம் படி. | [பாடம்](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | பகுப்பாய்வு | [ஆயுள் வளையம்](4-Data-Science-Lifecycle/README.md) | இந்த கட்டத்தில் தரவு பகுப்பாய்வு நுட்பங்கள் முக்கியத்துவம் பெறுகின்றன. | [பாடம்](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | தொடர்பில் | [ஆயுள் வளையம்](4-Data-Science-Lifecycle/README.md) | தரவிலிருந்து கிடைக்கும் உள்ளடக்கங்களை முடிவெடுப்பவர்களால் புரிந்து கொள்ள எளிதாக்கப்படும் முறையில் வழங்கும் கட்டம். | [பாடம்](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | மேகத்தில் தரவியல் அறிவியல் | [மேக தரவு](5-Data-Science-In-Cloud/README.md) | மேகத்தில் தரவியல் அறிவியலும் அதன் நன்மைகளும் பற்றிய பாடங்கள் தொடர். | [பாடம்](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) மற்றும் [Maud](https://twitter.com/maudstweets) |
-| 18 | மேகத்தில் தரவியல் அறிவியல் | [மேக தரவு](5-Data-Science-In-Cloud/README.md) | குறைந்த குறியீடு கருவிகளைக் கொண்டு மாடல்களை பயிற்சி பெறுதல். |[பாடம்](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) மற்றும் [Maud](https://twitter.com/maudstweets) |
-| 19 | மேகத்தில் தரவியல் அறிவியல் | [மேக தரவு](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio மூலம் மாடல்களை வெளியிடுதல். | [பாடம்](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) மற்றும் [Maud](https://twitter.com/maudstweets) |
-| 20 | இயற்கை சூழலில் தரவியல் அறிவியல் | [இயற்கைச் சூழலில்](6-Data-Science-In-Wild/README.md) | உண்மை உலகில் தரவியல் அறிவியால் இயக்கப்படும் திட்டங்கள். | [பாடம்](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | தரவு அறிவியல் வரையறை | [அறிமுகம்](1-Introduction/README.md) | தரவு அறிவியலின் அடிப்படைக் கருத்துக்களையும், புனைகை நுண்ணறிவு, இயந்திரக் கற்றல், மற்றும் பெரிய தரவுடன் அதன் தொடர்பையும் கற்றுக் கொள்ளுங்கள். | [பாடம்](1-Introduction/01-defining-data-science/README.md) [வீடியோ](https://youtu.be/beZ7Mb_oz9I) | [டிமிட்ரி](http://soshnikov.com) |
+| 02 | தரவு அறிவியல் நெறிமுறைகள் | [அறிமுகம்](1-Introduction/README.md) | தரவு நெறிமுறைகள் கருத்துக்கள், சவால்கள் மற்றும் கட்டமைப்புகள். | [பாடம்](1-Introduction/02-ethics/README.md) | [நித்யா](https://twitter.com/nitya) |
+| 03 | தரவு வரையறை | [அறிமுகம்](1-Introduction/README.md) | தரவு வகைப்படுத்தப்படுவது மற்றும் அதன் பொதுவான மூலங்கள் எப்படி என்பதைப் பற்றி. | [பாடம்](1-Introduction/03-defining-data/README.md) | [ஜாஸ்மின்](https://www.twitter.com/paladique) |
+| 04 | புள்ளியியல் மற்றும் சாத்தியக்கூறு அறிமுகம் | [அறிமுகம்](1-Introduction/README.md) | தரவைப் புரிந்துகொள்ளும் சாத்தியக்கூறுகள் மற்றும் புள்ளியியல் கணக்கியல் தொழில்நுட்பங்கள். | [பாடம்](1-Introduction/04-stats-and-probability/README.md) [வீடியோ](https://youtu.be/Z5Zy85g4Yjw) | [டிமிட்ரி](http://soshnikov.com) |
+| 05 | உறவுக் தரவு செயல்பாடு | [தரவு உடன் வேலை](2-Working-With-Data/README.md) | உறவுக்கூரிய தரவுகள் அறிமுகம் மற்றும் அமைப்பாக்க கேள்வி மொழி (SQL) உடன் உறவுக் தரவுகளை ஆராய்ந்து பகுப்பாய்வு செய்வதின் அடிப்படைகள். | [பாடம்](2-Working-With-Data/05-relational-databases/README.md) | [கிரிஸ்டோபர்](https://www.twitter.com/geektrainer) | | |
+| 06 | NoSQL தரவு செயல்பாடு | [தரவு உடன் வேலை](2-Working-With-Data/README.md) | தொடர்பு இல்லாத தரவு அறிமுகம், அதன் பல வகைகள் மற்றும் ஆவண தரவுத்தளங்களை ஆராய்ந்து பகுப்பாய்வு செய்வதின் அடிப்படைகள். | [பாடம்](2-Working-With-Data/06-non-relational/README.md) | [ஜாஸ்மின்](https://twitter.com/paladique)|
+| 07 | Python உடன் வேலை | [தரவு உடன் வேலை](2-Working-With-Data/README.md) | Python பயன்படுத்தி பாண்டாஸ் போன்ற நூலகங்களுடன் தரவை ஆராய்வதின் அடிப்படைகள். Python நிரலாக்க அடிப்படை அறிவு பரிந்துரைக்கப்படுகிறது. | [பாடம்](2-Working-With-Data/07-python/README.md) [வீடியோ](https://youtu.be/dZjWOGbsN4Y) | [டிமிட்ரி](http://soshnikov.com) |
+| 08 | தரவு தயார் செயல் | [தரவு உடன் வேலை](2-Working-With-Data/README.md) | தரவை சுத்தம் செய்து மாற்றுவதற்கான தொழில்நுட்பங்கள் மற்றும் தரவு இல்லாத, தவறான அல்லது முழுமையற்ற தரவை கையாளும் சவால்கள். | [பாடம்](2-Working-With-Data/08-data-preparation/README.md) | [ஜாஸ்மின்](https://www.twitter.com/paladique) |
+| 09 | அளவுகோல்களை காட்சிப்படுத்தல் | [தரவு காட்சிப்படுத்தல்](3-Data-Visualization/README.md) | பறவையின் தரவை Matplotlib இன் உதவியுடன் பார்ப்பது எப்படி என்பதை கற்று கொள்ளுங்கள் 🦆 | [பாடம்](3-Data-Visualization/09-visualization-quantities/README.md) | [ஜென்](https://twitter.com/jenlooper) |
+| 10 | தரவு விநியோகங்களை காட்சிப்படுத்தல் | [தரவு காட்சிப்படுத்தல்](3-Data-Visualization/README.md) | இடைநிலையிலான கவனிப்புகள் மற்றும் போக்குகளை காட்சிப்படுத்தல். | [பாடம்](3-Data-Visualization/10-visualization-distributions/README.md) | [ஜென்](https://twitter.com/jenlooper) |
+| 11 | விகிதங்களை காட்சிப்படுத்தல் | [தரவு காட்சிப்படுத்தல்](3-Data-Visualization/README.md) | தனித்தனியான மற்றும் குழும விகிதங்களை காட்சிப்படுத்தல். | [பாடம்](3-Data-Visualization/11-visualization-proportions/README.md) | [ஜென்](https://twitter.com/jenlooper) |
+| 12 | உறவுகளை காட்சிப்படுத்தல் | [தரவு காட்சிப்படுத்தல்](3-Data-Visualization/README.md) | தரவு தொகுதிகளுக்குப் பொதுவான தொடர்பு மற்றும் சார்புகளை காட்சிப்படுத்தல். | [பாடம்](3-Data-Visualization/12-visualization-relationships/README.md) | [ஜென்](https://twitter.com/jenlooper) |
+| 13 | அர்த்தமுள்ள காட்சிகள் | [தரவு காட்சிப்படுத்தல்](3-Data-Visualization/README.md) | பழக்க வழக்கமான மற்றும் விளக்கமாகக் காட்சிகளை உருவாக்குவதற்கான தொழில்நுட்பங்கள் மற்றும் வழிகாட்டுதல்கள். | [பாடம்](3-Data-Visualization/13-meaningful-visualizations/README.md) | [ஜென்](https://twitter.com/jenlooper) |
+| 14 | தரவு அறிவியலின் வாழ்நாள் அறிமுகம் | [வாழ்நாள்](4-Data-Science-Lifecycle/README.md) | தரவு அறிவியல் வாழ்நாள் மற்றும் தரவை சேகரித்தல் மற்றும் எடுக்குதல் என அதன் முதல் படி அறிமுகம். | [பாடம்](4-Data-Science-Lifecycle/14-Introduction/README.md) | [ஜாஸ்மின்](https://twitter.com/paladique) |
+| 15 | பகுப்பாய்வு | [வாழ்நாள்](4-Data-Science-Lifecycle/README.md) | தரவு அறிவியல் வாழ்நாட்டின் இந்த கட்டத்தில் தரவைப் பகுப்பாய்வு செய்வதற்கான தொழில்நுட்பங்கள் z. | [பாடம்](4-Data-Science-Lifecycle/15-analyzing/README.md) | [ஜாஸ்மின்](https://twitter.com/paladique) | | |
+| 16 | தொடர்பு | [வாழ்நாள்](4-Data-Science-Lifecycle/README.md) | தரவு அறிவியல் வாழ்நாட்டின் இந்த கட்டத்தில் தலைமை முடிவு எடுப்பவர்களுக்கு புரிந்துகொள்ள எளிதாகும் படி தரவிலிருந்து அறிவ்களை வழங்குவதேக் கவனம். | [பாடம்](4-Data-Science-Lifecycle/16-communication/README.md) | [ஜாலன்](https://twitter.com/JalenMcG) | | |
+| 17 | மேகத்தில் தரவு அறிவியல் | [மேக தரவு](5-Data-Science-In-Cloud/README.md) | இந்த பாடத் தொடர் மேகத்தில் தரவு அறிவியலை மற்றும் அதன் நன்மைகளை அறிமுகப்படுத்துகிறது. | [பாடம்](5-Data-Science-In-Cloud/17-Introduction/README.md) | [டிஃபனி](https://twitter.com/TiffanySouterre) மற்றும் [மாட்](https://twitter.com/maudstweets) |
+| 18 | மேகத்தில் தரவு அறிவியல் | [மேக தரவு](5-Data-Science-In-Cloud/README.md) | குறைந்த குறியீட்டு கருவிகளை பயன்படுத்தி மாதிரிகளை பயிற்சி செய்தல். |[பாடம்](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [டிஃபனி](https://twitter.com/TiffanySouterre) மற்றும் [மாட்](https://twitter.com/maudstweets) |
+| 19 | மேகத்தில் தரவு அறிவியல் | [மேக தரவு](5-Data-Science-In-Cloud/README.md) | Azure இயந்திர கற்றல் ஸ்டுடியோ மூலம் மாதிரிகளை பரப்புதல். | [பாடம்](5-Data-Science-In-Cloud/19-Azure/README.md)| [டிஃபனி](https://twitter.com/TiffanySouterre) மற்றும் [மாட்](https://twitter.com/maudstweets) |
+| 20 | இயற்கையில் தரவு அறிவியல் | [இயற்கையில்](6-Data-Science-In-Wild/README.md) | உண்மையான உலகில் தரவு அறிவியலால் இயக்கப்படும் திட்டங்கள். | [பாடம்](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [நித்யா](https://twitter.com/nitya) |
## GitHub Codespaces
-இந்த மாதிரியை Codespace-ல் திறப்பதற்கான படிகளை பின்தொடரவும்:
-1. Code விகிதான மெனுவை கிளிக் செய்து Open with Codespaces விருப்பத்தை தேர்வு செய்யவும்.
-2. உள்ள பக்கவழியில் + New codespace ஐ தேர்ந்தெடுக்கவும்.
-மேலும் விவரங்களுக்கு, [GitHub ஆவணத்தை](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) பார்க்கவும்.
+இந்த மாதிரியை Codespace இல் திறக்க கீழ்க்கண்ட படிகளை பின்பற்றவும்:
+1. Code கீழிறங்கும் மெனுவை கிளிக் செய்து Open with Codespaces விருப்பத்தைத் தேர்ந்தெடுக்கவும்.
+2. கீழே உள்ள பட்டியில் + New codespace ஐத் தேர்ந்தெடுக்கவும்.
+மேலும் தகவலுக்கு, [GitHub ஆவணங்களை](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) பார்வையிடவும்.
-## VSCode Remote - Containers
-உங்கள் உள்ளூர் இயந்திரம் மற்றும் VSCode பயன்படுத்தி இந்த தொகுப்புக்களத்தை ஒரு கொண்டையளவில் திறக்க கீழ்க்கண்ட படிகளை பின்பற்றவும்:
+## VSCode Remote - Containers
+உங்கள் உள்ளூர் கணினியில் VSCode மற்றும் VS Code Remote - Containers நீட்டிப்பின் உதவியுடன் இந்த தொகுப்பை கொண்டெய்னரில் திறக்க கீழ்க்கண்ட படிகளை பின்பற்றவும்:
-1. நீங்கள் முதன்முறை அபிவிருத்தி கொண்டையைப் பயன்படுத்தி இருந்தால், உங்கள் கணினி முன்னோடி தேவைகளை பூர்த்தி செய்கிறது என்று உறுதி செய்யவும் (உதாரணமாக Docker நிறுவியிருக்க வேண்டும்) [தொடங்குவது குறித்த ஆவணத்தில்](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) பார்க்கவும்.
+1. இது உங்கள் முதன்முறை வளர்ச்சி கொண்டெய்னர் என்றால், உங்கள் கணினி தேவைகள் (எ.கா. Docker நிறுவப்பட்டிருப்பது) [தொடக்க ஆவணங்களில்](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) சரிபார்க்கவும்.
-இந்த தொகுப்புக்களத்தை பயன்படுத்த, நீங்கள் தொகுப்பை தனி Docker அளவுக்கோப்பில் திறக்கலாம்:
+இந்த தொகுப்பை பயன்படுத்த, நீங்கள் தொகுப்பை தனியான Docker வாலியூமில் திறக்கலாம்:
-**குறிப்பு**: அடுக்கில், இது Remote-Containers: **Clone Repository in Container Volume...** கட்டளையைப் பயன்படுத்தி உள்ளூர் கோப்பு அமைப்பின் பதிலாக Docker அளவுக்கோப்பில் மூலக் குறியீட்டை நகலெடுக்க பயன்படும். [அளவுக்கோப்புகள்](https://docs.docker.com/storage/volumes/) என்பது கொண்டை தரவை நிலையான முறையில் கையாள பரிந்துரைக்கப்படுகிறது.
+**குறிப்பு**: இதன் கீழ் Remote-Containers: **Clone Repository in Container Volume...** கட்டளை பயன்படுத்தி மூல குறியீட்டுத் தொகுப்பை உள்ளூர் கோப்பு அமைப்புப் பதிலாக Docker வாலியூமாகக் கிளோன் செய்யும். [வாலியூம்கள்](https://docs.docker.com/storage/volumes/) கொண்டெய்னர் தரவைச் சேமிப்பதற்கான முக்கியமான நடைமுறையாகக் கருதப்படுகின்றன.
-அல்லது உள்ளூர் நகல் செய்யப்பட்ட அல்லது பதிவிறக்கம் செய்யப்பட்ட தொகுப்பை திறக்க:
+அல்லது உள்ளூர் முறையில் கிளோன் செய்யப்பட்ட அல்லது பதிவிறக்கம் செய்யப்பட்ட தொகுப்பைத் திறக்கவும்:
-- இந்த தொகுப்பை உங்கள் உள்ளூர் கோப்பு அமைப்பில் நகலெடுக்கவும்.
-- F1 அழுத்தி **Remote-Containers: Open Folder in Container...** கட்டளையை தேர்ந்தெடுக்கவும்.
-- இந்த கோப்புறையின் நகலைத் தேர்ந்தெடுக்கவும், கொண்டை துவங்க காத்திருந்து, முயற்சிக்கவும்.
+- இந்த தொகுப்பை உங்கள் உள்ளூர் கோப்புறைக்கு கிளோன் செய்யவும்.
+- F1 அழுத்தி **Remote-Containers: Open Folder in Container...** கட்டளையைத் தேர்ந்தெடுக்கவும்.
+- இந்த கோப்புறையின் கிளோன் செய்யப்பட்ட நகலை தேர்ந்தெடுத்து, கொண்டெய்னர் தொடங்க வேண்டும் என காத்திருந்து செயல்களை முயற்சிக்கவும்.
## ஆஃப்லைன் அணுகல்
-[Docsify](https://docsify.js.org/#/) பயன்படுத்தி நீங்கள் இந்த ஆவணங்களை ஆஃப்லைனில் இயக்கலாம். இந்த தொகுப்பை Fork செய்து, உங்கள் உள்ளூர் இயந்திரத்தில் [Docsify ஐ நிறுவி](https://docsify.js.org/#/quickstart), அதன் பிறகு இந்த தொகுப்பின் ரூட் கோப்புறையில் `docsify serve` அச்சிடவும். உங்கள் இணையதளம் `localhost:3000` என்ற போர்டு இல் சேவையிடப்படும்.
+[Docsify](https://docsify.js.org/#/) பயன்படுத்தி இந்த ஆவணத்தைக் கோப்புறையில் இண்டர்னெட்டினின்றி இயக்கலாம். இந்த தொகுப்பை கிளோன் செய்து, உங்கள் உள்ளூர் கணினியில் [Docsify ஐ நிறுவி](https://docsify.js.org/#/quickstart), பின்னர் இந்த தொகுப்பின் அடிப்படை கோப்புறையில் `docsify serve` என்ற டைப் செய்து இயக்கவும். வலைத்தளம் உங்கள் localhost இல் 3000 போர்ட் மூலம் கிடைக்கும்: `localhost:3000`.
-> குறிப்பு, நோட்புக்குகள் Docsify மூலம் காட்சியாக்க்கப்பட மாட்டாது, ஆகவே நீங்கள் நோட்புக் இயக்க வேண்டிய நேரத்தில், Python கர்னல் இயக்கி VS Code-ல் தனித்தனியாக அதனை இயக்குங்கள்.
+> கவனிக்கவும், நோட்புக்கள் Docsify மூலம் காட்டப்பட மாட்டார்கள், ஆகவே நீங்கள் நோட்புக் இயக்கவேண்டுமானால், அது தனி முறையில் VS Code இல் Python கர்னல் கொண்டு இயக்கவும்.
-## பிற பாடத்திட்டங்கள்
+## மற்ற பாடத்திட்டங்கள்
-எங்கள் குழு பிற பாடத்திட்டங்களையும் உருவாக்குகிறது! பாருங்கள்:
+எங்கள் அணி மற்ற பாடத்திட்டங்களையும் உருவாக்குகிறது! பாருங்கள்:
### LangChain
@@ -225,7 +216,7 @@ Microsoft இல் உள்ள Azure Cloud வழிகாட்டிகள
---
-### கோர் கற்பது
+### கோர் கற்றல்
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
@@ -244,19 +235,19 @@ Microsoft இல் உள்ள Azure Cloud வழிகாட்டிகள
## உதவி பெறுதல்
-**சிக்கல்களை எதிர்கொள்கிறீர்களா?** சாதாரண சிக்கல்களுக்கு தீர்வுகளைப் பெற எங்கள் [சிக்கல் தீர்க்கும் வழிகாட்டியை](TROUBLESHOOTING.md) பார்க்கவும்.
+**சிக்கல்கள் சந்திக்கிறீர்களா?** பொதுவான பிரச்சினைகளுக்கான தீர்வுகளை பெற எங்கள் [பிரச்சினை தீர்க்கும் கையேட்டை](TROUBLESHOOTING.md) சரிபார்க்கவும்.
-AI செயலிகளை உருவாக்குவதில் சிக்கல் அடைந்தால் அல்லது கேள்விகள் இருக்குமானால், MCP பற்றி விவாதிப்பதில் மாணவர்களும் அனுபவம் வாய்ந்த மேம்படுத்துநர்களும் சேர்ந்துகொள்ளுங்கள். கேள்விகள் கேட்பதற்கும் அறிவைப் பகிர்வதற்கும் ஆதரவான ஒரு சமூகம்தான் இது.
+AI செயலிகளைக் கட்டமைப்பதில் தடுமாறவோ அல்லது ஏதேனும் கேள்விகள் இருந்தால், MCP குறித்த பேச்சுகளில் மற்ற கற்றவர்களுடனும் அனுபவமுள்ள டெவலப்பர்களுடனும் சேர்ந்துகொள்ளவும். கேள்விகள் வரவேற்கப்படும்தானும் அறிவு அவ்வப்போது பகிரப்படுவதுமான ஆதரவு சமூகமாகும்.
[](https://discord.gg/nTYy5BXMWG)
-உங்கள் தயாரிப்பின் கருத்துகள் அல்லது பிழைகள் இருந்தால்:
+உங்களிடம் தயாரிப்பு கருத்து அல்லது பிழைகள் இருந்தால், கட்டமைக்கும்போது பின்வரும் இடத்தை பார்வையிடவும்:
[](https://aka.ms/foundry/forum)
---
-**வெளியீடு**:
-இந்த ஆவணம் AI மொழிபெயர்ப்பு சேவையான [கோ-ஒப் டிரான்ஸ்லேட்டர்](https://github.com/Azure/co-op-translator) மூலம் மொழிமாற்றம் செய்யப்பட்டுள்ளது. நாங்கள் துல்லியத்திற்காக முயன்றாலும், தானியங்கி மொழிபெயர்ப்புகளில் பிழைகள் அல்லது தவறுகள் எதிர்கொள்ளப்படலாம். அசல் ஆவணம் அதன் பெற்ற மொழியில் அதிகாரப்பூர்வ முகாம் ஆக கருதப்பட வேண்டும். முக்கியமான தகவல்களுக்கு, தொழில்முறை மனித மொழிபெயர்ப்பை பரிந்துரைக்கிறோம். இந்த மொழிபெயர்ப்பின் பயன்பாட்டால் உண்டாகும் எந்த தவறான புரிதலும் அல்லது தவறான விளக்கங்களுக்கும் நாங்கள் பொறுப்பு இருக்க மாட்டோம்.
+**பிரதி விளக்கம்**:
+இந்த ஆவணம் AI மொழிபெயர்ப்பு சேவை [Co-op Translator](https://github.com/Azure/co-op-translator) பயன்படுத்தி மொழிபெயர்க்கப்பட்டுள்ளது. நாங்கள் துல்லியத்தன்மைக்கு முயற்சி செய்கிறோம் என்றாலும், தானாக செய்யப்பட்ட மொழிபெயர்ப்புகளில் பிழைகள் அல்லது தவறுதல்கள் இருக்கக்கூடும் என்பதை தயவுசெய்து கவனியுங்கள். அசல் ஆவணம் தனது சொந்த மொழியில் அதிகாரப்பூர்வ ஆதாரமாக கருதப்பட வேண்டும். முக்கியமான தகவல்களுக்கு, தொழில்முறை மனித மொழிபெயர்ப்பு பரிந்துரைக்கப்படுகிறது. இந்த மொழிபெயர்ப்பின் பயன்பாட்டால் ஏற்பட்ட எந்த தவறான புரிதல்கள் அல்லது தவறாய்க் கருத்துகளுக்கும் நாங்கள் பொறுப்பில்லை.
\ No newline at end of file
diff --git a/translations/ta/SECURITY.md b/translations/ta/SECURITY.md
index 062fabb2..64f39463 100644
--- a/translations/ta/SECURITY.md
+++ b/translations/ta/SECURITY.md
@@ -1,12 +1,3 @@
-
## பாதுகாப்பு
Microsoft எங்கள் மென்பொருள் தயாரிப்புகள் மற்றும் சேவைகளின் பாதுகாப்பை மிகுந்த கவனத்துடன் பார்க்கிறது, இதில் எங்கள் GitHub அமைப்புகள் மூலம் நிர்வகிக்கப்படும் அனைத்து மூலக் குறியீட்டு களஞ்சியங்களும் அடங்கும். இதில் [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), மற்றும் [எங்கள் GitHub அமைப்புகள்](https://opensource.microsoft.com/) அடங்கும்.
diff --git a/translations/ta/SUPPORT.md b/translations/ta/SUPPORT.md
index 9bbdb5c1..125b9059 100644
--- a/translations/ta/SUPPORT.md
+++ b/translations/ta/SUPPORT.md
@@ -1,12 +1,3 @@
-
# ஆதரவு
## பிரச்சினைகளை பதிவு செய்வது மற்றும் உதவி பெறுவது எப்படி
diff --git a/translations/ta/TROUBLESHOOTING.md b/translations/ta/TROUBLESHOOTING.md
index d11a3d0d..7e972f5d 100644
--- a/translations/ta/TROUBLESHOOTING.md
+++ b/translations/ta/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# பிரச்சினைகளை தீர்க்கும் வழிகாட்டி
இந்த வழிகாட்டி, Data Science for Beginners பாடத்திட்டத்துடன் வேலை செய்யும்போது நீங்கள் சந்திக்கக்கூடிய பொதுவான பிரச்சினைகளுக்கு தீர்வுகளை வழங்குகிறது.
diff --git a/translations/ta/USAGE.md b/translations/ta/USAGE.md
index 4d951ca1..e88358e2 100644
--- a/translations/ta/USAGE.md
+++ b/translations/ta/USAGE.md
@@ -1,12 +1,3 @@
-
# பயன்பாட்டு வழிகாட்டி
இந்த வழிகாட்டி, Data Science for Beginners பாடத்திட்டத்தை பயன்படுத்துவதற்கான உதாரணங்கள் மற்றும் பொதுவான பணிச்சூழல்களை வழங்குகிறது.
diff --git a/translations/ta/docs/_sidebar.md b/translations/ta/docs/_sidebar.md
index 4a9cb3da..3dce4eb8 100644
--- a/translations/ta/docs/_sidebar.md
+++ b/translations/ta/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- அறிமுகம்
- [தரவியல் அறிவியலை வரையறுத்தல்](../1-Introduction/01-defining-data-science/README.md)
- [தரவியல் அறிவியலின் நெறிமுறைகள்](../1-Introduction/02-ethics/README.md)
diff --git a/translations/ta/examples/README.md b/translations/ta/examples/README.md
index 17d0d122..d74a77ee 100644
--- a/translations/ta/examples/README.md
+++ b/translations/ta/examples/README.md
@@ -1,12 +1,3 @@
-
# தொடக்கநிலை தரவியல் அறிவியல் உதாரணங்கள்
உதாரணங்கள் அடைவு வரவேற்கிறது! இந்த எளிய, நன்கு விளக்கப்பட்ட உதாரணங்களின் தொகுப்பு, நீங்கள் தரவியல் அறிவியலில் தொடங்க உதவுவதற்காக வடிவமைக்கப்பட்டுள்ளது, நீங்கள் முழுமையாக தொடக்கநிலையில் இருந்தாலும் கூட.
diff --git a/translations/ta/for-teachers.md b/translations/ta/for-teachers.md
index 2395cb54..e5c533ab 100644
--- a/translations/ta/for-teachers.md
+++ b/translations/ta/for-teachers.md
@@ -1,12 +1,3 @@
-
## ஆசிரியர்களுக்காக
இந்த பாடத்திட்டத்தை உங்கள் வகுப்பறையில் பயன்படுத்த விரும்புகிறீர்களா? தயவுசெய்து பயன்படுத்துங்கள்!
diff --git a/translations/ta/quiz-app/README.md b/translations/ta/quiz-app/README.md
index 011de442..8523e4e5 100644
--- a/translations/ta/quiz-app/README.md
+++ b/translations/ta/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# கேள்விகள்
இந்த கேள்விகள் https://aka.ms/datascience-beginners என்ற தரவியல் அறிவியல் பாடத்திட்டத்தின் முன் மற்றும் பின்-வகுப்பு கேள்விகள் ஆகும்.
diff --git a/translations/ta/sketchnotes/README.md b/translations/ta/sketchnotes/README.md
index 3772888f..8722c47c 100644
--- a/translations/ta/sketchnotes/README.md
+++ b/translations/ta/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
எல்லா ஸ்கெட்ச் நோட்களையும் இங்கே காணுங்கள்!
## க்ரெடிட்ஸ்
diff --git a/translations/te/.co-op-translator.json b/translations/te/.co-op-translator.json
new file mode 100644
index 00000000..f195ea40
--- /dev/null
+++ b/translations/te/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-12-19T13:36:58+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "te"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-12-19T13:40:49+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "te"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-12-19T14:29:26+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "te"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-12-19T14:02:12+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "te"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-12-19T14:28:09+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "te"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-12-19T13:58:23+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "te"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-12-19T14:01:10+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "te"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-12-19T13:48:12+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "te"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-12-19T13:56:42+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "te"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-12-19T13:22:49+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "te"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T15:46:41+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "te"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-12-19T15:50:41+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "te"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-12-19T15:37:55+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "te"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-12-19T15:40:41+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "te"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-12-19T15:29:16+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "te"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-12-19T15:36:44+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "te"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-12-19T15:41:26+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "te"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-12-19T15:45:14+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "te"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-12-19T13:29:19+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-12-19T16:12:50+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-12-19T16:17:01+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-12-19T15:52:59+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-12-19T15:56:44+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-12-19T16:01:05+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-12-19T16:04:55+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-12-19T15:57:25+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-12-19T15:59:48+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-12-19T16:06:38+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-12-19T16:11:11+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-12-19T16:18:38+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-12-19T16:17:51+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-12-19T16:30:58+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-12-19T16:34:28+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-12-19T16:19:56+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-12-19T16:23:22+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-12-19T16:27:02+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-12-19T16:24:03+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-12-19T16:36:05+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "te"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-12-19T13:34:37+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "te"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-12-19T15:26:27+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "te"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-12-19T15:28:32+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "te"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-12-19T15:23:47+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "te"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-12-19T15:25:51+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "te"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-12-19T15:18:17+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "te"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-12-19T15:22:42+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "te"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-12-19T13:24:15+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "te"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-12-19T15:05:13+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "te"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-12-19T15:17:36+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "te"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-12-19T14:49:50+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "te"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-12-19T15:03:29+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "te"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-12-19T14:41:20+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "te"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-12-19T14:47:04+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "te"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-12-19T13:23:34+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "te"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-12-19T16:40:41+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "te"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-12-19T16:59:03+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "te"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-12-19T13:36:29+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "te"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-12-19T13:02:06+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "te"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-12-19T13:08:54+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "te"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-12-19T12:48:46+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "te"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-12-19T13:10:17+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "te"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:50:20+00:00",
+ "source_file": "README.md",
+ "language_code": "te"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-12-19T13:13:43+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "te"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-12-19T12:48:23+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "te"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-12-19T12:52:41+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "te"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-12-19T12:43:01+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "te"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-12-19T13:30:16+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "te"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-12-19T13:27:07+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "te"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-12-19T12:40:05+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "te"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-12-19T13:24:56+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "te"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-12-19T13:31:32+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "te"
+ }
+}
\ No newline at end of file
diff --git a/translations/te/1-Introduction/01-defining-data-science/README.md b/translations/te/1-Introduction/01-defining-data-science/README.md
index bb57e116..b89c48bc 100644
--- a/translations/te/1-Introduction/01-defining-data-science/README.md
+++ b/translations/te/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# డేటా సైన్స్ నిర్వచనం
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/te/1-Introduction/01-defining-data-science/assignment.md b/translations/te/1-Introduction/01-defining-data-science/assignment.md
index 1f797fc5..09eb9724 100644
--- a/translations/te/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/te/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# అసైన్మెంట్: డేటా సైన్స్ సన్నివేశాలు
ఈ మొదటి అసైన్మెంట్లో, మీరు వివిధ సమస్యా డొమైన్లలోని కొన్ని వాస్తవ జీవిత ప్రక్రియ లేదా సమస్య గురించి ఆలోచించి, డేటా సైన్స్ ప్రక్రియను ఉపయోగించి దాన్ని ఎలా మెరుగుపరచవచ్చో ఆలోచించమని కోరుతున్నాము. క్రింది విషయాల గురించి ఆలోచించండి:
diff --git a/translations/te/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/te/1-Introduction/01-defining-data-science/solution/assignment.md
index 739903b7..d6416432 100644
--- a/translations/te/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/te/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# అసైన్మెంట్: డేటా సైన్స్ సన్నివేశాలు
ఈ మొదటి అసైన్మెంట్లో, మేము మీరు వివిధ సమస్యా డొమైన్లలోని కొన్ని వాస్తవ జీవిత ప్రక్రియ లేదా సమస్య గురించి ఆలోచించాలని కోరుతున్నాము, మరియు మీరు డేటా సైన్స్ ప్రక్రియను ఉపయోగించి దాన్ని ఎలా మెరుగుపరచగలరో. క్రింది విషయాల గురించి ఆలోచించండి:
diff --git a/translations/te/1-Introduction/02-ethics/README.md b/translations/te/1-Introduction/02-ethics/README.md
index 8a2c51fd..9876de4e 100644
--- a/translations/te/1-Introduction/02-ethics/README.md
+++ b/translations/te/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# డేటా నైతికతకు పరిచయం
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/te/1-Introduction/02-ethics/assignment.md b/translations/te/1-Introduction/02-ethics/assignment.md
index c68abd1f..cefca2e9 100644
--- a/translations/te/1-Introduction/02-ethics/assignment.md
+++ b/translations/te/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## డేటా నైతికత కేసు అధ్యయనం రాయండి
## సూచనలు
diff --git a/translations/te/1-Introduction/03-defining-data/README.md b/translations/te/1-Introduction/03-defining-data/README.md
index 9beeead1..a33cbe8e 100644
--- a/translations/te/1-Introduction/03-defining-data/README.md
+++ b/translations/te/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# డేటా నిర్వచనం
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/te/1-Introduction/03-defining-data/assignment.md b/translations/te/1-Introduction/03-defining-data/assignment.md
index 5bd05827..dc929855 100644
--- a/translations/te/1-Introduction/03-defining-data/assignment.md
+++ b/translations/te/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# డేటాసెట్ల వర్గీకరణ
## సూచనలు
diff --git a/translations/te/1-Introduction/04-stats-and-probability/README.md b/translations/te/1-Introduction/04-stats-and-probability/README.md
index 67951283..fffa2846 100644
--- a/translations/te/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/te/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# గణాంకాలు మరియు సంభావ్యతకు సంక్షిప్త పరిచయం
| ద్వారా ](../../sketchnotes/04-Statistics-Probability.png)|
diff --git a/translations/te/1-Introduction/04-stats-and-probability/assignment.md b/translations/te/1-Introduction/04-stats-and-probability/assignment.md
index 5244a671..50180aa6 100644
--- a/translations/te/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/te/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# చిన్న మధుమేహ అధ్యయనం
ఈ అసైన్మెంట్లో, మేము [ఇక్కడ](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) నుండి తీసుకున్న చిన్న మధుమేహ రోగుల డేటాసెట్తో పని చేస్తాము.
diff --git a/translations/te/1-Introduction/README.md b/translations/te/1-Introduction/README.md
index 9e6d2fc8..5d5e855c 100644
--- a/translations/te/1-Introduction/README.md
+++ b/translations/te/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# డేటా సైన్స్ పరిచయం

diff --git a/translations/te/2-Working-With-Data/05-relational-databases/README.md b/translations/te/2-Working-With-Data/05-relational-databases/README.md
index 39c06c00..00300942 100644
--- a/translations/te/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/te/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Working with Data: Relational Databases
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/te/2-Working-With-Data/05-relational-databases/assignment.md b/translations/te/2-Working-With-Data/05-relational-databases/assignment.md
index 64e00320..40beb50f 100644
--- a/translations/te/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/te/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# విమానాశ్రయ డేటా ప్రదర్శన
మీకు విమానాశ్రయాల గురించి సమాచారం కలిగిన [డేటాబేస్](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) అందించబడింది, ఇది [SQLite](https://sqlite.org/index.html) పై నిర్మించబడింది. స్కీమా క్రింద చూపబడింది. మీరు [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum)లో [SQLite విస్తరణ](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) ఉపయోగించి వివిధ నగరాల విమానాశ్రయాల గురించి సమాచారం ప్రదర్శించవచ్చు.
diff --git a/translations/te/2-Working-With-Data/06-non-relational/README.md b/translations/te/2-Working-With-Data/06-non-relational/README.md
index 103635db..b84e0ad2 100644
--- a/translations/te/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/te/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# డేటాతో పని చేయడం: నాన్-రిలేషనల్ డేటా
| ద్వారా ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/te/2-Working-With-Data/06-non-relational/assignment.md b/translations/te/2-Working-With-Data/06-non-relational/assignment.md
index a68b046f..8ad8b23f 100644
--- a/translations/te/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/te/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# సోడా లాభాలు
## సూచనలు
diff --git a/translations/te/2-Working-With-Data/07-python/README.md b/translations/te/2-Working-With-Data/07-python/README.md
index d90d3ddd..e02cf390 100644
--- a/translations/te/2-Working-With-Data/07-python/README.md
+++ b/translations/te/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# డేటాతో పని చేయడం: పైథాన్ మరియు పాండాస్ లైబ్రరీ
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/te/2-Working-With-Data/07-python/assignment.md b/translations/te/2-Working-With-Data/07-python/assignment.md
index 9387a865..4848b314 100644
--- a/translations/te/2-Working-With-Data/07-python/assignment.md
+++ b/translations/te/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Pythonలో డేటా ప్రాసెసింగ్ కోసం అసైన్మెంట్
ఈ అసైన్మెంట్లో, మేము మా ఛాలెంజ్లలో అభివృద్ధి చేయడం ప్రారంభించిన కోడ్పై మీరు వివరించమని అడుగుతాము. అసైన్మెంట్ రెండు భాగాలుగా ఉంటుంది:
diff --git a/translations/te/2-Working-With-Data/08-data-preparation/README.md b/translations/te/2-Working-With-Data/08-data-preparation/README.md
index 63dbb38d..baa4c0fe 100644
--- a/translations/te/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/te/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Working with Data: Data Preparation
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/te/2-Working-With-Data/08-data-preparation/assignment.md b/translations/te/2-Working-With-Data/08-data-preparation/assignment.md
index f6694eb9..330baf38 100644
--- a/translations/te/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/te/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# ఫారమ్ నుండి డేటాను మూల్యాంకనం చేయడం
ఒక క్లయింట్ తమ క్లయింట్-బేస్ గురించి కొన్ని ప్రాథమిక డేటాను సేకరించడానికి [చిన్న ఫారమ్](../../../../2-Working-With-Data/08-data-preparation/index.html) ను పరీక్షిస్తున్నారు. వారు సేకరించిన డేటాను మీరు ధృవీకరించడానికి వారి కనుగొనుటలను మీకు తీసుకువచ్చారు. మీరు ఫారమ్ను చూడటానికి బ్రౌజర్లో `index.html` పేజీని తెరవవచ్చు.
diff --git a/translations/te/2-Working-With-Data/README.md b/translations/te/2-Working-With-Data/README.md
index 4450dac4..d3287487 100644
--- a/translations/te/2-Working-With-Data/README.md
+++ b/translations/te/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# డేటాతో పని చేయడం

diff --git a/translations/te/3-Data-Visualization/09-visualization-quantities/README.md b/translations/te/3-Data-Visualization/09-visualization-quantities/README.md
index b146f7f9..2348ad78 100644
--- a/translations/te/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/te/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# పరిమాణాలను దృశ్యీకరించడం
| ద్వారా ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/te/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/te/3-Data-Visualization/09-visualization-quantities/assignment.md
index a3e4cc57..84bce3c7 100644
--- a/translations/te/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/te/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# లైన్లు, స్కాటర్స్ మరియు బార్లు
## సూచనలు
diff --git a/translations/te/3-Data-Visualization/10-visualization-distributions/README.md b/translations/te/3-Data-Visualization/10-visualization-distributions/README.md
index 99a0622c..bd2a38b4 100644
--- a/translations/te/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/te/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# పంపిణీలను దృశ్యీకరించడం
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/te/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/te/3-Data-Visualization/10-visualization-distributions/assignment.md
index ccac8ef3..8bc3ec2d 100644
--- a/translations/te/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/te/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# మీ నైపుణ్యాలను వర్తింపజేయండి
## సూచనలు
diff --git a/translations/te/3-Data-Visualization/11-visualization-proportions/README.md b/translations/te/3-Data-Visualization/11-visualization-proportions/README.md
index 9bc8b5f9..b629534e 100644
--- a/translations/te/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/te/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# భాగాలను దృశ్యీకరించడం
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/te/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/te/3-Data-Visualization/11-visualization-proportions/assignment.md
index dfa11eee..ffb77b5e 100644
--- a/translations/te/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/te/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Excelలో ప్రయత్నించండి
## సూచనలు
diff --git a/translations/te/3-Data-Visualization/12-visualization-relationships/README.md b/translations/te/3-Data-Visualization/12-visualization-relationships/README.md
index 0267b75d..aeaf9de8 100644
--- a/translations/te/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/te/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# సంబంధాలను దృశ్యీకరించడం: తేనె గురించి అన్ని 🍯
| ద్వారా ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/te/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/te/3-Data-Visualization/12-visualization-relationships/assignment.md
index 81669108..cbf3aec6 100644
--- a/translations/te/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/te/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# తేనెతోటలోకి డైవ్ చేయండి
## సూచనలు
diff --git a/translations/te/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/te/3-Data-Visualization/13-meaningful-visualizations/README.md
index e74a80af..d9dfbaed 100644
--- a/translations/te/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/te/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# అర్థవంతమైన విజువలైజేషన్లు చేయడం
| ద్వారా ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/te/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/te/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 784a216b..27012e21 100644
--- a/translations/te/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/te/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# మీ స్వంత కస్టమ్ విజ్ నిర్మించండి
## సూచనలు
diff --git a/translations/te/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/te/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 3dc37651..bfc36102 100644
--- a/translations/te/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/te/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Dangerous Liaisons డేటా విజువలైజేషన్ ప్రాజెక్ట్
ప్రారంభించడానికి, మీ మెషీన్లో NPM మరియు Node నడుస్తున్నాయని నిర్ధారించుకోవాలి. డిపెండెన్సీలను ఇన్స్టాల్ చేయండి (npm install) మరియు ఆపై ప్రాజెక్ట్ను లోకల్గా నడపండి (npm run serve):
diff --git a/translations/te/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/te/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 23d1a449..90fe4a3a 100644
--- a/translations/te/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/te/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Dangerous Liaisons డేటా విజువలైజేషన్ ప్రాజెక్ట్
ప్రారంభించడానికి, మీ మెషీన్లో NPM మరియు Node నడుస్తున్నాయని నిర్ధారించుకోవాలి. డిపెండెన్సీలను ఇన్స్టాల్ చేయండి (npm install) మరియు ఆపై ప్రాజెక్ట్ను లోకల్గా నడపండి (npm run serve):
diff --git a/translations/te/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/te/3-Data-Visualization/R/09-visualization-quantities/README.md
index 79375e59..6120bee8 100644
--- a/translations/te/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/te/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# పరిమాణాలను దృశ్యీకరించడం
| ద్వారా ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/te/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/te/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 7f758a9f..1561b976 100644
--- a/translations/te/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/te/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# లైన్లు, స్కాటర్స్ మరియు బార్లు
## సూచనలు
diff --git a/translations/te/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/te/3-Data-Visualization/R/10-visualization-distributions/README.md
index f0672c2a..46f6df5a 100644
--- a/translations/te/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/te/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# పంపిణీలను దృశ్యీకరించడం
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/te/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/te/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 82fcfdae..91a6a76c 100644
--- a/translations/te/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/te/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# మీ నైపుణ్యాలను వర్తింపజేయండి
## సూచనలు
diff --git a/translations/te/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/te/3-Data-Visualization/R/11-visualization-proportions/README.md
index 1d90cc10..f2b35aa7 100644
--- a/translations/te/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/te/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Visualizing Proportions
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/te/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/te/3-Data-Visualization/R/12-visualization-relationships/README.md
index d36f5bf1..6f827c9f 100644
--- a/translations/te/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/te/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# సంబంధాలను దృశ్యీకరించడం: తేనె గురించి అన్ని విషయాలు 🍯
| ద్వారా ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/te/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/te/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 0dc3b62d..c056cb39 100644
--- a/translations/te/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/te/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# అర్థవంతమైన విజువలైజేషన్లు చేయడం
| ద్వారా ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/te/3-Data-Visualization/README.md b/translations/te/3-Data-Visualization/README.md
index 3bb6f573..ef2f0032 100644
--- a/translations/te/3-Data-Visualization/README.md
+++ b/translations/te/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# విజువలైజేషన్లు

diff --git a/translations/te/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/te/4-Data-Science-Lifecycle/14-Introduction/README.md
index a8413d44..4f17c254 100644
--- a/translations/te/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/te/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# డేటా సైన్స్ లైఫ్సైకిల్ పరిచయం
| ద్వారా ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/te/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/te/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 4bba3ebf..17704a9d 100644
--- a/translations/te/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/te/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# డేటాసెట్ను అంచనా వేయడం
ఒక క్లయింట్ మీ బృందాన్ని న్యూయార్క్ సిటీలో టాక్సీ ప్రయాణికుల సీజనల్ ఖర్చుల అలవాట్లను పరిశీలించడంలో సహాయం కోసం సంప్రదించారు.
diff --git a/translations/te/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/te/4-Data-Science-Lifecycle/15-analyzing/README.md
index c698e805..9df322cb 100644
--- a/translations/te/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/te/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# డేటా సైన్స్ లైఫ్సైకిల్: విశ్లేషణ
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/te/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/te/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 7ae01df3..a12fcec5 100644
--- a/translations/te/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/te/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# సమాధానాలను అన్వేషించడం
ఇది గత పాఠం యొక్క [అసైన్మెంట్](../14-Introduction/assignment.md) యొక్క కొనసాగింపు, అక్కడ మేము డేటా సెట్ను సంక్షిప్తంగా పరిశీలించాము. ఇప్పుడు మేము డేటాను మరింత లోతుగా పరిశీలించబోతున్నాము.
diff --git a/translations/te/4-Data-Science-Lifecycle/16-communication/README.md b/translations/te/4-Data-Science-Lifecycle/16-communication/README.md
index ca90d68d..b1cd184b 100644
--- a/translations/te/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/te/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# డేటా సైన్స్ లైఫ్సైకిల్: కమ్యూనికేషన్
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/te/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/te/4-Data-Science-Lifecycle/16-communication/assignment.md
index b7e7aa93..23986b9b 100644
--- a/translations/te/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/te/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# కథ చెప్పండి
## సూచనలు
diff --git a/translations/te/4-Data-Science-Lifecycle/README.md b/translations/te/4-Data-Science-Lifecycle/README.md
index 6bc8c80d..6afc5f0a 100644
--- a/translations/te/4-Data-Science-Lifecycle/README.md
+++ b/translations/te/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# డేటా సైన్స్ లైఫ్సైకిల్

diff --git a/translations/te/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/te/5-Data-Science-In-Cloud/17-Introduction/README.md
index b4104ca5..36d2b7c7 100644
--- a/translations/te/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/te/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# క్లౌడ్లో డేటా సైన్స్ పరిచయం
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/te/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/te/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index bf68bd2e..7d5f44f6 100644
--- a/translations/te/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/te/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# మార్కెట్ రీసెర్చ్
## సూచనలు
diff --git a/translations/te/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/te/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 2a09fd07..e8881a57 100644
--- a/translations/te/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/te/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# క్లౌడ్లో డేటా సైన్స్: "లో కోడ్/నో కోడ్" విధానం
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/te/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/te/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index d0db9285..a5a42baa 100644
--- a/translations/te/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/te/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# లో కోడ్/నో కోడ్ డేటా సైన్స్ ప్రాజెక్ట్ ఆన్ అజ్యూర్ ML
## సూచనలు
diff --git a/translations/te/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/te/5-Data-Science-In-Cloud/19-Azure/README.md
index df233671..b90f317a 100644
--- a/translations/te/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/te/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# క్లౌడ్లో డేటా సైన్స్: "Azure ML SDK" విధానం
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/te/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/te/5-Data-Science-In-Cloud/19-Azure/assignment.md
index e9ca89b9..17551328 100644
--- a/translations/te/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/te/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML SDK ఉపయోగించి డేటా సైన్స్ ప్రాజెక్ట్
## సూచనలు
diff --git a/translations/te/5-Data-Science-In-Cloud/README.md b/translations/te/5-Data-Science-In-Cloud/README.md
index 19d5eedd..9e94af36 100644
--- a/translations/te/5-Data-Science-In-Cloud/README.md
+++ b/translations/te/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# క్లౌడ్లో డేటా సైన్స్

diff --git a/translations/te/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/te/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 571c0f59..18b40abf 100644
--- a/translations/te/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/te/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# వాస్తవ ప్రపంచంలో డేటా సైన్స్
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/te/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/te/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 282666ec..575674b4 100644
--- a/translations/te/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/te/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# ఒక ప్లానెటరీ కంప్యూటర్ డేటాసెట్ను అన్వేషించండి
## సూచనలు
diff --git a/translations/te/6-Data-Science-In-Wild/README.md b/translations/te/6-Data-Science-In-Wild/README.md
index 41cfa29e..5adcab1c 100644
--- a/translations/te/6-Data-Science-In-Wild/README.md
+++ b/translations/te/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Data Science in the Wild
విభిన్న పరిశ్రమలలో డేటా సైన్స్ యొక్క వాస్తవ ప్రపంచ అనువర్తనాలు.
diff --git a/translations/te/AGENTS.md b/translations/te/AGENTS.md
index 0bb769f3..4cb7effa 100644
--- a/translations/te/AGENTS.md
+++ b/translations/te/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## ప్రాజెక్ట్ అవలోకనం
diff --git a/translations/te/CODE_OF_CONDUCT.md b/translations/te/CODE_OF_CONDUCT.md
index c6045b55..5ec77919 100644
--- a/translations/te/CODE_OF_CONDUCT.md
+++ b/translations/te/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft ఓపెన్ సోర్స్ కోడ్ ఆఫ్ కండక్ట్
ఈ ప్రాజెక్ట్ [Microsoft ఓపెన్ సోర్స్ కోడ్ ఆఫ్ కండక్ట్](https://opensource.microsoft.com/codeofconduct/)ని ఆమోదించింది.
diff --git a/translations/te/CONTRIBUTING.md b/translations/te/CONTRIBUTING.md
index b13f22bb..2daef1a8 100644
--- a/translations/te/CONTRIBUTING.md
+++ b/translations/te/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Data Science for Beginners కు సహకరించడం
Data Science for Beginners పాఠ్యాంశానికి సహకరించడానికి మీ ఆసక్తికి ధన్యవాదాలు! మేము సమాజం నుండి సహకారాలను స్వాగతిస్తున్నాము.
diff --git a/translations/te/INSTALLATION.md b/translations/te/INSTALLATION.md
index 2f2ed255..2d87ee66 100644
--- a/translations/te/INSTALLATION.md
+++ b/translations/te/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# ఇన్స్టాలేషన్ గైడ్
ఈ గైడ్ మీకు Data Science for Beginners పాఠ్యాంశంతో పని చేయడానికి మీ వాతావరణాన్ని సెట్ చేయడంలో సహాయపడుతుంది.
diff --git a/translations/te/README.md b/translations/te/README.md
index 0635dfed..fb640f29 100644
--- a/translations/te/README.md
+++ b/translations/te/README.md
@@ -1,215 +1,204 @@
-
-# ప్రారంభికులకు డేటా సైన్స్ - ఒక పాఠ్యक्रमం
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+# డేటా సైన్స్ ఫర్ బేగిన్నర్స్ - ఒక పాఠ్యక్రమం
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
[](https://aka.ms/foundry/forum)
-Microsoft లో Azure Cloud Advocates డేటా సైన్స్ గురించి 10 వారాల, 20 పాఠాల పాఠ్యక్రమాన్ని సంబరంగా అందిస్తున్నారు. ప్రతి పాఠంలో పాఠం ముందు మరియు తర్వాత ప్రశ్నార్థకాలు, పాఠం పూర్తి చేసేందుకు వ్రాత సూచనలు, పరిష్కారం మరియు అసైన్మెంట్ ఉన్నాయి. మా ప్రాజెక్ట్ ఆధారిత పాఠ్య విధానం మీరు నేర్చుకునే సమయంలో నిర్మించేందుకు అనుమతిస్తుంది, ఇది కొత్త నైపుణ్యాల "అడుగులు" పడేందుకు నిరూపితమైన మార్గం.
+మైక్రోసాఫ్ట్ లో Azure క్లౌడ్ అడ్వకేట్స్ డేటా సైన్స్ పై 10 వారాలు, 20 పాఠాలను కలిగిన పూర్తి పాఠ్యక్రమాన్ని అందించడం ఆనందంగా ఉంది. ప్రతి పాఠం పూర్వ పాఠం మరియు పశ్చాత్పాఠం క్విజిలను, పాఠాన్ని పూర్తి చేయటానికి రాయబడిన సూచనలను, ఒక పరిష్కారాన్ని మరియు అసైన్మెంట్ను కలిగి ఉంటుంది. మా ప్రాజెక్ట్ ఆధారిత పాఠశాల పద్ధతి మీరు నేర్పుకునే సమయానికి నిర్మించడానికి అనుమతిస్తుంది, ఇది కొత్త నైపుణ్యాలు మగ్గించడానికి పరీక్షించిన మార్గం.
-**మా రచయితలకు హృదయపూర్వక ధన్యవాదాలు:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**మన రచయితలకు హృదయపూర్వక ధన్యవాదాలు:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 ప్రత్యేక కృతజ్ఞతలు 🙏 మా [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) రచయితలు, సమీక్షకులు మరియు కంటెంట్ కలిసికొనేవారికి,** ముఖ్యంగా ఆర్యన్ అరూరా, [అదిత్య గార్గ్](https://github.com/AdityaGarg00), [అలొంద్రా సాంచేజ్](https://www.linkedin.com/in/alondra-sanchez-molina/), [అంకిత సింగ్](https://www.linkedin.com/in/ankitasingh007), [అనుపమ్ మిశ్రా](https://www.linkedin.com/in/anupam--mishra/), [అర్పిత దాస్](https://www.linkedin.com/in/arpitadas01/), ఛాయిల్భిహరి దుబే, [డిబ్రి న్సోఫోర్](https://www.linkedin.com/in/dibrinsofor), [దిశిత భాసిన్](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [మాజ్ద్ సఫీ](https://www.linkedin.com/in/majd-s/), [మ్యాక్స్ బ్లమ్](https://www.linkedin.com/in/max-blum-6036a1186/), [మిగేల్ కోరియా](https://www.linkedin.com/in/miguelmque/), [మొహమ్మ ఇఫ్తేఖర్ (ఇఫ్టూ) ఎబ్నే జలాల్](https://twitter.com/iftu119), [నావ్రిన్ టబాస్సుం](https://www.linkedin.com/in/nawrin-tabassum), [రేమండ్ వాంగ్సా పుత్ర](https://www.linkedin.com/in/raymond-wp/), [โรహిత్ యాదవ్](https://www.linkedin.com/in/rty2423), సమృధి శర్మ, [సన్యా సింహ](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
-[షినా నరూలా](https://www.linkedin.com/in/sheena-narua-n/), [తౌకీర్ అహ్మద్](https://www.linkedin.com/in/tauqeerahmad5201/), యోగేంద్రసింగ్ పవార్ , [విదుషి గుప్తా](https://www.linkedin.com/in/vidushi-gupta07/), [జస్లీన్ సొంధి](https://www.linkedin.com/in/jasleen-sondhi/)
+**🙏 ప్రత్యేక ధన్యవాదాలు 🙏 మా [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) రచయితలు, సమీక్షకులు మరియు కంటెంట్ కంట్రీబ్యూటర్లకు,** ముఖ్యంగా Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| డేటా సైన్స్ ఫర్ ప్రారంభికులు - _స్కెచ్ నోట్ [@nitya](https://twitter.com/nitya) ద్వారా_ |
+| డేటా సైన్స్ ఫర్ బేగిన్నర్స్ - _@nitya ద్వారా స్కెచ్నోట్_ |
### 🌐 బహుభాషా మద్దతు
-#### GitHub యాక్షన్ ద్వారా మద్దతు (ఆటోమేటెడ్ & ఎల్లప్పుడూ అప్డేట్)
+#### GitHub యాక్షన్ ద్వారా మద్దతు (ఆటోమేటెడ్ & ఎప్పుడూ తాజా)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](./README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](./README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **స్థానికంగా క్లోన్ చేయడం ఇష్టమా?**
+> **స్థానికంగా క్లోన్ చేయాలనుకుంటున్నారా?**
-> ఈ రిపోజిటరీలో 50+ భాషా అనువాదాలు ఉన్నాయి, ఇవి డౌన్లోడ్ పరిమాణాన్ని గణనీయంగా పెంచుతాయి. అనువాదాలు లేకుండా క్లోన్ చేయడానికి sparse checkout ఉపయోగించండి:
+> ఈ రిపాజిటరీ 50+ భాషా అనువాదాలను కలిగి ఉంటుంది, ఇది డౌన్లోడ్ పరిమాణాన్ని గణనీయంగా పెంచుతుంది. అనువాదాలు లేకుండా క్లోన్ చేయడానికి, స్పార్స్ చెకౌట్ ఉపయోగించండి:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> ఇది కోర్సును పూర్తిచేయడానికి అవసరమైనది వేగంగా డౌన్లోడ్ అవుతుంది.
+> ఇది మీరు కోర్సును పూర్తి చేయడానికి అవసరమైన అన్ని విషయాలను చాలా వేగంగా డౌన్లోడ్ చేస్తుంది.
-**మరిన్ని భాషా మద్దతులు కావాలంటే అవి ఇక్కడ ఉన్నాయి [here](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**అదనపు అనువాద భాషల మద్దతు కావాలంటే [ఇక్కడ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) జాబితా చేయబడ్డాయి**
-#### మా సమాజంలో చేరండి
+#### మన కమ్యూనిటీలో చేరండి
[](https://discord.gg/nTYy5BXMWG)
-మేము Discord Learn with AI సిరీస్ నిర్వహిస్తున్నాము, 18 - 30 సెప్టెంబర్, 2025 నుండి [Learn with AI Series](https://aka.ms/learnwithai/discord) ద్వారా మరింత తెలుసుకోండి మరియు జాయిన్ అవ్వండి. మీరు GitHub Copilot ను డేటా సైన్స్ లో ఉపయోగించే చిట్కాలు మరియు టిప్స్ పొందుతారు.
+మా వద్ద Discordలో AIతో నేర్చుకునే సిరీస్ ఉంటుంది, దీన్ని మరింత తెలుసుకోండి మరియు [Learn with AI Series](https://aka.ms/learnwithai/discord) లో 18 - 30 సెప్టెంబర్, 2025 సమయాల్లో చేరండి. మీరు GitHub Copilot ఉపయోగించడం కోసం చిట్కాలు మరియు మార్గదర్శకాలను పొందుతారు.
-
+
-# మీరు ఒక విద్యార్థి మాత్రమేనా?
+# మీరు విద్యార్థి అయితే?
-కింద చెప్పబడిన వనరులతో ప్రారంభించండి:
+కింది వనరులతో మొదలవ్వండి:
-- [విద్యార్థి హబ్ పేజి](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ఈ పేజీలో మీరు ప్రారంభిక వనరులు, విద్యార్థి ప్యాక్స్ మరియు ఉచిత సర్టిఫికేట్ వోచర్ పొందగల మార్గాలు కనుగొంటారు. ఇది మీరు సూచిక పెట్టుకొని తరచుగా చూడవలసిన ఒక పేజి, ఎందుకంటే మేము కనీసం నెలనెలలా కంటెంట్ ను మార్చుతాము.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ప్రపంచవ్యాప్తంగా ఉన్న విద్యార్థి రాయితీల సంఘంలో చేరండి, ఇది Microsoft లో ప్రవేశించే మీ మార్గం కావొచ్చు.
+- [స్టూడెంట్ హబ్ పేజీ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ఈ పేజీలో మీరు ప్రారంభ దశలో ఉపయోగపడే వనరులు, స్టూడెంట్ ప్యాక్స్ మరియు ఉచిత సర్టిఫికెట్ వోచర్ అందుకునే మార్గాలు కనుగొంటారు. ఇది మీకు ఒక బుక్మార్క్ చేయదగిన పేజీ, మరియు కంటెంట్ మద్య మద్య మార్చుకుంటే, మీరు తరచూ తనిఖీ చేయాలి.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) గ్లోబల్ విద్యార్థి రూపొందింపబడ్డ కమ్యూనిటీలో చేరండి, ఇది మైక్రోసాఫ్ట్ లో చేరే మీ మార్గం కావచ్చు.
-# ప్రారంభము
+# ప్రారంభం
## 📚 డాక్యుమెంటేషన్
-- **[ఇన్స్టాలేషన్ గైడ్](INSTALLATION.md)** - ప్రారంభողների కోసం దశ దశ సూచనలు
-- **[ఉపయోగ సూచిక](USAGE.md)** - ఉదాహరణలు మరియు సాధారణ పనితీరు
-- **[పెద్ద సమస్యలు పరిష్కారం](TROUBLESHOOTING.md)** - సాధారణ సమస్యల పరిష్కారాలు
-- **[కాబట్టి సహకరించండి](CONTRIBUTING.md)** - ఈ ప్రాజెక్ట్ కు సహకరించే విధానం
-- **[ఉపాధ్యాయుల కోసం](for-teachers.md)** - బోధన మార్గదర్శకాలు మరియు తరగతి వనరులు
+- **[ఇన్స్టాలేషన్ గైడ్](INSTALLATION.md)** - ప్రారంభదశల వారికి ఎలాంటి సౌకర్యాలతో స్థాపన సూచనలు
+- **[ఉపయోగ గైడ్](USAGE.md)** - ఉదాహరణలు మరియు సాధారణ వర్క్ఫ్లోస్
+- **[ట్రబుల్షూటింగ్](TROUBLESHOOTING.md)** - సామాన్య సమస్యలకు పరిష్కారాలు
+- **[కంట్రీబ్యూటింగ్ గైడ్](CONTRIBUTING.md)** - ప్రాజెక్టుకు ఎలా కంట్రీబ్యూట్ చేయాలి
+- **[గురువులకు](for-teachers.md)** - బోధనా సూచనాలు మరియు తరగతి వనరులు
## 👨🎓 విద్యార్థులకు
-> **సమగ్ర ప్రారంభికులు**: డేటా సైన్స్ కు కొత్తవారా? మా [ప్రారంభ స్నేహపూర్వక ఉదాహరణలు](examples/README.md) తో ప్రారంభించండి! ఈ సులభమైన, వ్యాఖ్యానించిన ఉదాహరణలు మీరు పాఠ్యక్రమాన్ని పూర్తిగా నేర్చుకునే ముందు ప్రాథమిక విషయాలను అర్థం చేసుకునేందుకు సహాయం చేస్తాయి.
-> **[విద్యార్థులు](https://aka.ms/student-page)**: ఈ పాఠ్యక్రమాన్ని మీ స్వయంగా ఉపయోగించుకోవడానికి, మొత్తం రిపొని ఫోర్క్ చేసి, ముందుగా లెక్చర్ క్విజ్ తో ప్రారంభించి వ్యాయామాలు పూర్తి చేయండి. ఆపై లెక్చర్ చదవండి మరియు మిగతా కార్యాచరణలు పూర్తిచేయండి. పరిష్కారం కోడ్ను కాపీ చేయడం కంటే పాఠాలను అర్థం చేసుకుని ప్రాజెక్టులను సృష్టించేందుకు ప్రయత్నించండి; అయితే, ఆ కోడ్ ప్రతి ప్రాజెక్ట్-ఆధారిత పాఠంలో /solutions ఫోల్డర్లలో అందుబాటులో ఉంది. మరో ఆలోచనగా మీ స్నేహితులతో అధ్యయన సమూహం ఏర్పరచుకొని కంటెంట్ ను కలసి పరిశీలించండి. మరో స్థాయిలో అధ్యయనం కోసం, మేము [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ను సూచిస్తున్నాము.
+> **పూర్తి కొత్తవారికి**: డేటా సైన్స్ కొత్తగా ఉంటే, మా [బేగిన్నర్-ఫ్రెండ్లీ ఉదాహరణలు](examples/README.md) తో ప్రారంభించండి! ఈ సరళమైన మరియు బాగా వ్యాఖ్యానించిన ఉదాహరణలు మిమ్మల్ని పాఠ్యక్రమం పూర్తి మునిగిపోవడానికి ముందు ప్రాథమికాలు అర్థం చేసుకోవచ్చు.
+> **[విద్యార్థులు](https://aka.ms/student-page)**: ఈ పాఠ్యక్రమాన్ని మీ స్వంతంగా ఉపయోగించాలంటే, మొత్తం రీపోను ఫోర్క్ చేసి ముందుగా యుక్తి-పరీక్షతో మొదలుపెట్టి, తర్వాత పాఠం చదివి మరింత కార్యకలాపాలు పూర్తిచేయండి. పరిష్కార కోడ్ కాపీ చేయడం కాకుండా పాఠాలను అర్థం చేసుకుని ప్రాజెక్టులు రూపొందించడానికి ప్రయత్నించండి; అయినప్పటికీ, ఆ కోడ్ /solutions ఫోల్డర్లలో అందుబాటులో ఉంటుంది. మరో యోచన, మిత్రులతో ఒక అధ్యయన సమూహం ఏర్పాటు చేసి కలసి విషయం చదవడం. మరింత అధ్యయనానికి, మేము [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ని సూచిస్తాము.
-**ద్రుత ప్రారంభం:**
-1. మీ పరిసరాన్ని సెటప్ చేసేందుకు [ఇన్స్టాలేషన్ గైడ్](INSTALLATION.md) పరిశీలించండి
-2. పాఠ్యక్రమంతో పనిచేయడం ఎలా అంటే తెలుసుకోవడానికి [ఉపయోగ సూచిక](USAGE.md) పరిశీలించండి
-3. పాఠం 1 తో ప్రారంభించి వరుసగా కొనసాగండి
-4. మద్దతు కోసం మా [Discord సమాజంలో](https://aka.ms/ds4beginners/discord) చేరండి
+**త్వరిత ప్రారంభం:**
+1. మీ పరిసరాలను సెటప్ చేసేందుకు [ఇన్స్టాలేషన్ గైడ్](INSTALLATION.md) ను తనిఖీ చేయండి
+2. పాఠ్యక్రమంతో ఎలా పని చేయాలో తెలుసుకోడానికి [ఉపయోగ గైడ్](USAGE.md) ను సమీక్షించండి
+3. పాఠం 1 నుండి ప్రారంభించి సీక్వెన్షియల్ గా పని చేయండి
+4. మద్దతు కోసం మా [Discord కమ్యూనిటీ](https://aka.ms/ds4beginners/discord) లో చేరండి
-## 👩🏫 ఉపాధ్యాయులకు
+## 👩🏫 గురువులకు
-> **ఉపాధ్యాయులు**: ఈ పాఠ్యక్రమాన్ని ఎలా ఉపయోగించాలో మేము కొన్ని సూచనలు [ఉపయోగించినాం](for-teachers.md). మీ అభిప్రాయాలు మాకు చాలా ఇష్టం [మా చర్చా ఫోరంలో](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+> **గురువులు**: ఈ పాఠ్యక్రమాన్ని ఎలా ఉపయోగించాలో [చిన్న సూచనలు](for-teachers.md) మేము చేర్చాము. మా [చర్చ ఫోరంలో](https://github.com/microsoft/Data-Science-For-Beginners/discussions) మీ అభిప్రాయాలు తెలపండి!
+## బృందాన్ని కలవండి
-## టీమ్ను కలవండి
[](https://youtu.be/8mzavjQSMM4 "ప్రోమో వీడియో")
-**గిఫ్ అందించిన** [మోహిత్ జైసాల్](https://www.linkedin.com/in/mohitjaisal)
+**గిఫ్** [మోహిత్ జాయిసల్](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 ప్రాజెక్ట్ గురించి వీడియో కోసం పై చిత్రం క్లిక్ చేయండి మరియు దాన్ని సృష్టించిన వారికి సంబంధించినది!
+> 🎥 ప్రాజెక్ట్ గురించి మరియు దాన్ని సృష్టించిన వారిపై వీడియో కోసం పై చిత్రాన్ని క్లిక్ చేయండి!
-## విద్యా విధానం
+## పాఠశాస్త్రశాస్త్రం
-మనం ఈ పాఠ్య పథకాన్ని నిర్మిస్తూ రెండు విద్యా సూత్రాలు ఎన్నుకున్నాము: ఇది ప్రాజెక్ట్-ఆధారితంగా ఉండటం మరియు తరచూ క్విజ్లు కలిగి ఉండటం. ఈ సిరీస్ చివరికి, విద్యార్థులు డేటా సైన్స్లో మౌలిక సూత్రాలు నేర్చుకుంటారు, వాటిలో నిబంధనలు, డేటా సన్నాహకత, డేటాతో పని చేసే విభిన్న మార్గాలు, డేటా విజువలైజేషన్, డేటా విశ్లేషణ, డేటా సైన్స్ యొక్క వాస్తవ ప్రపంచ వినియోగాలు మరియు మరిన్ని ఉన్నాయి.
+ఈ పాఠ్యक्रमాన్ని రూపొందించే సమయంలో మేము రెండు పాఠశాస్త్ర ప్రిన్సిపళ్లు ఎంచుకున్నాం: ప్రాజెక్ట్ ఆధారితంగా ఉండటం మరియు తరచూ క్విజ్లు ఉండటం. ఈ సిరీస్ చివరికి, విద్యార్థులు డేటా సైన్స్ యొక్క ప్రాథమిక సూత్రాలు నేర్చుకుంటారు, ఇందులో నైతిక సూత్రాలు, డేటా సిద్ధత, డేటాతో పని చేసే వివిధ విధానాలు, డేటా విజువలైజేషన్, డేటా విశ్లేషణ, డేటా సైన్స్ యొక్క వాస్తవ ప్రపంచ ఉపయోగాల గురించి కూడా ఉంటుంది.
-అదనంగా, తరగతికి ముందుగా ఒక తక్కువ అత్యవసర క్విజ్ విద్యార్థి ఒక విషయం నేర్చుకోవాలనుకునే ఉద్దేశ్యాన్ని కలిగి ఉంటుంది, మరియు తరగతి తర్వాత రెండవ క్విజ్ థప్పుగా గుర్తుంచుకోవడాన్ని నిర్ధారిస్తుంది. ఈ పాఠ్య పథకం సౌకర్యవంతంగా మరియు సంతోషకరంగా ఉండేందుకు రూపొందించబడింది మరియు మొత్తం లేదా భాగంగా తీసుకోవచ్చు. ప్రాజెక్టులు చిన్నగ నుండి మొదలుకొని 10 వారాల చక్రం చివరికి మరింత క్లిష్టంగా మారతాయి.
+అంతేకాక, తరగతి ముందు ఒక తక్కువ-జోరు క్విజ్ విద్యార్థి ఒక విషయం నేర్చుకోవాలని ఉద్దేశ్యాన్ని సృష్టిస్తుంది, మరియు తరగతి తర్వాత రెండో క్విజ్ మరింత ఉండు సంపాదనను నిర్ధారిస్తుంది. ఈ పాఠ్యక్రమం సులభంగా మరియు సరదాగా ఉండేటట్లు రూపొందించబడింది మరియు మొత్తం గా లేదా భాగంగా తీసుకోవచ్చు. ప్రాజెక్టులు చిన్నగా మొదలవుతాయి మరియు 10 వారాల చక్రం చివరికి progressively క్లిష్టత ఎక్కువ అవుతుంది.
-> మా [చర్య నియమావళి](CODE_OF_CONDUCT.md), [योगदान](CONTRIBUTING.md), [అనువాదం](TRANSLATIONS.md) మార్గదర్శకాలను కనుకండి. మీరు మీ నిర్మాణాత్మక అభిప్రాయాలను స్వాగతిస్తున్నాము!
+> మా [పని నిబంధనలు](CODE_OF_CONDUCT.md), [కాంట్రిబ్యూటింగ్](CONTRIBUTING.md), [భాషాంతరాలు](TRANSLATIONS.md) మార్గదర్శకాలను చూడండి. మీ సానుకూలమైన అభిప్రాయాన్ని స్వాగతిస్తున్నాము!
-## ప్రతి పాఠం లో ఉంటాయి:
+## ప్రతి పాఠం లో సగము:
-- ఐచ్చిక స్కెచ్నోట్
-- ఐచ్చిక అదనపు వీడియో
-- పాఠ్యానికి ముందున్న వార్మప్ క్విజ్
-- వ్రాత పాఠం
-- ప్రాజెక్ట్-ఆధారిత పాఠాలకు, ప్రాజెక్ట్ నిర్మాణం పై విడివిడిగా గైడ్లు
-- జ్ఞాన తనిఖీలు
-- ఒక సవాలు
-- అదనపు చదవడం
-- అసైన్మెంట్
-- [పాఠం తర్వాత క్విజ్](https://ff-quizzes.netlify.app/en/)
+- ఐచ్ఛిక స్కెట్ట్నోట్
+- ఐచ్ఛిక అనుబంధ వీడియో
+- పాఠం ముందు వార్మప్ క్విజ్
+- రచించిన పాఠం
+- ప్రాజెక్ట్ ఆధారిత పాఠాల కోసం ప్రాజెక్ట్ నిర్మాణం పై స్టెప్-బై-స్టెప్ గైడ్లు
+- జ్ఞాన తనిఖీలు
+- ఒక ఛాలెంజ్
+- అనుబంధ స్పందన
+- అసైన్మెంట్
+- [పాఠం తరువాతి క్విజ్](https://ff-quizzes.netlify.app/en/)
-> **క్విజీల గురించి ఒక గమనిక**: అన్ని క్విజీలు Quiz-App ఫోల్డర్లో ఉన్నాయి, ఇక్కడ మొత్తం 40 క్విజీలలో మూడు ప్రశ్నలతో ఉంటాయి. అవి పాఠాల నుండి లింకైన పరగతి, కానీ క్విజ్ యాప్ను స్థానికంగా లేదా Azureలో అమర్చవచ్చు; `quiz-app` ఫోల్డర్లో ఉన్న సూచనలను అనుసరించండి. అవి గడిచేకొద్దీ అనువదించబడుతున్నాయి.
+> **క్విజ్ల గురించి ఒక గమనిక**: అన్ని క్విజ్లు Quiz-App ఫోల్డర్లో ఉంటాయి, మొత్తం 40 క్విజ్లు, ఒక్కో క్విజ్ మూడు ప్రశ్నలతో ఉంటాయి. ఇవి పాఠాల నుంచి లింక్ చేయబడ్డాయి, కానీ క్విజ్ యాప్ ని స్థానికంగా అమలు చేయవచ్చు లేదా Azureకి పంపవచ్చు; దీని కోసం `quiz-app` ఫోల్డర్లో ఉన్న సూచనలను అనుసరించండి. అవి క్రమంగా స్థానికీకరించబడుతున్నాయి.
-## 🎓 ప్రారంభ దశకు అనుకూలమైన ఉదాహరణలు
+## 🎓 ప్రారంభానికి అనుకూలమైన ఉదాహరణలు
-**డేటా సైన్స్ కొత్తవారా?** మేము ప్రత్యేకమైన [ఉదాహరణల డైరెక్టరీ](examples/README.md) సృష్టించాము, ఇది సులభమైన, బాగా వ్యాఖ్యానించిన కోడ్తో మీకు ప్రారంభం కోసం సహాయం చేస్తుంది:
+**డేటా సైన్స్ కొత్తవాడా?** మీకు సహాయం చేయడానికి, మేము ప్రత్యేక [ఉదాహరణల డైరెక్టరీ](examples/README.md) రూపొందించాము, సులభమైన, మెరుగ్గా వ్యాఖ్యానించబడిన కోడ్తో:
-- 🌟 **హలో వరల్డ్** - మీ మొదటి డేటా సైన్స్ ప్రోగ్రామ్
-- 📂 **డేటాను లోడ్ చేయడం** - డేటాసెట్లను చదవడం మరియు అన్వేషించడం నేర్చుకోండి
-- 📊 **సరళమైన విశ్లేషణ** - గణాంకాలు గణించడం మరియు నమూనాలను కనుగొనడం
-- 📈 **మౌలిక విజువలైజేషన్** - చార్ట్లు మరియు గ్రాఫ్స్ సృష్టించడం
-- 🔬 **వాస్తవ ప్రపంచ ప్రాజెక్ట్** - మొదలుకొని పూర్తి వర్క్ఫ్లో పూర్తి చేయడం
+- 🌟 **హలో వరల్డ్** - మీ మొదటి డేటా సైన్స్ ప్రోగ్రామ్
+- 📂 **డేటా లోడ్ చేయడం** - డేటాసెట్లు చదవడం మరియు అన్వేషించడం నేర్చుకోండి
+- 📊 **సులభ విశ్లేషణ** - గణాంకాలు లెక్కించడం మరియు నమూనాలను కనుగొనడం
+- 📈 **ప్రాథమిక విజువలైజేషన్** - చార్ట్లు మరియు గ్రాఫ్లు సృష్టించండి
+- 🔬 **వాస్తవ ప్రాజెక్ట్** - ప్రారంభం నుండి ముగింపు వరకు పూర్తి వర్క్ఫ్లో
-ప్రతి ఉదాహరణలో ప్రతి దశను వివరించే వ్యాఖ్యలు ఉన్నాయి, ఇది ప్రారంభకులకి బాగా సరిపోతుంది!
+ప్రతి ఉదాహరణలో ప్రతి దశను వివరిస్తూ సవివర వ్యాఖ్యలు ఉంటాయి, ఇది పూర్తిగా ప్రారంభకులు కోసం అనుకూలం!
-👉 **[ఉదాహరణలతో మొదలెట్టండి](examples/README.md)** 👈
+👉 **[ఉదాహరణలతో మొదలుకోండి](examples/README.md)** 👈
## పాఠాలు
-||
+||
|:---:|
-| డేటా సైన్స్ ఫర్ బిగినర్స్: రోడ్మ్యాప్ - _స్కెచ్నోట్ [@nitya](https://twitter.com/nitya) చేత_ |
+| డేటా సైన్స్ ఫర్ బిగినర్స్: రోడ్మాప్ - _స్కెట్ట్నోట్: [@nitya](https://twitter.com/nitya)_ |
-| పాఠం సంఖ్య | విషయం | పాఠ గ్రూపింగ్ | నేర్చుకునే లక్ష్యాలు | లింక్ పాఠం | రచయిత |
+| పాఠ సంఖ్య | విషయం | పాఠ గ్రూపింగ్ | నేర్చుకోవడం లక్ష్యాలు | లింక్ చేయబడిన పాఠం | రచయిత |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | డేటా సైన్స్ నిర్వచనం | [పరిచయం](1-Introduction/README.md) | డేటా సైన్స్ యొక్క ప్రాథమిక సూత్రాలు మరియు దీని సంబంధం కృత్రిమ మేథ, యంత్ర అధ్యయనం మరియు బిగ్ డేటాతో తెలుసుకోండి. | [పాఠం](1-Introduction/01-defining-data-science/README.md) [వీడియో](https://youtu.be/beZ7Mb_oz9I) | [డ్మిత్రి](http://soshnikov.com) |
-| 02 | డేటా సైన్స్ నైతికత | [పరిచయం](1-Introduction/README.md) | డేటా నైతికత సూత్రాలు, సవాళ్లు మరియు ఫ్రేమ్వర్క్లు. | [పాఠం](1-Introduction/02-ethics/README.md) | [నిత్య](https://twitter.com/nitya) |
-| 03 | డేటా నిర్వచనం | [పరిచయం](1-Introduction/README.md) | డేటా ఎలా వర్గీకరించబడతుంది మరియు దాని సాధారణ మూలాలు. | [పాఠం](1-Introduction/03-defining-data/README.md) | [జాస్మిన్](https://www.twitter.com/paladique) |
-| 04 | గణాంకాలు మరియు సంభావ్యతకు పరిచయం | [పరిచయం](1-Introduction/README.md) | డేటాను అర్థం చేసుకోవడానికి గణాంకాలు మరియు సంభావ్యత యొక్క గణిత సాంకేతికత. | [పాఠం](1-Introduction/04-stats-and-probability/README.md) [వీడియో](https://youtu.be/Z5Zy85g4Yjw) | [డ్మ Дмитి](http://soshnikov.com) |
-| 05 | సంబంధిత డేటాతో పని చేయడం | [డేటాతో పని](2-Working-With-Data/README.md) | సంబంధిత డేటాకు పరిచయం మరియు SQL (ప్రతి “సీ-క్వెల్” అని తెలియజెయ్యబడుతుంది) తో సంబంధిత డేటాను అన్వేషించడం మరియు విశ్లేషణ ప్రాథమికాలు. | [పాఠం](2-Working-With-Data/05-relational-databases/README.md) | [క్రిస్టోఫర్](https://www.twitter.com/geektrainer) | | |
-| 06 | NoSQL డేటాతో పని చేయడం | [డేటాతో పని](2-Working-With-Data/README.md) | అప్రమాణాత్మక డేటాకు పరిచయం, దాని వివిధ రకాలు మరియు డాక్యుమెంట్ డేటాబేస్లను అన్వేషించడం, విశ్లేషణ ప్రాథమికాలు. | [పాఠం](2-Working-With-Data/06-non-relational/README.md) | [జాస్మిన్](https://twitter.com/paladique)|
-| 07 | పైథాన్తో పని | [డేటాతో పని](2-Working-With-Data/README.md) | Pandas లైబ్రరీలుతో డేటాను అన్వేషించడానికి పైథాన్ ఉపయోగించే ప్రాథమికాలు. పైథాన్ ప్రోగ్రామింగ్ యొక్క యొక్క ఆధారభూత అవగాహన సిఫార్సు చేయబడుతుంది. | [పాఠం](2-Working-With-Data/07-python/README.md) [వీడియో](https://youtu.be/dZjWOGbsN4Y) | [డ్మ Дмитి](http://soshnikov.com) |
-| 08 | డేటా సన్నాహకం | [డేటాతో పని](2-Working-With-Data/README.md) | లేమి, తప్పు, లేదా సంపూర్ణంకాని డేటా సవాళ్లను పరిష్కరించడానికి శుభ్రపరచడం మరియు రూపాంతరం చేసే సాంకేతికతలు. | [పాఠం](2-Working-With-Data/08-data-preparation/README.md) | [జాస్మిన్](https://www.twitter.com/paladique) |
-| 09 | పరిమాణాలను చూసటం | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | Matplotlib ఉపయోగించి పక్షుల డేటాను విజువలైజ్ చేయడం 🦆 | [పాఠం](3-Data-Visualization/09-visualization-quantities/README.md) | [జెన్](https://twitter.com/jenlooper) |
-| 10 | డేటా పంపిణీలను చూసటం | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | ఒక అంతరములో గమనించిన అంశాలు మరియు ధోరణులను విజువలైజ్ చేయడం. | [పాఠం](3-Data-Visualization/10-visualization-distributions/README.md) | [జెన్](https://twitter.com/jenlooper) |
-| 11 | భాగాలను చూసటం | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | విభిన్న శాతం మరియు గుంపు శాతాలను విజువలైజ్ చేయడం. | [పాఠం](3-Data-Visualization/11-visualization-proportions/README.md) | [జెన్](https://twitter.com/jenlooper) |
-| 12 | సంబంధాలను చూసటం | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | డేటా మరియు దాని వ్యత్యాసాల మధ్య సంబంధం మరియు సహసంబంధాలను విజువలైజ్ చేయడం. | [పాఠం](3-Data-Visualization/12-visualization-relationships/README.md) | [జెన్](https://twitter.com/jenlooper) |
-| 13 | అర్థవంతమైన విజువలైజేషన్లు | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | మీ విజువలైజేషన్ల్ని విలువైనదిగా చేయడానికి సాంకేతికతలు మరియు మార్గదర్శకాలు, సమస్య పరిష్కారంలో మరియు అవగాహనలో సహాయం. | [పాఠం](3-Data-Visualization/13-meaningful-visualizations/README.md) | [జెన్](https://twitter.com/jenlooper) |
-| 14 | డేటా సైన్స్ జీవన చక్రానికి పరిచయం | [జీవన చక్రం](4-Data-Science-Lifecycle/README.md) | డేటా సైన్స్ జీవన చక్రానికి పరిచయం మరియు డేటాను సేకరించటం, తీయడం మొదటి దశ. | [పాఠం](4-Data-Science-Lifecycle/14-Introduction/README.md) | [జాస్మిన్](https://twitter.com/paladique) |
-| 15 | విశ్లేషణ | [జీవన చక్రం](4-Data-Science-Lifecycle/README.md) | డేటా ఆధారిత జీవన చక్రం యొక్క ఈ దశ విశ్లేషణ సాంకేతికతలకు కేంద్రీకరించబడింది. | [పాఠం](4-Data-Science-Lifecycle/15-analyzing/README.md) | [జాస్మిన్](https://twitter.com/paladique) | | |
-| 16 | కమ్యూనికేషన్ | [జీవన చక్రం](4-Data-Science-Lifecycle/README.md) | డేటా ద్వారా పొందిన అవగాహనలను ఆదేశ నిర్వహకులు అర్థం చేసుకోవడానికి సులభంగా తీర్పు చెయ్యగలిగే విధానంలో ప్రదర్శించడం. | [పాఠం](4-Data-Science-Lifecycle/16-communication/README.md) | [జాలెన్](https://twitter.com/JalenMcG) | | |
-| 17 | క్లౌడ్లో డేటా సైన్స్ | [క్లౌడ్ డేటా](5-Data-Science-In-Cloud/README.md) | క్లౌడ్లో డేటా సైన్స్ మరియు దాని లాభాల పరిచయం. | [పాఠం](5-Data-Science-In-Cloud/17-Introduction/README.md) | [టిక్కాని](https://twitter.com/TiffanySouterre) మరియు [మా](https://twitter.com/maudstweets) |
-| 18 | క్లౌడ్లో డేటా సైన్స్ | [క్లౌడ్ డేటా](5-Data-Science-In-Cloud/README.md) | లో కోడ్ టూల్స్ ఉపయోగించి మోడల్స్ శిక్షణ. |[పాఠం](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [టిక్కాని](https://twitter.com/TiffanySouterre) మరియు [మా](https://twitter.com/maudstweets) |
-| 19 | క్లౌడ్లో డేటా సైన్స్ | [క్లౌడ్ డేటా](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studioతో మోడల్స్ అమర్చడం. | [పాఠం](5-Data-Science-In-Cloud/19-Azure/README.md)| [టిక్కాని](https://twitter.com/TiffanySouterre) మరియు [మా](https://twitter.com/maudstweets) |
-| 20 | వన్యప్రాంతాల్లో డేటా సైన్స్ | [వన్యంలో](6-Data-Science-In-Wild/README.md) | వాస్తవ ప్రపంచంలో డేటా సైన్స్ ఆధారిత ప్రాజెక్టులు. | [పాఠం](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [నిత్య](https://twitter.com/nitya) |
-
-## GitHub Codespaces
-
-ఈ నమూనాను Codespaceలో తెరవడానికి క్రింది దశలను అనుసరించండి:
-1. కోడ్ డ్రాప్డౌన్ మెనుని క్లిక్ చేసి "Open with Codespaces" ఎంపికను ఎంచుకోండి.
-2. ప్యాన్ దిగువన ఉన్న + New codespace ఎంపికను ఎంచుకోండి.
-మరింత సమాచారం కోసం, [GitHub డాక్యుమెంటేషన్](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) చూడండి.
-
-## VSCode Remote - Containers
-ఈ రిపోను లోకల్ మిషీను మరియు VSCode Remote - Containers విస్తరణ ఉపయోగించి కంటైనర్లో తెరవడానికి క్రింది దశలను అనుసరించండి:
-
-1. మీరు మెరుగైన అభివృద్ధి కంటైనర్ను మొదటిసారిగా ఉపయోగిస్తే, దయచేసి మీ సిస్టమ్ ప్రీ-రిక్విజిట్స్ (అంటే Docker ఇన్స్టాల్ చెయ్యడం) ని [ప్రారంభ డాక్యుమెంటేషన్](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)లో ఖచ్చితంగా నిర్ధారించండి.
-
-ఈ రిపోను ఉపయోగించడానికి, మీరు ఈ క్రింది రెండు మార్గాల్లో మొదలు పెట్టవచ్చు:
-
-**గమనిక**: Remote-Containers: **Clone Repository in Container Volume...** ఆదేశం ద్వారా సోర్స్ కోడ్ను స్థానిక ఫైల్సిస్టమ్ బదులుగా Docker వాల్యూమ్ లో క్లోన్ చేస్తుంది. [వాల్యూమ్లు](https://docs.docker.com/storage/volumes/) కంటైనర్ డేటాను నిలుపుకోవడానికి ప్రాధాన్యమైన వ్యవస్థ.
-
-లేదంటే స్థానికంగా క్లోన్ చేసిన లేదా డౌన్లోడ్ చేసిన రిపోను తెరవండి:
-
-- ఈ రిపోను మీ స్థానిక ఫైల్సిస్టమ్ లో క్లోన్ చేయండి.
-- F1 నొక్కి **Remote-Containers: Open Folder in Container...** ఆదేశాన్ని ఎంచుకోండి.
-- ఈ ఫోల్డర్ క్లోన్ చేసిన కాపీని ఎంచుకోండి, కంటైనర్ ప్రారంభాన్ని వేచి, పనులు ప్రారంభించండి.
+| 01 | డేటా సైన్స్ నిర్వచనం | [పరిచయము](1-Introduction/README.md) | డేటా సైన్స్ వెనుక ప్రాథమిక సూత్రాలు మరియు ఇ౦టెలిజెన్స్, మెషీన్ లెర్నింగ్, బిగ్ డేటాతో సంబంధం నేర్చుకోండి. | [పాఠం](1-Introduction/01-defining-data-science/README.md) [వీడియో](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | డేటా సైన్స్ నైతికత | [పరిచయము](1-Introduction/README.md) | డేటా నైతికత సూత్రాలు, సవాళ్లు & ఫ్రమ్రోక్స్ | [పాఠం](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | డేటా నిర్వచనం | [పరిచయము](1-Introduction/README.md) | డేటా ఎలా వర్గీకరించబడుతుందో మరియు సాధారణ మూలాలు. | [పాఠం](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | గణాంకాలు & ప్రాయిసంభావ్యత పరిచయం | [పరిచయము](1-Introduction/README.md) | డేటా అర్థం చేసుకోవడానికి ప్రాయిసంభావ్యత మరియు గణాంకాల గణిత శాస్త్ర పద్ధతులు. | [పాఠం](1-Introduction/04-stats-and-probability/README.md) [వీడియో](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | రిలేషనల్ డేటాతో పని చేయడం | [డేటాతో పని](2-Working-With-Data/README.md) | రిలేషన్ డేటా పరిచయం మరియు Structured Query Language (SQL - “సీ-క్వెల్” గా ఉచ్చరిస్తారు) తో రిలేషన్ డేటాను అన్వేషించడం, విశ్లేషించడం. | [పాఠం](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | నాన్-SQL డేటాతో పని చేయడం | [డేటాతో పని](2-Working-With-Data/README.md) | నాన్-రిలేషనల్ డేటా పరిచయం, దాని రకాలు మరియు డాక్యుమెంట్ డేటాబేస్లను అన్వేషించడం, విశ్లేషణ. | [పాఠం](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | పైథాన్ తో పని | [డేటాతో పని](2-Working-With-Data/README.md) | Pandas లాంటి లైబ్రరీలతో డేటా అన్వేషణ కోసం పైథాన్ ఉపయోగించడం ప్రాథమికాలు. పైథాన్ ప్రోగ్రామింగ్ యొక్క ప్రాథమిక అవగాహన అవసరం. | [పాఠం](2-Working-With-Data/07-python/README.md) [వీడియో](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | డేటా సిద్ధత | [డేటాతో పని](2-Working-With-Data/README.md) | మానుకున్న, తప్పైన, లేదా అసంపూర్ణ డేటా సవాళ్లను ఎదుర్కోవడానికి డేటాను శుభ్రపరచడం మరియు మార్చడం సాంకేతికతలు. | [పాఠం](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | పరిమాణాలను విజువలైజ్ చేయడం | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | Matplotlib ఉపయోగించి బర్డ్ డేటాను విజువలైజ్ చేయడం నేర్చుకోండి 🦆 | [పాఠం](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | డేటా పంపిణీలను విజువలైజ్ చేయడం | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | ఒక ఇంటర్వెల్లోని పరిశీలనల మరియు ధోరణులను విజువలైజ్ చేయడం. | [పాఠం](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | భాగాల విజువలైజేషన్ | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | విడివిడిగా మరియు సమూహాల శాతాలను విజువలైజ్ చేయడం. | [పాఠం](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | సంబంధాల విజువలైజేషన్ | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | డేటా మరియు వేరియబుల్స్ మధ్య సంబంధాలు, సహ సంబంధాలను విజువలైజ్ చేయడం. | [పాఠం](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | అర్థపూర్వక విజువలైజేషన్లు | [డేటా విజువలైజేషన్](3-Data-Visualization/README.md) | మీ విజువలైజేషన్లను సమస్య పరిష్కారానికి మరియు అవగాహనలకు విలువైనదిగా చేయడానికి సాంకేతికతలు మరియు మార్గదర్శకాలు. | [పాఠం](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | డేటా సైన్స్ లైఫ్సైకిల్ పరిచయం | [లైఫ్సైకిల్](4-Data-Science-Lifecycle/README.md) | డేటా సైన్స్ లైఫ్సైకల్ పరిచయం మరియు మొదటి దశ - డేటాను సంపాదించడం మరియు తొలగించడం. | [పాఠం](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | విశ్లేషణ | [లైఫ్సైకిల్](4-Data-Science-Lifecycle/README.md) | డేటా సైన్స్ లైఫ్సైకిల్లో ఈ దశ డేటా విశ్లేషణ సాంకేతికతలపై కేంద్రీకృతమైంది. | [పాఠం](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | కమ్యూనికేషన్ | [లైఫ్సైకిల్](4-Data-Science-Lifecycle/README.md) | డేటా నుండి పొందిన అవగాహనలను నిర్ణయదారులు సులభంగా అర్థం చేసుకునే విధంగా అందించడంపై ఈ దశ కేంద్రీకృతమైంది. | [పాఠం](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | క్లౌడ్ లో డేటా సైన్స్ | [క్లౌడ్ డేటా](5-Data-Science-In-Cloud/README.md) | ఈ పాఠాల శ్రేణి క్లౌడ్ లో డేటా సైన్స్ మరియు దాని లాభాల పరిచయం చేస్తుంది. | [పాఠం](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) మరియు [Maud](https://twitter.com/maudstweets) |
+| 18 | క్లౌడ్ లో డేటా సైన్స్ | [క్లౌడ్ డేటా](5-Data-Science-In-Cloud/README.md) | లో కోడ్ టూల్స్ ఉపయోగించి మోడల్స్ శిక్షణ. | [పాఠం](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) మరియు [Maud](https://twitter.com/maudstweets) |
+| 19 | క్లౌడ్ లో డేటా సైన్స్ | [క్లౌడ్ డేటా](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio తో మోడల్స్ ను డిప్లాయ్ చేయడం. | [పాఠం](5-Data-Science-In-Cloud/19-Azure/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) మరియు [Maud](https://twitter.com/maudstweets) |
+| 20 | వనాలలో డేటా సైన్స్ | [వనంలో](6-Data-Science-In-Wild/README.md) | వాస్తవ ప్రపంచంలో డేటా సైన్స్ ఆధారిత ప్రాజెక్టులు. | [పాఠం](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+
+## GitHub కోడ్స్పేస్లు
+
+ఈ నమూనాను ఒక కోడ్స్పేస్లో తెరవడానికి ఈ దశలను అనుసరించండి:
+1. కోడ్ డ్రాప్-డౌన్ మెనూని క్లిక్ చేసి Open with Codespaces ఎంపికను ఎంచుకోండి.
+2. పానెల్ దిగువన + New codespace ఎంచుకోండి.
+మరింత సమాచారం కోసం [GitHub డాక్యుమెంటేషన్](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) చూడండి.
+
+## VSCode రిమోట్ - కంటైనర్లు
+తొలి సారి డెవలప్మెంట్ కంటైనర్ ఉపయోగిస్తుంటే, మీ సిస్టమ్ ముందుగా అవసరాలు తీర్చుకున్నదని నిర్ధారించుకోండి (అంటే Docker ఇన్స్టాల్ చేయబడినది) [గెంటింగ్ స్టార్టెడ్ డాక్యుమెంటేషన్](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)లో.
+
+ఈ రిపోజిటరీను ఉపయోగించడానికి, మీరు రిపోజిటరీని డాకర్ వాల్యూమ్లో ఒంటరిగా ఓపెన్ చేయవచ్చు:
+
+**గమనిక**: ఈ విధానం Remote-Containers: **Clone Repository in Container Volume...** కమాండ్ ఉపయోగించి సోర్స్ కోడ్ని డాకర్ వాల్యూమ్లో క్లోన్ చేస్తుంది స్థానిక ఫైల్ సిస్టమ్ స్దలంలో కాకుండా. [వాల్యూమ్స్](https://docs.docker.com/storage/volumes/) కంటైనర్ డేటాను నిల్వ చేయడానికి ప్రాధాన్యమిస్తున్న యంత్రము.
+
+లేదా స్థానికంగా క్లోన్ చేసిన లేదా డౌన్లోడ్ చేసిన రిపోజిటరీను ఓపెన్ చేయండి:
+
+- ఈ రిపోజిటరీని మీ స్థానిక ఫైల్ సిస్టమ్కు క్లోన్ చేయండి.
+- F1 నొక్కి **Remote-Containers: Open Folder in Container...** కమాండ్ ఎంచుకోండి.
+- ఈ ఫోల్డర్ క్లోన్ చేసిన కాపీని ఎంచుకోండి, కంటైనర్ స్టార్ట్ అయ్యే వరకు వేచి చూడండి, మరియు ప్రయత్నించండి.
## ఆఫ్లైన్ యాక్సెస్
-[Docsify](https://docsify.js.org/#/) ఉపయోగించి మీరు ఈ డాక్యుమెంటేషన్ను ఆఫ్లైన్లో కూడా అమలు చేయవచ్చు. ఈ రిపోను ఫోర్క్ చేసి, మీ స్థానిక యంత్రంలో [Docsify ఇన్స్టాల్](https://docsify.js.org/#/quickstart) చేయండి, తరువాత ఈ రిపో యొక్క రూట్ ఫోల్డర్లో `docsify serve` టైప్ చేయండి. వెబ్సైట్ స్థానిక హోస్ట్లో 3000 పోర్ట్ లా అందుబాటులో ఉంటుంది: `localhost:3000`.
+[Docsify](https://docsify.js.org/#/) ఉపయోగించి ఈ డాక్యుమెంటేషన్ ని ఆఫ్లైన్లో నడుపవచ్చు. ఈ రిపోను ఫోర్క్ చేసి, [Docsify ఇన్స్టాల్](https://docsify.js.org/#/quickstart) చేసి తో, ఈ రిపో యొక్క రూట్ ఫోల్డర్లో `docsify serve` టైప్ చేయండి. వెబ్సైట్ మీ లోకల్ హోస్ట్ లో 3000 పోర్ట్ పై సర్వ్ అవుతుంది: `localhost:3000`.
-> గమనిక, నోట్బుకులు Docsify ద్వారా రెండర్ అవవు, కాబట్టి మీరు నోట్బుక్ চালించాల్సిన అవసరం ఉన్నప్పుడు, దాన్ని వేరే చోట VS Codeలో పైథాన్ కర్నెల్ నడుపుతూ చేయండి.
+> గమనిక, నొట్బుక్లు Docsify ద్వారా రెండర్ కావు, కాబట్టి మీరు నొట్బుక్ నడపాలంటే, అది వేరేలా VS Code లో Python కర్నల్ నడుపుతూ చేయండి.
-## ఇతర పాఠ్యాలు
+## ఇతర పాఠ్యక్రమాలు
-మన బృందం ఇతర పాఠ్యాలు కూడా రూపొందిస్తుంది! చూడండి:
+మా బృందం ఇతర పాఠ్యక్రమాలు కూడా తయారు చేస్తుంది! చూడండి:
### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchain4j-for-beginners)
[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
-### Azure / ఎజ్ / MCP / ఏజెంట్లు
+### Azure / Edge / MCP / ఏజెంట్లు
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
@@ -225,7 +214,7 @@ Microsoft లో Azure Cloud Advocates డేటా సైన్స్ గుర
---
-### మౌలిక అభ్యాసం
+### కోర్ లెర్నింగ్
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
@@ -236,27 +225,27 @@ Microsoft లో Azure Cloud Advocates డేటా సైన్స్ గుర
---
-### కాపిలాట్ సిరీస్
+### కాపిలట్ సిరీస్
[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-## సహాయం పొందడం
+## సహాయం పొందటం
-**సమస్యలతో ఎదురవుతున్నారా?** సాధారణ సమస్యల పరిష్కారాల కోసం మా [ట్రబుల్షూటింగ్ గైడ్](TROUBLESHOOTING.md)ని పరిశీలించండి.
+**సమస్యలు ఎదుర్కోచ్చా?** సాధారణ సమస్యల పరిష్కారాల కోసం మా [ట్రబుల్షూటింగ్ గైడ్](TROUBLESHOOTING.md) ను పరిశీలించండి.
-మీకు ఎక్కడైనా చిక్కులు వచ్చి AI అనువర్తనాలు సృష్టించే విషయంలో సందేహాలు ఉంటే, MCP గురించి చర్చలు జరగుతున్న ఇతర అభ్యాసకులు మరియు అనుభవజ్ఞులైన డెవలపర్లు ఉన్న కమ్యూనిటీలో చేరండి. ఇక్కడ ప్రశ్నలు అడగడం స్వాగతం మరియు జ్ఞానం స్వేచ్ఛగా పంచుకోబడుతుంది.
+మీరు అడ్డకట్టబడితే లేదా AI యాప్ల నిర్మాణం గురించి మీకు ఎలాంటి ప్రశ్నలు ఉంటే. MCP గురించి చర్చల్లో ఇతర అభ్యసకులు మరియు అనుభవజ్ఞులైన డెవలపర్లతో 합류 చేయండి. ఇది ప్రశ్నలు స్వాగతం మరియు జ్ఞానం స్వేచ్ఛగా పంచుకునే సహాయక సమాజం.
[](https://discord.gg/nTYy5BXMWG)
-మీకు ఉత్పత్తి పై అభిప్రాయాలు లేదా తప్పులు ఉన్నట్లయితే నిర్మాణ సమయంలో సందర్శించండి:
+మీకు ఉత్పత్తి ప్రతిస్పందనలు లేదా లోపాలు ఉంటే:
[](https://aka.ms/foundry/forum)
---
-**అస్పష్టత నోట్లు**:
-ఈ పత్రం AI అనువాద సేవ అయిన [Co-op Translator](https://github.com/Azure/co-op-translator) ద్వారా అనువదించబడింది. మేము సరైన అనువాదానికోసం కృషి చేసినప్పటికీ, автомేటెడు అనువాదాలలో పొరపాట్లు లేదా లోపాలు ఉండవచ్చు. అసలు పత్రం native భాషలోనే అధికారిక మూలంగా పరిగణించాలి. ముఖ్యమైన సమాచారానికి, సర్వదృష్టి కలిగిన మానవ అనువాదాన్ని సూచిస్తాము. ఈ అనువాదం వాడుక వల్ల కలిగే ఏవైనా అపవ్యాఖ్యలు లేదా దోషాలకు మేము బాధ్యులు కాదు.
+**అస్పృష్టం**:
+ఈ పత్రం AI అనువాద సేవ [Co-op Translator](https://github.com/Azure/co-op-translator) ఉపయోగించి అనువదించబడింది. మేము సరైనతకు ప్రయత్నిస్తున్నప్పటికీ, స్వయంచాలిత అనువాదాల్లో తప్పులు లేదా అవాస్తవతలు ఉండవచ్చు. అసలు పత్రం తన స్వదేశీ భాషలో అధికారిక వనరుగా పరిగణించాలి. ముఖ్యమైన సమాచారానికి, ప్రొఫెషనల్ మానవ అనువాదాన్ని సిఫార్సు చేయబడాలి. ఈ అనువాదం వలన వచ్చే ఏ సందేహాలు లేదా తప్పుదృక్పథాలకు మేము బాధ్యత వహించము.
\ No newline at end of file
diff --git a/translations/te/SECURITY.md b/translations/te/SECURITY.md
index c4fca885..7d0ee52d 100644
--- a/translations/te/SECURITY.md
+++ b/translations/te/SECURITY.md
@@ -1,12 +1,3 @@
-
## భద్రత
మైక్రోసాఫ్ట్ మా సాఫ్ట్వేర్ ఉత్పత్తులు మరియు సేవల భద్రతను గంభీరంగా తీసుకుంటుంది, దీనిలో మా GitHub సంస్థల ద్వారా నిర్వహించబడే అన్ని సోర్స్ కోడ్ రిపాజిటరీలు ఉన్నాయి, వీటిలో [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), మరియు [మా GitHub సంస్థలు](https://opensource.microsoft.com/) ఉన్నాయి.
diff --git a/translations/te/SUPPORT.md b/translations/te/SUPPORT.md
index 8c71b0ad..e6e1414c 100644
--- a/translations/te/SUPPORT.md
+++ b/translations/te/SUPPORT.md
@@ -1,12 +1,3 @@
-
# మద్దతు
## సమస్యలను ఎలా నమోదు చేయాలి మరియు సహాయం పొందాలి
diff --git a/translations/te/TROUBLESHOOTING.md b/translations/te/TROUBLESHOOTING.md
index 5ff3b602..beaabd94 100644
--- a/translations/te/TROUBLESHOOTING.md
+++ b/translations/te/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# సమస్య పరిష్కరణ గైడ్
ఈ గైడ్ Data Science for Beginners పాఠ్యాంశంతో పని చేస్తూ మీరు ఎదుర్కొనే సాధారణ సమస్యలకు పరిష్కారాలను అందిస్తుంది.
diff --git a/translations/te/USAGE.md b/translations/te/USAGE.md
index def3afe5..499d0113 100644
--- a/translations/te/USAGE.md
+++ b/translations/te/USAGE.md
@@ -1,12 +1,3 @@
-
# ఉపయోగం గైడ్
ఈ గైడ్ డేటా సైన్స్ ఫర్ బిగినర్స్ పాఠ్యాంశం ఉపయోగించడానికి ఉదాహరణలు మరియు సాధారణ వర్క్ఫ్లోలను అందిస్తుంది.
diff --git a/translations/te/docs/_sidebar.md b/translations/te/docs/_sidebar.md
index 914528f8..8ba7150d 100644
--- a/translations/te/docs/_sidebar.md
+++ b/translations/te/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- పరిచయం
- [డేటా సైన్స్ నిర్వచనం](../1-Introduction/01-defining-data-science/README.md)
- [డేటా సైన్స్ నైతికత](../1-Introduction/02-ethics/README.md)
diff --git a/translations/te/examples/README.md b/translations/te/examples/README.md
index 8e8156f5..92fa85d5 100644
--- a/translations/te/examples/README.md
+++ b/translations/te/examples/README.md
@@ -1,12 +1,3 @@
-
# ప్రారంభికులకు అనుకూలమైన డేటా సైన్స్ ఉదాహరణలు
ఉదాహరణల డైరెక్టరీకి స్వాగతం! ఈ సులభమైన, బాగా వ్యాఖ్యానించిన ఉదాహరణల సేకరణ డేటా సైన్స్ ప్రారంభించడానికి మీకు సహాయపడేందుకు రూపొందించబడింది, మీరు పూర్తిగా కొత్తవారైనా సరే.
diff --git a/translations/te/for-teachers.md b/translations/te/for-teachers.md
index d8a173fa..7b52eb6a 100644
--- a/translations/te/for-teachers.md
+++ b/translations/te/for-teachers.md
@@ -1,12 +1,3 @@
-
## For Educators
మీ తరగతిలో ఈ పాఠ్యాంశాన్ని ఉపయోగించాలనుకుంటున్నారా? దయచేసి స్వేచ్ఛగా ఉపయోగించండి!
diff --git a/translations/te/quiz-app/README.md b/translations/te/quiz-app/README.md
index 6632b058..f650c80b 100644
--- a/translations/te/quiz-app/README.md
+++ b/translations/te/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# క్విజ్లు
ఈ క్విజ్లు https://aka.ms/datascience-beginners వద్ద డేటా సైన్స్ పాఠ్యక్రమం కోసం ప్రీ- మరియు పోస్ట్-లెక్చర్ క్విజ్లు.
diff --git a/translations/te/sketchnotes/README.md b/translations/te/sketchnotes/README.md
index a8119974..bd36bf98 100644
--- a/translations/te/sketchnotes/README.md
+++ b/translations/te/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
ఇక్కడ అన్ని స్కెచ్నోట్లు కనుగొనండి!
## క్రెడిట్స్
diff --git a/translations/th/.co-op-translator.json b/translations/th/.co-op-translator.json
new file mode 100644
index 00000000..9b12532b
--- /dev/null
+++ b/translations/th/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:53:55+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "th"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-26T21:34:19+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "th"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-26T21:35:25+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "th"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:35:25+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "th"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-26T21:27:05+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "th"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T21:37:04+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "th"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-26T21:39:33+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "th"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:34:44+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "th"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-26T21:47:48+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "th"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-26T21:13:45+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "th"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:27:51+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "th"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:55:47+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "th"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T21:25:32+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "th"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-26T21:11:59+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "th"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:44:39+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "th"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-26T21:07:04+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "th"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T21:27:42+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "th"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-26T20:59:21+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "th"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-26T20:46:59+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T21:32:59+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-26T23:19:19+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T21:34:36+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-26T22:51:00+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T21:31:49+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-26T23:23:57+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:38:43+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-26T22:55:18+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T21:33:31+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-26T22:45:41+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T22:46:59+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-26T22:46:21+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-26T23:04:53+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-26T23:08:59+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-26T22:56:32+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-26T22:59:24+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-26T23:13:53+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-26T23:00:53+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-26T23:10:16+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "th"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-26T22:40:18+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "th"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:03:57+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "th"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-26T22:27:52+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "th"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:03:11+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "th"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-26T22:30:49+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "th"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:04:27+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "th"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-26T22:39:19+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "th"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-26T22:20:37+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "th"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T21:24:18+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "th"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-26T22:11:01+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "th"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T21:23:04+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "th"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-26T22:05:47+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "th"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T21:24:47+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "th"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-26T22:17:52+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "th"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-26T21:56:59+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "th"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:31:13+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "th"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-26T21:55:44+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "th"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-26T21:49:16+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "th"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:22:55+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "th"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-26T20:44:29+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "th"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:04:32+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "th"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:21:00+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "th"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:51:07+00:00",
+ "source_file": "README.md",
+ "language_code": "th"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-26T20:45:13+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "th"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-26T20:42:19+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "th"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:40:15+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "th"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:03:15+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "th"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-26T21:12:47+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "th"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:02:47+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "th"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:57:16+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "th"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-26T22:18:51+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "th"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-26T21:48:46+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "th"
+ }
+}
\ No newline at end of file
diff --git a/translations/th/1-Introduction/01-defining-data-science/README.md b/translations/th/1-Introduction/01-defining-data-science/README.md
index be39bab6..8c2dfef2 100644
--- a/translations/th/1-Introduction/01-defining-data-science/README.md
+++ b/translations/th/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# การนิยามวิทยาศาสตร์ข้อมูล
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/th/1-Introduction/01-defining-data-science/assignment.md b/translations/th/1-Introduction/01-defining-data-science/assignment.md
index f1b0f9a8..0db276a6 100644
--- a/translations/th/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/th/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# การมอบหมายงาน: สถานการณ์ด้านวิทยาศาสตร์ข้อมูล
ในงานมอบหมายแรกนี้ เราขอให้คุณคิดเกี่ยวกับกระบวนการหรือปัญหาในชีวิตจริงในหลากหลายโดเมนปัญหา และวิธีที่คุณสามารถปรับปรุงมันโดยใช้กระบวนการวิทยาศาสตร์ข้อมูล ลองพิจารณาสิ่งต่อไปนี้:
diff --git a/translations/th/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/th/1-Introduction/01-defining-data-science/solution/assignment.md
index 171829f6..a57d3018 100644
--- a/translations/th/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/th/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# การบ้าน: สถานการณ์ด้านวิทยาศาสตร์ข้อมูล
ในงานแรกนี้ เราขอให้คุณคิดเกี่ยวกับกระบวนการหรือปัญหาในชีวิตจริงในหลากหลายโดเมนปัญหา และวิธีที่คุณสามารถปรับปรุงมันโดยใช้กระบวนการวิทยาศาสตร์ข้อมูล ลองพิจารณาสิ่งต่อไปนี้:
diff --git a/translations/th/1-Introduction/02-ethics/README.md b/translations/th/1-Introduction/02-ethics/README.md
index 04787851..9bc630e6 100644
--- a/translations/th/1-Introduction/02-ethics/README.md
+++ b/translations/th/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# การแนะนำเรื่องจริยธรรมข้อมูล
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/th/1-Introduction/02-ethics/assignment.md b/translations/th/1-Introduction/02-ethics/assignment.md
index 8623e52b..0530480e 100644
--- a/translations/th/1-Introduction/02-ethics/assignment.md
+++ b/translations/th/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## เขียนกรณีศึกษาเกี่ยวกับจริยธรรมข้อมูล
## คำแนะนำ
diff --git a/translations/th/1-Introduction/03-defining-data/README.md b/translations/th/1-Introduction/03-defining-data/README.md
index cb036456..10604ea9 100644
--- a/translations/th/1-Introduction/03-defining-data/README.md
+++ b/translations/th/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# การกำหนดข้อมูล
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/th/1-Introduction/03-defining-data/assignment.md b/translations/th/1-Introduction/03-defining-data/assignment.md
index 99db8f68..16cb47fd 100644
--- a/translations/th/1-Introduction/03-defining-data/assignment.md
+++ b/translations/th/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# การจัดประเภทชุดข้อมูล
## คำแนะนำ
diff --git a/translations/th/1-Introduction/04-stats-and-probability/README.md b/translations/th/1-Introduction/04-stats-and-probability/README.md
index 065f4bc9..bf0eb3ab 100644
--- a/translations/th/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/th/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# บทนำสั้น ๆ เกี่ยวกับสถิติและความน่าจะเป็น
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
เราสามารถแสดงความสัมพันธ์ระหว่างค่าเมดียนและควอร์ไทล์ในแผนภาพที่เรียกว่า **กล่องแผนภาพ**:
-
+
ที่นี่เรายังคำนวณ **ช่วงระหว่างควอร์ไทล์** IQR=Q3-Q1 และค่าที่เรียกว่า **ค่าผิดปกติ** - ค่าที่อยู่นอกขอบเขต [Q1-1.5*IQR,Q3+1.5*IQR]
diff --git a/translations/th/1-Introduction/04-stats-and-probability/assignment.md b/translations/th/1-Introduction/04-stats-and-probability/assignment.md
index 85a75f71..dc13eb92 100644
--- a/translations/th/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/th/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# การศึกษาขนาดเล็กเกี่ยวกับโรคเบาหวาน
ในงานนี้ เราจะทำงานกับชุดข้อมูลขนาดเล็กของผู้ป่วยโรคเบาหวานที่นำมาจาก [ที่นี่](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)
diff --git a/translations/th/1-Introduction/README.md b/translations/th/1-Introduction/README.md
index 996556d0..e9e5f882 100644
--- a/translations/th/1-Introduction/README.md
+++ b/translations/th/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# บทนำสู่วิทยาศาสตร์ข้อมูล

diff --git a/translations/th/2-Working-With-Data/05-relational-databases/README.md b/translations/th/2-Working-With-Data/05-relational-databases/README.md
index f8f69666..657f07dd 100644
--- a/translations/th/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/th/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# การทำงานกับข้อมูล: ฐานข้อมูลเชิงสัมพันธ์
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/th/2-Working-With-Data/05-relational-databases/assignment.md b/translations/th/2-Working-With-Data/05-relational-databases/assignment.md
index d8826ab8..bd4bcf19 100644
--- a/translations/th/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/th/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# แสดงข้อมูลสนามบิน
คุณได้รับ [ฐานข้อมูล](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) ที่สร้างขึ้นบน [SQLite](https://sqlite.org/index.html) ซึ่งมีข้อมูลเกี่ยวกับสนามบิน โครงสร้างฐานข้อมูลแสดงอยู่ด้านล่าง คุณจะใช้ [ส่วนขยาย SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) ใน [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) เพื่อแสดงข้อมูลเกี่ยวกับสนามบินในเมืองต่างๆ
diff --git a/translations/th/2-Working-With-Data/06-non-relational/README.md b/translations/th/2-Working-With-Data/06-non-relational/README.md
index 4a496b88..fd91f89d 100644
--- a/translations/th/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/th/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# การทำงานกับข้อมูล: ข้อมูลแบบไม่สัมพันธ์กัน
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/th/2-Working-With-Data/06-non-relational/assignment.md b/translations/th/2-Working-With-Data/06-non-relational/assignment.md
index 8adb03ba..5c71ecd2 100644
--- a/translations/th/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/th/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# กำไรจากการขายโซดา
## คำแนะนำ
diff --git a/translations/th/2-Working-With-Data/07-python/README.md b/translations/th/2-Working-With-Data/07-python/README.md
index 0dbb95ff..3673ff81 100644
--- a/translations/th/2-Working-With-Data/07-python/README.md
+++ b/translations/th/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# การทำงานกับข้อมูล: Python และ Pandas Library
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/th/2-Working-With-Data/07-python/assignment.md b/translations/th/2-Working-With-Data/07-python/assignment.md
index fd8d98db..b103fb03 100644
--- a/translations/th/2-Working-With-Data/07-python/assignment.md
+++ b/translations/th/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# งานสำหรับการประมวลผลข้อมูลใน Python
ในงานนี้ เราจะขอให้คุณขยายความจากโค้ดที่เราเริ่มพัฒนาไว้ในความท้าทายก่อนหน้า งานนี้แบ่งออกเป็นสองส่วน:
diff --git a/translations/th/2-Working-With-Data/08-data-preparation/README.md b/translations/th/2-Working-With-Data/08-data-preparation/README.md
index d18cb45e..5bfcf685 100644
--- a/translations/th/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/th/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# การทำงานกับข้อมูล: การเตรียมข้อมูล
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/th/2-Working-With-Data/08-data-preparation/assignment.md b/translations/th/2-Working-With-Data/08-data-preparation/assignment.md
index fba0404f..9a62566b 100644
--- a/translations/th/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/th/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# การประเมินข้อมูลจากแบบฟอร์ม
ลูกค้าได้ทำการทดสอบ [แบบฟอร์มขนาดเล็ก](../../../../2-Working-With-Data/08-data-preparation/index.html) เพื่อรวบรวมข้อมูลพื้นฐานเกี่ยวกับฐานลูกค้าของพวกเขา และได้นำผลลัพธ์ที่ได้มาให้คุณตรวจสอบความถูกต้องของข้อมูลที่รวบรวมมา คุณสามารถเปิดหน้า `index.html` ในเบราว์เซอร์เพื่อดูแบบฟอร์มได้
diff --git a/translations/th/2-Working-With-Data/README.md b/translations/th/2-Working-With-Data/README.md
index 599ff97e..af5b8006 100644
--- a/translations/th/2-Working-With-Data/README.md
+++ b/translations/th/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# การทำงานกับข้อมูล

diff --git a/translations/th/3-Data-Visualization/09-visualization-quantities/README.md b/translations/th/3-Data-Visualization/09-visualization-quantities/README.md
index 8dceba6e..6f7e29c2 100644
--- a/translations/th/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/th/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# การแสดงผลข้อมูลเชิงปริมาณ
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/th/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/th/3-Data-Visualization/09-visualization-quantities/assignment.md
index ddc86af6..def5a0cd 100644
--- a/translations/th/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/th/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# เส้นกราฟ, กราฟกระจาย และกราฟแท่ง
## คำแนะนำ
diff --git a/translations/th/3-Data-Visualization/10-visualization-distributions/README.md b/translations/th/3-Data-Visualization/10-visualization-distributions/README.md
index d31a2e71..95aa241c 100644
--- a/translations/th/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/th/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# การแสดงภาพการกระจายตัวของข้อมูล
|](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/th/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/th/3-Data-Visualization/10-visualization-distributions/assignment.md
index 5de86a29..3a78ec41 100644
--- a/translations/th/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/th/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# ฝึกฝนทักษะของคุณ
## คำแนะนำ
diff --git a/translations/th/3-Data-Visualization/11-visualization-proportions/README.md b/translations/th/3-Data-Visualization/11-visualization-proportions/README.md
index b73aea95..22ad9ebc 100644
--- a/translations/th/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/th/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# การแสดงภาพสัดส่วน
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/th/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/th/3-Data-Visualization/11-visualization-proportions/assignment.md
index d9c03d32..819f6dd1 100644
--- a/translations/th/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/th/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# ลองใช้ใน Excel
## คำแนะนำ
diff --git a/translations/th/3-Data-Visualization/12-visualization-relationships/README.md b/translations/th/3-Data-Visualization/12-visualization-relationships/README.md
index 379048e4..82046271 100644
--- a/translations/th/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/th/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# การแสดงความสัมพันธ์: เรื่องราวของน้ำผึ้ง 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/th/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/th/3-Data-Visualization/12-visualization-relationships/assignment.md
index fabe0dc2..4a305d2a 100644
--- a/translations/th/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/th/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# ดำดิ่งสู่รังผึ้ง
## คำแนะนำ
diff --git a/translations/th/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/th/3-Data-Visualization/13-meaningful-visualizations/README.md
index 2fe8e2eb..6306067e 100644
--- a/translations/th/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/th/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# การสร้างภาพข้อมูลที่มีความหมาย
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/th/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/th/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index cc1041f3..f53dba18 100644
--- a/translations/th/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/th/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# สร้างการแสดงผลแบบกำหนดเองของคุณ
## คำแนะนำ
diff --git a/translations/th/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/th/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index ceb08c82..4270425a 100644
--- a/translations/th/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/th/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# โครงการการแสดงข้อมูล Dangerous Liaisons
เพื่อเริ่มต้น คุณต้องตรวจสอบให้แน่ใจว่าคุณมี NPM และ Node ติดตั้งและทำงานบนเครื่องของคุณ ติดตั้ง dependencies (npm install) และจากนั้นรันโปรเจกต์ในเครื่องของคุณ (npm run serve):
diff --git a/translations/th/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/th/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index fd3ad68e..887a5844 100644
--- a/translations/th/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/th/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# โครงการการแสดงข้อมูล Dangerous Liaisons
เพื่อเริ่มต้น คุณต้องตรวจสอบให้แน่ใจว่าคุณมี NPM และ Node ทำงานอยู่ในเครื่องของคุณ ติดตั้ง dependencies (npm install) และจากนั้นรันโปรเจกต์ในเครื่องของคุณ (npm run serve):
diff --git a/translations/th/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/th/3-Data-Visualization/R/09-visualization-quantities/README.md
index 64d7c6c2..07abd8f2 100644
--- a/translations/th/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/th/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# การแสดงผลข้อมูลเชิงปริมาณ
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/th/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/th/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 75f7031f..d9d5f78b 100644
--- a/translations/th/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/th/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# เส้นกราฟ, กราฟกระจาย และกราฟแท่ง
## คำแนะนำ
diff --git a/translations/th/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/th/3-Data-Visualization/R/10-visualization-distributions/README.md
index 3fd55db1..490f8a82 100644
--- a/translations/th/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/th/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# การแสดงภาพการกระจายตัวของข้อมูล
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/th/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/th/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 6a907091..eaf3c0a3 100644
--- a/translations/th/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/th/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# ใช้ทักษะของคุณ
## คำแนะนำ
diff --git a/translations/th/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/th/3-Data-Visualization/R/11-visualization-proportions/README.md
index 81d9768a..4331414d 100644
--- a/translations/th/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/th/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# การแสดงสัดส่วนข้อมูล
|](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/th/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/th/3-Data-Visualization/R/12-visualization-relationships/README.md
index 8c5f6a23..8925f102 100644
--- a/translations/th/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/th/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# การแสดงความสัมพันธ์: เรื่องราวของน้ำผึ้ง 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/th/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/th/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 775866e0..60ec03bf 100644
--- a/translations/th/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/th/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# การสร้างภาพข้อมูลที่มีความหมาย
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/th/3-Data-Visualization/README.md b/translations/th/3-Data-Visualization/README.md
index ab5fab9f..c1af66f0 100644
--- a/translations/th/3-Data-Visualization/README.md
+++ b/translations/th/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# การสร้างภาพข้อมูล

diff --git a/translations/th/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/th/4-Data-Science-Lifecycle/14-Introduction/README.md
index 02073930..3cd6b1b8 100644
--- a/translations/th/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/th/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# บทนำสู่วงจรชีวิตของวิทยาศาสตร์ข้อมูล
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/th/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/th/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 60a76610..f4904854 100644
--- a/translations/th/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/th/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# การประเมินชุดข้อมูล
ลูกค้าได้ติดต่อทีมของคุณเพื่อขอความช่วยเหลือในการวิเคราะห์พฤติกรรมการใช้จ่ายตามฤดูกาลของลูกค้ารถแท็กซี่ในนครนิวยอร์ก
diff --git a/translations/th/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/th/4-Data-Science-Lifecycle/15-analyzing/README.md
index 584c26c8..a197a938 100644
--- a/translations/th/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/th/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# วงจรชีวิตของวิทยาศาสตร์ข้อมูล: การวิเคราะห์
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/th/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/th/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index e48b8960..6105e3ad 100644
--- a/translations/th/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/th/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# สำรวจเพื่อหาคำตอบ
นี่เป็นการต่อเนื่องจาก [งานที่มอบหมาย](../14-Introduction/assignment.md) ในบทเรียนก่อนหน้า ซึ่งเราได้ดูชุดข้อมูลอย่างคร่าวๆ ตอนนี้เราจะมาดูข้อมูลในเชิงลึกมากขึ้น
diff --git a/translations/th/4-Data-Science-Lifecycle/16-communication/README.md b/translations/th/4-Data-Science-Lifecycle/16-communication/README.md
index bb37a2ce..d9030a66 100644
--- a/translations/th/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/th/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# วงจรชีวิตของวิทยาศาสตร์ข้อมูล: การสื่อสาร
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/th/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/th/4-Data-Science-Lifecycle/16-communication/assignment.md
index deac70cf..b6c16fa1 100644
--- a/translations/th/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/th/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# เล่าเรื่องราว
## คำแนะนำ
diff --git a/translations/th/4-Data-Science-Lifecycle/README.md b/translations/th/4-Data-Science-Lifecycle/README.md
index 334d68fa..07dcef05 100644
--- a/translations/th/4-Data-Science-Lifecycle/README.md
+++ b/translations/th/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# วงจรชีวิตของวิทยาศาสตร์ข้อมูล

diff --git a/translations/th/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/th/5-Data-Science-In-Cloud/17-Introduction/README.md
index 12a2829f..9e3937e0 100644
--- a/translations/th/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/th/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# การแนะนำวิทยาศาสตร์ข้อมูลในระบบคลาวด์
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/th/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/th/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index cbd238a1..e9b647fb 100644
--- a/translations/th/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/th/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# การวิจัยตลาด
## คำแนะนำ
diff --git a/translations/th/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/th/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 8ad780bb..0cb4de1c 100644
--- a/translations/th/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/th/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# วิทยาศาสตร์ข้อมูลบนคลาวด์: วิธี "Low code/No code"
|](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/th/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/th/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 30e8caf0..92a945e3 100644
--- a/translations/th/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/th/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# โครงการ Data Science แบบ Low code/No code บน Azure ML
## คำแนะนำ
diff --git a/translations/th/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/th/5-Data-Science-In-Cloud/19-Azure/README.md
index 6dd1d530..52d8fcb3 100644
--- a/translations/th/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/th/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# วิทยาศาสตร์ข้อมูลในระบบคลาวด์: วิธีการ "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/th/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/th/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 013474a7..f00f7bec 100644
--- a/translations/th/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/th/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# โครงการ Data Science โดยใช้ Azure ML SDK
## คำแนะนำ
diff --git a/translations/th/5-Data-Science-In-Cloud/README.md b/translations/th/5-Data-Science-In-Cloud/README.md
index ca19e598..fddcdbbe 100644
--- a/translations/th/5-Data-Science-In-Cloud/README.md
+++ b/translations/th/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# วิทยาศาสตร์ข้อมูลบนคลาวด์

diff --git a/translations/th/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/th/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index bda243b8..243b0eb9 100644
--- a/translations/th/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/th/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# วิทยาศาสตร์ข้อมูลในโลกแห่งความจริง
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/th/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/th/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 9cec8e2f..aaf80989 100644
--- a/translations/th/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/th/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# สำรวจชุดข้อมูล Planetary Computer
## คำแนะนำ
diff --git a/translations/th/6-Data-Science-In-Wild/README.md b/translations/th/6-Data-Science-In-Wild/README.md
index 37aba406..42a05a22 100644
--- a/translations/th/6-Data-Science-In-Wild/README.md
+++ b/translations/th/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# วิทยาศาสตร์ข้อมูลในโลกแห่งความจริง
การประยุกต์ใช้วิทยาศาสตร์ข้อมูลในอุตสาหกรรมต่าง ๆ
diff --git a/translations/th/AGENTS.md b/translations/th/AGENTS.md
index e1642338..878f182b 100644
--- a/translations/th/AGENTS.md
+++ b/translations/th/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## ภาพรวมของโครงการ
diff --git a/translations/th/CODE_OF_CONDUCT.md b/translations/th/CODE_OF_CONDUCT.md
index 6305dd9c..ac96f1b3 100644
--- a/translations/th/CODE_OF_CONDUCT.md
+++ b/translations/th/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# หลักจรรยาบรรณของโค้ดโอเพ่นซอร์สของ Microsoft
โครงการนี้ได้นำ [หลักจรรยาบรรณของโค้ดโอเพ่นซอร์สของ Microsoft](https://opensource.microsoft.com/codeofconduct/) มาใช้
diff --git a/translations/th/CONTRIBUTING.md b/translations/th/CONTRIBUTING.md
index c28f517c..ec463159 100644
--- a/translations/th/CONTRIBUTING.md
+++ b/translations/th/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# การมีส่วนร่วมใน Data Science for Beginners
ขอบคุณสำหรับความสนใจในการมีส่วนร่วมในหลักสูตร Data Science for Beginners! เรายินดีต้อนรับการมีส่วนร่วมจากชุมชน
diff --git a/translations/th/INSTALLATION.md b/translations/th/INSTALLATION.md
index b6e8739c..178321f2 100644
--- a/translations/th/INSTALLATION.md
+++ b/translations/th/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# คู่มือการติดตั้ง
คู่มือนี้จะช่วยคุณตั้งค่าสภาพแวดล้อมเพื่อใช้งานหลักสูตร Data Science for Beginners
diff --git a/translations/th/README.md b/translations/th/README.md
index e5cc74d8..ae211be3 100644
--- a/translations/th/README.md
+++ b/translations/th/README.md
@@ -1,206 +1,197 @@
-
-# Data Science สำหรับผู้เริ่มต้น - หลักสูตรการเรียนรู้
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+# วิทยาการข้อมูลสำหรับผู้เริ่มต้น - หลักสูตร
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
-Azure Cloud Advocates ที่ Microsoft ยินดีนำเสนอหลักสูตร 10 สัปดาห์ 20 บทเรียน ทั้งหมดเกี่ยวกับ Data Science แต่ละบทเรียนมีแบบทดสอบก่อนเรียนและหลังเรียน คำแนะนำเป็นลายลักษณ์อักษรสำหรับทำบทเรียนให้เสร็จสมบูรณ์ โซลูชัน และแบบฝึกหัด การสอนแบบโครงการของเราช่วยให้คุณได้เรียนรู้พร้อมกับการสร้าง ซึ่งเป็นวิธีที่พิสูจน์แล้วว่าสำหรับทักษะใหม่ที่จะ 'ติดตัว'
+Azure Cloud Advocates ที่ Microsoft มีความยินดีนำเสนอหลักสูตร 10 สัปดาห์ 20 บทเรียนเกี่ยวกับวิทยาการข้อมูล แต่ละบทเรียนประกอบด้วยแบบทดสอบก่อนและหลังบทเรียน คำแนะนำเป็นลายลักษณ์อักษรเพื่อให้งานสำเร็จ ลักษณะงานที่ทำเสร็จ และการบ้าน วิธีการเรียนรู้แบบโครงการของเราช่วยให้คุณเรียนรู้ขณะสร้าง ซึ่งเป็นวิธีที่พิสูจน์แล้วว่าสามารถช่วยให้ทักษะใหม่ 'ติดตัว' ได้
-**ขอขอบคุณอย่างจริงใจแก่ผู้เขียนของเรา:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**ขอขอบคุณเป็นพิเศษแก่ผู้เขียนของเรา:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 ขอบคุณเป็นพิเศษ 🙏 แก่ผู้เขียน ผู้ตรวจทาน และผู้ร่วมสร้างเนื้อหาของเราในฐานะ [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/)** โดยเฉพาะ Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 ขอขอบคุณเป็นพิเศษ 🙏 แก่ผู้เขียน ผู้ตรวจทาน และผู้มีส่วนร่วมเนื้อหาของเราในฐานะ [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** โดยเฉพาะอย่างยิ่ง Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Data Science สำหรับผู้เริ่มต้น - _สเก็ตโน้ตโดย [@nitya](https://twitter.com/nitya)_ |
+| วิทยาการข้อมูลสำหรับผู้เริ่มต้น - _สเก็ตช์โน้ตโดย [@nitya](https://twitter.com/nitya)_ |
-### 🌐 สนับสนุนหลายภาษา
+### 🌐 รองรับหลายภาษา
-#### สนับสนุนผ่าน GitHub Action (อัตโนมัติ & อัปเดตเสมอ)
+#### รองรับโดย GitHub Action (ทำงานอัตโนมัติ & อัปเดตตลอดเวลา)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](./README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](./README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
> **ต้องการโคลนในเครื่อง?**
-> ที่เก็บนี้รวมการแปลภาษามากกว่า 50 ภาษา ซึ่งเพิ่มขนาดดาวน์โหลดอย่างมาก เพื่อโคลนโดยไม่รวมการแปล ใช้ sparse checkout:
+> ที่เก็บนี้มีการแปลกว่า 50 ภาษา ซึ่งเพิ่มขนาดการดาวน์โหลดอย่างมาก ในการโคลนโดยไม่รวมการแปล ให้ใช้ sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> นี่จะให้ทุกอย่างที่คุณต้องการเพื่อทำหลักสูตรให้เสร็จสมบูรณ์ด้วยการดาวน์โหลดที่รวดเร็วขึ้นมาก
+> ซึ่งจะให้ทุกอย่างที่คุณต้องการสำหรับการเรียนหลักสูตรด้วยการดาวน์โหลดที่เร็วกว่า
-**หากคุณต้องการให้สนับสนุนภาษาแปลเพิ่มเติม รายการภาษาอยู่ที่ [นี่](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**หากคุณต้องการให้รองรับภาษาเพิ่มเติม รายชื่อภาษาที่รองรับอยู่ [ที่นี่](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### เข้าร่วมชุมชนของเรา
+#### เข้าร่วมชุมชนของเรา
[](https://discord.gg/nTYy5BXMWG)
-เรามีซีรีส์เรียนรู้กับ AI บน Discord กำลังดำเนินอยู่ เรียนรู้เพิ่มเติมและเข้าร่วมกับเราได้ที่ [Learn with AI Series](https://aka.ms/learnwithai/discord) ตั้งแต่วันที่ 18 - 30 กันยายน 2025 คุณจะได้รับเคล็ดลับและเทคนิคการใช้ GitHub Copilot สำหรับ Data Science
+เรามีซีรีส์เรียนรู้กับ AI บน Discord ที่กำลังดำเนินอยู่ เรียนรู้เพิ่มเติมและเข้าร่วมกับเราได้ที่ [Learn with AI Series](https://aka.ms/learnwithai/discord) ตั้งแต่วันที่ 18 - 30 กันยายน 2025 คุณจะได้รับเคล็ดลับและเทคนิคการใช้ GitHub Copilot สำหรับวิทยาการข้อมูล
-
+
# คุณเป็นนักเรียนหรือไม่?
เริ่มต้นด้วยทรัพยากรต่อไปนี้:
-- [หน้า Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ในหน้านี้คุณจะพบทรัพยากรสำหรับผู้เริ่มต้น ชุดนักเรียน และวิธีการรับบัตรรับรองฟรี นี่คือหน้าที่คุณควรบันทึกและตรวจสอบเป็นระยะๆ เนื่องจากเราจะเปลี่ยนเนื้อหาอย่างน้อยเดือนละครั้ง
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) เข้าร่วมชุมชนนักเรียนทูตทั่วโลก สิ่งนี้อาจเป็นหนทางของคุณเข้าสู่ Microsoft
+- [หน้าศูนย์นักเรียน](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ในหน้านี้คุณจะพบทรัพยากรสำหรับผู้เริ่มต้น ชุดนักเรียน และแม้แต่ช่องทางในการรับบัตรรับรองฟรี นี่คือหน้าที่คุณควรบันทึกไว้และเช็คบ่อยๆ เพราะเราจะเปลี่ยนเนื้อหาอย่างน้อยเดือนละครั้ง
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) เข้าร่วมชุมชนทั่วโลกของนักเรียนทูต นี่อาจเป็นเส้นทางของคุณสู่ Microsoft
-# เริ่มต้นใช้งาน
+# การเริ่มต้นใช้งาน
## 📚 เอกสาร
-- **[คู่มือการติดตั้ง](INSTALLATION.md)** - คำแนะนำทีละขั้นตอนสำหรับผู้เริ่มต้น
-- **[คู่มือการใช้งาน](USAGE.md)** - ตัวอย่างและการทำงานบ่อยครั้ง
-- **[แก้ไขปัญหา](TROUBLESHOOTING.md)** - วิธีแก้ปัญหาทั่วไป
-- **[คู่มือการมีส่วนร่วม](CONTRIBUTING.md)** - วิธีการมีส่วนร่วมกับโครงการนี้
-- **[สำหรับครู](for-teachers.md)** - คำแนะนำการสอนและทรัพยากรสำหรับในชั้นเรียน
+- **[คู่มือการติดตั้ง](INSTALLATION.md)** - คำแนะนำติดตั้งทีละขั้นตอนสำหรับผู้เริ่มต้น
+- **[คู่มือการใช้งาน](USAGE.md)** - ตัวอย่างและขั้นตอนปฏิบัติทั่วไป
+- **[การแก้ไขปัญหา](TROUBLESHOOTING.md)** - วิธีแก้ไขปัญหาทั่วไป
+- **[คู่มือการมีส่วนร่วม](CONTRIBUTING.md)** - วิธีมีส่วนร่วมในโปรเจกต์นี้
+- **[สำหรับครู](for-teachers.md)** - แนวทางการสอนและทรัพยากรในห้องเรียน
## 👨🎓 สำหรับนักเรียน
-> **ผู้เริ่มต้นอย่างสมบูรณ์**: ใหม่กับ data science? เริ่มต้นด้วย [ตัวอย่างที่เป็นมิตรต่อผู้เริ่มต้น](examples/README.md)! ตัวอย่างง่ายๆ เหล่านี้ที่มีคำอธิบายช่วยให้คุณเข้าใจพื้นฐานก่อนที่จะลุยหลักสูตรเต็มรูปแบบ
-> **[นักเรียน](https://aka.ms/student-page)**: เพื่อใช้หลักสูตรนี้ด้วยตัวเอง ให้ fork รีโปทั้งหมดและทำแบบฝึกหัดด้วยตัวเอง เริ่มจากแบบทดสอบก่อนบรรยาย จากนั้นอ่านบรรยายและทำกิจกรรมที่เหลือ พยายามสร้างโครงการโดยเข้าใจบทเรียนแทนการคัดลอกโค้ดโซลูชัน อย่างไรก็ตาม โค้ดนั้นมีให้ในโฟลเดอร์ /solutions ของแต่ละบทเรียนที่เน้นโครงการ อีกแนวคิดหนึ่งคือการตั้งกลุ่มเรียนกับเพื่อนๆ แล้วเรียนรู้เนื้อหาพร้อมกัน สำหรับการศึกษาต่อ เราแนะนำ [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **ผู้เริ่มต้นอย่างสมบูรณ์**: ใหม่กับวิทยาการข้อมูลหรือไม่? เริ่มต้นด้วย [ตัวอย่างสำหรับผู้เริ่มต้น](examples/README.md) ของเรา! ตัวอย่างง่าย ๆ ที่มีคำอธิบายชัดเจนเหล่านี้จะช่วยให้คุณเข้าใจพื้นฐานก่อนเข้าสู่หลักสูตรเต็ม
+> **[นักเรียน](https://aka.ms/student-page)**: เพื่อใช้หลักสูตรนี้ด้วยตัวเอง ให้โฟกัสเต็ม repo แล้วทำแบบฝึกหัดด้วยตัวเอง เริ่มต้นด้วยแบบทดสอบก่อนบรรยาย จากนั้นอ่านบรรยายและทำกิจกรรมที่เหลือ พยายามสร้างโปรเจกต์โดยเข้าใจเนื้อหาแทนการคัดลอกโค้ดคำตอบ; อย่างไรก็ตาม โค้ดนั้นมีในโฟลเดอร์ /solutions ในแต่ละบทเรียนที่มุ่งเน้นโปรเจกต์ อีกแนวคิดหนึ่งคือการตั้งกลุ่มเรียนกับเพื่อนและเรียนรู้ไปพร้อมกัน สำหรับการศึกษาต่อ เราขอแนะนำ [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
-**เริ่มต้นด่วน:**
-1. ตรวจสอบ [คู่มือการติดตั้ง](INSTALLATION.md) เพื่อเตรียมสภาพแวดล้อมของคุณ
-2. ทบทวน [คู่มือการใช้งาน](USAGE.md) เพื่อเรียนรู้วิธีใช้หลักสูตร
-3. เริ่มจากบทเรียนที่ 1 และดำเนินการตามลำดับ
+**เริ่มต้นอย่างรวดเร็ว:**
+1. ตรวจสอบ [คู่มือการติดตั้ง](INSTALLATION.md) เพื่อตั้งค่าสภาพแวดล้อมของคุณ
+2. ทบทวน [คู่มือการใช้งาน](USAGE.md) เพื่อเรียนรู้วิธีทำงานกับหลักสูตร
+3. เริ่มด้วยบทเรียนที่ 1 แล้วทำตามลำดับ
4. เข้าร่วม [ชุมชน Discord ของเรา](https://aka.ms/ds4beginners/discord) เพื่อรับการสนับสนุน
-## 👩🏫 สำหรับครูผู้สอน
-
-> **ครูผู้สอน**: เราได้ [รวมข้อเสนอแนะบางอย่าง](for-teachers.md) ว่าจะใช้หลักสูตรนี้อย่างไร เราต้องการรับข้อเสนอแนะของคุณ [ในฟอรั่มการสนทนาของเรา](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## 👩🏫 สำหรับครู
+> **ครูผู้สอน**: เราได้ [รวมข้อเสนอแนะบางส่วน](for-teachers.md) ในการใช้หลักสูตรนี้ไว้ เรายินดีรับความคิดเห็นของคุณ [ในฟอรัมพูดคุยของเรา](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## พบกับทีมงาน
+
[](https://youtu.be/8mzavjQSMM4 "วิดีโอโปรโมท")
**ภาพเคลื่อนไหวโดย** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 คลิกที่ภาพข้างบนเพื่อชมวิดีโอเกี่ยวกับโครงการและทีมที่สร้างขึ้น!
+> 🎥 คลิกที่ภาพด้านบนเพื่อชมวิดีโอเกี่ยวกับโครงการและทีมที่สร้างมันขึ้นมา!
-## วิชาการสอน
+## การสอน
-เราได้เลือกหลักการสอนสองประการขณะสร้างหลักสูตรนี้: การรับประกันว่าหลักสูตรนี้เป็นโครงการฐาน และมีแบบทดสอบบ่อยครั้ง เมื่อสิ้นสุดชุดนี้ นักเรียนจะได้เรียนรู้หลักการพื้นฐานของวิทยาศาสตร์ข้อมูล รวมถึงแนวคิดทางจริยธรรม การเตรียมข้อมูล วิธีการทำงานกับข้อมูลที่หลากหลาย การแสดงภาพข้อมูล การวิเคราะห์ข้อมูล กรณีใช้งานจริงของวิทยาศาสตร์ข้อมูล และอื่นๆ
+เราได้เลือกสองหลักการทางการศึกษาขณะสร้างหลักสูตรนี้ ได้แก่ การทำให้เป็นแบบโครงการและการมีแบบทดสอบบ่อย ๆ เมื่อจบชุดนี้ นักเรียนจะได้เรียนรู้หลักการพื้นฐานของวิทยาศาสตร์ข้อมูล รวมถึงแนวคิดทางจริยธรรม การเตรียมข้อมูล วิธีการต่าง ๆ ในการทำงานกับข้อมูล การแสดงภาพข้อมูล การวิเคราะห์ข้อมูล กรณีการใช้งานจริงของวิทยาศาสตร์ข้อมูล และอื่น ๆ อีกมากมาย
-นอกจากนี้ แบบทดสอบความเสี่ยงต่ำก่อนเรียนจะตั้งเจตนารมณ์ของนักเรียนต่อการเรียนหัวข้อ ในขณะที่แบบทดสอบที่สองหลังเรียนจะช่วยสร้างความเข้าใจยิ่งขึ้น หลักสูตรนี้ออกแบบมาให้ยืดหยุ่นและสนุกสนาน และสามารถเรียนรู้ทั้งหลักสูตรหรือเป็นส่วนๆ โครงการจะเริ่มจากขนาดเล็กและซับซ้อนขึ้นเรื่อยๆ จนสิ้นสุดในรอบ 10 สัปดาห์
+นอกจากนี้ แบบทดสอบที่ความเสี่ยงต่ำก่อนเข้าคลาสจะช่วยตั้งใจให้นักเรียนมุ่งเรียนรู้หัวข้อที่กำหนด ในขณะที่แบบทดสอบที่สองหลังคลาสช่วยยืนยันการจดจำอย่างต่อเนื่อง หลักสูตรนี้ถูกออกแบบให้ยืดหยุ่นและสนุกสนาน สามารถเรียนครบทั้งหมดหรือเป็นบางส่วน โครงการต่าง ๆ เริ่มจากขนาดเล็กและมีความซับซ้อนเพิ่มขึ้นจนถึงสิ้นสุดรอบ 10 สัปดาห์
-> ค้นหา [จรรยาบรรณของเรา](CODE_OF_CONDUCT.md), [การมีส่วนร่วม](CONTRIBUTING.md), และ [แนวทางการแปล](TRANSLATIONS.md) เรายินดีรับฟังความคิดเห็นที่สร้างสรรค์ของคุณ!
+> ค้นหา [ระเบียบวินัย](CODE_OF_CONDUCT.md), [การมีส่วนร่วม](CONTRIBUTING.md), [แนวทางการแปล](TRANSLATIONS.md) ของเรา ยินดีรับคำแนะนำแสดงความคิดเห็นอย่างสร้างสรรค์ของคุณ!
-## แต่ละบทเรียนประกอบด้วย:
+## ทุกบทเรียนประกอบด้วย:
-- สเก็ตช์โน้ตเสริม (ไม่จำเป็น)
-- วิดีโอเสริม (ไม่จำเป็น)
-- แบบทดสอบเตรียมก่อนเรียน
-- บทเรียนเขียน
-- สำหรับบทเรียนแบบโครงการ มีคำแนะนำทีละขั้นตอนสำหรับการสร้างโครงการ
+- สเก็ตช์โน้ต (ไม่บังคับ)
+- วิดีโอเสริม (ไม่บังคับ)
+- แบบทดสอบอบอุ่นก่อนบทเรียน
+- บทเรียนแบบเขียน
+- สำหรับบทเรียนแบบโครงการ มีคำแนะนำทีละขั้นตอนในการสร้างโครงการ
- การตรวจสอบความรู้
- ความท้าทาย
- การอ่านเสริม
-- งานบ้าน
-- [แบบทดสอบหลังเรียน](https://ff-quizzes.netlify.app/en/)
+- การบ้าน
+- [แบบทดสอบหลังบทเรียน](https://ff-quizzes.netlify.app/en/)
-> **หมายเหตุเกี่ยวกับแบบทดสอบ**: แบบทดสอบทั้งหมดถูกรวบรวมในโฟลเดอร์ Quiz-App รวม 40 แบบทดสอบ แต่ละแบบมี 3 คำถาม เชื่อมโยงจากบทเรียนต่างๆ แต่แอปแบบทดสอบสามารถรันในเครื่องหรือเผยแพร่บน Azure ตามคำแนะนำในโฟลเดอร์ `quiz-app` ซึ่งกำลังปรับให้รองรับหลายภาษาอย่างค่อยเป็นค่อยไป
+> **หมายเหตุเกี่ยวกับแบบทดสอบ**: แบบทดสอบทั้งหมดอยู่ในโฟลเดอร์ Quiz-App รวมทั้งหมด 40 แบบทดสอบ แต่ละแบบมีสามคำถาม ลิงก์จากบทเรียน แต่แอปแบบทดสอบสามารถรันได้ในเครื่องหรือเผยแพร่ใน Azure; อ่านคำแนะนำในโฟลเดอร์ `quiz-app` อยู่ในระหว่างการแปลทีละน้อย
-## 🎓 ตัวอย่างที่เหมาะสำหรับผู้เริ่มต้น
+## 🎓 ตัวอย่างเหมาะสำหรับผู้เริ่มต้น
-**เพิ่งเริ่มต้นกับวิทยาศาสตร์ข้อมูล?** เราได้สร้าง [ไดเรกทอรีตัวอย่าง](examples/README.md) พิเศษ พร้อมโค้ดง่ายๆ มีคำอธิบายช่วยทำความเข้าใจ ดังนี้:
+**ใหม่กับวิทยาศาสตร์ข้อมูล?** เราได้สร้าง [โฟลเดอร์ตัวอย่าง](examples/README.md) พิเศษที่มีโค้ดง่าย ๆ และมีคอมเมนต์ละเอียดเพื่อช่วยให้เริ่มต้นได้ง่าย:
-- 🌟 **Hello World** - โปรแกรมวิทยาศาสตร์ข้อมูลแรกของคุณ
-- 📂 **การโหลดข้อมูล** - เรียนรู้การอ่านและสำรวจชุดข้อมูล
-- 📊 **การวิเคราะห์ง่ายๆ** - คำนวณสถิติและค้นหารูปแบบ
+- 🌟 **สวัสดีโลก** - โปรแกรมวิทยาศาสตร์ข้อมูลแรกของคุณ
+- 📂 **โหลดข้อมูล** - เรียนรู้การอ่านและสำรวจชุดข้อมูล
+- 📊 **การวิเคราะห์ง่าย ๆ** - คำนวณสถิติและค้นหารูปแบบ
- 📈 **การแสดงภาพพื้นฐาน** - สร้างแผนภูมิและกราฟ
-- 🔬 **โครงการในโลกจริง** - กระบวนการทำงานครบถ้วนจากต้นจนจบ
+- 🔬 **โครงการโลกจริง** - กระบวนการครบตั้งแต่ต้นจนจบ
-แต่ละตัวอย่างมีคำอธิบายละเอียดชัดเจนทุกขั้นตอน เหมาะสำหรับผู้เริ่มต้นอย่างยิ่ง!
+แต่ละตัวอย่างมีคำอธิบายละเอียดทุกขั้นตอน เหมาะสำหรับผู้เริ่มต้นอย่างยิ่ง!
👉 **[เริ่มต้นด้วยตัวอย่าง](examples/README.md)** 👈
## บทเรียน
-||
+||
|:---:|
| วิทยาศาสตร์ข้อมูลสำหรับผู้เริ่มต้น: แผนที่เส้นทาง - _สเก็ตช์โน้ตโดย [@nitya](https://twitter.com/nitya)_ |
-| หมายเลขบทเรียน | หัวข้อ | กลุ่มบทเรียน | วัตถุประสงค์การเรียนรู้ | บทเรียนที่เชื่อมโยง | ผู้แต่ง |
+| หมายเลขบทเรียน | หัวข้อ | การจัดกลุ่มบทเรียน | วัตถุประสงค์การเรียนรู้ | บทเรียนที่ลิงก์ | ผู้แต่ง |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | การนิยามวิทยาศาสตร์ข้อมูล | [บทนำ](1-Introduction/README.md) | เรียนรู้แนวคิดพื้นฐานเบื้องหลังวิทยาศาสตร์ข้อมูล และความเชื่อมโยงกับปัญญาประดิษฐ์ การเรียนรู้ของเครื่อง และข้อมูลขนาดใหญ่ | [บทเรียน](1-Introduction/01-defining-data-science/README.md) [วิดีโอ](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | จริยธรรมของวิทยาศาสตร์ข้อมูล | [บทนำ](1-Introduction/README.md) | แนวคิด กรอบการทำงาน และความท้าทายด้านจริยธรรมข้อมูล | [บทเรียน](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | การนิยามข้อมูล | [บทนำ](1-Introduction/README.md) | วิธีการจัดประเภทข้อมูลและแหล่งข้อมูลที่พบโดยทั่วไป | [บทเรียน](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 01 | การกำหนดวิทยาศาสตร์ข้อมูล | [บทนำ](1-Introduction/README.md) | เรียนรู้แนวคิดพื้นฐานเบื้องหลังวิทยาศาสตร์ข้อมูลและวิธีที่เกี่ยวข้องกับปัญญาประดิษฐ์ การเรียนรู้ของเครื่อง และบิ๊กดาต้า | [บทเรียน](1-Introduction/01-defining-data-science/README.md) [วิดีโอ](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | จริยธรรมวิทยาศาสตร์ข้อมูล | [บทนำ](1-Introduction/README.md) | แนวคิด จริยธรรม ข้อท้าทาย และกรอบการทำงาน | [บทเรียน](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | การกำหนดข้อมูล | [บทนำ](1-Introduction/README.md) | วิธีการจัดประเภทข้อมูลและแหล่งข้อมูลทั่วไป | [บทเรียน](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | บทนำสถิติและความน่าจะเป็น | [บทนำ](1-Introduction/README.md) | เทคนิคทางคณิตศาสตร์ของความน่าจะเป็นและสถิติเพื่อทำความเข้าใจข้อมูล | [บทเรียน](1-Introduction/04-stats-and-probability/README.md) [วิดีโอ](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | การทำงานกับข้อมูลสัมพันธ์ | [การทำงานกับข้อมูล](2-Working-With-Data/README.md) | บทนำเกี่ยวกับข้อมูลสัมพันธ์และพื้นฐานของการสำรวจและวิเคราะห์ข้อมูลสัมพันธ์ด้วยภาษา Structured Query Language หรือ SQL (ออกเสียงว่า “ซีเควล”) | [บทเรียน](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | การทำงานกับข้อมูล NoSQL | [การทำงานกับข้อมูล](2-Working-With-Data/README.md) | บทนำเกี่ยวกับข้อมูลที่ไม่เป็นความสัมพันธ์ ประเภทต่างๆ และพื้นฐานของการสำรวจและวิเคราะห์ฐานข้อมูลแบบเอกสาร | [บทเรียน](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | การทำงานกับ Python | [การทำงานกับข้อมูล](2-Working-With-Data/README.md) | พื้นฐานการใช้ Python เพื่อการสำรวจข้อมูลด้วยไลบรารีอย่าง Pandas แนะนำให้มีความเข้าใจพื้นฐานภาษา Python | [บทเรียน](2-Working-With-Data/07-python/README.md) [วิดีโอ](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | การเตรียมข้อมูล | [การทำงานกับข้อมูล](2-Working-With-Data/README.md) | หัวข้อเทคนิคการทำความสะอาดและแปลงข้อมูลเพื่อจัดการกับความท้าทายของข้อมูลที่ขาดหาย ไม่ถูกต้อง หรือไม่สมบูรณ์ | [บทเรียน](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | การแสดงปริมาณข้อมูล | [การแสดงภาพข้อมูล](3-Data-Visualization/README.md) | เรียนรู้การใช้ Matplotlib เพื่อแสดงข้อมูลนก 🦆 | [บทเรียน](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | การแสดงการแจกแจงของข้อมูล | [การแสดงภาพข้อมูล](3-Data-Visualization/README.md) | การแสดงภาพการสังเกตการณ์และแนวโน้มภายในช่วงหนึ่ง | [บทเรียน](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | การแสดงสัดส่วน | [การแสดงภาพข้อมูล](3-Data-Visualization/README.md) | การแสดงภาพร้อยละแบบไม่ต่อเนื่องและแบบจัดกลุ่ม | [บทเรียน](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | การแสดงความสัมพันธ์ | [การแสดงภาพข้อมูล](3-Data-Visualization/README.md) | การแสดงภาพความเชื่อมโยงและความสัมพันธ์ระหว่างชุดข้อมูลและตัวแปร | [บทเรียน](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | การแสดงภาพที่มีความหมาย | [การแสดงภาพข้อมูล](3-Data-Visualization/README.md) | เทคนิคและคำแนะนำเพื่อให้การแสดงภาพของคุณมีคุณค่าในการแก้ปัญหาและสร้างข้อมูลเชิงลึกอย่างมีประสิทธิภาพ | [บทเรียน](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | บทนำวงจรชีวิตวิทยาศาสตร์ข้อมูล | [วงจรชีวิต](4-Data-Science-Lifecycle/README.md) | บทนำวงจรชีวิตวิทยาศาสตร์ข้อมูลและขั้นตอนแรกของการรับและสกัดข้อมูล | [บทเรียน](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | การวิเคราะห์ | [วงจรชีวิต](4-Data-Science-Lifecycle/README.md) | ขั้นตอนนี้ของวงจรชีวิตวิทยาศาสตร์ข้อมูลเน้นเทคนิคการวิเคราะห์ข้อมูล | [บทเรียน](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | การสื่อสาร | [วงจรชีวิต](4-Data-Science-Lifecycle/README.md) | ขั้นตอนนี้ของวงจรชีวิตวิทยาศาสตร์ข้อมูลเน้นการนำเสนอข้อมูลเชิงลึกจากข้อมูลเพื่อให้ง่ายต่อการเข้าใจของผู้ตัดสินใจ | [บทเรียน](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 05 | การทำงานกับข้อมูลเชิงสัมพันธ์ | [การทำงานกับข้อมูล](2-Working-With-Data/README.md) | บทนำข้อมูลเชิงสัมพันธ์และพื้นฐานการสำรวจและวิเคราะห์ข้อมูลเชิงสัมพันธ์ด้วยภาษา Structured Query Language หรือ SQL (อ่านว่า "ซีเควล") | [บทเรียน](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | การทำงานกับข้อมูล NoSQL | [การทำงานกับข้อมูล](2-Working-With-Data/README.md) | บทนำข้อมูลที่ไม่ใช่เชิงสัมพันธ์ ประเภทต่าง ๆ และพื้นฐานการสำรวจและวิเคราะห์ฐานข้อมูลเอกสาร | [บทเรียน](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 07 | การทำงานกับ Python | [การทำงานกับข้อมูล](2-Working-With-Data/README.md) | พื้นฐานการใช้ Python เพื่อสำรวจข้อมูลด้วยไลบรารีเช่น Pandas แนะนำว่าควรมีความเข้าใจพื้นฐานการเขียนโปรแกรม Python | [บทเรียน](2-Working-With-Data/07-python/README.md) [วิดีโอ](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | การเตรียมข้อมูล | [การทำงานกับข้อมูล](2-Working-With-Data/README.md) | หัวข้อเกี่ยวกับเทคนิคการทำความสะอาดและแปลงข้อมูลเพื่อจัดการปัญหาข้อมูลขาดหาย ไม่ถูกต้อง หรือไม่สมบูรณ์ | [บทเรียน](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | การแสดงภาพปริมาณ | [การแสดงภาพข้อมูล](3-Data-Visualization/README.md) | เรียนรู้การใช้ Matplotlib ในการแสดงข้อมูลนก 🦆 | [บทเรียน](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | การแสดงภาพการแจกแจงของข้อมูล | [การแสดงภาพข้อมูล](3-Data-Visualization/README.md) | การแสดงภาพการสังเกตและแนวโน้มภายในช่วงค่า | [บทเรียน](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | การแสดงภาพสัดส่วน | [การแสดงภาพข้อมูล](3-Data-Visualization/README.md) | การแสดงภาพเปอร์เซ็นต์แบบกลุ่มและแบบแยก | [บทเรียน](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | การแสดงภาพความสัมพันธ์ | [การแสดงภาพข้อมูล](3-Data-Visualization/README.md) | การแสดงภาพการเชื่อมโยงและความสัมพันธ์ระหว่างชุดข้อมูลกับตัวแปร | [บทเรียน](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | การแสดงภาพที่มีความหมาย | [การแสดงภาพข้อมูล](3-Data-Visualization/README.md) | เทคนิคและคำแนะนำในการทำให้การแสดงภาพมีคุณค่าสำหรับการแก้ปัญหาและการให้ข้อมูลเชิงลึกอย่างมีประสิทธิภาพ | [บทเรียน](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | บทนำวงจรชีวิตของวิทยาศาสตร์ข้อมูล | [วงจรชีวิต](4-Data-Science-Lifecycle/README.md) | บทนำวงจรชีวิตของวิทยาศาสตร์ข้อมูลและขั้นตอนแรกของการได้มาซึ่งและสกัดข้อมูล | [บทเรียน](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | การวิเคราะห์ | [วงจรชีวิต](4-Data-Science-Lifecycle/README.md) | ขั้นตอนของวงจรชีวิตวิทยาศาสตร์ข้อมูลที่เน้นเทคนิคการวิเคราะห์ข้อมูล | [บทเรียน](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | การสื่อสาร | [วงจรชีวิต](4-Data-Science-Lifecycle/README.md) | ขั้นตอนของวงจรชีวิตวิทยาศาสตร์ข้อมูลที่เน้นการนำเสนอข้อมูลเชิงลึกเพื่อให้ผู้ตัดสินใจเข้าใจได้ง่ายขึ้น | [บทเรียน](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | วิทยาศาสตร์ข้อมูลบนคลาวด์ | [ข้อมูลบนคลาวด์](5-Data-Science-In-Cloud/README.md) | ชุดบทเรียนนี้แนะนำวิทยาศาสตร์ข้อมูลบนคลาวด์และประโยชน์ของมัน | [บทเรียน](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) และ [Maud](https://twitter.com/maudstweets) |
-| 18 | วิทยาศาสตร์ข้อมูลบนคลาวด์ | [ข้อมูลบนคลาวด์](5-Data-Science-In-Cloud/README.md) | การฝึกโมเดลด้วยเครื่องมือ Low Code |[บทเรียน](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) และ [Maud](https://twitter.com/maudstweets) |
-| 19 | วิทยาศาสตร์ข้อมูลบนคลาวด์ | [ข้อมูลบนคลาวด์](5-Data-Science-In-Cloud/README.md) | การเผยแพร่โมเดลด้วย Azure Machine Learning Studio | [บทเรียน](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) และ [Maud](https://twitter.com/maudstweets) |
-| 20 | วิทยาศาสตร์ข้อมูลในโลกจริง | [ในธรรมชาติ](6-Data-Science-In-Wild/README.md) | โครงการวิทยาศาสตร์ข้อมูลที่ขับเคลื่อนในโลกจริง | [บทเรียน](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 18 | วิทยาศาสตร์ข้อมูลบนคลาวด์ | [ข้อมูลบนคลาวด์](5-Data-Science-In-Cloud/README.md) | การฝึกอบรมโมเดลโดยใช้เครื่องมือ Low Code |[บทเรียน](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) และ [Maud](https://twitter.com/maudstweets) |
+| 19 | วิทยาศาสตร์ข้อมูลบนคลาวด์ | [ข้อมูลบนคลาวด์](5-Data-Science-In-Cloud/README.md) | การนำโมเดลไปใช้กับ Azure Machine Learning Studio | [บทเรียน](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) และ [Maud](https://twitter.com/maudstweets) |
+| 20 | วิทยาศาสตร์ข้อมูลในโลกจริง | [ในโลกจริง](6-Data-Science-In-Wild/README.md) | โครงการที่ขับเคลื่อนด้วยวิทยาศาสตร์ข้อมูลในโลกความเป็นจริง | [บทเรียน](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-ทำตามขั้นตอนเหล่านี้เพื่อเปิดตัวอย่างนี้ใน Codespace:
-1. คลิกเมนูแบบเลื่อนลงสำหรับโค้ดและเลือกตัวเลือก Open with Codespaces
+ทำตามขั้นตอนเพื่อเปิดตัวอย่างนี้ใน Codespace:
+1. คลิกเมนูดรอปดาวน์ Code แล้วเลือกตัวเลือก Open with Codespaces
2. เลือก + New codespace ที่ด้านล่างของแผง
-สำหรับข้อมูลเพิ่มเติม ดูได้ที่ [เอกสาร GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace)
+สำหรับข้อมูลเพิ่มเติม ดู [เอกสาร GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace)
## VSCode Remote - Containers
-ทำตามขั้นตอนเหล่านี้เพื่อเปิดรีโปนี้ในคอนเทนเนอร์โดยใช้เครื่องของคุณและ VSCode ผ่านส่วนขยาย VS Code Remote - Containers:
+ทำตามขั้นตอนเพื่อเปิด repository นี้ใน container โดยใช้เครื่องของคุณและ VSCode ด้วยส่วนขยาย VS Code Remote - Containers:
-1. หากนี่เป็นครั้งแรกที่คุณใช้คอนเทนเนอร์พัฒนา กรุณาตรวจสอบว่าสำรองเครื่องคุณตรงตามข้อกำหนดเบื้องต้น (เช่น ติดตั้ง Docker) ตาม [เอกสารเริ่มต้น](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)
+1. หากเป็นครั้งแรกที่คุณใช้ development container โปรดตรวจสอบว่าระบบของคุณตรงตามข้อกำหนดเบื้องต้น (เช่น ติดตั้ง Docker) ใน [เอกสารเริ่มต้นใช้งาน](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)
-เพื่อใช้รีโปนี้ คุณสามารถเปิดรีโปในโวลุ่ม Docker แยก:
+เพื่อใช้ repository นี้ คุณสามารถเปิด repository ใน Docker volume แยกต่างหาก:
-**หมายเหตุ**: ในเบื้องหลัง ระบบจะใช้คำสั่ง Remote-Containers: **Clone Repository in Container Volume...** เพื่อโคลนซอร์สโค้ดลงโวลุ่ม Docker แทนที่จะเป็นระบบไฟล์ภายในเครื่อง [โวลุ่ม](https://docs.docker.com/storage/volumes/) เป็นกลไกที่แนะนำสำหรับเก็บข้อมูลภายในคอนเทนเนอร์อย่างถาวร
+**หมายเหตุ**: ภายใต้กระโปรง หลักการนี้จะใช้คำสั่ง Remote-Containers: **Clone Repository in Container Volume...** เพื่อโคลนซอร์สโค้ดใน Docker volume แทนระบบไฟล์ท้องถิ่น [Volumes](https://docs.docker.com/storage/volumes/) เป็นกลไกที่แนะนำสำหรับการเก็บข้อมูล container
-หรือเปิดสำเนาที่โคลนไว้หรือดาวน์โหลดไว้ในเครื่อง:
+หรือเปิดโฟลเดอร์ repository ที่โคลนหรือดาวน์โหลดไว้ในเครื่อง:
-- โคลนรีโปนี้ไปยังระบบไฟล์ในเครื่องของคุณ
-- กด F1 และเลือกคำสั่ง **Remote-Containers: Open Folder in Container...**
-- เลือกสำเนาของโฟลเดอร์นี้ที่โคลนไว้ รอให้คอนเทนเนอร์เริ่มทำงาน และลองใช้งาน
+- โคลน repository นี้ไปยังระบบไฟล์ท้องถิ่น
+- กด F1 แล้วเลือกคำสั่ง **Remote-Containers: Open Folder in Container...**
+- เลือกโฟลเดอร์ที่โคลน รอให้ container เริ่มทำงาน แล้วทดลองใช้งาน
-## การใช้งานแบบออฟไลน์
+## การเข้าถึงแบบออฟไลน์
-คุณสามารถรันเอกสารนี้แบบออฟไลน์โดยใช้ [Docsify](https://docsify.js.org/#/) ทำการ Fork รีโปนี้, [ติดตั้ง Docsify](https://docsify.js.org/#/quickstart) บนเครื่องของคุณ จากนั้นในโฟลเดอร์หลักของรีโปนี้ พิมพ์คำสั่ง `docsify serve` เว็บไซต์จะให้บริการบนพอร์ต 3000 ที่ localhost: `localhost:3000`
+คุณสามารถดูเอกสารนี้แบบออฟไลน์ได้โดยใช้ [Docsify](https://docsify.js.org/#/) สร้าง fork ของ repo นี้ ติดตั้ง Docsify บนเครื่องของคุณ จากนั้นในโฟลเดอร์ root ของ repo นี้ พิมพ์คำสั่ง `docsify serve` เว็บไซต์จะให้บริการที่พอร์ต 3000 บน localhost ของคุณ: `localhost:3000`
-> หมายเหตุ โน้ตบุ๊คจะไม่แสดงผลผ่าน Docsify ดังนั้นเมื่อคุณต้องการรันโน้ตบุ๊ค ให้ทำแยกต่างหากใน VS Code ที่รันเคอร์เนล Python
+> หมายเหตุ: โน้ตบุ๊กจะไม่ถูกเรนเดอร์ผ่าน Docsify ดังนั้นเมื่อคุณต้องการรันโน้ตบุ๊ก ให้รันแยกต่างหากใน VS Code ที่ใช้เคอร์เนล Python
-## หลักสูตรอื่นๆ
+## หลักสูตรอื่น ๆ
-ทีมของเราผลิตหลักสูตรอื่นๆ! ดูเพิ่มเติมได้ที่:
+ทีมงานของเราผลิตหลักสูตรอื่น ๆ ด้วย! ลองดูที่:
### LangChain
@@ -217,7 +208,7 @@ Azure Cloud Advocates ที่ Microsoft ยินดีนำเสนอห
---
-### ชุดซีรีส์ AI เชิงสร้างสรรค์
+### Generative AI Series
[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
@@ -225,7 +216,7 @@ Azure Cloud Advocates ที่ Microsoft ยินดีนำเสนอห
---
-### การเรียนรู้หลัก
+### Core Learning
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
@@ -236,27 +227,27 @@ Azure Cloud Advocates ที่ Microsoft ยินดีนำเสนอห
---
-### ชุดซีรีส์ Copilot
+### Copilot Series
[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-## ขอความช่วยเหลือ
+## การขอความช่วยเหลือ
-**ประสบปัญหาใช่ไหม?** ตรวจสอบ [คู่มือแก้ไขปัญหา](TROUBLESHOOTING.md) ของเราเพื่อหาวิธีแก้ไขปัญหาทั่วไป
+**เจอปัญหาใช่ไหม?** ตรวจสอบ [คู่มือแก้ไขปัญหา](TROUBLESHOOTING.md) ของเราเพื่อหาวิธีแก้ไขปัญหาที่พบบ่อย
-หากคุณติดปัญหาหรือมีคำถามเกี่ยวกับการสร้างแอป AI เข้าร่วมผู้เรียนและนักพัฒนาที่มีประสบการณ์ในการสนทนาเกี่ยวกับ MCP นี่คือชุมชนที่สนับสนุนซึ่งยินดีต้อนรับคำถามและแบ่งปันความรู้กันอย่างเสรี
+หากคุณติดขัดหรือมีคำถามเกี่ยวกับการสร้างแอป AI เข้าร่วมกับผู้เรียนและนักพัฒนาที่มีประสบการณ์ในการสนทนาเกี่ยวกับ MCP นี่คือชุมชนที่สนับสนุนซึ่งคำถามได้รับการต้อนรับและความรู้ถูกแบ่งปันอย่างอิสระ
[](https://discord.gg/nTYy5BXMWG)
-หากคุณมีคำติชมหรือพบข้อผิดพลาดขณะสร้างผลิตภัณฑ์ โปรดไปที่:
+ถ้าคุณมีข้อเสนอแนะเกี่ยวกับผลิตภัณฑ์หรือตรวจพบข้อผิดพลาดขณะสร้างแอป กรุณาเยี่ยมชม:
[](https://aka.ms/foundry/forum)
---
-**ข้อจำกัดความรับผิดชอบ**:
-เอกสารฉบับนี้ได้รับการแปลโดยใช้บริการแปลภาษาอัตโนมัติ [Co-op Translator](https://github.com/Azure/co-op-translator) แม้เราจะพยายามให้มีความถูกต้อง โปรดทราบว่าการแปลโดยอัตโนมัติอาจมีข้อผิดพลาดหรือความคลาดเคลื่อน เอกสารต้นฉบับในภาษาต้นทางควรถือเป็นแหล่งข้อมูลที่เชื่อถือได้ สำหรับข้อมูลสำคัญ ขอแนะนำให้ใช้บริการแปลโดยผู้เชี่ยวชาญด้านการแปลมนุษย์ เราไม่รับผิดชอบต่อความเข้าใจผิดหรือการตีความผิดใด ๆ ที่เกิดจากการใช้การแปลนี้
+**ข้อจำกัดความรับผิดชอบ**:
+เอกสารนี้ได้รับการแปลโดยใช้บริการแปลภาษาอัตโนมัติ [Co-op Translator](https://github.com/Azure/co-op-translator) แม้ว่าเราจะพยายามให้ความถูกต้อง แต่โปรดทราบว่าการแปลโดยอัตโนมัติอาจมีข้อผิดพลาดหรือความคลาดเคลื่อนได้ เอกสารต้นฉบับในภาษาต้นทางควรถูกพิจารณาเป็นแหล่งข้อมูลที่เชื่อถือได้ สำหรับข้อมูลที่สำคัญ ขอแนะนำให้ใช้บริการแปลโดยผู้เชี่ยวชาญด้านภาษามนุษย์ เราไม่รับผิดชอบต่อความเข้าใจผิดหรือการตีความผิดใด ๆ ที่เกิดขึ้นจากการใช้การแปลนี้
\ No newline at end of file
diff --git a/translations/th/SECURITY.md b/translations/th/SECURITY.md
index e511a80e..98e2325d 100644
--- a/translations/th/SECURITY.md
+++ b/translations/th/SECURITY.md
@@ -1,12 +1,3 @@
-
## ความปลอดภัย
Microsoft ให้ความสำคัญกับความปลอดภัยของผลิตภัณฑ์และบริการซอฟต์แวร์ของเราอย่างจริงจัง ซึ่งรวมถึงคลังซอร์สโค้ดทั้งหมดที่จัดการผ่านองค์กร GitHub ของเรา เช่น [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) และ [องค์กร GitHub ของเรา](https://opensource.microsoft.com/)
diff --git a/translations/th/SUPPORT.md b/translations/th/SUPPORT.md
index 77a79074..33319e32 100644
--- a/translations/th/SUPPORT.md
+++ b/translations/th/SUPPORT.md
@@ -1,12 +1,3 @@
-
# การสนับสนุน
## วิธีรายงานปัญหาและขอความช่วยเหลือ
diff --git a/translations/th/TROUBLESHOOTING.md b/translations/th/TROUBLESHOOTING.md
index 5de0ea67..dc63c87e 100644
--- a/translations/th/TROUBLESHOOTING.md
+++ b/translations/th/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# คู่มือแก้ไขปัญหา
คู่มือนี้ให้คำแนะนำในการแก้ไขปัญหาทั่วไปที่คุณอาจพบเมื่อทำงานกับหลักสูตร Data Science for Beginners
diff --git a/translations/th/USAGE.md b/translations/th/USAGE.md
index 72dd62ed..bfc483c9 100644
--- a/translations/th/USAGE.md
+++ b/translations/th/USAGE.md
@@ -1,12 +1,3 @@
-
# คู่มือการใช้งาน
คู่มือนี้ให้ตัวอย่างและขั้นตอนการทำงานทั่วไปสำหรับการใช้หลักสูตร Data Science for Beginners
diff --git a/translations/th/docs/_sidebar.md b/translations/th/docs/_sidebar.md
index 4cfc3a9f..b6474bf6 100644
--- a/translations/th/docs/_sidebar.md
+++ b/translations/th/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- บทนำ
- [การนิยามวิทยาศาสตร์ข้อมูล](../1-Introduction/01-defining-data-science/README.md)
- [จริยธรรมของวิทยาศาสตร์ข้อมูล](../1-Introduction/02-ethics/README.md)
diff --git a/translations/th/examples/README.md b/translations/th/examples/README.md
index 7206ad5f..545f0298 100644
--- a/translations/th/examples/README.md
+++ b/translations/th/examples/README.md
@@ -1,12 +1,3 @@
-
# ตัวอย่างวิทยาศาสตร์ข้อมูลสำหรับผู้เริ่มต้น
ยินดีต้อนรับสู่ไดเรกทอรีตัวอย่าง! คอลเลกชันตัวอย่างที่เรียบง่ายและมีคำอธิบายชัดเจนนี้ถูกออกแบบมาเพื่อช่วยให้คุณเริ่มต้นกับวิทยาศาสตร์ข้อมูล แม้ว่าคุณจะเป็นมือใหม่ก็ตาม
diff --git a/translations/th/for-teachers.md b/translations/th/for-teachers.md
index 4fb7a990..aaeadeb1 100644
--- a/translations/th/for-teachers.md
+++ b/translations/th/for-teachers.md
@@ -1,12 +1,3 @@
-
## สำหรับผู้สอน
คุณต้องการใช้หลักสูตรนี้ในห้องเรียนของคุณหรือไม่? เชิญใช้ได้เลย!
diff --git a/translations/th/quiz-app/README.md b/translations/th/quiz-app/README.md
index fc4b3951..bc3d163e 100644
--- a/translations/th/quiz-app/README.md
+++ b/translations/th/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# แบบทดสอบ
แบบทดสอบเหล่านี้เป็นแบบทดสอบก่อนและหลังการบรรยายสำหรับหลักสูตรวิทยาศาสตร์ข้อมูลที่ https://aka.ms/datascience-beginners
diff --git a/translations/th/sketchnotes/README.md b/translations/th/sketchnotes/README.md
index 0f2fd119..29b402e4 100644
--- a/translations/th/sketchnotes/README.md
+++ b/translations/th/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
ค้นหาสเก็ตโน้ตทั้งหมดได้ที่นี่!
## เครดิต
diff --git a/translations/tl/.co-op-translator.json b/translations/tl/.co-op-translator.json
new file mode 100644
index 00000000..1a86b0c3
--- /dev/null
+++ b/translations/tl/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:02:04+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "tl"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-28T02:45:30+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "tl"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-28T02:45:41+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "tl"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:48:59+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "tl"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-28T02:48:03+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "tl"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-06T00:30:36+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "tl"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-28T02:46:24+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "tl"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:56:37+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "tl"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-28T02:44:16+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "tl"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-28T02:42:43+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "tl"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:54:51+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "tl"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:57:18+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "tl"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-06T00:19:32+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "tl"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-28T02:27:29+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "tl"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:53:51+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "tl"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-28T02:28:40+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "tl"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-06T00:21:29+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "tl"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-28T02:30:35+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "tl"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-28T02:26:46+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-06T00:25:37+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-28T02:40:08+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-06T00:27:09+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-28T02:42:36+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-06T00:24:44+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-28T02:38:59+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:43:58+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-28T02:41:53+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-06T00:26:07+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-28T02:40:53+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-28T02:41:00+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-28T02:41:06+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-28T02:35:24+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-28T02:36:00+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-28T02:37:12+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-28T02:37:38+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-28T02:34:20+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-28T02:36:06+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-28T02:37:46+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "tl"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-28T02:34:01+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "tl"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:24:46+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "tl"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-28T02:32:39+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "tl"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:24:03+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "tl"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-28T02:31:22+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "tl"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:25:11+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "tl"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-28T02:33:54+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "tl"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-28T02:30:55+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "tl"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-06T00:17:40+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "tl"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-28T02:25:50+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "tl"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-06T00:16:43+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "tl"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-28T02:25:02+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "tl"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-06T00:18:49+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "tl"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-28T02:26:38+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "tl"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-28T02:23:31+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "tl"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:39:06+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "tl"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-28T02:49:29+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "tl"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-28T02:48:33+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "tl"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:32:55+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "tl"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-28T02:23:25+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "tl"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:24:07+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "tl"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:23:43+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "tl"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:12:00+00:00",
+ "source_file": "README.md",
+ "language_code": "tl"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-28T02:22:58+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "tl"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-28T02:22:44+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "tl"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:44:40+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "tl"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:07:29+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "tl"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-28T02:30:43+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "tl"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:05:40+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "tl"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:59:43+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "tl"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-28T02:48:16+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "tl"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-28T02:49:42+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "tl"
+ }
+}
\ No newline at end of file
diff --git a/translations/tl/1-Introduction/01-defining-data-science/README.md b/translations/tl/1-Introduction/01-defining-data-science/README.md
index fc93e54b..1571620b 100644
--- a/translations/tl/1-Introduction/01-defining-data-science/README.md
+++ b/translations/tl/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Pagpapakilala sa Data Science
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/tl/1-Introduction/01-defining-data-science/assignment.md b/translations/tl/1-Introduction/01-defining-data-science/assignment.md
index 4d15ece2..fac33d1f 100644
--- a/translations/tl/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/tl/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Takdang-Aralin: Mga Senaryo sa Data Science
Sa unang takdang-aralin na ito, hinihiling namin sa iyo na pag-isipan ang ilang totoong proseso o problema sa iba't ibang larangan, at kung paano mo ito mapapabuti gamit ang proseso ng Data Science. Pag-isipan ang mga sumusunod:
diff --git a/translations/tl/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/tl/1-Introduction/01-defining-data-science/solution/assignment.md
index 0db0fb03..00aecefa 100644
--- a/translations/tl/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/tl/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Takdang-Aralin: Mga Senaryo sa Data Science
Sa unang takdang-aralin na ito, hinihiling namin sa iyo na pag-isipan ang ilang totoong proseso o problema sa iba't ibang larangan, at kung paano mo ito mapapabuti gamit ang proseso ng Data Science. Pag-isipan ang mga sumusunod:
diff --git a/translations/tl/1-Introduction/02-ethics/README.md b/translations/tl/1-Introduction/02-ethics/README.md
index 430ca141..3cc769e7 100644
--- a/translations/tl/1-Introduction/02-ethics/README.md
+++ b/translations/tl/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Panimula sa Etika ng Data
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/tl/1-Introduction/02-ethics/assignment.md b/translations/tl/1-Introduction/02-ethics/assignment.md
index a34fb188..31c0976a 100644
--- a/translations/tl/1-Introduction/02-ethics/assignment.md
+++ b/translations/tl/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Sumulat ng Pag-aaral ng Kaso Tungkol sa Etika ng Datos
## Mga Panuto
diff --git a/translations/tl/1-Introduction/03-defining-data/README.md b/translations/tl/1-Introduction/03-defining-data/README.md
index 2c11ad2f..baeb6617 100644
--- a/translations/tl/1-Introduction/03-defining-data/README.md
+++ b/translations/tl/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Pagpapakahulugan ng Datos
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/tl/1-Introduction/03-defining-data/assignment.md b/translations/tl/1-Introduction/03-defining-data/assignment.md
index 71244b69..8ca3a1ea 100644
--- a/translations/tl/1-Introduction/03-defining-data/assignment.md
+++ b/translations/tl/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Pag-uuri ng Mga Dataset
## Mga Panuto
diff --git a/translations/tl/1-Introduction/04-stats-and-probability/README.md b/translations/tl/1-Introduction/04-stats-and-probability/README.md
index 904e4b33..c9f4759a 100644
--- a/translations/tl/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/tl/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Isang Maikling Panimula sa Estadistika at Probabilidad
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Upang matulungan tayong maunawaan ang distribution ng datos, kapaki-pakinabang n
Graphically, maaari nating ipakita ang relasyon sa pagitan ng median at quartiles sa isang diagram na tinatawag na **box plot**:
-
+
Dito, kinakalkula rin natin ang **inter-quartile range** IQR=Q3-Q1, at ang tinatawag na **outliers** - mga halaga na nasa labas ng mga hangganan [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/tl/1-Introduction/04-stats-and-probability/assignment.md b/translations/tl/1-Introduction/04-stats-and-probability/assignment.md
index 5b11fa4e..4a77223b 100644
--- a/translations/tl/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/tl/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Maliit na Pag-aaral Tungkol sa Diabetes
Sa gawaing ito, gagamit tayo ng maliit na dataset ng mga pasyenteng may diabetes na kinuha mula [dito](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/tl/1-Introduction/README.md b/translations/tl/1-Introduction/README.md
index e7e76330..0de84ae3 100644
--- a/translations/tl/1-Introduction/README.md
+++ b/translations/tl/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Panimula sa Data Science

diff --git a/translations/tl/2-Working-With-Data/05-relational-databases/README.md b/translations/tl/2-Working-With-Data/05-relational-databases/README.md
index eec8ef39..a42e385f 100644
--- a/translations/tl/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/tl/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Paggamit ng Data: Relational Databases
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/tl/2-Working-With-Data/05-relational-databases/assignment.md b/translations/tl/2-Working-With-Data/05-relational-databases/assignment.md
index bf9e10a0..2a4df5e3 100644
--- a/translations/tl/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/tl/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Pagpapakita ng datos ng paliparan
Binigyan ka ng isang [database](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) na ginawa gamit ang [SQLite](https://sqlite.org/index.html) na naglalaman ng impormasyon tungkol sa mga paliparan. Ang schema ay ipinapakita sa ibaba. Gagamitin mo ang [SQLite extension](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) sa [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) upang ipakita ang impormasyon tungkol sa mga paliparan sa iba't ibang lungsod.
diff --git a/translations/tl/2-Working-With-Data/06-non-relational/README.md b/translations/tl/2-Working-With-Data/06-non-relational/README.md
index e31c31b9..7d1e4519 100644
--- a/translations/tl/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/tl/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Paggamit ng Data: Non-Relational Data
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/tl/2-Working-With-Data/06-non-relational/assignment.md b/translations/tl/2-Working-With-Data/06-non-relational/assignment.md
index f4ac703a..42c937e0 100644
--- a/translations/tl/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/tl/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Kita ng Soda
## Mga Panuto
diff --git a/translations/tl/2-Working-With-Data/07-python/README.md b/translations/tl/2-Working-With-Data/07-python/README.md
index a4ffedb7..65c1e01a 100644
--- a/translations/tl/2-Working-With-Data/07-python/README.md
+++ b/translations/tl/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Paggamit ng Data: Python at ang Pandas Library
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/tl/2-Working-With-Data/07-python/assignment.md b/translations/tl/2-Working-With-Data/07-python/assignment.md
index 1895d34b..abd7ccbf 100644
--- a/translations/tl/2-Working-With-Data/07-python/assignment.md
+++ b/translations/tl/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Takdang-Aralin para sa Pagproseso ng Data sa Python
Sa takdang-araling ito, hihilingin namin sa iyo na palawakin ang code na sinimulan naming buuin sa aming mga hamon. Ang takdang-aralin ay binubuo ng dalawang bahagi:
diff --git a/translations/tl/2-Working-With-Data/08-data-preparation/README.md b/translations/tl/2-Working-With-Data/08-data-preparation/README.md
index 6cefdbe9..f2fd29b0 100644
--- a/translations/tl/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/tl/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Paggawa gamit ang Data: Paghahanda ng Data
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/tl/2-Working-With-Data/08-data-preparation/assignment.md b/translations/tl/2-Working-With-Data/08-data-preparation/assignment.md
index 0b44bfbb..8d0f503f 100644
--- a/translations/tl/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/tl/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Pagsusuri ng Datos mula sa Isang Form
Ang isang kliyente ay sumubok ng isang [maliit na form](../../../../2-Working-With-Data/08-data-preparation/index.html) upang mangalap ng ilang pangunahing impormasyon tungkol sa kanilang mga kliyente. Dinala nila ang kanilang mga natuklasan sa iyo upang ma-validate ang datos na kanilang nakalap. Maaari mong buksan ang pahinang `index.html` sa browser upang makita ang form.
diff --git a/translations/tl/2-Working-With-Data/README.md b/translations/tl/2-Working-With-Data/README.md
index dffa2745..7bc8beb1 100644
--- a/translations/tl/2-Working-With-Data/README.md
+++ b/translations/tl/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Paggamit ng Data

diff --git a/translations/tl/3-Data-Visualization/09-visualization-quantities/README.md b/translations/tl/3-Data-Visualization/09-visualization-quantities/README.md
index 235a05c4..40a6326a 100644
--- a/translations/tl/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/tl/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Pagpapakita ng Dami
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/tl/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/tl/3-Data-Visualization/09-visualization-quantities/assignment.md
index c8ef6ffd..55bf0808 100644
--- a/translations/tl/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/tl/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Mga Linya, Scatter, at Bar
## Mga Panuto
diff --git a/translations/tl/3-Data-Visualization/10-visualization-distributions/README.md b/translations/tl/3-Data-Visualization/10-visualization-distributions/README.md
index 202cf9b9..0f3a50dd 100644
--- a/translations/tl/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/tl/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Pagpapakita ng Pamamahagi
|](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/tl/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/tl/3-Data-Visualization/10-visualization-distributions/assignment.md
index 3ca5159a..69e878ff 100644
--- a/translations/tl/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/tl/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# I-apply ang Iyong Mga Kasanayan
## Mga Instruksyon
diff --git a/translations/tl/3-Data-Visualization/11-visualization-proportions/README.md b/translations/tl/3-Data-Visualization/11-visualization-proportions/README.md
index f4ec1b68..ad41a3bd 100644
--- a/translations/tl/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/tl/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Pagpapakita ng Proporsyon
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/tl/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/tl/3-Data-Visualization/11-visualization-proportions/assignment.md
index f86967b2..ff65cae2 100644
--- a/translations/tl/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/tl/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Subukan ito sa Excel
## Mga Instruksyon
diff --git a/translations/tl/3-Data-Visualization/12-visualization-relationships/README.md b/translations/tl/3-Data-Visualization/12-visualization-relationships/README.md
index 4eaa57c8..48458e1e 100644
--- a/translations/tl/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/tl/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Pagpapakita ng Relasyon: Lahat Tungkol sa Pulot 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/tl/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/tl/3-Data-Visualization/12-visualization-relationships/assignment.md
index 784a2aa1..28cfdbcd 100644
--- a/translations/tl/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/tl/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Sumisid sa pugad ng mga bubuyog
## Mga Panuto
diff --git a/translations/tl/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/tl/3-Data-Visualization/13-meaningful-visualizations/README.md
index a1d446f2..3c6200e0 100644
--- a/translations/tl/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/tl/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Paggawa ng Makabuluhang Visualisasyon
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/tl/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/tl/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index f26566b5..70b5be7f 100644
--- a/translations/tl/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/tl/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Gumawa ng Sariling Custom na Vis
## Mga Instruksyon
diff --git a/translations/tl/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/tl/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index c17f7b36..70fd294e 100644
--- a/translations/tl/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/tl/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Proyekto ng Pagpapakita ng Datos ng Dangerous Liaisons
Para makapagsimula, tiyakin na mayroon kang NPM at Node na tumatakbo sa iyong makina. I-install ang mga kinakailangang dependencies (npm install) at pagkatapos ay patakbuhin ang proyekto nang lokal (npm run serve):
diff --git a/translations/tl/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/tl/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 83725834..ab84ea6c 100644
--- a/translations/tl/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/tl/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Proyekto sa Pagpapakita ng Datos ng Dangerous Liaisons
Para makapagsimula, tiyakin na naka-install ang NPM at Node sa iyong makina. I-install ang mga kinakailangang dependencies (npm install) at pagkatapos ay patakbuhin ang proyekto nang lokal (npm run serve):
diff --git a/translations/tl/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/tl/3-Data-Visualization/R/09-visualization-quantities/README.md
index eb8d09b0..79223a52 100644
--- a/translations/tl/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/tl/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Pagpapakita ng Dami
|](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/tl/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/tl/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 63f9d1e4..852d6e7f 100644
--- a/translations/tl/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/tl/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Mga Linya, Scatter, at Bar
## Mga Panuto
diff --git a/translations/tl/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/tl/3-Data-Visualization/R/10-visualization-distributions/README.md
index 9f9ffab2..8b312225 100644
--- a/translations/tl/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/tl/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Pagpapakita ng Pamamahagi
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/tl/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/tl/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index d1da042a..ed0e6b01 100644
--- a/translations/tl/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/tl/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# I-apply ang Iyong Mga Kasanayan
## Mga Panuto
diff --git a/translations/tl/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/tl/3-Data-Visualization/R/11-visualization-proportions/README.md
index 0dede4c4..0caebcbe 100644
--- a/translations/tl/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/tl/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Pagpapakita ng Proporsyon
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/tl/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/tl/3-Data-Visualization/R/12-visualization-relationships/README.md
index 3fd61100..1dcaf5cd 100644
--- a/translations/tl/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/tl/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Pagpapakita ng Relasyon: Lahat Tungkol sa Pulot 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/tl/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/tl/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index ea237dea..e932fd3e 100644
--- a/translations/tl/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/tl/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Paggawa ng Makahulugang Visualisasyon
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/tl/3-Data-Visualization/README.md b/translations/tl/3-Data-Visualization/README.md
index a773c9dd..ded1a494 100644
--- a/translations/tl/3-Data-Visualization/README.md
+++ b/translations/tl/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Mga Biswal na Presentasyon

diff --git a/translations/tl/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/tl/4-Data-Science-Lifecycle/14-Introduction/README.md
index 01ab4865..06b47b8a 100644
--- a/translations/tl/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/tl/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Panimula sa Lifecycle ng Data Science
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/tl/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/tl/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 35cb610b..7c482d08 100644
--- a/translations/tl/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/tl/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Pagsusuri ng Dataset
Isang kliyente ang lumapit sa inyong team para humingi ng tulong sa pagsisiyasat ng mga pana-panahong gawi sa paggastos ng mga customer ng taxi sa New York City.
diff --git a/translations/tl/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/tl/4-Data-Science-Lifecycle/15-analyzing/README.md
index 10e09ef7..9037df52 100644
--- a/translations/tl/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/tl/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Ang Lifecycle ng Data Science: Pagsusuri
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/tl/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/tl/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 454b6510..c8732ba1 100644
--- a/translations/tl/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/tl/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Pagsusuri para sa mga sagot
Ito ay pagpapatuloy ng [gawain](../14-Introduction/assignment.md) mula sa nakaraang aralin, kung saan bahagyang sinuri ang data set. Ngayon, mas malalim nating titingnan ang data.
diff --git a/translations/tl/4-Data-Science-Lifecycle/16-communication/README.md b/translations/tl/4-Data-Science-Lifecycle/16-communication/README.md
index 6e157aa6..0e53251e 100644
--- a/translations/tl/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/tl/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Ang Lifecycle ng Data Science: Komunikasyon
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/tl/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/tl/4-Data-Science-Lifecycle/16-communication/assignment.md
index fdc441be..813e7601 100644
--- a/translations/tl/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/tl/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Magkwento
## Mga Panuto
diff --git a/translations/tl/4-Data-Science-Lifecycle/README.md b/translations/tl/4-Data-Science-Lifecycle/README.md
index e5f151ef..614bc5f6 100644
--- a/translations/tl/4-Data-Science-Lifecycle/README.md
+++ b/translations/tl/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Ang Lifecycle ng Data Science

diff --git a/translations/tl/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/tl/5-Data-Science-In-Cloud/17-Introduction/README.md
index f1e84bac..724ca93a 100644
--- a/translations/tl/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/tl/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Panimula sa Data Science sa Cloud
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/tl/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/tl/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 4651bd53..62f1462c 100644
--- a/translations/tl/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/tl/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Pananaliksik sa Merkado
## Mga Instruksyon
diff --git a/translations/tl/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/tl/5-Data-Science-In-Cloud/18-Low-Code/README.md
index 9faf0579..2b6bac32 100644
--- a/translations/tl/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/tl/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Data Science sa Cloud: Ang "Low code/No code" na Paraan
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/tl/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/tl/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 26a6c73b..9b74c41a 100644
--- a/translations/tl/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/tl/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Low code/No code Data Science project sa Azure ML
## Mga Instruksyon
diff --git a/translations/tl/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/tl/5-Data-Science-In-Cloud/19-Azure/README.md
index 1404cb96..3df57a47 100644
--- a/translations/tl/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/tl/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Data Science sa Cloud: Ang "Azure ML SDK" na Paraan
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/tl/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/tl/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 074d4b0e..080e0f3f 100644
--- a/translations/tl/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/tl/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Proyekto sa Data Science gamit ang Azure ML SDK
## Mga Instruksyon
diff --git a/translations/tl/5-Data-Science-In-Cloud/README.md b/translations/tl/5-Data-Science-In-Cloud/README.md
index 81a73989..da35c791 100644
--- a/translations/tl/5-Data-Science-In-Cloud/README.md
+++ b/translations/tl/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Data Science sa Cloud

diff --git a/translations/tl/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/tl/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index ac3ad498..be668378 100644
--- a/translations/tl/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/tl/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Data Science sa Tunay na Mundo
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/tl/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/tl/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index f8c1e2d2..3af3d14d 100644
--- a/translations/tl/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/tl/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Mag-explore ng Dataset mula sa Planetary Computer
## Mga Instruksyon
diff --git a/translations/tl/6-Data-Science-In-Wild/README.md b/translations/tl/6-Data-Science-In-Wild/README.md
index 07e5d07b..e2f1ad57 100644
--- a/translations/tl/6-Data-Science-In-Wild/README.md
+++ b/translations/tl/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Agham ng Datos sa Likas na Kapaligiran
Mga totoong aplikasyon ng agham ng datos sa iba't ibang industriya.
diff --git a/translations/tl/AGENTS.md b/translations/tl/AGENTS.md
index deb45bc4..7184c110 100644
--- a/translations/tl/AGENTS.md
+++ b/translations/tl/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Pangkalahatang-ideya ng Proyekto
diff --git a/translations/tl/CODE_OF_CONDUCT.md b/translations/tl/CODE_OF_CONDUCT.md
index c256237c..47ede0d5 100644
--- a/translations/tl/CODE_OF_CONDUCT.md
+++ b/translations/tl/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft Open Source Code of Conduct
Ang proyektong ito ay sumusunod sa [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/tl/CONTRIBUTING.md b/translations/tl/CONTRIBUTING.md
index c3598096..dc9d07d1 100644
--- a/translations/tl/CONTRIBUTING.md
+++ b/translations/tl/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Pag-aambag sa Data Science para sa mga Nagsisimula
Salamat sa iyong interes na mag-ambag sa kurikulum ng Data Science para sa mga Nagsisimula! Bukas kami sa mga kontribusyon mula sa komunidad.
diff --git a/translations/tl/INSTALLATION.md b/translations/tl/INSTALLATION.md
index 0c1f6836..d428c127 100644
--- a/translations/tl/INSTALLATION.md
+++ b/translations/tl/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Gabay sa Pag-install
Ang gabay na ito ay tutulong sa iyo na i-set up ang iyong environment para magamit ang kurikulum ng Data Science for Beginners.
diff --git a/translations/tl/README.md b/translations/tl/README.md
index 75b806eb..681d6612 100644
--- a/translations/tl/README.md
+++ b/translations/tl/README.md
@@ -1,12 +1,3 @@
-
# Data Science para sa mga Nagsisimula - Isang Kurikulum
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@@ -26,237 +17,237 @@ CO_OP_TRANSLATOR_METADATA:
[](https://aka.ms/foundry/forum)
-Ang Azure Cloud Advocates sa Microsoft ay natutuwa na mag-alok ng 10-linggong, 20-aralang kurikulum tungkol sa Data Science. Ang bawat aralin ay may kasamang pre-lesson at post-lesson na pagsusulit, mga nakasulat na tagubilin para tapusin ang aralin, isang solusyon, at isang asignatura. Ang aming pedagogiyang nakabatay sa proyekto ay nagbibigay-daan sa iyo na matuto habang nagtatayo, isang napatunayang paraan para manatili ang bagong mga kasanayan.
+Ikinalulugod ng Azure Cloud Advocates sa Microsoft na mag-alok ng 10-linggong, 20-lesson na kurikulum na tungkol sa Data Science. Bawat aralin ay may kasamang pre-lesson at post-lesson na mga pagsusulit, nakasulat na mga tagubilin para matapos ang aralin, solusyon, at isang assignment. Ang aming pedagohiyang nakabatay sa proyekto ay nagpapahintulot sa iyo na matuto habang gumagawa, isang napatunayang paraan para manatili ang mga bagong kasanayan.
-**Malugod na pasasalamat sa aming mga may-akda:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Taos-pusong pasasalamat sa aming mga may-akda:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Espesyal na pasasalamat 🙏 sa aming mga [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) na mga may-akda, mga tagasuri at mga nag-ambag ng nilalaman,** lalo na sina Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Espesyal na pasasalamat 🙏 sa aming mga [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) na mga may-akda, mga tagasuri at mga nag-aambag ng nilalaman,** partikular kina Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
| Data Science Para sa mga Nagsisimula - _Sketchnote ni [@nitya](https://twitter.com/nitya)_ |
-### 🌐 Suporta para sa Maramihang Wika
+### 🌐 Suporta sa Maramihang Wika
-#### Sinusuportahan sa pamamagitan ng GitHub Action (Awtomatik at Palaging Napapanahon)
+#### Sinusuportahan sa pamamagitan ng GitHub Action (Awtomatiko at Palaging Napapanahon)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](./README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](./README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **Mas gusto mo bang i-Clone nang Lokal?**
+> **Mas gusto mo bang i-Clone Nang Lokal?**
-> Kasama sa repository na ito ang mahigit 50 wika ng pagsasalin na malaki ang pinapataas na laki ng pag-download. Upang i-clone nang walang mga pagsasalin, gamitin ang sparse checkout:
+> Kasama sa repository na ito ang 50+ na pagsasalin sa wika na lubos na nagpapalaki ng laki ng pag-download. Para mag-clone nang walang mga pagsasalin, gamitin ang sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Binibigyan ka nito ng lahat ng kailangan mo upang tapusin ang kurso nang mas mabilis ang pag-download.
+> Makukuha mo dito ang lahat ng kailangan mo para matapos ang kurso nang mas mabilis ang pag-download.
-**Kung nais mong magkaroon ng karagdagang mga wikang pagsasalin na sinusuportahan ay nakalista [dito](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Kung nais mong magkaroon ng karagdagang mga sinusuportahang wika ng pagsasalin ay nakalista [dito](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Sumali sa Aming Komunidad
[](https://discord.gg/nTYy5BXMWG)
-Mayroon kaming ongoing na Discord na serye tungkol sa pag-aaral kasama ang AI, matuto pa at sumali sa amin sa [Learn with AI Series](https://aka.ms/learnwithai/discord) mula Setyembre 18 - 30, 2025. Makakakuha ka ng mga tips at tricks sa paggamit ng GitHub Copilot para sa Data Science.
+Mayroon kaming tuloy-tuloy na serye sa Discord na pag-aaral kasama ang AI, alamin pa at sumali sa amin sa [Learn with AI Series](https://aka.ms/learnwithai/discord) mula Setyembre 18 - 30, 2025. Makakakuha ka ng mga tips at tricks sa paggamit ng GitHub Copilot para sa Data Science.
-
+
-# Ikaw ba ay estudyante?
+# Ikaw ba ay isang estudyante?
-Magsimula gamit ang mga sumusunod na resources:
+Simulan gamit ang mga sumusunod na mapagkukunan:
-- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Sa pahinang ito, makikita mo ang mga beginner resources, Student packs at pati na rin ang mga paraan para makakuha ng libreng cert voucher. Isang pahina ito na nais mong i-bookmark at tingnan paminsan-minsan dahil palagi kaming nagpapalit ng nilalaman kahit buwan-buwan.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Sumali sa isang global na komunidad ng mga student ambassadors, ito ang maaaring maging daan mo sa Microsoft.
+- [Student Hub page](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Sa pahinang ito, makakakita ka ng mga beginner resources, student packs, at maging mga paraan para makakuha ng libreng certificate voucher. Isa ito sa mga pahinang gusto mong i-bookmark at tingnan paminsan-minsan habang palitan namin ang nilalaman kahit buwan-buwan.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Sumali sa isang pandaigdigang komunidad ng mga student ambassadors, maaaring ito ang iyong daan papasok sa Microsoft.
# Pagsisimula
## 📚 Dokumentasyon
-- **[Installation Guide](INSTALLATION.md)** - Mga hakbang-hakbang na tagubilin para sa setup ng mga baguhan
+- **[Installation Guide](INSTALLATION.md)** - Hakbang-hakbang na mga tagubilin sa pagsasaayos para sa mga baguhan
- **[Usage Guide](USAGE.md)** - Mga halimbawa at karaniwang workflow
-- **[Troubleshooting](TROUBLESHOOTING.md)** - Mga solusyon sa mga pangkaraniwang problema
+- **[Troubleshooting](TROUBLESHOOTING.md)** - Mga solusyon sa karaniwang mga problema
- **[Contributing Guide](CONTRIBUTING.md)** - Paano mag-ambag sa proyektong ito
-- **[For Teachers](for-teachers.md)** - Gabay sa pagtuturo at mga resources para sa silid-aralan
+- **[For Teachers](for-teachers.md)** - Gabay para sa pagtuturo at mga mapagkukunan sa silid-aralan
## 👨🎓 Para sa mga Estudyante
-> **Ganap na Baguhan**: Bago sa data science? Magsimula sa aming [mga halimbawa na madaling maintindihan](examples/README.md)! Ang mga simpleng halimbawa na may mahusay na pagpapaliwanag na ito ay tutulong sa iyo na maunawaan ang mga pangunahing kaalaman bago sumabak sa buong kurikulum.
-> **[Mga Estudyante](https://aka.ms/student-page)**: para gamitin ang kurikulum na ito nang mag-isa, i-fork ang buong repo at tapusin ang mga ehersisyo nang mag-isa, simula sa pre-lecture quiz. Pagkatapos basahin ang lektura at tapusin ang iba pang mga aktibidad. Subukang likhain ang mga proyekto sa pamamagitan ng pag-unawa sa mga aralin sa halip na kopyahin ang code ng solusyon; gayunpaman, ang code na iyon ay makikita sa mga /solutions na folder sa bawat araling nakatuon sa proyekto. Isang ideya rin ay magbuo ng study group kasama ang mga kaibigan at sabay-sabay pag-aralan ang nilalaman. Para sa karagdagang pag-aaral, inirerekomenda namin ang [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Kumpletong mga Baguhan**: Bago ka sa data science? Magsimula sa aming [mga halimbawang pangbaguhan](examples/README.md)! Ang mga simpleng ito na may malinaw na komento ay tutulong sa iyo na maunawaan ang mga pangunahing kaalaman bago sumabak sa buong kurikulum.
+> **[Mga Estudyante](https://aka.ms/student-page)**: upang gamitin ang kurikulm na ito nang mag-isa, i-fork ang buong repo at tapusin ang mga ehersisyo nang mag-isa, simula sa pre-lecture quiz. Pagkatapos basahin ang lektura at tapusin ang natitirang mga gawain. Subukang gawin ang mga proyekto sa pamamagitan ng pagunawa sa mga aralin sa halip na kopyahin ang solution code; gayunpaman, ang code na iyon ay makikita sa /solutions na mga folder sa bawat leksyon na nakatuon sa proyekto. Isa pang ideya ay bumuo ng isang study group kasama ang mga kaibigan at pag-aralan ang nilalaman nang magkakasama. Para sa karagdagang pag-aaral, inirerekomenda namin ang [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
-**Mabilis na Simula:**
-1. Suriin ang [Installation Guide](INSTALLATION.md) upang i-setup ang iyong kapaligiran
-2. Balikan ang [Usage Guide](USAGE.md) upang matutunan kung paano gamitin ang kurikulum
-3. Magsimula sa Lesson 1 at sundan nang sunod-sunod
+**Mabilisang Simula:**
+1. Tingnan ang [Installation Guide](INSTALLATION.md) para isaayos ang iyong kapaligiran
+2. Suriin ang [Usage Guide](USAGE.md) para matutunan kung paano gamitin ang kurikulum
+3. Magsimula sa Lesson 1 at sundan nang sunud-sunod
4. Sumali sa aming [Discord community](https://aka.ms/ds4beginners/discord) para sa suporta
## 👩🏫 Para sa mga Guro
-> **Mga Guro**: may [inampon kaming ilang mungkahi](for-teachers.md) kung paano gamitin ang kurikulum na ito. Nais naming marinig ang iyong puna [sa aming discussion forum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
+> **Mga Guro**: mayroon kaming [ilang mga mungkahi](for-teachers.md) kung paano gamitin ang kurikulum na ito. Masaya kaming tanggapin ang inyong feedback [sa aming discussion forum](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Kilalanin ang Koponan
+
[](https://youtu.be/8mzavjQSMM4 "Promo video")
**Gif ni** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 I-click ang larawan sa itaas para sa isang video tungkol sa proyekto at sa mga taong lumikha nito!
+> 🎥 Pindutin ang larawan sa itaas para sa isang video tungkol sa proyekto at sa mga taong lumikha nito!
## Pedagohiya
-Pinili namin ang dalawang pedagogical tenet habang binubuo ang kurikulum na ito: tiyakin na ito ay project-based at kasama ang madalas na mga pagsusulit. Sa pagtatapos ng seryeng ito, matututuhan ng mga estudyante ang mga pangunahing prinsipyo ng data science, kabilang ang mga etikal na konsepto, paghahanda ng datos, iba't ibang paraan ng pagtrabaho sa datos, data visualization, pagsusuri ng datos, mga totoong aplikasyon ng data science, at iba pa.
+Pinili namin ang dalawang gabay sa pagtuturo habang binubuo ang kurikulum na ito: siguraduhing ito ay nakabatay sa proyekto at may madalas na mga pagsusulit. Sa pagtatapos ng seryeng ito, matututunan ng mga estudyante ang mga pangunahing prinsipyo ng agham ng datos, kabilang ang mga konseptong etikal, paghahanda ng datos, iba't ibang paraan ng pagtatrabaho sa datos, visualisasyon ng datos, pagsusuri ng datos, mga tunay na gamit ng agham ng datos, at iba pa.
-Bukod dito, ang isang low-stakes na pagsusulit bago ang klase ay nagseset ng intensyon ng estudyante na matuto ng isang paksa, habang ang ikalawang pagsusulit pagkatapos ng klase ay nagsisiguro ng karagdagang pag-alala. Ang kurikulum na ito ay idinisenyo upang maging flexible at masaya at maaaring kunin nang buo o bahagi lamang. Ang mga proyekto ay nagsisimula sa maliit at unti-unting nagiging komplikado sa pagtatapos ng 10-linggong siklo.
+Bukod pa rito, ang isang mababang-stakes na pagsusulit bago ang klase ay nagtatakda ng layunin ng estudyante sa pag-aaral ng isang paksa, habang ang pangalawang pagsusulit pagkatapos ng klase ay nagsisiguro ng mas higit na alaala. Dinisenyo ang kurikulum na ito upang maging flexible at masaya at maaaring kunin nang buo o bahagi lamang. Ang mga proyekto ay nagsisimula sa maliit at unti-unting lumalalim sa katapusan ng 10-linggong siklo.
-> Hanapin ang aming [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) guidelines. Inaasam namin ang inyong makabuluhang puna!
+> Hanapin ang aming [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) mga alituntunin. Malugod naming tinatanggap ang iyong makabuluhang puna!
-## Kasama sa bawat aralin:
+## Bawat aralin ay may kasamang:
- Opsyonal na sketchnote
-- Opsyonal na supplemental na video
-- Pre-lesson warmup quiz
-- Nakasaad na aralin
-- Para sa mga project-based na aralin, step-by-step na gabay kung paano gawin ang proyekto
-- Mga pagsusuri ng kaalaman
+- Opsyonal na karagdagang video
+- Pagsusulit na pampainit bago ang aralin
+- Nakatalang aralin
+- Para sa mga araling nakabatay sa proyekto, mga hakbang-hakbang na gabay kung paano buuin ang proyekto
+- Mga knowledge check
- Isang hamon
-- Supplemental na pagbabasa
+- Karagdagang babasahin
- Takdang-aralin
-- [Post-lesson quiz](https://ff-quizzes.netlify.app/en/)
+- [Pagsusulit pagkatapos ng aralin](https://ff-quizzes.netlify.app/en/)
-> **Tungkol sa mga pagsusulit**: Lahat ng pagsusulit ay nilalaman sa Quiz-App folder, para sa kabuuang 40 pagsusulit na may tig-3 tanong bawat isa. Nakalink ang mga ito mula sa mga aralin, ngunit ang quiz app ay maaaring patakbuhin lokal o ideploy sa Azure; sundin ang mga tagubilin sa `quiz-app` folder. Unti-unti itong nilalocalize.
+> **Isang paalala tungkol sa mga pagsusulit**: Lahat ng pagsusulit ay nasa folder na Quiz-App, para sa kabuuang 40 pagsusulit na may tig-tatlong tanong bawat isa. Nakalink sila mula sa loob ng mga aralin, ngunit ang quiz app ay maaaring patakbuhin nang lokal o mai-deploy sa Azure; sundin ang mga tagubilin sa `quiz-app` folder. Unti-unti itong nililokalisa.
-## 🎓 Mga Halimbawang Patok para sa mga Baguhan
+## 🎓 Mga Halimbawa na Pinadaling Para sa Baguhan
-**Bago ka ba sa Data Science?** Nilikha namin ang isang espesyal na [examples directory](examples/README.md) na may simple, maayos na nakomentaryong code para tulungan kang magsimula:
+**Bago ka sa Agham ng Datos?** Nilikha namin ang isang espesyal na [halimbawa na direktoryo](examples/README.md) na may simpleng, maayos na nakomentaryong code upang tulungan kang magsimula:
-- 🌟 **Hello World** - Ang iyong unang programa sa data science
-- 📂 **Loading Data** - Matutong magbasa at mag-explore ng datasets
-- 📊 **Simple Analysis** - Kalkulahin ang mga statistics at hanapin ang mga pattern
-- 📈 **Basic Visualization** - Gumawa ng mga chart at graph
-- 🔬 **Real-World Project** - Buong workflow mula simula hanggang wakas
+- 🌟 **Hello World** - Ang iyong unang programa sa agham ng datos
+- 📂 **Pag-load ng Datos** - Matutong bumasa at mag-explore ng mga dataset
+- 📊 **Simpleng Pagsusuri** - Kalkulahin ang mga estadistika at hanapin ang mga pattern
+- 📈 **Pangunahing Visualisasyon** - Gumawa ng mga tsart at grap
+- 🔬 **Tunay na Proyekto** - Kumpletong workflow mula simula hanggang matapos
-Bawat halimbawa ay may detalyadong mga komento na nagpapaliwanag ng bawat hakbang, kaya perpekto para sa mga ganap na baguhan!
+Bawat halimbawa ay may malalim na mga komentaryo na nagpapaliwanag sa bawat hakbang, ginagawa itong perpekto para sa mga ganap na baguhan!
-👉 **[Magsimula sa mga halimbawa](examples/README.md)** 👈
+👉 **[Simulan sa mga halimbawa](examples/README.md)** 👈
## Mga Aralin
-||
+||
|:---:|
-| Data Science For Beginners: Roadmap - _Sketchnote ni [@nitya](https://twitter.com/nitya)_ |
+| Agham ng Datos Para sa mga Baguhan: Roadmap - _Sketchnote ni [@nitya](https://twitter.com/nitya)_ |
-| Lesson Number | Topic | Lesson Grouping | Learning Objectives | Linked Lesson | Author |
+| Numero ng Aralin | Paksa | Pangkat ng Aralin | Mga Layunin sa Pagkatuto | Nakalink na Aralin | May-akda |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Pagpapakahulugan ng Data Science | [Introduction](1-Introduction/README.md) | Matutunan ang mga pangunahing konsepto sa likod ng data science at kung paano ito nauugnay sa artificial intelligence, machine learning, at big data. | [lesson](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Etika sa Data Science | [Introduction](1-Introduction/README.md) | Mga Konsepto, Hamon, at Frameworks ng Data Ethics. | [lesson](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Pagpapakahulugan ng Data | [Introduction](1-Introduction/README.md) | Paano nakaklasipika ang data at ang mga karaniwang pinagmulan nito. | [lesson](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Panimula sa Statistics & Probability | [Introduction](1-Introduction/README.md) | Ang mga matematikal na teknik ng probability at statistics upang maunawaan ang data. | [lesson](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Paggawa sa Relational Data | [Working With Data](2-Working-With-Data/README.md) | Panimula sa relational data at mga pangunahing kaalaman sa pag-explore at pagsusuri ng relational data gamit ang Structured Query Language, na kilala rin bilang SQL (binibigkas na “see-quell”). | [lesson](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Paggawa sa NoSQL Data | [Working With Data](2-Working-With-Data/README.md) | Panimula sa non-relational data, iba't ibang uri nito at mga pangunahing kaalaman sa pag-explore at pagsusuri ng document databases. | [lesson](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Paggawa gamit ang Python | [Working With Data](2-Working-With-Data/README.md) | Mga pangunahing kaalaman sa paggamit ng Python para sa pag-explore ng data gamit ang mga aklatan tulad ng Pandas. Inirerekomenda ang pundamental na pag-unawa sa programming ng Python. | [lesson](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Paghahanda ng Data | [Working With Data](2-Working-With-Data/README.md) | Mga paksa tungkol sa mga teknik sa paglilinis at pag-transform ng data upang harapin ang mga hamon ng nawawala, mali, o hindi kumpletong data. | [lesson](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Pag-visualize ng Quantities | [Data Visualization](3-Data-Visualization/README.md) | Matutong gumamit ng Matplotlib para i-visualize ang data ng mga ibon 🦆 | [lesson](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Pag-visualize ng Distribusyon ng Data | [Data Visualization](3-Data-Visualization/README.md) | Pag-visualize ng mga obserbasyon at mga trend sa loob ng isang interval. | [lesson](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Pag-visualize ng Proportion | [Data Visualization](3-Data-Visualization/README.md) | Pag-visualize ng mga discrete at grouped na porsyento. | [lesson](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Pag-visualize ng mga Relasyon | [Data Visualization](3-Data-Visualization/README.md) | Pag-visualize ng mga koneksyon at ugnayan sa pagitan ng mga set ng data at kanilang mga variable. | [lesson](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Makabuluhang Visualization | [Data Visualization](3-Data-Visualization/README.md) | Mga teknik at patnubay para gawing mahalaga ang iyong mga visualization para sa epektibong paglutas ng problema at mga insight. | [lesson](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Panimula sa Data Science lifecycle | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Panimula sa lifecycle ng data science at ang unang hakbang nito na pagkuha at pag-extract ng data. | [lesson](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Pagsusuri | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Ang yugto ng data science lifecycle na ito ay nakatuon sa mga teknik upang suriin ang data. | [lesson](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Komunikasyon | [Lifecycle](4-Data-Science-Lifecycle/README.md) | Ang yugto ng data science lifecycle na ito ay nakatuon sa pagpapakita ng mga insight mula sa data sa paraang mas madaling maunawaan ng mga tagagawa ng desisyon. | [lesson](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Data Science sa Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Ang seryeng ito ng mga aralin ay nagpapakilala ng data science sa cloud at ang mga benepisyo nito. | [lesson](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
-| 18 | Data Science sa Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Pagsasanay ng mga modelo gamit ang Low Code na mga tool. |[lesson](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
-| 19 | Data Science sa Cloud | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Pag-deploy ng mga modelo gamit ang Azure Machine Learning Studio. | [lesson](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
-| 20 | Data Science sa Tunay na Mundo | [In the Wild](6-Data-Science-In-Wild/README.md) | Mga proyekto ng data science na pinapatakbo sa totoong mundo. | [lesson](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | Pagpapakahulugan ng Agham ng Datos | [Panimula](1-Introduction/README.md) | Matutunan ang mga pangunahing konsepto ng agham ng datos at kung paano ito kaugnay ng artificial intelligence, machine learning, at big data. | [aralin](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Etika sa Agham ng Datos | [Panimula](1-Introduction/README.md) | Mga Konsepto ng Etika sa Datos, Hamon at mga Balangkas. | [aralin](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Pagpapakahulugan ng Datos | [Panimula](1-Introduction/README.md) | Kung paano ikinaklasipika ang datos at mga karaniwang pinagkukunan nito. | [aralin](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Panimula sa Estadistika at Probabilidad | [Panimula](1-Introduction/README.md) | Mga matematikal na teknik ng probabilidad at estadistika upang maunawaan ang datos. | [aralin](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Pagtatrabaho sa Relational Data | [Pagtatrabaho Sa Datos](2-Working-With-Data/README.md) | Panimula sa relational data at mga batayang pamamaraan ng pag-explore at pagsusuri gamit ang Structured Query Language, o SQL (binibigkas na “see-quell”). | [aralin](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Pagtatrabaho sa NoSQL Data | [Pagtatrabaho Sa Datos](2-Working-With-Data/README.md) | Panimula sa non-relational data, mga iba’t ibang uri nito, at mga batayang pamamaraan sa pag-explore at pagsusuri ng mga document databases. | [aralin](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Pagtatrabaho gamit ang Python | [Pagtatrabaho Sa Datos](2-Working-With-Data/README.md) | Mga batayan ng paggamit ng Python para sa paggalugad ng datos gamit ang mga library tulad ng Pandas. Inirerekomenda ang pundamental na pag-unawa sa programming ng Python. | [aralin](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Paghahanda ng Datos | [Pagtatrabaho Sa Datos](2-Working-With-Data/README.md) | Mga paksa tungkol sa mga teknik ng paglilinis at pagbabago ng datos upang matugunan ang mga hamon ng nawawala, di-tumpak, o hindi kumpletong datos. | [aralin](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Pag-visualize ng mga Dami | [Pag-visualize ng Datos](3-Data-Visualization/README.md) | Matutong gamitin ang Matplotlib para i-visualize ang datos ng mga ibon 🦆 | [aralin](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Pag-visualize ng Pamamahagi ng Datos | [Pag-visualize ng Datos](3-Data-Visualization/README.md) | Pag-visualize ng mga obserbasyon at mga trend sa loob ng isang interval. | [aralin](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Pag-visualize ng mga Proportion | [Pag-visualize ng Datos](3-Data-Visualization/README.md) | Pag-visualize ng mga discrete at pinangkat na porsyento. | [aralin](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Pag-visualize ng mga Relasyon | [Pag-visualize ng Datos](3-Data-Visualization/README.md) | Pag-visualize ng mga koneksyon at kaugnayan sa pagitan ng mga set ng datos at iba’t ibang variable nito. | [aralin](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Makabuluhang Visualisasyon | [Pag-visualize ng Datos](3-Data-Visualization/README.md) | Mga teknik at patnubay para gawing mahalaga ang iyong mga visualisasyon para sa epektibong paglutas ng problema at mga insight. | [aralin](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Panimula sa Siklo ng Agham ng Datos | [Siklo ng Buhay](4-Data-Science-Lifecycle/README.md) | Panimula sa data science lifecycle at ang unang hakbang nito na pagkuha at pag-extract ng datos. | [aralin](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Pagsusuri | [Siklo ng Buhay](4-Data-Science-Lifecycle/README.md) | Ang bahagi ng data science lifecycle na ito ay nakatuon sa mga teknik sa pagsusuri ng datos. | [aralin](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Komunikasyon | [Siklo ng Buhay](4-Data-Science-Lifecycle/README.md) | Bahagi ito ng data science lifecycle na nakatuon sa pagpapakita ng mga insight mula sa datos sa isang paraan na mas madaling maintindihan ng mga tagapagpasya. | [aralin](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Agham ng Datos sa Ulap | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Ang seryeng ito ng mga aralin ay nagpapakilala ng agham ng datos sa ulap at mga benepisyo nito. | [aralin](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
+| 18 | Agham ng Datos sa Ulap | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Pagsasanay ng mga modelo gamit ang mga Low Code na kasangkapan. |[aralin](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
+| 19 | Agham ng Datos sa Ulap | [Cloud Data](5-Data-Science-In-Cloud/README.md) | Pag-deploy ng mga modelo gamit ang Azure Machine Learning Studio. | [aralin](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) at [Maud](https://twitter.com/maudstweets) |
+| 20 | Agham ng Datos sa Kalikasan | [Sa Kalikasan](6-Data-Science-In-Wild/README.md) | Mga proyektong pinaloob ang agham ng datos sa tunay na mundo. | [aralin](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Sundin ang mga hakbang na ito upang buksan ang sample na ito sa isang Codespace:
-1. I-click ang Code drop-down menu at piliin ang Open with Codespaces option.
+Sundin ang mga hakbang na ito para buksan ang sample na ito sa isang Codespace:
+1. Pindutin ang Code drop-down menu at piliin ang Open with Codespaces option.
2. Piliin ang + New codespace sa ibaba ng pane.
Para sa karagdagang impormasyon, tingnan ang [GitHub documentation](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Sundin ang mga hakbang na ito upang buksan ang repo na ito sa isang container gamit ang iyong lokal na makina at VSCode gamit ang VS Code Remote - Containers extension:
+Sundin ang mga hakbang na ito para buksan ang repo na ito sa isang container gamit ang iyong lokal na makina at VSCode gamit ang VS Code Remote - Containers extension:
-1. Kung ito ang iyong unang paggamit ng development container, tiyakin na ang iyong sistema ay nakakatugon sa mga pre-req (hal. mayroon kang Docker na naka-install) sa [the getting started documentation](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Kung ito ang unang beses mong gumamit ng development container, siguraduhing ang iyong system ay pumasa sa mga pre-req (hal. naka-install ang Docker) sa [the getting started documentation](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Para gamitin ang repository na ito, maaari mong buksan ang repository sa isang hiwalay na Docker volume:
+Para gamitin ang repositoryong ito, maaari mong buksan ang repositoryo sa isang isolated Docker volume:
-**Tandaan**: Sa ilalim ng hood, gagamitin nito ang Remote-Containers: **Clone Repository in Container Volume...** na utos upang i-clone ang source code sa isang Docker volume sa halip na lokal na filesystem. Ang [Volumes](https://docs.docker.com/storage/volumes/) ang inirerekomendang mekanismo para sa pagpapanatili ng data ng container.
+**Tandaan**: Sa ilalim nito, gagamitin ang Remote-Containers: **Clone Repository in Container Volume...** command para i-clone ang source code sa isang Docker volume sa halip na sa lokal na filesystem. Ang [Volumes](https://docs.docker.com/storage/volumes/) ang mas gusto para sa pagpapatuloy ng data ng container.
-O buksan ang isang lokal na na-clone o na-download na bersyon ng repository:
+O buksan ang lokal na kopya ng repositoryo na na-clone o na-download:
-- I-clone ang repository na ito sa iyong lokal na filesystem.
-- Pindutin ang F1 at piliin ang **Remote-Containers: Open Folder in Container...** na utos.
-- Piliin ang na-clone na kopya ng folder na ito, maghintay na magsimula ang container, at subukan ito.
+- I-clone ang repositoryo sa iyong lokal na filesystem.
+- Pindutin ang F1 at piliin ang **Remote-Containers: Open Folder in Container...** na command.
+- Piliin ang nakopyang kopya ng folder na ito, hintayin ang pagsisimula ng container, at subukan ang mga bagay.
## Offline access
-Maaari mong patakbuhin ang dokumentasyong ito offline gamit ang [Docsify](https://docsify.js.org/#/). I-fork ang repo na ito, [mag-install ng Docsify](https://docsify.js.org/#/quickstart) sa iyong lokal na makina, pagkatapos sa root folder ng repo na ito, i-type ang `docsify serve`. Ang website ay ihahain sa port 3000 sa iyong localhost: `localhost:3000`.
+Maaari mong patakbuhin ang dokumentasyong ito offline gamit ang [Docsify](https://docsify.js.org/#/). Fork ang repo na ito, [i-install ang Docsify](https://docsify.js.org/#/quickstart) sa iyong lokal na makina, pagkatapos sa root folder ng repo na ito, i-type ang `docsify serve`. Ang website ay mai-serve sa port 3000 sa iyong localhost: `localhost:3000`.
-> Tandaan, ang mga notebook ay hindi irerender gamit ang Docsify, kaya kapag kailangan mong patakbuhin ang isang notebook, gawin iyon nang hiwalay sa VS Code na may Python kernel.
+> Tandaan, ang mga notebook ay hindi irerender sa Docsify, kaya kapag kailangan mong patakbuhin ang isang notebook, gawin iyon nang hiwalay sa VS Code na nagpapatakbo ng Python kernel.
-## Iba pang Kurikulum
+## Ibang Kurikulum
-Ang aming koponan ay gumagawa ng ibang mga kurikulum! Tingnan ang:
+Ang aming koponan ay gumagawa rin ng ibang mga kurikulum! Tingnan:
### LangChain
[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
### Azure / Edge / MCP / Agents
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-### Generative AI Series
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+### Seriya ng Generative AI
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
-### Core Learning
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+### Pangunahing Pag-aaral
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-### Copilot Series
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
+### Seriya ng Copilot
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
## Pagkuha ng Tulong
-**Nakakaranas ng mga isyu?** Suriin ang aming [Troubleshooting Guide](TROUBLESHOOTING.md) para sa mga solusyon sa mga karaniwang problema.
+**May mga suliranin ba?** Tingnan ang aming [Troubleshooting Guide](TROUBLESHOOTING.md) para sa mga solusyon sa mga karaniwang problema.
-Kung ikaw ay natigil o may mga katanungan tungkol sa paggawa ng mga AI app. Sumali sa mga kapwa mag-aaral at mga bihasang developer sa mga talakayan tungkol sa MCP. Isa itong suportadong komunidad kung saan malugod ang mga tanong at malaya ang pagbabahagi ng kaalaman.
+Kung ikaw ay nahihirapan o may mga tanong tungkol sa paggawa ng AI apps, sumali sa kapwa mga nag-aaral at mga bihasang developer sa talakayan tungkol sa MCP. Ito ay isang suportadong komunidad kung saan malugod ang mga tanong at malayang naibabahagi ang kaalaman.
[](https://discord.gg/nTYy5BXMWG)
-Kung mayroon kang feedback sa produkto o mga error habang nagtatayo, bisitahin:
+Kung mayroon kang puna sa produkto o mga error habang nagbuo, bisitahin:
[](https://aka.ms/foundry/forum)
---
-**Paalala**:
-Ang dokumentong ito ay isinalin gamit ang AI translation service na [Co-op Translator](https://github.com/Azure/co-op-translator). Bagaman nagsusumikap kami na maging tumpak, pakatandaan na ang mga awtomatikong salin ay maaaring maglaman ng mga pagkakamali o hindi pagkakatugma. Ang orihinal na dokumento sa wikang katutubo nito ang dapat ituring na pinagkakatiwalaang sanggunian. Para sa mahahalagang impormasyon, ipinapayo ang propesyonal na pagsasalin ng tao. Hindi kami mananagot sa anumang hindi pagkakaintindihan o maling interpretasyon na nagmula sa paggamit ng pagsasaling ito.
+**Paunawa**:
+Ang dokumentong ito ay isinalin gamit ang AI translation service na [Co-op Translator](https://github.com/Azure/co-op-translator). Bagamat nagsusumikap kaming maging tumpak, pakatandaan na ang mga awtomatikong pagsasalin ay maaaring maglaman ng mga pagkakamali o di-tumpak na impormasyon. Ang orihinal na dokumento sa orihinal nitong wika ang dapat ituring na opisyal na sanggunian. Para sa mahahalagang impormasyon, inirerekomenda ang propesyonal na pagsasaling-tao. Hindi kami mananagot sa anumang hindi pagkakaunawaan o maling interpretasyon na maaaring idulot ng paggamit ng pagsasaling ito.
\ No newline at end of file
diff --git a/translations/tl/SECURITY.md b/translations/tl/SECURITY.md
index cfcd771a..15b3d969 100644
--- a/translations/tl/SECURITY.md
+++ b/translations/tl/SECURITY.md
@@ -1,12 +1,3 @@
-
## Seguridad
Seryoso ang Microsoft sa seguridad ng aming mga produkto at serbisyo, kabilang na ang lahat ng source code repositories na pinamamahalaan sa pamamagitan ng aming mga organisasyon sa GitHub, tulad ng [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), at [aming mga organisasyon sa GitHub](https://opensource.microsoft.com/).
diff --git a/translations/tl/SUPPORT.md b/translations/tl/SUPPORT.md
index 7c855379..211fc9a8 100644
--- a/translations/tl/SUPPORT.md
+++ b/translations/tl/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Suporta
## Paano maghain ng mga isyu at humingi ng tulong
diff --git a/translations/tl/TROUBLESHOOTING.md b/translations/tl/TROUBLESHOOTING.md
index eb20e544..d2a6f5fa 100644
--- a/translations/tl/TROUBLESHOOTING.md
+++ b/translations/tl/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Gabay sa Pag-aayos ng Problema
Ang gabay na ito ay nagbibigay ng mga solusyon sa mga karaniwang isyu na maaaring maranasan habang ginagamit ang kurikulum ng Data Science for Beginners.
diff --git a/translations/tl/USAGE.md b/translations/tl/USAGE.md
index f3b79800..c48b3307 100644
--- a/translations/tl/USAGE.md
+++ b/translations/tl/USAGE.md
@@ -1,12 +1,3 @@
-
# Gabay sa Paggamit
Ang gabay na ito ay nagbibigay ng mga halimbawa at karaniwang daloy ng trabaho para sa paggamit ng kurikulum ng Data Science for Beginners.
diff --git a/translations/tl/docs/_sidebar.md b/translations/tl/docs/_sidebar.md
index f5a0bdb7..ef5c96be 100644
--- a/translations/tl/docs/_sidebar.md
+++ b/translations/tl/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Panimula
- [Pagpapakilala sa Data Science](../1-Introduction/01-defining-data-science/README.md)
- [Etika ng Data Science](../1-Introduction/02-ethics/README.md)
diff --git a/translations/tl/examples/README.md b/translations/tl/examples/README.md
index 6dcfb211..b3940f09 100644
--- a/translations/tl/examples/README.md
+++ b/translations/tl/examples/README.md
@@ -1,12 +1,3 @@
-
# Mga Halimbawa ng Data Science para sa mga Baguhan
Maligayang pagdating sa direktoryo ng mga halimbawa! Ang koleksyong ito ng mga simpleng halimbawa na may malinaw na mga komento ay idinisenyo upang tulungan kang magsimula sa data science, kahit na ikaw ay ganap na baguhan.
diff --git a/translations/tl/for-teachers.md b/translations/tl/for-teachers.md
index 0c446f8c..8a3342a9 100644
--- a/translations/tl/for-teachers.md
+++ b/translations/tl/for-teachers.md
@@ -1,12 +1,3 @@
-
## Para sa mga Guro
Gusto mo bang gamitin ang kurikulum na ito sa iyong klase? Huwag mag-atubiling gamitin ito!
diff --git a/translations/tl/quiz-app/README.md b/translations/tl/quiz-app/README.md
index da4e8e5c..e198a1db 100644
--- a/translations/tl/quiz-app/README.md
+++ b/translations/tl/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Mga Pagsusulit
Ang mga pagsusulit na ito ay ang pre- at post-lecture quizzes para sa kurikulum ng data science sa https://aka.ms/datascience-beginners
diff --git a/translations/tl/sketchnotes/README.md b/translations/tl/sketchnotes/README.md
index 7d3eb491..8b610dbc 100644
--- a/translations/tl/sketchnotes/README.md
+++ b/translations/tl/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Hanapin ang lahat ng sketchnotes dito!
## Mga Kredito
diff --git a/translations/tr/.co-op-translator.json b/translations/tr/.co-op-translator.json
new file mode 100644
index 00000000..21832e6d
--- /dev/null
+++ b/translations/tr/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:52:02+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "tr"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-28T11:24:24+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "tr"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-28T11:24:53+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "tr"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:29:37+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "tr"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-28T11:29:44+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "tr"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-06T09:06:08+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "tr"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-28T11:26:11+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "tr"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:32:25+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "tr"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-28T11:22:11+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "tr"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-28T11:18:42+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "tr"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:22:19+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "tr"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:55:26+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "tr"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-06T08:56:01+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "tr"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-28T10:48:05+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "tr"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:42:34+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "tr"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-28T10:50:52+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "tr"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-06T08:58:03+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "tr"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-28T10:55:19+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "tr"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-28T10:46:02+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-06T09:01:16+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-28T11:13:20+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-06T09:02:52+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-28T11:18:27+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-06T09:00:49+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-28T11:11:40+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:37:17+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-28T11:16:54+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-06T09:01:45+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-28T11:14:50+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-28T11:15:02+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-28T11:15:15+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-28T11:05:33+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-28T11:06:31+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-28T11:08:25+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-28T11:09:08+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-28T11:04:08+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-28T11:07:17+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-28T11:09:44+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "tr"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-28T11:02:59+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "tr"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:57:54+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "tr"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-28T10:59:45+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "tr"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:57:14+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "tr"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-28T10:57:06+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "tr"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:58:18+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "tr"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-28T11:02:33+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "tr"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-28T10:55:56+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "tr"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-06T08:54:58+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "tr"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-28T10:42:36+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "tr"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-06T08:53:50+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "tr"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-28T10:40:43+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "tr"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-06T08:55:23+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "tr"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-28T10:45:42+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "tr"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-28T10:37:01+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "tr"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:29:27+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "tr"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-28T11:33:02+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "tr"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-28T11:30:40+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "tr"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:20:18+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "tr"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-28T10:36:43+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "tr"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:59:29+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "tr"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:20:25+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "tr"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:46:10+00:00",
+ "source_file": "README.md",
+ "language_code": "tr"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-28T10:35:45+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "tr"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-28T10:34:58+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "tr"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:39:08+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "tr"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:02:24+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "tr"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-28T10:55:38+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "tr"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:02:01+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "tr"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:56:46+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "tr"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-28T11:30:16+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "tr"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-28T11:33:20+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "tr"
+ }
+}
\ No newline at end of file
diff --git a/translations/tr/1-Introduction/01-defining-data-science/README.md b/translations/tr/1-Introduction/01-defining-data-science/README.md
index e85dc454..710f6b89 100644
--- a/translations/tr/1-Introduction/01-defining-data-science/README.md
+++ b/translations/tr/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Veri Biliminin Tanımı
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/tr/1-Introduction/01-defining-data-science/assignment.md b/translations/tr/1-Introduction/01-defining-data-science/assignment.md
index bd91b6b8..0a670be2 100644
--- a/translations/tr/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/tr/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Ödev: Veri Bilimi Senaryoları
Bu ilk ödevde, sizden farklı problem alanlarında gerçek hayattaki bir süreç veya problemi düşünmenizi ve Veri Bilimi sürecini kullanarak bunu nasıl geliştirebileceğinizi değerlendirmenizi istiyoruz. Şunları düşünün:
diff --git a/translations/tr/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/tr/1-Introduction/01-defining-data-science/solution/assignment.md
index 303b4e16..7cd64cc2 100644
--- a/translations/tr/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/tr/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Ödev: Veri Bilimi Senaryoları
Bu ilk ödevde, farklı problem alanlarında gerçek hayattaki bir süreç veya problemi düşünmenizi ve Veri Bilimi sürecini kullanarak bunu nasıl geliştirebileceğinizi değerlendirmenizi istiyoruz. Şunları düşünün:
diff --git a/translations/tr/1-Introduction/02-ethics/README.md b/translations/tr/1-Introduction/02-ethics/README.md
index 62174f21..6a915807 100644
--- a/translations/tr/1-Introduction/02-ethics/README.md
+++ b/translations/tr/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Veri Etiğine Giriş
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/tr/1-Introduction/02-ethics/assignment.md b/translations/tr/1-Introduction/02-ethics/assignment.md
index 7391582d..6ece9150 100644
--- a/translations/tr/1-Introduction/02-ethics/assignment.md
+++ b/translations/tr/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Veri Etiği Vaka Çalışması Yazın
## Talimatlar
diff --git a/translations/tr/1-Introduction/03-defining-data/README.md b/translations/tr/1-Introduction/03-defining-data/README.md
index 2f6f7ddf..b42de008 100644
--- a/translations/tr/1-Introduction/03-defining-data/README.md
+++ b/translations/tr/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Veriyi Tanımlama
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/tr/1-Introduction/03-defining-data/assignment.md b/translations/tr/1-Introduction/03-defining-data/assignment.md
index 7f5bc816..9b87adec 100644
--- a/translations/tr/1-Introduction/03-defining-data/assignment.md
+++ b/translations/tr/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Veri Setlerini Sınıflandırma
## Talimatlar
diff --git a/translations/tr/1-Introduction/04-stats-and-probability/README.md b/translations/tr/1-Introduction/04-stats-and-probability/README.md
index dab4afb7..337bb05c 100644
--- a/translations/tr/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/tr/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# İstatistik ve Olasılığa Kısa Bir Giriş
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Veri dağılımını anlamamıza yardımcı olmak için **çeyreklerden** bahset
Medyan ve çeyrekler arasındaki ilişkiyi grafiksel olarak **kutu grafiği** adı verilen bir diyagramda gösterebiliriz:
-
+
Burada ayrıca **çeyrekler arası aralık** IQR=Q3-Q1 ve **aykırı değerler** - [Q1-1.5*IQR,Q3+1.5*IQR] sınırlarının dışında kalan değerler - hesaplanır.
diff --git a/translations/tr/1-Introduction/04-stats-and-probability/assignment.md b/translations/tr/1-Introduction/04-stats-and-probability/assignment.md
index 617f8a0b..48025802 100644
--- a/translations/tr/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/tr/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Küçük Diyabet Çalışması
Bu ödevde, [buradan](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) alınan diyabet hastalarına ait küçük bir veri seti ile çalışacağız.
diff --git a/translations/tr/1-Introduction/README.md b/translations/tr/1-Introduction/README.md
index 84399ec0..c3bece6a 100644
--- a/translations/tr/1-Introduction/README.md
+++ b/translations/tr/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Veri Bilimine Giriş

diff --git a/translations/tr/2-Working-With-Data/05-relational-databases/README.md b/translations/tr/2-Working-With-Data/05-relational-databases/README.md
index 7ca31e64..5a796e31 100644
--- a/translations/tr/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/tr/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Veri ile Çalışmak: İlişkisel Veritabanları
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/tr/2-Working-With-Data/05-relational-databases/assignment.md b/translations/tr/2-Working-With-Data/05-relational-databases/assignment.md
index 38890ee1..26752201 100644
--- a/translations/tr/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/tr/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Havaalanı Verilerini Görüntüleme
Size havaalanları hakkında bilgi içeren [SQLite](https://sqlite.org/index.html) tabanlı bir [veritabanı](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) sağlandı. Şema aşağıda gösterilmiştir. Farklı şehirlerin havaalanları hakkında bilgi görüntülemek için [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) içindeki [SQLite eklentisini](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) kullanacaksınız.
diff --git a/translations/tr/2-Working-With-Data/06-non-relational/README.md b/translations/tr/2-Working-With-Data/06-non-relational/README.md
index 78ecd53d..844015e0 100644
--- a/translations/tr/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/tr/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Verilerle Çalışmak: İlişkisel Olmayan Veriler
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/tr/2-Working-With-Data/06-non-relational/assignment.md b/translations/tr/2-Working-With-Data/06-non-relational/assignment.md
index 85b9b02d..09e7757b 100644
--- a/translations/tr/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/tr/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Soda Karları
## Talimatlar
diff --git a/translations/tr/2-Working-With-Data/07-python/README.md b/translations/tr/2-Working-With-Data/07-python/README.md
index a66e0d25..76c13b3f 100644
--- a/translations/tr/2-Working-With-Data/07-python/README.md
+++ b/translations/tr/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Veriyle Çalışmak: Python ve Pandas Kütüphanesi
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/tr/2-Working-With-Data/07-python/assignment.md b/translations/tr/2-Working-With-Data/07-python/assignment.md
index 8afadcd0..49b668ee 100644
--- a/translations/tr/2-Working-With-Data/07-python/assignment.md
+++ b/translations/tr/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Python'da Veri İşleme Ödevi
Bu ödevde, zorluklarımız sırasında geliştirmeye başladığımız kodu detaylandırmanızı isteyeceğiz. Ödev iki bölümden oluşmaktadır:
diff --git a/translations/tr/2-Working-With-Data/08-data-preparation/README.md b/translations/tr/2-Working-With-Data/08-data-preparation/README.md
index bd7ecd70..9e0f142d 100644
--- a/translations/tr/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/tr/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Veriyle Çalışmak: Veri Hazırlama
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/tr/2-Working-With-Data/08-data-preparation/assignment.md b/translations/tr/2-Working-With-Data/08-data-preparation/assignment.md
index d3c50820..da02f55d 100644
--- a/translations/tr/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/tr/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Formdan Veri Değerlendirme
Bir müşteri, müşteri tabanları hakkında temel veriler toplamak için [küçük bir form](../../../../2-Working-With-Data/08-data-preparation/index.html) test ediyor. Topladıkları verileri doğrulamanız için bulgularını size getirdiler. Formu incelemek için `index.html` sayfasını tarayıcıda açabilirsiniz.
diff --git a/translations/tr/2-Working-With-Data/README.md b/translations/tr/2-Working-With-Data/README.md
index de267ba8..e0f7dfd6 100644
--- a/translations/tr/2-Working-With-Data/README.md
+++ b/translations/tr/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Verilerle Çalışmak

diff --git a/translations/tr/3-Data-Visualization/09-visualization-quantities/README.md b/translations/tr/3-Data-Visualization/09-visualization-quantities/README.md
index d6165a47..e5c1ff43 100644
--- a/translations/tr/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/tr/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Miktarları Görselleştirme
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/tr/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/tr/3-Data-Visualization/09-visualization-quantities/assignment.md
index 715090d9..7ddbb28d 100644
--- a/translations/tr/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/tr/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Çizgiler, Dağılımlar ve Çubuklar
## Talimatlar
diff --git a/translations/tr/3-Data-Visualization/10-visualization-distributions/README.md b/translations/tr/3-Data-Visualization/10-visualization-distributions/README.md
index ee25ca0f..75e19fbf 100644
--- a/translations/tr/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/tr/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Dağılımları Görselleştirme
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/tr/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/tr/3-Data-Visualization/10-visualization-distributions/assignment.md
index 7cc3a450..0c805f45 100644
--- a/translations/tr/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/tr/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Becerilerinizi Uygulayın
## Talimatlar
diff --git a/translations/tr/3-Data-Visualization/11-visualization-proportions/README.md b/translations/tr/3-Data-Visualization/11-visualization-proportions/README.md
index 6d6eb183..b69f81e9 100644
--- a/translations/tr/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/tr/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Oranları Görselleştirme
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/tr/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/tr/3-Data-Visualization/11-visualization-proportions/assignment.md
index fb8e0218..c4d7c3e4 100644
--- a/translations/tr/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/tr/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Excel'de Deneyin
## Talimatlar
diff --git a/translations/tr/3-Data-Visualization/12-visualization-relationships/README.md b/translations/tr/3-Data-Visualization/12-visualization-relationships/README.md
index e8e358d6..3cd7ac20 100644
--- a/translations/tr/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/tr/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# İlişkileri Görselleştirme: Bal Hakkında Her Şey 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/tr/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/tr/3-Data-Visualization/12-visualization-relationships/assignment.md
index e8221f38..0b267f6d 100644
--- a/translations/tr/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/tr/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Arı Kovanına Dalış
## Talimatlar
diff --git a/translations/tr/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/tr/3-Data-Visualization/13-meaningful-visualizations/README.md
index 272ec245..614dbc59 100644
--- a/translations/tr/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/tr/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Anlamlı Görselleştirmeler Yapmak
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/tr/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/tr/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 757b8422..ed7f4869 100644
--- a/translations/tr/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/tr/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Kendi özel görselleştirmelerinizi oluşturun
## Talimatlar
diff --git a/translations/tr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/tr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index d61baa6a..8ed82be2 100644
--- a/translations/tr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/tr/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Tehlikeli İlişkiler veri görselleştirme projesi
Başlamak için, makinenizde NPM ve Node'un çalıştığından emin olmanız gerekiyor. Bağımlılıkları yükleyin (npm install) ve ardından projeyi yerel olarak çalıştırın (npm run serve):
diff --git a/translations/tr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/tr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 2543fe40..5b4f4207 100644
--- a/translations/tr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/tr/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Dangerous Liaisons veri görselleştirme projesi
Başlamak için, makinenizde NPM ve Node'un çalıştığından emin olmanız gerekiyor. Bağımlılıkları yükleyin (npm install) ve ardından projeyi yerel olarak çalıştırın (npm run serve):
diff --git a/translations/tr/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/tr/3-Data-Visualization/R/09-visualization-quantities/README.md
index 5d085e35..d7b563a4 100644
--- a/translations/tr/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/tr/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Miktarları Görselleştirme
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/tr/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/tr/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 510f1ed1..1ad78729 100644
--- a/translations/tr/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/tr/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Çizgiler, Dağılımlar ve Çubuklar
## Talimatlar
diff --git a/translations/tr/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/tr/3-Data-Visualization/R/10-visualization-distributions/README.md
index b65e875f..56222674 100644
--- a/translations/tr/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/tr/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Dağılımları Görselleştirme
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/tr/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/tr/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 58e25ce4..eb1bf0b5 100644
--- a/translations/tr/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/tr/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Becerilerinizi Uygulayın
## Talimatlar
diff --git a/translations/tr/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/tr/3-Data-Visualization/R/11-visualization-proportions/README.md
index 22b09b6b..4352c04a 100644
--- a/translations/tr/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/tr/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Oranları Görselleştirme
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/tr/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/tr/3-Data-Visualization/R/12-visualization-relationships/README.md
index 1902ef00..5d92f470 100644
--- a/translations/tr/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/tr/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# İlişkileri Görselleştirme: Bal Hakkında Her Şey 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/tr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/tr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 11715f3b..00bdf87d 100644
--- a/translations/tr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/tr/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Anlamlı Görselleştirmeler Yapmak
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/tr/3-Data-Visualization/README.md b/translations/tr/3-Data-Visualization/README.md
index 268af206..211e0cdc 100644
--- a/translations/tr/3-Data-Visualization/README.md
+++ b/translations/tr/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Görselleştirmeler

diff --git a/translations/tr/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/tr/4-Data-Science-Lifecycle/14-Introduction/README.md
index 2fabfa5f..754a96dc 100644
--- a/translations/tr/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/tr/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Veri Bilimi Yaşam Döngüsüne Giriş
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/tr/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/tr/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index b98e1588..228d8410 100644
--- a/translations/tr/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/tr/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Bir Veri Setini Değerlendirme
Bir müşteri, New York City'deki taksi müşterilerinin mevsimsel harcama alışkanlıklarını araştırmak için ekibinizden yardım istedi.
diff --git a/translations/tr/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/tr/4-Data-Science-Lifecycle/15-analyzing/README.md
index 00a69e79..9512435c 100644
--- a/translations/tr/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/tr/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Veri Bilimi Yaşam Döngüsü: Analiz Etme
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/tr/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/tr/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 48e8c1e3..79cfa298 100644
--- a/translations/tr/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/tr/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Cevapları Keşfetmek
Bu, önceki dersin [ödevi](../14-Introduction/assignment.md) olan ve veri setine kısa bir bakış attığımız çalışmanın devamıdır. Şimdi veriye daha derinlemesine bir göz atacağız.
diff --git a/translations/tr/4-Data-Science-Lifecycle/16-communication/README.md b/translations/tr/4-Data-Science-Lifecycle/16-communication/README.md
index a7dc2f63..dae4aa3d 100644
--- a/translations/tr/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/tr/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Veri Bilimi Yaşam Döngüsü: İletişim
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/tr/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/tr/4-Data-Science-Lifecycle/16-communication/assignment.md
index 9457ab3f..63a2c424 100644
--- a/translations/tr/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/tr/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Bir Hikaye Anlat
## Talimatlar
diff --git a/translations/tr/4-Data-Science-Lifecycle/README.md b/translations/tr/4-Data-Science-Lifecycle/README.md
index c7d0f212..b379f68b 100644
--- a/translations/tr/4-Data-Science-Lifecycle/README.md
+++ b/translations/tr/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Veri Bilimi Yaşam Döngüsü

diff --git a/translations/tr/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/tr/5-Data-Science-In-Cloud/17-Introduction/README.md
index a52d42a7..2cf11653 100644
--- a/translations/tr/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/tr/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Bulutta Veri Bilimine Giriş
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/tr/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/tr/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index eef2b65b..9ddd9d50 100644
--- a/translations/tr/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/tr/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Pazar Araştırması
## Talimatlar
diff --git a/translations/tr/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/tr/5-Data-Science-In-Cloud/18-Low-Code/README.md
index a36ddd29..ac38c7c9 100644
--- a/translations/tr/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/tr/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Bulutta Veri Bilimi: "Düşük Kod/Hiç Kod" Yöntemi
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/tr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/tr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 7912a28f..05e95d46 100644
--- a/translations/tr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/tr/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML'de Düşük Kod/Hiç Kod Kullanılmadan Veri Bilimi Projesi
## Talimatlar
diff --git a/translations/tr/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/tr/5-Data-Science-In-Cloud/19-Azure/README.md
index bbf9e9f3..bc2294ec 100644
--- a/translations/tr/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/tr/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Bulutta Veri Bilimi: "Azure ML SDK" Yöntemi
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/tr/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/tr/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 45e731a5..23f7e9a7 100644
--- a/translations/tr/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/tr/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML SDK kullanarak Veri Bilimi Projesi
## Talimatlar
diff --git a/translations/tr/5-Data-Science-In-Cloud/README.md b/translations/tr/5-Data-Science-In-Cloud/README.md
index f13a0fef..cb154cf4 100644
--- a/translations/tr/5-Data-Science-In-Cloud/README.md
+++ b/translations/tr/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Bulutta Veri Bilimi

diff --git a/translations/tr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/tr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 3684e82f..f588eed7 100644
--- a/translations/tr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/tr/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Gerçek Dünyada Veri Bilimi
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/tr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/tr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 683222f5..06f2b64f 100644
--- a/translations/tr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/tr/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Bir Gezegen Bilgisayarı Veri Setini Keşfet
## Talimatlar
diff --git a/translations/tr/6-Data-Science-In-Wild/README.md b/translations/tr/6-Data-Science-In-Wild/README.md
index dd761aea..14fa33e4 100644
--- a/translations/tr/6-Data-Science-In-Wild/README.md
+++ b/translations/tr/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Vahşi Doğada Veri Bilimi
Veri biliminin endüstrilerdeki gerçek dünya uygulamaları.
diff --git a/translations/tr/AGENTS.md b/translations/tr/AGENTS.md
index e0742bfd..728a6487 100644
--- a/translations/tr/AGENTS.md
+++ b/translations/tr/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Proje Genel Bakış
diff --git a/translations/tr/CODE_OF_CONDUCT.md b/translations/tr/CODE_OF_CONDUCT.md
index aea7f02b..e7f2297c 100644
--- a/translations/tr/CODE_OF_CONDUCT.md
+++ b/translations/tr/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft Açık Kaynak Davranış Kuralları
Bu proje, [Microsoft Açık Kaynak Davranış Kuralları](https://opensource.microsoft.com/codeofconduct/) benimsemiştir.
diff --git a/translations/tr/CONTRIBUTING.md b/translations/tr/CONTRIBUTING.md
index 10686709..3fe5147b 100644
--- a/translations/tr/CONTRIBUTING.md
+++ b/translations/tr/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Veri Bilimine Giriş için Katkıda Bulunma
Veri Bilimine Giriş müfredatına katkıda bulunma ilginiz için teşekkür ederiz! Topluluktan gelen katkıları memnuniyetle karşılıyoruz.
diff --git a/translations/tr/INSTALLATION.md b/translations/tr/INSTALLATION.md
index c6763e3e..f9601b3b 100644
--- a/translations/tr/INSTALLATION.md
+++ b/translations/tr/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Kurulum Kılavuzu
Bu kılavuz, Başlangıç Seviyesi Veri Bilimi müfredatıyla çalışmak için ortamınızı nasıl kuracağınızı gösterecek.
diff --git a/translations/tr/README.md b/translations/tr/README.md
index 57ba9326..d4a99a19 100644
--- a/translations/tr/README.md
+++ b/translations/tr/README.md
@@ -1,206 +1,180 @@
-
-# Yeni Başlayanlar İçin Veri Bilimi - Bir Müfredat
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+# Yeni Başlayanlar için Veri Bilimi - Bir Müfredat
+Azure Bulut Savunucuları, Veri Bilimi ile ilgili 10 hafta, 20 derslik bir müfredata sunmaktan mutluluk duyar. Her ders, ders öncesi ve sonrası quizler, dersi tamamlama için yazılı talimatlar, bir çözüm ve bir ödev içerir. Proje tabanlı pedagojimiz, yeni becerilerin 'kalıcı' olmasını sağlayan kanıtlanmış bir yöntemle inşa ederken öğrenmenizi sağlar.
-[](https://discord.gg/nTYy5BXMWG)
-
-[](https://aka.ms/foundry/forum)
-
-Microsoft'taki Azure Cloud Advocates, Veri Bilimi hakkında 10 haftalık, 20 derslik bir müfredat sunmaktan mutluluk duyar. Her ders, ders öncesi ve sonrası quizleri, dersi tamamlamak için yazılı talimatlar, çözümler ve ödev içerir. Proje tabanlı pedagojimiz, öğrenirken yapmanızı sağlar; bu, yeni becerilerin 'kalıcı' olmasının kanıtlanmış bir yoludur.
-
-**Yazarlarımıza yürekten teşekkürler:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Yazarlarımıza içten teşekkürler:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Özel teşekkürler 🙏 Microsoft Öğrenci Elçimiz [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) yazarlarına, inceleyicilerine ve içerik katkıcılarına,** özellikle Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
-[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
+**🙏 Özel teşekkürler 🙏 [Microsoft Öğrenci Elçisi](https://studentambassadors.microsoft.com/) yazarlarımıza, gözden geçirenlere ve içerik katkıda bulunanlara**, özellikle Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar, [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Yeni Başlayanlar İçin Veri Bilimi - _[@nitya](https://twitter.com/nitya) tarafından Sketchnote_ |
+| Yeni Başlayanlar için Veri Bilimi - _[@nitya](https://twitter.com/nitya) tarafından Sketchnote_ |
-### 🌐 Çoklu Dil Desteği
+### 🌐 Çok Dilli Destek
-#### GitHub Action ile Desteklenir (Otomatik & Her Zaman Güncel)
+#### GitHub Action ile Desteklenmektedir (Otomatik & Her Zaman Güncel)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](./README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](./README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-> **Yerel Olarak Klonlamayı Tercih Ediyor musunuz?**
+> **Yerel olarak Klonlamayı Tercih Ediyor musunuz?**
-> Bu depo, indirme boyutunu önemli ölçüde artıran 50'den fazla dil çevirisi içerir. Çeviriler olmadan klonlamak için, seyrek checkout kullanın:
+> Bu depo 50+ dil çevirisini içermektedir, bu da indirme boyutunu önemli ölçüde artırır. Çeviriler olmadan klonlamak için sparse checkout kullanın:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Bu, kursu tamamlamak için gereken her şeyi daha hızlı bir indirme ile sağlar.
+> Bu, kursu tamamlamak için ihtiyacınız olan her şeyi çok daha hızlı bir indirme ile size verir.
-**Ek çeviri dillerinin desteklenmesini isterseniz, bunlar [burada](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) listelenmiştir**
+**Ek dil desteği istemeniz durumunda desteklenen diller [burada](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) listelenmiştir**
#### Topluluğumuza Katılın
[](https://discord.gg/nTYy5BXMWG)
-AI ile öğrenme dizisi Discord'da devam ediyor, daha fazlasını öğrenin ve 18 - 30 Eylül 2025 tarihleri arasında [Learn with AI Series](https://aka.ms/learnwithai/discord) ’e katılın. Veri Bilimi için GitHub Copilot kullanımıyla ilgili ipuçları ve püf noktaları edineceksiniz.
+Discord üzerinde AI ile öğrenme serimiz devam ediyor, daha fazla bilgi alın ve 18 - 30 Eylül 2025 arasında [Learn with AI Series](https://aka.ms/learnwithai/discord) topluluğumuza katılın. GitHub Copilot'u Veri Bilimi için kullanmanın ipuçları ve püf noktalarını öğreneceksiniz.
-
+
# Öğrenci misiniz?
Aşağıdaki kaynaklarla başlayın:
-- [Öğrenci Merkezi sayfası](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Bu sayfada, yeni başlayan kaynakları, Öğrenci paketlerini ve hatta ücretsiz sertifika kuponu alma yollarını bulacaksınız. İçeriği en az ayda bir değiştirdiğimiz için bu sayfayı yer imlerinize ekleyip zaman zaman kontrol etmek isteyeceksiniz.
-- [Microsoft Learn Öğrenci Elçileri](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Küresel bir öğrenci elçileri topluluğuna katılın, bu Microsoft'a giriş yolunuz olabilir.
+- [Student Hub sayfası](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Bu sayfada, başlangıç seviyesine uygun kaynaklar, Öğrenci paketleri ve hatta ücretsiz sertifika kuponu edinmenin yollarını bulacaksınız. İçerik ayda en az bir kez değiştirildiği için bu sayfayı zaman zaman yer imlerinize ekleyip kontrol etmek isteyeceksiniz.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Küresel öğrenci elçileri topluluğuna katılın, bu Microsoft'a girmek için bir yolunuz olabilir.
# Başlarken
## 📚 Dokümantasyon
-- **[Kurulum Kılavuzu](INSTALLATION.md)** - Yeni başlayanlar için adım adım kurulum talimatları
+- **[Kurulum Kılavuzu](INSTALLATION.md)** - Yeni başlayanlar için adım adım kurulum yönergeleri
- **[Kullanım Kılavuzu](USAGE.md)** - Örnekler ve yaygın iş akışları
-- **[Sorun Giderme](TROUBLESHOOTING.md)** - Yaygın sorunlar için çözümler
+- **[Sorun Giderme](TROUBLESHOOTING.md)** - Yaygın sorunlara çözümler
- **[Katkıda Bulunma Kılavuzu](CONTRIBUTING.md)** - Bu projeye nasıl katkıda bulunulur
-- **[Öğretmenler İçin](for-teachers.md)** - Öğretim rehberi ve sınıf kaynakları
+- **[Öğretmenler için](for-teachers.md)** - Öğretim rehberi ve sınıf kaynakları
-## 👨🎓 Öğrenciler İçin
-> **Tamamen Yeni Başlayanlar**: Veri bilimine yeni misiniz? Başlamak için [yeni başlayan dostu örneklerimize](examples/README.md) göz atın! Bu basit, iyi yorumlanmış örnekler, tam müfredata dalmadan önce temel bilgileri anlamanıza yardımcı olur.
-> **[Öğrenciler](https://aka.ms/student-page)**: Bu müfredatı kendi başınıza kullanmak için, tüm depoyu çatallayıp önceden quiz ile başlayarak alıştırmaları kendiniz yapabilirsiniz. Ardından dersi okuyup geri kalan etkinlikleri tamamlayın. Çözümleri kopyalamak yerine dersleri kavrayarak projeleri oluşturmaya çalışın; ancak bu kod, her proje odaklı dersin /solutions klasörlerinde mevcuttur. Bir diğer fikir, arkadaşlarınızla bir çalışma grubu oluşturup içeriği birlikte geçmek olabilir. Daha ileri çalışma için [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ’i öneriyoruz.
+## 👨🎓 Öğrenciler için
+> **Tamamen Yeni Başlayanlar**: Veri bilimiyle yeni misiniz? Öncelikle [başlangıç dostu örneklerimiz](examples/README.md) ile başlayın! Bu basit, iyi yorumlanmış örnekler temel bilgileri öğrenmenize yardımcı olacaktır.
+> **[Öğrenciler](https://aka.ms/student-page)**: bu müfredatı kendi başınıza kullanmak için tüm repoyu çatallayın ve ders öncesi quiz ile başlayarak alıştırmaları kendiniz tamamlayın. Daha sonra dersi okuyun ve diğer aktiviteleri yapın. Projeleri, çözüm kodunu kopyalamak yerine dersleri kavrayarak oluşturmaya çalışın; ancak bu kod her proje odaklı derste /solutions klasörlerinde mevcuttur. Bir diğer fikir, arkadaşlarınızla bir çalışma grubu oluşturup içeriği birlikte gözden geçirmektir. Daha ileri çalışma için [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) öneriyoruz.
**Hızlı Başlangıç:**
-1. Ortamınızı kurmak için [Kurulum Kılavuzu](INSTALLATION.md)'nu inceleyin
-2. Müfredatla nasıl çalışılacağını öğrenmek için [Kullanım Kılavuzu](USAGE.md)'nu gözden geçirin
-3. 1. Dersle başlayın ve sırasıyla ilerleyin
+1. Ortamınızı kurmak için [Kurulum Kılavuzu](INSTALLATION.md)'nu kontrol edin
+2. Müfredatla nasıl çalışacağınızı öğrenmek için [Kullanım Kılavuzu](USAGE.md)'nu inceleyin
+3. Ders 1 ile başlayıp sırayla ilerleyin
4. Destek için [Discord topluluğumuza](https://aka.ms/ds4beginners/discord) katılın
-## 👩🏫 Öğretmenler İçin
+## 👩🏫 Öğretmenler için
-> **Öğretmenler**: Bu müfredatı nasıl kullanacağınıza dair bazı öneriler [ekledik](for-teachers.md). Geri bildiriminizi [tartışma forumumuzda](https://github.com/microsoft/Data-Science-For-Beginners/discussions) bekliyoruz!
+> **Öğretmenler**: bu müfredatı nasıl kullanabileceğinize dair [bazı öneriler](for-teachers.md) ekledik. Geri bildirimlerinizi [tartışma forumumuzda](https://github.com/microsoft/Data-Science-For-Beginners/discussions) bekliyoruz!
+## Ekiple Tanışın
-## Takımla Tanışın
[](https://youtu.be/8mzavjQSMM4 "Tanıtım videosu")
**Gif yapan** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Proje ve onu oluşturan ekip hakkında bir video izlemek için yukarıdaki görsele tıklayın!
+> 🎥 Proje ve onu yaratan ekip hakkında bir video için yukarıdaki resme tıklayın!
## Pedagoji
-Bu müfredatı oluştururken iki pedagojik ilkeyi seçtik: proje tabanlı olması ve sık sık quizler içermesi. Bu serinin sonunda öğrenciler etik kavramlar, veri hazırlama, verilerle çalışma şekilleri, veri görselleştirme, veri analizi, veri biliminin gerçek dünya kullanım alanları ve daha fazlası dahil olmak üzere veri biliminin temel prensiplerini öğrenmiş olacaklar.
+Bu müfredatı oluştururken iki pedagojik ilke seçtik: proje tabanlı olması ve sık sık sınavlar içermesi. Bu serinin sonunda öğrenciler, etik kavramlar, veri hazırlama, verilerle çalışma farklı yolları, veri görselleştirme, veri analizi, veri biliminin gerçek dünya kullanım örnekleri ve daha fazlasını içeren veri biliminin temel prensiplerini öğrenmiş olacaklar.
-Ayrıca, dersten önce yapılan düşük riskli bir quiz öğrencinin bir konuyu öğrenme niyetini belirlerken, dersten sonra yapılan ikinci bir quiz bilgilerinin daha iyi kalıcı olmasını sağlar. Bu müfredat esnek ve eğlenceli olacak şekilde tasarlandı ve tamamı ya da bölümler halinde alınabilir. Projeler küçük başlar ve 10 haftalık döngünün sonunda giderek daha karmaşık hale gelir.
+Ayrıca, bir dersten önce düşük riskli bir sınav öğrenci için konuyu öğrenme niyeti belirlerken, dersten sonra ikinci bir sınav ise bilgilerin kalıcılığını artırır. Bu müfredat esnek ve eğlenceli olacak şekilde tasarlandı ve tamamen ya da kısmen alınabilir. Projeler küçük başlar ve 10 haftalık döngünün sonunda giderek karmaşıklaşır.
-> [Davranış Kurallarımızı](CODE_OF_CONDUCT.md), [Katkıda Bulunma](CONTRIBUTING.md), [Çeviri](TRANSLATIONS.md) rehberlerimizi bulun. Yapıcı geri bildirimlerinizi memnuniyetle karşılıyoruz!
+> [Davranış Kurallarımızı](CODE_OF_CONDUCT.md), [Katkıda Bulunma](CONTRIBUTING.md), [Çeviri](TRANSLATIONS.md) rehberlerimizi bulun. Yapıcı geri bildiriminizi bekliyoruz!
-## Her ders şunları içerir:
+## Her ders içerir:
- İsteğe bağlı taslak notu
-- İsteğe bağlı destekleyici video
+- İsteğe bağlı tamamlayıcı video
- Dersten önce ısınma sınavı
- Yazılı ders
-- Proje tabanlı derslerde, projenin nasıl yapılacağına dair adım adım rehberler
+- Proje tabanlı dersler için projenin adım adım yapımı rehberleri
- Bilgi kontrolü
- Bir meydan okuma
-- Destekleyici okuma
+- Tamamlayıcı kaynak okuması
- Ödev
-- [Dersten sonra quiz](https://ff-quizzes.netlify.app/en/)
+- [Dersten sonra sınav](https://ff-quizzes.netlify.app/en/)
-> **Quizzler hakkında bir not**: Tüm quizler Quiz-App klasöründe bulunur, toplam 40 adet her biri 3 sorudan oluşan quiz vardır. Derslerin içinde bağlantılar verilmiştir, ancak quiz uygulaması yerel olarak çalıştırılabilir veya Azure’a dağıtılabilir; `quiz-app` klasöründeki talimatları izleyin. Quizler kademeli olarak yerelleştirilmektedir.
+> **Sınavlar hakkında not**: Tüm sınavlar Quiz-App klasöründe yer alır, toplam 40 adet üç soruluk sınav bulunur. Derslerin içinde bağlantı verilmiştir, ayrıca sınav uygulaması yerelde çalıştırılabilir veya Azure'a dağıtılabilir; `quiz-app` klasöründeki talimatları takip edin. Sınavlar kademeli olarak yerelleştirilmektedir.
-## 🎓 Yeni Başlayanlar İçin Örnekler
+## 🎓 Yeni Başlayanlar için Örnekler
-**Veri Bilimine yeni misiniz?** Başlangıç yapmanız için basit, iyi yorumlanmış kodlarla özel bir [örnek dizini](examples/README.md) oluşturduk:
+**Veri Biliminde yen misiniz?** Başlamanıza yardımcı olması için basit, iyi yorumlanmış kod içeren özel bir [örnekler dizini](examples/README.md) oluşturduk:
- 🌟 **Merhaba Dünya** - İlk veri bilimi programınız
-- 📂 **Veri Yükleme** - Veri setlerini okumayı ve keşfetmeyi öğrenin
-- 📊 **Basit Analiz** - İstatistik hesaplayın ve kalıpları bulun
-- 📈 **Temel Görselleştirme** - Grafik ve çizelgeler oluşturun
+- 📂 **Veri Yükleme** - Veri setlerini okuma ve keşfetmeyi öğrenin
+- 📊 **Basit Analiz** - İstatistik hesaplayın ve desenler bulun
+- 📈 **Temel Görselleştirme** - Grafikler ve çizeler oluşturun
- 🔬 **Gerçek Dünya Projesi** - Baştan sona tam iş akışı
-Her örnek her adımı ayrıntılı yorumlarla açıklar, bu yüzden tamamen yeni başlayanlar için mükemmeldir!
+Her örnek, her adımı açıklayan ayrıntılı yorumlar içerir, bu nedenle tamamen yeni başlayanlar için mükemmeldir!
👉 **[Örneklerle başlayın](examples/README.md)** 👈
## Dersler
-||
+||
|:---:|
-| Veri Bilimine Yeni Başlayanlar: Yol Haritası - _[@nitya](https://twitter.com/nitya) tarafından çizim_ |
+| Yeni Başlayanlar için Veri Bilimi Yol Haritası - _Taslak not [@nitya](https://twitter.com/nitya) tarafından_ |
-| Ders Numarası | Konu | Ders Gruplaması | Öğrenme Hedefleri | Bağlantılı Ders | Yazar |
+| Ders Numarası | Konu | Ders Grubu | Öğrenme Hedefleri | Bağlantılı Ders | Yazar |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Veri Bilimini Tanımlama | [Giriş](1-Introduction/README.md) | Veri biliminin temel kavramlarını ve yapay zeka, makine öğrenmesi ve büyük veri ile ilişkisini öğrenin. | [ders](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I)| [Dmitry](http://soshnikov.com) |
-| 02 | Veri Etiği | [Giriş](1-Introduction/README.md) | Veri Etiği Kavramları, Zorluklar ve Çerçeveler. | [ders](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | Veri Bilimini Tanımlama | [Giriş](1-Introduction/README.md) | Veri biliminin temel kavramlarını ve yapay zeka, makine öğrenimi ve büyük veriyle ilişkisini öğrenin. | [ders](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Veri Bilimi Etiği | [Giriş](1-Introduction/README.md) | Veri Etiği Kavramları, Zorluklar ve Çerçeveler. | [ders](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Veriyi Tanımlama | [Giriş](1-Introduction/README.md) | Verinin nasıl sınıflandırıldığı ve yaygın kaynakları. | [ders](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | İstatistik ve Olasılığa Giriş | [Giriş](1-Introduction/README.md) | Veriyi anlamak için olasılık ve istatistiğin matematiksel teknikleri. | [ders](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | İlişkisel Veri ile Çalışma | [Veri ile Çalışma](2-Working-With-Data/README.md) | İlişkisel veriye giriş ve SQL (Structured Query Language) kullanarak ilişkisel verinin keşfi ve analizi temelleri. | [ders](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | NoSQL Verisi ile Çalışma | [Veri ile Çalışma](2-Working-With-Data/README.md) | İlişkisel olmayan veriye giriş, çeşitli türleri ve doküman veritabanlarının keşfi ve analizi temelleri. | [ders](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 07 | Python ile Çalışma | [Veri ile Çalışma](2-Working-With-Data/README.md) | Pandas gibi kütüphanelerle data keşif için Python kullanmanın temelleri. Python programlama temeli önerilir. | [ders](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Veri Hazırlama | [Veri ile Çalışma](2-Working-With-Data/README.md) | Eksik, yanlış veya eksik verilerin zorluklarıyla başa çıkmak için veriyi temizleme ve dönüştürme teknikleri. | [ders](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Miktarları Görselleştirme | [Veri Görselleştirme](3-Data-Visualization/README.md) | Matplotlib kullanarak kuş verisini görselleştirmeyi öğrenin 🦆 | [ders](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Veri Dağılımlarını Görselleştirme | [Veri Görselleştirme](3-Data-Visualization/README.md) | Bir aralıktaki gözlemleri ve eğilimleri görselleştirme. | [ders](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Oranları Görselleştirme | [Veri Görselleştirme](3-Data-Visualization/README.md) | Kesikli ve gruplanmış yüzdeleri görselleştirme. | [ders](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 04 | İstatistik ve Olasılığa Giriş | [Giriş](1-Introduction/README.md) | Veriyi anlamak için olasılık ve istatistik matematiksel teknikleri. | [ders](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | İlişkisel Veri ile Çalışma | [Veri ile Çalışma](2-Working-With-Data/README.md) | İlişkisel veriye giriş ve Yapılandırılmış Sorgu Dili (SQL) ile ilişkisel veriyi keşfetme ve analiz etme temelleri. | [ders](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | NoSQL Veri ile Çalışma | [Veri ile Çalışma](2-Working-With-Data/README.md) | İlişkisel olmayan veriye giriş, farklı türleri ve belge veritabanlarını keşfetme ve analiz etme temelleri. | [ders](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Python ile Çalışma | [Veri ile Çalışma](2-Working-With-Data/README.md) | Pandas gibi kütüphanelerle veri keşfi için Python kullanımı temelleri. Temel Python programlama bilgisi önerilir. | [ders](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Veri Hazırlama | [Veri ile Çalışma](2-Working-With-Data/README.md) | Eksik, hatalı veya tamamlanmamış verilerin zorluklarıyla başa çıkmak için veriyi temizleme ve dönüştürme teknikleri. | [ders](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Miktarları Görselleştirme | [Veri Görselleştirme](3-Data-Visualization/README.md) | Matplotlib kullanarak kuş verisini görselleştirin 🦆 | [ders](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Verinin Dağılımlarını Görselleştirme | [Veri Görselleştirme](3-Data-Visualization/README.md) | Bir aralıktaki gözlemleri ve eğilimleri görselleştirme. | [ders](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Oranları Görselleştirme | [Veri Görselleştirme](3-Data-Visualization/README.md) | Ayrık ve gruplanmış yüzdeleri görselleştirme. | [ders](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | İlişkileri Görselleştirme | [Veri Görselleştirme](3-Data-Visualization/README.md) | Veri setleri ve değişkenleri arasındaki bağlantı ve korelasyonları görselleştirme. | [ders](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Anlamlı Görselleştirmeler | [Veri Görselleştirme](3-Data-Visualization/README.md) | Görselleştirmelerin etkili problem çözme ve içgörüler için değerli olması adına teknikler ve rehberlik. | [ders](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Veri Bilimi Yaşam Döngüsüne Giriş | [Yaşam Döngüsü](4-Data-Science-Lifecycle/README.md) | Veri bilimi yaşam döngüsünün tanıtımı ve veri elde etme ve çıkarma aşaması. | [ders](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Analiz | [Yaşam Döngüsü](4-Data-Science-Lifecycle/README.md) | Veri bilimi yaşam döngüsünün veri analiz tekniklerine odaklanma aşaması. | [ders](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | İletişim | [Yaşam Döngüsü](4-Data-Science-Lifecycle/README.md) | Veri bilimi yaşam döngüsünün, karar vericilerin anlamasını kolaylaştıracak şekilde veri içgörülerini sunmaya odaklanan aşaması. | [ders](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Bulutta Veri Bilimi | [Bulut Verisi](5-Data-Science-In-Cloud/README.md) | Bulutta veri bilimine giriş ve avantajları hakkında bir dizi ders. | [ders](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ve [Maud](https://twitter.com/maudstweets) |
-| 18 | Bulutta Veri Bilimi | [Bulut Verisi](5-Data-Science-In-Cloud/README.md) | Düşük Kod araçlarıyla modellerin eğitimi. |[ders](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ve [Maud](https://twitter.com/maudstweets) |
-| 19 | Bulutta Veri Bilimi | [Bulut Verisi](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio ile modellerin dağıtımı. | [ders](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ve [Maud](https://twitter.com/maudstweets) |
-| 20 | Vahşi Doğada Veri Bilimi | [Vahşi Doğada](6-Data-Science-In-Wild/README.md) | Gerçek dünyada veri bilimi odaklı projeler. | [ders](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 13 | Anlamlı Görselleştirmeler | [Veri Görselleştirme](3-Data-Visualization/README.md) | Görselleştirmelerinizi etkili problem çözme ve içgörüler için değerli hale getirmek için teknikler ve rehberlik. | [ders](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Veri Bilimi Yaşam Döngüsüne Giriş | [Yaşam Döngüsü](4-Data-Science-Lifecycle/README.md) | Veri bilimi yaşam döngüsüne giriş ve veri edinme, çıkarma ilk adımı. | [ders](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Analiz Etme | [Yaşam Döngüsü](4-Data-Science-Lifecycle/README.md) | Veri bilimi yaşam döngüsünün bu aşaması veriyi analiz etme tekniklerine odaklanır. | [ders](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | İletişim | [Yaşam Döngüsü](4-Data-Science-Lifecycle/README.md) | Veri bilimi yaşam döngüsünün bu aşaması veriden elde edilen içgörüleri karar vericilerin daha iyi anlayabileceği şekilde sunmaya odaklanır. | [ders](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Bulutta Veri Bilimi | [Bulut Verisi](5-Data-Science-In-Cloud/README.md) | Bu dizi derslerde bulutta veri bilimine ve faydalarına giriş yapılır. | [ders](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ve [Maud](https://twitter.com/maudstweets) |
+| 18 | Bulutta Veri Bilimi | [Bulut Verisi](5-Data-Science-In-Cloud/README.md) | Düşük Kod araçları kullanarak modeller eğitme. |[ders](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ve [Maud](https://twitter.com/maudstweets) |
+| 19 | Bulutta Veri Bilimi | [Bulut Verisi](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio ile modelleri dağıtma. | [ders](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ve [Maud](https://twitter.com/maudstweets) |
+| 20 | Doğada Veri Bilimi | [Doğada](6-Data-Science-In-Wild/README.md) | Gerçek dünyada veri bilimi odaklı projeler. | [ders](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Bu örneği bir Codespace içinde açmak için şu adımları izleyin:
+Bu örneği bir Codespace'de açmak için şu adımları takip edin:
1. Kod açılır menüsüne tıklayın ve Open with Codespaces seçeneğini seçin.
-2. Panelin altındaki + New codespace seçeneğini seçin.
+2. Panelin altında + New codespace'i seçin.
Daha fazla bilgi için [GitHub dokümantasyonuna](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) bakabilirsiniz.
## VSCode Remote - Containers
-Bu depoyu yerel makinenizde ve VSCode kullanarak VS Code Remote - Containers eklentisi ile bir konteyner içinde açmak için şu adımları izleyin:
+Bu repoyu yerel makinenizde ve VSCode ile, VS Code Remote - Containers eklentisi kullanarak bir konteynerde açmak için şu adımları izleyin:
-1. Eğer geliştirme konteynerini ilk defa kullanıyorsanız, sisteminizin ön koşulları karşıladığından emin olun (örneğin Docker yüklü olsun) [başlangıç dokümantasyonunda](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) belirtildiği gibi.
+1. Geliştirme konteyneri kullanıyorsanız, sisteminizde gerekli önkoşulların (örneğin Docker) olduğundan emin olun: [başlangıç dokümantasyonu](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Bu depoyu kullanmak için, ya repoyu izole bir Docker hacminde açabilirsiniz:
+Bu repoyu şu şekilde kullanabilirsiniz, ya repoyu izole bir Docker hacminde açın:
-**Not:** Bu arka planda Remote-Containers: **Clone Repository in Container Volume...** komutunu kullanarak kaynak kodu yerel dosya sistemi yerine bir Docker hacmine klonlar. [Hacimler](https://docs.docker.com/storage/volumes/) konteyner verilerini kalıcı hale getirmek için tercih edilen mekanizmadır.
+**Not**: Altında Remote-Containers: **Clone Repository in Container Volume...** komutunu kullanarak kaynak kodu yerel dosya sistemi yerine Docker hacminde klonlayacaktır. [Hacimler](https://docs.docker.com/storage/volumes/), konteyner verilerini kalıcı hale getirmek için tercih edilen mekanizmadır.
-Ya da yerel olarak klonlanmış veya indirilmiş versiyonunu açabilirsiniz:
+Ya da repoyu yerel klonlayarak veya indirerek açın:
-- Bu depoyu yerel dosya sisteminize klonlayın.
-- F1 tuşuna basın ve **Remote-Containers: Open Folder in Container...** komutunu seçin.
-- Bu klasörün klonlanmış kopyasını seçin, konteynerin başlamasını bekleyin ve deneyin.
+- Repoyu yerel dosya sisteminize klonlayın.
+- F1'e basın ve **Remote-Containers: Open Folder in Container...** komutunu seçin.
+- Bu klasörün klonlanmış kopyasını seçin, konteynerin başlamasını bekleyin ve denemeye başlayın.
## Çevrimdışı erişim
-Bu dokümantasyonu çevrimdışı kullanmak için [Docsify](https://docsify.js.org/#/) kullanabilirsiniz. Bu depoyu çatallayın, [Docsify kurulumunu](https://docsify.js.org/#/quickstart) yerel makinenize yapın, ardından bu deponun kök klasöründe `docsify serve` yazın. Site localhost üzerinde 3000 portundan erişilebilir olacaktır: `localhost:3000`.
+Bu dokümantasyonu çevrimdışı [Docsify](https://docsify.js.org/#/) kullanarak çalıştırabilirsiniz. Bu repoyu çatallayın, yerel makinenize [Docsify kurun](https://docsify.js.org/#/quickstart), sonra bu repoda kök klasörde `docsify serve` yazarak çalıştırın. Site localhost:3000 portunda yayınlanacaktır: `localhost:3000`.
-> Not, not defterleri Docsify ile görüntülenmez, bu nedenle bir not defteri çalıştırmanız gerektiğinde bunu VS Code’da Python çekirdeği çalıştırarak ayrı yapın.
+> Not, not defterleri Docsify tarafından işlenmez, bu yüzden bir not defteri çalıştırmak istediğinizde bunu ayrı olarak VS Code'da Python kernel kullanarak yapın.
## Diğer Müfredatlar
-Ekibimiz başka müfredatlar da üretiyor! İnceleyin:
+Ekibimiz başka müfredatlar üretiyor! Şunlara göz atın:
### LangChain
@@ -209,7 +183,7 @@ Ekibimiz başka müfredatlar da üretiyor! İnceleyin:
---
-### Azure / Edge / MCP / Agentler
+### Azure / Edge / MCP / Ajanlar
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
@@ -244,13 +218,13 @@ Ekibimiz başka müfredatlar da üretiyor! İnceleyin:
## Yardım Alma
-**Sorun mu yaşıyorsunuz?** Yaygın sorunlar için çözümleri görmek üzere [Sorun Giderme Rehberimizi](TROUBLESHOOTING.md) inceleyin.
+**Sorun mu yaşıyorsunuz?** Yaygın sorunlara çözümler için [Sorun Giderme Rehberimizi](TROUBLESHOOTING.md) kontrol edin.
-Yapay zeka uygulamaları geliştirme hakkında takılırsanız veya herhangi bir sorunuz olursa, MCP hakkında tartışmalara katılmak için diğer öğrenenler ve deneyimli geliştiricilere katılın. Soruların hoş karşılandığı ve bilginin özgürce paylaşıldığı destekleyici bir topluluktur.
+AI uygulamaları oluştururken takılırsanız veya herhangi bir sorunuz varsa. MCP hakkında tartışmalara katılmak için diğer öğrenenler ve deneyimli geliştiricilerle buluşun. Soruların memnuniyetle karşılandığı ve bilginin özgürce paylaşıldığı destekleyici bir topluluktur.
[](https://discord.gg/nTYy5BXMWG)
-Ürün geribildirimi veya geliştirme sırasında karşılaştığınız hatalar için ziyaret edin:
+Ürün geri bildirimi veya yapım sırasında hatalarınız varsa ziyaret edin:
[](https://aka.ms/foundry/forum)
@@ -258,5 +232,5 @@ Yapay zeka uygulamaları geliştirme hakkında takılırsanız veya herhangi bir
**Feragatname**:
-Bu belge, AI çeviri servisi [Co-op Translator](https://github.com/Azure/co-op-translator) kullanılarak çevrilmiştir. Doğruluk için çaba gösterilse de, otomatik çevirilerin hatalar veya yanlışlıklar içerebileceğini lütfen unutmayınız. Orijinal belge, kendi dilinde yetkili kaynak olarak kabul edilmelidir. Kritik bilgiler için profesyonel insan çevirisi önerilir. Bu çevirinin kullanımı sonucu oluşabilecek yanlış anlamalar veya yorum hatalarından sorumlu tutulamayız.
+Bu belge, AI çeviri servisi [Co-op Translator](https://github.com/Azure/co-op-translator) kullanılarak çevrilmiştir. Doğruluk için çaba gösterilse de, otomatik çevirilerin hatalar veya yanlışlıklar içerebileceğini lütfen unutmayınız. Orijinal belge, kendi dilinde yetkili kaynak olarak kabul edilmelidir. Kritik bilgiler için profesyonel insan çevirisi önerilir. Bu çeviri kullanımı nedeniyle oluşabilecek yanlış anlamalar veya yanlış yorumlamalardan sorumlu değiliz.
\ No newline at end of file
diff --git a/translations/tr/SECURITY.md b/translations/tr/SECURITY.md
index 3a83dc3b..bd5eaf11 100644
--- a/translations/tr/SECURITY.md
+++ b/translations/tr/SECURITY.md
@@ -1,12 +1,3 @@
-
## Güvenlik
Microsoft, yazılım ürünlerimizin ve hizmetlerimizin güvenliğini ciddiye alır. Bu, [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) ve [diğer GitHub organizasyonlarımız](https://opensource.microsoft.com/) dahil olmak üzere GitHub organizasyonlarımız aracılığıyla yönetilen tüm kaynak kodu depolarını kapsar.
diff --git a/translations/tr/SUPPORT.md b/translations/tr/SUPPORT.md
index 57f16013..9ad2f94c 100644
--- a/translations/tr/SUPPORT.md
+++ b/translations/tr/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Destek
## Sorun Bildirme ve Yardım Alma
diff --git a/translations/tr/TROUBLESHOOTING.md b/translations/tr/TROUBLESHOOTING.md
index 0fc63295..21f1da3d 100644
--- a/translations/tr/TROUBLESHOOTING.md
+++ b/translations/tr/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Sorun Giderme Kılavuzu
Bu kılavuz, Data Science for Beginners müfredatıyla çalışırken karşılaşabileceğiniz yaygın sorunlara çözümler sunar.
diff --git a/translations/tr/USAGE.md b/translations/tr/USAGE.md
index 0ddca1a2..97565e90 100644
--- a/translations/tr/USAGE.md
+++ b/translations/tr/USAGE.md
@@ -1,12 +1,3 @@
-
# Kullanım Kılavuzu
Bu kılavuz, Veri Bilimi için Başlangıç müfredatını kullanmaya yönelik örnekler ve yaygın iş akışlarını sunar.
diff --git a/translations/tr/docs/_sidebar.md b/translations/tr/docs/_sidebar.md
index baac8e73..c0b895dd 100644
--- a/translations/tr/docs/_sidebar.md
+++ b/translations/tr/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Giriş
- [Veri Bilimini Tanımlama](../1-Introduction/01-defining-data-science/README.md)
- [Veri Bilimi Etiği](../1-Introduction/02-ethics/README.md)
diff --git a/translations/tr/examples/README.md b/translations/tr/examples/README.md
index ab381b18..2e4dea29 100644
--- a/translations/tr/examples/README.md
+++ b/translations/tr/examples/README.md
@@ -1,12 +1,3 @@
-
# Yeni Başlayanlar İçin Veri Bilimi Örnekleri
Örnekler dizinine hoş geldiniz! Bu basit ve iyi açıklanmış örnekler koleksiyonu, tamamen yeni başlayanlar için bile veri bilimine başlamayı kolaylaştırmak amacıyla tasarlandı.
diff --git a/translations/tr/for-teachers.md b/translations/tr/for-teachers.md
index 280dbebb..ec5070e0 100644
--- a/translations/tr/for-teachers.md
+++ b/translations/tr/for-teachers.md
@@ -1,12 +1,3 @@
-
## Eğitimciler İçin
Bu müfredatı sınıfınızda kullanmak ister misiniz? Lütfen çekinmeden kullanın!
diff --git a/translations/tr/quiz-app/README.md b/translations/tr/quiz-app/README.md
index cdb19613..71b05ab2 100644
--- a/translations/tr/quiz-app/README.md
+++ b/translations/tr/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Quizler
Bu quizler, https://aka.ms/datascience-beginners adresindeki veri bilimi müfredatının ders öncesi ve sonrası quizleridir.
diff --git a/translations/tr/sketchnotes/README.md b/translations/tr/sketchnotes/README.md
index 176ec419..34b44de0 100644
--- a/translations/tr/sketchnotes/README.md
+++ b/translations/tr/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Tüm sketchnotelere buradan ulaşabilirsiniz!
## Katkıda Bulunanlar
diff --git a/translations/tw/README.md b/translations/tw/README.md
deleted file mode 100644
index 4d42164e..00000000
--- a/translations/tw/README.md
+++ /dev/null
@@ -1,259 +0,0 @@
-
-# Data Science for Beginners - A Curriculum
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
-
-
-[](https://discord.gg/nTYy5BXMWG)
-
-[](https://aka.ms/foundry/forum)
-
-微軟的 Azure 雲端倡導者很高興提供一份為期 10 週、共 20 課的資料科學課程。每個課程包含課前及課後測驗、完成課程的書面指示、解答與作業。我們採用以專案為基礎的教學法,讓你在實作中學習,這是一種讓新技能得以扎根的有效方式。
-
-**衷心感謝以下作者:** [Jasmine Greenaway](https://www.twitter.com/paladique)、[Dmitry Soshnikov](http://soshnikov.com)、[Nitya Narasimhan](https://twitter.com/nitya)、[Jalen McGee](https://twitter.com/JalenMcG)、[Jen Looper](https://twitter.com/jenlooper)、[Maud Levy](https://twitter.com/maudstweets)、[Tiffany Souterre](https://twitter.com/TiffanySouterre)、[Christopher Harrison](https://www.twitter.com/geektrainer)。
-
-**🙏 特別感謝 🙏 我們的 [Microsoft 學生大使](https://studentambassadors.microsoft.com/) 作者、審稿人及內容貢獻者,** 特別是 Aaryan Arora、[Aditya Garg](https://github.com/AdityaGarg00)、[Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/)、[Ankita Singh](https://www.linkedin.com/in/ankitasingh007)、[Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/)、[Arpita Das](https://www.linkedin.com/in/arpitadas01/)、ChhailBihari Dubey、[Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor)、[Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb)、[Majd Safi](https://www.linkedin.com/in/majd-s/)、[Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/)、[Miguel Correa](https://www.linkedin.com/in/miguelmque/)、[Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119)、[Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum)、[Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/)、[Rohit Yadav](https://www.linkedin.com/in/rty2423)、Samridhi Sharma、[Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)、[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/)、[Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/)、Yogendrasingh Pawar、[Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/)、[Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-
-||
-|:---:|
-| 初學者資料科學 - _筆記由 [@nitya](https://twitter.com/nitya) 繪製_ |
-
-### 🌐 多語言支援
-
-#### 透過 GitHub Action 支援(自動且持續更新)
-
-
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](./README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
-
-> **想要本機複製?**
-
-> 本倉庫包含 50 多種語言翻譯,造成下載大小顯著增加。若要不下載翻譯內容,可使用稀疏檢出:
-> ```bash
-> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
-> cd Data-Science-For-Beginners
-> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
-> ```
-> 這樣能讓你以更快速度下載,並取得完成課程所需的所有內容。
-
-
-**若您希望支援其他翻譯語言,請參考 [這裡](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-
-#### 加入我們的社群
-[](https://discord.gg/nTYy5BXMWG)
-
-我們目前有一個 Discord 上的 AI 學習系列活動,詳情請參閱並加入我們的 [學習 AI 系列](https://aka.ms/learnwithai/discord),時間從 2025 年 9 月 18 日到 30 日。你將獲得使用 GitHub Copilot 進行資料科學的各種技巧和小秘訣。
-
-
-
-# 你是學生嗎?
-
-可以使用以下資源開始:
-
-- [學生中心頁面](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) 在這頁面中,你會找到新手資源、學生套件甚至獲得免費證照兌換券的方法。這頁是你應當書籤收藏並不時查看的,因為我們每月至少會更新內容一次。
-- [Microsoft Learn 學生大使](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) 加入全球的學生大使社群,這也許是你進入微軟的途徑。
-
-# 開始吧
-
-## 📚 文件
-
-- **[安裝指南](INSTALLATION.md)** - 給初學者的逐步設置說明
-- **[使用指南](USAGE.md)** - 範例與常見工作流程
-- **[疑難排解](TROUBLESHOOTING.md)** - 常見問題解決方案
-- **[貢獻指南](CONTRIBUTING.md)** - 如何為本專案做出貢獻
-- **[教師指南](for-teachers.md)** - 教學指導與教室資源
-
-## 👨🎓 學生專區
-> **完全初學者**:初次接觸資料科學嗎?請從我們的[初學者範例](examples/README.md)開始!這些簡單且有良好註解的範例會幫助你理解基礎,然後再投入完整課程學習。
-> **[學生](https://aka.ms/student-page)**:如果你想單獨使用本課程,請 fork 整個倉庫,然後從課前測驗開始完成練習。之後閱讀課程內容並完成其他活動。試著透過理解課程內容來建立專案,而非直接複製解答程式碼;不過解答程式碼會供在每堂專案導向課程的 /solutions 資料夾中參考。另一種做法是與朋友組成讀書會,共同學習內容。若要進一步學習,我們推薦 [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)。
-
-**快速開始:**
-1. 查看 [安裝指南](INSTALLATION.md) 設置你的環境
-2. 複習 [使用指南](USAGE.md) 了解如何使用課程
-3. 從第一課開始,依序進行
-4. 加入我們的 [Discord 社群](https://aka.ms/ds4beginners/discord) 獲得支援
-
-## 👩🏫 教師專區
-
-> **教師們**:我們在[此處](for-teachers.md)提供了一些如何使用本課程的建議。歡迎在我們的[討論論壇](https://github.com/microsoft/Data-Science-For-Beginners/discussions)提出反饋!
-
-## 認識團隊
-[](https://youtu.be/8mzavjQSMM4 "Promo video")
-
-**Gif 由** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-
-> 🎥 點擊上方圖片觀看本專案及創作者的影片!
-
-## 教學法
-
-我們在設計此課程時選擇了兩項教學原則:確保它以專案為基礎,並包括頻繁的小考。系列結束時,學生將學會資料科學的基本原理,包括倫理概念、資料準備、不同的資料處理方式、資料視覺化、資料分析、資料科學的實際案例等等。
-
-此外,課前的低壓力小考能讓學生設定學習主題的目標,而課後第二次的小考可以確保進一步的記憶鞏固。此課程設計靈活且有趣,可全程或部分修習。專案由淺入深,在10週週期結束時逐漸複雜。
-
-> 請參閱我們的 [行為守則](CODE_OF_CONDUCT.md)、[貢獻指南](CONTRIBUTING.md) 以及 [翻譯指南](TRANSLATIONS.md)。歡迎您的建設性回饋!
-
-## 每堂課包含:
-
-- 可選的手繪筆記
-- 可選的補充影片
-- 課前暖身小考
-- 書面課程內容
-- 專案導向課程的逐步專案建置指引
-- 知識檢測
-- 挑戰任務
-- 補充閱讀資料
-- 作業
-- [課後小考](https://ff-quizzes.netlify.app/en/)
-
-> **關於小考的說明**:所有小考都包含在 Quiz-App 資料夾中,共有40個小考,每個包含三題。它們在課程中有連結,也可本機運行或部署至 Azure;請參閱 `quiz-app` 資料夾的說明。這些小考正逐步本地化中。
-
-## 🎓 初學者友好範例
-
-**初學資料科學?** 我們製作了一個特別的 [範例目錄](examples/README.md),包含簡單且良好註解的程式碼,幫助您快速入門:
-
-- 🌟 **Hello World** - 您的第一個資料科學程式
-- 📂 **載入資料** - 學習讀取並探索資料集
-- 📊 **簡單分析** - 計算統計並尋找模式
-- 📈 **基礎視覺化** - 製作圖表
-- 🔬 **實際專案** - 從頭到尾完成工作流程
-
-每個範例都包含詳細註解,說明每個步驟,非常適合完全初學者!
-
-👉 **[從範例開始](examples/README.md)** 👈
-
-## 課程內容
-
-||
-|:---:|
-| 資料科學初學者路線圖 - _手繪筆記作者 [@nitya](https://twitter.com/nitya)_ |
-
-| 課程編號 | 主題 | 課程分組 | 學習目標 | 連結課程 | 作者 |
-| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | 定義資料科學 | [介紹](1-Introduction/README.md) | 了解資料科學的基本概念及其與人工智慧、機器學習與大數據的關係。 | [課程](1-Introduction/01-defining-data-science/README.md) [影片](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | 資料科學倫理 | [介紹](1-Introduction/README.md) | 資料倫理的概念、挑戰與架構。 | [課程](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | 定義資料 | [介紹](1-Introduction/README.md) | 資料的分類方法及其常見來源。 | [課程](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | 統計與機率入門 | [介紹](1-Introduction/README.md) | 利用機率與統計數學技術理解資料。 | [課程](1-Introduction/04-stats-and-probability/README.md) [影片](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | 處理關聯資料 | [處理資料](2-Working-With-Data/README.md) | 介紹關聯資料及使用結構化查詢語言(SQL,讀作 “see-quell”)探索與分析關聯資料的基礎。 | [課程](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | 處理 NoSQL 資料 | [處理資料](2-Working-With-Data/README.md) | 介紹非關聯資料、其不同類型以及探索與分析文件型資料庫的基礎。 | [課程](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 07 | 使用 Python | [處理資料](2-Working-With-Data/README.md) | 使用 Python 及其如 Pandas 等函式庫進行資料探索的基礎。建議具備 Python 程式設計的基礎知識。 | [課程](2-Working-With-Data/07-python/README.md) [影片](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | 資料準備 | [處理資料](2-Working-With-Data/README.md) | 涉及清理與轉換資料的技巧,處理資料遺失、不準確或不完整的挑戰。 | [課程](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | 視覺化數量 | [資料視覺化](3-Data-Visualization/README.md) | 學習使用 Matplotlib 視覺化鳥類資料 🦆 | [課程](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | 視覺化資料分布 | [資料視覺化](3-Data-Visualization/README.md) | 視覺化區間內的觀察與趨勢。 | [課程](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | 視覺化比例 | [資料視覺化](3-Data-Visualization/README.md) | 視覺化離散及群組百分比。 | [課程](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | 視覺化關係 | [資料視覺化](3-Data-Visualization/README.md) | 視覺化資料及其變項間的連結與相關性。 | [課程](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | 有意義的視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 創造有效問題解決與洞察力的視覺化技巧與指引。 | [課程](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | 資料科學生命週期介紹 | [生命週期](4-Data-Science-Lifecycle/README.md) | 介紹資料科學生命週期及其第一步的資料取得與萃取。 | [課程](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | 分析 | [生命週期](4-Data-Science-Lifecycle/README.md) | 資料科學生命週期中專注於資料分析的階段。 | [課程](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | 溝通 | [生命週期](4-Data-Science-Lifecycle/README.md) | 資料科學生命週期中專注於如何呈現資料洞察,讓決策者更易理解。 | [課程](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | 雲端資料科學 | [雲端資料](5-Data-Science-In-Cloud/README.md) | 介紹雲端資料科學及其優勢。 | [課程](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 與 [Maud](https://twitter.com/maudstweets) |
-| 18 | 雲端資料科學 | [雲端資料](5-Data-Science-In-Cloud/README.md) | 使用低程式碼工具訓練模型。 | [課程](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 與 [Maud](https://twitter.com/maudstweets) |
-| 19 | 雲端資料科學 | [雲端資料](5-Data-Science-In-Cloud/README.md) | 使用 Azure 機器學習工作室部署模型。 | [課程](5-Data-Science-In-Cloud/19-Azure/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 與 [Maud](https://twitter.com/maudstweets) |
-| 20 | 實務資料科學 | [實務](6-Data-Science-In-Wild/README.md) | 實際生活中的資料科學推動專案。 | [課程](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
-
-## GitHub Codespaces
-
-按照下列步驟在 Codespace 中打開此範例:
-1. 點擊 Code 下拉選單並選擇 Open with Codespaces。
-2. 在面板底部選擇 + New codespace。
-更多資訊請參閱 [GitHub 文件](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace)。
-
-## VSCode Remote - Containers
-使用 VS Code Remote - Containers 擴充功能,並透過本機機器使用容器打開此倉庫,請依照以下步驟:
-
-1. 若是首次使用開發容器,請確保您的系統符合前置需求(例如已安裝 Docker),詳見 [入門文件](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)。
-
-欲使用此倉庫,您可以選擇將倉庫開啟於獨立 Docker volume 中:
-
-**注意**:此方式底層會使用 Remote-Containers 的 **Clone Repository in Container Volume...** 命令,將原始碼克隆於 Docker volume 而非本地檔案系統。[Volumes](https://docs.docker.com/storage/volumes/) 是持續保存容器資料的首選方式。
-
-或開啟本地已克隆或下載版本的倉庫:
-
-- 將倉庫克隆到本地檔案系統。
-- 按下 F1,選擇 **Remote-Containers: Open Folder in Container...** 命令。
-- 選擇已克隆的資料夾,等待容器啟動後即可開始使用。
-
-## 離線存取
-
-您可以使用 [Docsify](https://docsify.js.org/#/) 離線運行本文件。先 fork 此倉庫,然後在本地安裝 Docsify([快速開始](https://docsify.js.org/#/quickstart)),接著在此倉庫根目錄下輸入 `docsify serve`。網頁服務將在本機的3000埠運行:`localhost:3000`。
-
-> 注意,筆記本 (notebooks) 無法透過 Docsify 渲染,您需要在 VS Code 中搭配 Python 核心內單獨執行筆記本。
-
-## 其他教學課程
-
-我們團隊製作了其他教學課程!歡迎參考:
-
-
-### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
-
----
-
-### Azure / Edge / MCP / Agents
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
-
----
-
-### 生成式 AI 系列
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
-
----
-
-### 核心學習
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
-
----
-
-### Copilot 系列
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-
-
-## 尋求協助
-
-**遇到問題?** 請查看我們的 [疑難排解指南](TROUBLESHOOTING.md) 以尋找常見問題的解決方案。
-
-如果您在構建 AI 應用時卡住或有任何問題,歡迎加入其他學習者和經驗豐富的開發者,一同討論 MCP。這是一個支持性社群,歡迎提問並自由分享知識。
-
-[](https://discord.gg/nTYy5BXMWG)
-
-如果您在開發產品時有反饋或遇到錯誤,請訪問:
-
-[](https://aka.ms/foundry/forum)
-
----
-
-
-**免責聲明**:
-本文件係使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。雖然我們致力於確保翻譯的準確性,但請注意自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應視為權威來源。對於重要資訊,建議採用專業人工翻譯。本公司不對因使用本翻譯內容所引起的任何誤解或曲解承擔責任。
-
\ No newline at end of file
diff --git a/translations/uk/.co-op-translator.json b/translations/uk/.co-op-translator.json
new file mode 100644
index 00000000..ab92e167
--- /dev/null
+++ b/translations/uk/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T19:13:11+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "uk"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-30T19:32:39+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "uk"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-30T19:33:46+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "uk"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T17:09:25+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "uk"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-30T19:49:16+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "uk"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T20:03:37+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "uk"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-30T19:37:14+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "uk"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T14:22:43+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "uk"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-30T19:26:34+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "uk"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-30T19:18:01+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "uk"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T12:27:19+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "uk"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:59:17+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "uk"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T19:51:34+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "uk"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-30T18:04:10+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "uk"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T16:06:13+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "uk"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-30T18:10:36+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "uk"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T19:53:48+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "uk"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-30T18:21:07+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "uk"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-30T18:00:15+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T19:57:53+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-30T19:04:44+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T19:59:38+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-30T19:17:24+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T19:57:25+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-30T19:00:11+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:50:55+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-30T19:13:49+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T19:58:28+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-30T19:08:50+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-30T19:09:24+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-30T19:09:59+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-30T18:44:19+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-30T18:46:45+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-30T18:51:45+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-30T18:53:52+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-30T18:41:24+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-30T18:48:46+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-30T18:56:06+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "uk"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-30T18:39:17+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "uk"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:51:27+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "uk"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-30T18:31:12+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "uk"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:50:38+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "uk"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-30T18:25:34+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "uk"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:52:00+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "uk"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-30T18:38:03+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "uk"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-30T18:22:37+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "uk"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T19:49:34+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "uk"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-30T17:50:36+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "uk"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T19:47:51+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "uk"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-30T17:45:11+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "uk"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T19:50:49+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "uk"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-30T17:59:29+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "uk"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-30T17:37:34+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "uk"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:48:52+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "uk"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-30T19:57:07+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "uk"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-30T19:51:32+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "uk"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:45:38+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "uk"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-30T17:36:57+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "uk"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:47:45+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "uk"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:27:30+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "uk"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:37:32+00:00",
+ "source_file": "README.md",
+ "language_code": "uk"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-30T17:34:46+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "uk"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-30T17:33:15+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "uk"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:50:02+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "uk"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:12:33+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "uk"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-30T18:21:51+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "uk"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:09:39+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "uk"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T20:02:35+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "uk"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-30T19:50:34+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "uk"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-30T19:57:54+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "uk"
+ }
+}
\ No newline at end of file
diff --git a/translations/uk/1-Introduction/01-defining-data-science/README.md b/translations/uk/1-Introduction/01-defining-data-science/README.md
index 5e0d5afe..79bbb679 100644
--- a/translations/uk/1-Introduction/01-defining-data-science/README.md
+++ b/translations/uk/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Визначення науки про дані
| ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/uk/1-Introduction/01-defining-data-science/assignment.md b/translations/uk/1-Introduction/01-defining-data-science/assignment.md
index 9f3b2e90..059ef9b0 100644
--- a/translations/uk/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/uk/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Завдання: Сценарії використання науки про дані
У цьому першому завданні ми пропонуємо вам подумати про реальний процес або проблему в різних сферах, і як ви можете покращити їх за допомогою процесу науки про дані. Поміркуйте над наступним:
diff --git a/translations/uk/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/uk/1-Introduction/01-defining-data-science/solution/assignment.md
index c6979804..6d0b3826 100644
--- a/translations/uk/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/uk/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Завдання: Сценарії використання науки про дані
У цьому першому завданні ми просимо вас подумати про реальний процес або проблему в різних сферах і про те, як ви можете покращити її за допомогою процесу науки про дані. Подумайте про наступне:
diff --git a/translations/uk/1-Introduction/02-ethics/README.md b/translations/uk/1-Introduction/02-ethics/README.md
index 68dec1f2..81c684d9 100644
--- a/translations/uk/1-Introduction/02-ethics/README.md
+++ b/translations/uk/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Вступ до етики даних
|](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/uk/1-Introduction/02-ethics/assignment.md b/translations/uk/1-Introduction/02-ethics/assignment.md
index 44ddaee7..eef6d040 100644
--- a/translations/uk/1-Introduction/02-ethics/assignment.md
+++ b/translations/uk/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Напишіть кейс-стаді з етики даних
## Інструкції
diff --git a/translations/uk/1-Introduction/03-defining-data/README.md b/translations/uk/1-Introduction/03-defining-data/README.md
index 1635c3b9..e9f1736a 100644
--- a/translations/uk/1-Introduction/03-defining-data/README.md
+++ b/translations/uk/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Визначення даних
|](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/uk/1-Introduction/03-defining-data/assignment.md b/translations/uk/1-Introduction/03-defining-data/assignment.md
index 06332871..842536fe 100644
--- a/translations/uk/1-Introduction/03-defining-data/assignment.md
+++ b/translations/uk/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Класифікація наборів даних
## Інструкції
diff --git a/translations/uk/1-Introduction/04-stats-and-probability/README.md b/translations/uk/1-Introduction/04-stats-and-probability/README.md
index 56dcf9f5..c452fe4e 100644
--- a/translations/uk/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/uk/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Короткий вступ до статистики та теорії ймовірностей
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
Графічно ми можемо представити співвідношення між медіаною та квартилями на діаграмі, яка називається **боксплот**:
-
+
Тут ми також обчислюємо **міжквартильний розмах** IQR=Q3-Q1 і так звані **викиди** — значення, які лежать за межами [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/uk/1-Introduction/04-stats-and-probability/assignment.md b/translations/uk/1-Introduction/04-stats-and-probability/assignment.md
index 850d2ca5..f1345647 100644
--- a/translations/uk/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/uk/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Невелике дослідження діабету
У цьому завданні ми працюватимемо з невеликим набором даних пацієнтів із діабетом, взятим [тут](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/uk/1-Introduction/README.md b/translations/uk/1-Introduction/README.md
index 35621b46..24e8a4f1 100644
--- a/translations/uk/1-Introduction/README.md
+++ b/translations/uk/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Вступ до науки про дані

diff --git a/translations/uk/2-Working-With-Data/05-relational-databases/README.md b/translations/uk/2-Working-With-Data/05-relational-databases/README.md
index e99fd18c..2adcb7f1 100644
--- a/translations/uk/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/uk/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Робота з даними: Реляційні бази даних
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/uk/2-Working-With-Data/05-relational-databases/assignment.md b/translations/uk/2-Working-With-Data/05-relational-databases/assignment.md
index 1cb50243..d0347f1e 100644
--- a/translations/uk/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/uk/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Відображення даних про аеропорти
Вам надано [базу даних](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db), створену на основі [SQLite](https://sqlite.org/index.html), яка містить інформацію про аеропорти. Схема бази даних наведена нижче. Ви будете використовувати [розширення SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) у [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) для відображення інформації про аеропорти різних міст.
diff --git a/translations/uk/2-Working-With-Data/06-non-relational/README.md b/translations/uk/2-Working-With-Data/06-non-relational/README.md
index fe66ac75..b9c4c0fa 100644
--- a/translations/uk/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/uk/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Робота з даними: Нереляційні дані
|](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/uk/2-Working-With-Data/06-non-relational/assignment.md b/translations/uk/2-Working-With-Data/06-non-relational/assignment.md
index f3ce6ba4..c63cc6e5 100644
--- a/translations/uk/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/uk/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Прибутки від продажу соди
## Інструкції
diff --git a/translations/uk/2-Working-With-Data/07-python/README.md b/translations/uk/2-Working-With-Data/07-python/README.md
index ecc99b44..2b8eabef 100644
--- a/translations/uk/2-Working-With-Data/07-python/README.md
+++ b/translations/uk/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Робота з даними: Python та бібліотека Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/uk/2-Working-With-Data/07-python/assignment.md b/translations/uk/2-Working-With-Data/07-python/assignment.md
index 2dfe40e1..bea9863d 100644
--- a/translations/uk/2-Working-With-Data/07-python/assignment.md
+++ b/translations/uk/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Завдання з обробки даних у Python
У цьому завданні ми попросимо вас розширити код, який ми почали розробляти в наших викликах. Завдання складається з двох частин:
diff --git a/translations/uk/2-Working-With-Data/08-data-preparation/README.md b/translations/uk/2-Working-With-Data/08-data-preparation/README.md
index 5bf7cef9..9f5d32aa 100644
--- a/translations/uk/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/uk/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Робота з даними: Підготовка даних
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/uk/2-Working-With-Data/08-data-preparation/assignment.md b/translations/uk/2-Working-With-Data/08-data-preparation/assignment.md
index f73da06d..617b9b62 100644
--- a/translations/uk/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/uk/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Оцінювання даних з форми
Клієнт тестував [невелику форму](../../../../2-Working-With-Data/08-data-preparation/index.html) для збору базових даних про свою клієнтську базу. Вони надали вам свої результати для перевірки зібраних даних. Ви можете відкрити сторінку `index.html` у браузері, щоб ознайомитися з формою.
diff --git a/translations/uk/2-Working-With-Data/README.md b/translations/uk/2-Working-With-Data/README.md
index fa821d4c..4a871b42 100644
--- a/translations/uk/2-Working-With-Data/README.md
+++ b/translations/uk/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Робота з даними

diff --git a/translations/uk/3-Data-Visualization/09-visualization-quantities/README.md b/translations/uk/3-Data-Visualization/09-visualization-quantities/README.md
index 632f9b2f..81e1f2a1 100644
--- a/translations/uk/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/uk/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Візуалізація кількостей
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/uk/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/uk/3-Data-Visualization/09-visualization-quantities/assignment.md
index e549e803..af2ff7b4 100644
--- a/translations/uk/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/uk/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Лінії, Точкові діаграми та Стовпчики
## Інструкції
diff --git a/translations/uk/3-Data-Visualization/10-visualization-distributions/README.md b/translations/uk/3-Data-Visualization/10-visualization-distributions/README.md
index 63d1fae7..f0450e2c 100644
--- a/translations/uk/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/uk/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Візуалізація розподілів
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/uk/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/uk/3-Data-Visualization/10-visualization-distributions/assignment.md
index 6b0c729f..eaad2471 100644
--- a/translations/uk/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/uk/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Застосуйте свої навички
## Інструкції
diff --git a/translations/uk/3-Data-Visualization/11-visualization-proportions/README.md b/translations/uk/3-Data-Visualization/11-visualization-proportions/README.md
index 0fd06ede..7be02f95 100644
--- a/translations/uk/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/uk/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Візуалізація пропорцій
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/uk/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/uk/3-Data-Visualization/11-visualization-proportions/assignment.md
index 98570ff5..394a2d1f 100644
--- a/translations/uk/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/uk/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Спробуйте це в Excel
## Інструкції
diff --git a/translations/uk/3-Data-Visualization/12-visualization-relationships/README.md b/translations/uk/3-Data-Visualization/12-visualization-relationships/README.md
index e149a122..014e1ae7 100644
--- a/translations/uk/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/uk/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Візуалізація взаємозв'язків: усе про мед 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/uk/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/uk/3-Data-Visualization/12-visualization-relationships/assignment.md
index b97f35e8..6cc5a08f 100644
--- a/translations/uk/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/uk/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Занурення у вулик
## Інструкції
diff --git a/translations/uk/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/uk/3-Data-Visualization/13-meaningful-visualizations/README.md
index 4e7e12cf..8f5c315d 100644
--- a/translations/uk/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/uk/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Створення змістовних візуалізацій
|](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/uk/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/uk/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index ef10deb3..36533ea2 100644
--- a/translations/uk/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/uk/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Створіть власну візуалізацію
## Інструкції
diff --git a/translations/uk/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/uk/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index e830c7a8..d881d4e6 100644
--- a/translations/uk/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/uk/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Проєкт візуалізації даних "Небезпечні зв'язки"
Щоб розпочати, переконайтеся, що у вас встановлені NPM і Node на вашому комп'ютері. Встановіть залежності (npm install), а потім запустіть проєкт локально (npm run serve):
diff --git a/translations/uk/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/uk/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 445a8f83..c24d29ba 100644
--- a/translations/uk/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/uk/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Проєкт візуалізації даних "Небезпечні зв'язки"
Щоб розпочати, переконайтеся, що у вас встановлені NPM і Node на вашому комп'ютері. Встановіть залежності (npm install), а потім запустіть проєкт локально (npm run serve):
diff --git a/translations/uk/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/uk/3-Data-Visualization/R/09-visualization-quantities/README.md
index 3a43dadb..f2d149c7 100644
--- a/translations/uk/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/uk/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Візуалізація кількісних даних
|](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/uk/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/uk/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 107f4df7..66ba9101 100644
--- a/translations/uk/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/uk/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Лінії, розсіювання та стовпчики
## Інструкції
diff --git a/translations/uk/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/uk/3-Data-Visualization/R/10-visualization-distributions/README.md
index 5b148bf5..a700da3f 100644
--- a/translations/uk/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/uk/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Візуалізація розподілів
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/uk/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/uk/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 28d77edb..1ad6795d 100644
--- a/translations/uk/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/uk/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Застосуйте свої навички
## Інструкції
diff --git a/translations/uk/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/uk/3-Data-Visualization/R/11-visualization-proportions/README.md
index f233d8fc..6ae8fa98 100644
--- a/translations/uk/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/uk/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Візуалізація пропорцій
|](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/uk/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/uk/3-Data-Visualization/R/12-visualization-relationships/README.md
index 2a915eea..bb958089 100644
--- a/translations/uk/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/uk/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Візуалізація взаємозв'язків: усе про мед 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/uk/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/uk/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 9236b4ef..4a50eddc 100644
--- a/translations/uk/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/uk/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Створення змістовних візуалізацій
|](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/uk/3-Data-Visualization/README.md b/translations/uk/3-Data-Visualization/README.md
index b630bf02..3e2b234d 100644
--- a/translations/uk/3-Data-Visualization/README.md
+++ b/translations/uk/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Візуалізації

diff --git a/translations/uk/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/uk/4-Data-Science-Lifecycle/14-Introduction/README.md
index 15dc58a0..fa020072 100644
--- a/translations/uk/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/uk/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Вступ до життєвого циклу науки про дані
|](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/uk/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/uk/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 0f1620bd..89eaba04 100644
--- a/translations/uk/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/uk/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Оцінка набору даних
Клієнт звернувся до вашої команди за допомогою у вивченні сезонних звичок витрат клієнтів таксі в Нью-Йорку.
diff --git a/translations/uk/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/uk/4-Data-Science-Lifecycle/15-analyzing/README.md
index a24c89ff..60501298 100644
--- a/translations/uk/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/uk/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Життєвий цикл Data Science: Аналіз
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/uk/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/uk/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index e87dbb1b..1ef717e7 100644
--- a/translations/uk/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/uk/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Дослідження відповідей
Це продовження [завдання](../14-Introduction/assignment.md) з попереднього уроку, де ми коротко ознайомилися з набором даних. Тепер ми будемо детальніше аналізувати дані.
diff --git a/translations/uk/4-Data-Science-Lifecycle/16-communication/README.md b/translations/uk/4-Data-Science-Lifecycle/16-communication/README.md
index 185b37f7..e997d4ae 100644
--- a/translations/uk/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/uk/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Життєвий цикл науки про дані: Комунікація
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/uk/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/uk/4-Data-Science-Lifecycle/16-communication/assignment.md
index bfc018d7..b34c9813 100644
--- a/translations/uk/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/uk/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Розкажіть історію
## Інструкції
diff --git a/translations/uk/4-Data-Science-Lifecycle/README.md b/translations/uk/4-Data-Science-Lifecycle/README.md
index 15590c14..d7889aab 100644
--- a/translations/uk/4-Data-Science-Lifecycle/README.md
+++ b/translations/uk/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Життєвий цикл науки про дані

diff --git a/translations/uk/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/uk/5-Data-Science-In-Cloud/17-Introduction/README.md
index 409cfd16..f3a9ac1d 100644
--- a/translations/uk/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/uk/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Вступ до науки про дані в хмарі
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/uk/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/uk/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index f516b017..21f0a85b 100644
--- a/translations/uk/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/uk/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Дослідження ринку
## Інструкції
diff --git a/translations/uk/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/uk/5-Data-Science-In-Cloud/18-Low-Code/README.md
index d325c52c..f69d56ea 100644
--- a/translations/uk/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/uk/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Наука про дані в хмарі: Шлях "Low code/No code"
|](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/uk/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/uk/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index c28ecfd0..7d29ad60 100644
--- a/translations/uk/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/uk/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Проєкт Data Science з низьким/нульовим кодом на Azure ML
## Інструкції
diff --git a/translations/uk/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/uk/5-Data-Science-In-Cloud/19-Azure/README.md
index c692efe9..d83362ae 100644
--- a/translations/uk/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/uk/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Наука про дані в хмарі: шлях "Azure ML SDK"
|](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/uk/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/uk/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 17cfa5b4..9b2185fb 100644
--- a/translations/uk/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/uk/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Проєкт Data Science з використанням Azure ML SDK
## Інструкції
diff --git a/translations/uk/5-Data-Science-In-Cloud/README.md b/translations/uk/5-Data-Science-In-Cloud/README.md
index 5d51d757..f6b43472 100644
--- a/translations/uk/5-Data-Science-In-Cloud/README.md
+++ b/translations/uk/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Наука про дані в хмарі

diff --git a/translations/uk/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/uk/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 07038c78..8f50c816 100644
--- a/translations/uk/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/uk/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Наука про дані у реальному світі
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/uk/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/uk/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 320b185d..346b8e02 100644
--- a/translations/uk/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/uk/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Дослідження набору даних Planetary Computer
## Інструкції
diff --git a/translations/uk/6-Data-Science-In-Wild/README.md b/translations/uk/6-Data-Science-In-Wild/README.md
index cda591f7..ca50440e 100644
--- a/translations/uk/6-Data-Science-In-Wild/README.md
+++ b/translations/uk/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Наука про дані в реальному світі
Практичне застосування науки про дані в різних галузях.
diff --git a/translations/uk/AGENTS.md b/translations/uk/AGENTS.md
index 0011db16..7e640ea4 100644
--- a/translations/uk/AGENTS.md
+++ b/translations/uk/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Огляд проєкту
diff --git a/translations/uk/CODE_OF_CONDUCT.md b/translations/uk/CODE_OF_CONDUCT.md
index 3da26564..d9c20a6d 100644
--- a/translations/uk/CODE_OF_CONDUCT.md
+++ b/translations/uk/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Кодекс поведінки з відкритим кодом Microsoft
Цей проєкт прийняв [Кодекс поведінки з відкритим кодом Microsoft](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/uk/CONTRIBUTING.md b/translations/uk/CONTRIBUTING.md
index 18078eca..9551ef6f 100644
--- a/translations/uk/CONTRIBUTING.md
+++ b/translations/uk/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Внесок у "Основи Data Science"
Дякуємо за ваш інтерес до внеску в навчальну програму "Основи Data Science"! Ми раді вітати внески від спільноти.
diff --git a/translations/uk/INSTALLATION.md b/translations/uk/INSTALLATION.md
index a14e3c6e..342f940c 100644
--- a/translations/uk/INSTALLATION.md
+++ b/translations/uk/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Посібник з встановлення
Цей посібник допоможе вам налаштувати середовище для роботи з навчальною програмою "Основи Data Science".
diff --git a/translations/uk/README.md b/translations/uk/README.md
index b1a97084..ac7afc4b 100644
--- a/translations/uk/README.md
+++ b/translations/uk/README.md
@@ -1,206 +1,197 @@
-
-# Data Science for Beginners - Навчальна програма
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+# Data Science для початківців - навчальна програма
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
-Адвокати Azure Cloud у Microsoft раді запропонувати 10-тижневу, 20-урокову навчальну програму, повністю присвячену Data Science. Кожен урок містить тести перед уроком і після нього, письмові інструкції для виконання уроку, розв’язок та завдання. Наша проєктна педагогіка дозволяє вам вчитися, одночасно створюючи, що є перевіреним способом закріплення нових навичок.
+Azure Cloud Advocates в Microsoft раді запропонувати 10-тижневу навчальну програму з 20 уроків, присвячену Data Science. Кожен урок містить тести до та після уроку, письмові інструкції до виконання, розв’язання та завдання. Наша проектно-орієнтована педагогіка дозволяє вчитися під час створення, що є перевіреним способом засвоєння нових навичок.
-**Щирі подяки нашим авторам:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Щира подяка нашим авторам:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Особлива подяка 🙏 нашим авторам, рецензентам і контентним учасникам [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** зокрема: Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Окрема подяка 🙏 нашим авторам, рецензентам та учасникам внесків із [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** зокрема Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Data Science for Beginners - _Конспект від [@nitya](https://twitter.com/nitya)_ |
+| Data Science для початківців - _Скетч нотатка від [@nitya](https://twitter.com/nitya)_ |
-### 🌐 Підтримка багатомовності
+### 🌐 Підтримка кількох мов
-#### Підтримується через GitHub Action (автоматично і завжди актуально)
+#### Підтримується через GitHub Action (Автоматизовано і завжди актуально)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](./README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+[Арабська](../ar/README.md) | [Бенгальська](../bn/README.md) | [Болгарська](../bg/README.md) | [Бірманська (М’янма)](../my/README.md) | [Китайська (спрощена)](../zh-CN/README.md) | [Китайська (традиційна, Гонконг)](../zh-HK/README.md) | [Китайська (традиційна, Макао)](../zh-MO/README.md) | [Китайська (традиційна, Тайвань)](../zh-TW/README.md) | [Хорватська](../hr/README.md) | [Чеська](../cs/README.md) | [Данська](../da/README.md) | [Голландська](../nl/README.md) | [Естонська](../et/README.md) | [Фінська](../fi/README.md) | [Французька](../fr/README.md) | [Німецька](../de/README.md) | [Грецька](../el/README.md) | [Іврит](../he/README.md) | [Хінді](../hi/README.md) | [Угорська](../hu/README.md) | [Індонезійська](../id/README.md) | [Італійська](../it/README.md) | [Японська](../ja/README.md) | [Каннада](../kn/README.md) | [Корейська](../ko/README.md) | [Литовська](../lt/README.md) | [Малайська](../ms/README.md) | [Малаялам](../ml/README.md) | [Маратхі](../mr/README.md) | [Непальська](../ne/README.md) | [Нігерійський пиджин](../pcm/README.md) | [Норвезька](../no/README.md) | [Перська (фарсі)](../fa/README.md) | [Польська](../pl/README.md) | [Португальська (Бразилія)](../pt-BR/README.md) | [Португальська (Португалія)](../pt-PT/README.md) | [Пенджабі (Гурмукхі)](../pa/README.md) | [Румунська](../ro/README.md) | [Російська](../ru/README.md) | [Сербська (кирилиця)](../sr/README.md) | [Словацька](../sk/README.md) | [Словенська](../sl/README.md) | [Іспанська](../es/README.md) | [Суахілі](../sw/README.md) | [Шведська](../sv/README.md) | [Тагальська (філіппінська)](../tl/README.md) | [Тамільська](../ta/README.md) | [Телугу](../te/README.md) | [Тайська](../th/README.md) | [Турецька](../tr/README.md) | [Українська](./README.md) | [Урду](../ur/README.md) | [В’єтнамська](../vi/README.md)
-> **Бажаєте клонувати локально?**
+> **Віддаєте перевагу клонувати локально?**
-> Цей репозиторій включає понад 50 мовних перекладів, що суттєво збільшує розмір завантаження. Щоб клонувати без перекладів, використовуйте sparse checkout:
+> Цей репозиторій містить понад 50 мовних перекладів, що значно збільшує розмір завантаження. Щоб клонувати без перекладів, використовуйте sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Це дасть вам усе необхідне для проходження курсу з набагато швидшим завантаженням.
+> Це дасть усе необхідне для проходження курсу з набагато швидшим завантаженням.
-**Якщо ви хочете додаткові підтримувані мови перекладу, вони перелічені [тут](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Якщо ви хочете додати підтримку додаткових мов, вони перераховані [тут](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### Приєднуйтесь до нашої спільноти
+#### Приєднуйтесь до нашої спільноти
[](https://discord.gg/nTYy5BXMWG)
-Ми проводимо серію заходів Learn with AI у Discord, дізнайтеся більше та приєднуйтесь до нас на [Learn with AI Series](https://aka.ms/learnwithai/discord) з 18 по 30 вересня 2025 року. Ви отримаєте поради та підказки щодо використання GitHub Copilot для Data Science.
+У нас триває серія навчань з AI у Discord, дізнайтеся більше та приєднуйтесь до нас на [Learn with AI Series](https://aka.ms/learnwithai/discord) з 18 по 30 вересня 2025 року. Ви отримаєте поради та хитрості використання GitHub Copilot для Data Science.
-
+
# Ви студент?
-Почніть з наступних ресурсів:
+Почніть з таких ресурсів:
-- [Сторінка Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) На цій сторінці ви знайдете ресурси для початківців, студентські набори та навіть способи отримати безкоштовний сертифікаційний ваучер. Це сторінка, яку варто додати до закладок і перевіряти час від часу, оскільки ми оновлюємо контент щонайменше раз на місяць.
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Приєднайтесь до глобальної спільноти студентських послів, це може бути ваш шлях до Microsoft.
+- [Сторінка Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) На цій сторінці ви знайдете початкові ресурси, студентські пакети та навіть способи отримати безкоштовний сертифікаційний ваучер. Це сторінка, яку варто додати в закладки і періодично перевіряти, оскільки ми оновлюємо контент принаймні щомісяця.
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Приєднуйтеся до глобальної спільноти студентських послів, це може бути вашим шляхом у Microsoft.
-# Початок роботи
+# Починаємо
## 📚 Документація
-- **[Інструкція з встановлення](INSTALLATION.md)** - Крок за кроком інструкції для початківців
-- **[Інструкція з використання](USAGE.md)** - Приклади та поширені робочі процеси
-- **[Вирішення проблем](TROUBLESHOOTING.md)** - Рішення поширених проблем
-- **[Інструкція для внеску](CONTRIBUTING.md)** - Як зробити внесок у цей проєкт
-- **[Для викладачів](for-teachers.md)** - Поради для викладання та ресурси для класу
+- **[Інструкція з установки](INSTALLATION.md)** - Покрокові інструкції налаштування для початківців
+- **[Посібник користувача](USAGE.md)** - Приклади та поширені робочі процеси
+- **[Вирішення проблем](TROUBLESHOOTING.md)** - Розв’язання поширених проблем
+- **[Посібник з внеску](CONTRIBUTING.md)** - Як зробити внесок у цей проєкт
+- **[Для вчителів](for-teachers.md)** - Керівництво з викладання та ресурси для класу
## 👨🎓 Для студентів
-> **Повні початківці**: Новачок у Data Science? Почніть з наших [прикладів для початківців](examples/README.md)! Ці прості, добре прокоментовані приклади допоможуть вам зрозуміти основи, перш ніж зануритися у повну навчальну програму.
-> **[Студенти](https://aka.ms/student-page)**: щоб використовувати цю програму самостійно, форкніть весь репозиторій і виконуйте вправи самостійно, починаючи з тесту перед лекцією. Потім прочитайте лекцію і виконайте решту завдань. Намагайтеся створювати проєкти, розуміючи уроки, а не копіюючи код розв’язку; однак цей код доступний у папках /solutions у кожному уроці, орієнтованому на проєкти. Ще одна ідея — сформувати навчальну групу з друзями і пройти контент разом. Для подальшого навчання рекомендуємо [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Повні початківці**: Новачок у Data Science? Почніть з наших [прикладів для початківців](examples/README.md)! Ці прості, добре прокоментовані приклади допоможуть вам зрозуміти основи перед тим, як заглибитися в повну навчальну програму.
+> **[Студенти](https://aka.ms/student-page)**: щоб користуватися цією програмою самостійно, форкніть весь репозиторій і виконайте вправи самостійно, починаючи з тесту перед лекцією. Потім прочитайте лекцію і виконайте решту завдань. Намагайтеся створювати проєкти, розуміючи уроки, а не просто копіюючи код розв’язку; однак цей код доступний у папках /solutions у кожному проектно-орієнтованому уроці. Іншим варіантом є створення навчальної групи з друзями і проходження контенту разом. Для подальшого навчання рекомендуємо [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Швидкий старт:**
-1. Перегляньте [Інструкцію з встановлення](INSTALLATION.md) для налаштування середовища
-2. Ознайомтеся з [Інструкцією з використання](USAGE.md), щоб дізнатися, як працювати з програмою
-3. Почніть з уроку 1 і виконуйте послідовно
-4. Приєднуйтеся до нашої [спільноти в Discord](https://aka.ms/ds4beginners/discord) для підтримки
+1. Перевірте [Інструкцію з установки](INSTALLATION.md) для налаштування середовища
+2. Ознайомтесь з [Посібником користувача](USAGE.md), щоб навчитися працювати з програмою
+3. Починайте з Уроку 1 і рухайтеся послідовно
+4. Приєднуйтесь до нашої [спільноти Discord](https://aka.ms/ds4beginners/discord) для підтримки
-## 👩🏫 Для викладачів
+## 👩🏫 Для вчителів
-> **Викладачі**: ми включили [деякі пропозиції](for-teachers.md) щодо використання цієї програми. Ми будемо раді вашим відгукам [у нашому форумі обговорень](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+> **Вчителям**: ми [включили деякі пропозиції](for-teachers.md) щодо використання цієї навчальної програми. Ми будемо раді вашим відгукам [на нашому форумі для обговорень](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
+## Знайомство з командою
-## Знайомтесь з командою
-[](https://youtu.be/8mzavjQSMM4 "Promo video")
+[](https://youtu.be/8mzavjQSMM4 "Промо відео")
-**Gif від** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+**Гіфка від** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
> 🎥 Натисніть на зображення вище, щоб переглянути відео про проект та людей, які його створили!
## Педагогіка
-Ми обрали два педагогічні принципи під час створення цього курсу: забезпечення проєктного підходу та часті вікторини. По завершенню цього циклу студенти навчаться базовим принципам науки про дані, включаючи етичні концепції, підготовку даних, різні способи роботи з даними, візуалізацію даних, аналіз даних, реальні кейси використання науки про дані тощо.
+Ми обрали два педагогічні принципи при створенні цього курикулуму: забезпечення проєктного підходу та часті вікторини. Наприкінці цього циклу студенти здобудуть базові знання з основ науки про дані, зокрема етичних концепцій, підготовки даних, різних способів роботи з даними, візуалізації даних, аналізу даних, реальних прикладів використання науки про дані тощо.
-Крім того, легка вікторина перед заняттям допомагає студентам налаштуватися на вивчення теми, а друга вікторина після заняття забезпечує кращу засвоєність матеріалу. Цей курс розроблено так, щоб бути гнучким і цікавим, його можна проходити повністю або частково. Проєкти починаються з простих і стають дедалі складнішими до завершення 10-тижневого циклу.
+Крім того, вікторина з низькою ставкою перед заняттям встановлює намір студента вивчати тему, а друга вікторина після заняття забезпечує краще закріплення матеріалу. Цей курикулум розроблений так, щоб бути гнучким і цікавим, і його можна проходити повністю або частково. Проекти починаються з маленьких і поступово ускладнюються до кінця 10-тижневого циклу.
-> Знайдіть наші [Правила поведінки](CODE_OF_CONDUCT.md), [Внесок у проєкт](CONTRIBUTING.md), [Переклади](TRANSLATIONS.md). Ми радо приймаємо ваші конструктивні відгуки!
+> Ознайомтесь з нашим [Кодексом поведінки](CODE_OF_CONDUCT.md), [Правилами внеску](CONTRIBUTING.md), [Керівництвом з перекладу](TRANSLATIONS.md). Ми вітаємо ваші конструктивні зауваження!
## Кожен урок включає:
-- Необов’язкові скетчноути
-- Необов’язкове додаткове відео
-- Розігрівну вікторину перед уроком
-- Текстовий урок
-- Для проєктних уроків — покрокові керівництва зі створення проєкту
+- Додатковий скетчнот (за бажанням)
+- Додаткове відео (за бажанням)
+- Розігрівна вікторина перед уроком
+- Текст уроку
+- Для уроків з проєктами — покрокові інструкції зі створення проєкту
- Перевірки знань
-- Вікторину
-- Додаткове читання
+- Виклик / завдання
+- Додаткова література
- Завдання
-- [Вікторину після уроку](https://ff-quizzes.netlify.app/en/)
+- [Вікторина після уроку](https://ff-quizzes.netlify.app/en/)
-> **Примітка щодо вікторин**: Всі вікторини розміщені у папці Quiz-App, загалом 40 вікторин по три питання в кожній. Вікторини пов’язані з уроками, але додаток для вікторин можна запускати локально або розгортати в Azure; дотримуйтесь інструкцій у папці `quiz-app`. Вікторини поступово локалізуються.
+> **Примітка про вікторини**: Усі вікторини знаходяться в папці Quiz-App, загалом 40 вікторин по три запитання. Вони пов’язані з уроками, але додаток для вікторини можна запускати локально або розгортати в Azure; виконуйте інструкції у папці `quiz-app`. Вікторини поступово локалізуються.
## 🎓 Приклади для початківців
-**Новачок у науці про дані?** Ми створили спеціальний [каталог прикладів](examples/README.md) з простим та добре коментованим кодом, щоб допомогти вам розпочати:
+**Новачок у науці про дані?** Ми створили спеціальний [каталог прикладів](examples/README.md) з простим, добре прокоментованим кодом, щоб допомогти вам розпочати:
-- 🌟 **Hello World** - Ваша перша програма в науці про дані
-- 📂 **Завантаження Даних** - Навчіться читати та досліджувати набори даних
-- 📊 **Простий Аналіз** - Обчислення статистики та пошук закономірностей
-- 📈 **Базова Візуалізація** - Створення графіків і діаграм
-- 🔬 **Реальний Проєкт** - Повний робочий процес від початку до кінця
+- 🌟 **Hello World** – ваша перша програма з науки про дані
+- 📂 **Завантаження даних** – навчіться читати та досліджувати набори даних
+- 📊 **Простий аналіз** – обчислення статистики та пошук закономірностей
+- 📈 **Базова візуалізація** – створення діаграм і графіків
+- 🔬 **Реальний проєкт** – повний робочий процес від початку до кінця
-Кожен приклад містить детальні коментарі, що пояснюють кожен крок, що робить їх ідеальними для абсолютних початківців!
+Кожен приклад містить детальні коментарі, які пояснюють кожен крок, тому вони ідеально підходять для абсолютних новачків!
👉 **[Почати з прикладів](examples/README.md)** 👈
## Уроки
-||
+||
|:---:|
-| Data Science For Beginners: Roadmap - _Скетчноут від [@nitya](https://twitter.com/nitya)_ |
+| Наука про дані для початківців: Дорожня карта - _Скетчнот від [@nitya](https://twitter.com/nitya)_ |
-| Номер уроку | Тема | Група уроків | Цілі навчання | Посилання на урок | Автор |
+| Номер уроку | Тема | Група уроків | Мета навчання | Посилання на урок | Автор |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | Визначення науки про дані | [Вступ](1-Introduction/README.md) | Ознайомитись із базовими концепціями науки про дані та їх зв’язком із штучним інтелектом, машинним навчанням і великими даними. | [урок](1-Introduction/01-defining-data-science/README.md) [відео](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Етика науки про дані | [Вступ](1-Introduction/README.md) | Концепції, виклики й рамки етики в науці про дані. | [урок](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Визначення даних | [Вступ](1-Introduction/README.md) | Як класифікуються дані та їхні поширені джерела. | [урок](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Вступ до статистики та ймовірності | [Вступ](1-Introduction/README.md) | Математичні техніки ймовірності та статистики для розуміння даних. | [урок](1-Introduction/04-stats-and-probability/README.md) [відео](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Робота з реляційними даними | [Робота з даними](2-Working-With-Data/README.md) | Вступ до реляційних даних та основи їх дослідження і аналізу з мовою структурованих запитів SQL (вимовляється «сі-квелл»). | [урок](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Робота з NoSQL даними | [Робота з даними](2-Working-With-Data/README.md) | Вступ до нереляційних даних, їх видів і основи дослідження та аналізу документних баз даних. | [урок](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Робота з Python | [Робота з даними](2-Working-With-Data/README.md) | Основи використання Python для дослідження даних з бібліотеками, як Pandas. Рекомендується базове розуміння програмування на Python. | [урок](2-Working-With-Data/07-python/README.md) [відео](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Підготовка даних | [Робота з даними](2-Working-With-Data/README.md) | Теми про методи очищення і трансформації даних для подолання проблем із відсутніми, неточними або неповними даними. | [урок](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Візуалізація кількості | [Візуалізація даних](3-Data-Visualization/README.md) | Навчіться використовувати Matplotlib для візуалізації даних про птахів 🦆 | [урок](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Візуалізація розподілів даних | [Візуалізація даних](3-Data-Visualization/README.md) | Візуалізація спостережень і тенденцій у межах інтервалу. | [урок](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Візуалізація пропорцій | [Візуалізація даних](3-Data-Visualization/README.md) | Візуалізація дискретних і згрупованих відсотків. | [урок](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Візуалізація зв’язків | [Візуалізація даних](3-Data-Visualization/README.md) | Візуалізація зв’язків і кореляцій між наборами даних і їхніми змінними. | [урок](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Значущі візуалізації | [Візуалізація даних](3-Data-Visualization/README.md) | Методи і поради для створення цінних візуалізацій для ефективного розв’язання проблем і отримання інсайтів. | [урок](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Вступ до життєвого циклу науки про дані | [Життєвий цикл](4-Data-Science-Lifecycle/README.md) | Вступ до життєвого циклу науки про дані та його першого кроку — збору і вилучення даних. | [урок](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Аналіз | [Життєвий цикл](4-Data-Science-Lifecycle/README.md) | Цей етап життєвого циклу науки про дані зосереджується на методах аналізу даних. | [урок](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Комунікація | [Життєвий цикл](4-Data-Science-Lifecycle/README.md) | Цей етап життєвого циклу науки про дані спрямований на подання отриманих інсайтів таким чином, щоб керівники приймали рішення легше розуміли їх. | [урок](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Наука про дані у хмарі | [Хмарні дані](5-Data-Science-In-Cloud/README.md) | Ця серія уроків знайомить з наукою про дані у хмарі та її перевагами. | [урок](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) і [Maud](https://twitter.com/maudstweets) |
-| 18 | Наука про дані у хмарі | [Хмарні дані](5-Data-Science-In-Cloud/README.md) | Навчання моделей за допомогою інструментів з низьким кодом (Low Code). |[урок](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) і [Maud](https://twitter.com/maudstweets) |
-| 19 | Наука про дані у хмарі | [Хмарні дані](5-Data-Science-In-Cloud/README.md) | Розгортання моделей у Azure Machine Learning Studio. | [урок](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) і [Maud](https://twitter.com/maudstweets) |
-| 20 | Наука про дані на практиці | [На практиці](6-Data-Science-In-Wild/README.md) | Проєкти з науки про дані у реальному світі. | [урок](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| 01 | Визначення науки про дані | [Вступ](1-Introduction/README.md) | Вивчіть базові поняття науки про дані та її зв’язок з штучним інтелектом, машинним навчанням та великими даними. | [урок](1-Introduction/01-defining-data-science/README.md) [відео](https://youtu.be/beZ7Mb_oz9I) | [Дмитро](http://soshnikov.com) |
+| 02 | Етика науки про дані | [Вступ](1-Introduction/README.md) | Концепції, виклики та рамки етики даних. | [урок](1-Introduction/02-ethics/README.md) | [Нітія](https://twitter.com/nitya) |
+| 03 | Визначення даних | [Вступ](1-Introduction/README.md) | Як класифікуються дані та їх загальні джерела. | [урок](1-Introduction/03-defining-data/README.md) | [Жасмін](https://www.twitter.com/paladique) |
+| 04 | Вступ до статистики та ймовірності | [Вступ](1-Introduction/README.md) | Математичні методи ймовірності та статистики для розуміння даних. | [урок](1-Introduction/04-stats-and-probability/README.md) [відео](https://youtu.be/Z5Zy85g4Yjw) | [Дмитро](http://soshnikov.com) |
+| 05 | Робота з реляційними даними | [Робота з даними](2-Working-With-Data/README.md) | Вступ до реляційних даних та основи їх дослідження й аналізу за допомогою мови структурованих запитів, також відомої як SQL (вимовляється “сіквел”). | [урок](2-Working-With-Data/05-relational-databases/README.md) | [Крістофер](https://www.twitter.com/geektrainer) | | |
+| 06 | Робота з NoSQL даними | [Робота з даними](2-Working-With-Data/README.md) | Вступ до нереляційних даних, їх різних типів та основи дослідження та аналізу документних баз даних. | [урок](2-Working-With-Data/06-non-relational/README.md) | [Жасмін](https://twitter.com/paladique)|
+| 07 | Робота з Python | [Робота з даними](2-Working-With-Data/README.md) | Основи використання Python для дослідження даних за допомогою бібліотек, таких як Pandas. Рекомендується базове розуміння програмування на Python. | [урок](2-Working-With-Data/07-python/README.md) [відео](https://youtu.be/dZjWOGbsN4Y) | [Дмитро](http://soshnikov.com) |
+| 08 | Підготовка даних | [Робота з даними](2-Working-With-Data/README.md) | Теми з технік очищення та трансформації даних для вирішення проблем відсутніх, неточних або неповних даних. | [урок](2-Working-With-Data/08-data-preparation/README.md) | [Жасмін](https://www.twitter.com/paladique) |
+| 09 | Візуалізація кількостей | [Візуалізація даних](3-Data-Visualization/README.md) | Навчіться використовувати Matplotlib для візуалізації даних про птахів 🦆 | [урок](3-Data-Visualization/09-visualization-quantities/README.md) | [Джен](https://twitter.com/jenlooper) |
+| 10 | Візуалізація розподілів даних | [Візуалізація даних](3-Data-Visualization/README.md) | Візуалізація спостережень та тенденцій у межах інтервалу. | [урок](3-Data-Visualization/10-visualization-distributions/README.md) | [Джен](https://twitter.com/jenlooper) |
+| 11 | Візуалізація пропорцій | [Візуалізація даних](3-Data-Visualization/README.md) | Візуалізація дискретних і згрупованих відсотків. | [урок](3-Data-Visualization/11-visualization-proportions/README.md) | [Джен](https://twitter.com/jenlooper) |
+| 12 | Візуалізація взаємозв’язків | [Візуалізація даних](3-Data-Visualization/README.md) | Візуалізація зв’язків та кореляцій між наборами даних та їх змінними. | [урок](3-Data-Visualization/12-visualization-relationships/README.md) | [Джен](https://twitter.com/jenlooper) |
+| 13 | Значущі візуалізації | [Візуалізація даних](3-Data-Visualization/README.md) | Методи та рекомендації для створення візуалізацій, що мають цінність для ефективного розв’язання проблем і отримання інсайтів. | [урок](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Джен](https://twitter.com/jenlooper) |
+| 14 | Вступ до життєвого циклу науки про дані | [Життєвий цикл](4-Data-Science-Lifecycle/README.md) | Вступ до життєвого циклу науки про дані і його першого етапу — отримання та вилучення даних. | [урок](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Жасмін](https://twitter.com/paladique) |
+| 15 | Аналіз | [Життєвий цикл](4-Data-Science-Lifecycle/README.md) | Цей етап життєвого циклу науки про дані зосереджений на методах аналізу даних. | [урок](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Жасмін](https://twitter.com/paladique) | | |
+| 16 | Комунікація | [Життєвий цикл](4-Data-Science-Lifecycle/README.md) | Цей етап життєвого циклу науки про дані зосереджений на презентуванні інсайтів із даних у спосіб, який спрощує розуміння для осіб, які приймають рішення. | [урок](4-Data-Science-Lifecycle/16-communication/README.md) | [Джейлен](https://twitter.com/JalenMcG) | | |
+| 17 | Наука про дані в хмарі | [Хмарні дані](5-Data-Science-In-Cloud/README.md) | Ця серія уроків знайомить з наукою про дані в хмарі та її перевагами. | [урок](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Тіффані](https://twitter.com/TiffanySouterre) та [Мод](https://twitter.com/maudstweets) |
+| 18 | Наука про дані в хмарі | [Хмарні дані](5-Data-Science-In-Cloud/README.md) | Навчання моделей за допомогою Low Code інструментів. |[урок](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Тіффані](https://twitter.com/TiffanySouterre) та [Мод](https://twitter.com/maudstweets) |
+| 19 | Наука про дані в хмарі | [Хмарні дані](5-Data-Science-In-Cloud/README.md) | Розгортання моделей у Azure Machine Learning Studio. | [урок](5-Data-Science-In-Cloud/19-Azure/README.md)| [Тіффані](https://twitter.com/TiffanySouterre) та [Мод](https://twitter.com/maudstweets) |
+| 20 | Наука про дані в реальному світі | [У реальному світі](6-Data-Science-In-Wild/README.md) | Проєкти на основі науки про дані у реальному житті. | [урок](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Нітія](https://twitter.com/nitya) |
## GitHub Codespaces
Виконайте ці кроки, щоб відкрити цей приклад у Codespace:
-1. Клікніть на меню Code та виберіть опцію Open with Codespaces.
+1. Натисніть меню Code і виберіть опцію Open with Codespaces.
2. Виберіть + New codespace внизу панелі.
-Докладніше читайте у [документації GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+Більше інформації дивіться у [документації GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Виконайте ці кроки, щоб відкрити це репозиторії у контейнері, використовуючи вашу локальну машину та VSCode за допомогою розширення VS Code Remote - Containers:
+Виконайте ці кроки, щоб відкрити цей репозиторій у контейнері за допомогою локальної машини і VSCode через розширення VS Code Remote - Containers:
-1. Якщо ви вперше використовуєте контейнер для розробки, переконайтеся, що ваша система відповідає вимогам (наприклад, встановлений Docker) за [інструкціями "початок роботи"](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Якщо ви вперше використовуєте контейнер розробки, будь ласка, переконайтеся, що ваша система відповідає вимогам (наприклад, встановлений Docker) у [документації для початку роботи](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Щоб користуватися цим репозиторієм, ви можете або відкрити репозиторій у ізольованому Docker-томі:
+Щоб використати цей репозиторій, ви можете відкрити репозиторій у ізольованому Docker томі:
-**Примітка**: Під капотом це використає команду Remote-Containers: **Clone Repository in Container Volume...** для клонування коду у Docker-том замість локальної файлової системи. [Томи](https://docs.docker.com/storage/volumes/) є рекомендованим способом збереження даних контейнера.
+**Примітка**: Фактично, це використовує команду Remote-Containers: **Clone Repository in Container Volume...** для клонування вихідного коду у Docker том замість локальної файлової системи. [Томи](https://docs.docker.com/storage/volumes/) — це рекомендований механізм для збереження даних контейнера.
-Або відкрийте локально клоновану або завантажену копію репозиторія:
+Або відкрийте локально клоновану чи завантажену версію репозиторію:
-- Клонуйте цей репозиторій на ваш локальний диск.
+- Клонуйте цей репозиторій у локальну файлову систему.
- Натисніть F1 і виберіть команду **Remote-Containers: Open Folder in Container...**.
-- Виберіть клоновану папку, почекайте, поки контейнер запуститься, і починайте працювати.
+- Виберіть скопійовану папку, дочекайтесь запуску контейнера і починайте працювати.
-## Офлайн-доступ
+## Офлайн доступ
-Ви можете запускати цю документацію офлайн, використавши [Docsify](https://docsify.js.org/#/). Форкніть цей репозиторій, [встановіть Docsify](https://docsify.js.org/#/quickstart) на вашу локальну машину, потім у кореневій папці репозиторію введіть `docsify serve`. Веб-сайт буде доступний на порту 3000 вашого локального хоста: `localhost:3000`.
+Ви можете переглядати цю документацію в офлайн режимі, використовуючи [Docsify](https://docsify.js.org/#/). Форкніть цей репозиторій, [встановіть Docsify](https://docsify.js.org/#/quickstart) на вашій локальній машині, а потім у кореневій папці репозиторію наберіть `docsify serve`. Сайт буде доступний на порту 3000 на вашому localhost: `localhost:3000`.
-> Зверніть увагу, що нотатники не відображатимуться через Docsify, тож коли потрібно запускати нотатник, робіть це окремо у VS Code з увімкненим Python ядром.
+> Зверніть увагу, що ноутбуки не відображаються через Docsify, тому коли потрібно запустити ноутбук, робіть це окремо у VS Code із запущеним Python ядром.
## Інші курси
-Наша команда створює й інші курси! Ознайомтесь з:
+Наша команда також створює інші курси! Ознайомтесь із ними:
### LangChain
@@ -225,7 +216,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-### Основи навчання
+### Основне Навчання
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
@@ -244,19 +235,19 @@ CO_OP_TRANSLATOR_METADATA:
## Отримання допомоги
-**Виникли проблеми?** Перегляньте наш [посібник з усунення несправностей](TROUBLESHOOTING.md) для рішень типових проблем.
+**Виникли проблеми?** Перегляньте наш [Посібник з усунення неполадок](TROUBLESHOOTING.md) для пошуку рішень поширених проблем.
-Якщо ви застрягли або маєте питання щодо створення AI-додатків, приєднуйтесь до інших учнів та досвідчених розробників у дискусіях про MCP. Це підтримуюча спільнота, де питання вітаються, а знання вільно діляться.
+Якщо ви застрягли або маєте запитання щодо створення AI-додатків, приєднуйтесь до інших учнів та досвідчених розробників у дискусіях про MCP. Це підтримуюча спільнота, де питання вітаються, а знання діляться вільно.
[](https://discord.gg/nTYy5BXMWG)
-Якщо у вас є відгуки про продукт або ви зіткнулися з помилками під час розробки, відвідайте:
+Якщо у вас є відгуки або помилки під час розробки, відвідайте:
[](https://aka.ms/foundry/forum)
---
-**Відмова від відповідальності**:
-Цей документ було перекладено за допомогою сервісу автоматичного перекладу [Co-op Translator](https://github.com/Azure/co-op-translator). Хоча ми прагнемо до точності, будь ласка, враховуйте, що автоматичні переклади можуть містити помилки або неточності. Оригінальний документ рідною мовою слід вважати авторитетним джерелом. Для критичної інформації рекомендується звертатися до професійного людського перекладу. Ми не несемо відповідальності за будь-які непорозуміння чи неправильні тлумачення, що виникли внаслідок використання цього перекладу.
+**Відмова від відповідальності**:
+Цей документ було перекладено за допомогою сервісу автоматичного перекладу [Co-op Translator](https://github.com/Azure/co-op-translator). Хоча ми прагнемо до точності, зверніть увагу, що автоматичні переклади можуть містити помилки або неточності. Оригінальний документ рідною мовою слід вважати авторитетним джерелом. Для критичної інформації рекомендується професійний переклад людиною. Ми не несемо відповідальності за будь-які непорозуміння або неправильне тлумачення, що виникли внаслідок використання цього перекладу.
\ No newline at end of file
diff --git a/translations/uk/SECURITY.md b/translations/uk/SECURITY.md
index 46d06bab..7b516836 100644
--- a/translations/uk/SECURITY.md
+++ b/translations/uk/SECURITY.md
@@ -1,12 +1,3 @@
-
## Безпека
Microsoft серйозно ставиться до безпеки наших програмних продуктів і послуг, включаючи всі репозиторії вихідного коду, які керуються через наші організації на GitHub, такі як [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin) та [наші організації на GitHub](https://opensource.microsoft.com/).
diff --git a/translations/uk/SUPPORT.md b/translations/uk/SUPPORT.md
index 21dd862e..ba4bdc45 100644
--- a/translations/uk/SUPPORT.md
+++ b/translations/uk/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Підтримка
## Як повідомити про проблеми та отримати допомогу
diff --git a/translations/uk/TROUBLESHOOTING.md b/translations/uk/TROUBLESHOOTING.md
index 0b213164..3d9202ee 100644
--- a/translations/uk/TROUBLESHOOTING.md
+++ b/translations/uk/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Посібник з усунення несправностей
Цей посібник містить рішення для поширених проблем, які можуть виникнути під час роботи з навчальною програмою "Data Science for Beginners".
diff --git a/translations/uk/USAGE.md b/translations/uk/USAGE.md
index f65d1630..a9162499 100644
--- a/translations/uk/USAGE.md
+++ b/translations/uk/USAGE.md
@@ -1,12 +1,3 @@
-
# Посібник з використання
Цей посібник надає приклади та поширені робочі процеси для використання навчальної програми "Data Science for Beginners".
diff --git a/translations/uk/docs/_sidebar.md b/translations/uk/docs/_sidebar.md
index acbca243..38e6ae4d 100644
--- a/translations/uk/docs/_sidebar.md
+++ b/translations/uk/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Вступ
- [Визначення науки про дані](../1-Introduction/01-defining-data-science/README.md)
- [Етика науки про дані](../1-Introduction/02-ethics/README.md)
diff --git a/translations/uk/examples/README.md b/translations/uk/examples/README.md
index da57c688..42a54818 100644
--- a/translations/uk/examples/README.md
+++ b/translations/uk/examples/README.md
@@ -1,12 +1,3 @@
-
# Приклади для початківців у сфері Data Science
Ласкаво просимо до каталогу прикладів! Ця колекція простих, добре прокоментованих прикладів створена, щоб допомогти вам розпочати роботу з Data Science, навіть якщо ви абсолютний новачок.
diff --git a/translations/uk/for-teachers.md b/translations/uk/for-teachers.md
index d7ab42ac..784300a2 100644
--- a/translations/uk/for-teachers.md
+++ b/translations/uk/for-teachers.md
@@ -1,12 +1,3 @@
-
## Для викладачів
Хочете використовувати цю навчальну програму у своєму класі? Будь ласка, не соромтеся!
diff --git a/translations/uk/quiz-app/README.md b/translations/uk/quiz-app/README.md
index b333a9de..06b9508b 100644
--- a/translations/uk/quiz-app/README.md
+++ b/translations/uk/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Вікторини
Ці вікторини є попередніми та підсумковими тестами для курсу з науки про дані за посиланням https://aka.ms/datascience-beginners
diff --git a/translations/uk/sketchnotes/README.md b/translations/uk/sketchnotes/README.md
index 1c6d79de..02ca0d08 100644
--- a/translations/uk/sketchnotes/README.md
+++ b/translations/uk/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Знайдіть усі скетчноути тут!
## Авторство
diff --git a/translations/ur/.co-op-translator.json b/translations/ur/.co-op-translator.json
new file mode 100644
index 00000000..8f61953f
--- /dev/null
+++ b/translations/ur/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:37:45+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "ur"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-27T09:03:35+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "ur"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-27T09:04:34+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "ur"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:04:50+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "ur"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-27T08:56:17+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "ur"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-06T06:48:52+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "ur"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-27T09:08:19+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "ur"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T12:59:24+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "ur"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-27T09:17:09+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "ur"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-27T08:43:45+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "ur"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T10:37:04+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "ur"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:52:48+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "ur"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-06T06:36:28+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "ur"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-27T08:41:42+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "ur"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:25:28+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "ur"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-27T08:37:03+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "ur"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-06T06:38:44+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "ur"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-27T08:29:45+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "ur"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-27T08:18:59+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-06T06:43:27+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-27T10:46:00+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-06T06:45:08+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-27T10:16:09+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-06T06:42:26+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-27T10:50:08+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:28:36+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-27T10:20:44+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-06T06:44:02+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-27T10:10:52+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T10:12:05+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T10:11:29+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-27T10:30:44+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-27T10:34:11+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-27T10:22:39+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-27T10:24:32+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-27T10:39:01+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-27T10:26:09+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-27T10:35:46+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "ur"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-27T10:06:09+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "ur"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:24:33+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "ur"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-27T09:53:57+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "ur"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:23:49+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "ur"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-27T09:57:30+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "ur"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:25:43+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "ur"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-27T10:05:03+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "ur"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-27T09:47:58+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "ur"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-06T06:34:25+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "ur"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-27T09:38:49+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "ur"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-06T06:33:13+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "ur"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-27T09:33:49+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "ur"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-06T06:35:39+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "ur"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-27T09:45:38+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "ur"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-27T09:25:51+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "ur"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:15:38+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "ur"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-27T09:24:49+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "ur"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-27T09:18:20+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "ur"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:04:09+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "ur"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-27T08:16:06+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "ur"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:28:16+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "ur"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:15:36+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "ur"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:12:33+00:00",
+ "source_file": "README.md",
+ "language_code": "ur"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-27T08:17:03+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "ur"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-27T08:14:04+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "ur"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:31:26+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "ur"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:54:00+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "ur"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-27T08:42:49+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "ur"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:56:59+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "ur"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:52:40+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "ur"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-27T09:46:42+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "ur"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-27T09:17:53+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "ur"
+ }
+}
\ No newline at end of file
diff --git a/translations/ur/1-Introduction/01-defining-data-science/README.md b/translations/ur/1-Introduction/01-defining-data-science/README.md
index 6f32b535..384d5f08 100644
--- a/translations/ur/1-Introduction/01-defining-data-science/README.md
+++ b/translations/ur/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# ڈیٹا سائنس کی تعریف
|  کی طرف سے اسکیچ نوٹ ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/ur/1-Introduction/01-defining-data-science/assignment.md b/translations/ur/1-Introduction/01-defining-data-science/assignment.md
index 15751c22..49478adb 100644
--- a/translations/ur/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/ur/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# اسائنمنٹ: ڈیٹا سائنس کے منظرنامے
اس پہلے اسائنمنٹ میں، ہم آپ سے درخواست کرتے ہیں کہ آپ مختلف مسئلہ کے شعبوں میں کسی حقیقی زندگی کے عمل یا مسئلے کے بارے میں سوچیں، اور ڈیٹا سائنس کے عمل کو استعمال کرتے ہوئے اسے کیسے بہتر بنایا جا سکتا ہے۔ درج ذیل پر غور کریں:
diff --git a/translations/ur/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/ur/1-Introduction/01-defining-data-science/solution/assignment.md
index 632f1842..8e06d30e 100644
--- a/translations/ur/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/ur/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# ڈیٹا سائنس کے منظرنامے: اسائنمنٹ
اس پہلے اسائنمنٹ میں، ہم آپ سے درخواست کرتے ہیں کہ آپ مختلف مسئلہ کے شعبوں میں کسی حقیقی زندگی کے عمل یا مسئلے کے بارے میں سوچیں، اور یہ کہ آپ ڈیٹا سائنس کے عمل کو استعمال کرتے ہوئے اسے کیسے بہتر بنا سکتے ہیں۔ درج ذیل پر غور کریں:
diff --git a/translations/ur/1-Introduction/02-ethics/README.md b/translations/ur/1-Introduction/02-ethics/README.md
index b373bbdf..996f9de2 100644
--- a/translations/ur/1-Introduction/02-ethics/README.md
+++ b/translations/ur/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# ڈیٹا اخلاقیات کا تعارف
| کی طرف سے ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/ur/1-Introduction/02-ethics/assignment.md b/translations/ur/1-Introduction/02-ethics/assignment.md
index 1b174027..f2efa6cd 100644
--- a/translations/ur/1-Introduction/02-ethics/assignment.md
+++ b/translations/ur/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## ڈیٹا اخلاقیات کا کیس اسٹڈی لکھیں
## ہدایات
diff --git a/translations/ur/1-Introduction/03-defining-data/README.md b/translations/ur/1-Introduction/03-defining-data/README.md
index 0dfc6fb6..580596b7 100644
--- a/translations/ur/1-Introduction/03-defining-data/README.md
+++ b/translations/ur/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# ڈیٹا کی تعریف
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/ur/1-Introduction/03-defining-data/assignment.md b/translations/ur/1-Introduction/03-defining-data/assignment.md
index 69815c5c..10b2fff4 100644
--- a/translations/ur/1-Introduction/03-defining-data/assignment.md
+++ b/translations/ur/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# ڈیٹا سیٹس کی درجہ بندی
## ہدایات
diff --git a/translations/ur/1-Introduction/04-stats-and-probability/README.md b/translations/ur/1-Introduction/04-stats-and-probability/README.md
index 8f1e3911..6a925ba8 100644
--- a/translations/ur/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/ur/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# شماریات اور احتمال کا مختصر تعارف
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ CO_OP_TRANSLATOR_METADATA:
گرافک طور پر، ہم میڈین اور چارٹائلز کے تعلق کو ایک ڈایاگرام میں ظاہر کر سکتے ہیں جسے **باکس پلاٹ** کہا جاتا ہے:
-
+
یہاں ہم **انٹر-چارٹائل رینج** IQR=Q3-Q1 اور نام نہاد **آؤٹ لائرز** کا بھی حساب لگاتے ہیں - وہ قدریں جو حدود [Q1-1.5*IQR,Q3+1.5*IQR] سے باہر ہوتی ہیں۔
diff --git a/translations/ur/1-Introduction/04-stats-and-probability/assignment.md b/translations/ur/1-Introduction/04-stats-and-probability/assignment.md
index 5226beae..62219452 100644
--- a/translations/ur/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/ur/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# چھوٹا ذیابیطس مطالعہ
اس اسائنمنٹ میں، ہم ذیابیطس کے مریضوں کے ایک چھوٹے ڈیٹا سیٹ کے ساتھ کام کریں گے جو [یہاں](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) سے لیا گیا ہے۔
diff --git a/translations/ur/1-Introduction/README.md b/translations/ur/1-Introduction/README.md
index 7c7cae5e..3992c2b2 100644
--- a/translations/ur/1-Introduction/README.md
+++ b/translations/ur/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# ڈیٹا سائنس کا تعارف

diff --git a/translations/ur/2-Working-With-Data/05-relational-databases/README.md b/translations/ur/2-Working-With-Data/05-relational-databases/README.md
index 0aebd31d..7e4b9a51 100644
--- a/translations/ur/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/ur/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# ڈیٹا کے ساتھ کام کرنا: رلیشنل ڈیٹا بیسز
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/ur/2-Working-With-Data/05-relational-databases/assignment.md b/translations/ur/2-Working-With-Data/05-relational-databases/assignment.md
index ac193bb9..f747fcef 100644
--- a/translations/ur/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/ur/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# ہوائی اڈے کے ڈیٹا کو دکھانا
آپ کو ایک [ڈیٹا بیس](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) فراہم کیا گیا ہے جو [SQLite](https://sqlite.org/index.html) پر مبنی ہے اور ہوائی اڈوں کے بارے میں معلومات پر مشتمل ہے۔ اس کا اسکیما نیچے دکھایا گیا ہے۔ آپ [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) میں [SQLite extension](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) استعمال کریں گے تاکہ مختلف شہروں کے ہوائی اڈوں کی معلومات دکھا سکیں۔
diff --git a/translations/ur/2-Working-With-Data/06-non-relational/README.md b/translations/ur/2-Working-With-Data/06-non-relational/README.md
index 47ed3f6b..b9728e83 100644
--- a/translations/ur/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/ur/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# غیر تعلقاتی ڈیٹا کے ساتھ کام کرنا
| کی طرف سے اسکیچ نوٹ ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/ur/2-Working-With-Data/06-non-relational/assignment.md b/translations/ur/2-Working-With-Data/06-non-relational/assignment.md
index 6162dd2d..aeb489ad 100644
--- a/translations/ur/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/ur/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# سوڈا منافع
## ہدایات
diff --git a/translations/ur/2-Working-With-Data/07-python/README.md b/translations/ur/2-Working-With-Data/07-python/README.md
index 2bd3525e..b3d1362b 100644
--- a/translations/ur/2-Working-With-Data/07-python/README.md
+++ b/translations/ur/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# ڈیٹا کے ساتھ کام کرنا: پائتھون اور پانڈاز لائبریری
|  کی طرف سے اسکیچ نوٹ ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/ur/2-Working-With-Data/07-python/assignment.md b/translations/ur/2-Working-With-Data/07-python/assignment.md
index 67e7f74b..9485a77c 100644
--- a/translations/ur/2-Working-With-Data/07-python/assignment.md
+++ b/translations/ur/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# ڈیٹا پروسیسنگ کے لیے پائتھون میں اسائنمنٹ
اس اسائنمنٹ میں، ہم آپ سے درخواست کریں گے کہ آپ ان کوڈز پر تفصیل سے کام کریں جو ہم نے اپنے چیلنجز میں شروع کیے ہیں۔ اس اسائنمنٹ کے دو حصے ہیں:
diff --git a/translations/ur/2-Working-With-Data/08-data-preparation/README.md b/translations/ur/2-Working-With-Data/08-data-preparation/README.md
index 5edb3e4a..a9f0c39d 100644
--- a/translations/ur/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/ur/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# ڈیٹا کے ساتھ کام کرنا: ڈیٹا کی تیاری
| کی طرف سے اسکیچ نوٹ ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/ur/2-Working-With-Data/08-data-preparation/assignment.md b/translations/ur/2-Working-With-Data/08-data-preparation/assignment.md
index 67a963c5..a59b68a6 100644
--- a/translations/ur/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/ur/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# فارم سے ڈیٹا کا جائزہ لینا
ایک کلائنٹ نے اپنے صارفین کے بارے میں بنیادی معلومات جمع کرنے کے لیے ایک [چھوٹا فارم](../../../../2-Working-With-Data/08-data-preparation/index.html) کا تجربہ کیا ہے۔ وہ اپنے نتائج آپ کے پاس لائے ہیں تاکہ آپ ان کے جمع کردہ ڈیٹا کی تصدیق کریں۔ آپ براؤزر میں `index.html` صفحہ کھول کر فارم دیکھ سکتے ہیں۔
diff --git a/translations/ur/2-Working-With-Data/README.md b/translations/ur/2-Working-With-Data/README.md
index aff15a9b..425791dd 100644
--- a/translations/ur/2-Working-With-Data/README.md
+++ b/translations/ur/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# ڈیٹا کے ساتھ کام کرنا

diff --git a/translations/ur/3-Data-Visualization/09-visualization-quantities/README.md b/translations/ur/3-Data-Visualization/09-visualization-quantities/README.md
index d0d567c3..e1778821 100644
--- a/translations/ur/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/ur/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# مقداروں کی بصری نمائندگی
| کی اسکیچ نوٹ ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/ur/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/ur/3-Data-Visualization/09-visualization-quantities/assignment.md
index c5c8298f..acf42b3d 100644
--- a/translations/ur/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/ur/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# لکیریں، اسکیٹرز اور بارز
## ہدایات
diff --git a/translations/ur/3-Data-Visualization/10-visualization-distributions/README.md b/translations/ur/3-Data-Visualization/10-visualization-distributions/README.md
index 42e9ded8..1846c390 100644
--- a/translations/ur/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/ur/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# تقسیمات کو بصری بنانا
| کی طرف سے اسکیچ نوٹ ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ur/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/ur/3-Data-Visualization/10-visualization-distributions/assignment.md
index 00f63dc3..50b71ad4 100644
--- a/translations/ur/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/ur/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# اپنی مہارتوں کا اطلاق کریں
## ہدایات
diff --git a/translations/ur/3-Data-Visualization/11-visualization-proportions/README.md b/translations/ur/3-Data-Visualization/11-visualization-proportions/README.md
index 4d3851d2..07803e8a 100644
--- a/translations/ur/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/ur/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# تناسبات کی بصری نمائندگی
| کی اسکیچ نوٹ ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ur/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/ur/3-Data-Visualization/11-visualization-proportions/assignment.md
index c7bc24ec..4eaa7729 100644
--- a/translations/ur/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/ur/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# ایکسل میں آزمائیں
## ہدایات
diff --git a/translations/ur/3-Data-Visualization/12-visualization-relationships/README.md b/translations/ur/3-Data-Visualization/12-visualization-relationships/README.md
index 937adf9e..4b2c16ea 100644
--- a/translations/ur/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/ur/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# شہد کے تعلقات کی بصری نمائندگی: شہد کے بارے میں سب کچھ 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ur/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/ur/3-Data-Visualization/12-visualization-relationships/assignment.md
index c98045a8..6aa90dd1 100644
--- a/translations/ur/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/ur/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# شہد کی مکھیوں کے چھتے میں غوطہ لگائیں
## ہدایات
diff --git a/translations/ur/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/ur/3-Data-Visualization/13-meaningful-visualizations/README.md
index 0240201c..d1c534aa 100644
--- a/translations/ur/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/ur/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# بامعنی بصری نمائیاں بنانا
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ur/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/ur/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 01ac602c..260a9b6e 100644
--- a/translations/ur/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/ur/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# اپنی مرضی کی وِز بنائیں
## ہدایات
diff --git a/translations/ur/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/ur/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index dba775bb..fca65294 100644
--- a/translations/ur/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/ur/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# خطرناک تعلقات ڈیٹا ویژولائزیشن پروجیکٹ
شروع کرنے کے لیے، یہ یقینی بنائیں کہ آپ کے سسٹم پر NPM اور Node انسٹال اور چل رہے ہیں۔ ڈپینڈنسیز انسٹال کریں (npm install) اور پھر پروجیکٹ کو لوکل طور پر چلائیں (npm run serve):
diff --git a/translations/ur/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/ur/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index c3224558..06f4115c 100644
--- a/translations/ur/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/ur/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# خطرناک تعلقات ڈیٹا ویژولائزیشن پروجیکٹ
شروع کرنے کے لیے، یہ یقینی بنائیں کہ آپ کے سسٹم پر NPM اور Node انسٹال اور چل رہے ہیں۔ ڈپینڈنسیز انسٹال کریں (npm install) اور پھر پروجیکٹ کو لوکل طور پر چلائیں (npm run serve):
diff --git a/translations/ur/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/ur/3-Data-Visualization/R/09-visualization-quantities/README.md
index b10092cf..c6435272 100644
--- a/translations/ur/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/ur/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# مقداروں کی بصری نمائندگی
| کی طرف سے اسکیچ نوٹ ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/ur/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/ur/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index ce0d3e1c..5afce419 100644
--- a/translations/ur/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/ur/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# لکیریں، بکھراؤ اور بارز
## ہدایات
diff --git a/translations/ur/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/ur/3-Data-Visualization/R/10-visualization-distributions/README.md
index 290b386f..73396a95 100644
--- a/translations/ur/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/ur/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# تقسیمات کو بصری بنانا
| کی طرف سے اسکیچ نوٹ ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/ur/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/ur/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index ada2f1cb..6b206ba3 100644
--- a/translations/ur/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/ur/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# اپنی مہارتوں کا اطلاق کریں
## ہدایات
diff --git a/translations/ur/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/ur/3-Data-Visualization/R/11-visualization-proportions/README.md
index 4e93d9f1..fd8c1c0f 100644
--- a/translations/ur/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/ur/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# تناسبات کی بصری نمائندگی
| کی اسکیچ نوٹ ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/ur/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/ur/3-Data-Visualization/R/12-visualization-relationships/README.md
index d964c254..acf2d69e 100644
--- a/translations/ur/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/ur/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# شہد کے تعلقات کی بصری نمائندگی: شہد کے بارے میں سب کچھ 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/ur/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/ur/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index c5e985ef..0f2b3abd 100644
--- a/translations/ur/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/ur/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# بامعنی بصری نمائیاں بنانا
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/ur/3-Data-Visualization/README.md b/translations/ur/3-Data-Visualization/README.md
index 791522ce..16cfac43 100644
--- a/translations/ur/3-Data-Visualization/README.md
+++ b/translations/ur/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# تصورات

diff --git a/translations/ur/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/ur/4-Data-Science-Lifecycle/14-Introduction/README.md
index c728ecc3..ba80d27d 100644
--- a/translations/ur/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/ur/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# ڈیٹا سائنس کے لائف سائیکل کا تعارف
| کی اسکیچ نوٹ ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/ur/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/ur/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 9cb725d4..f797bc0b 100644
--- a/translations/ur/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/ur/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# ڈیٹا سیٹ کا جائزہ لینا
ایک کلائنٹ نے آپ کی ٹیم سے نیویارک سٹی میں ٹیکسی کے صارفین کے موسمی خرچ کرنے کی عادات کی تحقیق میں مدد مانگی ہے۔
diff --git a/translations/ur/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/ur/4-Data-Science-Lifecycle/15-analyzing/README.md
index fa03f0be..70af8906 100644
--- a/translations/ur/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/ur/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# ڈیٹا سائنس لائف سائیکل: تجزیہ
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/ur/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/ur/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 479cf3c3..79e547b1 100644
--- a/translations/ur/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/ur/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# جوابات کی تلاش
یہ پچھلے سبق کے [assignment](../14-Introduction/assignment.md) کا تسلسل ہے، جہاں ہم نے ڈیٹا سیٹ پر مختصر نظر ڈالی تھی۔ اب ہم ڈیٹا کو مزید گہرائی سے دیکھیں گے۔
diff --git a/translations/ur/4-Data-Science-Lifecycle/16-communication/README.md b/translations/ur/4-Data-Science-Lifecycle/16-communication/README.md
index 02e01b0b..d972c83c 100644
--- a/translations/ur/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/ur/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# ڈیٹا سائنس لائف سائیکل: مواصلات
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/ur/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/ur/4-Data-Science-Lifecycle/16-communication/assignment.md
index c598fb20..844f0456 100644
--- a/translations/ur/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/ur/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# کہانی سنائیں
## ہدایات
diff --git a/translations/ur/4-Data-Science-Lifecycle/README.md b/translations/ur/4-Data-Science-Lifecycle/README.md
index cb1abe21..97be8e41 100644
--- a/translations/ur/4-Data-Science-Lifecycle/README.md
+++ b/translations/ur/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# ڈیٹا سائنس کا لائف سائیکل

diff --git a/translations/ur/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/ur/5-Data-Science-In-Cloud/17-Introduction/README.md
index 280a729b..39a289de 100644
--- a/translations/ur/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/ur/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# کلاؤڈ میں ڈیٹا سائنس کا تعارف
| کی اسکیچ نوٹ ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/ur/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/ur/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 9877420d..66bd26ac 100644
--- a/translations/ur/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/ur/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# مارکیٹ ریسرچ
## ہدایات
diff --git a/translations/ur/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/ur/5-Data-Science-In-Cloud/18-Low-Code/README.md
index bca73862..ae386eaf 100644
--- a/translations/ur/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/ur/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# کلاؤڈ میں ڈیٹا سائنس: "کم کوڈ/بغیر کوڈ" طریقہ
| کی اسکیچ نوٹ ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/ur/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/ur/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index ef412720..f5a65200 100644
--- a/translations/ur/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/ur/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# ایزور ایم ایل پر لو کوڈ/نو کوڈ ڈیٹا سائنس پروجیکٹ
## ہدایات
diff --git a/translations/ur/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/ur/5-Data-Science-In-Cloud/19-Azure/README.md
index 441e5c1e..e2cdc661 100644
--- a/translations/ur/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/ur/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# کلاؤڈ میں ڈیٹا سائنس: "Azure ML SDK" کا طریقہ
| کی اسکیچ نوٹ ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/ur/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/ur/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 1b19445e..7b1904da 100644
--- a/translations/ur/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/ur/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML SDK کا استعمال کرتے ہوئے ڈیٹا سائنس پروجیکٹ
## ہدایات
diff --git a/translations/ur/5-Data-Science-In-Cloud/README.md b/translations/ur/5-Data-Science-In-Cloud/README.md
index 582ebcb8..4b691a7f 100644
--- a/translations/ur/5-Data-Science-In-Cloud/README.md
+++ b/translations/ur/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# کلاؤڈ میں ڈیٹا سائنس

diff --git a/translations/ur/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/ur/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 93be0c6f..9ce281e4 100644
--- a/translations/ur/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/ur/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# ڈیٹا سائنس حقیقی دنیا میں
|  کی اسکیچ نوٹ ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/ur/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/ur/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 9f3ed44f..ed7dc98d 100644
--- a/translations/ur/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/ur/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# سیاروی کمپیوٹر ڈیٹا سیٹ کا جائزہ لیں
## ہدایات
diff --git a/translations/ur/6-Data-Science-In-Wild/README.md b/translations/ur/6-Data-Science-In-Wild/README.md
index d4d5e3e1..81587ead 100644
--- a/translations/ur/6-Data-Science-In-Wild/README.md
+++ b/translations/ur/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# جنگلی دنیا میں ڈیٹا سائنس
مختلف صنعتوں میں ڈیٹا سائنس کے حقیقی دنیا کے اطلاقات۔
diff --git a/translations/ur/AGENTS.md b/translations/ur/AGENTS.md
index b6704932..5f6709b3 100644
--- a/translations/ur/AGENTS.md
+++ b/translations/ur/AGENTS.md
@@ -1,12 +1,3 @@
-
# اے جی ای این ٹی ایس۔ایم ڈی
## پروجیکٹ کا جائزہ
diff --git a/translations/ur/CODE_OF_CONDUCT.md b/translations/ur/CODE_OF_CONDUCT.md
index 7190b417..11363e44 100644
--- a/translations/ur/CODE_OF_CONDUCT.md
+++ b/translations/ur/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# مائیکروسافٹ اوپن سورس ضابطہ اخلاق
اس پروجیکٹ نے [مائیکروسافٹ اوپن سورس ضابطہ اخلاق](https://opensource.microsoft.com/codeofconduct/) کو اپنایا ہے۔
diff --git a/translations/ur/CONTRIBUTING.md b/translations/ur/CONTRIBUTING.md
index 98a1c6e0..3954a905 100644
--- a/translations/ur/CONTRIBUTING.md
+++ b/translations/ur/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# ڈیٹا سائنس فار بیگنرز میں تعاون کرنا
ڈیٹا سائنس فار بیگنرز کے نصاب میں تعاون کرنے میں دلچسپی لینے کا شکریہ! ہم کمیونٹی سے تعاون کا خیر مقدم کرتے ہیں۔
diff --git a/translations/ur/INSTALLATION.md b/translations/ur/INSTALLATION.md
index 56ccb332..37f87e6a 100644
--- a/translations/ur/INSTALLATION.md
+++ b/translations/ur/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# انسٹالیشن گائیڈ
یہ گائیڈ آپ کو ڈیٹا سائنس فار بیگنرز نصاب کے ساتھ کام کرنے کے لیے اپنا ماحول ترتیب دینے میں مدد دے گی۔
diff --git a/translations/ur/README.md b/translations/ur/README.md
index fdc218e1..b27cbb7a 100644
--- a/translations/ur/README.md
+++ b/translations/ur/README.md
@@ -1,204 +1,195 @@
-
-# Data Science for Beginners - ایک نصاب
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+# ابتدائی افراد کے لیے ڈیٹا سائنس - نصاب
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
[](https://aka.ms/foundry/forum)
-مائیکروسافٹ کے Azure Cloud Advocates خوش ہیں کہ وہ ڈیٹا سائنس کے بارے میں دس ہفتوں پر مشتمل، بیس اسباق پر مشتمل نصاب پیش کر رہے ہیں۔ ہر سبق میں پری-سبق اور پوسٹ-سبق کوئز، سبق مکمل کرنے کی تحریری ہدایات، ایک حل، اور ایک اسائنمنٹ شامل ہے۔ ہمارا پراجیکٹ پر مبنی طریقہ تدریس آپ کو سیکھنے کے دوران تعمیر کرنے کی اجازت دیتا ہے، جو نئی مہارتوں کے موثر طور پر ’لگ جانے‘ کا ثابت شدہ طریقہ ہے۔
+مائیکروسافٹ میں Azure کلاؤڈ ایڈووکیٹس خوش ہیں کہ وہ 10 ہفتے، 20 سبقوں پر مشتمل نصاب پیش کر رہے ہیں جو مکمل طور پر ڈیٹا سائنس کے بارے میں ہے۔ ہر سبق میں پری-سبق اور پوسٹ-سبق کوئزز، سبق کو مکمل کرنے کی تحریری ہدایات، ایک حل، اور ایک اسائنمنٹ شامل ہے۔ ہمارا پروجیکٹ-بنیاد تدریسی طریقہ آپ کو سیکھنے کے دوران تعمیر کرنے کی اجازت دیتا ہے، جو نئے ہنر سیکھنے کا ایک مؤثر طریقہ ہے۔
**ہمارے مصنفین کا دلی شکریہ:** [Jasmine Greenaway](https://www.twitter.com/paladique)، [Dmitry Soshnikov](http://soshnikov.com)، [Nitya Narasimhan](https://twitter.com/nitya)، [Jalen McGee](https://twitter.com/JalenMcG)، [Jen Looper](https://twitter.com/jenlooper)، [Maud Levy](https://twitter.com/maudstweets)، [Tiffany Souterre](https://twitter.com/TiffanySouterre)، [Christopher Harrison](https://www.twitter.com/geektrainer)۔
-**🙏 خصوصی شکریہ ہمارے [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) مصنفین، جائزہ لینے والوں، اور مواد فراہم کرنے والوں کو،** خاص طور پر آریان آرورا، [Aditya Garg](https://github.com/AdityaGarg00)، [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/)، [Ankita Singh](https://www.linkedin.com/in/ankitasingh007)، [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/)، [Arpita Das](https://www.linkedin.com/in/arpitadas01/)، ChhailBihari Dubey، [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor)، [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb)، [Majd Safi](https://www.linkedin.com/in/majd-s/)، [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/)، [Miguel Correa](https://www.linkedin.com/in/miguelmque/)، [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119)، [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum)، [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/)، [Rohit Yadav](https://www.linkedin.com/in/rty2423)، Samridhi Sharma، [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
-[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/)، [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/)، Yogendrasingh Pawar ، [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/)، [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
+**🙏 خصوصی شکریہ 🙏 ہمارے [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) مصنفین، جائزہ لینے والوں اور مواد کے تعاون کرنے والوں کو،** جن میں خاص طور پر شامل ہیں: Aaryan Arora، [Aditya Garg](https://github.com/AdityaGarg00)، [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/)، [Ankita Singh](https://www.linkedin.com/in/ankitasingh007)، [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/)، [Arpita Das](https://www.linkedin.com/in/arpitadas01/)، ChhailBihari Dubey، [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor)، [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb)، [Majd Safi](https://www.linkedin.com/in/majd-s/)، [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/)، [Miguel Correa](https://www.linkedin.com/in/miguelmque/)، [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119)، [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum)، [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/)، [Rohit Yadav](https://www.linkedin.com/in/rty2423)، Samridhi Sharma، [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)۔
+[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/)، [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/)، Yogendrasingh Pawar، [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/)، [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Data Science For Beginners - _اسکیچ نوٹ از [@nitya](https://twitter.com/nitya)_ |
+| ابتدائی افراد کے لیے ڈیٹا سائنس - _اسکچنوٹ از [@nitya](https://twitter.com/nitya)_ |
-### 🌐 کثیر اللسانی مدد
+### 🌐 کثیراللسانی معاونت
-#### GitHub Action کے ذریعے تعاون یافتہ (خودکار اور ہمیشہ تازہ ترین)
+#### GitHub ایکشن کے ذریعے مدد یافتہ (خودکار اور ہمیشہ تازہ ترین)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](./README.md) | [Vietnamese](../vi/README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](./README.md) | [Vietnamese](../vi/README.md)
-> **مقامی طور پر کلون کرنا پسند کریں؟**
+> **کیا آپ لوکل کلون کرنا پسند کریں گے؟**
-> یہ مخزن 50+ زبانوں کے ترجمے شامل کرتا ہے جو ڈاؤن لوڈ سائز کو نمایاں طور پر بڑھاتے ہیں۔ بغیر ترجموں کے کلون کرنے کے لیے sparse checkout استعمال کریں:
+> اس ذخیرے میں 50+ زبانوں کے تراجم شامل ہیں جس سے ڈاؤن لوڈ کا سائز کافی بڑھ جاتا ہے۔ بغیر تراجم کے کلون کرنے کے لیے اسپرز چیک آؤٹ استعمال کریں:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> یہ آپ کو کورس مکمل کرنے کے لیے ہر وہ چیز فراہم کرتا ہے جس کی آپ کو ضرورت ہے، وہ بھی بہت تیز ڈاؤن لوڈ کے ساتھ۔
+> اس سے آپ کو نصاب مکمل کرنے کے لیے درکار تمام مواد تیزی سے مل جائے گا۔
-**اگر آپ اضافی زبانوں کے لیے تعاون چاہتے ہیں تو ان کی فہرست یہاں دستیاب ہے [here](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**اگر آپ اضافی ترجمانی زبانیں چاہتے ہیں تو یہاں دیکھیں [here](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-#### ہماری کمیونٹی میں شامل ہوں
+#### ہماری کمیونٹی میں شامل ہوں
[](https://discord.gg/nTYy5BXMWG)
-ہمارے پاس ایک Discord میں AI کے ساتھ سیکھنے کی سیریز جاری ہے، مزید جاننے اور شامل ہونے کے لیے [Learn with AI Series](https://aka.ms/learnwithai/discord) پر تشریف لائیں 18 سے 30 ستمبر، 2025۔ آپ کو ڈیٹا سائنس کے لیے GitHub Copilot کے استعمال کے ٹپس اور تراکیب ملیں گی۔
+ہمارے پاس ڈسکارڈ پر AI کے ساتھ سیکھنے کی سیریز جاری ہے، مزید سیکھنے اور شامل ہونے کے لیے [Learn with AI Series](https://aka.ms/learnwithai/discord) پر آئیں، یہ سلسلہ 18 سے 30 ستمبر، 2025 تک ہے۔ آپ کو GitHub Copilot کے ذریعے ڈیٹا سائنس کے ٹپس اور ٹرکس ملیں گے۔
-
+
-# کیا آپ طالبعلم ہیں؟
+# کیا آپ طالب علم ہیں؟
مندرجہ ذیل وسائل کے ساتھ شروع کریں:
-- [Student Hub صفحہ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) اس صفحے پر آپ کو مبتدی وسائل، طالبعلم پیکس، اور یہاں تک کہ مفت سرٹیفکیٹ واؤچر حاصل کرنے کے طریقے ملیں گے۔ یہ ایک ایسا صفحہ ہے جسے آپ کو بُک مارک کرنا چاہیے اور وقتاً فوقتاً چیک کرنا چاہیے کیونکہ ہم کم از کم ماہانہ بنیاد پر مواد تبدیل کرتے رہتے ہیں۔
-- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ایک عالمی طلباء کے سفیر کمیونٹی میں شامل ہوں، یہ آپ کا مائیکروسافٹ میں شامل ہونے کا طریقہ ہو سکتا ہے۔
+- [طالب علم مرکز صفحہ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) اس صفحے پر آپ کو ابتدائی وسائل، طالب علم پیک اور حتیٰ کہ مفت سرٹیفکیٹ واؤچر حاصل کرنے کے طریقے ملیں گے۔ یہ وہ صفحہ ہے جسے آپ کو بُک مارک کرنا چاہیے اور وقتاً فوقتاً چیک کرنا چاہیے کیونکہ ہم ماہانہ مواد کو اپ ڈیٹ کرتے رہتے ہیں۔
+- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) عالمی طالب علم سفیروں کی کمیونٹی میں شامل ہوں، یہ آپ کا مائیکروسافٹ میں داخلہ ہو سکتا ہے۔
# شروعات کیسے کریں
## 📚 دستاویزات
-- **[انسٹالیشن گائیڈ](INSTALLATION.md)** - مبتدئين کے لیے قدم بہ قدم ترتیب کی ہدایات
-- **[استعمال کا گائیڈ](USAGE.md)** - مثالیں اور عام ورک فلو
-- **[مسائل کا حل](TROUBLESHOOTING.md)** - عام مسائل کے حل
-- **[شراکت کا گائیڈ](CONTRIBUTING.md)** - اس پروجیکٹ میں تعاون کیسے کریں
-- **[اساتذہ کے لیے](for-teachers.md)** - تدریس کے رہنما اصول اور کلاس روم کے وسائل
+- **[انسٹالیشن گائیڈ](INSTALLATION.md)** - ابتدائی افراد کے لیے قدم بہ قدم سیٹ اپ کی ہدایات
+- **[استعمال کی گائیڈ](USAGE.md)** - مثالیں اور عام طریقہ کار
+- **[مسائل کے حل](TROUBLESHOOTING.md)** - عام مسائل کے حل
+- **[تعاون کی گائیڈ](CONTRIBUTING.md)** - اس پروجیکٹ میں تعاون کرنے کا طریقہ
+- **[اساتذہ کے لیے](for-teachers.md)** - تدریسی رہنمائی اور کلاس روم کے وسائل
## 👨🎓 طلباء کے لیے
-> **مکمل مبتدئین:** ڈیٹا سائنس میں نئے ہیں؟ ہمارے [آسان اور مبتدئین دوستانہ مثالوں](examples/README.md) سے شروع کریں! یہ آسان، اچھی طرح سے تبصرہ شدہ مثالیں آپ کو بنیادی باتیں سمجھنے میں مدد دیں گی اس سے پہلے کہ آپ پورے نصاب میں داخل ہوں۔
-> **[طلباء](https://aka.ms/student-page)**: اس نصاب کو خود استعمال کرنے کے لیے، پورے ریپو کو فورک کریں اور خود مشقیں مکمل کریں، پری لیکچر کوئز سے شروع کریں۔ پھر لیکچر پڑھیں اور باقی سرگرمیاں مکمل کریں۔ کوشش کریں کہ پروجیکٹس کو حل کی کاپی کرنے کی بجائے اسباق کو سمجھ کر بنائیں؛ البتہ، وہ کوڈ ہر پراجیکٹ-مرکوز سبق میں /solutions فولڈر میں دستیاب ہے۔ ایک اور خیال یہ ہوگا کہ دوستوں کے ساتھ اسٹڈی گروپ بنائیں اور مل کر مواد کا جائزہ لیں۔ مزید مطالعہ کے لیے ہم [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) کی سفارش کرتے ہیں۔
+> **مکمل نوآموز:** کیا آپ ڈیٹا سائنس میں نئے ہیں؟ ہمارا [ابتدائی دوست مثالیں](examples/README.md) سے شروع کریں! یہ آسان، اچھی طرح سے تبصرہ کی گئی مثالیں آپ کو بنیادیں سمجھنے میں مدد دیں گی اس سے پہلے کہ آپ مکمل نصاب میں غوطہ لگائیں۔
+> **[طلباء](https://aka.ms/student-page)**: اس نصاب کو اپنے لیے استعمال کرنے کے لیے، پورے ریپو کو فورک کریں اور مشقیں خود مکمل کریں، پری لیکچر کوئز سے شروع کریں۔ پھر لیکچر پڑھیں اور باقی سرگرمیاں مکمل کریں۔ کوشش کریں کہ پروجیکٹس سبق کو سمجھ کر بنائیں، بجائے حل کی کوڈ کاپی کرنے کے؛ تاہم، وہ کوڈ ہر پروجیکٹ سے متعلق سبق کے /solutions فولڈر میں دستیاب ہے۔ ایک اور خیال یہ ہے کہ دوستوں کے ساتھ اسٹڈی گروپ بنائیں اور مواد کو ساتھ ساتھ دیکھیں۔ مزید مطالعے کے لیے، ہم [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) کا مشورہ دیتے ہیں۔
-**فوری آغاز:**
-1. اپنے ماحول کی ترتیب کے لیے [انسٹالیشن گائیڈ](INSTALLATION.md) دیکھیں
-2. نصاب کے ساتھ کام کرنے کا طریقہ جاننے کے لیے [استعمال کا گائیڈ](USAGE.md) کا جائزہ لیں
-3. سبق ۱ سے شروع کریں اور تسلسل کے ساتھ آگے بڑھیں
-4. تعاون کے لیے ہماری [Discord کمیونٹی](https://aka.ms/ds4beginners/discord) میں شامل ہوں
+**جلدی شروع کریں:**
+1. اپنے ماحول کو سیٹ اپ کرنے کے لیے [انسٹالیشن گائیڈ](INSTALLATION.md) چیک کریں
+2. نصاب کے ساتھ کام کرنے کے طریقے سیکھنے کے لیے [استعمال کی گائیڈ](USAGE.md) کا جائزہ لیں
+3. سبق 1 سے شروع کریں اور ترتیب سے آگے بڑھیں
+4. معاونت کے لیے ہماری [Discord کمیونٹی](https://aka.ms/ds4beginners/discord) میں شامل ہوں
## 👩🏫 اساتذہ کے لیے
-> **اساتذہ:** ہم نے [کچھ تجاویز شامل کی ہیں](for-teachers.md) کہ اس نصاب کو کیسے استعمال کیا جائے۔ ہم آپ کی رائے کا خیرمقدم کرتے ہیں [ہمارے مباحثے کے فورم](https://github.com/microsoft/Data-Science-For-Beginners/discussions) میں!
+> **اساتذہ:** ہم نے [کچھ تجاویز شامل کی ہیں](for-teachers.md) کہ اس نصاب کو کیسے استعمال کیا جائے۔ ہمیں آپ کی رائے کا انتظار ہے [ہماری بحث فورم](https://github.com/microsoft/Data-Science-For-Beginners/discussions) میں!
+## ٹیم سے ملاقات
-## ٹیم سے ملیں
[](https://youtu.be/8mzavjQSMM4 "پرومو ویڈیو")
-**گیف بنانے والے** [موہت جیسال](https://www.linkedin.com/in/mohitjaisal)
+**گف بذریعہ** [محیّت جیسال](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 اوپر تصویر پر کلک کریں تاکہ پراجیکٹ اور اسے بنانے والوں کے بارے میں ویڈیو دیکھ سکیں!
+> 🎥 پروجیکٹ اور اسے بنانے والے لوگوں کے بارے میں ویڈیو کے لیے اوپر تصویر پر کلک کریں!
## تدریسی اصول
-ہم نے اس نصاب کو تیار کرتے وقت دو تدریسی اصول منتخب کیے ہیں: اسے پراجیکٹ کی بنیاد پر بنانا اور بار بار کوئزز شامل کرنا۔ اس سیریز کے آخر تک، طلباء نے ڈیٹا سائنس کے بنیادی اصول سیکھ لیے ہوں گے، بشمول اخلاقی تصورات، ڈیٹا کی تیاری، ڈیٹا کے مختلف طریقے، ڈیٹا کا بصری اظہار، ڈیٹا کا تجزیہ، ڈیٹا سائنس کے حقیقی دنیا کے استعمالات، اور بہت کچھ۔
+ہم نے اس نصاب کی تیاری کے دوران دو تدریسی اصول منتخب کیے ہیں: اس بات کو یقینی بنانا کہ یہ پروجیکٹ پر مبنی ہو اور اس میں کثرت سے کوئزز شامل ہوں۔ اس سیریز کے اختتام پر، طلباء نے ڈیٹا سائنس کے بنیادی اصول سیکھ لیے ہوں گے، جس میں اخلاقی تصورات، ڈیٹا کی تیاری، ڈیٹا کے مختلف طریقوں سے کام کرنا، ڈیٹا کی تصویری نمائندگی، ڈیٹا کا تجزیہ، ڈیٹا سائنس کے حقیقی دنیا میں استعمال کے کیسز، اور مزید شامل ہیں۔
-اس کے علاوہ، کلاس سے پہلے کم دباؤ والی کوئز طلباء کا ایک موضوع سیکھنے کی نیت مرتب کرتی ہے، جبکہ کلاس کے بعد دوسری کوئز مزید یادداشت کو یقینی بناتی ہے۔ اس نصاب کو لچکدار اور دلچسپ بنانے کے لیے ڈیزائن کیا گیا ہے اور یہ مکمل یا جزوی طور پر لیا جا سکتا ہے۔ پراجیکٹس چھوٹے شروع ہوتے ہیں اور 10 ہفتوں کے دورانیے کے آخر تک زیادہ پیچیدہ ہو جاتے ہیں۔
+اس کے علاوہ، کلاس سے پہلے ایک کم زور کوئز طالب علم کے تعلیمی ارادے کو متعین کرتا ہے، جبکہ کلاس کے بعد دوسرا کوئز بہتر یادداشت کو یقینی بناتا ہے۔ یہ نصاب لچکدار اور دلچسپ بنانے کے لیے ڈیزائن کیا گیا ہے اور اسے مکمل یا جزوی طور پر لیا جا سکتا ہے۔ پروجیکٹس ابتدا میں آسان ہوتے ہیں اور 10 ہفتوں کے دورانیے کے اختتام تک پیچیدہ ہوتے جاتے ہیں۔
-> ہمارے [کوڈ آف کنڈکٹ](CODE_OF_CONDUCT.md)، [شرکت](CONTRIBUTING.md)، اور [ترجمہ](TRANSLATIONS.md) کے رہنما اصول دریافت کریں۔ ہم آپ کی تعمیری آرا کے خواہاں ہیں!
+> ہمارے [کوڈ آف کنڈکٹ](CODE_OF_CONDUCT.md)، [کنٹری بیوشن](CONTRIBUTING.md)، [ترجمہ](TRANSLATIONS.md) کے رہنما اصول دریافت کریں۔ ہم آپ کی تعمیری آراء کا خیرمقدم کرتے ہیں!
-## ہر سبق میں شامل ہے:
+## ہر سبق میں شامل ہیں:
-- اختیاری سکچنوٹ
+- اختیاری خاکہ نوٹ
- اختیاری اضافی ویڈیو
-- سبق سے پہلے وارم اپ کوئز
+- سبق سے پہلے گرمائی کوئز
- تحریری سبق
-- پراجیکٹ پر مبنی اسباق کے لیے پراجیکٹ بنانے کے مرحلہ وار رہنمائی
-- علمی جانچ پڑتال
+- پروجیکٹ پر مبنی اسباق کے لیے، پروجیکٹ بنانے کے مرحلہ وار رہنما
+- علم کی جانچ
- ایک چیلنج
-- اضافی پڑھائی
-- اسائنمنٹ
-- [سبق کے بعد کی کوئز](https://ff-quizzes.netlify.app/en/)
+- اضافی مطالعہ
+- اسباق کے بعد کا [کوئز](https://ff-quizzes.netlify.app/en/)
-> **کوئزز کے بارے میں ایک نوٹ**: تمام کوئزز Quiz-App فولڈر میں موجود ہیں، کل 40 کوئزز تین سوالات پر مشتمل ہر ایک۔ یہ اسباق سے منسلک ہیں، لیکن کوئز ایپ کو مقامی طور پر چلایا یا Azure پر تعینات کیا جا سکتا ہے؛ `quiz-app` فولڈر میں ہدایت نامہ دیکھیں۔ یہ تدریجاً مقامی زبانوں میں ترجمہ ہو رہے ہیں۔
+> **کوئزز کے بارے میں ایک نوٹ**: تمام کوئزز Quiz-App فولڈر میں موجود ہیں، کل 40 کوئزز ہر ایک میں تین سوالات۔ یہ اسباق میں لنک کیے گئے ہیں، لیکن کوئز ایپ کو مقامی طور پر چلایا جا سکتا ہے یا Azure پر تعینات کیا جا سکتا ہے؛ `quiz-app` فولڈر میں دی گئی ہدایات پر عمل کریں۔ یہ آہستہ آہستہ مقامی زبانوں میں منتقل کیے جا رہے ہیں۔
-## 🎓 ابتدائی افراد کے لیے مثالیں
+## 🎓 ابتدائیوں کے لیے آسان مثالیں
-**ڈیٹا سائنس میں نئے ہیں؟** ہم نے ایک خاص [مثالوں کی ڈائریکٹری](examples/README.md) بنائی ہے جس میں آسان، اچھی طرح وضاحتی کوڈ ہے تاکہ آپ شروع کر سکیں:
+**ڈیٹا سائنس میں نئے ہیں؟** ہم نے ایک خاص [مثالوں کا ڈائریکٹری](examples/README.md) بنایا ہے جس میں سادہ، وضاحتی کوڈ شامل ہے تاکہ آپ کی شروعات ہو سکے:
- 🌟 **ہیلو ورلڈ** - آپ کا پہلا ڈیٹا سائنس پروگرام
-- 📂 **ڈیٹا لوڈ کرنا** - ڈیٹاسیٹس کو پڑھنا اور دریافت کرنا سیکھیں
+- 📂 **ڈیٹا لوڈ کرنا** - ڈیٹا سیٹس کو پڑھنے اور دریافت کرنے کا طریقہ سیکھیں
- 📊 **سادہ تجزیہ** - شماریات کا حساب لگائیں اور پیٹرن تلاش کریں
-- 📈 **بنیادی بصری اظہار** - چارٹ اور گراف بنائیں
-- 🔬 **حقیقی دنیا کا پراجیکٹ** - شروع سے آخر تک مکمل ورک فلو
+- 📈 **بنیادی بصری نمائندگی** - چارٹس اور گراف بنائیں
+- 🔬 **حقیقی دنیا کا پروجیکٹ** - شروع سے اختتام تک مکمل ورک فلو
-ہر مثال میں تفصیلی تبصرے شامل ہیں جو ہر قدم کی وضاحت کرتے ہیں، جو بالکل نو آموزوں کے لیے بہترین ہے!
+ہر مثال میں تفصیلی تبصروں کے ذریعے ہر قدم کی وضاحت کی گئی ہے، جو بالکل ابتدائیوں کے لیے مثالی ہے!
👉 **[مثالوں کے ساتھ شروع کریں](examples/README.md)** 👈
-## اسباق
+## دروس
-||
+||
|:---:|
-| ابتدائی افراد کے لیے ڈیٹا سائنس: روڈ میپ - _سکچنوٹ بذریعہ [@nitya](https://twitter.com/nitya)_ |
+| ڈیٹا سائنس برائے ابتدائی: روڈ میپ - _خاکہ نوٹ بذریعہ [@nitya](https://twitter.com/nitya)_ |
+
-| سبق نمبر | عنوان | سبق کا گروہ | سیکھنے کے مقاصد | مربوط سبق | مصنف |
-| :-------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | ڈیٹا سائنس کی تعریف | [تعارف](1-Introduction/README.md) | ڈیٹا سائنس کی بنیادی تصورات جانیں اور یہ کہ یہ مصنوعی ذہانت، مشین لرننگ اور بڑے ڈیٹا سے کیسے تعلق رکھتی ہے۔ | [سبق](1-Introduction/01-defining-data-science/README.md) [ویڈیو](https://youtu.be/beZ7Mb_oz9I) | [دمیتری](http://soshnikov.com) |
-| 02 | ڈیٹا سائنس کے اخلاقی اصول | [تعارف](1-Introduction/README.md) | ڈیٹا کے اخلاقی تصورات، چیلنجز اور فریم ورکس۔ | [سبق](1-Introduction/02-ethics/README.md) | [نیتیا](https://twitter.com/nitya) |
-| 03 | ڈیٹا کی تعریف | [تعارف](1-Introduction/README.md) | ڈیٹا کی درجہ بندی اور اس کے عام ذرائع۔ | [سبق](1-Introduction/03-defining-data/README.md) | [جازمین](https://www.twitter.com/paladique) |
-| 04 | شماریات اور امکانات کا تعارف | [تعارف](1-Introduction/README.md) | ڈیٹا کو سمجھنے کے لیے امکانات اور شماریات کی ریاضیاتی تکنیکس۔ | [سبق](1-Introduction/04-stats-and-probability/README.md) [ویڈیو](https://youtu.be/Z5Zy85g4Yjw) | [دمیتری](http://soshnikov.com) |
-| 05 | رشتہ دار ڈیٹا کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | رشتہ دار ڈیٹا کا تعارف اور ساختی کوئری زبان (SQL) کے ذریعے رشتہ دار ڈیٹا کی دریافت اور تجزیہ کی بنیادیات۔ | [سبق](2-Working-With-Data/05-relational-databases/README.md) | [کرسٹوفر](https://www.twitter.com/geektrainer) |
-| 06 | NoSQL ڈیٹا کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | غیر رشتہ دار ڈیٹا کا تعارف، اس کی مختلف اقسام اور دستاویزی ڈیٹابیس کی دریافت و تجزیہ کی بنیادی باتیں۔ | [سبق](2-Working-With-Data/06-non-relational/README.md) | [جازمین](https://twitter.com/paladique) |
-| 07 | پائتھن کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | پینڈاز جیسی لائبریریز کے ذریعے ڈیٹا کی دریافت کے لیے پائتھن کا بنیادی استعمال۔ پائتھن پروگرامنگ کی بنیادی سمجھ تجویز کی جاتی ہے۔ | [سبق](2-Working-With-Data/07-python/README.md) [ویڈیو](https://youtu.be/dZjWOGbsN4Y) | [دمیتری](http://soshnikov.com) |
-| 08 | ڈیٹا کی تیاری | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | صاف اور تبدیل کرنے کی تکنیکس تاکہ گم شدہ، غلط یا نامکمل ڈیٹا کے چیلنجز کا مقابلہ کیا جا سکے۔ | [سبق](2-Working-With-Data/08-data-preparation/README.md) | [جازمین](https://www.twitter.com/paladique) |
-| 09 | مقدار کو بصری انداز میں دکھانا | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | میٹ پلوٹ لائبریری استعمال کر کے پرندوں کے ڈیٹا کو بصری شکل دینا سیکھیں 🦆 | [سبق](3-Data-Visualization/09-visualization-quantities/README.md) | [جین](https://twitter.com/jenlooper) |
-| 10 | ڈیٹا کی تقسیمات کو بصری انداز میں دکھانا | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | ایک وقفہ کے اندر مشاہدات اور رجحانات کی بصری نمائندگی۔ | [سبق](3-Data-Visualization/10-visualization-distributions/README.md) | [جین](https://twitter.com/jenlooper) |
-| 11 | تناسب کو بصری انداز میں دکھانا | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | متفرق اور گروہ بند فیصدی حصص کی بصری نمائندگی۔ | [سبق](3-Data-Visualization/11-visualization-proportions/README.md) | [جین](https://twitter.com/jenlooper) |
-| 12 | تعلقات کو بصری انداز میں دکھانا | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | ڈیٹا کے سیٹوں اور ان کے متغیرات کے درمیان رابطے اور تعلقات کی بصری نمائندگی۔ | [سبق](3-Data-Visualization/12-visualization-relationships/README.md) | [جین](https://twitter.com/jenlooper) |
-| 13 | معنادار بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | مؤثر مسائل کے حل اور بصیرت کے لیے آپ کی بصری نمائندگی کو قیمتی بنانے کی تکنیکس اور رہنمائی۔ | [سبق](3-Data-Visualization/13-meaningful-visualizations/README.md) | [جین](https://twitter.com/jenlooper) |
-| 14 | ڈیٹا سائنس کے زندگی کے چکر کا تعارف | [زندگی کا چکر](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس کے زندگی کے چکر اور اس کے پہلے مرحلہ یعنی ڈیٹا حاصل کرنے اور نکالنے کا تعارف۔ | [سبق](4-Data-Science-Lifecycle/14-Introduction/README.md) | [جازمین](https://twitter.com/paladique) |
-| 15 | تجزیہ کرنا | [زندگی کا چکر](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس کے زندگی کے چکر کا یہ مرحلہ ڈیٹا کے تجزیہ کی تکنیکس پر مرکوز ہے۔ | [سبق](4-Data-Science-Lifecycle/15-analyzing/README.md) | [جازمین](https://twitter.com/paladique) |
-| 16 | مواصلات | [زندگی کا چکر](4-Data-Science-Lifecycle/README.md) | ڈیٹا سے حاصل شدہ بصیرت کو اس انداز میں پیش کرنا کہ فیصلہ سازوں کے لیے اسے سمجھنا آسان ہو۔ | [سبق](4-Data-Science-Lifecycle/16-communication/README.md) | [جیلن](https://twitter.com/JalenMcG) |
-| 17 | بادل میں ڈیٹا سائنس | [بادل ڈیٹا](5-Data-Science-In-Cloud/README.md) | اس سیریز میں بادل میں ڈیٹا سائنس اور اس کے فوائد کا تعارف کروایا گیا ہے۔ | [سبق](5-Data-Science-In-Cloud/17-Introduction/README.md) | [ٹیفنی](https://twitter.com/TiffanySouterre) اور [ماڈ](https://twitter.com/maudstweets) |
-| 18 | بادل میں ڈیٹا سائنس | [بادل ڈیٹا](5-Data-Science-In-Cloud/README.md) | لو کوڈ ٹولز کے ذریعے ماڈلز کو ٹرین کرنا۔ | [سبق](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [ٹیفنی](https://twitter.com/TiffanySouterre) اور [ماڈ](https://twitter.com/maudstweets) |
-| 19 | بادل میں ڈیٹا سائنس | [بادل ڈیٹا](5-Data-Science-In-Cloud/README.md) | Azure مشین لرننگ اسٹوڈیو کے ذریعے ماڈلز کی تعیناتی۔ | [سبق](5-Data-Science-In-Cloud/19-Azure/README.md) | [ٹیفنی](https://twitter.com/TiffanySouterre) اور [ماڈ](https://twitter.com/maudstweets) |
-| 20 | جنگل میں ڈیٹا سائنس | [جنگل میں](6-Data-Science-In-Wild/README.md) | حقیقی دنیا میں ڈیٹا سائنس پر مبنی پراجیکٹس۔ | [سبق](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [نیتیا](https://twitter.com/nitya) |
+| سبق نمبر | موضوع | سبق کا گروہ بندی | تعلّمی مقاصد | منسلک سبق | مصنف |
+| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
+| 01 | ڈیٹا سائنس کی تعریف | [تعارف](1-Introduction/README.md) | ڈیٹا سائنس کے بنیادی تصورات کو سیکھیں اور یہ کہ یہ کس طرح مصنوعی ذہانت، مشین لرننگ، اور بڑے ڈیٹا سے متعلق ہے۔ | [سبق](1-Introduction/01-defining-data-science/README.md) [ویڈیو](https://youtu.be/beZ7Mb_oz9I) | [ڈمٹری](http://soshnikov.com) |
+| 02 | ڈیٹا سائنس کی اخلاقیات | [تعارف](1-Introduction/README.md) | ڈیٹا اخلاقیات کے تصورات، چیلنجز اور فریم ورکس۔ | [سبق](1-Introduction/02-ethics/README.md) | [نيتیا](https://twitter.com/nitya) |
+| 03 | ڈیٹا کی تعریف | [تعارف](1-Introduction/README.md) | ڈیٹا کی درجہ بندی اور اس کے عام ذرائع۔ | [سبق](1-Introduction/03-defining-data/README.md) | [جیسمن](https://www.twitter.com/paladique) |
+| 04 | شماریات اور احتمال کا تعارف | [تعارف](1-Introduction/README.md) | احتمال اور شماریات کی ریاضیاتی تکنیکیں تاکہ ڈیٹا کو سمجھا جا سکے۔ | [سبق](1-Introduction/04-stats-and-probability/README.md) [ویڈیو](https://youtu.be/Z5Zy85g4Yjw) | [ڈمٹری](http://soshnikov.com) |
+| 05 | رشتہ دار ڈیٹا کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام](2-Working-With-Data/README.md) | رشتہ دار ڈیٹا کا تعارف اور ایس کیو ایل (کہا جاتا ہے "سی کویل") کے ساتھ رشتہ دار ڈیٹا کو دریافت اور تجزیہ کرنے کی بنیادی باتیں۔ | [سبق](2-Working-With-Data/05-relational-databases/README.md) | [کرسٹوفر](https://www.twitter.com/geektrainer) |
+| 06 | نان ایس کیو ایل ڈیٹا کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام](2-Working-With-Data/README.md) | غیر رشتہ دار ڈیٹا کا تعارف، اس کی مختلف اقسام اور دستاویزی ڈیٹا بیسز کو دریافت اور تجزیہ کرنے کی بنیادی باتیں۔ | [سبق](2-Working-With-Data/06-non-relational/README.md) | [جیسمن](https://twitter.com/paladique) |
+| 07 | پایتھون کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام](2-Working-With-Data/README.md) | پینڈاز جیسی لائبریریز کے ساتھ ڈیٹا دریافت کے لیے پایتھون کے استعمال کے بنیادی اصول۔ پایتھون پروگرامنگ کی بنیادی سمجھ سفارش کی جاتی ہے۔ | [سبق](2-Working-With-Data/07-python/README.md) [ویڈیو](https://youtu.be/dZjWOGbsN4Y) | [ڈمٹری](http://soshnikov.com) |
+| 08 | ڈیٹا کی تیاری | [ڈیٹا کے ساتھ کام](2-Working-With-Data/README.md) | ڈیٹا کی صفائی اور تبدیلی کی تکنیکیں تاکہ گمشدہ، غلط یا نامکمل ڈیٹا کے چیلنجز سے نمٹا جا سکے۔ | [سبق](2-Working-With-Data/08-data-preparation/README.md) | [جیسمن](https://www.twitter.com/paladique) |
+| 09 | مقدار کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | میٹپلاٹ لائبریری کا استعمال کرتے ہوئے پرندوں کے ڈیٹا کی تصویری نمائندگی سیکھیں 🦆 | [سبق](3-Data-Visualization/09-visualization-quantities/README.md) | [جن](https://twitter.com/jenlooper) |
+| 10 | ڈیٹا کی تقسیم کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | وقفے کے اندر مشاہدات اور رجحانات کی بصری نمائندگی۔ | [سبق](3-Data-Visualization/10-visualization-distributions/README.md) | [جن](https://twitter.com/jenlooper) |
+| 11 | تناسب کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | الگ تھلگ اور گروپ کردہ فیصدات کی تصویری نمائندگی۔ | [سبق](3-Data-Visualization/11-visualization-proportions/README.md) | [جن](https://twitter.com/jenlooper) |
+| 12 | تعلقات کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | ڈیٹا کے مجموعوں اور ان کے متغیرات کے درمیان تعلقات اور ارتباطات کی بصری نمائندگی۔ | [سبق](3-Data-Visualization/12-visualization-relationships/README.md) | [جن](https://twitter.com/jenlooper) |
+| 13 | بامعنی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | مؤثر مسئلہ حل کرنے اور بصیرت کے لیے اپنی بصری نمائندگیوں کو قیمتی بنانے کی تکنیکیں اور رہنمائی۔ | [سبق](3-Data-Visualization/13-meaningful-visualizations/README.md) | [جن](https://twitter.com/jenlooper) |
+| 14 | ڈیٹا سائنس کے لائف سائیکل کا تعارف | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس لائف سائیکل اور ڈیٹا حاصل کرنے اور نکالنے کے پہلے مرحلے کا تعارف۔ | [سبق](4-Data-Science-Lifecycle/14-Introduction/README.md) | [جیسمن](https://twitter.com/paladique) |
+| 15 | تجزیہ کرنا | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس لائف سائیکل کا یہ مرحلہ ڈیٹا کے تجزیہ کی تکنیکوں پر مرکوز ہے۔ | [سبق](4-Data-Science-Lifecycle/15-analyzing/README.md) | [جیسمن](https://twitter.com/paladique) |
+| 16 | مواصلات | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس لائف سائیکل کا یہ مرحلہ ڈیٹا سے حاصل شدہ بصیرت کو اس طرح پیش کرنے پر توجہ دیتا ہے کہ فیصلہ سازوں کے لیے اسے سمجھنا آسان ہو۔ | [سبق](4-Data-Science-Lifecycle/16-communication/README.md) | [جیلین](https://twitter.com/JalenMcG) |
+| 17 | کلاؤڈ میں ڈیٹا سائنس | [کلاؤڈ ڈیٹا](5-Data-Science-In-Cloud/README.md) | اس سلسلے کے اسباق کلاؤڈ میں ڈیٹا سائنس اور اس کے فوائد کا تعارف کرواتے ہیں۔ | [سبق](5-Data-Science-In-Cloud/17-Introduction/README.md) | [ٹیفنی](https://twitter.com/TiffanySouterre) اور [ماڈ](https://twitter.com/maudstweets) |
+| 18 | کلاؤڈ میں ڈیٹا سائنس | [کلاؤڈ ڈیٹا](5-Data-Science-In-Cloud/README.md) | لو کوڈ ٹولز کے استعمال سے ماڈلز کی تربیت۔ | [سبق](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [ٹیفنی](https://twitter.com/TiffanySouterre) اور [ماڈ](https://twitter.com/maudstweets) |
+| 19 | کلاؤڈ میں ڈیٹا سائنس | [کلاؤڈ ڈیٹا](5-Data-Science-In-Cloud/README.md) | Azure مشین لرننگ اسٹوڈیو کے ذریعے ماڈلز کی تعیناتی۔ | [سبق](5-Data-Science-In-Cloud/19-Azure/README.md) | [ٹیفنی](https://twitter.com/TiffanySouterre) اور [ماڈ](https://twitter.com/maudstweets) |
+| 20 | جنگل میں ڈیٹا سائنس | [جنگل میں](6-Data-Science-In-Wild/README.md) | حقیقی دنیا میں ڈیٹا سائنس پر مبنی پروجیکٹس۔ | [سبق](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [نيتیا](https://twitter.com/nitya) |
-## GitHub Codespaces
+## گٹ ہب کوڈ اسپیسز
-اس نمونے کو Codespace میں کھولنے کے لیے یہ اقدامات کریں:
-1. کوڈ ڈراپ ڈاؤن مینو پر کلک کریں اور Open with Codespaces کا انتخاب کریں۔
-2. نیچے والے پین میں + New codespace منتخب کریں۔
-مزید معلومات کے لیے، [GitHub دستاویزات](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) دیکھیں۔
+اس نمونے کو ایک کوڈ اسپیس میں کھولنے کے لیے ان مراحل پر عمل کریں:
+1. کوڈ ڈراپ ڈاؤن مینو پر کلک کریں اور Open with Codespaces آپشن منتخب کریں۔
+2. پین کے نیچے + New codespace منتخب کریں۔
+مزید معلومات کے لیے [گٹ ہب ڈاکیومنٹیشن](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) ملاحظہ کریں۔
-## VSCode Remote - Containers
-اپنے مقامی کمپیوٹر اور VSCode کا استعمال کرتے ہوئے اس ریپو کو کنٹینر میں کھولنے کے لیے VS Code Remote - Containers ایکسٹینشن کے ذریعے:
+## VSCode ریموٹ - کنٹینرز
+اپنے مقامی کمپیوٹر اور VSCode کے ذریعے اس ریپو کو کنٹینر میں کھولنے کے لیے VS Code Remote - Containers ایکسٹینشن استعمال کریں:
-1. اگر آپ پہلی بار development container استعمال کر رہے ہیں، تو براہ کرم یقینی بنائیں کہ آپ کا نظام [ابتدائی دستاویزات](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) میں دی گئی ضروریات پر پورا اترتا ہے (جیسے Docker انسٹال ہو)۔
+1. اگر یہ پہلی بار ہے کہ آپ ڈیولپمنٹ کنٹینر استعمال کر رہے ہیں، تو براہ کرم یہ یقینی بنائیں کہ آپ کا سسٹم [گِٹ ہب ڈاکیومنٹیشن](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) میں دی گئی ضروریات کو پورا کرتا ہے (یعنی آپ کے سسٹم پر ڈوکر انسٹال ہو)۔
-اس ریپوزٹری کو استعمال کرنے کے لیے، آپ یا تو اسے علیحدہ Docker والیوم میں کھول سکتے ہیں:
+اس ریپو کو استعمال کرنے کے لیے، آپ یا تو اسے ایک علیحدہ ڈوکر والیوم میں کھول سکتے ہیں:
-**نوٹ**: یہ Remote-Containers: **Clone Repository in Container Volume...** کمانڈ کا استعمال کرے گا تاکہ سورس کوڈ کو مقامی فائل سسٹم کی بجائے Docker والیوم میں کلون کیا جائے۔ [Volumes](https://docs.docker.com/storage/volumes/) کنٹینر ڈیٹا کو مستقل رکھنے کے لیے ترجیحی ذریعہ ہیں۔
+**نوٹ**: اندرونی طور پر، یہ Remote-Containers کی کمانڈ: **Clone Repository in Container Volume...** استعمال کرے گا تاکہ سورس کوڈ کو لوکل فائل سسٹم کے بجائے ڈوکر والیوم میں کلون کرے۔ [والیومز](https://docs.docker.com/storage/volumes/) ڈیٹا کو برقرار رکھنے کے لیے ترجیح دی جاتی ہے۔
-یا پھر ریپوزٹری کا مقامی کلون یا ڈاؤن لوڈ ورژن کھولیں:
+یا پھر اس ریپو کا لوکل کلون شدہ یا ڈاؤن لوڈ شدہ ورژن کھولیں:
-- اس ریپوزٹری کو اپنے مقامی فائل سسٹم پر کلون کریں۔
-- F1 دبائیں اور **Remote-Containers: Open Folder in Container...** کمانڈ منتخب کریں۔
-- اس فولڈر کی کلون کی ہوئی کاپی منتخب کریں، کنٹینر شروع ہونے کا انتظار کریں، اور تجربہ کریں۔
+- اس ریپو کو اپنے لوکل فائل سسٹم پر کلون کریں۔
+- F1 دبائیں اور **Remote-Containers: Open Folder in Container...** کمانڈ منتخب کریں۔
+- اس فولڈر کی کلون کی گئی کاپی منتخب کریں، کنٹینر کے شروع ہونے کا انتظار کریں، اور تجربہ کریں۔
-## آف لائن رسائی
+## آف لائن رسائی
-آپ [Docsify](https://docsify.js.org/#/) استعمال کرکے یہ دستاویزات آف لائن چلا سکتے ہیں۔ اس ریپو کو فورک کریں، اپنے مقامی کمپیوٹر پر [Docsify انسٹال کریں](https://docsify.js.org/#/quickstart)، پھر اس ریپو کے روٹ فولڈر میں `docsify serve` ٹائپ کریں۔ ویب سائٹ مقامی ہوسٹ پر پورٹ 3000 پر دستیاب ہوگی: `localhost:3000`۔
+آپ [Docsify](https://docsify.js.org/#/) استعمال کرتے ہوئے اس دستاویز کو آف لائن بھی چلا سکتے ہیں۔ اس ریپو کو فورک کریں، اپنے لوکل کمپیوٹر پر [Docsify انسٹال کریں](https://docsify.js.org/#/quickstart)، پھر اس ریپو کے روٹ فولڈر میں `docsify serve` ٹائپ کریں۔ ویب سائٹ لوکل ہوسٹ پر پورٹ 3000 پر دستیاب ہوگی: `localhost:3000`۔
-> نوٹ کریں، نوٹ بکس Docsify کے ذریعے رینڈر نہیں ہوں گے، اس لیے جب نوٹ بک چلانی ہو، تو اسے VS Code میں Python کرنل کے ساتھ علیحدہ چلائیں۔
+> نوٹ کریں، نوٹ بکس Docsify کے ذریعے رینڈر نہیں ہوں گی، اس لیے جب آپ کو نوٹ بک چلانے کی ضرورت ہو، تو اسے VS Code میں Python کرنل چلا کر علیحدہ کریں۔
-## دیگر نصاب
+## دیگر نصاب
-ہماری ٹیم دیگر نصاب بھی تیار کرتی ہے! ملاحظہ کریں:
+ہماری ٹیم دیگر نصاب بھی تیار کرتی ہے! ملاحظہ کریں:
### LangChain
@@ -207,7 +198,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-### ایزور / ایج / ایم سی پی / ایجنٹس
+### Azure / Edge / MCP / Agents
[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
@@ -215,7 +206,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-### جنریٹو AI سیریز
+### Generative AI Series
[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
@@ -223,7 +214,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-### بنیادی تعلیم
+### Core Learning
[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
@@ -234,7 +225,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-### کوپائلٹ سیریز
+### Copilot Series
[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
@@ -242,19 +233,19 @@ CO_OP_TRANSLATOR_METADATA:
## مدد حاصل کرنا
-**مسائل کا سامنا ہے؟** ہمارے [Troubleshooting Guide](TROUBLESHOOTING.md) میں عام مسائل کے حل تلاش کریں۔
+**کیا آپ مسائل کا سامنا کر رہے ہیں؟** ہمارے [مسائل کا حل گائیڈ](TROUBLESHOOTING.md) میں عام مسائل کے حل دیکھیں۔
-اگر آپ پھنس جائیں یا AI ایپس بنانے کے بارے میں کوئی سوال ہو۔ MCP پر دوسرے سیکھنے والوں اور تجربہ کار ڈویلپرز کے ساتھ تبادلہ خیال میں شامل ہوں۔ یہ ایک معاون کمیونٹی ہے جہاں سوالات خوش آمدید ہیں اور علم آزادانہ طور پر شیئر کیا جاتا ہے۔
+اگر آپ پھنس جائیں یا AI ایپس بنانے کے بارے میں کوئی سوال ہو تو MCP کے بارے میں fellow learners اور تجربہ کار developers کے ساتھ بحث میں شامل ہوں۔ یہ ایک معاون کمیونٹی ہے جہاں سوالات کا خیرمقدم کیا جاتا ہے اور علم بلا جھجک شیئر کیا جاتا ہے۔
[](https://discord.gg/nTYy5BXMWG)
-اگر آپ کے پاس پروڈکٹ فیڈ بیک ہو یا تعمیر کے دوران کوئی غلطیاں ہوں تو یہاں وزٹ کریں:
+اگر آپ کے پاس پروڈکٹ فیڈبیک ہو یا آپ کو تعمیری غلطیاں ملیں تو یہاں وزٹ کریں:
[](https://aka.ms/foundry/forum)
---
-**دستخطی تحریر:**
-یہ دستاویز AI ترجمہ سروس [Co-op Translator](https://github.com/Azure/co-op-translator) کے ذریعے ترجمہ کی گئی ہے۔ جبکہ ہم درستگی کے لیے کوشاں ہیں، براہ کرم آگاہ رہیں کہ خودکار تراجم میں غلطیاں یا ناواقفیاں ہو سکتی ہیں۔ اصل دستاویز اپنی مادری زبان میں ہی مستند ماخذ سمجھی جانی چاہیے۔ اہم معلومات کے لیے پیشہ ورانہ انسانی ترجمہ تجویز کیا جاتا ہے۔ اس ترجمے کے استعمال سے پیدا ہونے والی کسی بھی غلط فہمی یا غلط تعبیر کی ذمہ داری ہم پر نہیں ہوگی۔
+**اہتمامِ خیال**:
+یہ دستاویز [Co-op Translator](https://github.com/Azure/co-op-translator) نامی AI ترجمہ سروس کی مدد سے ترجمہ کی گئی ہے۔ اگرچہ ہم درستگی کی کوشش کرتے ہیں، براہ کرم اس بات کا ادراک رکھیں کہ خودکار ترجمے میں غلطیاں یا نقصانات ہوسکتے ہیں۔ اصل دستاویز اپنی مادری زبان میں معتبر اور مستند ذریعہ سمجھا جانا چاہیے۔ اہم معلومات کے لیے پیشہ ور انسانی ترجمہ تجویز کیا جاتا ہے۔ ہم اس ترجمے کے استعمال سے پیدا ہونے والی کسی بھی غلط فہمی یا تشریحی اختلافات کے ذمہ دار نہیں ہیں۔
\ No newline at end of file
diff --git a/translations/ur/SECURITY.md b/translations/ur/SECURITY.md
index 7fac96e4..4288048b 100644
--- a/translations/ur/SECURITY.md
+++ b/translations/ur/SECURITY.md
@@ -1,12 +1,3 @@
-
## سیکیورٹی
مائیکروسافٹ اپنی سافٹ ویئر مصنوعات اور خدمات کی سیکیورٹی کو سنجیدگی سے لیتا ہے، جس میں ہمارے GitHub تنظیموں کے ذریعے منظم کردہ تمام سورس کوڈ ریپوزٹریز شامل ہیں، جن میں [Microsoft](https://github.com/Microsoft)، [Azure](https://github.com/Azure)، [DotNet](https://github.com/dotnet)، [AspNet](https://github.com/aspnet)، [Xamarin](https://github.com/xamarin)، اور [ہمارے GitHub تنظیمیں](https://opensource.microsoft.com/) شامل ہیں۔
diff --git a/translations/ur/SUPPORT.md b/translations/ur/SUPPORT.md
index 507a70c8..072ec68d 100644
--- a/translations/ur/SUPPORT.md
+++ b/translations/ur/SUPPORT.md
@@ -1,12 +1,3 @@
-
# معاونت
## مسائل درج کرنے اور مدد حاصل کرنے کا طریقہ
diff --git a/translations/ur/TROUBLESHOOTING.md b/translations/ur/TROUBLESHOOTING.md
index 2f3a7dd7..55e42dac 100644
--- a/translations/ur/TROUBLESHOOTING.md
+++ b/translations/ur/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# خرابیوں کو دور کرنے کی رہنما
یہ رہنما ڈیٹا سائنس فار بیگنرز نصاب کے دوران پیش آنے والے عام مسائل کے حل فراہم کرتی ہے۔
diff --git a/translations/ur/USAGE.md b/translations/ur/USAGE.md
index c863d8d4..c6d8b380 100644
--- a/translations/ur/USAGE.md
+++ b/translations/ur/USAGE.md
@@ -1,12 +1,3 @@
-
# استعمال کی رہنمائی
یہ رہنمائی ڈیٹا سائنس فار بیگنرز نصاب کے استعمال کے لیے مثالیں اور عام ورک فلو فراہم کرتی ہے۔
diff --git a/translations/ur/docs/_sidebar.md b/translations/ur/docs/_sidebar.md
index d838f69b..3fd84ece 100644
--- a/translations/ur/docs/_sidebar.md
+++ b/translations/ur/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- تعارف
- [ڈیٹا سائنس کی تعریف](../1-Introduction/01-defining-data-science/README.md)
- [ڈیٹا سائنس کے اخلاقیات](../1-Introduction/02-ethics/README.md)
diff --git a/translations/ur/examples/README.md b/translations/ur/examples/README.md
index 164b1f1c..5fccbf6d 100644
--- a/translations/ur/examples/README.md
+++ b/translations/ur/examples/README.md
@@ -1,12 +1,3 @@
-
# ڈیٹا سائنس کے ابتدائی دوستانہ مثالیں
مثالوں کی ڈائریکٹری میں خوش آمدید! یہ سادہ اور واضح تبصرے والی مثالوں کا مجموعہ آپ کو ڈیٹا سائنس کے ساتھ شروعات کرنے میں مدد دینے کے لیے بنایا گیا ہے، چاہے آپ بالکل نئے ہوں۔
diff --git a/translations/ur/for-teachers.md b/translations/ur/for-teachers.md
index edb8f767..56aa2bd8 100644
--- a/translations/ur/for-teachers.md
+++ b/translations/ur/for-teachers.md
@@ -1,12 +1,3 @@
-
## اساتذہ کے لیے
کیا آپ اپنی کلاس میں اس نصاب کو استعمال کرنا چاہتے ہیں؟ بلا جھجک استعمال کریں!
diff --git a/translations/ur/quiz-app/README.md b/translations/ur/quiz-app/README.md
index e3e27fa2..b0ff5915 100644
--- a/translations/ur/quiz-app/README.md
+++ b/translations/ur/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# کوئزز
یہ کوئزز ڈیٹا سائنس کے نصاب کے لیے لیکچر سے پہلے اور بعد کے کوئزز ہیں، جو یہاں دستیاب ہیں: https://aka.ms/datascience-beginners
diff --git a/translations/ur/sketchnotes/README.md b/translations/ur/sketchnotes/README.md
index 36987338..591eb834 100644
--- a/translations/ur/sketchnotes/README.md
+++ b/translations/ur/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
تمام اسکیچ نوٹس یہاں دیکھیں!
## کریڈٹس
diff --git a/translations/vi/.co-op-translator.json b/translations/vi/.co-op-translator.json
new file mode 100644
index 00000000..7b754b29
--- /dev/null
+++ b/translations/vi/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:59:43+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "vi"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-28T18:57:31+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "vi"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-28T18:58:00+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "vi"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:44:52+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "vi"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-28T19:05:29+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "vi"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T23:44:22+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "vi"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-28T19:00:27+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "vi"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:50:13+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "vi"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-28T18:53:56+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "vi"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-28T18:49:37+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "vi"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T11:46:19+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "vi"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:56:51+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "vi"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T23:32:53+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "vi"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-28T18:07:21+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "vi"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:51:08+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "vi"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-28T18:11:39+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "vi"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T23:35:18+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "vi"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-28T18:18:11+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "vi"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-28T18:05:03+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T23:39:18+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-28T18:42:37+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T23:41:02+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-28T18:49:17+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T23:38:41+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-28T18:40:45+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:42:28+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-28T18:47:25+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T23:39:52+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-28T18:44:49+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-28T18:45:10+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-28T18:45:27+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-28T18:30:36+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-28T18:32:44+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-28T18:35:17+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-28T18:36:43+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-28T18:29:15+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-28T18:33:04+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-28T18:37:04+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "vi"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-28T18:28:27+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "vi"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T21:18:47+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "vi"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-28T18:23:58+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "vi"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T21:18:05+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "vi"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-28T18:20:23+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "vi"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T21:19:12+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "vi"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-28T18:28:06+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "vi"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-28T18:19:03+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "vi"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T23:31:31+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "vi"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-28T18:00:48+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "vi"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T23:30:11+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "vi"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-28T17:58:37+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "vi"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T23:32:03+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "vi"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-28T18:04:33+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "vi"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-28T17:53:51+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "vi"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:36:47+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "vi"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-28T19:09:54+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "vi"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-28T19:06:59+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "vi"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:29:52+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "vi"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-28T17:53:32+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "vi"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T14:17:33+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "vi"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:22:55+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "vi"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T02:05:59+00:00",
+ "source_file": "README.md",
+ "language_code": "vi"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-28T17:52:04+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "vi"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-28T17:51:20+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "vi"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:43:22+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "vi"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T15:06:19+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "vi"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-28T18:18:31+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "vi"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T13:04:51+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "vi"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:59:02+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "vi"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-28T19:06:11+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "vi"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-28T19:10:31+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "vi"
+ }
+}
\ No newline at end of file
diff --git a/translations/vi/1-Introduction/01-defining-data-science/README.md b/translations/vi/1-Introduction/01-defining-data-science/README.md
index 1fff0aa5..b612f73c 100644
--- a/translations/vi/1-Introduction/01-defining-data-science/README.md
+++ b/translations/vi/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# Định nghĩa Khoa học Dữ liệu
|  ](../../sketchnotes/01-Definitions.png) |
diff --git a/translations/vi/1-Introduction/01-defining-data-science/assignment.md b/translations/vi/1-Introduction/01-defining-data-science/assignment.md
index 7810dd56..6c11b8cf 100644
--- a/translations/vi/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/vi/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# Bài tập: Các tình huống Khoa học Dữ liệu
Trong bài tập đầu tiên này, chúng tôi yêu cầu bạn suy nghĩ về một quy trình hoặc vấn đề thực tế trong các lĩnh vực khác nhau, và cách bạn có thể cải thiện nó bằng quy trình Khoa học Dữ liệu. Hãy cân nhắc các câu hỏi sau:
diff --git a/translations/vi/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/vi/1-Introduction/01-defining-data-science/solution/assignment.md
index 32ebb15c..95119654 100644
--- a/translations/vi/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/vi/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# Bài tập: Các tình huống Khoa học Dữ liệu
Trong bài tập đầu tiên này, chúng tôi yêu cầu bạn suy nghĩ về một quy trình hoặc vấn đề thực tế trong các lĩnh vực khác nhau, và cách bạn có thể cải thiện nó bằng quy trình Khoa học Dữ liệu. Hãy cân nhắc các câu hỏi sau:
diff --git a/translations/vi/1-Introduction/02-ethics/README.md b/translations/vi/1-Introduction/02-ethics/README.md
index 62a26960..9de82470 100644
--- a/translations/vi/1-Introduction/02-ethics/README.md
+++ b/translations/vi/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# Giới thiệu về Đạo đức Dữ liệu
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/vi/1-Introduction/02-ethics/assignment.md b/translations/vi/1-Introduction/02-ethics/assignment.md
index 93ebc05c..62615b30 100644
--- a/translations/vi/1-Introduction/02-ethics/assignment.md
+++ b/translations/vi/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## Viết Một Nghiên Cứu Tình Huống Về Đạo Đức Dữ Liệu
## Hướng dẫn
diff --git a/translations/vi/1-Introduction/03-defining-data/README.md b/translations/vi/1-Introduction/03-defining-data/README.md
index 3af856f6..9184e910 100644
--- a/translations/vi/1-Introduction/03-defining-data/README.md
+++ b/translations/vi/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# Định nghĩa Dữ liệu
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/vi/1-Introduction/03-defining-data/assignment.md b/translations/vi/1-Introduction/03-defining-data/assignment.md
index 9d876384..c5671403 100644
--- a/translations/vi/1-Introduction/03-defining-data/assignment.md
+++ b/translations/vi/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# Phân loại Bộ Dữ liệu
## Hướng dẫn
diff --git a/translations/vi/1-Introduction/04-stats-and-probability/README.md b/translations/vi/1-Introduction/04-stats-and-probability/README.md
index 0ac5f436..ee5959d8 100644
--- a/translations/vi/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/vi/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# Giới thiệu ngắn gọn về Thống kê và Xác suất
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -64,7 +55,7 @@ Giả sử chúng ta lấy một dãy n mẫu của một biến ngẫu nhiên X
Một cách trực quan, chúng ta có thể biểu diễn mối quan hệ giữa median và tứ phân vị trong một biểu đồ gọi là **box plot**:
-
+
Ở đây chúng ta cũng tính **khoảng tứ phân vị** IQR=Q3-Q1, và các giá trị **ngoại lệ** - những giá trị nằm ngoài các giới hạn [Q1-1.5*IQR,Q3+1.5*IQR].
diff --git a/translations/vi/1-Introduction/04-stats-and-probability/assignment.md b/translations/vi/1-Introduction/04-stats-and-probability/assignment.md
index 3757b774..9ce2c2b7 100644
--- a/translations/vi/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/vi/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# Nghiên cứu nhỏ về bệnh tiểu đường
Trong bài tập này, chúng ta sẽ làm việc với một tập dữ liệu nhỏ về bệnh nhân tiểu đường được lấy từ [đây](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).
diff --git a/translations/vi/1-Introduction/README.md b/translations/vi/1-Introduction/README.md
index 04eedb75..8910729e 100644
--- a/translations/vi/1-Introduction/README.md
+++ b/translations/vi/1-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Giới thiệu về Khoa học Dữ liệu

diff --git a/translations/vi/2-Working-With-Data/05-relational-databases/README.md b/translations/vi/2-Working-With-Data/05-relational-databases/README.md
index 01635275..1011305a 100644
--- a/translations/vi/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/vi/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Làm việc với Dữ liệu: Cơ sở dữ liệu Quan hệ
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/vi/2-Working-With-Data/05-relational-databases/assignment.md b/translations/vi/2-Working-With-Data/05-relational-databases/assignment.md
index 60505e61..2a5b90c2 100644
--- a/translations/vi/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/vi/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# Hiển thị dữ liệu sân bay
Bạn đã được cung cấp một [cơ sở dữ liệu](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) được xây dựng trên [SQLite](https://sqlite.org/index.html) chứa thông tin về các sân bay. Lược đồ được hiển thị bên dưới. Bạn sẽ sử dụng [phần mở rộng SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) trong [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) để hiển thị thông tin về các sân bay của các thành phố khác nhau.
diff --git a/translations/vi/2-Working-With-Data/06-non-relational/README.md b/translations/vi/2-Working-With-Data/06-non-relational/README.md
index 0acab69c..58b45a4a 100644
--- a/translations/vi/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/vi/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# Làm việc với Dữ liệu: Dữ liệu Phi Quan Hệ
| ](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/vi/2-Working-With-Data/06-non-relational/assignment.md b/translations/vi/2-Working-With-Data/06-non-relational/assignment.md
index 7df6945e..a80b280b 100644
--- a/translations/vi/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/vi/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# Lợi Nhuận Soda
## Hướng Dẫn
diff --git a/translations/vi/2-Working-With-Data/07-python/README.md b/translations/vi/2-Working-With-Data/07-python/README.md
index 90652c4f..443164d3 100644
--- a/translations/vi/2-Working-With-Data/07-python/README.md
+++ b/translations/vi/2-Working-With-Data/07-python/README.md
@@ -1,12 +1,3 @@
-
# Làm việc với Dữ liệu: Python và Thư viện Pandas
|  ](../../sketchnotes/07-WorkWithPython.png) |
diff --git a/translations/vi/2-Working-With-Data/07-python/assignment.md b/translations/vi/2-Working-With-Data/07-python/assignment.md
index f6e9a604..68ac276d 100644
--- a/translations/vi/2-Working-With-Data/07-python/assignment.md
+++ b/translations/vi/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Bài tập xử lý dữ liệu trong Python
Trong bài tập này, chúng tôi yêu cầu bạn phát triển thêm mã mà chúng tôi đã bắt đầu xây dựng trong các thử thách trước. Bài tập gồm hai phần:
diff --git a/translations/vi/2-Working-With-Data/08-data-preparation/README.md b/translations/vi/2-Working-With-Data/08-data-preparation/README.md
index dc58bda9..cd8c3631 100644
--- a/translations/vi/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/vi/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# Làm việc với Dữ liệu: Chuẩn bị Dữ liệu
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/vi/2-Working-With-Data/08-data-preparation/assignment.md b/translations/vi/2-Working-With-Data/08-data-preparation/assignment.md
index 3da174ed..bd4b57e6 100644
--- a/translations/vi/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/vi/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# Đánh giá Dữ liệu từ một Biểu mẫu
Một khách hàng đã thử nghiệm một [biểu mẫu nhỏ](../../../../2-Working-With-Data/08-data-preparation/index.html) để thu thập một số dữ liệu cơ bản về nhóm khách hàng của họ. Họ đã mang kết quả thu thập được đến bạn để xác thực dữ liệu. Bạn có thể mở trang `index.html` trong trình duyệt để xem biểu mẫu.
diff --git a/translations/vi/2-Working-With-Data/README.md b/translations/vi/2-Working-With-Data/README.md
index 6f7fb2c7..cd09dd38 100644
--- a/translations/vi/2-Working-With-Data/README.md
+++ b/translations/vi/2-Working-With-Data/README.md
@@ -1,12 +1,3 @@
-
# Làm việc với Dữ liệu

diff --git a/translations/vi/3-Data-Visualization/09-visualization-quantities/README.md b/translations/vi/3-Data-Visualization/09-visualization-quantities/README.md
index 76ec3c83..b1fdc5d2 100644
--- a/translations/vi/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/vi/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Hình dung Số lượng
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/vi/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/vi/3-Data-Visualization/09-visualization-quantities/assignment.md
index 170eb2f0..47a64963 100644
--- a/translations/vi/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/vi/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Đường, Biểu đồ Phân Tán và Cột
## Hướng dẫn
diff --git a/translations/vi/3-Data-Visualization/10-visualization-distributions/README.md b/translations/vi/3-Data-Visualization/10-visualization-distributions/README.md
index f4bf1780..56245d23 100644
--- a/translations/vi/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/vi/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Hình dung Phân phối
| ](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/vi/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/vi/3-Data-Visualization/10-visualization-distributions/assignment.md
index 7c03059f..7ef8943c 100644
--- a/translations/vi/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/vi/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Áp dụng kỹ năng của bạn
## Hướng dẫn
diff --git a/translations/vi/3-Data-Visualization/11-visualization-proportions/README.md b/translations/vi/3-Data-Visualization/11-visualization-proportions/README.md
index fea2a71e..19201e36 100644
--- a/translations/vi/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/vi/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Hình dung Tỷ lệ
| ](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/vi/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/vi/3-Data-Visualization/11-visualization-proportions/assignment.md
index b50cbf96..cdfddda7 100644
--- a/translations/vi/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/vi/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# Thử nghiệm trong Excel
## Hướng dẫn
diff --git a/translations/vi/3-Data-Visualization/12-visualization-relationships/README.md b/translations/vi/3-Data-Visualization/12-visualization-relationships/README.md
index bedecee1..5604b415 100644
--- a/translations/vi/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/vi/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Hình dung Mối quan hệ: Tất cả về Mật ong 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/vi/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/vi/3-Data-Visualization/12-visualization-relationships/assignment.md
index b25a9f9e..166fb1ad 100644
--- a/translations/vi/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/vi/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# Khám phá tổ ong
## Hướng dẫn
diff --git a/translations/vi/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/vi/3-Data-Visualization/13-meaningful-visualizations/README.md
index b4a1f028..3d54975a 100644
--- a/translations/vi/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/vi/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# Tạo Các Biểu Đồ Có Ý Nghĩa
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/vi/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/vi/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 68225357..aadbe5e2 100644
--- a/translations/vi/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/vi/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# Tự xây dựng hình ảnh hóa tùy chỉnh của bạn
## Hướng dẫn
diff --git a/translations/vi/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/vi/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 5d3f5121..04ccf00d 100644
--- a/translations/vi/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/vi/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# Dự án trực quan hóa dữ liệu Dangerous Liaisons
Để bắt đầu, bạn cần đảm bảo rằng bạn đã cài đặt NPM và Node trên máy của mình. Cài đặt các phụ thuộc (npm install) và sau đó chạy dự án cục bộ (npm run serve):
diff --git a/translations/vi/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/vi/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 4a0c40fb..2eadf4d8 100644
--- a/translations/vi/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/vi/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# Dự án trực quan hóa dữ liệu Dangerous Liaisons
Để bắt đầu, bạn cần đảm bảo rằng NPM và Node đang chạy trên máy của bạn. Cài đặt các gói phụ thuộc (npm install) và sau đó chạy dự án cục bộ (npm run serve):
diff --git a/translations/vi/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/vi/3-Data-Visualization/R/09-visualization-quantities/README.md
index ff6636f2..c143e008 100644
--- a/translations/vi/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/vi/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# Trực quan hóa số lượng
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
diff --git a/translations/vi/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/vi/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 7cf569a4..0d6c78ff 100644
--- a/translations/vi/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/vi/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# Đường, Biểu đồ Tán Xạ và Biểu Đồ Cột
## Hướng Dẫn
diff --git a/translations/vi/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/vi/3-Data-Visualization/R/10-visualization-distributions/README.md
index 6d6e6da7..91188d4e 100644
--- a/translations/vi/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/vi/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# Trực quan hóa phân bố
| ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/vi/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/vi/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index c9db8454..f4284f33 100644
--- a/translations/vi/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/vi/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# Áp dụng kỹ năng của bạn
## Hướng dẫn
diff --git a/translations/vi/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/vi/3-Data-Visualization/R/11-visualization-proportions/README.md
index 7f5628e9..e9545655 100644
--- a/translations/vi/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/vi/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# Trực quan hóa tỷ lệ
| ](../../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/vi/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/vi/3-Data-Visualization/R/12-visualization-relationships/README.md
index 48d8d0f6..3fdb3e58 100644
--- a/translations/vi/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/vi/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# Hình ảnh hóa Mối quan hệ: Tất cả về Mật ong 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
diff --git a/translations/vi/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/vi/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index b89b7aad..e3dc131a 100644
--- a/translations/vi/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/vi/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# Tạo Các Biểu Đồ Trực Quan Có Ý Nghĩa
| ](../../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/vi/3-Data-Visualization/README.md b/translations/vi/3-Data-Visualization/README.md
index f110a043..609ae5a3 100644
--- a/translations/vi/3-Data-Visualization/README.md
+++ b/translations/vi/3-Data-Visualization/README.md
@@ -1,12 +1,3 @@
-
# Hình ảnh trực quan

diff --git a/translations/vi/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/vi/4-Data-Science-Lifecycle/14-Introduction/README.md
index 9e022692..f648c924 100644
--- a/translations/vi/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/vi/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Giới thiệu về Vòng đời Khoa học Dữ liệu
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
diff --git a/translations/vi/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/vi/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index b37d126a..335722ce 100644
--- a/translations/vi/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/vi/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Đánh giá một tập dữ liệu
Một khách hàng đã liên hệ với nhóm của bạn để nhờ giúp đỡ trong việc điều tra thói quen chi tiêu theo mùa của khách hàng đi taxi ở Thành phố New York.
diff --git a/translations/vi/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/vi/4-Data-Science-Lifecycle/15-analyzing/README.md
index 3c632623..5a2eb53a 100644
--- a/translations/vi/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/vi/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# Vòng đời Khoa học Dữ liệu: Phân tích
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/vi/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/vi/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 5e9d55d3..86c2650b 100644
--- a/translations/vi/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/vi/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# Khám phá câu trả lời
Đây là phần tiếp nối của [bài tập](../14-Introduction/assignment.md) trong bài học trước, nơi chúng ta đã xem qua bộ dữ liệu. Bây giờ, chúng ta sẽ đi sâu hơn vào bộ dữ liệu này.
diff --git a/translations/vi/4-Data-Science-Lifecycle/16-communication/README.md b/translations/vi/4-Data-Science-Lifecycle/16-communication/README.md
index 97562702..63085c28 100644
--- a/translations/vi/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/vi/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# Vòng đời Khoa học Dữ liệu: Giao tiếp
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/vi/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/vi/4-Data-Science-Lifecycle/16-communication/assignment.md
index 3cd22e55..082a4295 100644
--- a/translations/vi/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/vi/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# Kể một câu chuyện
## Hướng dẫn
diff --git a/translations/vi/4-Data-Science-Lifecycle/README.md b/translations/vi/4-Data-Science-Lifecycle/README.md
index ad871846..a1534c5a 100644
--- a/translations/vi/4-Data-Science-Lifecycle/README.md
+++ b/translations/vi/4-Data-Science-Lifecycle/README.md
@@ -1,12 +1,3 @@
-
# Vòng đời Khoa học Dữ liệu

diff --git a/translations/vi/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/vi/5-Data-Science-In-Cloud/17-Introduction/README.md
index f7979ab9..4a6b1aea 100644
--- a/translations/vi/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/vi/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# Giới thiệu về Khoa học Dữ liệu trên Đám mây
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/vi/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/vi/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index f9e427f5..4b1ad3e2 100644
--- a/translations/vi/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/vi/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# Nghiên cứu Thị trường
## Hướng dẫn
diff --git a/translations/vi/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/vi/5-Data-Science-In-Cloud/18-Low-Code/README.md
index a6dbfe86..c8943a1d 100644
--- a/translations/vi/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/vi/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# Khoa học Dữ liệu trên Đám mây: Phương pháp "Ít mã/Không mã"
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/vi/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/vi/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 1c6e83ed..93406f22 100644
--- a/translations/vi/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/vi/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Dự án Khoa học Dữ liệu Low code/No code trên Azure ML
## Hướng dẫn
diff --git a/translations/vi/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/vi/5-Data-Science-In-Cloud/19-Azure/README.md
index ff3646eb..f4060a30 100644
--- a/translations/vi/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/vi/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# Khoa học Dữ liệu trên Đám mây: Cách sử dụng "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/vi/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/vi/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 8ba3fd66..57f46235 100644
--- a/translations/vi/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/vi/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# Dự án Khoa học Dữ liệu sử dụng Azure ML SDK
## Hướng dẫn
diff --git a/translations/vi/5-Data-Science-In-Cloud/README.md b/translations/vi/5-Data-Science-In-Cloud/README.md
index a3c6ba6d..458799c3 100644
--- a/translations/vi/5-Data-Science-In-Cloud/README.md
+++ b/translations/vi/5-Data-Science-In-Cloud/README.md
@@ -1,12 +1,3 @@
-
# Khoa học dữ liệu trên đám mây

diff --git a/translations/vi/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/vi/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 108363e1..f71fa0cc 100644
--- a/translations/vi/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/vi/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# Khoa học Dữ liệu trong Thế giới Thực
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
diff --git a/translations/vi/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/vi/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index f16df8e1..8642fb25 100644
--- a/translations/vi/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/vi/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# Khám phá một bộ dữ liệu từ Planetary Computer
## Hướng dẫn
diff --git a/translations/vi/6-Data-Science-In-Wild/README.md b/translations/vi/6-Data-Science-In-Wild/README.md
index 728425a9..cb31a753 100644
--- a/translations/vi/6-Data-Science-In-Wild/README.md
+++ b/translations/vi/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# Khoa học dữ liệu trong thực tế
Ứng dụng thực tế của khoa học dữ liệu trong các ngành công nghiệp.
diff --git a/translations/vi/AGENTS.md b/translations/vi/AGENTS.md
index 70dc9bb7..9b3fe049 100644
--- a/translations/vi/AGENTS.md
+++ b/translations/vi/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## Tổng quan dự án
diff --git a/translations/vi/CODE_OF_CONDUCT.md b/translations/vi/CODE_OF_CONDUCT.md
index 5f0667aa..c0175f31 100644
--- a/translations/vi/CODE_OF_CONDUCT.md
+++ b/translations/vi/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Quy tắc ứng xử mã nguồn mở của Microsoft
Dự án này đã áp dụng [Quy tắc ứng xử mã nguồn mở của Microsoft](https://opensource.microsoft.com/codeofconduct/).
diff --git a/translations/vi/CONTRIBUTING.md b/translations/vi/CONTRIBUTING.md
index 171c4ec1..5ed636c4 100644
--- a/translations/vi/CONTRIBUTING.md
+++ b/translations/vi/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# Đóng góp cho Data Science for Beginners
Cảm ơn bạn đã quan tâm đến việc đóng góp cho chương trình học Data Science for Beginners! Chúng tôi hoan nghênh sự đóng góp từ cộng đồng.
diff --git a/translations/vi/INSTALLATION.md b/translations/vi/INSTALLATION.md
index 92181ab9..93938eba 100644
--- a/translations/vi/INSTALLATION.md
+++ b/translations/vi/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# Hướng Dẫn Cài Đặt
Hướng dẫn này sẽ giúp bạn thiết lập môi trường để làm việc với giáo trình Khoa học Dữ liệu cho Người mới bắt đầu.
diff --git a/translations/vi/README.md b/translations/vi/README.md
index 774e0f53..003c7479 100644
--- a/translations/vi/README.md
+++ b/translations/vi/README.md
@@ -1,262 +1,253 @@
-
-# Khoa học dữ liệu cho người mới bắt đầu - Chương trình giảng dạy
+# Khoa học Dữ liệu cho Người mới bắt đầu - Một Chương trình học
[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
[](https://discord.gg/nTYy5BXMWG)
[](https://aka.ms/foundry/forum)
-Các Chuyên gia Azure Cloud Advocates tại Microsoft rất vui được cung cấp một chương trình giảng dạy 10 tuần với 20 bài học xoay quanh chủ đề Khoa học Dữ liệu. Mỗi bài học bao gồm các bài kiểm tra trước và sau bài học, hướng dẫn bằng văn bản để hoàn thành bài học, giải pháp và một bài tập. Phương pháp giảng dạy dựa trên dự án giúp bạn vừa học vừa làm, một cách đã được chứng minh giúp các kỹ năng mới "bám sâu".
+Nhóm Những Người Ủng hộ Azure Cloud tại Microsoft vui mừng giới thiệu một chương trình học 10 tuần, 20 bài học về Khoa học Dữ liệu. Mỗi bài học bao gồm bài kiểm tra trước và sau bài học, hướng dẫn bằng văn bản để hoàn thành bài học, giải pháp và bài tập. Phương pháp học dựa trên dự án của chúng tôi cho phép bạn học trong khi xây dựng, một cách đã được chứng minh giúp kỹ năng mới "bám chắc".
-**Xin gửi lời cảm ơn chân thành đến các tác giả của chúng tôi:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+**Xin chân thành cảm ơn các tác giả của chúng tôi:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
-**🙏 Lời cảm ơn đặc biệt 🙏 đến các tác giả, người đánh giá và những người đóng góp nội dung từ [Đại sứ Sinh viên Microsoft](https://studentambassadors.microsoft.com/),** đặc biệt là Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+**🙏 Đặc biệt cảm ơn 🙏 tới các tác giả, người đánh giá và đóng góp nội dung là [Đại sứ Sinh viên Microsoft](https://studentambassadors.microsoft.com/),** đặc biệt là Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-||
+||
|:---:|
-| Khoa học Dữ liệu cho Người mới Bắt đầu - _Sketchnote bởi [@nitya](https://twitter.com/nitya)_ |
+| Khoa học Dữ liệu cho Người mới bắt đầu - _Sketchnote bởi [@nitya](https://twitter.com/nitya)_ |
-### 🌐 Hỗ trợ đa ngôn ngữ
+### 🌐 Hỗ trợ Đa ngôn ngữ
#### Hỗ trợ qua GitHub Action (Tự động & Luôn Cập nhật)
-[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](./README.md)
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](./README.md)
-> **Ưu tiên sao chép về máy?**
+> **Ưa thích Sao chép về máy?**
-> Kho lưu trữ này bao gồm hơn 50 bản dịch ngôn ngữ, điều này làm tăng đáng kể kích thước tải xuống. Để sao chép mà không có bản dịch, hãy sử dụng sparse checkout:
+> Kho lưu trữ này bao gồm hơn 50 bản dịch ngôn ngữ làm tăng đáng kể kích thước tải xuống. Để sao chép mà không có bản dịch, hãy sử dụng kiểm tra thưa thớt:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
> ```
-> Điều này sẽ cung cấp cho bạn tất cả những gì cần thiết để hoàn thành khóa học với tốc độ tải xuống nhanh hơn nhiều.
+> Điều này cung cấp cho bạn mọi thứ cần thiết để hoàn thành khóa học với tốc độ tải nhanh hơn nhiều.
-**Nếu bạn muốn hỗ trợ thêm các ngôn ngữ dịch, danh sách các ngôn ngữ được hỗ trợ được liệt kê [tại đây](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+**Nếu bạn muốn có thêm các ngôn ngữ dịch được hỗ trợ, vui lòng xem danh sách tại [đây](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Tham gia Cộng đồng của chúng tôi
[](https://discord.gg/nTYy5BXMWG)
-Chúng tôi có một chuỗi học tập trên Discord về AI đang diễn ra, tìm hiểu thêm và tham gia tại [Chuỗi học với AI](https://aka.ms/learnwithai/discord) từ ngày 18 - 30 tháng 9 năm 2025. Bạn sẽ nhận được mẹo và thủ thuật sử dụng GitHub Copilot cho Khoa học Dữ liệu.
+Chúng tôi có một loạt hội thảo trên Discord về học tập cùng AI đang diễn ra, tìm hiểu thêm và tham gia cùng chúng tôi tại [Chuỗi học tập cùng AI](https://aka.ms/learnwithai/discord) từ ngày 18 - 30 tháng 9 năm 2025. Bạn sẽ nhận được các mẹo và thủ thuật sử dụng GitHub Copilot cho Khoa học Dữ liệu.
-
+
-# Bạn là sinh viên?
+# Bạn là sinh viên chứ?
Bắt đầu với các tài nguyên sau:
-- [Trang Trung tâm Sinh viên](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Trong trang này, bạn sẽ tìm thấy tài nguyên cho người mới bắt đầu, gói Sinh viên và thậm chí cả cách nhận voucher chứng chỉ miễn phí. Đây là trang bạn muốn đánh dấu và kiểm tra thường xuyên vì chúng tôi thay đổi nội dung ít nhất hàng tháng.
-- [Đại sứ Sinh viên Microsoft](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Tham gia cộng đồng đại sứ sinh viên toàn cầu, đây có thể là con đường của bạn để vào Microsoft.
+- [Trang Trung tâm Sinh viên](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Trên trang này, bạn sẽ tìm thấy các tài nguyên cho người mới bắt đầu, Bộ dụng cụ Sinh viên và cả cách nhận phiếu chứng nhận miễn phí. Đây là một trang bạn nên đánh dấu và kiểm tra định kỳ vì nội dung của chúng tôi được thay đổi ít nhất mỗi tháng.
+- [Đại sứ Sinh viên Microsoft](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Tham gia cộng đồng đại sứ sinh viên toàn cầu, đây có thể là cách để bạn bước vào Microsoft.
# Bắt đầu
## 📚 Tài liệu
-- **[Hướng dẫn Cài đặt](INSTALLATION.md)** - Hướng dẫn thiết lập từng bước dành cho người mới
-- **[Hướng dẫn Sử dụng](USAGE.md)** - Ví dụ và quy trình làm việc phổ biến
-- **[Khắc phục sự cố](TROUBLESHOOTING.md)** - Giải pháp cho các vấn đề phổ biến
+- **[Hướng dẫn Cài đặt](INSTALLATION.md)** - Hướng dẫn từng bước thiết lập dành cho người mới bắt đầu
+- **[Hướng dẫn Sử dụng](USAGE.md)** - Ví dụ và các quy trình làm việc phổ biến
+- **[Khắc phục Sự cố](TROUBLESHOOTING.md)** - Giải pháp cho các vấn đề thường gặp
- **[Hướng dẫn Đóng góp](CONTRIBUTING.md)** - Cách đóng góp cho dự án này
- **[Dành cho Giáo viên](for-teachers.md)** - Hướng dẫn giảng dạy và tài nguyên lớp học
## 👨🎓 Dành cho Sinh viên
-> **Người mới hoàn toàn**: Mới bắt đầu với khoa học dữ liệu? Hãy bắt đầu với các [ví dụ thân thiện cho người mới](examples/README.md)! Những ví dụ đơn giản, có chú thích rõ ràng này sẽ giúp bạn hiểu những kiến thức cơ bản trước khi đi sâu vào toàn bộ chương trình giảng dạy.
-> **[Sinh viên](https://aka.ms/student-page)**: để sử dụng chương trình này một mình, hãy fork toàn bộ repo và hoàn thành các bài tập một mình, bắt đầu với bài kiểm tra trước bài giảng. Sau đó đọc bài giảng và hoàn thành các hoạt động còn lại. Hãy cố gắng tạo các dự án bằng cách hiểu bài học thay vì sao chép mã giải pháp; tuy nhiên, mã đó có sẵn trong thư mục /solutions trong mỗi bài học dựa trên dự án. Một ý tưởng khác là thành lập nhóm học với bạn bè và cùng nhau đi qua nội dung. Để học thêm, chúng tôi khuyến nghị [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
+> **Người mới hoàn toàn**: Mới bắt đầu với khoa học dữ liệu? Hãy bắt đầu với [ví dụ thân thiện với người mới](examples/README.md)! Những ví dụ đơn giản, có chú thích rõ ràng này sẽ giúp bạn hiểu những kiến thức cơ bản trước khi đi sâu vào toàn bộ chương trình học.
+> **[Sinh viên](https://aka.ms/student-page)**: để sử dụng chương trình này tự học, hãy fork toàn bộ kho và hoàn thành các bài tập một mình, bắt đầu với câu hỏi trước bài giảng. Sau đó đọc bài giảng và hoàn thành các hoạt động còn lại. Cố gắng tạo các dự án bằng cách hiểu bài học thay vì sao chép mã giải pháp; tuy nhiên, mã đó có sẵn trong các thư mục /solutions trong mỗi bài học hướng đến dự án. Ý tưởng khác là lập nhóm học với bạn bè và cùng học nội dung. Để học nâng cao hơn, chúng tôi khuyên bạn dùng [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
-**Bắt đầu nhanh:**
-1. Kiểm tra [Hướng dẫn Cài đặt](INSTALLATION.md) để thiết lập môi trường của bạn
-2. Xem lại [Hướng dẫn Sử dụng](USAGE.md) để biết cách làm việc với chương trình giảng dạy
-3. Bắt đầu với Bài học 1 và làm tuần tự
-4. Tham gia [cộng đồng Discord của chúng tôi](https://aka.ms/ds4beginners/discord) để được hỗ trợ
+**Bắt đầu Nhanh:**
+1. Kiểm tra [Hướng dẫn Cài đặt](INSTALLATION.md) để thiết lập môi trường
+2. Xem qua [Hướng dẫn Sử dụng](USAGE.md) để biết cách làm việc với chương trình học
+3. Bắt đầu với Bài học 1 và làm theo trình tự
+4. Tham gia [cộng đồng Discord của chúng tôi](https://aka.ms/ds4beginners/discord) để nhận hỗ trợ
## 👩🏫 Dành cho Giáo viên
-> **Giáo viên**: chúng tôi đã [bao gồm một số đề xuất](for-teachers.md) về cách sử dụng chương trình giảng dạy này. Chúng tôi rất mong nhận được phản hồi của bạn [trong diễn đàn thảo luận của chúng tôi](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
-
+> **Giáo viên**: chúng tôi đã [bao gồm một số đề xuất](for-teachers.md) về cách sử dụng chương trình học này. Chúng tôi rất mong nhận được phản hồi từ bạn [trong diễn đàn thảo luận của chúng tôi](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Gặp gỡ Đội ngũ
-[](https://youtu.be/8mzavjQSMM4 "Video quảng cáo")
+
+[](https://youtu.be/8mzavjQSMM4 "Video giới thiệu")
**Gif bởi** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-> 🎥 Nhấn vào hình ảnh bên trên để xem video về dự án và những người đã tạo ra nó!
+> 🎥 Nhấp vào hình ảnh phía trên để xem video về dự án và những người đã tạo ra nó!
-## Phương pháp giảng dạy
+## Phương pháp dạy học
-Chúng tôi đã lựa chọn hai nguyên tắc giáo dục khi xây dựng chương trình học này: đảm bảo rằng nó dựa trên dự án và có các bài kiểm tra ngắn thường xuyên. Vào cuối chuỗi bài học này, học viên sẽ hiểu được các nguyên lý cơ bản của khoa học dữ liệu, bao gồm các khái niệm đạo đức, chuẩn bị dữ liệu, các cách khác nhau để làm việc với dữ liệu, trực quan hóa dữ liệu, phân tích dữ liệu, các ví dụ thực tế về khoa học dữ liệu và nhiều hơn nữa.
+Chúng tôi đã chọn hai nguyên tắc sư phạm khi xây dựng chương trình này: đảm bảo rằng nó dựa trên dự án và bao gồm các bài kiểm tra thường xuyên. Vào cuối chuỗi bài học này, học viên sẽ học được các nguyên tắc cơ bản của khoa học dữ liệu, bao gồm các khái niệm đạo đức, chuẩn bị dữ liệu, các cách làm việc với dữ liệu khác nhau, trực quan hóa dữ liệu, phân tích dữ liệu, các trường hợp sử dụng khoa học dữ liệu trong thế giới thực và nhiều hơn nữa.
-Ngoài ra, một bài kiểm tra nhẹ trước lớp đặt mục tiêu học tập cho học viên về một chủ đề, trong khi một bài kiểm tra thứ hai sau lớp giúp củng cố kiến thức. Chương trình học này được thiết kế linh hoạt và thú vị, có thể học toàn bộ hoặc một phần. Các dự án bắt đầu nhỏ và trở nên phức tạp hơn dần đến cuối chu kỳ 10 tuần.
+Ngoài ra, một bài kiểm tra nhẹ trước khi vào lớp đặt mục tiêu học tập cho học viên về chủ đề, trong khi bài kiểm tra thứ hai sau lớp đảm bảo việc ghi nhớ sâu hơn. Chương trình này được thiết kế để linh hoạt và thú vị, có thể học toàn bộ hoặc từng phần. Các dự án bắt đầu nhỏ và trở nên phức tạp hơn theo chu kỳ 10 tuần.
-> Tìm [Bộ Quy Tắc Ứng Xử](CODE_OF_CONDUCT.md), [Hướng dẫn Góp phần](CONTRIBUTING.md), [Hướng dẫn Dịch thuật](TRANSLATIONS.md) của chúng tôi. Chúng tôi hoan nghênh phản hồi xây dựng từ bạn!
+> Tìm xem [Quy tắc ứng xử](CODE_OF_CONDUCT.md), [Hướng dẫn đóng góp](CONTRIBUTING.md), [Dịch thuật](TRANSLATIONS.md) của chúng tôi. Chúng tôi hoan nghênh phản hồi mang tính xây dựng từ bạn!
## Mỗi bài học bao gồm:
-- Bản phác họa tùy chọn
-- Video bổ sung tùy chọn
-- Bài kiểm tra khởi động trước bài học
-- Bài học viết
-- Đối với các bài học theo dự án, hướng dẫn từng bước cách xây dựng dự án
+- Sketchnote tùy chọn
+- Video bổ trợ tùy chọn
+- Bài kiểm tra làm nóng trước bài học
+- Bài học bằng văn bản
+- Đối với các bài học dựa trên dự án, hướng dẫn từng bước về cách xây dựng dự án
- Kiểm tra kiến thức
- Một thử thách
-- Đọc thêm bổ sung
+- Tài liệu đọc bổ sung
- Bài tập
- [Bài kiểm tra sau bài học](https://ff-quizzes.netlify.app/en/)
-> **Lưu ý về các bài kiểm tra**: Tất cả các bài kiểm tra nằm trong thư mục Quiz-App, tổng cộng 40 bài kiểm tra với mỗi bài gồm ba câu hỏi. Chúng được liên kết từ bên trong các bài học, nhưng ứng dụng kiểm tra có thể chạy cục bộ hoặc triển khai lên Azure; làm theo hướng dẫn trong thư mục `quiz-app`. Các bài kiểm tra này đang dần được dịch địa phương hóa.
+> **Lưu ý về các bài kiểm tra**: Tất cả bài kiểm tra nằm trong thư mục Quiz-App, với tổng cộng 40 bài kiểm tra, mỗi bài gồm ba câu hỏi. Chúng được liên kết từ trong các bài học, nhưng ứng dụng kiểm tra có thể chạy cục bộ hoặc triển khai trên Azure; theo dõi hướng dẫn trong thư mục `quiz-app`. Các bài kiểm tra đang được địa phương hóa dần dần.
## 🎓 Ví dụ thân thiện với người mới bắt đầu
-**Mới làm quen với Khoa học Dữ liệu?** Chúng tôi đã tạo một [thư mục ví dụ đặc biệt](examples/README.md) với mã nguồn đơn giản, chú thích rõ ràng giúp bạn bắt đầu:
+**Mới với Khoa học Dữ liệu?** Chúng tôi đã tạo một [thư mục ví dụ](examples/README.md) đặc biệt với mã nguồn đơn giản, có chú thích đầy đủ giúp bạn bắt đầu:
- 🌟 **Hello World** - Chương trình khoa học dữ liệu đầu tiên của bạn
-- 📂 **Tải Dữ liệu** - Học cách đọc và khám phá bộ dữ liệu
-- 📊 **Phân tích Đơn giản** - Tính toán thống kê và tìm mẫu
-- 📈 **Trực quan hóa Cơ bản** - Tạo biểu đồ và đồ thị
-- 🔬 **Dự án Thực tế** - Quy trình hoàn chỉnh từ đầu đến cuối
+- 📂 **Tải Dữ liệu** - Học cách đọc và khám phá dữ liệu
+- 📊 **Phân tích đơn giản** - Tính toán thống kê và tìm mẫu
+- 📈 **Trực quan hóa cơ bản** - Tạo biểu đồ và đồ thị
+- 🔬 **Dự án trong thế giới thực** - Quy trình hoàn chỉnh từ đầu đến cuối
-Mỗi ví dụ bao gồm chú thích chi tiết giải thích từng bước, rất phù hợp cho người mới bắt đầu tuyệt đối!
+Mỗi ví dụ bao gồm các chú thích chi tiết giải thích từng bước, rất phù hợp cho người mới bắt đầu hoàn toàn!
👉 **[Bắt đầu với các ví dụ](examples/README.md)** 👈
## Các bài học
-||
+||
|:---:|
-| Khoa học Dữ liệu Dành cho Người Mới: Lộ trình - _Phác họa bởi [@nitya](https://twitter.com/nitya)_ |
-
-
-| Số Bài học | Chủ đề | Nhóm bài học | Mục tiêu học tập | Bài học liên kết | Tác giả |
-| :---------: | :--------------------------: | :--------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------: | :-----: |
-| 01 | Định nghĩa Khoa học Dữ liệu | [Giới thiệu](1-Introduction/README.md) | Tìm hiểu các khái niệm cơ bản về khoa học dữ liệu và cách nó liên quan đến trí tuệ nhân tạo, học máy và dữ liệu lớn. | [bài học](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | Đạo đức Khoa học Dữ liệu | [Giới thiệu](1-Introduction/README.md) | Khái niệm, thách thức và khung đạo đức dữ liệu. | [bài học](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | Định nghĩa Dữ liệu | [Giới thiệu](1-Introduction/README.md) | Cách phân loại dữ liệu và các nguồn phổ biến. | [bài học](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | Giới thiệu về Thống kê & Xác suất | [Giới thiệu](1-Introduction/README.md) | Các kỹ thuật toán học của xác suất và thống kê để hiểu dữ liệu. | [bài học](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | Làm việc với Dữ liệu Quan hệ | [Làm việc với Dữ liệu](2-Working-With-Data/README.md) | Giới thiệu về dữ liệu quan hệ và các kiến thức cơ bản về khám phá và phân tích dữ liệu quan hệ với Ngôn ngữ Truy vấn Cấu trúc, còn gọi là SQL (phát âm "xi-cquell"). | [bài học](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | Làm việc với Dữ liệu NoSQL | [Làm việc với Dữ liệu](2-Working-With-Data/README.md) | Giới thiệu về dữ liệu phi quan hệ, các loại khác nhau và các kiến thức cơ bản về khám phá và phân tích cơ sở dữ liệu tài liệu. | [bài học](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Làm việc với Python | [Làm việc với Dữ liệu](2-Working-With-Data/README.md) | Kiến thức cơ bản về sử dụng Python để khám phá dữ liệu với các thư viện như Pandas. Nên có kiến thức nền tảng lập trình Python. | [bài học](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | Chuẩn bị Dữ liệu | [Làm việc với Dữ liệu](2-Working-With-Data/README.md) | Các chủ đề về kỹ thuật làm sạch và biến đổi dữ liệu để xử lý các thách thức về dữ liệu bị thiếu, không chính xác hoặc không đầy đủ. | [bài học](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | Trực quan hóa Số lượng | [Trực quan hóa Dữ liệu](3-Data-Visualization/README.md) | Học cách sử dụng Matplotlib để trực quan hóa dữ liệu về chim 🦆 | [bài học](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | Trực quan hóa Phân phối Dữ liệu | [Trực quan hóa Dữ liệu](3-Data-Visualization/README.md) | Trực quan hóa các quan sát và xu hướng trong một khoảng. | [bài học](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | Trực quan hóa Tỷ lệ Phần trăm | [Trực quan hóa Dữ liệu](3-Data-Visualization/README.md) | Trực quan hóa các tỷ lệ phần trăm rời rạc và nhóm. | [bài học](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | Trực quan hóa Mối quan hệ | [Trực quan hóa Dữ liệu](3-Data-Visualization/README.md) | Trực quan hóa các kết nối và tương quan giữa các tập dữ liệu và các biến của chúng. | [bài học](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | Trực quan hóa Ý nghĩa | [Trực quan hóa Dữ liệu](3-Data-Visualization/README.md) | Các kỹ thuật và hướng dẫn để làm cho trực quan hóa của bạn có giá trị nhằm giải quyết vấn đề hiệu quả và cung cấp cái nhìn sâu sắc. | [bài học](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | Giới thiệu về Chu trình Khoa học Dữ liệu | [Chu trình](4-Data-Science-Lifecycle/README.md) | Giới thiệu về chu trình khoa học dữ liệu và bước đầu tiên là thu thập và trích xuất dữ liệu. | [bài học](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | Phân tích | [Chu trình](4-Data-Science-Lifecycle/README.md) | Giai đoạn này trong chu trình khoa học dữ liệu tập trung vào các kỹ thuật phân tích dữ liệu. | [bài học](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | Giao tiếp | [Chu trình](4-Data-Science-Lifecycle/README.md) | Giai đoạn này trong chu trình khoa học dữ liệu tập trung vào việc trình bày các phát hiện từ dữ liệu theo cách giúp người ra quyết định dễ hiểu hơn. | [bài học](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | Khoa học Dữ liệu trên Đám mây | [Dữ liệu Đám mây](5-Data-Science-In-Cloud/README.md) | Chuỗi bài học này giới thiệu khoa học dữ liệu trên đám mây và lợi ích của nó. | [bài học](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) và [Maud](https://twitter.com/maudstweets) |
-| 18 | Khoa học Dữ liệu trên Đám mây | [Dữ liệu Đám mây](5-Data-Science-In-Cloud/README.md) | Huấn luyện mô hình sử dụng công cụ Low Code. |[bài học](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) và [Maud](https://twitter.com/maudstweets) |
-| 19 | Khoa học Dữ liệu trên Đám mây | [Dữ liệu Đám mây](5-Data-Science-In-Cloud/README.md) | Triển khai mô hình với Azure Machine Learning Studio. | [bài học](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) và [Maud](https://twitter.com/maudstweets) |
-| 20 | Khoa học Dữ liệu ngoài Thực tế | [Ngoài Thực tế](6-Data-Science-In-Wild/README.md) | Các dự án khoa học dữ liệu trong thế giới thực. | [bài học](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+| Khoa học Dữ liệu cho Người mới bắt đầu: Lộ trình - _Sketchnote bởi [@nitya](https://twitter.com/nitya)_ |
+
+
+| Số bài học | Chủ đề | Nhóm bài học | Mục tiêu học tập | Liên kết bài học | Tác giả |
+| :---------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
+| 01 | Định nghĩa Khoa học Dữ liệu | [Giới thiệu](1-Introduction/README.md) | Học các khái niệm cơ bản về khoa học dữ liệu và cách nó liên quan đến trí tuệ nhân tạo, học máy và dữ liệu lớn. | [bài học](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | Đạo đức trong Khoa học Dữ liệu | [Giới thiệu](1-Introduction/README.md) | Khái niệm đạo đức dữ liệu, các thách thức & khung làm việc. | [bài học](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | Định nghĩa Dữ liệu | [Giới thiệu](1-Introduction/README.md) | Cách phân loại dữ liệu và các nguồn dữ liệu phổ biến. | [bài học](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | Giới thiệu Thống kê & Xác suất | [Giới thiệu](1-Introduction/README.md) | Các kỹ thuật toán học về xác suất và thống kê để hiểu dữ liệu. | [bài học](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | Làm việc với Dữ liệu Quan hệ | [Làm việc với Dữ liệu](2-Working-With-Data/README.md) | Giới thiệu dữ liệu quan hệ và cơ bản khám phá và phân tích dữ liệu quan hệ bằng Ngôn ngữ truy vấn cấu trúc, gọi tắt là SQL (phát âm "see-quell"). | [bài học](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | Làm việc với Dữ liệu NoSQL | [Làm việc với Dữ liệu](2-Working-With-Data/README.md) | Giới thiệu dữ liệu phi quan hệ, các loại khác nhau và cơ bản khám phá và phân tích cơ sở dữ liệu dạng tài liệu. | [bài học](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | Làm việc với Python | [Làm việc với Dữ liệu](2-Working-With-Data/README.md) | Cơ bản sử dụng Python để khám phá dữ liệu với các thư viện như Pandas. Khuyến nghị có hiểu biết nền tảng về lập trình Python. | [bài học](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | Chuẩn bị Dữ liệu | [Làm việc với Dữ liệu](2-Working-With-Data/README.md) | Các chủ đề về kỹ thuật dữ liệu để làm sạch và biến đổi dữ liệu nhằm xử lý các thách thức về dữ liệu thiếu, không chính xác hoặc không đầy đủ. | [bài học](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | Trực quan Hóa Số lượng | [Trực quan Hóa Dữ liệu](3-Data-Visualization/README.md) | Học cách sử dụng Matplotlib để trực quan hóa dữ liệu về chim 🦆 | [bài học](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | Trực quan Hóa Phân bố Dữ liệu | [Trực quan Hóa Dữ liệu](3-Data-Visualization/README.md) | Trực quan hóa các quan sát và xu hướng trong một khoảng. | [bài học](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | Trực quan Hóa Tỷ lệ | [Trực quan Hóa Dữ liệu](3-Data-Visualization/README.md) | Trực quan hóa phần trăm rời rạc và theo nhóm. | [bài học](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | Trực quan Hóa Mối quan hệ | [Trực quan Hóa Dữ liệu](3-Data-Visualization/README.md) | Trực quan hóa các kết nối và tương quan giữa các bộ dữ liệu và các biến của chúng. | [bài học](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | Trực quan Hóa Ý nghĩa | [Trực quan Hóa Dữ liệu](3-Data-Visualization/README.md) | Các kỹ thuật và hướng dẫn để làm cho hình trực quan của bạn có giá trị để giải quyết vấn đề và hiểu biết hiệu quả. | [bài học](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | Giới thiệu vòng đời Khoa học Dữ liệu | [Vòng đời](4-Data-Science-Lifecycle/README.md) | Giới thiệu về vòng đời khoa học dữ liệu và bước đầu tiên là thu nhận và trích xuất dữ liệu. | [bài học](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | Phân tích | [Vòng đời](4-Data-Science-Lifecycle/README.md) | Giai đoạn này của vòng đời khoa học dữ liệu tập trung vào các kỹ thuật phân tích dữ liệu. | [bài học](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | Truyền đạt | [Vòng đời](4-Data-Science-Lifecycle/README.md) | Giai đoạn này của vòng đời khoa học dữ liệu tập trung vào việc trình bày hiểu biết từ dữ liệu theo cách giúp người ra quyết định dễ dàng hiểu hơn. | [bài học](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | Khoa học Dữ liệu trên điện toán đám mây | [Dữ liệu Đám mây](5-Data-Science-In-Cloud/README.md) | Chuỗi bài học này giới thiệu về khoa học dữ liệu trên đám mây và các lợi ích của nó. | [bài học](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) và [Maud](https://twitter.com/maudstweets) |
+| 18 | Khoa học Dữ liệu trên điện toán đám mây | [Dữ liệu Đám mây](5-Data-Science-In-Cloud/README.md) | Huấn luyện mô hình sử dụng công cụ Low Code. |[bài học](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) và [Maud](https://twitter.com/maudstweets) |
+| 19 | Khoa học Dữ liệu trên điện toán đám mây | [Dữ liệu Đám mây](5-Data-Science-In-Cloud/README.md) | Triển khai mô hình với Azure Machine Learning Studio. | [bài học](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) và [Maud](https://twitter.com/maudstweets) |
+| 20 | Khoa học Dữ liệu trong thực tế | [Trong thực tế](6-Data-Science-In-Wild/README.md) | Các dự án khoa học dữ liệu trong thế giới thực. | [bài học](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
-Thực hiện các bước sau để mở mẫu này trong Codespace:
-1. Nhấn vào menu thả xuống Code và chọn tùy chọn Mở với Codespaces.
-2. Chọn + New codespace ở dưới cùng của bảng điều khiển.
-Xem thêm thông tin tại [tài liệu GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
+Thực hiện các bước sau để mở bản mẫu này trong Codespace:
+1. Nhấp vào menu thả xuống Code và chọn tùy chọn Open with Codespaces.
+2. Chọn + New codespace ở phía dưới của bảng điều khiển.
+Để biết thêm thông tin, xem [tài liệu GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
-Thực hiện các bước sau để mở kho này trong container sử dụng máy cục bộ và VSCode với tiện ích Remote - Containers của VS Code:
+Thực hiện các bước sau để mở kho lưu trữ này trong container bằng máy tính cục bộ và VSCode sử dụng tiện ích mở rộng VS Code Remote - Containers:
-1. Nếu đây là lần đầu bạn dùng container phát triển, vui lòng đảm bảo hệ thống của bạn đáp ứng các yêu cầu (ví dụ đã cài Docker) trong [tài liệu bắt đầu](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
+1. Nếu đây là lần đầu bạn sử dụng container phát triển, hãy đảm bảo hệ thống của bạn đáp ứng các yêu cầu trước (ví dụ đã cài Docker) trong [tài liệu bắt đầu](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
-Để sử dụng kho này, bạn có thể mở kho trong một volume Docker cách ly:
+Để sử dụng kho lưu trữ này, bạn có thể mở kho lưu trữ trong một volume Docker riêng biệt:
-**Lưu ý**: Về cơ bản, lệnh Remote-Containers: **Clone Repository in Container Volume...** sẽ được dùng để sao chép mã nguồn vào volume Docker thay vì hệ thống tập tin cục bộ. [Volume](https://docs.docker.com/storage/volumes/) là cơ chế ưu tiên để lưu trữ dữ liệu container.
+**Lưu ý**: Bên trong, điều này sẽ sử dụng lệnh Remote-Containers: **Clone Repository in Container Volume...** để sao chép mã nguồn vào một volume Docker thay vì hệ thống tập tin cục bộ. [Volumes](https://docs.docker.com/storage/volumes/) là cơ chế ưu tiên để lưu trữ dữ liệu container.
-Hoặc mở bản sao đã clone hoặc tải về trên máy:
+Hoặc mở một phiên bản đã sao chép hoặc tải về kho lưu trữ trên máy cục bộ:
-- Clone kho này vào hệ thống tập tin cục bộ.
+- Sao chép kho lưu trữ này vào hệ thống tập tin cục bộ của bạn.
- Nhấn F1 và chọn lệnh **Remote-Containers: Open Folder in Container...**.
-- Chọn bản sao của thư mục này, chờ container khởi động và thử nghiệm.
+- Chọn bản sao lớp này, chờ container khởi động và thử nghiệm.
## Truy cập ngoại tuyến
-Bạn có thể chạy tài liệu này ngoại tuyến bằng cách dùng [Docsify](https://docsify.js.org/#/). Fork kho này, [cài đặt Docsify](https://docsify.js.org/#/quickstart) trên máy của bạn, sau đó trong thư mục gốc kho, gõ `docsify serve`. Trang web sẽ được phục vụ tại cổng 3000 trên localhost của bạn: `localhost:3000`.
+Bạn có thể chạy tài liệu này ngoại tuyến bằng cách sử dụng [Docsify](https://docsify.js.org/#/). Fork repo này, [cài đặt Docsify](https://docsify.js.org/#/quickstart) trên máy của bạn, sau đó ở thư mục gốc của repo, gõ `docsify serve`. Website sẽ được phục vụ trên cổng 3000 trên localhost của bạn: `localhost:3000`.
-> Lưu ý, các notebook sẽ không được hiển thị qua Docsify, nên khi bạn cần chạy notebook, hãy làm điều đó riêng biệt trong VS Code chạy kernel Python.
+> Lưu ý, sổ tay (notebooks) sẽ không được Render qua Docsify, vì vậy khi cần chạy sổ tay, hãy làm riêng bên trong VS Code với kernel Python.
## Các chương trình học khác
-Nhóm chúng tôi sản xuất các chương trình học khác! Xem thêm:
+Đội ngũ chúng tôi còn sản xuất các chương trình học khác! Hãy xem:
### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
---
### Azure / Edge / MCP / Agents
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-### Dòng AI Sinh tạo
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+### Chuỗi AI Sinh Tạo
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
---
-### Học Tập Cốt lõi
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+### Học Cốt Lõi
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
---
-### Dòng Copilot
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+### Chuỗi Copilot
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-## Nhận Trợ giúp
+## Nhận Trợ Giúp
-**Gặp sự cố?** Kiểm tra [Hướng dẫn Khắc phục sự cố](TROUBLESHOOTING.md) của chúng tôi để tìm giải pháp cho các vấn đề phổ biến.
+**Gặp sự cố?** Hãy xem [Hướng Dẫn Khắc Phục Sự Cố](TROUBLESHOOTING.md) để tìm giải pháp cho các vấn đề thường gặp.
-Nếu bạn bị mắc kẹt hoặc có bất kỳ câu hỏi nào về xây dựng ứng dụng AI. Tham gia cùng những học viên và nhà phát triển có kinh nghiệm trong các cuộc thảo luận về MCP. Đây là một cộng đồng hỗ trợ, nơi các câu hỏi được hoan nghênh và kiến thức được chia sẻ miễn phí.
+Nếu bạn bị mắc kẹt hoặc có bất kỳ câu hỏi nào về việc xây dựng ứng dụng AI. Tham gia cùng những người học khác và các nhà phát triển giàu kinh nghiệm trong các cuộc thảo luận về MCP. Đây là một cộng đồng hỗ trợ, nơi các câu hỏi được chào đón và kiến thức được chia sẻ tự do.
[](https://discord.gg/nTYy5BXMWG)
-Nếu bạn có phản hồi về sản phẩm hoặc lỗi trong quá trình xây dựng, vui lòng truy cập:
+Nếu bạn có phản hồi về sản phẩm hoặc gặp lỗi trong quá trình xây dựng, hãy truy cập:
-[](https://aka.ms/foundry/forum)
+[](https://aka.ms/foundry/forum)
---
**Tuyên bố từ chối trách nhiệm**:
-Tài liệu này đã được dịch bằng dịch vụ dịch thuật AI [Co-op Translator](https://github.com/Azure/co-op-translator). Mặc dù chúng tôi cố gắng đảm bảo độ chính xác, xin lưu ý rằng bản dịch tự động có thể chứa lỗi hoặc sự không chính xác. Tài liệu gốc bằng ngôn ngữ nguyên bản nên được coi là nguồn chính xác và đáng tin cậy. Đối với thông tin quan trọng, nên sử dụng dịch vụ dịch thuật chuyên nghiệp do con người thực hiện. Chúng tôi không chịu trách nhiệm về bất kỳ sự hiểu lầm hay giải thích sai nào phát sinh từ việc sử dụng bản dịch này.
+Tài liệu này đã được dịch bằng dịch vụ dịch thuật AI [Co-op Translator](https://github.com/Azure/co-op-translator). Mặc dù chúng tôi cố gắng đảm bảo độ chính xác, xin lưu ý rằng các bản dịch tự động có thể chứa lỗi hoặc không chính xác. Tài liệu gốc bằng ngôn ngữ gốc nên được xem là nguồn tham khảo chính xác nhất. Đối với những thông tin quan trọng, khuyến nghị sử dụng dịch vụ dịch thuật chuyên nghiệp do con người thực hiện. Chúng tôi không chịu trách nhiệm về bất kỳ sự hiểu nhầm hoặc giải thích sai nào phát sinh từ việc sử dụng bản dịch này.
\ No newline at end of file
diff --git a/translations/vi/SECURITY.md b/translations/vi/SECURITY.md
index 95a1be46..de85e1ab 100644
--- a/translations/vi/SECURITY.md
+++ b/translations/vi/SECURITY.md
@@ -1,12 +1,3 @@
-
## Bảo mật
Microsoft coi trọng vấn đề bảo mật của các sản phẩm và dịch vụ phần mềm của mình, bao gồm tất cả các kho mã nguồn được quản lý thông qua các tổ chức GitHub của chúng tôi, bao gồm [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), và [các tổ chức GitHub của chúng tôi](https://opensource.microsoft.com/).
diff --git a/translations/vi/SUPPORT.md b/translations/vi/SUPPORT.md
index 37e7baff..27e246fb 100644
--- a/translations/vi/SUPPORT.md
+++ b/translations/vi/SUPPORT.md
@@ -1,12 +1,3 @@
-
# Hỗ trợ
## Cách gửi vấn đề và nhận trợ giúp
diff --git a/translations/vi/TROUBLESHOOTING.md b/translations/vi/TROUBLESHOOTING.md
index 63f88f0b..209e00b6 100644
--- a/translations/vi/TROUBLESHOOTING.md
+++ b/translations/vi/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# Hướng Dẫn Khắc Phục Sự Cố
Hướng dẫn này cung cấp các giải pháp cho những vấn đề thường gặp khi bạn làm việc với chương trình học "Data Science for Beginners".
diff --git a/translations/vi/USAGE.md b/translations/vi/USAGE.md
index b21cea0f..738a7dea 100644
--- a/translations/vi/USAGE.md
+++ b/translations/vi/USAGE.md
@@ -1,12 +1,3 @@
-
# Hướng Dẫn Sử Dụng
Hướng dẫn này cung cấp các ví dụ và quy trình làm việc phổ biến để sử dụng chương trình học "Khoa học Dữ liệu cho Người Mới Bắt Đầu".
diff --git a/translations/vi/docs/_sidebar.md b/translations/vi/docs/_sidebar.md
index 9508d9e5..ae33e83b 100644
--- a/translations/vi/docs/_sidebar.md
+++ b/translations/vi/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- Giới thiệu
- [Định nghĩa Khoa học Dữ liệu](../1-Introduction/01-defining-data-science/README.md)
- [Đạo đức trong Khoa học Dữ liệu](../1-Introduction/02-ethics/README.md)
diff --git a/translations/vi/examples/README.md b/translations/vi/examples/README.md
index e5a23b14..e4817e93 100644
--- a/translations/vi/examples/README.md
+++ b/translations/vi/examples/README.md
@@ -1,12 +1,3 @@
-
# Các Ví Dụ Khoa Học Dữ Liệu Dành Cho Người Mới Bắt Đầu
Chào mừng bạn đến với thư mục ví dụ! Bộ sưu tập các ví dụ đơn giản, được chú thích rõ ràng này được thiết kế để giúp bạn bắt đầu với khoa học dữ liệu, ngay cả khi bạn là người hoàn toàn mới.
diff --git a/translations/vi/for-teachers.md b/translations/vi/for-teachers.md
index 7fefc2b4..40b48dfb 100644
--- a/translations/vi/for-teachers.md
+++ b/translations/vi/for-teachers.md
@@ -1,12 +1,3 @@
-
## Dành cho Giáo viên
Bạn muốn sử dụng chương trình học này trong lớp học của mình? Hãy thoải mái sử dụng nhé!
diff --git a/translations/vi/quiz-app/README.md b/translations/vi/quiz-app/README.md
index f551e7cf..a90a637e 100644
--- a/translations/vi/quiz-app/README.md
+++ b/translations/vi/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# Câu hỏi trắc nghiệm
Các câu hỏi trắc nghiệm này là các bài kiểm tra trước và sau bài giảng trong chương trình học khoa học dữ liệu tại https://aka.ms/datascience-beginners
diff --git a/translations/vi/sketchnotes/README.md b/translations/vi/sketchnotes/README.md
index 2b57bc53..4e91c6a4 100644
--- a/translations/vi/sketchnotes/README.md
+++ b/translations/vi/sketchnotes/README.md
@@ -1,12 +1,3 @@
-
Tìm tất cả các bản vẽ phác thảo tại đây!
## Ghi nhận
diff --git a/translations/zh-CN/.co-op-translator.json b/translations/zh-CN/.co-op-translator.json
new file mode 100644
index 00000000..1924b25f
--- /dev/null
+++ b/translations/zh-CN/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:38:39+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "zh-CN"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-25T16:56:01+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-25T16:57:01+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:06:21+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "zh-CN"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-25T16:49:12+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T11:40:07+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "zh-CN"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-25T17:01:00+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:01:37+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "zh-CN"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-25T17:10:18+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-25T16:37:59+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "zh-CN"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T10:41:14+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "zh-CN"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:52:59+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T11:30:08+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "zh-CN"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-25T16:36:11+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:26:30+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "zh-CN"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-25T16:31:03+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T11:32:04+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "zh-CN"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-25T16:23:33+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-25T16:12:28+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T11:35:29+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-25T18:39:15+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T11:36:56+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-25T18:07:50+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T11:34:26+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-25T18:43:02+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:29:17+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-25T18:12:09+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T11:35:54+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-25T18:02:36+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-25T18:03:58+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-25T18:03:21+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-25T18:20:34+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-25T18:25:50+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-25T18:12:47+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-25T18:15:57+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-25T18:30:29+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-25T18:16:40+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-25T18:26:32+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "zh-CN"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-25T17:56:53+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "zh-CN"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:26:53+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "zh-CN"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-25T17:44:36+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:26:41+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "zh-CN"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-25T17:47:42+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:27:10+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "zh-CN"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-25T17:55:59+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-25T17:40:43+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "zh-CN"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T11:28:32+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "zh-CN"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-25T17:31:28+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T11:27:03+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "zh-CN"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-25T17:26:50+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T11:29:32+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "zh-CN"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-25T17:38:17+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-25T17:19:14+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "zh-CN"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:16:26+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "zh-CN"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-25T17:18:01+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "zh-CN"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-25T17:11:54+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "zh-CN"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:05:02+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "zh-CN"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-25T16:10:06+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "zh-CN"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:29:57+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "zh-CN"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:15:57+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "zh-CN"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:13:53+00:00",
+ "source_file": "README.md",
+ "language_code": "zh-CN"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-25T16:10:40+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "zh-CN"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-25T16:08:07+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "zh-CN"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:31:56+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "zh-CN"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:54:44+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "zh-CN"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-25T16:36:56+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "zh-CN"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:57:17+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "zh-CN"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:52:53+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "zh-CN"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-25T17:39:05+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "zh-CN"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-25T17:11:21+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "zh-CN"
+ }
+}
\ No newline at end of file
diff --git a/translations/zh/1-Introduction/01-defining-data-science/README.md b/translations/zh-CN/1-Introduction/01-defining-data-science/README.md
similarity index 96%
rename from translations/zh/1-Introduction/01-defining-data-science/README.md
rename to translations/zh-CN/1-Introduction/01-defining-data-science/README.md
index b7cc28a7..fd497feb 100644
--- a/translations/zh/1-Introduction/01-defining-data-science/README.md
+++ b/translations/zh-CN/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# 数据科学定义
|  绘制的速写笔记](../../sketchnotes/01-Definitions.png) |
@@ -15,7 +6,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-[](https://youtu.be/beZ7Mb_oz9I)
+[](https://youtu.be/beZ7Mb_oz9I)
## [课前测验](https://ff-quizzes.netlify.app/en/ds/quiz/0)
@@ -153,7 +144,7 @@ CO_OP_TRANSLATOR_METADATA:
在这个挑战中,我们将尝试通过分析文本来找到与数据科学领域相关的概念。我们将选取一篇关于数据科学的维基百科文章,下载并处理文本,然后构建一个像这样的词云:
-
+
访问 [`notebook.ipynb`](../../../../1-Introduction/01-defining-data-science/notebook.ipynb ':ignore') 阅读代码。你也可以运行代码,实时查看它如何执行所有数据转换。
diff --git a/translations/zh/1-Introduction/01-defining-data-science/assignment.md b/translations/zh-CN/1-Introduction/01-defining-data-science/assignment.md
similarity index 89%
rename from translations/zh/1-Introduction/01-defining-data-science/assignment.md
rename to translations/zh-CN/1-Introduction/01-defining-data-science/assignment.md
index b6e67339..933b07c4 100644
--- a/translations/zh/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/zh-CN/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# 作业:数据科学场景
在本次作业中,我们希望你思考一些现实生活中的流程或问题,涉及不同的问题领域,并考虑如何通过数据科学流程来改进它们。请思考以下问题:
diff --git a/translations/zh/1-Introduction/01-defining-data-science/notebook.ipynb b/translations/zh-CN/1-Introduction/01-defining-data-science/notebook.ipynb
similarity index 100%
rename from translations/zh/1-Introduction/01-defining-data-science/notebook.ipynb
rename to translations/zh-CN/1-Introduction/01-defining-data-science/notebook.ipynb
diff --git a/translations/zh/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/zh-CN/1-Introduction/01-defining-data-science/solution/assignment.md
similarity index 91%
rename from translations/zh/1-Introduction/01-defining-data-science/solution/assignment.md
rename to translations/zh-CN/1-Introduction/01-defining-data-science/solution/assignment.md
index 16426830..bb7b96d3 100644
--- a/translations/zh/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/zh-CN/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# 作业:数据科学场景
在这个第一次作业中,我们希望你思考一些现实生活中的过程或问题,涉及不同的领域,并考虑如何通过数据科学流程来改进它。请思考以下问题:
diff --git a/translations/zh/1-Introduction/01-defining-data-science/solution/notebook.ipynb b/translations/zh-CN/1-Introduction/01-defining-data-science/solution/notebook.ipynb
similarity index 100%
rename from translations/zh/1-Introduction/01-defining-data-science/solution/notebook.ipynb
rename to translations/zh-CN/1-Introduction/01-defining-data-science/solution/notebook.ipynb
diff --git a/translations/zh/1-Introduction/02-ethics/README.md b/translations/zh-CN/1-Introduction/02-ethics/README.md
similarity index 99%
rename from translations/zh/1-Introduction/02-ethics/README.md
rename to translations/zh-CN/1-Introduction/02-ethics/README.md
index 037fd7af..5dca30dc 100644
--- a/translations/zh/1-Introduction/02-ethics/README.md
+++ b/translations/zh-CN/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# 数据伦理简介
| 绘制的速写笔记 ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/zh/1-Introduction/02-ethics/assignment.md b/translations/zh-CN/1-Introduction/02-ethics/assignment.md
similarity index 90%
rename from translations/zh/1-Introduction/02-ethics/assignment.md
rename to translations/zh-CN/1-Introduction/02-ethics/assignment.md
index e4869acd..9290b7fd 100644
--- a/translations/zh/1-Introduction/02-ethics/assignment.md
+++ b/translations/zh-CN/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## 撰写数据伦理案例研究
## 说明
diff --git a/translations/zh/1-Introduction/03-defining-data/README.md b/translations/zh-CN/1-Introduction/03-defining-data/README.md
similarity index 96%
rename from translations/zh/1-Introduction/03-defining-data/README.md
rename to translations/zh-CN/1-Introduction/03-defining-data/README.md
index 3077282f..8b4a8865 100644
--- a/translations/zh/1-Introduction/03-defining-data/README.md
+++ b/translations/zh-CN/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# 定义数据
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/zh/1-Introduction/03-defining-data/assignment.md b/translations/zh-CN/1-Introduction/03-defining-data/assignment.md
similarity index 87%
rename from translations/zh/1-Introduction/03-defining-data/assignment.md
rename to translations/zh-CN/1-Introduction/03-defining-data/assignment.md
index 21ce3500..c216b968 100644
--- a/translations/zh/1-Introduction/03-defining-data/assignment.md
+++ b/translations/zh-CN/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# 数据集分类
## 说明
diff --git a/translations/zh/1-Introduction/04-stats-and-probability/README.md b/translations/zh-CN/1-Introduction/04-stats-and-probability/README.md
similarity index 94%
rename from translations/zh/1-Introduction/04-stats-and-probability/README.md
rename to translations/zh-CN/1-Introduction/04-stats-and-probability/README.md
index 47845fbd..0b992ee7 100644
--- a/translations/zh/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/zh-CN/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# 统计与概率简要介绍
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -15,7 +6,7 @@ CO_OP_TRANSLATOR_METADATA:
统计学和概率论是数学中两个密切相关的领域,与数据科学高度相关。虽然在没有深厚数学知识的情况下也可以处理数据,但了解一些基本概念仍然是有益的。在这里,我们将提供一个简短的介绍,帮助您入门。
-[](https://youtu.be/Z5Zy85g4Yjw)
+[](https://youtu.be/Z5Zy85g4Yjw)
## [课前测验](https://ff-quizzes.netlify.app/en/ds/quiz/6)
@@ -39,7 +30,7 @@ CO_OP_TRANSLATOR_METADATA:
我们只能讨论变量落入某个值区间的概率,例如 P(t1≤X2)。在这种情况下,概率分布由 **概率密度函数** p(x) 描述,其满足:
-![P(t_1\le X
+
在这里,我们还计算了 **四分位距** IQR=Q3-Q1,以及所谓的 **异常值**——位于区间 [Q1-1.5*IQR,Q3+1.5*IQR] 之外的值。
@@ -82,11 +73,11 @@ CO_OP_TRANSLATOR_METADATA:
以下是显示我们数据的均值、中位数和四分位数的箱形图:
-
+
由于我们的数据包含关于不同球员 **角色** 的信息,我们还可以按角色绘制箱形图——这将帮助我们了解参数值在不同角色之间的差异。这次我们考虑身高:
-
+
此图表表明,平均而言,一垒手的身高高于二垒手的身高。在本课程后面,我们将学习如何更正式地验证这一假设,以及如何证明我们的数据在统计上显著。
@@ -94,7 +85,7 @@ CO_OP_TRANSLATOR_METADATA:
为了查看我们数据的分布,我们可以绘制一个称为 **直方图** 的图表。X 轴包含多个不同的体重区间(即 **箱**),而 Y 轴显示我们的随机变量样本落入某个区间的次数。
-
+
从这个直方图可以看出,所有值都集中在某个平均体重附近,离平均体重越远,出现该体重值的次数越少。也就是说,棒球运动员的体重与平均体重差异很大的可能性非常小。体重的方差显示了体重与平均体重可能的差异程度。
@@ -112,7 +103,7 @@ samples = np.random.normal(mean,std,1000)
如果我们绘制生成样本的直方图,我们会看到与上图非常相似的图像。如果我们增加样本数量和箱数量,我们可以生成更接近理想的正态分布图像:
-
+
*均值=0,标准差=1 的正态分布*
@@ -234,7 +225,7 @@ array([[1. , 0.52959196],
在我们的例子中,值 0.53 表明一个人的体重和身高之间存在一定的相关性。我们还可以绘制一个散点图,将一个值与另一个值进行比较,以直观地观察关系:
-
+
> 更多关于相关性和协方差的示例可以在 [配套笔记本](notebook.ipynb) 中找到。
diff --git a/translations/zh/1-Introduction/04-stats-and-probability/assignment.ipynb b/translations/zh-CN/1-Introduction/04-stats-and-probability/assignment.ipynb
similarity index 100%
rename from translations/zh/1-Introduction/04-stats-and-probability/assignment.ipynb
rename to translations/zh-CN/1-Introduction/04-stats-and-probability/assignment.ipynb
diff --git a/translations/zh/1-Introduction/04-stats-and-probability/assignment.md b/translations/zh-CN/1-Introduction/04-stats-and-probability/assignment.md
similarity index 87%
rename from translations/zh/1-Introduction/04-stats-and-probability/assignment.md
rename to translations/zh-CN/1-Introduction/04-stats-and-probability/assignment.md
index 0325d181..88c3964c 100644
--- a/translations/zh/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/zh-CN/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# 小型糖尿病研究
在本次作业中,我们将使用一个小型糖尿病患者数据集,数据来源于[这里](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)。
diff --git a/translations/zh/1-Introduction/04-stats-and-probability/notebook.ipynb b/translations/zh-CN/1-Introduction/04-stats-and-probability/notebook.ipynb
similarity index 100%
rename from translations/zh/1-Introduction/04-stats-and-probability/notebook.ipynb
rename to translations/zh-CN/1-Introduction/04-stats-and-probability/notebook.ipynb
diff --git a/translations/zh/1-Introduction/04-stats-and-probability/solution/assignment.ipynb b/translations/zh-CN/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
similarity index 100%
rename from translations/zh/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
rename to translations/zh-CN/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
diff --git a/translations/zh/1-Introduction/README.md b/translations/zh-CN/1-Introduction/README.md
similarity index 78%
rename from translations/zh/1-Introduction/README.md
rename to translations/zh-CN/1-Introduction/README.md
index 4e569a4a..4731208a 100644
--- a/translations/zh/1-Introduction/README.md
+++ b/translations/zh-CN/1-Introduction/README.md
@@ -1,15 +1,6 @@
-
# 数据科学简介
-
+
> 图片由 Stephen Dawson 提供,来自 Unsplash
在这些课程中,您将了解数据科学的定义,并学习数据科学家必须考虑的伦理问题。您还将学习数据的定义,并对统计学和概率论有一些初步了解,这些是数据科学的核心学术领域。
diff --git a/translations/zh/2-Working-With-Data/05-relational-databases/README.md b/translations/zh-CN/2-Working-With-Data/05-relational-databases/README.md
similarity index 97%
rename from translations/zh/2-Working-With-Data/05-relational-databases/README.md
rename to translations/zh-CN/2-Working-With-Data/05-relational-databases/README.md
index d11177ba..5cd2000d 100644
--- a/translations/zh/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/zh-CN/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# 使用数据:关系型数据库
| 绘制的草图笔记 ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/zh/2-Working-With-Data/05-relational-databases/assignment.md b/translations/zh-CN/2-Working-With-Data/05-relational-databases/assignment.md
similarity index 93%
rename from translations/zh/2-Working-With-Data/05-relational-databases/assignment.md
rename to translations/zh-CN/2-Working-With-Data/05-relational-databases/assignment.md
index f04a3725..e37af5f1 100644
--- a/translations/zh/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/zh-CN/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# 显示机场数据
您已获得一个基于 [SQLite](https://sqlite.org/index.html) 的 [数据库](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db),其中包含有关机场的信息。以下是数据库的模式。您将使用 [SQLite 扩展](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) 在 [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) 中显示不同城市机场的信息。
diff --git a/translations/zh/2-Working-With-Data/06-non-relational/README.md b/translations/zh-CN/2-Working-With-Data/06-non-relational/README.md
similarity index 97%
rename from translations/zh/2-Working-With-Data/06-non-relational/README.md
rename to translations/zh-CN/2-Working-With-Data/06-non-relational/README.md
index 2c7a87cf..837f165e 100644
--- a/translations/zh/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/zh-CN/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# 使用数据:非关系型数据
| 绘制的草图笔记](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/zh/2-Working-With-Data/06-non-relational/assignment.md b/translations/zh-CN/2-Working-With-Data/06-non-relational/assignment.md
similarity index 82%
rename from translations/zh/2-Working-With-Data/06-non-relational/assignment.md
rename to translations/zh-CN/2-Working-With-Data/06-non-relational/assignment.md
index 773c47a5..1d5ed18d 100644
--- a/translations/zh/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/zh-CN/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# 苏打利润
## 说明
diff --git a/translations/zh/2-Working-With-Data/07-python/R/notebook.ipynb b/translations/zh-CN/2-Working-With-Data/07-python/R/notebook.ipynb
similarity index 100%
rename from translations/zh/2-Working-With-Data/07-python/R/notebook.ipynb
rename to translations/zh-CN/2-Working-With-Data/07-python/R/notebook.ipynb
diff --git a/translations/zh/2-Working-With-Data/07-python/README.md b/translations/zh-CN/2-Working-With-Data/07-python/README.md
similarity index 94%
rename from translations/zh/2-Working-With-Data/07-python/README.md
rename to translations/zh-CN/2-Working-With-Data/07-python/README.md
index 02b6a403..86c382cb 100644
--- a/translations/zh/2-Working-With-Data/07-python/README.md
+++ b/translations/zh-CN/2-Working-With-Data/07-python/README.md
@@ -1,19 +1,10 @@
-
# 使用数据:Python和Pandas库
|  ](../../sketchnotes/07-WorkWithPython.png) |
| :-------------------------------------------------------------------------------------------------------: |
| 使用Python - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
-[](https://youtu.be/dZjWOGbsN4Y)
+[](https://youtu.be/dZjWOGbsN4Y)
虽然数据库提供了非常高效的方式来存储数据并通过查询语言进行查询,但最灵活的数据处理方式是编写自己的程序来操作数据。在许多情况下,使用数据库查询可能更有效。然而,当需要更复杂的数据处理时,SQL可能无法轻松完成。
数据处理可以用任何编程语言编写,但有些语言在处理数据方面更高级。数据科学家通常偏好以下语言之一:
@@ -72,7 +63,7 @@ print(f"Length of index is {len(idx)}")
items_sold = pd.Series(np.random.randint(25,50,size=len(idx)),index=idx)
items_sold.plot()
```
-
+
假设每周我们都会举办一个朋友聚会,并额外拿出10盒冰淇淋用于聚会。我们可以创建另一个以周为索引的Series来展示这一点:
```python
@@ -83,7 +74,7 @@ additional_items = pd.Series(10,index=pd.date_range(start_date,end_date,freq="W"
total_items = items_sold.add(additional_items,fill_value=0)
total_items.plot()
```
-
+
> **注意** 我们没有使用简单的语法 `total_items+additional_items`。如果使用这种方法,我们会在结果Series中得到许多`NaN`(*Not a Number*)值。这是因为在`additional_items`的某些索引点上缺少值,而将`NaN`与任何值相加都会得到`NaN`。因此,我们需要在相加时指定`fill_value`参数。
@@ -92,7 +83,7 @@ total_items.plot()
monthly = total_items.resample("1M").mean()
ax = monthly.plot(kind='bar')
```
-
+
### DataFrame(数据框)
@@ -218,7 +209,7 @@ df = pd.read_csv('file.csv')
由于我们想演示如何处理数据,我们邀请你打开 [`notebook-covidspread.ipynb`](notebook-covidspread.ipynb) 并从头到尾阅读。你也可以执行单元格,并完成我们在最后留下的一些挑战。
-
+
> 如果你不知道如何在 Jupyter Notebook 中运行代码,可以查看 [这篇文章](https://soshnikov.com/education/how-to-execute-notebooks-from-github/)。
@@ -240,7 +231,7 @@ df = pd.read_csv('file.csv')
打开 [`notebook-papers.ipynb`](notebook-papers.ipynb) 并从头到尾阅读。你也可以执行单元格,并完成我们在最后留下的一些挑战。
-
+
## 处理图像数据
diff --git a/translations/zh/2-Working-With-Data/07-python/assignment.md b/translations/zh-CN/2-Working-With-Data/07-python/assignment.md
similarity index 89%
rename from translations/zh/2-Working-With-Data/07-python/assignment.md
rename to translations/zh-CN/2-Working-With-Data/07-python/assignment.md
index f5a72ff1..3276d926 100644
--- a/translations/zh/2-Working-With-Data/07-python/assignment.md
+++ b/translations/zh-CN/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# Python数据处理作业
在本次作业中,我们将要求你详细阐述我们在挑战中开始开发的代码。作业分为两个部分:
diff --git a/translations/zh/2-Working-With-Data/07-python/notebook-covidspread.ipynb b/translations/zh-CN/2-Working-With-Data/07-python/notebook-covidspread.ipynb
similarity index 100%
rename from translations/zh/2-Working-With-Data/07-python/notebook-covidspread.ipynb
rename to translations/zh-CN/2-Working-With-Data/07-python/notebook-covidspread.ipynb
diff --git a/translations/zh/2-Working-With-Data/07-python/notebook-papers.ipynb b/translations/zh-CN/2-Working-With-Data/07-python/notebook-papers.ipynb
similarity index 100%
rename from translations/zh/2-Working-With-Data/07-python/notebook-papers.ipynb
rename to translations/zh-CN/2-Working-With-Data/07-python/notebook-papers.ipynb
diff --git a/translations/zh/2-Working-With-Data/07-python/notebook.ipynb b/translations/zh-CN/2-Working-With-Data/07-python/notebook.ipynb
similarity index 100%
rename from translations/zh/2-Working-With-Data/07-python/notebook.ipynb
rename to translations/zh-CN/2-Working-With-Data/07-python/notebook.ipynb
diff --git a/translations/zh/2-Working-With-Data/08-data-preparation/README.md b/translations/zh-CN/2-Working-With-Data/08-data-preparation/README.md
similarity index 98%
rename from translations/zh/2-Working-With-Data/08-data-preparation/README.md
rename to translations/zh-CN/2-Working-With-Data/08-data-preparation/README.md
index 20b66d27..9edc2d90 100644
--- a/translations/zh/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/zh-CN/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# 数据处理:数据准备
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/zh/2-Working-With-Data/08-data-preparation/assignment.ipynb b/translations/zh-CN/2-Working-With-Data/08-data-preparation/assignment.ipynb
similarity index 100%
rename from translations/zh/2-Working-With-Data/08-data-preparation/assignment.ipynb
rename to translations/zh-CN/2-Working-With-Data/08-data-preparation/assignment.ipynb
diff --git a/translations/zh/2-Working-With-Data/08-data-preparation/assignment.md b/translations/zh-CN/2-Working-With-Data/08-data-preparation/assignment.md
similarity index 83%
rename from translations/zh/2-Working-With-Data/08-data-preparation/assignment.md
rename to translations/zh-CN/2-Working-With-Data/08-data-preparation/assignment.md
index 106ccd9d..a3f05c5e 100644
--- a/translations/zh/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/zh-CN/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# 评估表单数据
一位客户正在测试一个[小型表单](../../../../2-Working-With-Data/08-data-preparation/index.html),以收集有关其客户群的一些基本数据。他们将测试结果带给你,希望你验证他们收集的数据。你可以在浏览器中打开 `index.html` 页面查看表单。
diff --git a/translations/zh/2-Working-With-Data/08-data-preparation/notebook.ipynb b/translations/zh-CN/2-Working-With-Data/08-data-preparation/notebook.ipynb
similarity index 100%
rename from translations/zh/2-Working-With-Data/08-data-preparation/notebook.ipynb
rename to translations/zh-CN/2-Working-With-Data/08-data-preparation/notebook.ipynb
diff --git a/translations/zh/2-Working-With-Data/README.md b/translations/zh-CN/2-Working-With-Data/README.md
similarity index 80%
rename from translations/zh/2-Working-With-Data/README.md
rename to translations/zh-CN/2-Working-With-Data/README.md
index b59bce68..9c66731e 100644
--- a/translations/zh/2-Working-With-Data/README.md
+++ b/translations/zh-CN/2-Working-With-Data/README.md
@@ -1,15 +1,6 @@
-
# 数据处理
-
+
> 图片由 Alexander Sinn 提供,来自 Unsplash
在这些课程中,您将学习一些管理、操作和在应用程序中使用数据的方法。您将了解关系型和非关系型数据库,以及数据如何存储在其中。您将学习使用 Python 管理数据的基础知识,并探索多种使用 Python 管理和挖掘数据的方法。
diff --git a/translations/zh/3-Data-Visualization/09-visualization-quantities/README.md b/translations/zh-CN/3-Data-Visualization/09-visualization-quantities/README.md
similarity index 97%
rename from translations/zh/3-Data-Visualization/09-visualization-quantities/README.md
rename to translations/zh-CN/3-Data-Visualization/09-visualization-quantities/README.md
index a8266bd0..2b40917f 100644
--- a/translations/zh/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/zh-CN/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# 可视化数量
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/zh/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/zh-CN/3-Data-Visualization/09-visualization-quantities/assignment.md
similarity index 79%
rename from translations/zh/3-Data-Visualization/09-visualization-quantities/assignment.md
rename to translations/zh-CN/3-Data-Visualization/09-visualization-quantities/assignment.md
index 4eb0fd6e..4621c468 100644
--- a/translations/zh/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/zh-CN/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# 折线图、散点图和柱状图
## 说明
diff --git a/translations/zh/3-Data-Visualization/09-visualization-quantities/notebook.ipynb b/translations/zh-CN/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
similarity index 100%
rename from translations/zh/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
rename to translations/zh-CN/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
diff --git a/translations/zh/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb b/translations/zh-CN/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
similarity index 100%
rename from translations/zh/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
rename to translations/zh-CN/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
diff --git a/translations/zh/3-Data-Visualization/10-visualization-distributions/README.md b/translations/zh-CN/3-Data-Visualization/10-visualization-distributions/README.md
similarity index 97%
rename from translations/zh/3-Data-Visualization/10-visualization-distributions/README.md
rename to translations/zh-CN/3-Data-Visualization/10-visualization-distributions/README.md
index 36bcdb1b..bc5abf45 100644
--- a/translations/zh/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/zh-CN/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# 可视化分布
| 绘制的速记图](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/zh/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/zh-CN/3-Data-Visualization/10-visualization-distributions/assignment.md
similarity index 80%
rename from translations/zh/3-Data-Visualization/10-visualization-distributions/assignment.md
rename to translations/zh-CN/3-Data-Visualization/10-visualization-distributions/assignment.md
index b08c8652..75b78b18 100644
--- a/translations/zh/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/zh-CN/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# 运用你的技能
## 说明
diff --git a/translations/zh/3-Data-Visualization/10-visualization-distributions/notebook.ipynb b/translations/zh-CN/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
similarity index 100%
rename from translations/zh/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
rename to translations/zh-CN/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
diff --git a/translations/zh/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb b/translations/zh-CN/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
similarity index 100%
rename from translations/zh/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
rename to translations/zh-CN/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
diff --git a/translations/zh/3-Data-Visualization/11-visualization-proportions/README.md b/translations/zh-CN/3-Data-Visualization/11-visualization-proportions/README.md
similarity index 97%
rename from translations/zh/3-Data-Visualization/11-visualization-proportions/README.md
rename to translations/zh-CN/3-Data-Visualization/11-visualization-proportions/README.md
index 5380f539..cc8579ea 100644
--- a/translations/zh/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/zh-CN/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# 可视化比例
| 绘制的草图笔记](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/zh/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/zh-CN/3-Data-Visualization/11-visualization-proportions/assignment.md
similarity index 81%
rename from translations/zh/3-Data-Visualization/11-visualization-proportions/assignment.md
rename to translations/zh-CN/3-Data-Visualization/11-visualization-proportions/assignment.md
index de49aff0..af1afbd6 100644
--- a/translations/zh/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/zh-CN/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# 在 Excel 中试一试
## 操作指南
diff --git a/translations/zh/3-Data-Visualization/11-visualization-proportions/notebook.ipynb b/translations/zh-CN/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
similarity index 100%
rename from translations/zh/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
rename to translations/zh-CN/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
diff --git a/translations/zh/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb b/translations/zh-CN/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
similarity index 100%
rename from translations/zh/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
rename to translations/zh-CN/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
diff --git a/translations/zh/3-Data-Visualization/12-visualization-relationships/README.md b/translations/zh-CN/3-Data-Visualization/12-visualization-relationships/README.md
similarity index 89%
rename from translations/zh/3-Data-Visualization/12-visualization-relationships/README.md
rename to translations/zh-CN/3-Data-Visualization/12-visualization-relationships/README.md
index f30c8a1b..6fdaf1f4 100644
--- a/translations/zh/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/zh-CN/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# 可视化关系:关于蜂蜜的一切 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
@@ -51,7 +42,7 @@ honey.head()
```python
sns.relplot(x="priceperlb", y="state", data=honey, height=15, aspect=.5);
```
-
+
现在,用蜂蜜色调展示同样的数据,显示价格如何逐年变化。你可以通过添加一个“hue”参数来展示逐年的变化:
@@ -60,7 +51,7 @@ sns.relplot(x="priceperlb", y="state", data=honey, height=15, aspect=.5);
```python
sns.relplot(x="priceperlb", y="state", hue="year", palette="YlOrBr", data=honey, height=15, aspect=.5);
```
-
+
通过这个颜色方案的变化,你可以明显看到蜂蜜每磅价格在逐年强劲增长。如果你查看数据中的一个样本集(例如选择亚利桑那州),你会发现价格逐年上涨的模式,虽然有少数例外:
@@ -89,7 +80,7 @@ sns.relplot(x="priceperlb", y="state", size="year", data=honey, height=15, aspec
```
你可以看到点的大小逐渐增加。
-
+
这是否是一个简单的供需问题?由于气候变化和蜂群崩溃等因素,蜂蜜的供应逐年减少,因此价格上涨?
@@ -104,7 +95,7 @@ sns.relplot(x="year", y="priceperlb", kind="line", data=honey);
```
答案:是的,除了2003年左右的一些例外:
-
+
✅ 由于Seaborn对数据进行聚合,它通过绘制均值和均值周围的95%置信区间来显示“每个x值的多个测量值”。[来源](https://seaborn.pydata.org/tutorial/relational.html)。这种耗时的行为可以通过添加`ci=None`来禁用。
@@ -114,7 +105,7 @@ sns.relplot(x="year", y="priceperlb", kind="line", data=honey);
sns.relplot(x="year", y="totalprod", kind="line", data=honey);
```
-
+
答案:并不完全。如果你查看总产量,实际上在那一年似乎有所增加,尽管总体而言蜂蜜的产量在这些年间呈下降趋势。
@@ -139,7 +130,7 @@ sns.relplot(
```
在这个可视化中,你可以比较逐年的每群产量和蜂群数量,并将列的wrap设置为3:
-
+
对于这个数据集,逐年和各州之间的蜂群数量及其产量并没有特别显著的变化。是否有其他方法可以找到这两个变量之间的相关性?
@@ -162,7 +153,7 @@ sns.despine(right=False)
plt.ylabel('colony yield')
ax.figure.legend();
```
-
+
虽然2003年没有明显的异常,但这确实让我们以一个稍微乐观的结论结束这节课:尽管蜂群数量总体上在下降,但蜂群数量正在趋于稳定,尽管每群产量在减少。
diff --git a/translations/zh/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/zh-CN/3-Data-Visualization/12-visualization-relationships/assignment.md
similarity index 85%
rename from translations/zh/3-Data-Visualization/12-visualization-relationships/assignment.md
rename to translations/zh-CN/3-Data-Visualization/12-visualization-relationships/assignment.md
index ef0305a8..ab3f62af 100644
--- a/translations/zh/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/zh-CN/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# 探索蜂巢
## 指导
diff --git a/translations/zh/3-Data-Visualization/12-visualization-relationships/notebook.ipynb b/translations/zh-CN/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
similarity index 100%
rename from translations/zh/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
rename to translations/zh-CN/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
diff --git a/translations/zh/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb b/translations/zh-CN/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
similarity index 100%
rename from translations/zh/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
rename to translations/zh-CN/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
diff --git a/translations/zh/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/zh-CN/3-Data-Visualization/13-meaningful-visualizations/README.md
similarity index 97%
rename from translations/zh/3-Data-Visualization/13-meaningful-visualizations/README.md
rename to translations/zh-CN/3-Data-Visualization/13-meaningful-visualizations/README.md
index cb20de8f..1f7cd411 100644
--- a/translations/zh/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/zh-CN/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# 制作有意义的数据可视化
| ](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/zh/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/zh-CN/3-Data-Visualization/13-meaningful-visualizations/assignment.md
similarity index 80%
rename from translations/zh/3-Data-Visualization/13-meaningful-visualizations/assignment.md
rename to translations/zh-CN/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 650e3243..8b01d5e1 100644
--- a/translations/zh/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/zh-CN/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# 构建你自己的自定义可视化
## 指南
diff --git a/translations/zh/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb b/translations/zh-CN/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
similarity index 100%
rename from translations/zh/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
rename to translations/zh-CN/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
diff --git a/translations/zh/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/zh-CN/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
similarity index 76%
rename from translations/zh/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
rename to translations/zh-CN/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 5dea4ba3..6398ff7d 100644
--- a/translations/zh/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/zh-CN/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# 危险关系数据可视化项目
在开始之前,请确保您的计算机上已安装并运行了 NPM 和 Node。安装依赖项(npm install),然后在本地运行项目(npm run serve):
diff --git a/translations/zh/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/zh-CN/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
similarity index 76%
rename from translations/zh/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
rename to translations/zh-CN/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index ce028630..7a566b98 100644
--- a/translations/zh/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/zh-CN/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# 危险关系数据可视化项目
开始之前,请确保您的电脑上已安装 NPM 和 Node。安装依赖项(npm install),然后在本地运行项目(npm run serve):
diff --git a/translations/zh/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/zh-CN/3-Data-Visualization/R/09-visualization-quantities/README.md
similarity index 90%
rename from translations/zh/3-Data-Visualization/R/09-visualization-quantities/README.md
rename to translations/zh-CN/3-Data-Visualization/R/09-visualization-quantities/README.md
index df1f85f0..7cedf9c4 100644
--- a/translations/zh/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/zh-CN/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# 可视化数量
| 绘制的草图笔记](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
@@ -67,7 +58,7 @@ ggplot(data=birds, aes(x=Name, y=MaxWingspan,group=1)) +
```
在这里,你安装了 `ggplot2` 包并通过 `library("ggplot2")` 命令将其导入工作区。要在 ggplot 中绘制任何图表,使用 `ggplot()` 函数,并将数据集、x 和 y 变量作为属性指定。在这种情况下,我们使用 `geom_line()` 函数,因为我们要绘制折线图。
-
+
你立即注意到了什么?似乎至少有一个异常值——那是一个相当惊人的翼展!2000+ 厘米的翼展超过了 20 米——难道明尼苏达州有翼龙在飞翔?让我们调查一下。
@@ -85,7 +76,7 @@ ggplot(data=birds, aes(x=Name, y=MaxWingspan,group=1)) +
```
我们在 `theme` 中指定了角度,并在 `xlab()` 和 `ylab()` 中分别指定了 x 和 y 轴的标签。`ggtitle()` 为图表命名。
-
+
即使将标签旋转到 45 度,仍然太多了,难以阅读。让我们尝试另一种策略:仅标记那些异常值,并在图表内设置标签。你可以使用散点图来腾出更多空间进行标记:
@@ -101,7 +92,7 @@ ggplot(data=birds, aes(x=Name, y=MaxWingspan,group=1)) +
你发现了什么?
-
+
## 筛选数据
@@ -120,7 +111,7 @@ ggplot(data=birds_filtered, aes(x=Name, y=MaxWingspan,group=1)) +
```
我们创建了一个新的数据框 `birds_filtered`,然后绘制了一个散点图。通过筛选掉异常值,你的数据现在更加连贯且易于理解。
-
+
现在我们至少在翼展方面有了一个更干净的数据集,让我们进一步探索这些鸟类。
@@ -162,7 +153,7 @@ birds_filtered %>% group_by(Category) %>%
```
在以下代码片段中,我们安装了 [dplyr](https://www.rdocumentation.org/packages/dplyr/versions/0.7.8) 和 [lubridate](https://www.rdocumentation.org/packages/lubridate/versions/1.8.0) 包,以帮助操作和分组数据,从而绘制堆叠条形图。首先,你按鸟类的 `Category` 分组数据,然后汇总 `MinLength`、`MaxLength`、`MinBodyMass`、`MaxBodyMass`、`MinWingspan`、`MaxWingspan` 列。接着,使用 `ggplot2` 包绘制条形图,并为不同类别指定颜色和标签。
-
+
然而,这个条形图由于数据未分组过多而难以阅读。你需要选择要绘制的数据,因此让我们根据鸟类类别查看其长度。
@@ -177,7 +168,7 @@ ggplot(birds_count,aes(Category,n))+geom_bar(stat="identity")+coord_flip()
```
你首先统计 `Category` 列中的唯一值,然后将它们排序到一个新的数据框 `birds_count` 中。接着,将这些排序后的数据按相同顺序分级,以便按排序方式绘制。使用 `ggplot2` 绘制条形图。`coord_flip()` 将条形图水平显示。
-
+
这个条形图很好地展示了每个类别中鸟类的数量。一眼就能看出,这个地区数量最多的鸟类是鸭/鹅/水禽类别。明尼苏达州是“万湖之地”,这并不令人意外!
@@ -200,7 +191,7 @@ ggplot(birds_grouped,aes(Category,MaxLength))+geom_bar(stat="identity")+coord_fl
```
我们按 `Category` 对 `birds_filtered` 数据进行分组,然后绘制条形图。
-
+
这里没有什么令人意外的:蜂鸟的最大长度最小,而鹈鹕或鹅的最大长度较大。当数据符合逻辑时,这是好事!
@@ -212,7 +203,7 @@ ggplot(data=birds_grouped, aes(x=Category)) +
geom_bar(aes(y=MinLength), stat="identity", position="identity", fill='orange')+
coord_flip()
```
-
+
## 🚀 挑战
diff --git a/translations/zh/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/zh-CN/3-Data-Visualization/R/09-visualization-quantities/assignment.md
similarity index 79%
rename from translations/zh/3-Data-Visualization/R/09-visualization-quantities/assignment.md
rename to translations/zh-CN/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 2216bb3b..08890d39 100644
--- a/translations/zh/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/zh-CN/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# 折线图、散点图和柱状图
## 说明
diff --git a/translations/zh/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/zh-CN/3-Data-Visualization/R/10-visualization-distributions/README.md
similarity index 84%
rename from translations/zh/3-Data-Visualization/R/10-visualization-distributions/README.md
rename to translations/zh-CN/3-Data-Visualization/R/10-visualization-distributions/README.md
index 2b19a7fa..2d9369cd 100644
--- a/translations/zh/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/zh-CN/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# 可视化分布
| 绘制的速记图](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
@@ -45,7 +36,7 @@ ggplot(data=birds_filtered, aes(x=Order, y=MaxLength,group=1)) +
geom_point() +
ggtitle("Max Length per order") + coord_flip()
```
-
+
这提供了每个鸟类目身体长度的一般分布概览,但这并不是显示真实分布的最佳方式。通常通过创建直方图来完成这一任务。
@@ -57,7 +48,7 @@ ggplot(data=birds_filtered, aes(x=Order, y=MaxLength,group=1)) +
ggplot(data = birds_filtered, aes(x = MaxBodyMass)) +
geom_histogram(bins=10)+ylab('Frequency')
```
-
+
如你所见,这个数据集中的 400 多种鸟类大多数最大体重都在 2000 以下。通过将 `bins` 参数更改为更高的数字,例如 30,可以获得更多数据洞察:
@@ -65,7 +56,7 @@ ggplot(data = birds_filtered, aes(x = MaxBodyMass)) +
ggplot(data = birds_filtered, aes(x = MaxBodyMass)) + geom_histogram(bins=30)+ylab('Frequency')
```
-
+
此图表以更细致的方式显示分布。通过确保仅选择特定范围内的数据,可以创建一个偏向左侧较少的图表:
@@ -77,7 +68,7 @@ ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_histogram(bins=30)+ylab('Frequency')
```
-
+
✅ 尝试其他过滤器和数据点。要查看数据的完整分布,请移除 `['MaxBodyMass']` 过滤器以显示带标签的分布。
@@ -91,7 +82,7 @@ ggplot(data=birds_filtered_1, aes(x=MaxBodyMass, y=MaxLength) ) +
```
可以看到这两个元素沿预期轴存在预期的相关性,其中一个点的收敛特别强:
-
+
直方图默认适用于数值数据。如果需要根据文本数据查看分布该怎么办?
@@ -123,7 +114,7 @@ ggplot(data=birds_filtered_1, aes(x = MinWingspan, fill = ConservationStatus)) +
scale_fill_manual(name="Conservation Status",values=c("red","green","blue","pink"),labels=c("Endangered","Near Threathened","Vulnerable","Least Concern"))
```
-
+
最小翼展与保护状态之间似乎没有明显的相关性。使用此方法测试数据集中的其他元素。你可以尝试不同的过滤器。是否发现任何相关性?
@@ -137,7 +128,7 @@ ggplot(data=birds_filtered_1, aes(x = MinWingspan, fill = ConservationStatus)) +
ggplot(data = birds_filtered_1, aes(x = MinWingspan)) +
geom_density()
```
-
+
你可以看到此图与之前的最小翼展数据图相呼应;它只是稍微平滑了一些。如果你想重新创建第二个图表中那个不平滑的最大体重线,可以通过这种方法很好地将其平滑化:
@@ -145,7 +136,7 @@ ggplot(data = birds_filtered_1, aes(x = MinWingspan)) +
ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_density()
```
-
+
如果你想要一个平滑但不过于平滑的线条,可以编辑 `adjust` 参数:
@@ -153,7 +144,7 @@ ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_density(adjust = 1/5)
```
-
+
✅ 阅读有关此类图表可用参数的内容并进行实验!
@@ -163,7 +154,7 @@ ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
ggplot(data=birds_filtered_1,aes(x = MaxBodyMass, fill = Order)) +
geom_density(alpha=0.5)
```
-
+
## 🚀 挑战
diff --git a/translations/zh/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/zh-CN/3-Data-Visualization/R/10-visualization-distributions/assignment.md
similarity index 79%
rename from translations/zh/3-Data-Visualization/R/10-visualization-distributions/assignment.md
rename to translations/zh-CN/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 573d3456..e7b12fc9 100644
--- a/translations/zh/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/zh-CN/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# 应用你的技能
## 说明
diff --git a/translations/zh/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/zh-CN/3-Data-Visualization/R/11-visualization-proportions/README.md
similarity index 94%
rename from translations/zh/3-Data-Visualization/R/11-visualization-proportions/README.md
rename to translations/zh-CN/3-Data-Visualization/R/11-visualization-proportions/README.md
index 0be6b02a..f26dfb79 100644
--- a/translations/zh/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/zh-CN/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# 可视化比例
| 绘制的速记图](../../../sketchnotes/11-Visualizing-Proportions.png)|
@@ -93,7 +84,7 @@ pie(grouped$count,grouped$class, main="Edible?")
```
瞧,一个饼图展示了根据蘑菇的两种类别的数据比例。在这里,确保标签数组的顺序正确非常重要,因此务必验证标签的构建顺序!
-
+
## 环形图!
@@ -128,7 +119,7 @@ library(webr)
PieDonut(habitat, aes(habitat, count=count))
```
-
+
此代码使用了两个库——ggplot2 和 webr。通过 webr 库的 PieDonut 函数,我们可以轻松创建环形图!
@@ -166,7 +157,7 @@ waffle((cap_color$count/10), rows = 7, title = "Waffle Chart")+scale_fill_manual
使用华夫图,你可以清楚地看到蘑菇数据集中帽颜色的比例。有趣的是,有许多绿色帽子的蘑菇!
-
+
在本课中,你学习了三种可视化比例的方法。首先,你需要将数据分组为类别,然后决定哪种方式最适合显示数据——饼图、环形图或华夫图。所有这些都很有趣,并能让用户快速了解数据集。
diff --git a/translations/zh/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/zh-CN/3-Data-Visualization/R/12-visualization-relationships/README.md
similarity index 89%
rename from translations/zh/3-Data-Visualization/R/12-visualization-relationships/README.md
rename to translations/zh-CN/3-Data-Visualization/R/12-visualization-relationships/README.md
index bddf735a..a607ef13 100644
--- a/translations/zh/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/zh-CN/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# 可视化关系:关于蜂蜜的一切 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
@@ -51,7 +42,7 @@ library(ggplot2)
ggplot(honey, aes(x = priceperlb, y = state)) +
geom_point(colour = "blue")
```
-
+
现在,用蜂蜜色调展示同样的数据,显示价格随年份的变化。你可以通过添加`scale_color_gradientn`参数来实现逐年变化的可视化:
@@ -61,7 +52,7 @@ ggplot(honey, aes(x = priceperlb, y = state)) +
ggplot(honey, aes(x = priceperlb, y = state, color=year)) +
geom_point()+scale_color_gradientn(colours = colorspace::heat_hcl(7))
```
-
+
通过这个颜色方案的变化,你可以明显看到蜂蜜每磅价格在这些年间逐年上涨。如果你查看数据中的一个样本集(例如亚利桑那州),你会发现价格逐年上涨的模式,虽然有少数例外:
@@ -92,7 +83,7 @@ ggplot(honey, aes(x = priceperlb, y = state)) +
```
你可以看到点的大小逐渐增大。
-
+
这是否是一个简单的供需关系?由于气候变化和蜂群崩溃等因素,是否导致蜂蜜的供应逐年减少,从而价格上涨?
@@ -107,7 +98,7 @@ qplot(honey$year,honey$priceperlb, geom='smooth', span =0.5, xlab = "year",ylab
```
答案:是的,除了2003年左右的一些例外:
-
+
问题:那么在2003年,我们是否也能看到蜂蜜供应的激增?如果你查看逐年的总产量呢?
@@ -115,7 +106,7 @@ qplot(honey$year,honey$priceperlb, geom='smooth', span =0.5, xlab = "year",ylab
qplot(honey$year,honey$totalprod, geom='smooth', span =0.5, xlab = "year",ylab = "totalprod")
```
-
+
答案:并不明显。如果你查看总产量,实际上在那一年似乎有所增加,尽管总体而言蜂蜜的产量在这些年间是下降的。
@@ -135,7 +126,7 @@ ggplot(honey, aes(x=yieldpercol, y = numcol,group = 1)) +
```
在这个可视化中,你可以比较逐年蜂群产量和蜂群数量,并将列数设置为3:
-
+
对于这个数据集,逐年和各州之间,蜂群数量和产量并没有特别突出的变化。是否有其他方法可以发现这两个变量之间的相关性?
@@ -152,7 +143,7 @@ plot(honey$year, honey$yieldpercol, pch = 17, col = 3,
axis(side = 4, at = pretty(range(y2)))
mtext("colony yield", side = 4, line = 3)
```
-
+
虽然2003年没有明显的异常,但这让我们可以以一个稍微乐观的结论结束这节课:尽管蜂群数量总体上在下降,但蜂群数量正在趋于稳定,尽管每群产量在减少。
diff --git a/translations/zh/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/zh-CN/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
similarity index 88%
rename from translations/zh/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
rename to translations/zh-CN/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 88229d3d..89e4f12b 100644
--- a/translations/zh/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/zh-CN/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# 制作有意义的数据可视化
| 绘制的速写笔记 ](../../../sketchnotes/13-MeaningfulViz.png)|
@@ -47,25 +38,25 @@ CO_OP_TRANSLATOR_METADATA:
即使数据科学家小心选择了适合数据的正确图表,也有很多方法可以通过展示数据来证明某种观点,往往以牺牲数据本身为代价。有许多误导性图表和信息图的例子!
-[](https://www.youtube.com/watch?v=oX74Nge8Wkw "图表如何撒谎")
+[](https://www.youtube.com/watch?v=oX74Nge8Wkw "图表如何撒谎")
> 🎥 点击上方图片观看关于误导性图表的会议演讲
这个图表颠倒了 X 轴的顺序,根据日期显示了与事实相反的内容:
-
+
[这个图表](https://media.firstcoastnews.com/assets/WTLV/images/170ae16f-4643-438f-b689-50d66ca6a8d8/170ae16f-4643-438f-b689-50d66ca6a8d8_1140x641.jpg) 更具误导性,因为视觉上会让人得出结论,随着时间推移,各县的 COVID 病例数在下降。实际上,如果仔细查看日期,你会发现它们被重新排列以制造这种误导性的下降趋势。
-
+
这个臭名昭著的例子同时使用了颜色和颠倒的 Y 轴来误导:本应得出枪支死亡人数在通过支持枪支的立法后激增的结论,但实际上视觉上被误导认为相反的情况是真实的:
-
+
这个奇怪的图表展示了比例如何被操纵,效果令人啼笑皆非:
-
+
比较不可比的事物是另一种阴险的技巧。有一个[精彩的网站](https://tylervigen.com/spurious-correlations) 专门展示“虚假的相关性”,比如缅因州的离婚率与人造黄油消费之间的“事实”相关性。Reddit 上还有一个小组收集了[数据的丑陋用法](https://www.reddit.com/r/dataisugly/top/?t=all)。
@@ -100,13 +91,13 @@ CO_OP_TRANSLATOR_METADATA:
如果你的数据在 X 轴上是文本且较长,可以将文本倾斜以提高可读性。[plot3D](https://cran.r-project.org/web/packages/plot3D/index.html) 提供了 3D 绘图功能,如果你的数据支持的话,可以用它制作复杂的数据可视化。
-
+
## 动画和 3D 图表展示
如今一些最佳的数据可视化是动画的。Shirley Wu 使用 D3 制作了许多惊艳的作品,例如“[电影之花](http://bl.ocks.org/sxywu/raw/d612c6c653fb8b4d7ff3d422be164a5d/)”,每朵花都是一部电影的可视化。另一个为《卫报》制作的例子是“Bussed Out”,一个结合了 Greensock 和 D3 的交互式体验,通过滚动叙事文章格式展示纽约市如何通过将无家可归者送出城市来处理其无家可归问题。
-
+
> “Bussed Out: 美国如何转移无家可归者” 来自 [卫报](https://www.theguardian.com/us-news/ng-interactive/2017/dec/20/bussed-out-america-moves-homeless-people-country-study)。可视化由 Nadieh Bremer 和 Shirley Wu 制作
@@ -116,7 +107,7 @@ CO_OP_TRANSLATOR_METADATA:
你将完成一个网络应用,展示这个社交网络的动画视图。它使用了一个库来创建[网络可视化](https://github.com/emiliorizzo/vue-d3-network),基于 Vue.js 和 D3。当应用运行时,你可以在屏幕上拖动节点以重新排列数据。
-
+
## 项目:使用 D3.js 构建一个展示网络的图表
diff --git a/translations/zh/3-Data-Visualization/README.md b/translations/zh-CN/3-Data-Visualization/README.md
similarity index 92%
rename from translations/zh/3-Data-Visualization/README.md
rename to translations/zh-CN/3-Data-Visualization/README.md
index 91223cf0..bb551343 100644
--- a/translations/zh/3-Data-Visualization/README.md
+++ b/translations/zh-CN/3-Data-Visualization/README.md
@@ -1,15 +1,6 @@
-
# 可视化
-
+
> 图片由 Jenna Lee 提供,来自 Unsplash
数据可视化是数据科学家最重要的任务之一。图片胜过千言万语,可视化可以帮助你识别数据中的各种有趣部分,例如峰值、异常值、分组、趋势等,从而帮助你理解数据背后的故事。
diff --git a/translations/zh/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/zh-CN/4-Data-Science-Lifecycle/14-Introduction/README.md
similarity index 93%
rename from translations/zh/4-Data-Science-Lifecycle/14-Introduction/README.md
rename to translations/zh-CN/4-Data-Science-Lifecycle/14-Introduction/README.md
index 4725dcda..f159dd7a 100644
--- a/translations/zh/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/zh-CN/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# 数据科学生命周期简介
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
@@ -25,7 +16,7 @@ CO_OP_TRANSLATOR_METADATA:
本课程重点讲解生命周期中的三个部分:数据捕获、数据处理和数据维护。
-
+
> 图片来源:[伯克利信息学院](https://ischoolonline.berkeley.edu/data-science/what-is-data-science/)
## 数据捕获
@@ -98,7 +89,7 @@ CO_OP_TRANSLATOR_METADATA:
|团队数据科学过程 (TDSP)|跨行业数据挖掘标准过程 (CRISP-DM)|
|--|--|
-| |  |
+| |  |
| 图片来源:[Microsoft](https://docs.microsoft.comazure/architecture/data-science-process/lifecycle) | 图片来源:[数据科学过程联盟](https://www.datascience-pm.com/crisp-dm-2/) |
## [课后测验](https://ff-quizzes.netlify.app/en/ds/quiz/27)
diff --git a/translations/zh/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/zh-CN/4-Data-Science-Lifecycle/14-Introduction/assignment.md
similarity index 87%
rename from translations/zh/4-Data-Science-Lifecycle/14-Introduction/assignment.md
rename to translations/zh-CN/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index cd61093f..ed29aaec 100644
--- a/translations/zh/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/zh-CN/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# 评估数据集
一位客户向您的团队寻求帮助,调查纽约市出租车乘客的季节性消费习惯。
diff --git a/translations/zh/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb b/translations/zh-CN/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
similarity index 100%
rename from translations/zh/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
rename to translations/zh-CN/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
diff --git a/translations/zh/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/zh-CN/4-Data-Science-Lifecycle/15-analyzing/README.md
similarity index 95%
rename from translations/zh/4-Data-Science-Lifecycle/15-analyzing/README.md
rename to translations/zh-CN/4-Data-Science-Lifecycle/15-analyzing/README.md
index 22dd4c4e..45a9eaac 100644
--- a/translations/zh/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/zh-CN/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# 数据科学生命周期:分析
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/zh/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb b/translations/zh-CN/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
similarity index 100%
rename from translations/zh/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
rename to translations/zh-CN/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
diff --git a/translations/zh/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/zh-CN/4-Data-Science-Lifecycle/15-analyzing/assignment.md
similarity index 87%
rename from translations/zh/4-Data-Science-Lifecycle/15-analyzing/assignment.md
rename to translations/zh-CN/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index d3a4953d..4c8c9290 100644
--- a/translations/zh/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/zh-CN/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# 探索答案
这是上一节课[作业](../14-Introduction/assignment.md)的延续,我们之前简单浏览了数据集。现在我们将更深入地研究这些数据。
diff --git a/translations/zh/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb b/translations/zh-CN/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
similarity index 100%
rename from translations/zh/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
rename to translations/zh-CN/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
diff --git a/translations/zh/4-Data-Science-Lifecycle/16-communication/README.md b/translations/zh-CN/4-Data-Science-Lifecycle/16-communication/README.md
similarity index 98%
rename from translations/zh/4-Data-Science-Lifecycle/16-communication/README.md
rename to translations/zh-CN/4-Data-Science-Lifecycle/16-communication/README.md
index e78e380a..436a8ad3 100644
--- a/translations/zh/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/zh-CN/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# 数据科学生命周期:沟通
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/zh/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/zh-CN/4-Data-Science-Lifecycle/16-communication/assignment.md
similarity index 82%
rename from translations/zh/4-Data-Science-Lifecycle/16-communication/assignment.md
rename to translations/zh-CN/4-Data-Science-Lifecycle/16-communication/assignment.md
index 16246150..34128338 100644
--- a/translations/zh/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/zh-CN/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# 讲述一个故事
## 指南
diff --git a/translations/zh/4-Data-Science-Lifecycle/README.md b/translations/zh-CN/4-Data-Science-Lifecycle/README.md
similarity index 75%
rename from translations/zh/4-Data-Science-Lifecycle/README.md
rename to translations/zh-CN/4-Data-Science-Lifecycle/README.md
index 0d10e8c9..6fd78942 100644
--- a/translations/zh/4-Data-Science-Lifecycle/README.md
+++ b/translations/zh-CN/4-Data-Science-Lifecycle/README.md
@@ -1,15 +1,6 @@
-
# 数据科学生命周期
-
+
> 图片由 Headway 提供,来自 Unsplash
在这些课程中,您将探索数据科学生命周期的一些方面,包括数据的分析和沟通。
diff --git a/translations/zh/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/zh-CN/5-Data-Science-In-Cloud/17-Introduction/README.md
similarity index 96%
rename from translations/zh/5-Data-Science-In-Cloud/17-Introduction/README.md
rename to translations/zh-CN/5-Data-Science-In-Cloud/17-Introduction/README.md
index 9a6973aa..80015caa 100644
--- a/translations/zh/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/zh-CN/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# 云端数据科学简介
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/zh/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/zh-CN/5-Data-Science-In-Cloud/17-Introduction/assignment.md
similarity index 78%
rename from translations/zh/5-Data-Science-In-Cloud/17-Introduction/assignment.md
rename to translations/zh-CN/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 8033f143..6f953d5c 100644
--- a/translations/zh/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/zh-CN/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# 市场调研
## 说明
diff --git a/translations/zh/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/zh-CN/5-Data-Science-In-Cloud/18-Low-Code/README.md
similarity index 99%
rename from translations/zh/5-Data-Science-In-Cloud/18-Low-Code/README.md
rename to translations/zh-CN/5-Data-Science-In-Cloud/18-Low-Code/README.md
index ec15555a..d5f7e76f 100644
--- a/translations/zh/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/zh-CN/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# 云端数据科学:低代码/无代码方式
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/zh/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/zh-CN/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
similarity index 85%
rename from translations/zh/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
rename to translations/zh-CN/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 4a692e15..2a4edfa8 100644
--- a/translations/zh/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/zh-CN/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# 在 Azure ML 上进行低代码/无代码数据科学项目
## 指南
diff --git a/translations/zh/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/zh-CN/5-Data-Science-In-Cloud/19-Azure/README.md
similarity index 98%
rename from translations/zh/5-Data-Science-In-Cloud/19-Azure/README.md
rename to translations/zh-CN/5-Data-Science-In-Cloud/19-Azure/README.md
index 59e5bbea..ed80f395 100644
--- a/translations/zh/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/zh-CN/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# 云中的数据科学:使用 "Azure ML SDK"
| 绘制的草图笔记](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/zh/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/zh-CN/5-Data-Science-In-Cloud/19-Azure/assignment.md
similarity index 85%
rename from translations/zh/5-Data-Science-In-Cloud/19-Azure/assignment.md
rename to translations/zh-CN/5-Data-Science-In-Cloud/19-Azure/assignment.md
index f1788aac..d05693b3 100644
--- a/translations/zh/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/zh-CN/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# 使用 Azure ML SDK 的数据科学项目
## 说明
diff --git a/translations/zh/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb b/translations/zh-CN/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
similarity index 100%
rename from translations/zh/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
rename to translations/zh-CN/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
diff --git a/translations/mo/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb b/translations/zh-CN/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
similarity index 100%
rename from translations/mo/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
rename to translations/zh-CN/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
diff --git a/translations/zh/5-Data-Science-In-Cloud/README.md b/translations/zh-CN/5-Data-Science-In-Cloud/README.md
similarity index 78%
rename from translations/zh/5-Data-Science-In-Cloud/README.md
rename to translations/zh-CN/5-Data-Science-In-Cloud/README.md
index 1315d7c2..7bb3220b 100644
--- a/translations/zh/5-Data-Science-In-Cloud/README.md
+++ b/translations/zh-CN/5-Data-Science-In-Cloud/README.md
@@ -1,21 +1,12 @@
-
# 云中的数据科学
-
+
> 图片由 [Jelleke Vanooteghem](https://unsplash.com/@ilumire) 提供,来自 [Unsplash](https://unsplash.com/s/photos/cloud?orientation=landscape)
在处理大数据的数据科学时,云计算可以带来革命性的变化。在接下来的三节课中,我们将了解什么是云,以及为什么它非常有用。我们还将探索一个心力衰竭数据集,并构建一个模型来帮助评估某人发生心力衰竭的可能性。我们将利用云的强大功能,通过两种不同的方式来训练、部署和使用模型。一种方式是仅使用用户界面,以低代码/无代码的方式进行;另一种方式是使用 Azure Machine Learning 软件开发工具包 (Azure ML SDK)。
-
+
### 主题
diff --git a/translations/zh/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/zh-CN/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
similarity index 97%
rename from translations/zh/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
rename to translations/zh-CN/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 76c8142c..de504a18 100644
--- a/translations/zh/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/zh-CN/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# 数据科学在现实世界中的应用
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
@@ -41,7 +32,7 @@ CO_OP_TRANSLATOR_METADATA:
* [医疗领域的数据科学](https://data-flair.training/blogs/data-science-in-healthcare/) - 强调应用包括医学影像(如 MRI、X光、CT扫描)、基因组学(DNA测序)、药物开发(风险评估、成功预测)、预测分析(患者护理和供应物流)、疾病追踪与预防等。
- 图片来源:[Data Flair: 6 Amazing Data Science Applications ](https://data-flair.training/blogs/data-science-applications/)
+ 图片来源:[Data Flair: 6 Amazing Data Science Applications ](https://data-flair.training/blogs/data-science-applications/)
图中展示了其他领域和数据科学技术的应用案例。想探索更多应用?查看下面的[复习与自学](../../../../6-Data-Science-In-Wild/20-Real-World-Examples)部分。
diff --git a/translations/zh/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/zh-CN/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
similarity index 86%
rename from translations/zh/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
rename to translations/zh-CN/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 48479648..387004af 100644
--- a/translations/zh/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/zh-CN/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# 探索行星计算机数据集
## 说明
@@ -22,7 +13,7 @@ Explorer界面(如下图所示)允许你选择一个数据集(从提供的
2. 探索数据集[目录](https://planetarycomputer.microsoft.com/catalog)——了解每个数据集的用途。
3. 使用Explorer——选择一个感兴趣的数据集,选择一个相关的查询和渲染选项。
-
+
`你的任务:`
现在研究浏览器中渲染的可视化,并回答以下问题:
diff --git a/translations/zh/6-Data-Science-In-Wild/README.md b/translations/zh-CN/6-Data-Science-In-Wild/README.md
similarity index 73%
rename from translations/zh/6-Data-Science-In-Wild/README.md
rename to translations/zh-CN/6-Data-Science-In-Wild/README.md
index e2e631c3..fa42586e 100644
--- a/translations/zh/6-Data-Science-In-Wild/README.md
+++ b/translations/zh-CN/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# 数据科学的实际应用
数据科学在各行业中的真实应用。
diff --git a/translations/zh/AGENTS.md b/translations/zh-CN/AGENTS.md
similarity index 98%
rename from translations/zh/AGENTS.md
rename to translations/zh-CN/AGENTS.md
index e4c63af8..5d629b87 100644
--- a/translations/zh/AGENTS.md
+++ b/translations/zh-CN/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## 项目概述
diff --git a/translations/zh/CODE_OF_CONDUCT.md b/translations/zh-CN/CODE_OF_CONDUCT.md
similarity index 78%
rename from translations/zh/CODE_OF_CONDUCT.md
rename to translations/zh-CN/CODE_OF_CONDUCT.md
index c4706928..f6ddee0b 100644
--- a/translations/zh/CODE_OF_CONDUCT.md
+++ b/translations/zh-CN/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft 开源行为准则
本项目已采用 [Microsoft 开源行为准则](https://opensource.microsoft.com/codeofconduct/)。
diff --git a/translations/zh/CONTRIBUTING.md b/translations/zh-CN/CONTRIBUTING.md
similarity index 96%
rename from translations/zh/CONTRIBUTING.md
rename to translations/zh-CN/CONTRIBUTING.md
index de93cdeb..7252e4b3 100644
--- a/translations/zh/CONTRIBUTING.md
+++ b/translations/zh-CN/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# 贡献《数据科学入门》
感谢您对《数据科学入门》课程的贡献兴趣!我们欢迎社区的贡献。
@@ -311,7 +302,7 @@ def calculate_mean(data):
import pandas as pd
```
````
-- 为图片添加替代文本:``
+- 为图片添加替代文本:``
- 保持合理的行长度(约 80-100 个字符)
### Python
diff --git a/translations/zh/INSTALLATION.md b/translations/zh-CN/INSTALLATION.md
similarity index 96%
rename from translations/zh/INSTALLATION.md
rename to translations/zh-CN/INSTALLATION.md
index d93c1887..d9e30ed4 100644
--- a/translations/zh/INSTALLATION.md
+++ b/translations/zh-CN/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# 安装指南
本指南将帮助您设置环境,以使用《数据科学入门》课程。
diff --git a/translations/zh-CN/README.md b/translations/zh-CN/README.md
new file mode 100644
index 00000000..db149edd
--- /dev/null
+++ b/translations/zh-CN/README.md
@@ -0,0 +1,252 @@
+# 初学者数据科学课程
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+
+
+[](https://discord.gg/nTYy5BXMWG)
+
+[](https://aka.ms/foundry/forum)
+
+微软 Azure 云倡导者很高兴提供一个为期 10 周、包含 20 课的数据科学课程。每节课包括课前和课后测验、完成课程的书面指导、解决方案和作业。我们基于项目的教学法让你在构建项目的过程中学习,是一种经过验证的新技能“牢固掌握”方式。
+
+**衷心感谢我们的作者:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
+
+**🙏 特别感谢 🙏 我们的 [Microsoft 学生大使](https://studentambassadors.microsoft.com/) 作者、审稿人和内容贡献者,**尤其是 Aaryan Arora、[Aditya Garg](https://github.com/AdityaGarg00)、[Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/)、[Ankita Singh](https://www.linkedin.com/in/ankitasingh007)、[Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/)、[Arpita Das](https://www.linkedin.com/in/arpitadas01/)、ChhailBihari Dubey、[Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor)、[Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb)、[Majd Safi](https://www.linkedin.com/in/majd-s/)、[Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/)、[Miguel Correa](https://www.linkedin.com/in/miguelmque/)、[Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119)、[Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum)、[Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/)、[Rohit Yadav](https://www.linkedin.com/in/rty2423)、Samridhi Sharma、[Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)、[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/)、[Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/)、Yogendrasingh Pawar、[Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/)、[Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
+
+||
+|:---:|
+| 初学者数据科学 - _草图笔记来自 [@nitya](https://twitter.com/nitya)_ |
+
+### 🌐 多语言支持
+
+#### 通过 GitHub Action 支持(自动且持续更新)
+
+
+[阿拉伯语](../ar/README.md) | [孟加拉语](../bn/README.md) | [保加利亚语](../bg/README.md) | [缅甸语 (Myanmar)](../my/README.md) | [中文 (简体)](./README.md) | [中文 (繁体,香港)](../zh-HK/README.md) | [中文 (繁体,澳门)](../zh-MO/README.md) | [中文 (繁体,台湾)](../zh-TW/README.md) | [克罗地亚语](../hr/README.md) | [捷克语](../cs/README.md) | [丹麦语](../da/README.md) | [荷兰语](../nl/README.md) | [爱沙尼亚语](../et/README.md) | [芬兰语](../fi/README.md) | [法语](../fr/README.md) | [德语](../de/README.md) | [希腊语](../el/README.md) | [希伯来语](../he/README.md) | [印地语](../hi/README.md) | [匈牙利语](../hu/README.md) | [印尼语](../id/README.md) | [意大利语](../it/README.md) | [日语](../ja/README.md) | [卡纳达语](../kn/README.md) | [韩语](../ko/README.md) | [立陶宛语](../lt/README.md) | [马来语](../ms/README.md) | [马拉雅拉姆语](../ml/README.md) | [马拉地语](../mr/README.md) | [尼泊尔语](../ne/README.md) | [尼日利亚皮钦语](../pcm/README.md) | [挪威语](../no/README.md) | [波斯语 (法尔西)](../fa/README.md) | [波兰语](../pl/README.md) | [葡萄牙语 (巴西)](../pt-BR/README.md) | [葡萄牙语 (葡萄牙)](../pt-PT/README.md) | [旁遮普语 (古鲁穆喀希文)](../pa/README.md) | [罗马尼亚语](../ro/README.md) | [俄语](../ru/README.md) | [塞尔维亚语 (西里尔文)](../sr/README.md) | [斯洛伐克语](../sk/README.md) | [斯洛文尼亚语](../sl/README.md) | [西班牙语](../es/README.md) | [斯瓦希里语](../sw/README.md) | [瑞典语](../sv/README.md) | [他加禄语 (菲律宾语)](../tl/README.md) | [泰米尔语](../ta/README.md) | [泰卢固语](../te/README.md) | [泰语](../th/README.md) | [土耳其语](../tr/README.md) | [乌克兰语](../uk/README.md) | [乌尔都语](../ur/README.md) | [越南语](../vi/README.md)
+
+> **更喜欢本地克隆?**
+
+> 此仓库包含 50 多种语言翻译,显著增加了下载大小。若想不含翻译文件克隆,请使用稀疏检出:
+> ```bash
+> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
+> cd Data-Science-For-Beginners
+> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
+> ```
+> 这样你将得到完成课程所需的所有内容,下载速度更快。
+
+
+**如果您希望支持其他语言,支持列表见 [此处](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+
+#### 加入我们的社区
+[](https://discord.gg/nTYy5BXMWG)
+
+我们正在进行 Discord AI 学习系列,了解更多并于 2025 年 9 月 18 日至 30 日加入我们,请访问 [Learn with AI Series](https://aka.ms/learnwithai/discord)。您将获得使用 GitHub Copilot 进行数据科学的技巧和窍门。
+
+
+
+# 你是学生吗?
+
+开始使用以下资源:
+
+- [学生中心页面](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) 在此页面,您会找到初学者资源、学生包,甚至获得免费证书优惠券的方法。请收藏并定期查看此页面,因为我们至少每月更新内容。
+- [微软学习学生大使](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) 加入全球学生大使社区,这可能是你进入微软的机会。
+
+# 入门指南
+
+## 📚 文档
+
+- **[安装指南](INSTALLATION.md)** - 适合初学者的分步安装说明
+- **[使用指南](USAGE.md)** - 示例与常见工作流程
+- **[故障排除](TROUBLESHOOTING.md)** - 常见问题及解决方案
+- **[贡献指南](CONTRIBUTING.md)** - 如何为本项目贡献代码
+- **[教师指南](for-teachers.md)** - 教学建议和课堂资源
+
+## 👨🎓 学生专区
+> **完全初学者**:对数据科学陌生?从我们的[初学者友好示例](examples/README.md)开始!这些简单且注释丰富的示例,将帮助你在深入完整课程前理解基础知识。
+> **[学生们](https://aka.ms/student-page)**:想独立使用这套课程,请先 fork 整个仓库,自行完成练习,从课前测验开始。随后阅读课程并完成其余活动。试着通过理解课程内容自己完成项目,而不是直接复制解决方案代码;解决方案代码位于每个面向项目的课程中的 /solutions 文件夹中。另一个主意是组建学习小组,与朋友们一同学习。想深入学习,我们推荐 [微软学习](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)。
+
+**快速开始:**
+1. 查看[安装指南](INSTALLATION.md)设置环境
+2. 浏览[使用指南](USAGE.md)学习如何使用课程
+3. 从第 1 课开始,按顺序学习
+4. 加入我们的 [Discord 社区](https://aka.ms/ds4beginners/discord) 获取支持
+
+## 👩🏫 教师专区
+
+> **教师们**:我们已经[提供了一些建议](for-teachers.md)来帮助你使用这套课程。欢迎在我们的[讨论论坛](https://github.com/microsoft/Data-Science-For-Beginners/discussions)中提供反馈!
+## 团队介绍
+
+[](https://youtu.be/8mzavjQSMM4 "宣传视频")
+
+**动图作者** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+
+> 🎥 点击上方图片观看关于该项目及其创建者的视频!
+
+## 教学法
+
+在构建本课程时,我们选择了两个教学原则:确保它是基于项目的,并包含频繁的小测验。到本系列结束时,学生将掌握数据科学的基本原则,包括伦理概念、数据准备、不同的数据处理方式、数据可视化、数据分析、数据科学的实际应用案例等内容。
+
+此外,课前的低风险测验设定了学生学习主题的意图,课后的第二次测验则确保了进一步的知识巩固。该课程设计灵活且有趣,可以完整学习也可以部分学习。项目从小型开始,随着10周周期结束逐渐变得复杂。
+
+> 查看我们的[行为准则](CODE_OF_CONDUCT.md)、[贡献指南](CONTRIBUTING.md)、[翻译指南](TRANSLATIONS.md)。我们欢迎您的建设性反馈!
+
+## 每节课包含:
+
+- 可选的手绘笔记
+- 可选的补充视频
+- 课前热身测验
+- 书面课程内容
+- 对于基于项目的课程,逐步指导如何构建项目
+- 知识点检测
+- 挑战任务
+- 补充阅读材料
+- 作业
+- [课后测验](https://ff-quizzes.netlify.app/en/)
+
+> **关于测验的说明**:所有测验均包含在 Quiz-App 文件夹中,共有40次测验,每次包含3个问题。测验通过课程中的链接访问,测验应用可以本地运行或部署到 Azure;请按照 `quiz-app` 文件夹中的说明进行操作。测验正在逐步实现本地化。
+
+## 🎓 适合初学者的示例
+
+**数据科学新手?** 我们创建了一个特别的[示例目录](examples/README.md),内含简单、注释详尽的代码,帮助你快速入门:
+
+- 🌟 **Hello World** - 你的第一个数据科学程序
+- 📂 **数据加载** - 学习读取和探索数据集
+- 📊 **简单分析** - 计算统计数据,发现模式
+- 📈 **基础可视化** - 创建图表和图形
+- 🔬 **真实项目** - 完整工作流程,从头到尾
+
+每个示例都包含详细注释,解释每一步骤,非常适合绝对初学者!
+
+👉 **[从示例开始](examples/README.md)** 👈
+
+## 课程列表
+
+
+||
+|:---:|
+| 初学者数据科学:路线图 - _手绘笔记者 [@nitya](https://twitter.com/nitya)_ |
+
+
+| 课程号 | 主题 | 课程分组 | 学习目标 | 相关课程 | 作者 |
+| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
+| 01 | 定义数据科学 | [简介](1-Introduction/README.md) | 了解数据科学的基本概念及其与人工智能、机器学习和大数据的关系。 | [课程](1-Introduction/01-defining-data-science/README.md) [视频](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | 数据科学伦理 | [简介](1-Introduction/README.md) | 数据伦理的概念、挑战及框架。 | [课程](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | 定义数据 | [简介](1-Introduction/README.md) | 数据如何分类及其常见来源。 | [课程](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | 统计学与概率入门 | [简介](1-Introduction/README.md) | 使用概率与统计的数学技术理解数据。 | [课程](1-Introduction/04-stats-and-probability/README.md) [视频](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | 处理关系型数据 | [数据处理](2-Working-With-Data/README.md) | 关系型数据简介及使用结构化查询语言(SQL,发音“see-quell”)进行探索与分析的基础。 | [课程](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) |
+| 06 | 处理NoSQL数据 | [数据处理](2-Working-With-Data/README.md) | 非关系型数据简介、各种类型及文档数据库的基础探索与分析。 | [课程](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | 使用Python | [数据处理](2-Working-With-Data/README.md) | 使用Python及Pandas等库进行数据探索的基础。建议具备Python编程基础。 | [课程](2-Working-With-Data/07-python/README.md) [视频](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | 数据准备 | [数据处理](2-Working-With-Data/README.md) | 数据清洗与转换技术,应对缺失、不准确或不完整数据的挑战。 | [课程](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | 量的可视化 | [数据可视化](3-Data-Visualization/README.md) | 学习使用Matplotlib可视化鸟类数据🦆 | [课程](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | 数据分布的可视化 | [数据可视化](3-Data-Visualization/README.md) | 可视化区间内的观测值和趋势。 | [课程](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | 比例的可视化 | [数据可视化](3-Data-Visualization/README.md) | 可视化离散和分组的百分比。 | [课程](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | 关系的可视化 | [数据可视化](3-Data-Visualization/README.md) | 可视化数据集与变量之间的关联和相关性。 | [课程](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | 有意义的可视化 | [数据可视化](3-Data-Visualization/README.md) | 制作有效解决问题和获得见解的有价值可视化的技巧和指导。 | [课程](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | 数据科学生命周期简介 | [生命周期](4-Data-Science-Lifecycle/README.md) | 数据科学生命周期介绍及其第一步骤-获取和提取数据。 | [课程](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | 数据分析 | [生命周期](4-Data-Science-Lifecycle/README.md) | 数据科学生命周期中专注于数据分析的阶段。 | [课程](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 16 | 交流沟通 | [生命周期](4-Data-Science-Lifecycle/README.md) | 数据科学生命周期中专注于以易于决策者理解的方式展示数据洞见的阶段。 | [课程](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) |
+| 17 | 云端数据科学 | [云数据](5-Data-Science-In-Cloud/README.md) | 本系列课程介绍云端数据科学及其优势。 | [课程](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 与 [Maud](https://twitter.com/maudstweets) |
+| 18 | 云端数据科学 | [云数据](5-Data-Science-In-Cloud/README.md) | 使用低代码工具进行模型训练。 | [课程](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 与 [Maud](https://twitter.com/maudstweets) |
+| 19 | 云端数据科学 | [云数据](5-Data-Science-In-Cloud/README.md) | 使用 Azure Machine Learning Studio 部署模型。 | [课程](5-Data-Science-In-Cloud/19-Azure/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 与 [Maud](https://twitter.com/maudstweets) |
+| 20 | 现实世界中的数据科学 | [现实应用](6-Data-Science-In-Wild/README.md) | 现实世界中的数据科学驱动项目。 | [课程](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+
+## GitHub Codespaces
+
+按照以下步骤在 Codespace 中打开此示例:
+1. 点击“代码”下拉菜单并选择“使用 Codespaces 打开”选项。
+2. 在面板底部选择“+ 新建 Codespace”。
+更多信息请查阅[GitHub文档](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace)。
+
+## VSCode Remote - Containers
+使用本地计算机和 VS Code Remote - Containers 扩展,按照以下步骤在容器中打开该仓库:
+
+1. 如果这是您首次使用开发容器,请确保您的系统满足先决条件(例如安装了 Docker),详见[入门文档](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)。
+
+要使用此仓库,您可以选择在隔离的 Docker 卷中打开仓库:
+
+**注意**:底层将使用 Remote-Containers 的 **Clone Repository in Container Volume...** 命令,将源代码克隆到 Docker 卷中,而不是本地文件系统中。[卷](https://docs.docker.com/storage/volumes/)是持久化容器数据的首选机制。
+
+或者打开本地克隆或下载的仓库版本:
+
+- 将此仓库克隆到本地文件系统。
+- 按 F1,选择 **Remote-Containers: Open Folder in Container...** 命令。
+- 选择克隆的文件夹,等待容器启动,然后开始操作。
+
+## 离线访问
+
+您可以通过使用 [Docsify](https://docsify.js.org/#/) 离线运行本手册。Fork 本仓库, 在本地机器上[安装 Docsify](https://docsify.js.org/#/quickstart),然后在仓库根目录下,输入 `docsify serve`。该网站将在本地主机的3000端口提供服务:`localhost:3000`。
+
+> 注意,笔记本不会通过 Docsify 渲染,因此需要运行笔记本时,请在 VS Code 中运行 Python 内核单独执行。
+
+## 其他课程
+
+我们的团队还制作了其他课程!查看:
+
+
+### LangChain
+[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+
+---
+
+### Azure / Edge / MCP / 代理
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### 生成式 AI 系列
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### 核心学习
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### Copilot 系列
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+
+
+## 获取帮助
+
+**遇到问题?** 查看我们的 [故障排除指南](TROUBLESHOOTING.md) 以获取常见问题的解决方案。
+
+如果你遇到困难或对构建 AI 应用有任何疑问,加入其他学习者和经验丰富的开发者的讨论,共同探讨 MCP。这是一个支持性社区,欢迎提问并自由分享知识。
+
+[](https://discord.gg/nTYy5BXMWG)
+
+如果你在构建过程中有产品反馈或遇到错误,请访问:
+
+[](https://aka.ms/foundry/forum)
+
+---
+
+
+**免责声明**:
+本文件采用人工智能翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。虽然我们力求准确,但请注意自动翻译可能存在错误或不准确之处。原始文档的原语言版本应视为权威来源。对于重要信息,建议使用专业人工翻译。因使用本翻译而产生的任何误解或错误解释,我们不承担任何责任。
+
\ No newline at end of file
diff --git a/translations/zh/SECURITY.md b/translations/zh-CN/SECURITY.md
similarity index 93%
rename from translations/zh/SECURITY.md
rename to translations/zh-CN/SECURITY.md
index ec2fc662..243cb8b1 100644
--- a/translations/zh/SECURITY.md
+++ b/translations/zh-CN/SECURITY.md
@@ -1,12 +1,3 @@
-
## 安全性
Microsoft 非常重视我们软件产品和服务的安全性,这包括通过我们的 GitHub 组织管理的所有源代码库,这些组织包括 [Microsoft](https://github.com/Microsoft)、[Azure](https://github.com/Azure)、[DotNet](https://github.com/dotnet)、[AspNet](https://github.com/aspnet)、[Xamarin](https://github.com/xamarin) 和 [我们的 GitHub 组织](https://opensource.microsoft.com/)。
diff --git a/translations/zh/SUPPORT.md b/translations/zh-CN/SUPPORT.md
similarity index 79%
rename from translations/zh/SUPPORT.md
rename to translations/zh-CN/SUPPORT.md
index 303d9773..75114f02 100644
--- a/translations/zh/SUPPORT.md
+++ b/translations/zh-CN/SUPPORT.md
@@ -1,12 +1,3 @@
-
# 支持
## 如何提交问题并获取帮助
diff --git a/translations/zh/TROUBLESHOOTING.md b/translations/zh-CN/TROUBLESHOOTING.md
similarity index 98%
rename from translations/zh/TROUBLESHOOTING.md
rename to translations/zh-CN/TROUBLESHOOTING.md
index 44196537..dfa89bd8 100644
--- a/translations/zh/TROUBLESHOOTING.md
+++ b/translations/zh-CN/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# 故障排查指南
本指南提供了解决使用《数据科学入门》课程时可能遇到的常见问题的方法。
diff --git a/translations/zh/USAGE.md b/translations/zh-CN/USAGE.md
similarity index 97%
rename from translations/zh/USAGE.md
rename to translations/zh-CN/USAGE.md
index fb42d31d..eace4a13 100644
--- a/translations/zh/USAGE.md
+++ b/translations/zh-CN/USAGE.md
@@ -1,12 +1,3 @@
-
# 使用指南
本指南提供了使用《数据科学入门》课程的示例和常见工作流程。
diff --git a/translations/zh/docs/_sidebar.md b/translations/zh-CN/docs/_sidebar.md
similarity index 90%
rename from translations/zh/docs/_sidebar.md
rename to translations/zh-CN/docs/_sidebar.md
index 2f68a5be..f09de712 100644
--- a/translations/zh/docs/_sidebar.md
+++ b/translations/zh-CN/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- 介绍
- [定义数据科学](../1-Introduction/01-defining-data-science/README.md)
- [数据科学的伦理](../1-Introduction/02-ethics/README.md)
diff --git a/translations/zh/examples/README.md b/translations/zh-CN/examples/README.md
similarity index 95%
rename from translations/zh/examples/README.md
rename to translations/zh-CN/examples/README.md
index 7225c1c9..d963e266 100644
--- a/translations/zh/examples/README.md
+++ b/translations/zh-CN/examples/README.md
@@ -1,12 +1,3 @@
-
# 初学者友好的数据科学示例
欢迎来到示例目录!这套简单且注释清晰的示例旨在帮助您开始学习数据科学,即使您是完全的初学者。
diff --git a/translations/zh/for-teachers.md b/translations/zh-CN/for-teachers.md
similarity index 94%
rename from translations/zh/for-teachers.md
rename to translations/zh-CN/for-teachers.md
index fcb9d495..aa3c9720 100644
--- a/translations/zh/for-teachers.md
+++ b/translations/zh-CN/for-teachers.md
@@ -1,12 +1,3 @@
-
## 给教育工作者
想在课堂上使用这套课程吗?请随意使用!
diff --git a/translations/zh/quiz-app/README.md b/translations/zh-CN/quiz-app/README.md
similarity index 95%
rename from translations/zh/quiz-app/README.md
rename to translations/zh-CN/quiz-app/README.md
index b246bdd7..5731e7c5 100644
--- a/translations/zh/quiz-app/README.md
+++ b/translations/zh-CN/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# 测验
这些测验是数据科学课程的课前和课后测验,课程网址为:https://aka.ms/datascience-beginners
diff --git a/translations/zh/sketchnotes/README.md b/translations/zh-CN/sketchnotes/README.md
similarity index 57%
rename from translations/zh/sketchnotes/README.md
rename to translations/zh-CN/sketchnotes/README.md
index 1801b11f..badecbe9 100644
--- a/translations/zh/sketchnotes/README.md
+++ b/translations/zh-CN/sketchnotes/README.md
@@ -1,19 +1,10 @@
-
在这里查看所有手绘笔记!
## 致谢
Nitya Narasimhan,艺术家
-
+
**免责声明**:
本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。
\ No newline at end of file
diff --git a/translations/zh-HK/.co-op-translator.json b/translations/zh-HK/.co-op-translator.json
new file mode 100644
index 00000000..4d7365b3
--- /dev/null
+++ b/translations/zh-HK/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:40:14+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-25T16:56:18+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-25T16:57:23+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:08:44+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-25T16:49:35+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T12:13:46+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-25T17:01:16+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:05:48+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-25T17:10:38+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-25T16:38:14+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "zh-HK"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T10:46:01+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "zh-HK"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:53:17+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T12:02:14+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "zh-HK"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-25T16:36:25+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:28:08+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "zh-HK"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-25T16:31:23+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T12:04:24+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "zh-HK"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-25T16:23:46+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-25T16:12:44+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T12:08:22+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-25T18:39:29+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T12:10:03+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-25T18:08:02+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T12:07:18+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-25T18:43:13+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:30:14+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-25T18:12:21+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T12:08:54+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-25T18:02:51+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-25T18:04:12+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-25T18:03:33+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-25T18:22:36+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-25T18:26:02+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-25T18:13:41+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-25T18:16:12+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-25T18:31:28+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-25T18:17:38+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-25T18:27:44+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "zh-HK"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-25T17:57:26+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "zh-HK"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:30:05+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "zh-HK"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-25T17:44:53+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:29:50+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "zh-HK"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-25T17:48:00+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:30:31+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "zh-HK"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-25T17:56:23+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-25T17:40:57+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "zh-HK"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T12:01:04+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "zh-HK"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-25T17:31:39+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T11:59:29+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "zh-HK"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-25T17:27:05+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T12:01:31+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "zh-HK"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-25T17:38:32+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-25T17:19:33+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "zh-HK"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:17:49+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "zh-HK"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-25T17:18:24+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "zh-HK"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-25T17:12:05+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "zh-HK"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:07:03+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "zh-HK"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-25T16:10:17+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "zh-HK"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:32:49+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "zh-HK"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:16:31+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "zh-HK"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:18:21+00:00",
+ "source_file": "README.md",
+ "language_code": "zh-HK"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-25T16:11:02+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "zh-HK"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-25T16:08:17+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "zh-HK"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:32:40+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "zh-HK"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:55:27+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "zh-HK"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-25T16:37:16+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "zh-HK"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:57:49+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "zh-HK"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:53:21+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "zh-HK"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-25T17:39:35+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "zh-HK"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-25T17:11:31+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "zh-HK"
+ }
+}
\ No newline at end of file
diff --git a/translations/hk/1-Introduction/01-defining-data-science/README.md b/translations/zh-HK/1-Introduction/01-defining-data-science/README.md
similarity index 95%
rename from translations/hk/1-Introduction/01-defining-data-science/README.md
rename to translations/zh-HK/1-Introduction/01-defining-data-science/README.md
index 4c915179..77a105b0 100644
--- a/translations/hk/1-Introduction/01-defining-data-science/README.md
+++ b/translations/zh-HK/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# 定義數據科學
|  繪製的手繪筆記](../../sketchnotes/01-Definitions.png) |
@@ -15,7 +6,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-[](https://youtu.be/beZ7Mb_oz9I)
+[](https://youtu.be/beZ7Mb_oz9I)
## [課前測驗](https://ff-quizzes.netlify.app/en/ds/quiz/0)
@@ -153,7 +144,7 @@ CO_OP_TRANSLATOR_METADATA:
在這次挑戰中,我們將透過分析文本來尋找與數據科學領域相關的概念。我們會選取一篇關於數據科學的維基百科文章,下載並處理文本,然後建立一個像這樣的文字雲:
-
+
請訪問 [`notebook.ipynb`](../../../../1-Introduction/01-defining-data-science/notebook.ipynb ':ignore') 閱讀程式碼。你也可以執行程式碼,並即時查看它如何進行所有數據轉換。
diff --git a/translations/hk/1-Introduction/01-defining-data-science/assignment.md b/translations/zh-HK/1-Introduction/01-defining-data-science/assignment.md
similarity index 88%
rename from translations/hk/1-Introduction/01-defining-data-science/assignment.md
rename to translations/zh-HK/1-Introduction/01-defining-data-science/assignment.md
index 9892cbae..b4b5811e 100644
--- a/translations/hk/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/zh-HK/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# 作業:數據科學場景
在這次的第一個作業中,我們希望你思考一些真實生活中的流程或問題,涵蓋不同的問題領域,並探討如何利用數據科學流程來改進它。請思考以下問題:
diff --git a/translations/hk/1-Introduction/01-defining-data-science/notebook.ipynb b/translations/zh-HK/1-Introduction/01-defining-data-science/notebook.ipynb
similarity index 100%
rename from translations/hk/1-Introduction/01-defining-data-science/notebook.ipynb
rename to translations/zh-HK/1-Introduction/01-defining-data-science/notebook.ipynb
diff --git a/translations/hk/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/zh-HK/1-Introduction/01-defining-data-science/solution/assignment.md
similarity index 91%
rename from translations/hk/1-Introduction/01-defining-data-science/solution/assignment.md
rename to translations/zh-HK/1-Introduction/01-defining-data-science/solution/assignment.md
index f76e9710..28a72ec4 100644
--- a/translations/hk/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/zh-HK/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# 作業:數據科學場景
在這個第一個作業中,我們要求你思考一些不同領域中的真實生活過程或問題,以及如何使用數據科學流程來改善它。請思考以下問題:
diff --git a/translations/hk/1-Introduction/01-defining-data-science/solution/notebook.ipynb b/translations/zh-HK/1-Introduction/01-defining-data-science/solution/notebook.ipynb
similarity index 100%
rename from translations/hk/1-Introduction/01-defining-data-science/solution/notebook.ipynb
rename to translations/zh-HK/1-Introduction/01-defining-data-science/solution/notebook.ipynb
diff --git a/translations/hk/1-Introduction/02-ethics/README.md b/translations/zh-HK/1-Introduction/02-ethics/README.md
similarity index 98%
rename from translations/hk/1-Introduction/02-ethics/README.md
rename to translations/zh-HK/1-Introduction/02-ethics/README.md
index f612a80c..b9225e62 100644
--- a/translations/hk/1-Introduction/02-ethics/README.md
+++ b/translations/zh-HK/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# 數據倫理簡介
| 繪製的速寫筆記](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/hk/1-Introduction/02-ethics/assignment.md b/translations/zh-HK/1-Introduction/02-ethics/assignment.md
similarity index 90%
rename from translations/hk/1-Introduction/02-ethics/assignment.md
rename to translations/zh-HK/1-Introduction/02-ethics/assignment.md
index 70c5993b..b18035e3 100644
--- a/translations/hk/1-Introduction/02-ethics/assignment.md
+++ b/translations/zh-HK/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## 撰寫數據倫理案例研究
## 指引
diff --git a/translations/hk/1-Introduction/03-defining-data/README.md b/translations/zh-HK/1-Introduction/03-defining-data/README.md
similarity index 96%
rename from translations/hk/1-Introduction/03-defining-data/README.md
rename to translations/zh-HK/1-Introduction/03-defining-data/README.md
index 5e8e0757..b6c2bf4e 100644
--- a/translations/hk/1-Introduction/03-defining-data/README.md
+++ b/translations/zh-HK/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# 定義數據
| 繪製的手繪筆記](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/hk/1-Introduction/03-defining-data/assignment.md b/translations/zh-HK/1-Introduction/03-defining-data/assignment.md
similarity index 86%
rename from translations/hk/1-Introduction/03-defining-data/assignment.md
rename to translations/zh-HK/1-Introduction/03-defining-data/assignment.md
index 46437e8a..e61a6b09 100644
--- a/translations/hk/1-Introduction/03-defining-data/assignment.md
+++ b/translations/zh-HK/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# 分類數據集
## 指引
diff --git a/translations/hk/1-Introduction/04-stats-and-probability/README.md b/translations/zh-HK/1-Introduction/04-stats-and-probability/README.md
similarity index 94%
rename from translations/hk/1-Introduction/04-stats-and-probability/README.md
rename to translations/zh-HK/1-Introduction/04-stats-and-probability/README.md
index 1a20327f..40e7e8b9 100644
--- a/translations/hk/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/zh-HK/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# 統計學與概率簡介
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -15,7 +6,7 @@ CO_OP_TRANSLATOR_METADATA:
統計學與概率論是數學中兩個密切相關的領域,對於數據科學非常重要。雖然在沒有深入數學知識的情況下也可以處理數據,但了解一些基本概念仍然是有益的。在這裡,我們將提供一個簡短的介紹,幫助你入門。
-[](https://youtu.be/Z5Zy85g4Yjw)
+[](https://youtu.be/Z5Zy85g4Yjw)
## [課前測驗](https://ff-quizzes.netlify.app/en/ds/quiz/6)
@@ -39,7 +30,7 @@ CO_OP_TRANSLATOR_METADATA:
我們只能討論變數落在某個值區間內的概率,例如 P(t1≤X2)。在這種情況下,概率分佈由 **概率密度函數** p(x) 描述,其公式如下:
-![P(t_1\le X
+
在這裡,我們還計算了 **四分位距** IQR=Q3-Q1,以及所謂的 **異常值**——位於 [Q1-1.5*IQR,Q3+1.5*IQR] 範圍之外的值。
@@ -82,11 +73,11 @@ CO_OP_TRANSLATOR_METADATA:
以下是顯示我們數據的平均值、中位數和四分位數的盒形圖:
-
+
由於我們的數據包含不同球員 **角色** 的信息,我們還可以按角色繪製盒形圖——這將幫助我們了解參數值在不同角色之間的差異。這次我們將考慮身高:
-
+
這個圖表表明,平均而言,一壘手的身高高於二壘手的身高。在本課程的後面部分,我們將學習如何更正式地檢驗這一假設,以及如何證明我們的數據在統計上具有顯著性。
@@ -94,7 +85,7 @@ CO_OP_TRANSLATOR_METADATA:
為了查看我們數據的分佈,我們可以繪製一個稱為 **直方圖** 的圖表。X 軸包含若干不同的體重區間(即 **箱**),而垂直軸顯示隨機變數樣本落入某個區間的次數。
-
+
從這個直方圖中可以看出,所有值都集中在某個平均體重附近,距離平均體重越遠,該值出現的次數越少。也就是說,棒球運動員的體重與平均體重差異很大的可能性非常低。體重的方差顯示了體重與平均值可能的差異程度。
@@ -111,7 +102,7 @@ samples = np.random.normal(mean,std,1000)
如果我們繪製生成樣本的直方圖,我們會看到與上面顯示的圖非常相似的圖像。如果我們增加樣本數量和箱的數量,我們可以生成更接近理想的正態分佈圖像:
-
+
*平均值=0,標準差=1 的正態分佈*
@@ -233,7 +224,7 @@ array([[1. , 0.52959196],
在我們的情況下,值 0.53 表明一個人的體重和身高之間存在一定的相關性。我們還可以繪製一個值對另一個值的散點圖,以直觀地查看關係:
-
+
> 更多相關性和協方差的例子可以在 [附帶的筆記本](notebook.ipynb) 中找到。
diff --git a/translations/hk/1-Introduction/04-stats-and-probability/assignment.ipynb b/translations/zh-HK/1-Introduction/04-stats-and-probability/assignment.ipynb
similarity index 100%
rename from translations/hk/1-Introduction/04-stats-and-probability/assignment.ipynb
rename to translations/zh-HK/1-Introduction/04-stats-and-probability/assignment.ipynb
diff --git a/translations/hk/1-Introduction/04-stats-and-probability/assignment.md b/translations/zh-HK/1-Introduction/04-stats-and-probability/assignment.md
similarity index 86%
rename from translations/hk/1-Introduction/04-stats-and-probability/assignment.md
rename to translations/zh-HK/1-Introduction/04-stats-and-probability/assignment.md
index 6de11abf..ae14bb38 100644
--- a/translations/hk/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/zh-HK/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# 小型糖尿病研究
在這次作業中,我們將使用一個小型糖尿病患者數據集,該數據集取自[此處](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)。
diff --git a/translations/hk/1-Introduction/04-stats-and-probability/notebook.ipynb b/translations/zh-HK/1-Introduction/04-stats-and-probability/notebook.ipynb
similarity index 100%
rename from translations/hk/1-Introduction/04-stats-and-probability/notebook.ipynb
rename to translations/zh-HK/1-Introduction/04-stats-and-probability/notebook.ipynb
diff --git a/translations/hk/1-Introduction/04-stats-and-probability/solution/assignment.ipynb b/translations/zh-HK/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
similarity index 100%
rename from translations/hk/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
rename to translations/zh-HK/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
diff --git a/translations/hk/1-Introduction/README.md b/translations/zh-HK/1-Introduction/README.md
similarity index 78%
rename from translations/hk/1-Introduction/README.md
rename to translations/zh-HK/1-Introduction/README.md
index 76eeebcd..f3b4f4fc 100644
--- a/translations/hk/1-Introduction/README.md
+++ b/translations/zh-HK/1-Introduction/README.md
@@ -1,15 +1,6 @@
-
# 數據科學入門
-
+
> 圖片由 Stephen Dawson 提供,來源於 Unsplash
在這些課程中,你將了解什麼是數據科學,並學習數據科學家必須考慮的倫理問題。你還會學習數據的定義,並簡單了解統計學和概率論,這些是數據科學的核心學術領域。
diff --git a/translations/hk/2-Working-With-Data/05-relational-databases/README.md b/translations/zh-HK/2-Working-With-Data/05-relational-databases/README.md
similarity index 97%
rename from translations/hk/2-Working-With-Data/05-relational-databases/README.md
rename to translations/zh-HK/2-Working-With-Data/05-relational-databases/README.md
index d109dca5..fd6f5a97 100644
--- a/translations/hk/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/zh-HK/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# Working with Data: Relational Databases
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/hk/2-Working-With-Data/05-relational-databases/assignment.md b/translations/zh-HK/2-Working-With-Data/05-relational-databases/assignment.md
similarity index 92%
rename from translations/hk/2-Working-With-Data/05-relational-databases/assignment.md
rename to translations/zh-HK/2-Working-With-Data/05-relational-databases/assignment.md
index b6badaac..0ee87047 100644
--- a/translations/hk/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/zh-HK/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# 顯示機場數據
你已獲得一個基於 [SQLite](https://sqlite.org/index.html) 的 [數據庫](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db),其中包含有關機場的信息。以下是其架構。你將使用 [SQLite 擴展](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) 在 [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) 中顯示不同城市的機場信息。
diff --git a/translations/hk/2-Working-With-Data/06-non-relational/README.md b/translations/zh-HK/2-Working-With-Data/06-non-relational/README.md
similarity index 97%
rename from translations/hk/2-Working-With-Data/06-non-relational/README.md
rename to translations/zh-HK/2-Working-With-Data/06-non-relational/README.md
index e056d253..a25b5b92 100644
--- a/translations/hk/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/zh-HK/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# 使用數據:非關聯式數據
| 繪製的速記筆記](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/hk/2-Working-With-Data/06-non-relational/assignment.md b/translations/zh-HK/2-Working-With-Data/06-non-relational/assignment.md
similarity index 80%
rename from translations/hk/2-Working-With-Data/06-non-relational/assignment.md
rename to translations/zh-HK/2-Working-With-Data/06-non-relational/assignment.md
index 2f861326..233295c8 100644
--- a/translations/hk/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/zh-HK/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# 汽水利潤
## 指引
diff --git a/translations/hk/2-Working-With-Data/07-python/R/notebook.ipynb b/translations/zh-HK/2-Working-With-Data/07-python/R/notebook.ipynb
similarity index 100%
rename from translations/hk/2-Working-With-Data/07-python/R/notebook.ipynb
rename to translations/zh-HK/2-Working-With-Data/07-python/R/notebook.ipynb
diff --git a/translations/hk/2-Working-With-Data/07-python/README.md b/translations/zh-HK/2-Working-With-Data/07-python/README.md
similarity index 94%
rename from translations/hk/2-Working-With-Data/07-python/README.md
rename to translations/zh-HK/2-Working-With-Data/07-python/README.md
index c7367a42..f611d262 100644
--- a/translations/hk/2-Working-With-Data/07-python/README.md
+++ b/translations/zh-HK/2-Working-With-Data/07-python/README.md
@@ -1,19 +1,10 @@
-
# 使用數據:Python 和 Pandas 庫
|  繪製的手繪筆記 ](../../sketchnotes/07-WorkWithPython.png) |
| :-------------------------------------------------------------------------------------------------------: |
| 使用 Python - _由 [@nitya](https://twitter.com/nitya) 繪製的手繪筆記_ |
-[](https://youtu.be/dZjWOGbsN4Y)
+[](https://youtu.be/dZjWOGbsN4Y)
雖然數據庫提供了非常高效的方式來存儲數據並使用查詢語言進行查詢,但最靈活的數據處理方式是編寫自己的程序來操作數據。在許多情況下,使用數據庫查詢可能更有效。然而,在某些需要更複雜數據處理的情況下,使用 SQL 並不容易完成這些操作。
@@ -74,7 +65,7 @@ print(f"Length of index is {len(idx)}")
items_sold = pd.Series(np.random.randint(25,50,size=len(idx)),index=idx)
items_sold.plot()
```
-
+
假設每週我們都會為朋友舉辦派對,並額外準備 10 盒冰淇淋。我們可以創建另一個以週為索引的 Series 來展示這一點:
```python
@@ -85,7 +76,7 @@ additional_items = pd.Series(10,index=pd.date_range(start_date,end_date,freq="W"
total_items = items_sold.add(additional_items,fill_value=0)
total_items.plot()
```
-
+
> **注意**:我們並未使用簡單的語法 `total_items+additional_items`。如果這樣做,結果 Series 中會有許多 `NaN`(*非數值*)值。這是因為在 `additional_items` Series 的某些索引點上存在缺失值,而將 `NaN` 與任何值相加的結果都是 `NaN`。因此,我們需要在相加時指定 `fill_value` 參數。
@@ -94,7 +85,7 @@ total_items.plot()
monthly = total_items.resample("1M").mean()
ax = monthly.plot(kind='bar')
```
-
+
### DataFrame
@@ -220,7 +211,7 @@ df = pd.read_csv('file.csv')
由於我們想展示如何處理數據,我們邀請你打開 [`notebook-covidspread.ipynb`](notebook-covidspread.ipynb) 並從頭到尾閱讀。你也可以執行單元格,並完成我們在最後留下的一些挑戰。
-
+
> 如果你不知道如何在 Jupyter Notebook 中運行代碼,可以查看 [這篇文章](https://soshnikov.com/education/how-to-execute-notebooks-from-github/)。
@@ -242,7 +233,7 @@ df = pd.read_csv('file.csv')
打開 [`notebook-papers.ipynb`](notebook-papers.ipynb) 並從頭到尾閱讀。你也可以執行單元格,並完成我們在最後留下的一些挑戰。
-
+
## 處理圖片數據
diff --git a/translations/hk/2-Working-With-Data/07-python/assignment.md b/translations/zh-HK/2-Working-With-Data/07-python/assignment.md
similarity index 89%
rename from translations/hk/2-Working-With-Data/07-python/assignment.md
rename to translations/zh-HK/2-Working-With-Data/07-python/assignment.md
index a6415fd2..6ca9caee 100644
--- a/translations/hk/2-Working-With-Data/07-python/assignment.md
+++ b/translations/zh-HK/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# 使用 Python 處理數據的作業
在這份作業中,我們將要求你詳細說明我們在挑戰中開始開發的代碼。作業分為兩部分:
diff --git a/translations/hk/2-Working-With-Data/07-python/notebook-covidspread.ipynb b/translations/zh-HK/2-Working-With-Data/07-python/notebook-covidspread.ipynb
similarity index 100%
rename from translations/hk/2-Working-With-Data/07-python/notebook-covidspread.ipynb
rename to translations/zh-HK/2-Working-With-Data/07-python/notebook-covidspread.ipynb
diff --git a/translations/hk/2-Working-With-Data/07-python/notebook-papers.ipynb b/translations/zh-HK/2-Working-With-Data/07-python/notebook-papers.ipynb
similarity index 100%
rename from translations/hk/2-Working-With-Data/07-python/notebook-papers.ipynb
rename to translations/zh-HK/2-Working-With-Data/07-python/notebook-papers.ipynb
diff --git a/translations/hk/2-Working-With-Data/07-python/notebook.ipynb b/translations/zh-HK/2-Working-With-Data/07-python/notebook.ipynb
similarity index 100%
rename from translations/hk/2-Working-With-Data/07-python/notebook.ipynb
rename to translations/zh-HK/2-Working-With-Data/07-python/notebook.ipynb
diff --git a/translations/hk/2-Working-With-Data/08-data-preparation/README.md b/translations/zh-HK/2-Working-With-Data/08-data-preparation/README.md
similarity index 98%
rename from translations/hk/2-Working-With-Data/08-data-preparation/README.md
rename to translations/zh-HK/2-Working-With-Data/08-data-preparation/README.md
index 8b961ee1..61e05b12 100644
--- a/translations/hk/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/zh-HK/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# 處理數據:數據準備
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/hk/2-Working-With-Data/08-data-preparation/assignment.ipynb b/translations/zh-HK/2-Working-With-Data/08-data-preparation/assignment.ipynb
similarity index 100%
rename from translations/hk/2-Working-With-Data/08-data-preparation/assignment.ipynb
rename to translations/zh-HK/2-Working-With-Data/08-data-preparation/assignment.ipynb
diff --git a/translations/hk/2-Working-With-Data/08-data-preparation/assignment.md b/translations/zh-HK/2-Working-With-Data/08-data-preparation/assignment.md
similarity index 81%
rename from translations/hk/2-Working-With-Data/08-data-preparation/assignment.md
rename to translations/zh-HK/2-Working-With-Data/08-data-preparation/assignment.md
index 85c9b63c..69a4c226 100644
--- a/translations/hk/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/zh-HK/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# 評估表單數據
一位客戶正在測試一個[小型表單](../../../../2-Working-With-Data/08-data-preparation/index.html),以收集一些關於其客戶群的基本數據。他們已將測試結果交給你,請你驗證所收集的數據。你可以在瀏覽器中打開 `index.html` 頁面查看表單。
diff --git a/translations/hk/2-Working-With-Data/08-data-preparation/notebook.ipynb b/translations/zh-HK/2-Working-With-Data/08-data-preparation/notebook.ipynb
similarity index 100%
rename from translations/hk/2-Working-With-Data/08-data-preparation/notebook.ipynb
rename to translations/zh-HK/2-Working-With-Data/08-data-preparation/notebook.ipynb
diff --git a/translations/hk/2-Working-With-Data/README.md b/translations/zh-HK/2-Working-With-Data/README.md
similarity index 79%
rename from translations/hk/2-Working-With-Data/README.md
rename to translations/zh-HK/2-Working-With-Data/README.md
index cfce3a8b..9840b428 100644
--- a/translations/hk/2-Working-With-Data/README.md
+++ b/translations/zh-HK/2-Working-With-Data/README.md
@@ -1,15 +1,6 @@
-
# 處理數據
-
+
> 照片由 Alexander Sinn 提供,來自 Unsplash
在這些課程中,你將學習一些管理、操作和應用數據的方法。你會了解關聯式和非關聯式數據庫,以及數據如何存儲在其中。你將學習使用 Python 管理數據的基礎知識,並探索多種使用 Python 管理和挖掘數據的方法。
diff --git a/translations/hk/3-Data-Visualization/09-visualization-quantities/README.md b/translations/zh-HK/3-Data-Visualization/09-visualization-quantities/README.md
similarity index 97%
rename from translations/hk/3-Data-Visualization/09-visualization-quantities/README.md
rename to translations/zh-HK/3-Data-Visualization/09-visualization-quantities/README.md
index 0f90b518..d683a3f5 100644
--- a/translations/hk/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/zh-HK/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# 視覺化數量
| ](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/hk/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/zh-HK/3-Data-Visualization/09-visualization-quantities/assignment.md
similarity index 78%
rename from translations/hk/3-Data-Visualization/09-visualization-quantities/assignment.md
rename to translations/zh-HK/3-Data-Visualization/09-visualization-quantities/assignment.md
index d4c2c153..247f755f 100644
--- a/translations/hk/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/zh-HK/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# 折線圖、散點圖與柱狀圖
## 指引
diff --git a/translations/hk/3-Data-Visualization/09-visualization-quantities/notebook.ipynb b/translations/zh-HK/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
similarity index 100%
rename from translations/hk/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
rename to translations/zh-HK/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
diff --git a/translations/hk/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb b/translations/zh-HK/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
similarity index 100%
rename from translations/hk/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
rename to translations/zh-HK/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
diff --git a/translations/hk/3-Data-Visualization/10-visualization-distributions/README.md b/translations/zh-HK/3-Data-Visualization/10-visualization-distributions/README.md
similarity index 97%
rename from translations/hk/3-Data-Visualization/10-visualization-distributions/README.md
rename to translations/zh-HK/3-Data-Visualization/10-visualization-distributions/README.md
index d1f9745a..991f90fe 100644
--- a/translations/hk/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/zh-HK/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# 視覺化數據分佈
| 繪製的手繪筆記](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/hk/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/zh-HK/3-Data-Visualization/10-visualization-distributions/assignment.md
similarity index 80%
rename from translations/hk/3-Data-Visualization/10-visualization-distributions/assignment.md
rename to translations/zh-HK/3-Data-Visualization/10-visualization-distributions/assignment.md
index 2c3d6514..3d52c962 100644
--- a/translations/hk/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/zh-HK/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# 運用你的技能
## 指引
diff --git a/translations/hk/3-Data-Visualization/10-visualization-distributions/notebook.ipynb b/translations/zh-HK/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
similarity index 100%
rename from translations/hk/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
rename to translations/zh-HK/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
diff --git a/translations/hk/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb b/translations/zh-HK/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
similarity index 100%
rename from translations/hk/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
rename to translations/zh-HK/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
diff --git a/translations/hk/3-Data-Visualization/11-visualization-proportions/README.md b/translations/zh-HK/3-Data-Visualization/11-visualization-proportions/README.md
similarity index 97%
rename from translations/hk/3-Data-Visualization/11-visualization-proportions/README.md
rename to translations/zh-HK/3-Data-Visualization/11-visualization-proportions/README.md
index 5bc0e730..a77b421c 100644
--- a/translations/hk/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/zh-HK/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# 視覺化比例
| 繪製的速記筆記](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/hk/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/zh-HK/3-Data-Visualization/11-visualization-proportions/assignment.md
similarity index 80%
rename from translations/hk/3-Data-Visualization/11-visualization-proportions/assignment.md
rename to translations/zh-HK/3-Data-Visualization/11-visualization-proportions/assignment.md
index 4ff0fbbb..eed4f3a3 100644
--- a/translations/hk/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/zh-HK/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# 在 Excel 中嘗試
## 指示
diff --git a/translations/hk/3-Data-Visualization/11-visualization-proportions/notebook.ipynb b/translations/zh-HK/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
similarity index 100%
rename from translations/hk/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
rename to translations/zh-HK/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
diff --git a/translations/hk/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb b/translations/zh-HK/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
similarity index 100%
rename from translations/hk/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
rename to translations/zh-HK/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
diff --git a/translations/hk/3-Data-Visualization/12-visualization-relationships/README.md b/translations/zh-HK/3-Data-Visualization/12-visualization-relationships/README.md
similarity index 89%
rename from translations/hk/3-Data-Visualization/12-visualization-relationships/README.md
rename to translations/zh-HK/3-Data-Visualization/12-visualization-relationships/README.md
index 8991a643..c9a05ec4 100644
--- a/translations/hk/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/zh-HK/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# 視覺化關係:關於蜂蜜 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
@@ -51,7 +42,7 @@ honey.head()
```python
sns.relplot(x="priceperlb", y="state", data=honey, height=15, aspect=.5);
```
-
+
接下來,使用蜂蜜色調展示價格隨年份的變化。您可以通過添加 'hue' 參數來展示每年的變化:
@@ -60,7 +51,7 @@ sns.relplot(x="priceperlb", y="state", data=honey, height=15, aspect=.5);
```python
sns.relplot(x="priceperlb", y="state", hue="year", palette="YlOrBr", data=honey, height=15, aspect=.5);
```
-
+
通過這種色彩方案的改變,您可以清楚地看到蜂蜜每磅價格隨年份的明顯增長趨勢。事實上,如果您查看數據中的樣本集(例如選擇一個州,亞利桑那州),您可以看到價格每年增長的模式,只有少數例外:
@@ -89,7 +80,7 @@ sns.relplot(x="priceperlb", y="state", size="year", data=honey, height=15, aspec
```
您可以看到點的大小逐漸增大。
-
+
這是否是一個簡單的供需問題?由於氣候變化和蜂群崩潰等因素,是否每年可供購買的蜂蜜減少,因此價格上漲?
@@ -104,7 +95,7 @@ sns.relplot(x="year", y="priceperlb", kind="line", data=honey);
```
答案:是的,但在2003年左右有一些例外:
-
+
✅ 由於 Seaborn 將數據聚合到一條線上,它通過繪製均值和均值周圍的95%置信區間來顯示每個 x 值的多個測量值。[來源](https://seaborn.pydata.org/tutorial/relational.html)。這種耗時的行為可以通過添加 `ci=None` 禁用。
@@ -114,7 +105,7 @@ sns.relplot(x="year", y="priceperlb", kind="line", data=honey);
sns.relplot(x="year", y="totalprod", kind="line", data=honey);
```
-
+
答案:並不完全。如果您查看總生產量,實際上在那一年似乎有所增加,儘管總體而言蜂蜜的生產量在這些年中呈下降趨勢。
@@ -139,7 +130,7 @@ sns.relplot(
```
在這個視覺化中,您可以比較每年的每群產量和蜂群數量,並將列的 wrap 設置為3:
-
+
對於這個數據集,關於蜂群數量和每群產量,按年份和州比較並沒有特別突出的地方。是否有其他方式來尋找這兩個變量之間的相關性?
@@ -162,7 +153,7 @@ sns.despine(right=False)
plt.ylabel('colony yield')
ax.figure.legend();
```
-
+
雖然在2003年沒有明顯的異常,但這讓我們以一個稍微樂觀的結論結束本課:儘管蜂群數量總體上在下降,但蜂群數量正在穩定,即使每群產量在減少。
diff --git a/translations/hk/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/zh-HK/3-Data-Visualization/12-visualization-relationships/assignment.md
similarity index 83%
rename from translations/hk/3-Data-Visualization/12-visualization-relationships/assignment.md
rename to translations/zh-HK/3-Data-Visualization/12-visualization-relationships/assignment.md
index 77985cb5..d0ed3501 100644
--- a/translations/hk/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/zh-HK/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# 探索蜂巢
## 指引
diff --git a/translations/hk/3-Data-Visualization/12-visualization-relationships/notebook.ipynb b/translations/zh-HK/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
similarity index 100%
rename from translations/hk/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
rename to translations/zh-HK/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
diff --git a/translations/hk/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb b/translations/zh-HK/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
similarity index 100%
rename from translations/hk/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
rename to translations/zh-HK/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
diff --git a/translations/hk/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/zh-HK/3-Data-Visualization/13-meaningful-visualizations/README.md
similarity index 97%
rename from translations/hk/3-Data-Visualization/13-meaningful-visualizations/README.md
rename to translations/zh-HK/3-Data-Visualization/13-meaningful-visualizations/README.md
index c76520fe..31846d9a 100644
--- a/translations/hk/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/zh-HK/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# 製作有意義的視覺化圖表
| 繪製的速記筆記](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/hk/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/zh-HK/3-Data-Visualization/13-meaningful-visualizations/assignment.md
similarity index 78%
rename from translations/hk/3-Data-Visualization/13-meaningful-visualizations/assignment.md
rename to translations/zh-HK/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 368e0e88..530f6928 100644
--- a/translations/hk/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/zh-HK/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# 建立你自己的自定義視覺化
## 指引
diff --git a/translations/hk/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb b/translations/zh-HK/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
similarity index 100%
rename from translations/hk/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
rename to translations/zh-HK/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
diff --git a/translations/hk/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/zh-HK/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
similarity index 74%
rename from translations/hk/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
rename to translations/zh-HK/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index dcc37bdd..1fc007e7 100644
--- a/translations/hk/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/zh-HK/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# 危險關係數據可視化項目
要開始使用,請確保你的電腦已安裝 NPM 和 Node。安裝依賴項(npm install),然後在本地運行項目(npm run serve):
diff --git a/translations/hk/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/zh-HK/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
similarity index 76%
rename from translations/hk/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
rename to translations/zh-HK/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 9af01f45..00532356 100644
--- a/translations/hk/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/zh-HK/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# 危險關係數據可視化項目
要開始使用,請確保你的電腦已安裝並運行 NPM 和 Node。安裝依賴項(npm install),然後在本地運行項目(npm run serve):
diff --git a/translations/hk/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/zh-HK/3-Data-Visualization/R/09-visualization-quantities/README.md
similarity index 90%
rename from translations/hk/3-Data-Visualization/R/09-visualization-quantities/README.md
rename to translations/zh-HK/3-Data-Visualization/R/09-visualization-quantities/README.md
index c27d50f0..a62e012a 100644
--- a/translations/hk/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/zh-HK/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# 視覺化數量
| 繪製的速記筆記](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
@@ -66,7 +57,7 @@ ggplot(data=birds, aes(x=Name, y=MaxWingspan,group=1)) +
```
在這裡,你安裝了 `ggplot2` 套件,然後使用 `library("ggplot2")` 命令將其導入工作空間。要在 ggplot 中繪製任何圖表,使用 `ggplot()` 函數並指定數據集、x 和 y 變量作為屬性。在這種情況下,我們使用 `geom_line()` 函數,因為我們的目標是繪製折線圖。
-
+
你立即注意到什麼?似乎至少有一個異常值——那是一個相當大的翼展!2000+ 厘米的翼展超過 20 米——明尼蘇達州有翼龍在飛嗎?讓我們調查一下。
@@ -84,7 +75,7 @@ ggplot(data=birds, aes(x=Name, y=MaxWingspan,group=1)) +
```
我們在 `theme` 中指定角度,並在 `xlab()` 和 `ylab()` 中分別指定 x 和 y 軸標籤。`ggtitle()` 為圖表/圖形命名。
-
+
即使將標籤的旋轉設置為 45 度,仍然有太多標籤難以閱讀。讓我們嘗試另一種策略:僅標記那些異常值並在圖表內設置標籤。你可以使用散點圖來為標籤留出更多空間:
@@ -100,7 +91,7 @@ ggplot(data=birds, aes(x=Name, y=MaxWingspan,group=1)) +
你發現了什麼?
-
+
## 篩選數據
@@ -119,7 +110,7 @@ ggplot(data=birds_filtered, aes(x=Name, y=MaxWingspan,group=1)) +
```
我們創建了一個新的數據框 `birds_filtered`,然後繪製了一個散點圖。通過篩選掉異常值,你的數據現在更加一致且易於理解。
-
+
現在我們至少在翼展方面有了一個更乾淨的數據集,讓我們了解更多關於這些鳥類的信息。
@@ -162,7 +153,7 @@ birds_filtered %>% group_by(Category) %>%
```
在以下代碼片段中,我們安裝了 [dplyr](https://www.rdocumentation.org/packages/dplyr/versions/0.7.8) 和 [lubridate](https://www.rdocumentation.org/packages/lubridate/versions/1.8.0) 套件,以幫助操作和分組數據以繪製堆疊條形圖。首先,你按鳥類的 `Category` 分組數據,然後總結 `MinLength`、`MaxLength`、`MinBodyMass`、`MaxBodyMass`、`MinWingspan`、`MaxWingspan` 列。然後,使用 `ggplot2` 套件繪製條形圖並指定不同類別的顏色和標籤。
-
+
然而,這個條形圖難以閱讀,因為有太多未分組的數據。你需要選擇你想要繪製的數據,所以讓我們看看基於鳥類類別的鳥類長度。
@@ -177,7 +168,7 @@ ggplot(birds_count,aes(Category,n))+geom_bar(stat="identity")+coord_flip()
```
你首先計算 `Category` 列中的唯一值,然後將它們排序到一個新的數據框 `birds_count` 中。這些排序後的數據在相同層次中進行分級,以便按排序方式繪製。使用 `ggplot2`,你然後在條形圖中繪製數據。`coord_flip()` 繪製水平條形圖。
-
+
這個條形圖很好地展示了每個類別中鳥類的數量。一眼就能看出,在這個地區最多的鳥類是鴨/鵝/水禽類別。明尼蘇達州是“萬湖之地”,所以這並不令人驚訝!
@@ -200,7 +191,7 @@ ggplot(birds_grouped,aes(Category,MaxLength))+geom_bar(stat="identity")+coord_fl
```
我們按 `Category` 分組 `birds_filtered` 數據,然後繪製條形圖。
-
+
這裡沒有什麼令人驚訝的:蜂鳥的最大長度比鵜鶘或鵝要小得多。當數據符合邏輯時,這是件好事!
@@ -212,7 +203,7 @@ ggplot(data=birds_grouped, aes(x=Category)) +
geom_bar(aes(y=MinLength), stat="identity", position="identity", fill='orange')+
coord_flip()
```
-
+
## 🚀 挑戰
diff --git a/translations/hk/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/zh-HK/3-Data-Visualization/R/09-visualization-quantities/assignment.md
similarity index 78%
rename from translations/hk/3-Data-Visualization/R/09-visualization-quantities/assignment.md
rename to translations/zh-HK/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 5ece0a9f..b57d2565 100644
--- a/translations/hk/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/zh-HK/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# 折線圖、散點圖與柱狀圖
## 指引
diff --git a/translations/hk/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/zh-HK/3-Data-Visualization/R/10-visualization-distributions/README.md
similarity index 84%
rename from translations/hk/3-Data-Visualization/R/10-visualization-distributions/README.md
rename to translations/zh-HK/3-Data-Visualization/R/10-visualization-distributions/README.md
index 64cc975e..6c544b9b 100644
--- a/translations/hk/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/zh-HK/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# 視覺化分佈
| 繪製的手繪筆記](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
@@ -45,7 +36,7 @@ ggplot(data=birds_filtered, aes(x=Order, y=MaxLength,group=1)) +
geom_point() +
ggtitle("Max Length per order") + coord_flip()
```
-
+
這提供了每個鳥類目身體長度分佈的概覽,但這並不是顯示真實分佈的最佳方式。這個任務通常通過創建直方圖來完成。
@@ -57,7 +48,7 @@ ggplot(data=birds_filtered, aes(x=Order, y=MaxLength,group=1)) +
ggplot(data = birds_filtered, aes(x = MaxBodyMass)) +
geom_histogram(bins=10)+ylab('Frequency')
```
-
+
如你所見,這個數據集中大多數 400 多種鳥類的最大體重都在 2000 以下。通過將 `bins` 參數設置為更高的數值(例如 30),可以獲得更多的數據洞察:
@@ -65,7 +56,7 @@ ggplot(data = birds_filtered, aes(x = MaxBodyMass)) +
ggplot(data = birds_filtered, aes(x = MaxBodyMass)) + geom_histogram(bins=30)+ylab('Frequency')
```
-
+
這個圖表以更細緻的方式顯示了分佈。通過僅選擇給定範圍內的數據,可以創建一個不那麼偏向左側的圖表:
@@ -77,7 +68,7 @@ ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_histogram(bins=30)+ylab('Frequency')
```
-
+
✅ 試試其他篩選條件和數據點。若要查看數據的完整分佈,移除 `['MaxBodyMass']` 篩選條件以顯示帶標籤的分佈。
@@ -91,7 +82,7 @@ ggplot(data=birds_filtered_1, aes(x=MaxBodyMass, y=MaxLength) ) +
```
可以看到這兩個元素之間沿著預期軸線存在預期的相關性,並且有一個特別強的匯聚點:
-
+
直方圖對於數值數據效果很好。如果需要查看基於文本數據的分佈該怎麼辦?
@@ -123,7 +114,7 @@ ggplot(data=birds_filtered_1, aes(x = MinWingspan, fill = ConservationStatus)) +
scale_fill_manual(name="Conservation Status",values=c("red","green","blue","pink"),labels=c("Endangered","Near Threathened","Vulnerable","Least Concern"))
```
-
+
最小翼展與保育狀況之間似乎沒有明顯的相關性。使用這種方法測試數據集的其他元素。你也可以嘗試不同的篩選條件。你發現了任何相關性嗎?
@@ -137,7 +128,7 @@ ggplot(data=birds_filtered_1, aes(x = MinWingspan, fill = ConservationStatus)) +
ggplot(data = birds_filtered_1, aes(x = MinWingspan)) +
geom_density()
```
-
+
你可以看到這個圖表反映了之前的最小翼展數據,只是更平滑了一些。如果你想重新查看第二個圖表中那條不平滑的最大體重線,可以使用這種方法將其非常平滑地重現:
@@ -145,7 +136,7 @@ ggplot(data = birds_filtered_1, aes(x = MinWingspan)) +
ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_density()
```
-
+
如果你想要一條平滑但不過於平滑的線,可以編輯 `adjust` 參數:
@@ -153,7 +144,7 @@ ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_density(adjust = 1/5)
```
-
+
✅ 閱讀此類圖表可用的參數並進行實驗!
@@ -163,7 +154,7 @@ ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
ggplot(data=birds_filtered_1,aes(x = MaxBodyMass, fill = Order)) +
geom_density(alpha=0.5)
```
-
+
## 🚀 挑戰
diff --git a/translations/hk/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/zh-HK/3-Data-Visualization/R/10-visualization-distributions/assignment.md
similarity index 79%
rename from translations/hk/3-Data-Visualization/R/10-visualization-distributions/assignment.md
rename to translations/zh-HK/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 1dc22fbf..f8fcea77 100644
--- a/translations/hk/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/zh-HK/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# 運用你的技能
## 指引
diff --git a/translations/hk/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/zh-HK/3-Data-Visualization/R/11-visualization-proportions/README.md
similarity index 93%
rename from translations/hk/3-Data-Visualization/R/11-visualization-proportions/README.md
rename to translations/zh-HK/3-Data-Visualization/R/11-visualization-proportions/README.md
index d1f53125..c1bff39a 100644
--- a/translations/hk/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/zh-HK/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# 視覺化比例
| 繪製的速記筆記](../../../sketchnotes/11-Visualizing-Proportions.png)|
@@ -93,7 +84,7 @@ pie(grouped$count,grouped$class, main="Edible?")
```
完成,一個圓餅圖展示了根據這兩類蘑菇的比例數據。正確排列標籤的順序非常重要,尤其是在這裡,因此請務必核對標籤數組的構建順序!
-
+
## 甜甜圈圖!
@@ -128,7 +119,7 @@ library(webr)
PieDonut(habitat, aes(habitat, count=count))
```
-
+
這段代碼使用了兩個庫——ggplot2 和 webr。使用 webr 庫的 PieDonut 函數,我們可以輕鬆創建甜甜圈圖!
@@ -166,7 +157,7 @@ waffle((cap_color$count/10), rows = 7, title = "Waffle Chart")+scale_fill_manual
使用華夫圖,你可以清楚地看到這個蘑菇數據集中菌蓋顏色的比例。有趣的是,有許多綠色菌蓋的蘑菇!
-
+
在這節課中,你學到了三種視覺化比例的方法。首先,你需要將數據分組到分類中,然後決定哪種方式最適合展示數據——圓餅圖、甜甜圈圖或華夫圖。這些方法都很有趣,能讓用戶快速了解數據集。
diff --git a/translations/hk/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/zh-HK/3-Data-Visualization/R/12-visualization-relationships/README.md
similarity index 88%
rename from translations/hk/3-Data-Visualization/R/12-visualization-relationships/README.md
rename to translations/zh-HK/3-Data-Visualization/R/12-visualization-relationships/README.md
index 86337905..7042f2ed 100644
--- a/translations/hk/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/zh-HK/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# 視覺化關係:關於蜂蜜 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
@@ -51,7 +42,7 @@ library(ggplot2)
ggplot(honey, aes(x = priceperlb, y = state)) +
geom_point(colour = "blue")
```
-
+
現在,使用蜂蜜色彩方案展示價格隨年份的變化。您可以通過添加 'scale_color_gradientn' 參數來顯示每年的變化:
@@ -61,7 +52,7 @@ ggplot(honey, aes(x = priceperlb, y = state)) +
ggplot(honey, aes(x = priceperlb, y = state, color=year)) +
geom_point()+scale_color_gradientn(colours = colorspace::heat_hcl(7))
```
-
+
使用這種色彩方案,您可以看到蜂蜜每磅價格隨年份的明顯增長趨勢。事實上,如果您查看數據中的樣本集(例如選擇亞利桑那州),您可以看到價格每年逐漸上漲,僅有少數例外:
@@ -92,7 +83,7 @@ ggplot(honey, aes(x = priceperlb, y = state)) +
```
您可以看到點的大小逐漸增大。
-
+
這是否是一個簡單的供需問題?由於氣候變化和蜂群崩潰等因素,是否每年可供購買的蜂蜜減少,導致價格上漲?
@@ -107,7 +98,7 @@ qplot(honey$year,honey$priceperlb, geom='smooth', span =0.5, xlab = "year",ylab
```
答案:是的,但在2003年左右有一些例外:
-
+
問題:那麼在2003年,我們是否也能看到蜂蜜供應的激增?如果您查看每年的總生產量呢?
@@ -115,7 +106,7 @@ qplot(honey$year,honey$priceperlb, geom='smooth', span =0.5, xlab = "year",ylab
qplot(honey$year,honey$totalprod, geom='smooth', span =0.5, xlab = "year",ylab = "totalprod")
```
-
+
答案:並不完全。如果您查看總生產量,實際上在那一年似乎有所增加,儘管總體而言蜂蜜的生產量在這些年中呈下降趨勢。
@@ -135,7 +126,7 @@ ggplot(honey, aes(x=yieldpercol, y = numcol,group = 1)) +
```
在此視覺化中,您可以比較每群產量和蜂群數量每年每州的變化,並將列數設置為3:
-
+
對於此數據集,關於蜂群數量和每群產量每年每州的變化,並未有特別突出的地方。是否有其他方式可以找到這兩個變量之間的相關性?
@@ -152,7 +143,7 @@ plot(honey$year, honey$yieldpercol, pch = 17, col = 3,
axis(side = 4, at = pretty(range(y2)))
mtext("colony yield", side = 4, line = 3)
```
-
+
雖然在2003年並未有明顯的異常,但這讓我們可以以一個稍微樂觀的結論結束本課:儘管蜂群數量總體上在下降,但蜂群數量正在穩定,即使每群產量在減少。
diff --git a/translations/hk/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/zh-HK/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
similarity index 88%
rename from translations/hk/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
rename to translations/zh-HK/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index bfb15291..dc7b66d9 100644
--- a/translations/hk/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/zh-HK/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# 製作有意義的視覺化圖表
| 繪製的速寫筆記](../../../sketchnotes/13-MeaningfulViz.png)|
@@ -47,25 +38,25 @@ CO_OP_TRANSLATOR_METADATA:
即使數據科學家謹慎地為正確的數據選擇了合適的圖表,仍然有許多方法可以以誤導的方式展示數據,通常是為了證明某個觀點,卻犧牲了數據的真實性。有許多誤導性圖表和信息圖的例子!
-[](https://www.youtube.com/watch?v=oX74Nge8Wkw "How charts lie")
+[](https://www.youtube.com/watch?v=oX74Nge8Wkw "How charts lie")
> 🎥 點擊上方圖片觀看關於誤導性圖表的會議演講
這張圖表反轉了 X 軸,根據日期顯示了與事實相反的內容:
-
+
[這張圖表](https://media.firstcoastnews.com/assets/WTLV/images/170ae16f-4643-438f-b689-50d66ca6a8d8/170ae16f-4643-438f-b689-50d66ca6a8d8_1140x641.jpg) 更加誤導,因為視覺上吸引人注意的是右側,讓人得出隨時間推移各縣的 COVID 病例數下降的結論。事實上,如果仔細查看日期,你會發現它們被重新排列以製造出誤導性的下降趨勢。
-
+
這個臭名昭著的例子使用顏色和反轉的 Y 軸來誤導:原本應該得出槍支友好立法通過後槍支死亡率激增的結論,卻讓人誤以為情況正好相反:
-
+
這張奇怪的圖表展示了比例如何被操控,效果令人捧腹:
-
+
比較不可比的事物是另一種不正當的手段。有一個[精彩的網站](https://tylervigen.com/spurious-correlations)專門展示「虛假的相關性」,例如顯示緬因州的離婚率與人造奶油的消耗量之間的「事實」相關性。一個 Reddit 群組也收集了[糟糕的數據使用](https://www.reddit.com/r/dataisugly/top/?t=all)。
@@ -100,13 +91,13 @@ CO_OP_TRANSLATOR_METADATA:
如果你的數據在 X 軸上是文本且冗長,可以將文本角度調整以提高可讀性。[plot3D](https://cran.r-project.org/web/packages/plot3D/index.html) 提供了 3D 繪圖功能,如果你的數據支持它,可以使用它來生成更高級的數據視覺化。
-
+
## 動畫和 3D 圖表展示
如今一些最好的數據視覺化是動畫化的。Shirley Wu 使用 D3 創作了令人驚嘆的作品,例如「[電影之花](http://bl.ocks.org/sxywu/raw/d612c6c653fb8b4d7ff3d422be164a5d/)」,每朵花都是一部電影的視覺化。另一個例子是《衛報》的「Bussed Out」,這是一個結合 Greensock 和 D3 的視覺化與滾動敘事文章格式的互動體驗,展示了紐約市如何通過將無家可歸者送出城市來處理其無家可歸問題。
-
+
> 「Bussed Out: How America Moves its Homeless」來自[衛報](https://www.theguardian.com/us-news/ng-interactive/2017/dec/20/bussed-out-america-moves-homeless-people-country-study)。視覺化由 Nadieh Bremer 和 Shirley Wu 創作
@@ -116,7 +107,7 @@ CO_OP_TRANSLATOR_METADATA:
你將完成一個網頁應用,展示這個社交網絡的動畫視圖。它使用了一個庫來創建[網絡視覺化](https://github.com/emiliorizzo/vue-d3-network),基於 Vue.js 和 D3。當應用運行時,你可以在屏幕上拖動節點,重新排列數據。
-
+
## 項目:使用 D3.js 構建一個展示網絡的圖表
diff --git a/translations/hk/3-Data-Visualization/README.md b/translations/zh-HK/3-Data-Visualization/README.md
similarity index 92%
rename from translations/hk/3-Data-Visualization/README.md
rename to translations/zh-HK/3-Data-Visualization/README.md
index 46e61938..d68fed03 100644
--- a/translations/hk/3-Data-Visualization/README.md
+++ b/translations/zh-HK/3-Data-Visualization/README.md
@@ -1,15 +1,6 @@
-
# 視覺化
-
+
> 照片由 Jenna Lee 提供,來源於 Unsplash
視覺化數據是數據科學家最重要的任務之一。圖片勝過千言萬語,視覺化可以幫助你識別數據中的各種有趣部分,例如峰值、異常值、分組、趨勢等等,這些都能幫助你理解數據背後的故事。
diff --git a/translations/hk/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/zh-HK/4-Data-Science-Lifecycle/14-Introduction/README.md
similarity index 92%
rename from translations/hk/4-Data-Science-Lifecycle/14-Introduction/README.md
rename to translations/zh-HK/4-Data-Science-Lifecycle/14-Introduction/README.md
index 0b32a3da..70431734 100644
--- a/translations/hk/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/zh-HK/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# 數據科學生命周期簡介
| 繪製的手繪筆記 ](../../sketchnotes/14-DataScience-Lifecycle.png)|
@@ -25,7 +16,7 @@ CO_OP_TRANSLATOR_METADATA:
本課程將重點介紹生命周期中的三個部分:捕獲、處理和維護。
-
+
> 圖片來源:[Berkeley School of Information](https://ischoolonline.berkeley.edu/data-science/what-is-data-science/)
## 捕獲
@@ -98,7 +89,7 @@ CO_OP_TRANSLATOR_METADATA:
|團隊數據科學過程 (TDSP)|跨行業數據挖掘標準過程 (CRISP-DM)|
|--|--|
-| |  |
+| |  |
| 圖片來源:[Microsoft](https://docs.microsoft.comazure/architecture/data-science-process/lifecycle) | 圖片來源:[Data Science Process Alliance](https://www.datascience-pm.com/crisp-dm-2/) |
## [課後測驗](https://ff-quizzes.netlify.app/en/ds/quiz/27)
diff --git a/translations/hk/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/zh-HK/4-Data-Science-Lifecycle/14-Introduction/assignment.md
similarity index 87%
rename from translations/hk/4-Data-Science-Lifecycle/14-Introduction/assignment.md
rename to translations/zh-HK/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 0fa4252b..1485c6f9 100644
--- a/translations/hk/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/zh-HK/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# 評估數據集
一位客戶向你的團隊尋求幫助,調查紐約市計程車乘客的季節性消費習慣。
diff --git a/translations/hk/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb b/translations/zh-HK/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
similarity index 100%
rename from translations/hk/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
rename to translations/zh-HK/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
diff --git a/translations/hk/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/zh-HK/4-Data-Science-Lifecycle/15-analyzing/README.md
similarity index 95%
rename from translations/hk/4-Data-Science-Lifecycle/15-analyzing/README.md
rename to translations/zh-HK/4-Data-Science-Lifecycle/15-analyzing/README.md
index 8dca37f0..c11a7c36 100644
--- a/translations/hk/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/zh-HK/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# 數據科學生命周期:分析
| 繪製的手繪筆記](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/hk/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb b/translations/zh-HK/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
similarity index 100%
rename from translations/hk/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
rename to translations/zh-HK/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
diff --git a/translations/hk/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/zh-HK/4-Data-Science-Lifecycle/15-analyzing/assignment.md
similarity index 87%
rename from translations/hk/4-Data-Science-Lifecycle/15-analyzing/assignment.md
rename to translations/zh-HK/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index c3aba2bd..b42769ba 100644
--- a/translations/hk/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/zh-HK/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# 探索答案
這是上一課[作業](../14-Introduction/assignment.md)的延續,我們之前簡單地查看了數據集。現在,我們將更深入地分析這些數據。
diff --git a/translations/hk/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb b/translations/zh-HK/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
similarity index 100%
rename from translations/hk/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
rename to translations/zh-HK/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
diff --git a/translations/hk/4-Data-Science-Lifecycle/16-communication/README.md b/translations/zh-HK/4-Data-Science-Lifecycle/16-communication/README.md
similarity index 98%
rename from translations/hk/4-Data-Science-Lifecycle/16-communication/README.md
rename to translations/zh-HK/4-Data-Science-Lifecycle/16-communication/README.md
index 4400a308..1b942dec 100644
--- a/translations/hk/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/zh-HK/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# 數據科學生命周期:溝通
| 繪製的手繪筆記](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/hk/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/zh-HK/4-Data-Science-Lifecycle/16-communication/assignment.md
similarity index 80%
rename from translations/hk/4-Data-Science-Lifecycle/16-communication/assignment.md
rename to translations/zh-HK/4-Data-Science-Lifecycle/16-communication/assignment.md
index 8f49e34c..51620c93 100644
--- a/translations/hk/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/zh-HK/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# 講述一個故事
## 指引
diff --git a/translations/hk/4-Data-Science-Lifecycle/README.md b/translations/zh-HK/4-Data-Science-Lifecycle/README.md
similarity index 74%
rename from translations/hk/4-Data-Science-Lifecycle/README.md
rename to translations/zh-HK/4-Data-Science-Lifecycle/README.md
index 2bb7f14b..8da213f4 100644
--- a/translations/hk/4-Data-Science-Lifecycle/README.md
+++ b/translations/zh-HK/4-Data-Science-Lifecycle/README.md
@@ -1,15 +1,6 @@
-
# 數據科學生命周期
-
+
> 圖片由 Headway 提供,來自 Unsplash
在這些課程中,你將探索數據科學生命周期的一些方面,包括數據的分析和溝通。
diff --git a/translations/hk/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/zh-HK/5-Data-Science-In-Cloud/17-Introduction/README.md
similarity index 96%
rename from translations/hk/5-Data-Science-In-Cloud/17-Introduction/README.md
rename to translations/zh-HK/5-Data-Science-In-Cloud/17-Introduction/README.md
index 70287b88..4d7b6e17 100644
--- a/translations/hk/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/zh-HK/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# 雲端中的數據科學簡介
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/hk/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/zh-HK/5-Data-Science-In-Cloud/17-Introduction/assignment.md
similarity index 78%
rename from translations/hk/5-Data-Science-In-Cloud/17-Introduction/assignment.md
rename to translations/zh-HK/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index b5b3669f..95327043 100644
--- a/translations/hk/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/zh-HK/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# 市場調查
## 指引
diff --git a/translations/hk/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/zh-HK/5-Data-Science-In-Cloud/18-Low-Code/README.md
similarity index 98%
rename from translations/hk/5-Data-Science-In-Cloud/18-Low-Code/README.md
rename to translations/zh-HK/5-Data-Science-In-Cloud/18-Low-Code/README.md
index efb9459e..18331812 100644
--- a/translations/hk/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/zh-HK/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# 雲端中的數據科學:「低代碼/無代碼」方式
| ](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/hk/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/zh-HK/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
similarity index 84%
rename from translations/hk/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
rename to translations/zh-HK/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 378e8978..acbc99bd 100644
--- a/translations/hk/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/zh-HK/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML 上的低代碼/無代碼數據科學項目
## 指引
diff --git a/translations/hk/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/zh-HK/5-Data-Science-In-Cloud/19-Azure/README.md
similarity index 98%
rename from translations/hk/5-Data-Science-In-Cloud/19-Azure/README.md
rename to translations/zh-HK/5-Data-Science-In-Cloud/19-Azure/README.md
index f64f13e5..83856a07 100644
--- a/translations/hk/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/zh-HK/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# 雲端中的數據科學:Azure ML SDK 的方法
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/hk/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/zh-HK/5-Data-Science-In-Cloud/19-Azure/assignment.md
similarity index 85%
rename from translations/hk/5-Data-Science-In-Cloud/19-Azure/assignment.md
rename to translations/zh-HK/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 528e3b72..d43025df 100644
--- a/translations/hk/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/zh-HK/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# 使用 Azure ML SDK 的數據科學項目
## 指引
diff --git a/translations/hk/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb b/translations/zh-HK/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
similarity index 100%
rename from translations/hk/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
rename to translations/zh-HK/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
diff --git a/translations/pt/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb b/translations/zh-HK/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
similarity index 100%
rename from translations/pt/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
rename to translations/zh-HK/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
diff --git a/translations/hk/5-Data-Science-In-Cloud/README.md b/translations/zh-HK/5-Data-Science-In-Cloud/README.md
similarity index 78%
rename from translations/hk/5-Data-Science-In-Cloud/README.md
rename to translations/zh-HK/5-Data-Science-In-Cloud/README.md
index ac12d145..22ff63a5 100644
--- a/translations/hk/5-Data-Science-In-Cloud/README.md
+++ b/translations/zh-HK/5-Data-Science-In-Cloud/README.md
@@ -1,21 +1,12 @@
-
# 雲端中的數據科學
-
+
> 圖片來源:[Jelleke Vanooteghem](https://unsplash.com/@ilumire) 來自 [Unsplash](https://unsplash.com/s/photos/cloud?orientation=landscape)
當涉及到使用大數據進行數據科學時,雲端可以成為改變遊戲規則的關鍵。在接下來的三節課中,我們將了解什麼是雲端以及為什麼它非常有用。我們還將探索一個心臟衰竭數據集,並建立一個模型來幫助評估某人發生心臟衰竭的可能性。我們將利用雲端的強大功能來訓練、部署和以兩種不同的方式使用模型。一種方式是僅使用用戶界面,以低代碼/無代碼的方式進行;另一種方式是使用 Azure 機器學習軟件開發工具包 (Azure ML SDK)。
-
+
### 主題
diff --git a/translations/hk/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/zh-HK/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
similarity index 96%
rename from translations/hk/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
rename to translations/zh-HK/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 64540a4b..dff94755 100644
--- a/translations/hk/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/zh-HK/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# 數據科學在現實世界中的應用
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
@@ -41,7 +32,7 @@ CO_OP_TRANSLATOR_METADATA:
* [數據科學在醫療保健中的應用](https://data-flair.training/blogs/data-science-in-healthcare/) - 強調應用包括醫學影像(例如 MRI、X光、CT掃描)、基因組學(DNA測序)、藥物開發(風險評估、成功預測)、預測分析(患者護理和供應物流)、疾病追蹤和預防等。
- 圖片來源:[Data Flair: 6 Amazing Data Science Applications ](https://data-flair.training/blogs/data-science-applications/)
+ 圖片來源:[Data Flair: 6 Amazing Data Science Applications ](https://data-flair.training/blogs/data-science-applications/)
該圖展示了其他領域和應用數據科學技術的例子。想探索更多應用?查看下面的[回顧與自學](../../../../6-Data-Science-In-Wild/20-Real-World-Examples)部分。
diff --git a/translations/hk/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/zh-HK/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
similarity index 86%
rename from translations/hk/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
rename to translations/zh-HK/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index d710c085..525706f2 100644
--- a/translations/hk/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/zh-HK/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# 探索行星電腦數據集
## 指引
@@ -22,7 +13,7 @@ Explorer界面(如下圖所示)允許你選擇一個數據集(從提供的
2. 探索數據集[目錄](https://planetarycomputer.microsoft.com/catalog)——了解每個數據集的用途。
3. 使用Explorer——選擇一個感興趣的數據集,選擇相關的查詢和渲染選項。
-
+
`你的任務:`
現在,研究瀏覽器中渲染的可視化,並回答以下問題:
diff --git a/translations/hk/6-Data-Science-In-Wild/README.md b/translations/zh-HK/6-Data-Science-In-Wild/README.md
similarity index 71%
rename from translations/hk/6-Data-Science-In-Wild/README.md
rename to translations/zh-HK/6-Data-Science-In-Wild/README.md
index c8a31a0f..edb6c67e 100644
--- a/translations/hk/6-Data-Science-In-Wild/README.md
+++ b/translations/zh-HK/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# 野外數據科學
數據科學在各行業中的實際應用。
diff --git a/translations/hk/AGENTS.md b/translations/zh-HK/AGENTS.md
similarity index 98%
rename from translations/hk/AGENTS.md
rename to translations/zh-HK/AGENTS.md
index 780231eb..8891fe0b 100644
--- a/translations/hk/AGENTS.md
+++ b/translations/zh-HK/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## 項目概覽
diff --git a/translations/hk/CODE_OF_CONDUCT.md b/translations/zh-HK/CODE_OF_CONDUCT.md
similarity index 76%
rename from translations/hk/CODE_OF_CONDUCT.md
rename to translations/zh-HK/CODE_OF_CONDUCT.md
index a3942f67..22c2ee09 100644
--- a/translations/hk/CODE_OF_CONDUCT.md
+++ b/translations/zh-HK/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft 開源行為準則
此項目已採用 [Microsoft 開源行為準則](https://opensource.microsoft.com/codeofconduct/)。
diff --git a/translations/hk/CONTRIBUTING.md b/translations/zh-HK/CONTRIBUTING.md
similarity index 96%
rename from translations/hk/CONTRIBUTING.md
rename to translations/zh-HK/CONTRIBUTING.md
index 0d262c71..b6d419da 100644
--- a/translations/hk/CONTRIBUTING.md
+++ b/translations/zh-HK/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# 貢獻《初學者數據科學》
感謝您對《初學者數據科學》課程的貢獻感興趣!我們歡迎社群的貢獻。
@@ -311,7 +302,7 @@ def calculate_mean(data):
import pandas as pd
```
````
-- 為圖片添加替代文字:``
+- 為圖片添加替代文字:``
- 保持合理的行長(約 80-100 字元)
### Python
diff --git a/translations/hk/INSTALLATION.md b/translations/zh-HK/INSTALLATION.md
similarity index 96%
rename from translations/hk/INSTALLATION.md
rename to translations/zh-HK/INSTALLATION.md
index cd56aef7..b34f59ca 100644
--- a/translations/hk/INSTALLATION.md
+++ b/translations/zh-HK/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# 安裝指南
本指南將幫助您設置環境,以使用《初學者數據科學課程》。
diff --git a/translations/zh-HK/README.md b/translations/zh-HK/README.md
new file mode 100644
index 00000000..c8666b31
--- /dev/null
+++ b/translations/zh-HK/README.md
@@ -0,0 +1,251 @@
+# Data Science for Beginners - 一個課程大綱
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+
+
+[](https://discord.gg/nTYy5BXMWG)
+
+[](https://aka.ms/foundry/forum)
+
+微軟 Azure Cloud Advocates 很高興呈獻一個長達 10 週,共 20 課的數據科學課程。每一課包括課前和課後測驗、完成課程的文字指示、解決方案和作業。我們以專案為本的教學法讓你在實作中學習,這是一種經證實能讓新技能「牢記於心」的學習方式。
+
+**衷心感謝我們的作者:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer)。
+
+**🙏 特別感謝 🙏 我們的 [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) 作者、審閱者及內容貢獻者,** 特別是 Aaryan Arora、[Aditya Garg](https://github.com/AdityaGarg00)、[Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/)、[Ankita Singh](https://www.linkedin.com/in/ankitasingh007)、[Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/)、[Arpita Das](https://www.linkedin.com/in/arpitadas01/)、ChhailBihari Dubey、[Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor)、[Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb)、[Majd Safi](https://www.linkedin.com/in/majd-s/)、[Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/)、[Miguel Correa](https://www.linkedin.com/in/miguelmque/)、[Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119)、[Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum)、[Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/)、[Rohit Yadav](https://www.linkedin.com/in/rty2423)、Samridhi Sharma、[Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/)、[Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/)、Yogendrasingh Pawar 、[Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/)、[Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
+
+||
+|:---:|
+| Data Science For Beginners - _手繪筆記由 [@nitya](https://twitter.com/nitya) 製作_ |
+
+### 🌐 多語言支援
+
+#### 透過 GitHub Action 支援(自動且始終保持最新)
+
+
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](./README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+
+> **偏好本地克隆?**
+
+> 本倉庫包含 50 多種語言的翻譯,這大幅增加下載大小。若想不含翻譯檔案克隆,請使用 sparse checkout:
+> ```bash
+> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
+> cd Data-Science-For-Beginners
+> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
+> ```
+> 這樣可以讓您用更快的速度獲得完成課程所需的一切。
+
+
+**如需其他翻譯語言支援列表,請參閱[此處](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+
+#### 加入我們的社群
+[](https://discord.gg/nTYy5BXMWG)
+
+我們正在舉辦 Discord Learn with AI 系列,詳細瞭解並於 2025 年 9 月 18 日至 30 日加入我們,詳情見 [Learn with AI Series](https://aka.ms/learnwithai/discord)。你將獲得如何使用 GitHub Copilot 進行數據科學的技巧與竅門。
+
+
+
+# 你是學生嗎?
+
+開始使用以下資源:
+
+- [學生中心頁面](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) 在此頁面,您會找到初學者資源、學生包甚至獲取免費認證券的方法。這是一個你會想收藏並不時查看的頁面,因為我們每月至少更新一次內容。
+- [Microsoft Learn 學生大使](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) 加入全球學生大使社群,這可能是你進入微軟的途徑。
+
+# 入門指引
+
+## 📚 文件
+
+- **[安裝指南](INSTALLATION.md)** - 初學者逐步設置指引
+- **[使用指南](USAGE.md)** - 範例和常用工作流程
+- **[疑難排解](TROUBLESHOOTING.md)** - 常見問題解決
+- **[貢獻指南](CONTRIBUTING.md)** - 如何為本專案做出貢獻
+- **[給教師參考](for-teachers.md)** - 教學指導與課堂資源
+
+## 👨🎓 給學生
+> **徹底初學者**:對數據科學陌生?請由我們的[初學者範例](examples/README.md)開始!這些簡單且充分註解的範例有助你理解基礎,然後再深入整個課程。
+> **[學生](https://aka.ms/student-page)**:要自行使用本課程,請 fork 整個倉庫並自行完成練習,從課前小測開始。然後閱讀課程並完成剩餘活動。嘗試理解課堂內容來創建專案,而不是直接複製解決方案代碼;不過這些代碼可以在每個以專案為導向的課程之 /solutions 資料夾找到。另一個方法是與朋友組成學習小組,一起完成內容。進一步學習建議參考 [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)。
+
+**快速開始步驟:**
+1. 查看[安裝指南](INSTALLATION.md)來設置你的環境
+2. 閱讀[使用指南](USAGE.md)學習課程的使用方式
+3. 從第 1 課開始,依序進行
+4. 加入我們的[Discord 社群](https://aka.ms/ds4beginners/discord)尋求支援
+
+## 👩🏫 給教師
+
+> **教師們**:我們提供了[一些建議](for-teachers.md)介紹如何使用本課程。歡迎您在[討論論壇](https://github.com/microsoft/Data-Science-For-Beginners/discussions)提供回饋!
+## 介紹團隊
+
+[](https://youtu.be/8mzavjQSMM4 "宣傳短片")
+
+**動圖由** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal) 製作
+
+> 🎥 點擊上面圖片觀看關於本專案及其創建者的影片!
+
+## 教學法
+
+我們在設計此課程時選擇了兩個教學原則:確保課程以專案為基礎,並包含頻繁的小測驗。在本系列課程結束時,學生將學會資料科學的基本原理,包括倫理概念、資料準備、資料處理的不同方法、資料視覺化、資料分析、資料科學的實際應用案例等。
+
+此外,課前的低壓力測驗能設定學生學習主題的意圖,課後的另一個測驗則確保持續記憶。此課程設計靈活且有趣,可全程或分段學習。專案由淺入深,於10週循環結束時逐漸變得複雜。
+
+> 查看我們的[行為守則](CODE_OF_CONDUCT.md)、[貢獻指南](CONTRIBUTING.md)、[翻譯指南](TRANSLATIONS.md)。我們歡迎您的建設性反饋!
+
+## 每課包含:
+
+- 選擇性的手繪筆記
+- 選擇性的補充影片
+- 課前暖身測驗
+- 書面課程
+- 對專案課程,附詳細的逐步專案建置指引
+- 知識檢核
+- 挑戰任務
+- 補充閱讀
+- 作業
+- [課後測驗](https://ff-quizzes.netlify.app/en/)
+
+> **關於測驗的一點說明**:所有測驗均收錄於 Quiz-App 資料夾,共40個測驗,每個測驗包含三題問題。它們在課程中有連結,但測驗應用程式可於本機執行或部署至 Azure;請參照 `quiz-app` 資料夾中的說明。測驗正逐步本地化中。
+
+## 🎓 初學者友善範例
+
+**資料科學新手?** 我們建立了特別的[範例目錄](examples/README.md),提供簡單且詳細註解的程式碼,助您快速入門:
+
+- 🌟 **Hello World** - 您的第一個資料科學程式
+- 📂 **載入資料** - 學習讀取與探索資料集
+- 📊 **簡易分析** - 計算統計數據並發掘規律
+- 📈 **基本視覺化** - 製作圖表
+- 🔬 **實務專案** - 從頭到尾完成工作流程
+
+每個範例都有詳細註解,解釋每一步驟,適合完全初學者!
+
+👉 **[從範例開始](examples/README.md)** 👈
+
+## 課程
+
+||
+|:---:|
+| 資料科學初學者路線圖 - _手繪筆記由 [@nitya](https://twitter.com/nitya) 製作_ |
+
+| 課程編號 | 主題 | 課程分類 | 學習目標 | 連結課程 | 作者 |
+| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
+| 01 | 定義資料科學 | [介紹](1-Introduction/README.md) | 了解資料科學的基本概念及其與人工智能、機器學習和大數據的關係。 | [課程](1-Introduction/01-defining-data-science/README.md) [影片](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | 資料科學倫理學 | [介紹](1-Introduction/README.md) | 資料倫理概念、挑戰和框架。 | [課程](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | 定義資料 | [介紹](1-Introduction/README.md) | 資料如何分類及其常見來源。 | [課程](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | 統計與機率入門 | [介紹](1-Introduction/README.md) | 介紹機率與統計的數學技巧,用以理解資料。 | [課程](1-Introduction/04-stats-and-probability/README.md) [影片](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | 使用關聯式資料庫 | [資料操作](2-Working-With-Data/README.md) | 介紹關聯式資料及結構化查詢語言(SQL,發音為“see-quell”) 基本探索與分析技巧。 | [課程](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
+| 06 | 使用 NoSQL 資料 | [資料操作](2-Working-With-Data/README.md) | 介紹非關聯式資料及其各種型態,以及文件資料庫的探索與分析基礎。 | [課程](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
+| 07 | 使用 Python | [資料操作](2-Working-With-Data/README.md) | 使用 Python 及 Pandas 等函式庫進行資料探索的基礎。建議具備 Python 程式設計基礎。 | [課程](2-Working-With-Data/07-python/README.md) [影片](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | 資料準備 | [資料操作](2-Working-With-Data/README.md) | 資料清理與轉換技巧,處理缺失、不準確或不完整資料的挑戰。 | [課程](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | 視覺化數量 | [資料視覺化](3-Data-Visualization/README.md) | 使用 Matplotlib 視覺化鳥類資料 🦆 | [課程](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | 視覺化資料分布 | [資料視覺化](3-Data-Visualization/README.md) | 視覺化觀察值及趨勢於區間內。 | [課程](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | 視覺化比例 | [資料視覺化](3-Data-Visualization/README.md) | 視覺化離散及群組百分比。 | [課程](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | 視覺化關係 | [資料視覺化](3-Data-Visualization/README.md) | 視覺化資料及其變數間的連結及相關性。 | [課程](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | 有意義的視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 運用技巧與指導,使視覺化對於有效問題解決與洞察有價值。 | [課程](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | 資料科學生命週期導論 | [生命週期](4-Data-Science-Lifecycle/README.md) | 介紹資料科學生命週期及其第一步──資料獲取與萃取。 | [課程](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | 資料分析 | [生命週期](4-Data-Science-Lifecycle/README.md) | 生命週期中著重於資料分析的技術。 | [課程](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
+| 16 | 溝通呈現 | [生命週期](4-Data-Science-Lifecycle/README.md) | 著重呈現資料洞察,以方便決策者理解資料。 | [課程](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
+| 17 | 雲端資料科學 | [雲端資料](5-Data-Science-In-Cloud/README.md) | 介紹雲端資料科學及其優點。 | [課程](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 及 [Maud](https://twitter.com/maudstweets) |
+| 18 | 雲端資料科學 | [雲端資料](5-Data-Science-In-Cloud/README.md) | 使用低程式碼工具訓練模型。 |[課程](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 及 [Maud](https://twitter.com/maudstweets) |
+| 19 | 雲端資料科學 | [雲端資料](5-Data-Science-In-Cloud/README.md) | 使用 Azure Machine Learning Studio 部署模型。 | [課程](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) 及 [Maud](https://twitter.com/maudstweets) |
+| 20 | 實務資料科學 | [實務應用](6-Data-Science-In-Wild/README.md) | 真實世界中由資料科學驅動的專案。 | [課程](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+
+## GitHub Codespaces
+
+請依照以下步驟在 Codespace 中開啟此範例:
+1. 點擊「Code」下拉選單,選擇「Open with Codespaces」。
+2. 在右側窗格底部選擇「+ New codespace」。
+更多資訊請參考 [GitHub 文件](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace)。
+
+## VSCode 遠端 - 容器
+請依照以下步驟,使用本機電腦與 VSCode 以及 VS Code Remote - Containers 擴充功能,在容器中開啟此儲存庫:
+
+1. 如是第一次使用開發容器,請確定系統符合前置需求(例如安裝 Docker),詳見[快速入門文件](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)。
+
+使用此儲存庫,可選擇於獨立 Docker 卷中開啟儲存庫:
+
+**注意**:底層會執行 Remote-Containers: **Clone Repository in Container Volume...** 指令,將原始碼複製到 Docker 卷而非本機檔案系統。[卷](https://docs.docker.com/storage/volumes/) 是持久化容器資料的推薦方式。
+
+或開啟本機已克隆或下載版本的儲存庫:
+
+- 將此儲存庫克隆到本機檔案系統。
+- 按 F1,選擇 **Remote-Containers: Open Folder in Container...** 指令。
+- 選擇克隆後的資料夾,等待容器啟動,開始操作。
+
+## 離線存取
+
+您可使用 [Docsify](https://docsify.js.org/#/) 離線瀏覽此文件。請先 fork 此儲存庫,[安裝 Docsify](https://docsify.js.org/#/quickstart) 至本機,然後在此儲存庫根目錄輸入 `docsify serve`。網站會在本機的 3000 埠提供服務:`localhost:3000`。
+
+> 注意,使用 Docsify 不會呈現筆記本檔案,需時請另以 VS Code 執行 Python 核心來執行筆記本。
+
+## 其他課程
+
+我們團隊還有其他課程!請參考:
+
+
+### LangChain
+[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+
+---
+
+### Azure / Edge / MCP / 代理人
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### 生成式人工智能系列
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### 核心學習
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### Copilot 系列
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+
+
+## 獲取幫助
+
+**遇到問題?** 請查看我們的 [疑難排解指南](TROUBLESHOOTING.md),了解常見問題的解決方案。
+
+如果您遇到困難或對構建 AI 應用有任何疑問,歡迎加入與其他學習者及有經驗的開發人員一起討論 MCP 的社群。在這裡,問題被歡迎,並且知識自由分享。
+
+[](https://discord.gg/nTYy5BXMWG)
+
+如果您在開發過程中有產品反饋或遇到錯誤,請訪問:
+
+[](https://aka.ms/foundry/forum)
+
+---
+
+
+**免責聲明**:
+此文件經由 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。儘管我們致力於確保準確性,但請注意自動翻譯可能包含錯誤或不準確之處。原始文件的本地語言版本應被視為權威來源。對於重要資訊,建議採用專業人工翻譯。本公司不對因使用此翻譯而引起的任何誤解或誤釋承擔責任。
+
\ No newline at end of file
diff --git a/translations/hk/SECURITY.md b/translations/zh-HK/SECURITY.md
similarity index 92%
rename from translations/hk/SECURITY.md
rename to translations/zh-HK/SECURITY.md
index ff15f3ed..3b96f67d 100644
--- a/translations/hk/SECURITY.md
+++ b/translations/zh-HK/SECURITY.md
@@ -1,12 +1,3 @@
-
## 安全性
Microsoft 非常重視我們軟件產品和服務的安全性,包括所有透過我們 GitHub 組織管理的原始碼庫,這些組織包括 [Microsoft](https://github.com/Microsoft)、[Azure](https://github.com/Azure)、[DotNet](https://github.com/dotnet)、[AspNet](https://github.com/aspnet)、[Xamarin](https://github.com/xamarin) 以及 [我們的 GitHub 組織](https://opensource.microsoft.com/)。
diff --git a/translations/hk/SUPPORT.md b/translations/zh-HK/SUPPORT.md
similarity index 77%
rename from translations/hk/SUPPORT.md
rename to translations/zh-HK/SUPPORT.md
index 35ab2575..dc5e7813 100644
--- a/translations/hk/SUPPORT.md
+++ b/translations/zh-HK/SUPPORT.md
@@ -1,12 +1,3 @@
-
# 支援
## 如何提交問題和獲取幫助
diff --git a/translations/hk/TROUBLESHOOTING.md b/translations/zh-HK/TROUBLESHOOTING.md
similarity index 98%
rename from translations/hk/TROUBLESHOOTING.md
rename to translations/zh-HK/TROUBLESHOOTING.md
index b34217f5..714ac4ed 100644
--- a/translations/hk/TROUBLESHOOTING.md
+++ b/translations/zh-HK/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# 疑難排解指南
本指南提供了解決在使用《初學者數據科學》課程時可能遇到的常見問題的方法。
diff --git a/translations/hk/USAGE.md b/translations/zh-HK/USAGE.md
similarity index 97%
rename from translations/hk/USAGE.md
rename to translations/zh-HK/USAGE.md
index 035adf7c..a4562599 100644
--- a/translations/hk/USAGE.md
+++ b/translations/zh-HK/USAGE.md
@@ -1,12 +1,3 @@
-
# 使用指南
本指南提供使用「初學者的數據科學」課程的範例和常見工作流程。
diff --git a/translations/hk/docs/_sidebar.md b/translations/zh-HK/docs/_sidebar.md
similarity index 90%
rename from translations/hk/docs/_sidebar.md
rename to translations/zh-HK/docs/_sidebar.md
index a25552fa..3eef4a39 100644
--- a/translations/hk/docs/_sidebar.md
+++ b/translations/zh-HK/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- 介紹
- [定義數據科學](../1-Introduction/01-defining-data-science/README.md)
- [數據科學的倫理](../1-Introduction/02-ethics/README.md)
diff --git a/translations/hk/examples/README.md b/translations/zh-HK/examples/README.md
similarity index 95%
rename from translations/hk/examples/README.md
rename to translations/zh-HK/examples/README.md
index 53df7382..d0a14d0c 100644
--- a/translations/hk/examples/README.md
+++ b/translations/zh-HK/examples/README.md
@@ -1,12 +1,3 @@
-
# 初學者友善的數據科學範例
歡迎來到範例目錄!這些簡單且附有詳細註解的範例旨在幫助您開始學習數據科學,即使您是完全的初學者也能輕鬆上手。
diff --git a/translations/hk/for-teachers.md b/translations/zh-HK/for-teachers.md
similarity index 92%
rename from translations/hk/for-teachers.md
rename to translations/zh-HK/for-teachers.md
index 18439037..d7809efd 100644
--- a/translations/hk/for-teachers.md
+++ b/translations/zh-HK/for-teachers.md
@@ -1,12 +1,3 @@
-
## 給教育工作者
想在課堂上使用這套課程嗎?請隨意使用!
diff --git a/translations/hk/quiz-app/README.md b/translations/zh-HK/quiz-app/README.md
similarity index 95%
rename from translations/hk/quiz-app/README.md
rename to translations/zh-HK/quiz-app/README.md
index cf8fce52..9cb002c7 100644
--- a/translations/hk/quiz-app/README.md
+++ b/translations/zh-HK/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# 測驗
這些測驗是數據科學課程的課前和課後測驗,課程網址:https://aka.ms/datascience-beginners
diff --git a/translations/hk/sketchnotes/README.md b/translations/zh-HK/sketchnotes/README.md
similarity index 56%
rename from translations/hk/sketchnotes/README.md
rename to translations/zh-HK/sketchnotes/README.md
index 9efed63d..1d59c9c4 100644
--- a/translations/hk/sketchnotes/README.md
+++ b/translations/zh-HK/sketchnotes/README.md
@@ -1,19 +1,10 @@
-
在這裡可以找到所有的手繪筆記!
## 致謝
Nitya Narasimhan,藝術家
-
+
**免責聲明**:
本文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。雖然我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於重要信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋不承擔責任。
\ No newline at end of file
diff --git a/translations/zh-MO/.co-op-translator.json b/translations/zh-MO/.co-op-translator.json
new file mode 100644
index 00000000..d83d7ce3
--- /dev/null
+++ b/translations/zh-MO/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:39:24+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "zh-MO"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-27T09:03:46+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-27T09:04:54+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:07:36+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "zh-MO"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-27T08:56:31+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-06T07:03:13+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "zh-MO"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-27T09:08:29+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:03:40+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "zh-MO"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-27T09:17:18+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-27T08:43:53+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "zh-MO"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T10:43:38+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "zh-MO"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:53:08+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-06T06:53:29+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "zh-MO"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-27T08:41:51+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:27:16+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "zh-MO"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-27T08:37:14+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-06T06:55:21+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "zh-MO"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-27T08:29:52+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-27T08:19:08+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-06T06:58:39+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-27T10:46:08+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-06T07:00:05+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-27T10:16:19+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-06T06:57:46+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-27T10:50:16+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:29:42+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-27T10:20:51+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-06T06:59:09+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-27T10:10:59+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T10:12:13+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-27T10:11:36+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-27T10:32:04+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-27T10:34:18+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-27T10:23:12+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-27T10:24:40+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-27T10:39:33+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-27T10:26:49+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-27T10:36:31+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "zh-MO"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-27T10:06:27+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "zh-MO"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:28:19+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "zh-MO"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-27T09:54:08+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:28:05+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "zh-MO"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-27T09:57:40+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:28:40+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "zh-MO"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-27T10:05:17+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-27T09:48:06+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "zh-MO"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-06T06:52:26+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "zh-MO"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-27T09:38:56+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-06T06:51:27+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "zh-MO"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-27T09:33:59+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-06T06:52:49+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "zh-MO"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-27T09:45:48+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-27T09:26:01+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "zh-MO"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:17:06+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "zh-MO"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-27T09:25:02+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "zh-MO"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-27T09:18:25+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "zh-MO"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:06:04+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "zh-MO"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-27T08:16:13+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "zh-MO"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:31:22+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "zh-MO"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:16:12+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "zh-MO"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:16:57+00:00",
+ "source_file": "README.md",
+ "language_code": "zh-MO"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-27T08:17:33+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "zh-MO"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-27T08:14:12+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "zh-MO"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:32:11+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "zh-MO"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:55:02+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "zh-MO"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-27T08:43:04+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "zh-MO"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:57:31+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "zh-MO"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:53:07+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "zh-MO"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-27T09:47:00+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "zh-MO"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-27T09:17:58+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "zh-MO"
+ }
+}
\ No newline at end of file
diff --git a/translations/mo/1-Introduction/01-defining-data-science/README.md b/translations/zh-MO/1-Introduction/01-defining-data-science/README.md
similarity index 96%
rename from translations/mo/1-Introduction/01-defining-data-science/README.md
rename to translations/zh-MO/1-Introduction/01-defining-data-science/README.md
index a1292dc2..5edccb35 100644
--- a/translations/mo/1-Introduction/01-defining-data-science/README.md
+++ b/translations/zh-MO/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# 定義數據科學
|  繪製的手繪筆記 ](../../sketchnotes/01-Definitions.png) |
@@ -15,7 +6,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-[](https://youtu.be/beZ7Mb_oz9I)
+[](https://youtu.be/beZ7Mb_oz9I)
## [課前測驗](https://ff-quizzes.netlify.app/en/ds/quiz/0)
@@ -153,7 +144,7 @@ CO_OP_TRANSLATOR_METADATA:
在這個挑戰中,我們將透過分析文本來尋找與資料科學領域相關的概念。我們會選取一篇關於資料科學的維基百科文章,下載並處理文本,然後建立一個像這樣的文字雲:
-
+
請訪問 [`notebook.ipynb`](../../../../1-Introduction/01-defining-data-science/notebook.ipynb ':ignore') 來閱讀程式碼。你也可以執行程式碼,並即時查看它如何進行所有的資料轉換。
diff --git a/translations/mo/1-Introduction/01-defining-data-science/assignment.md b/translations/zh-MO/1-Introduction/01-defining-data-science/assignment.md
similarity index 89%
rename from translations/mo/1-Introduction/01-defining-data-science/assignment.md
rename to translations/zh-MO/1-Introduction/01-defining-data-science/assignment.md
index 54e70326..336f9b41 100644
--- a/translations/mo/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/zh-MO/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# 作業:資料科學情境
在這份作業中,我們希望你思考一些現實生活中的流程或問題,涵蓋不同的問題領域,並探討如何利用資料科學流程來改進它。請思考以下問題:
diff --git a/translations/mo/1-Introduction/01-defining-data-science/notebook.ipynb b/translations/zh-MO/1-Introduction/01-defining-data-science/notebook.ipynb
similarity index 100%
rename from translations/mo/1-Introduction/01-defining-data-science/notebook.ipynb
rename to translations/zh-MO/1-Introduction/01-defining-data-science/notebook.ipynb
diff --git a/translations/mo/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/zh-MO/1-Introduction/01-defining-data-science/solution/assignment.md
similarity index 90%
rename from translations/mo/1-Introduction/01-defining-data-science/solution/assignment.md
rename to translations/zh-MO/1-Introduction/01-defining-data-science/solution/assignment.md
index 27696e9e..95b03145 100644
--- a/translations/mo/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/zh-MO/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# 作業:數據科學情境
在這份作業中,我們希望你思考一些真實生活中的流程或問題,並探討如何使用數據科學流程來改進它。請思考以下問題:
diff --git a/translations/mo/1-Introduction/01-defining-data-science/solution/notebook.ipynb b/translations/zh-MO/1-Introduction/01-defining-data-science/solution/notebook.ipynb
similarity index 100%
rename from translations/mo/1-Introduction/01-defining-data-science/solution/notebook.ipynb
rename to translations/zh-MO/1-Introduction/01-defining-data-science/solution/notebook.ipynb
diff --git a/translations/mo/1-Introduction/02-ethics/README.md b/translations/zh-MO/1-Introduction/02-ethics/README.md
similarity index 98%
rename from translations/mo/1-Introduction/02-ethics/README.md
rename to translations/zh-MO/1-Introduction/02-ethics/README.md
index f4a08f3a..0dcdefbe 100644
--- a/translations/mo/1-Introduction/02-ethics/README.md
+++ b/translations/zh-MO/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# 資料倫理簡介
| ](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/mo/1-Introduction/02-ethics/assignment.md b/translations/zh-MO/1-Introduction/02-ethics/assignment.md
similarity index 90%
rename from translations/mo/1-Introduction/02-ethics/assignment.md
rename to translations/zh-MO/1-Introduction/02-ethics/assignment.md
index 992d8146..8f3dd21f 100644
--- a/translations/mo/1-Introduction/02-ethics/assignment.md
+++ b/translations/zh-MO/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## 撰寫一份數據倫理案例研究
## 指導說明
diff --git a/translations/mo/1-Introduction/03-defining-data/README.md b/translations/zh-MO/1-Introduction/03-defining-data/README.md
similarity index 96%
rename from translations/mo/1-Introduction/03-defining-data/README.md
rename to translations/zh-MO/1-Introduction/03-defining-data/README.md
index 546d4060..66e346f4 100644
--- a/translations/mo/1-Introduction/03-defining-data/README.md
+++ b/translations/zh-MO/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# 定義資料
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/mo/1-Introduction/03-defining-data/assignment.md b/translations/zh-MO/1-Introduction/03-defining-data/assignment.md
similarity index 87%
rename from translations/mo/1-Introduction/03-defining-data/assignment.md
rename to translations/zh-MO/1-Introduction/03-defining-data/assignment.md
index d208dd05..2e36c8d2 100644
--- a/translations/mo/1-Introduction/03-defining-data/assignment.md
+++ b/translations/zh-MO/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# 資料集分類
## 指導說明
diff --git a/translations/mo/1-Introduction/04-stats-and-probability/README.md b/translations/zh-MO/1-Introduction/04-stats-and-probability/README.md
similarity index 94%
rename from translations/mo/1-Introduction/04-stats-and-probability/README.md
rename to translations/zh-MO/1-Introduction/04-stats-and-probability/README.md
index 6d944906..8ce5de1f 100644
--- a/translations/mo/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/zh-MO/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# 統計與機率簡介
| ](../../sketchnotes/04-Statistics-Probability.png)|
@@ -15,7 +6,7 @@ CO_OP_TRANSLATOR_METADATA:
統計學與機率論是數學中兩個密切相關的領域,對於數據科學非常重要。雖然在沒有深入數學知識的情況下也可以處理數據,但了解一些基本概念仍然是有益的。在這裡,我們將提供一個簡短的介紹,幫助你入門。
-[](https://youtu.be/Z5Zy85g4Yjw)
+[](https://youtu.be/Z5Zy85g4Yjw)
## [課前測驗](https://ff-quizzes.netlify.app/en/ds/quiz/6)
@@ -39,7 +30,7 @@ CO_OP_TRANSLATOR_METADATA:
我們只能討論變數落在某個值區間內的機率,例如 P(t1≤X2)。在這種情況下,機率分佈由 **機率密度函數** p(x) 描述,其公式如下:
-![P(t_1\le X
+
在這裡,我們還計算了 **四分位距** IQR=Q3-Q1,以及所謂的 **離群值**——位於 [Q1-1.5*IQR,Q3+1.5*IQR] 範圍之外的值。
@@ -82,11 +73,11 @@ CO_OP_TRANSLATOR_METADATA:
以下是顯示我們數據的平均值、中位數和四分位數的盒形圖:
-
+
由於我們的數據包含不同球員 **角色** 的信息,我們也可以按角色繪製盒形圖——這將幫助我們了解參數值在不同角色之間的差異。這次我們將考慮身高:
-
+
這個圖表表明,平均而言,一壘手的身高高於二壘手的身高。在本課程的後面部分,我們將學習如何更正式地檢驗這一假設,以及如何證明我們的數據在統計上具有顯著性。
@@ -94,7 +85,7 @@ CO_OP_TRANSLATOR_METADATA:
為了查看我們數據的分佈,我們可以繪製一個稱為 **直方圖** 的圖表。X 軸包含不同的體重區間(即 **箱**),Y 軸顯示隨機變數樣本落入某個區間的次數。
-
+
從這個直方圖中可以看出,所有值都集中在某個平均體重附近,距離平均體重越遠,該值出現的次數越少。也就是說,棒球隊員的體重非常不同於平均體重的可能性很低。體重的方差顯示了體重與平均值可能的差異程度。
@@ -112,7 +103,7 @@ samples = np.random.normal(mean,std,1000)
如果我們繪製生成樣本的直方圖,我們會看到與上面類似的圖像。如果我們增加樣本數量和箱數,我們可以生成更接近理想的正態分佈圖像:
-
+
*平均值=0,標準差=1 的正態分佈*
@@ -234,7 +225,7 @@ array([[1. , 0.52959196],
在我們的例子中,值 0.53 表明一個人的體重和身高之間存在一定的相關性。我們還可以繪製一個值對另一個值的散點圖,以直觀地查看關係:
-
+
> 更多關於相關性和協方差的例子可以在 [配套筆記本](notebook.ipynb) 中找到。
diff --git a/translations/mo/1-Introduction/04-stats-and-probability/assignment.ipynb b/translations/zh-MO/1-Introduction/04-stats-and-probability/assignment.ipynb
similarity index 100%
rename from translations/mo/1-Introduction/04-stats-and-probability/assignment.ipynb
rename to translations/zh-MO/1-Introduction/04-stats-and-probability/assignment.ipynb
diff --git a/translations/mo/1-Introduction/04-stats-and-probability/assignment.md b/translations/zh-MO/1-Introduction/04-stats-and-probability/assignment.md
similarity index 89%
rename from translations/mo/1-Introduction/04-stats-and-probability/assignment.md
rename to translations/zh-MO/1-Introduction/04-stats-and-probability/assignment.md
index ae5687b0..91ba2ee5 100644
--- a/translations/mo/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/zh-MO/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# 小型糖尿病研究
在這次作業中,我們將使用一個來自[這裡](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)的小型糖尿病患者數據集。
diff --git a/translations/mo/1-Introduction/04-stats-and-probability/notebook.ipynb b/translations/zh-MO/1-Introduction/04-stats-and-probability/notebook.ipynb
similarity index 100%
rename from translations/mo/1-Introduction/04-stats-and-probability/notebook.ipynb
rename to translations/zh-MO/1-Introduction/04-stats-and-probability/notebook.ipynb
diff --git a/translations/mo/1-Introduction/04-stats-and-probability/solution/assignment.ipynb b/translations/zh-MO/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
similarity index 100%
rename from translations/mo/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
rename to translations/zh-MO/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
diff --git a/translations/mo/1-Introduction/README.md b/translations/zh-MO/1-Introduction/README.md
similarity index 79%
rename from translations/mo/1-Introduction/README.md
rename to translations/zh-MO/1-Introduction/README.md
index 24682751..a4f6f43a 100644
--- a/translations/mo/1-Introduction/README.md
+++ b/translations/zh-MO/1-Introduction/README.md
@@ -1,15 +1,6 @@
-
# 資料科學簡介
-
+
> 照片由 Stephen Dawson 提供,來源於 Unsplash
在這些課程中,您將了解資料科學的定義,並學習作為資料科學家必須考慮的倫理問題。此外,您還會學習資料的定義,並簡單了解統計學和機率,這些是資料科學的核心學術領域。
diff --git a/translations/mo/2-Working-With-Data/05-relational-databases/README.md b/translations/zh-MO/2-Working-With-Data/05-relational-databases/README.md
similarity index 97%
rename from translations/mo/2-Working-With-Data/05-relational-databases/README.md
rename to translations/zh-MO/2-Working-With-Data/05-relational-databases/README.md
index e8f65f89..7d08b16c 100644
--- a/translations/mo/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/zh-MO/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# 處理數據:關聯式資料庫
| 製作 ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/mo/2-Working-With-Data/05-relational-databases/assignment.md b/translations/zh-MO/2-Working-With-Data/05-relational-databases/assignment.md
similarity index 93%
rename from translations/mo/2-Working-With-Data/05-relational-databases/assignment.md
rename to translations/zh-MO/2-Working-With-Data/05-relational-databases/assignment.md
index faa808ee..d358d1ea 100644
--- a/translations/mo/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/zh-MO/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# 顯示機場數據
您已獲得一個基於 [SQLite](https://sqlite.org/index.html) 的 [資料庫](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db),其中包含有關機場的資訊。以下顯示了該資料庫的結構。您將使用 [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) 中的 [SQLite 擴展](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) 來顯示不同城市的機場資訊。
diff --git a/translations/mo/2-Working-With-Data/06-non-relational/README.md b/translations/zh-MO/2-Working-With-Data/06-non-relational/README.md
similarity index 97%
rename from translations/mo/2-Working-With-Data/06-non-relational/README.md
rename to translations/zh-MO/2-Working-With-Data/06-non-relational/README.md
index f3ad3446..42dc957c 100644
--- a/translations/mo/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/zh-MO/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# 使用資料:非關聯式資料
| 繪製的速記筆記](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/mo/2-Working-With-Data/06-non-relational/assignment.md b/translations/zh-MO/2-Working-With-Data/06-non-relational/assignment.md
similarity index 81%
rename from translations/mo/2-Working-With-Data/06-non-relational/assignment.md
rename to translations/zh-MO/2-Working-With-Data/06-non-relational/assignment.md
index 69c45468..44eb13ad 100644
--- a/translations/mo/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/zh-MO/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# 蘇打水利潤
## 說明
diff --git a/translations/mo/2-Working-With-Data/07-python/R/notebook.ipynb b/translations/zh-MO/2-Working-With-Data/07-python/R/notebook.ipynb
similarity index 100%
rename from translations/mo/2-Working-With-Data/07-python/R/notebook.ipynb
rename to translations/zh-MO/2-Working-With-Data/07-python/R/notebook.ipynb
diff --git a/translations/mo/2-Working-With-Data/07-python/README.md b/translations/zh-MO/2-Working-With-Data/07-python/README.md
similarity index 94%
rename from translations/mo/2-Working-With-Data/07-python/README.md
rename to translations/zh-MO/2-Working-With-Data/07-python/README.md
index 15bd8867..f3fcedb1 100644
--- a/translations/mo/2-Working-With-Data/07-python/README.md
+++ b/translations/zh-MO/2-Working-With-Data/07-python/README.md
@@ -1,19 +1,10 @@
-
# 使用數據:Python 和 Pandas 庫
|  繪製的速記筆記](../../sketchnotes/07-WorkWithPython.png) |
| :-------------------------------------------------------------------------------------------------------: |
| 使用 Python - _由 [@nitya](https://twitter.com/nitya) 繪製的速記筆記_ |
-[](https://youtu.be/dZjWOGbsN4Y)
+[](https://youtu.be/dZjWOGbsN4Y)
雖然資料庫提供了非常高效的方式來存儲數據並使用查詢語言進行查詢,但最靈活的數據處理方式是編寫自己的程式來操作數據。在許多情況下,使用資料庫查詢可能更有效。然而,當需要更複雜的數據處理時,使用 SQL 可能不容易完成。
@@ -74,7 +65,7 @@ print(f"Length of index is {len(idx)}")
items_sold = pd.Series(np.random.randint(25,50,size=len(idx)),index=idx)
items_sold.plot()
```
-
+
假設每週我們都會為朋友舉辦派對,並額外準備 10 盒冰淇淋。我們可以創建另一個以週為索引的 Series 來展示這一點:
```python
@@ -85,7 +76,7 @@ additional_items = pd.Series(10,index=pd.date_range(start_date,end_date,freq="W"
total_items = items_sold.add(additional_items,fill_value=0)
total_items.plot()
```
-
+
> **注意**:我們沒有使用簡單的語法 `total_items+additional_items`。如果使用該語法,我們會在結果 Series 中得到許多 `NaN`(*非數值*)值。這是因為在 `additional_items` Series 的某些索引點缺少值,並且將 `NaN` 與任何值相加都會得到 `NaN`。因此,我們需要在相加時指定 `fill_value` 參數。
@@ -94,7 +85,7 @@ total_items.plot()
monthly = total_items.resample("1M").mean()
ax = monthly.plot(kind='bar')
```
-
+
### DataFrame
@@ -220,7 +211,7 @@ df = pd.read_csv('file.csv')
由於我們想展示如何處理數據,我們邀請你打開 [`notebook-covidspread.ipynb`](notebook-covidspread.ipynb) 並從頭到尾閱讀。你也可以執行單元格,並完成我們在最後留下的一些挑戰。
-
+
> 如果你不知道如何在 Jupyter Notebook 中運行代碼,可以查看 [這篇文章](https://soshnikov.com/education/how-to-execute-notebooks-from-github/)。
@@ -242,7 +233,7 @@ df = pd.read_csv('file.csv')
打開 [`notebook-papers.ipynb`](notebook-papers.ipynb) 並從頭到尾閱讀。你也可以執行單元格,並完成我們在最後留下的一些挑戰。
-
+
## 處理圖像數據
diff --git a/translations/mo/2-Working-With-Data/07-python/assignment.md b/translations/zh-MO/2-Working-With-Data/07-python/assignment.md
similarity index 89%
rename from translations/mo/2-Working-With-Data/07-python/assignment.md
rename to translations/zh-MO/2-Working-With-Data/07-python/assignment.md
index 6b166d6f..4b4c878d 100644
--- a/translations/mo/2-Working-With-Data/07-python/assignment.md
+++ b/translations/zh-MO/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# 使用 Python 進行數據處理的作業
在這份作業中,我們將要求您詳細說明我們在挑戰中開始開發的代碼。作業分為兩部分:
diff --git a/translations/mo/2-Working-With-Data/07-python/notebook-covidspread.ipynb b/translations/zh-MO/2-Working-With-Data/07-python/notebook-covidspread.ipynb
similarity index 100%
rename from translations/mo/2-Working-With-Data/07-python/notebook-covidspread.ipynb
rename to translations/zh-MO/2-Working-With-Data/07-python/notebook-covidspread.ipynb
diff --git a/translations/mo/2-Working-With-Data/07-python/notebook-papers.ipynb b/translations/zh-MO/2-Working-With-Data/07-python/notebook-papers.ipynb
similarity index 100%
rename from translations/mo/2-Working-With-Data/07-python/notebook-papers.ipynb
rename to translations/zh-MO/2-Working-With-Data/07-python/notebook-papers.ipynb
diff --git a/translations/mo/2-Working-With-Data/07-python/notebook.ipynb b/translations/zh-MO/2-Working-With-Data/07-python/notebook.ipynb
similarity index 100%
rename from translations/mo/2-Working-With-Data/07-python/notebook.ipynb
rename to translations/zh-MO/2-Working-With-Data/07-python/notebook.ipynb
diff --git a/translations/mo/2-Working-With-Data/08-data-preparation/README.md b/translations/zh-MO/2-Working-With-Data/08-data-preparation/README.md
similarity index 98%
rename from translations/mo/2-Working-With-Data/08-data-preparation/README.md
rename to translations/zh-MO/2-Working-With-Data/08-data-preparation/README.md
index 60b82063..18865067 100644
--- a/translations/mo/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/zh-MO/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# 資料處理:資料準備
| 繪製的速記筆記](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/mo/2-Working-With-Data/08-data-preparation/assignment.ipynb b/translations/zh-MO/2-Working-With-Data/08-data-preparation/assignment.ipynb
similarity index 100%
rename from translations/mo/2-Working-With-Data/08-data-preparation/assignment.ipynb
rename to translations/zh-MO/2-Working-With-Data/08-data-preparation/assignment.ipynb
diff --git a/translations/mo/2-Working-With-Data/08-data-preparation/assignment.md b/translations/zh-MO/2-Working-With-Data/08-data-preparation/assignment.md
similarity index 82%
rename from translations/mo/2-Working-With-Data/08-data-preparation/assignment.md
rename to translations/zh-MO/2-Working-With-Data/08-data-preparation/assignment.md
index 1ed593f5..26502541 100644
--- a/translations/mo/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/zh-MO/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# 評估表單數據
一位客戶正在測試一個[小型表單](../../../../2-Working-With-Data/08-data-preparation/index.html),以收集一些關於其客戶群的基本數據。他們將測試結果帶給你,希望你能驗證所收集的數據。你可以在瀏覽器中打開 `index.html` 頁面查看表單。
diff --git a/translations/mo/2-Working-With-Data/08-data-preparation/notebook.ipynb b/translations/zh-MO/2-Working-With-Data/08-data-preparation/notebook.ipynb
similarity index 100%
rename from translations/mo/2-Working-With-Data/08-data-preparation/notebook.ipynb
rename to translations/zh-MO/2-Working-With-Data/08-data-preparation/notebook.ipynb
diff --git a/translations/mo/2-Working-With-Data/README.md b/translations/zh-MO/2-Working-With-Data/README.md
similarity index 79%
rename from translations/mo/2-Working-With-Data/README.md
rename to translations/zh-MO/2-Working-With-Data/README.md
index 97ee9800..fbf84219 100644
--- a/translations/mo/2-Working-With-Data/README.md
+++ b/translations/zh-MO/2-Working-With-Data/README.md
@@ -1,15 +1,6 @@
-
# 資料處理
-
+
> 照片由 Alexander Sinn 提供,來自 Unsplash
在這些課程中,您將學習一些管理、操作和應用資料的方法。您將了解關聯式和非關聯式資料庫,以及資料如何存儲於其中。您還會學習使用 Python 管理資料的基礎知識,並探索使用 Python 管理和挖掘資料的多種方式。
diff --git a/translations/mo/3-Data-Visualization/09-visualization-quantities/README.md b/translations/zh-MO/3-Data-Visualization/09-visualization-quantities/README.md
similarity index 97%
rename from translations/mo/3-Data-Visualization/09-visualization-quantities/README.md
rename to translations/zh-MO/3-Data-Visualization/09-visualization-quantities/README.md
index 4e9293f4..6f661f64 100644
--- a/translations/mo/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/zh-MO/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# 視覺化數量
| 繪製的手繪筆記](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/mo/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/zh-MO/3-Data-Visualization/09-visualization-quantities/assignment.md
similarity index 80%
rename from translations/mo/3-Data-Visualization/09-visualization-quantities/assignment.md
rename to translations/zh-MO/3-Data-Visualization/09-visualization-quantities/assignment.md
index b6584d7e..f6f2ca56 100644
--- a/translations/mo/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/zh-MO/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# 折線圖、散點圖與長條圖
## 說明
diff --git a/translations/mo/3-Data-Visualization/09-visualization-quantities/notebook.ipynb b/translations/zh-MO/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
similarity index 100%
rename from translations/mo/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
rename to translations/zh-MO/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
diff --git a/translations/mo/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb b/translations/zh-MO/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
similarity index 100%
rename from translations/mo/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
rename to translations/zh-MO/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
diff --git a/translations/mo/3-Data-Visualization/10-visualization-distributions/README.md b/translations/zh-MO/3-Data-Visualization/10-visualization-distributions/README.md
similarity index 97%
rename from translations/mo/3-Data-Visualization/10-visualization-distributions/README.md
rename to translations/zh-MO/3-Data-Visualization/10-visualization-distributions/README.md
index 7f1e0479..fb54f4e7 100644
--- a/translations/mo/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/zh-MO/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# 視覺化分佈
| 繪製的速記筆記](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/mo/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/zh-MO/3-Data-Visualization/10-visualization-distributions/assignment.md
similarity index 80%
rename from translations/mo/3-Data-Visualization/10-visualization-distributions/assignment.md
rename to translations/zh-MO/3-Data-Visualization/10-visualization-distributions/assignment.md
index 34381b24..5c6ad093 100644
--- a/translations/mo/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/zh-MO/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# 運用你的技能
## 指示
diff --git a/translations/mo/3-Data-Visualization/10-visualization-distributions/notebook.ipynb b/translations/zh-MO/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
similarity index 100%
rename from translations/mo/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
rename to translations/zh-MO/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
diff --git a/translations/mo/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb b/translations/zh-MO/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
similarity index 100%
rename from translations/mo/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
rename to translations/zh-MO/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
diff --git a/translations/mo/3-Data-Visualization/11-visualization-proportions/README.md b/translations/zh-MO/3-Data-Visualization/11-visualization-proportions/README.md
similarity index 97%
rename from translations/mo/3-Data-Visualization/11-visualization-proportions/README.md
rename to translations/zh-MO/3-Data-Visualization/11-visualization-proportions/README.md
index 8dd60426..57ea59e8 100644
--- a/translations/mo/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/zh-MO/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# 視覺化比例
| 繪製的速記筆記](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/mo/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/zh-MO/3-Data-Visualization/11-visualization-proportions/assignment.md
similarity index 81%
rename from translations/mo/3-Data-Visualization/11-visualization-proportions/assignment.md
rename to translations/zh-MO/3-Data-Visualization/11-visualization-proportions/assignment.md
index 08bf1b6f..8e898397 100644
--- a/translations/mo/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/zh-MO/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# 在 Excel 中試試看
## 說明
diff --git a/translations/mo/3-Data-Visualization/11-visualization-proportions/notebook.ipynb b/translations/zh-MO/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
similarity index 100%
rename from translations/mo/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
rename to translations/zh-MO/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
diff --git a/translations/mo/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb b/translations/zh-MO/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
similarity index 100%
rename from translations/mo/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
rename to translations/zh-MO/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
diff --git a/translations/mo/3-Data-Visualization/12-visualization-relationships/README.md b/translations/zh-MO/3-Data-Visualization/12-visualization-relationships/README.md
similarity index 89%
rename from translations/mo/3-Data-Visualization/12-visualization-relationships/README.md
rename to translations/zh-MO/3-Data-Visualization/12-visualization-relationships/README.md
index 4bebf280..80482ee9 100644
--- a/translations/mo/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/zh-MO/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# 視覺化關係:蜂蜜的故事 🍯
| ](../../sketchnotes/12-Visualizing-Relationships.png)|
@@ -51,7 +42,7 @@ honey.head()
```python
sns.relplot(x="priceperlb", y="state", data=honey, height=15, aspect=.5);
```
-
+
接下來,使用蜂蜜色系展示價格如何隨年份演變。您可以通過添加 'hue' 參數來顯示年份的變化:
@@ -60,7 +51,7 @@ sns.relplot(x="priceperlb", y="state", data=honey, height=15, aspect=.5);
```python
sns.relplot(x="priceperlb", y="state", hue="year", palette="YlOrBr", data=honey, height=15, aspect=.5);
```
-
+
使用這種色彩方案,您可以清楚地看到蜂蜜每磅價格在多年來的明顯增長趨勢。事實上,如果您查看數據中的樣本集(例如選擇一個州,亞利桑那州),您會發現價格每年都有增長,只有少數例外:
@@ -89,7 +80,7 @@ sns.relplot(x="priceperlb", y="state", size="year", data=honey, height=15, aspec
```
您可以看到點的大小逐漸增大。
-
+
這是否只是供需的簡單案例?由於氣候變化和蜂群崩潰等因素,是否每年可供購買的蜂蜜減少,因此價格上漲?
@@ -104,7 +95,7 @@ sns.relplot(x="year", y="priceperlb", kind="line", data=honey);
```
答案:是的,除了2003年左右有一些例外:
-
+
✅ 由於 Seaborn 將數據聚合到一條線上,它通過繪製均值和均值周圍的95%置信區間來顯示「每個 x 值的多個測量值」。[來源](https://seaborn.pydata.org/tutorial/relational.html)。這種耗時的行為可以通過添加 `ci=None` 禁用。
@@ -114,7 +105,7 @@ sns.relplot(x="year", y="priceperlb", kind="line", data=honey);
sns.relplot(x="year", y="totalprod", kind="line", data=honey);
```
-
+
答案:並不完全。如果您查看總產量,實際上在那一年似乎有所增加,儘管總體而言,蜂蜜的生產量在這些年中呈下降趨勢。
@@ -139,7 +130,7 @@ sns.relplot(
```
在這個視覺化中,您可以比較每年的每群產量和蜂群數量,並將列的包裹設置為3:
-
+
對於這個數據集,關於蜂群數量和每群產量,按年份和州比較並沒有特別突出的地方。是否有其他方式來尋找這兩個變數之間的相關性?
@@ -162,7 +153,7 @@ sns.despine(right=False)
plt.ylabel('colony yield')
ax.figure.legend();
```
-
+
雖然在2003年沒有明顯的異常,但這讓我們以一個稍微樂觀的結論結束這節課:儘管蜂群數量總體上在下降,但蜂群數量正在穩定,即使每群產量在減少。
diff --git a/translations/mo/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/zh-MO/3-Data-Visualization/12-visualization-relationships/assignment.md
similarity index 85%
rename from translations/mo/3-Data-Visualization/12-visualization-relationships/assignment.md
rename to translations/zh-MO/3-Data-Visualization/12-visualization-relationships/assignment.md
index 20764db1..11cbba0e 100644
--- a/translations/mo/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/zh-MO/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# 探索蜂巢
## 說明
diff --git a/translations/mo/3-Data-Visualization/12-visualization-relationships/notebook.ipynb b/translations/zh-MO/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
similarity index 100%
rename from translations/mo/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
rename to translations/zh-MO/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
diff --git a/translations/mo/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb b/translations/zh-MO/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
similarity index 100%
rename from translations/mo/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
rename to translations/zh-MO/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
diff --git a/translations/mo/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/zh-MO/3-Data-Visualization/13-meaningful-visualizations/README.md
similarity index 97%
rename from translations/mo/3-Data-Visualization/13-meaningful-visualizations/README.md
rename to translations/zh-MO/3-Data-Visualization/13-meaningful-visualizations/README.md
index 1af5a80d..38a5dfba 100644
--- a/translations/mo/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/zh-MO/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# 製作有意義的視覺化圖表
| 繪製的手繪筆記](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/mo/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/zh-MO/3-Data-Visualization/13-meaningful-visualizations/assignment.md
similarity index 80%
rename from translations/mo/3-Data-Visualization/13-meaningful-visualizations/assignment.md
rename to translations/zh-MO/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 0970cbf7..54fd33bb 100644
--- a/translations/mo/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/zh-MO/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# 建立你自己的自定義視覺化
## 指導說明
diff --git a/translations/mo/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb b/translations/zh-MO/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
similarity index 100%
rename from translations/mo/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
rename to translations/zh-MO/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
diff --git a/translations/mo/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/zh-MO/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
similarity index 76%
rename from translations/mo/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
rename to translations/zh-MO/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index 83beb041..f3fdfae3 100644
--- a/translations/mo/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/zh-MO/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# 危險關係數據可視化項目
開始之前,請確保您的機器上已安裝並運行 NPM 和 Node。安裝依賴項(npm install),然後在本地運行項目(npm run serve):
diff --git a/translations/mo/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/zh-MO/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
similarity index 76%
rename from translations/mo/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
rename to translations/zh-MO/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index 24e89d47..01c08f28 100644
--- a/translations/mo/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/zh-MO/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# 危險關係數據可視化項目
要開始使用,請確保您的機器上已安裝 NPM 和 Node。安裝依賴項(npm install),然後在本地運行項目(npm run serve):
diff --git a/translations/mo/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/zh-MO/3-Data-Visualization/R/09-visualization-quantities/README.md
similarity index 90%
rename from translations/mo/3-Data-Visualization/R/09-visualization-quantities/README.md
rename to translations/zh-MO/3-Data-Visualization/R/09-visualization-quantities/README.md
index cf65a976..6a382a68 100644
--- a/translations/mo/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/zh-MO/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# 視覺化數量
| 繪製的手繪筆記](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
@@ -67,7 +58,7 @@ ggplot(data=birds, aes(x=Name, y=MaxWingspan,group=1)) +
```
在這裡,您安裝了 `ggplot2` 套件,然後使用 `library("ggplot2")` 命令將其導入工作區。要在 ggplot 中繪製任何圖表,使用 `ggplot()` 函數並指定數據集、x 和 y 變數作為屬性。在此情況下,我們使用 `geom_line()` 函數,因為我們的目標是繪製折線圖。
-
+
您立即注意到什麼?似乎至少有一個異常值——那是一個相當大的翼展!2000+ 公分的翼展超過了 20 公尺——明尼蘇達州有翼龍在飛嗎?讓我們調查一下。
@@ -85,7 +76,7 @@ ggplot(data=birds, aes(x=Name, y=MaxWingspan,group=1)) +
```
我們在 `theme` 中指定了角度,並在 `xlab()` 和 `ylab()` 中分別指定了 x 和 y 軸標籤。`ggtitle()` 為圖表/圖形命名。
-
+
即使將標籤的旋轉設置為 45 度,仍然有太多標籤難以閱讀。讓我們嘗試另一種策略:僅標記那些異常值並在圖表內設置標籤。您可以使用散點圖來為標籤留出更多空間:
@@ -101,7 +92,7 @@ ggplot(data=birds, aes(x=Name, y=MaxWingspan,group=1)) +
您發現了什麼?
-
+
## 篩選數據
@@ -120,7 +111,7 @@ ggplot(data=birds_filtered, aes(x=Name, y=MaxWingspan,group=1)) +
```
我們創建了一個新的數據框 `birds_filtered`,然後繪製了一個散點圖。通過篩選掉異常值,您的數據現在更加一致且易於理解。
-
+
現在我們至少在翼展方面有了一個更乾淨的數據集,讓我們進一步探索這些鳥類。
@@ -163,7 +154,7 @@ birds_filtered %>% group_by(Category) %>%
```
在以下代碼片段中,我們安裝了 [dplyr](https://www.rdocumentation.org/packages/dplyr/versions/0.7.8) 和 [lubridate](https://www.rdocumentation.org/packages/lubridate/versions/1.8.0) 套件,以幫助操作和分組數據以繪製堆疊條形圖。首先,您按鳥類的 `Category` 分組數據,然後總結 `MinLength`、`MaxLength`、`MinBodyMass`、`MaxBodyMass`、`MinWingspan`、`MaxWingspan` 列。接著,使用 `ggplot2` 套件繪製條形圖並指定不同類別的顏色和標籤。
-
+
然而,這個條形圖因為有太多未分組的數據而難以閱讀。您需要選擇僅想要繪製的數據,因此讓我們看看基於鳥類類別的鳥類長度。
@@ -178,7 +169,7 @@ ggplot(birds_count,aes(Category,n))+geom_bar(stat="identity")+coord_flip()
```
您首先計算 `Category` 列中的唯一值,然後將它們排序到新的數據框 `birds_count` 中。這些排序後的數據在相同層次中進行分級,以便按排序方式繪製。使用 `ggplot2`,您接著繪製條形圖。`coord_flip()` 則繪製水平條形圖。
-
+
這個條形圖很好地展示了每個類別中鳥類的數量。一眼就能看出,在這個地區最多的鳥類是鴨/鵝/水禽類別。明尼蘇達州是“萬湖之地”,所以這並不令人驚訝!
@@ -201,7 +192,7 @@ ggplot(birds_grouped,aes(Category,MaxLength))+geom_bar(stat="identity")+coord_fl
```
我們按 `Category` 分組 `birds_filtered` 數據,然後繪製條形圖。
-
+
這裡沒有什麼令人驚訝的:蜂鳥的最大長度比鵜鶘或鵝要小得多。當數據符合邏輯時,這是件好事!
@@ -213,7 +204,7 @@ ggplot(data=birds_grouped, aes(x=Category)) +
geom_bar(aes(y=MinLength), stat="identity", position="identity", fill='orange')+
coord_flip()
```
-
+
## 🚀 挑戰
diff --git a/translations/mo/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/zh-MO/3-Data-Visualization/R/09-visualization-quantities/assignment.md
similarity index 79%
rename from translations/mo/3-Data-Visualization/R/09-visualization-quantities/assignment.md
rename to translations/zh-MO/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 64654c2b..51951d0e 100644
--- a/translations/mo/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/zh-MO/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# 折線圖、散點圖與長條圖
## 課程指引
diff --git a/translations/mo/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/zh-MO/3-Data-Visualization/R/10-visualization-distributions/README.md
similarity index 85%
rename from translations/mo/3-Data-Visualization/R/10-visualization-distributions/README.md
rename to translations/zh-MO/3-Data-Visualization/R/10-visualization-distributions/README.md
index c893a479..7e0634c2 100644
--- a/translations/mo/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/zh-MO/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# 視覺化分佈
| 繪製的速記筆記](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
@@ -45,7 +36,7 @@ ggplot(data=birds_filtered, aes(x=Order, y=MaxLength,group=1)) +
geom_point() +
ggtitle("Max Length per order") + coord_flip()
```
-
+
這提供了每個鳥類目的一般身體長度分佈概況,但這並不是顯示真實分佈的最佳方式。通常使用直方圖來完成這項任務。
## 使用直方圖
@@ -56,7 +47,7 @@ ggplot(data=birds_filtered, aes(x=Order, y=MaxLength,group=1)) +
ggplot(data = birds_filtered, aes(x = MaxBodyMass)) +
geom_histogram(bins=10)+ylab('Frequency')
```
-
+
如你所見,這個數據集中的 400 多種鳥類大多數最大體重都低於 2000。通過將 `bins` 參數更改為更高的數字,例如 30,可以獲得更多的洞察:
@@ -64,7 +55,7 @@ ggplot(data = birds_filtered, aes(x = MaxBodyMass)) +
ggplot(data = birds_filtered, aes(x = MaxBodyMass)) + geom_histogram(bins=30)+ylab('Frequency')
```
-
+
此圖表以更細緻的方式顯示了分佈。通過確保僅選擇特定範圍內的數據,可以創建一個不那麼偏向左側的圖表:
@@ -76,7 +67,7 @@ ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_histogram(bins=30)+ylab('Frequency')
```
-
+
✅ 嘗試其他篩選條件和數據點。要查看數據的完整分佈,移除 `['MaxBodyMass']` 篩選器以顯示標籤分佈。
@@ -90,7 +81,7 @@ ggplot(data=birds_filtered_1, aes(x=MaxBodyMass, y=MaxLength) ) +
```
沿著預期的軸,這兩個元素之間似乎存在預期的相關性,其中有一個特別強的收斂點:
-
+
直方圖默認適用於數值型數據。如果你需要查看基於文本數據的分佈該怎麼辦?
## 使用文本數據探索數據集的分佈
@@ -121,7 +112,7 @@ ggplot(data=birds_filtered_1, aes(x = MinWingspan, fill = ConservationStatus)) +
scale_fill_manual(name="Conservation Status",values=c("red","green","blue","pink"),labels=c("Endangered","Near Threathened","Vulnerable","Least Concern"))
```
-
+
最小翼展和保育狀態之間似乎沒有良好的相關性。使用此方法測試數據集的其他元素。你可以嘗試不同的篩選條件。你是否發現了任何相關性?
@@ -135,7 +126,7 @@ ggplot(data=birds_filtered_1, aes(x = MinWingspan, fill = ConservationStatus)) +
ggplot(data = birds_filtered_1, aes(x = MinWingspan)) +
geom_density()
```
-
+
你可以看到該圖表反映了之前的最小翼展數據;它只是稍微平滑了一些。如果你想重新訪問第二個圖表中那條鋸齒狀的最大體重線,可以通過使用此方法非常好地將其平滑化:
@@ -143,7 +134,7 @@ ggplot(data = birds_filtered_1, aes(x = MinWingspan)) +
ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_density()
```
-
+
如果你想要一條平滑但不過於平滑的線,可以編輯 `adjust` 參數:
@@ -151,7 +142,7 @@ ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_density(adjust = 1/5)
```
-
+
✅ 閱讀此類圖表可用的參數並進行實驗!
@@ -161,7 +152,7 @@ ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
ggplot(data=birds_filtered_1,aes(x = MaxBodyMass, fill = Order)) +
geom_density(alpha=0.5)
```
-
+
## 🚀 挑戰
diff --git a/translations/mo/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/zh-MO/3-Data-Visualization/R/10-visualization-distributions/assignment.md
similarity index 76%
rename from translations/mo/3-Data-Visualization/R/10-visualization-distributions/assignment.md
rename to translations/zh-MO/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 2cc4f11d..d1f74f6c 100644
--- a/translations/mo/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/zh-MO/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# 運用你的技能
## 指示
diff --git a/translations/mo/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/zh-MO/3-Data-Visualization/R/11-visualization-proportions/README.md
similarity index 94%
rename from translations/mo/3-Data-Visualization/R/11-visualization-proportions/README.md
rename to translations/zh-MO/3-Data-Visualization/R/11-visualization-proportions/README.md
index c084b92a..4296ab61 100644
--- a/translations/mo/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/zh-MO/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# 視覺化比例
| 繪製的速記筆記](../../../sketchnotes/11-Visualizing-Proportions.png)|
@@ -93,7 +84,7 @@ pie(grouped$count,grouped$class, main="Edible?")
```
完成了,一個圓餅圖展示了根據這兩類蘑菇的數據比例。正確排列標籤的順序非常重要,尤其是在這裡,因此請務必確認標籤數組的構建順序!
-
+
## 甜甜圈圖!
@@ -128,7 +119,7 @@ library(webr)
PieDonut(habitat, aes(habitat, count=count))
```
-
+
這段代碼使用了兩個庫——ggplot2 和 webr。使用 webr 庫的 PieDonut 函數,我們可以輕鬆創建甜甜圈圖!
@@ -166,7 +157,7 @@ waffle((cap_color$count/10), rows = 7, title = "Waffle Chart")+scale_fill_manual
使用華夫圖,你可以清楚地看到這個蘑菇數據集中帽顏色的比例。有趣的是,有許多綠色帽子的蘑菇!
-
+
在這節課中,你學到了三種視覺化比例的方法。首先,你需要將數據分組到分類中,然後決定哪種方式最適合展示數據——圓餅圖、甜甜圈圖或華夫圖。這些方法都很有趣,並能讓用戶快速了解數據集。
diff --git a/translations/mo/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/zh-MO/3-Data-Visualization/R/12-visualization-relationships/README.md
similarity index 88%
rename from translations/mo/3-Data-Visualization/R/12-visualization-relationships/README.md
rename to translations/zh-MO/3-Data-Visualization/R/12-visualization-relationships/README.md
index db91edac..f0c529c2 100644
--- a/translations/mo/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/zh-MO/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# 視覺化關係:蜂蜜的故事 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
@@ -51,7 +42,7 @@ library(ggplot2)
ggplot(honey, aes(x = priceperlb, y = state)) +
geom_point(colour = "blue")
```
-
+
現在,使用蜂蜜色彩方案展示價格如何隨年份演變。您可以通過添加 'scale_color_gradientn' 參數來展示年份的變化:
@@ -61,7 +52,7 @@ ggplot(honey, aes(x = priceperlb, y = state)) +
ggplot(honey, aes(x = priceperlb, y = state, color=year)) +
geom_point()+scale_color_gradientn(colours = colorspace::heat_hcl(7))
```
-
+
通過這種色彩方案的改變,您可以明顯看到蜂蜜每磅價格在多年來的強烈增長趨勢。事實上,如果您查看數據中的樣本集(例如選擇亞利桑那州),您可以看到價格逐年上漲的模式,僅有少數例外:
@@ -92,7 +83,7 @@ ggplot(honey, aes(x = priceperlb, y = state)) +
```
您可以看到點的大小逐漸增大。
-
+
這是否是一個簡單的供需問題?由於氣候變化和蜂群崩潰等因素,是否每年可供購買的蜂蜜減少,導致價格上漲?
@@ -107,7 +98,7 @@ qplot(honey$year,honey$priceperlb, geom='smooth', span =0.5, xlab = "year",ylab
```
答案:是的,但在2003年左右有一些例外:
-
+
問題:那麼在2003年,我們是否也能看到蜂蜜供應的激增?如果您查看總產量逐年變化呢?
@@ -115,7 +106,7 @@ qplot(honey$year,honey$priceperlb, geom='smooth', span =0.5, xlab = "year",ylab
qplot(honey$year,honey$totalprod, geom='smooth', span =0.5, xlab = "year",ylab = "totalprod")
```
-
+
答案:並不完全。如果您查看總產量,實際上在那一年似乎有所增加,儘管總體而言蜂蜜的生產量在這些年中呈下降趨勢。
@@ -135,7 +126,7 @@ ggplot(honey, aes(x=yieldpercol, y = numcol,group = 1)) +
```
在此視覺化中,您可以比較每群產量和蜂群數量逐年變化,並將列數設置為3:
-
+
對於此數據集,逐年和逐州比較蜂群數量和每群產量,並未顯示出特別突出的情況。是否有其他方式來尋找這兩個變量之間的相關性?
@@ -152,7 +143,7 @@ plot(honey$year, honey$yieldpercol, pch = 17, col = 3,
axis(side = 4, at = pretty(range(y2)))
mtext("colony yield", side = 4, line = 3)
```
-
+
雖然在2003年並未有明顯的異常,但這讓我們可以以一個稍微樂觀的結論結束本課:儘管蜂群數量總體上在下降,但蜂群數量正在穩定,即使每群產量在減少。
diff --git a/translations/mo/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/zh-MO/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
similarity index 88%
rename from translations/mo/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
rename to translations/zh-MO/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 487bb79e..08c50452 100644
--- a/translations/mo/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/zh-MO/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# 製作有意義的視覺化圖表
| 繪製的速記筆記](../../../sketchnotes/13-MeaningfulViz.png)|
@@ -47,25 +38,25 @@ CO_OP_TRANSLATOR_METADATA:
即使數據科學家謹慎選擇了合適的圖表類型,數據仍然可能以某種方式被展示來支持某種觀點,往往以犧牲數據本身為代價。有許多誤導性圖表和信息圖的例子!
-[](https://www.youtube.com/watch?v=oX74Nge8Wkw "How charts lie")
+[](https://www.youtube.com/watch?v=oX74Nge8Wkw "How charts lie")
> 🎥 點擊上方圖片觀看有關誤導性圖表的會議演講
這張圖表反轉了 X 軸,根據日期顯示了與事實相反的內容:
-
+
[這張圖表](https://media.firstcoastnews.com/assets/WTLV/images/170ae16f-4643-438f-b689-50d66ca6a8d8/170ae16f-4643-438f-b689-50d66ca6a8d8_1140x641.jpg) 更具誤導性,因為人們的目光會被吸引到右側,得出隨時間推移各縣的 COVID 病例數下降的結論。事實上,如果仔細查看日期,你會發現日期被重新排列以製造出誤導性的下降趨勢。
-
+
這個臭名昭著的例子使用顏色和翻轉的 Y 軸來誤導:原本應該得出槍支友好立法通過後槍支死亡率激增的結論,事實上卻讓人誤以為情況正好相反:
-
+
這張奇怪的圖表展示了比例如何被操控,效果令人捧腹:
-
+
比較不可比的事物是另一種不正當的手段。有一個[精彩的網站](https://tylervigen.com/spurious-correlations)專門展示「虛假的相關性」,例如緬因州的離婚率與人造奶油的消耗量之間的「事實」相關性。一個 Reddit 群組也收集了[糟糕的數據使用](https://www.reddit.com/r/dataisugly/top/?t=all)。
@@ -100,13 +91,13 @@ CO_OP_TRANSLATOR_METADATA:
如果你的數據在 X 軸上是文本且冗長,可以將文本角度調整以提高可讀性。[plot3D](https://cran.r-project.org/web/packages/plot3D/index.html) 提供了 3D 繪圖功能,如果你的數據支持它,可以使用它製作更高級的數據視覺化。
-
+
## 動畫和 3D 圖表展示
如今一些最好的數據視覺化是動畫化的。Shirley Wu 使用 D3 創作了令人驚嘆的作品,例如「[電影之花](http://bl.ocks.org/sxywu/raw/d612c6c653fb8b4d7ff3d422be164a5d/)」,每朵花都是一部電影的視覺化。另一個例子是《衛報》的「Bussed Out」,這是一個結合 Greensock 和 D3 的視覺化和滾動敘事文章格式的互動體驗,展示了紐約市如何通過將無家可歸者送出城市來處理其無家可歸問題。
-
+
> 「Bussed Out: How America Moves its Homeless」來自[衛報](https://www.theguardian.com/us-news/ng-interactive/2017/dec/20/bussed-out-america-moves-homeless-people-country-study)。視覺化由 Nadieh Bremer 和 Shirley Wu 創作
@@ -116,7 +107,7 @@ CO_OP_TRANSLATOR_METADATA:
你將完成一個網頁應用,展示這個社交網絡的動畫化視圖。它使用了一個庫,該庫旨在使用 Vue.js 和 D3 創建[網絡視覺化](https://github.com/emiliorizzo/vue-d3-network)。當應用運行時,你可以在屏幕上拖動節點來重新排列數據。
-
+
## 專案:使用 D3.js 建立一個展示網絡的圖表
diff --git a/translations/mo/3-Data-Visualization/README.md b/translations/zh-MO/3-Data-Visualization/README.md
similarity index 93%
rename from translations/mo/3-Data-Visualization/README.md
rename to translations/zh-MO/3-Data-Visualization/README.md
index b7736f08..5072818c 100644
--- a/translations/mo/3-Data-Visualization/README.md
+++ b/translations/zh-MO/3-Data-Visualization/README.md
@@ -1,15 +1,6 @@
-
# 視覺化
-
+
> 照片由 Jenna Lee 提供,來源於 Unsplash
視覺化數據是數據科學家最重要的任務之一。圖片勝過千言萬語,視覺化可以幫助你識別數據中的各種有趣部分,例如峰值、異常值、分組、趨勢等,這些都能幫助你理解數據背後的故事。
diff --git a/translations/mo/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/zh-MO/4-Data-Science-Lifecycle/14-Introduction/README.md
similarity index 93%
rename from translations/mo/4-Data-Science-Lifecycle/14-Introduction/README.md
rename to translations/zh-MO/4-Data-Science-Lifecycle/14-Introduction/README.md
index 7add034d..b811c44c 100644
--- a/translations/mo/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/zh-MO/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# 資料科學生命週期介紹
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
@@ -25,7 +16,7 @@ CO_OP_TRANSLATOR_METADATA:
本課程將重點放在生命週期的三個部分:資料捕捉、資料處理和資料維護。
-
+
> 圖片來源:[Berkeley School of Information](https://ischoolonline.berkeley.edu/data-science/what-is-data-science/)
## 資料捕捉
@@ -98,7 +89,7 @@ CO_OP_TRANSLATOR_METADATA:
|團隊資料科學過程 (TDSP)|跨行業標準資料挖掘過程 (CRISP-DM)|
|--|--|
-| |  |
+| |  |
| 圖片來源:[Microsoft](https://docs.microsoft.comazure/architecture/data-science-process/lifecycle) | 圖片來源:[Data Science Process Alliance](https://www.datascience-pm.com/crisp-dm-2/) |
## [課後測驗](https://ff-quizzes.netlify.app/en/ds/quiz/27)
diff --git a/translations/mo/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/zh-MO/4-Data-Science-Lifecycle/14-Introduction/assignment.md
similarity index 88%
rename from translations/mo/4-Data-Science-Lifecycle/14-Introduction/assignment.md
rename to translations/zh-MO/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index e96df074..2b83de6b 100644
--- a/translations/mo/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/zh-MO/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# 評估數據集
一位客戶向您的團隊尋求幫助,希望調查紐約市計程車乘客的季節性消費習慣。
diff --git a/translations/mo/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb b/translations/zh-MO/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
similarity index 100%
rename from translations/mo/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
rename to translations/zh-MO/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
diff --git a/translations/mo/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/zh-MO/4-Data-Science-Lifecycle/15-analyzing/README.md
similarity index 94%
rename from translations/mo/4-Data-Science-Lifecycle/15-analyzing/README.md
rename to translations/zh-MO/4-Data-Science-Lifecycle/15-analyzing/README.md
index 1255b77f..e9fe5a9b 100644
--- a/translations/mo/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/zh-MO/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# 數據科學生命周期:分析
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/mo/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb b/translations/zh-MO/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
similarity index 100%
rename from translations/mo/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
rename to translations/zh-MO/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
diff --git a/translations/mo/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/zh-MO/4-Data-Science-Lifecycle/15-analyzing/assignment.md
similarity index 87%
rename from translations/mo/4-Data-Science-Lifecycle/15-analyzing/assignment.md
rename to translations/zh-MO/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 94fb7ede..0983e9ac 100644
--- a/translations/mo/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/zh-MO/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# 探索答案
這是上一課[作業](../14-Introduction/assignment.md)的延續,我們之前簡單地查看了數據集。現在,我們將更深入地分析這些數據。
diff --git a/translations/mo/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb b/translations/zh-MO/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
similarity index 100%
rename from translations/mo/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
rename to translations/zh-MO/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
diff --git a/translations/mo/4-Data-Science-Lifecycle/16-communication/README.md b/translations/zh-MO/4-Data-Science-Lifecycle/16-communication/README.md
similarity index 98%
rename from translations/mo/4-Data-Science-Lifecycle/16-communication/README.md
rename to translations/zh-MO/4-Data-Science-Lifecycle/16-communication/README.md
index e55b3188..8131a429 100644
--- a/translations/mo/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/zh-MO/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# 數據科學生命周期:溝通
| 繪製的手繪筆記](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/mo/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/zh-MO/4-Data-Science-Lifecycle/16-communication/assignment.md
similarity index 81%
rename from translations/mo/4-Data-Science-Lifecycle/16-communication/assignment.md
rename to translations/zh-MO/4-Data-Science-Lifecycle/16-communication/assignment.md
index 56e5d631..b796db96 100644
--- a/translations/mo/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/zh-MO/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# 講述一個故事
## 指引
diff --git a/translations/mo/4-Data-Science-Lifecycle/README.md b/translations/zh-MO/4-Data-Science-Lifecycle/README.md
similarity index 71%
rename from translations/mo/4-Data-Science-Lifecycle/README.md
rename to translations/zh-MO/4-Data-Science-Lifecycle/README.md
index fa6704ef..8142275e 100644
--- a/translations/mo/4-Data-Science-Lifecycle/README.md
+++ b/translations/zh-MO/4-Data-Science-Lifecycle/README.md
@@ -1,15 +1,6 @@
-
# 數據科學生命週期
-
+
> 圖片由 Headway 提供,來自 Unsplash
在這些課程中,您將探索數據科學生命週期的一些方面,包括數據的分析和溝通。
diff --git a/translations/mo/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/zh-MO/5-Data-Science-In-Cloud/17-Introduction/README.md
similarity index 96%
rename from translations/mo/5-Data-Science-In-Cloud/17-Introduction/README.md
rename to translations/zh-MO/5-Data-Science-In-Cloud/17-Introduction/README.md
index 6406e85c..e7474d20 100644
--- a/translations/mo/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/zh-MO/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# 雲端中的資料科學入門
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/mo/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/zh-MO/5-Data-Science-In-Cloud/17-Introduction/assignment.md
similarity index 78%
rename from translations/mo/5-Data-Science-In-Cloud/17-Introduction/assignment.md
rename to translations/zh-MO/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 65e714d8..826581d7 100644
--- a/translations/mo/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/zh-MO/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# 市場調查
## 說明
diff --git a/translations/mo/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/zh-MO/5-Data-Science-In-Cloud/18-Low-Code/README.md
similarity index 98%
rename from translations/mo/5-Data-Science-In-Cloud/18-Low-Code/README.md
rename to translations/zh-MO/5-Data-Science-In-Cloud/18-Low-Code/README.md
index cbe71758..0ca9cad4 100644
--- a/translations/mo/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/zh-MO/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# 雲端中的數據科學:「低代碼/無代碼」方式
| 繪製的速記筆記](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/mo/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/zh-MO/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
similarity index 85%
rename from translations/mo/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
rename to translations/zh-MO/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index c5f9cbb2..212091d0 100644
--- a/translations/mo/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/zh-MO/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# Azure ML 平台上的低代碼/無代碼數據科學項目
## 說明
diff --git a/translations/mo/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/zh-MO/5-Data-Science-In-Cloud/19-Azure/README.md
similarity index 98%
rename from translations/mo/5-Data-Science-In-Cloud/19-Azure/README.md
rename to translations/zh-MO/5-Data-Science-In-Cloud/19-Azure/README.md
index cce3fe1b..e37c3d92 100644
--- a/translations/mo/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/zh-MO/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# 雲端中的數據科學:使用 "Azure ML SDK"
| 繪製的示意圖](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/mo/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/zh-MO/5-Data-Science-In-Cloud/19-Azure/assignment.md
similarity index 85%
rename from translations/mo/5-Data-Science-In-Cloud/19-Azure/assignment.md
rename to translations/zh-MO/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 15954166..3b636b78 100644
--- a/translations/mo/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/zh-MO/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# 使用 Azure ML SDK 的數據科學專案
## 指導說明
diff --git a/translations/mo/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb b/translations/zh-MO/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
similarity index 100%
rename from translations/mo/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
rename to translations/zh-MO/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
diff --git a/translations/tw/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb b/translations/zh-MO/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
similarity index 100%
rename from translations/tw/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
rename to translations/zh-MO/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
diff --git a/translations/mo/5-Data-Science-In-Cloud/README.md b/translations/zh-MO/5-Data-Science-In-Cloud/README.md
similarity index 78%
rename from translations/mo/5-Data-Science-In-Cloud/README.md
rename to translations/zh-MO/5-Data-Science-In-Cloud/README.md
index a94c7faf..a66750b5 100644
--- a/translations/mo/5-Data-Science-In-Cloud/README.md
+++ b/translations/zh-MO/5-Data-Science-In-Cloud/README.md
@@ -1,21 +1,12 @@
-
# 雲端中的數據科學
-
+
> 圖片來源:[Jelleke Vanooteghem](https://unsplash.com/@ilumire) 來自 [Unsplash](https://unsplash.com/s/photos/cloud?orientation=landscape)
當涉及到使用大數據進行數據科學時,雲端可以成為改變遊戲規則的關鍵。在接下來的三節課中,我們將了解什麼是雲端以及為什麼它非常有用。我們還將探索一個心臟衰竭數據集,並建立一個模型來幫助評估某人發生心臟衰竭的可能性。我們將利用雲端的強大功能來訓練、部署和以兩種不同的方式使用模型。一種方式是僅使用用戶界面,以低代碼/無代碼的方式進行;另一種方式是使用 Azure Machine Learning Software Developer Kit (Azure ML SDK)。
-
+
### 主題
diff --git a/translations/mo/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/zh-MO/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
similarity index 96%
rename from translations/mo/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
rename to translations/zh-MO/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 3cc4a835..fe14dc04 100644
--- a/translations/mo/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/zh-MO/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# 數據科學在現實世界中的應用
|  繪製的速寫筆記](../../sketchnotes/20-DataScience-RealWorld.png) |
@@ -41,7 +32,7 @@ CO_OP_TRANSLATOR_METADATA:
* [醫療保健中的數據科學](https://data-flair.training/blogs/data-science-in-healthcare/) - 強調應用如醫學影像(例如 MRI、X光、CT掃描)、基因組學(DNA測序)、藥物開發(風險評估、成功預測)、預測分析(患者護理和供應物流)、疾病追蹤和預防等。
- 圖片來源:[Data Flair: 6 Amazing Data Science Applications ](https://data-flair.training/blogs/data-science-applications/)
+ 圖片來源:[Data Flair: 6 Amazing Data Science Applications ](https://data-flair.training/blogs/data-science-applications/)
該圖展示了其他領域和應用數據科學技術的例子。想探索更多應用?請查看下面的[回顧與自學](../../../../6-Data-Science-In-Wild/20-Real-World-Examples)部分。
diff --git a/translations/mo/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/zh-MO/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
similarity index 87%
rename from translations/mo/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
rename to translations/zh-MO/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 88522f95..d6b9ea28 100644
--- a/translations/mo/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/zh-MO/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# 探索行星電腦數據集
## 說明
@@ -22,7 +13,7 @@ Explorer界面(如下圖所示)允許您選擇一個數據集(從提供的
2. 探索數據集[目錄](https://planetarycomputer.microsoft.com/catalog)——了解每個數據集的用途。
3. 使用Explorer——選擇一個您感興趣的數據集,選擇相關的查詢和渲染選項。
-
+
`您的任務:`
現在,研究瀏覽器中渲染的可視化,並回答以下問題:
diff --git a/translations/mo/6-Data-Science-In-Wild/README.md b/translations/zh-MO/6-Data-Science-In-Wild/README.md
similarity index 72%
rename from translations/mo/6-Data-Science-In-Wild/README.md
rename to translations/zh-MO/6-Data-Science-In-Wild/README.md
index a44d8583..843a10cb 100644
--- a/translations/mo/6-Data-Science-In-Wild/README.md
+++ b/translations/zh-MO/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# 野外數據科學
數據科學在各行各業中的實際應用。
diff --git a/translations/mo/AGENTS.md b/translations/zh-MO/AGENTS.md
similarity index 98%
rename from translations/mo/AGENTS.md
rename to translations/zh-MO/AGENTS.md
index 8ff28453..74895c00 100644
--- a/translations/mo/AGENTS.md
+++ b/translations/zh-MO/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## 專案概述
diff --git a/translations/mo/CODE_OF_CONDUCT.md b/translations/zh-MO/CODE_OF_CONDUCT.md
similarity index 78%
rename from translations/mo/CODE_OF_CONDUCT.md
rename to translations/zh-MO/CODE_OF_CONDUCT.md
index 69c9086d..160e552a 100644
--- a/translations/mo/CODE_OF_CONDUCT.md
+++ b/translations/zh-MO/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft 開源行為準則
此專案已採用 [Microsoft 開源行為準則](https://opensource.microsoft.com/codeofconduct/)。
diff --git a/translations/mo/CONTRIBUTING.md b/translations/zh-MO/CONTRIBUTING.md
similarity index 96%
rename from translations/mo/CONTRIBUTING.md
rename to translations/zh-MO/CONTRIBUTING.md
index 3ec0e899..06bed412 100644
--- a/translations/mo/CONTRIBUTING.md
+++ b/translations/zh-MO/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# 貢獻《初學者的數據科學》
感謝您對《初學者的數據科學》課程的貢獻感興趣!我們歡迎社群的貢獻。
@@ -311,7 +302,7 @@ def calculate_mean(data):
import pandas as pd
```
````
-- 為圖片添加替代文字:``
+- 為圖片添加替代文字:``
- 保持合理的行長度(約 80-100 字元)
### Python
diff --git a/translations/mo/INSTALLATION.md b/translations/zh-MO/INSTALLATION.md
similarity index 96%
rename from translations/mo/INSTALLATION.md
rename to translations/zh-MO/INSTALLATION.md
index ac393117..0e70ab50 100644
--- a/translations/mo/INSTALLATION.md
+++ b/translations/zh-MO/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# 安裝指南
本指南將幫助您設置環境,以使用《初學者的數據科學》課程。
diff --git a/translations/zh-MO/README.md b/translations/zh-MO/README.md
new file mode 100644
index 00000000..7a8cee6e
--- /dev/null
+++ b/translations/zh-MO/README.md
@@ -0,0 +1,252 @@
+# 資料科學初學者課程
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+
+
+[](https://discord.gg/nTYy5BXMWG)
+
+[](https://aka.ms/foundry/forum)
+
+微軟 Azure Cloud 擁護者很高興提供一個為期 10 週、包含 20 課的全方位資料科學課程。每課包含課前和課後測驗、完成課程的書面指引、解答以及作業。我們基於專案的教學法讓你藉由實作學習,是個有效幫助新技能「紮根」的方法。
+
+**特別感謝我們的作者:** [Jasmine Greenaway](https://www.twitter.com/paladique)、[Dmitry Soshnikov](http://soshnikov.com)、[Nitya Narasimhan](https://twitter.com/nitya)、[Jalen McGee](https://twitter.com/JalenMcG)、[Jen Looper](https://twitter.com/jenlooper)、[Maud Levy](https://twitter.com/maudstweets)、[Tiffany Souterre](https://twitter.com/TiffanySouterre)、[Christopher Harrison](https://www.twitter.com/geektrainer)。
+
+**🙏 特別感謝 🙏 我們的 [Microsoft 學生大使](https://studentambassadors.microsoft.com/) 作者、審稿者與內容貢獻者,** 特別感謝 Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
+[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar, [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
+
+||
+|:---:|
+| 資料科學初學者 - _由 [@nitya](https://twitter.com/nitya) 繪製筆記_ |
+
+### 🌐 多語言支援
+
+#### 透過 GitHub Action 支援(自動且持續更新)
+
+
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](./README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+
+> **較喜歡本機複製?**
+
+> 此倉庫包含超過 50 種語言的翻譯,會極大增加下載大小。若要在無翻譯之情況下複製,可使用稀疏檢出:
+> ```bash
+> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
+> cd Data-Science-For-Beginners
+> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
+> ```
+> 這樣你就能快速下載完成課程所需的所有內容。
+
+
+**若希望有其他語言支援,可參考此處列出的語言 [here](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+
+#### 加入我們的社群
+[](https://discord.gg/nTYy5BXMWG)
+
+我們目前舉辦 Discord AI 學習系列,更多詳情及參與請訪問 [Learn with AI Series](https://aka.ms/learnwithai/discord),活動期間為 2025 年 9 月 18 日至 30 日。你將學到使用 GitHub Copilot 進行資料科學的秘訣與技巧。
+
+
+
+# 你是學生嗎?
+
+可以從以下資源開始:
+
+- [學生中心頁面](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) 在此頁你會找到初學者資源、學生包甚至取得免費認證券的方法。這頁是你必須收藏並定期查看的,因為我們至少每月會更新內容。
+- [Microsoft Learn 學生大使](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) 加入全球的學生大使社群,這可能是你加入微軟的途徑。
+
+# 開始使用
+
+## 📚 文件
+
+- **[安裝指南](INSTALLATION.md)** - 初學者逐步設定說明
+- **[使用指南](USAGE.md)** - 範例與常見工作流程
+- **[問題排除](TROUBLESHOOTING.md)** - 常見問題解決方案
+- **[貢獻指南](CONTRIBUTING.md)** - 如何貢獻此專案
+- **[給教師](for-teachers.md)** - 教學指引與課堂資源
+
+## 👨🎓 給學生
+> **完全初學者**:對資料科學不熟悉?從我們的[初學者範例](examples/README.md)開始!這些簡單且有詳解的範例會幫助你先理解基礎,再逐步學習完整課程。
+> **[學生們](https://aka.ms/student-page)**:若想自行使用本課程,請 fork 整個倉庫並自行完成練習,先從課前測驗開始。然後閱讀講義並完成其他活動。盡量透過理解課程內容來製作專案,而非直接複製解答代碼,但各專案導向課程中在 /solutions 資料夾能找到解答代碼。另一個方法是與朋友組成讀書會一起研讀內容。若想更進一步,我們推薦 [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)。
+
+**快速開始:**
+1. 查看 [安裝指南](INSTALLATION.md) 設定你的環境
+2. 閱讀 [使用指南](USAGE.md) 學習如何使用課程
+3. 從第 1 課開始,依序學習
+4. 加入我們的 [Discord 社群](https://aka.ms/ds4beginners/discord) 尋求支援
+
+## 👩🏫 給教師
+
+> **教師們**:我們有[一些建議](for-teachers.md)幫助你使用本課程。歡迎在我們的[討論區](https://github.com/microsoft/Data-Science-For-Beginners/discussions)提供反饋!
+## 認識團隊
+
+[](https://youtu.be/8mzavjQSMM4 "宣傳影片")
+
+**Gif 由** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal) 製作
+
+> 🎥 點擊上方圖片觀看介紹這個專案及創作者的影片!
+
+## 教學法
+
+我們在設計這個課程時選擇了兩個教學原則:確保課程以專案為基礎,並包含頻繁的小測驗。在這個系列結束時,學生將學會基本的資料科學原理,包括倫理概念、資料準備、不同的資料處理方式、資料視覺化、資料分析、資料科學的實際應用案例等。
+
+此外,課前的小測驗能設定學生學習主題的意圖,而課後的第二次測驗則有助於加深記憶。這套課程設計靈活有趣,可以全程或部分進行。專案從小型開始,隨著十週學習周期結束而漸趨複雜。
+
+> 請參閱我們的 [行為準則](CODE_OF_CONDUCT.md)、[貢獻指南](CONTRIBUTING.md)、[翻譯指南](TRANSLATIONS.md)。我們歡迎您的建設性回饋!
+
+## 每課內容包括:
+
+- 選擇性手繪筆記
+- 選擇性補充影片
+- 課前暖身小測驗
+- 書面課程內容
+- 對於專案為本的課程,提供逐步指南教您如何建構專案
+- 知識檢核
+- 挑戰題
+- 補充閱讀
+- 作業
+- [課後小測驗](https://ff-quizzes.netlify.app/en/)
+
+> **關於小測驗的說明**:所有測驗集中於 Quiz-App 資料夾內,共 40 組,每組 3 題。課程中有連結可直接進入,但此測驗應用程式也可以在本機運行或部署到 Azure;請參考 `quiz-app` 資料夾中的說明。測驗正陸續進行本地化。
+
+## 🎓 初學者友善範例
+
+**剛接觸資料科學?** 我們創建了一個特別的[範例目錄](examples/README.md),內含簡單且註解詳盡的程式碼幫助您入門:
+
+- 🌟 **Hello World** - 您的第一個資料科學程式
+- 📂 **載入資料** - 學習如何讀取和探索資料集
+- 📊 **簡易分析** - 計算統計數據並找出模式
+- 📈 **基礎視覺化** - 製作圖表與圖形
+- 🔬 **實務專案** - 從開始到完成的完整工作流程
+
+每個範例都有詳細註釋解釋每個步驟,超適合零基礎新手!
+
+👉 **[從範例開始學習](examples/README.md)** 👈
+
+## 課程目錄
+
+||
+|:---:|
+| 資料科學初學者路線圖 - _手繪筆記由 [@nitya](https://twitter.com/nitya)_ |
+
+| 課程編號 | 主題 | 課程分類 | 學習目標 | 連結課程 | 作者 |
+| :------: | :----------------------------------------: | :-----------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
+| 01 | 定義資料科學 | [介紹](1-Introduction/README.md) | 了解資料科學的基本概念與其與人工智慧、機器學習、大數據的關係。 | [課程](1-Introduction/01-defining-data-science/README.md) [影片](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | 資料科學倫理 | [介紹](1-Introduction/README.md) | 資料倫理的概念、挑戰與框架。 | [課程](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | 定義資料 | [介紹](1-Introduction/README.md) | 資料分類及其常見來源的介紹。 | [課程](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | 統計與機率入門 | [介紹](1-Introduction/README.md) | 運用機率與統計的數學技巧理解資料。 | [課程](1-Introduction/04-stats-and-probability/README.md) [影片](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | 處理關聯式資料 | [資料處理](2-Working-With-Data/README.md) | 關聯式資料介紹及使用結構化查詢語言 SQL(發音為“see-quell”)探索與分析關聯式資料基礎。 | [課程](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) |
+| 06 | 處理非關聯式資料 | [資料處理](2-Working-With-Data/README.md) | 非關聯式資料及其各類型介紹,並介紹探索與分析文件資料庫的基本。 | [課程](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 07 | 使用 Python | [資料處理](2-Working-With-Data/README.md) | 使用 Python 及 Pandas 等函式庫進行資料探索基礎。建議具備 Python 程式設計基礎。 | [課程](2-Working-With-Data/07-python/README.md) [影片](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | 資料準備 | [資料處理](2-Working-With-Data/README.md) | 資料清理與轉換的技巧,處理遺漏、不準確或不完整資料的挑戰。 | [課程](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | 資料數量視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 學習使用 Matplotlib 視覺化鳥類資料 🦆 | [課程](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | 資料分布視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 觀察並視覺化區間內的趨勢。 | [課程](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | 比例視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 視覺化離散與分組百分比資料。 | [課程](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | 關聯視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 視覺化不同資料集及變數間的連結與相關性。 | [課程](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | 有意義的視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 提供製作有助於有效解決問題與洞察的視覺化技術與指導。 | [課程](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | 資料科學生命週期入門 | [生命週期](4-Data-Science-Lifecycle/README.md) | 資料科學生命週期介紹及資料獲取與萃取的第一步。 | [課程](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | 分析階段 | [生命週期](4-Data-Science-Lifecycle/README.md) | 資料科學生命週期中專注於資料分析的技術階段。 | [課程](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 16 | 溝通階段 | [生命週期](4-Data-Science-Lifecycle/README.md) | 資料科學生命週期中專注於以易於決策者理解的方式呈現資料洞察的階段。 | [課程](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) |
+| 17 | 雲端資料科學 | [雲資料](5-Data-Science-In-Cloud/README.md) | 介紹雲端資料科學及其優勢。 | [課程](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
+| 18 | 雲端資料科學 | [雲資料](5-Data-Science-In-Cloud/README.md) | 使用低程式碼工具訓練模型。 |[課程](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
+| 19 | 雲端資料科學 | [雲資料](5-Data-Science-In-Cloud/README.md) | 使用 Azure 機器學習工作室部署模型。 | [課程](5-Data-Science-In-Cloud/19-Azure/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
+| 20 | 野外資料科學 | [野外](6-Data-Science-In-Wild/README.md) | 真實世界中資料科學驅動的專案案例。 | [課程](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+
+## GitHub Codespaces
+
+請依照以下步驟在 Codespace 中開啟此範例:
+1. 點擊 Code 下拉選單並選擇 Open with Codespaces 選項。
+2. 在窗格底部選擇 + New codespace。
+更多資訊請參閱 [GitHub 文件](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace)。
+
+## VSCode 遠端 - Containers
+請依照下列步驟使用本機電腦與 VSCode 搭配 VS Code Remote - Containers 延伸套件在容器中開啟此專案:
+
+1. 若是首次使用開發容器,請確保系統符合前置需求(例如已安裝 Docker),參考 [入門文檔](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)。
+
+使用此專案有兩種方法:
+
+您可直接在隔離的 Docker 卷中打開資料庫:
+
+**注意**:此方式底層會使用 Remote-Containers: **Clone Repository in Container Volume...** 指令,將原始碼克隆到 Docker 卷,而非本地檔案系統。[卷](https://docs.docker.com/storage/volumes/) 是保留容器資料的推薦方式。
+
+或是打開本地克隆或下載的專案版本:
+
+- 將此專案克隆至本地。
+- 按 F1 並選擇 **Remote-Containers: Open Folder in Container...** 指令。
+- 選擇剛剛克隆的資料夾,等待容器啟動後開始操作。
+
+## 離線使用
+
+您可以使用 [Docsify](https://docsify.js.org/#/) 離線查看此文件。請先分叉此儲存庫,並在本機安裝 [Docsify](https://docsify.js.org/#/quickstart),然後在此儲存庫根目錄輸入 `docsify serve`。網站會在本機的 3000 端口啟動:`localhost:3000`。
+
+> 注意,筆記本不會由 Docsify 呈現,因此要執行筆記本時請在 VS Code 中使用 Python 核心另行執行。
+
+## 其他課程
+
+我們團隊還有其他課程!請參考:
+
+### LangChain
+[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+
+---
+
+### Azure / Edge / MCP / Agents
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### Generative AI Series
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### Core Learning
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### Copilot Series
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+
+
+## Getting Help
+
+**遇到問題嗎?** 請參閱我們的[疑難排解指南](TROUBLESHOOTING.md)以獲得常見問題的解決方案。
+
+如果您在構建 AI 應用時遇到困難或有任何疑問,歡迎加入其他學習者和有經驗的開發者的討論。這是一個支持性的社群,歡迎提問並自由分享知識。
+
+[](https://discord.gg/nTYy5BXMWG)
+
+如果您在開發過程中有產品反饋或遇到錯誤,請訪問:
+
+[](https://aka.ms/foundry/forum)
+
+---
+
+
+**免責聲明**:
+本文件使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。雖然我們致力於確保準確性,但請注意自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為具權威性的資料來源。關於重要資訊,建議採用專業人工翻譯。我們不對因使用此翻譯而產生的任何誤解或誤釋承擔責任。
+
\ No newline at end of file
diff --git a/translations/mo/SECURITY.md b/translations/zh-MO/SECURITY.md
similarity index 93%
rename from translations/mo/SECURITY.md
rename to translations/zh-MO/SECURITY.md
index bc424e8d..f63504ba 100644
--- a/translations/mo/SECURITY.md
+++ b/translations/zh-MO/SECURITY.md
@@ -1,12 +1,3 @@
-
## 安全性
Microsoft 非常重視我們軟體產品和服務的安全性,包括透過我們的 GitHub 組織管理的所有原始碼庫,這些組織包括 [Microsoft](https://github.com/Microsoft)、[Azure](https://github.com/Azure)、[DotNet](https://github.com/dotnet)、[AspNet](https://github.com/aspnet)、[Xamarin](https://github.com/xamarin) 以及 [我們的 GitHub 組織](https://opensource.microsoft.com/)。
diff --git a/translations/mo/SUPPORT.md b/translations/zh-MO/SUPPORT.md
similarity index 79%
rename from translations/mo/SUPPORT.md
rename to translations/zh-MO/SUPPORT.md
index d414d9a9..fedfd2b5 100644
--- a/translations/mo/SUPPORT.md
+++ b/translations/zh-MO/SUPPORT.md
@@ -1,12 +1,3 @@
-
# 支援
## 如何提交問題和獲取幫助
diff --git a/translations/mo/TROUBLESHOOTING.md b/translations/zh-MO/TROUBLESHOOTING.md
similarity index 98%
rename from translations/mo/TROUBLESHOOTING.md
rename to translations/zh-MO/TROUBLESHOOTING.md
index 2254647c..7721334d 100644
--- a/translations/mo/TROUBLESHOOTING.md
+++ b/translations/zh-MO/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# 疑難排解指南
本指南提供了解決在使用《初學者的數據科學》課程時可能遇到的常見問題的方法。
diff --git a/translations/mo/USAGE.md b/translations/zh-MO/USAGE.md
similarity index 97%
rename from translations/mo/USAGE.md
rename to translations/zh-MO/USAGE.md
index 29d7d80d..24278386 100644
--- a/translations/mo/USAGE.md
+++ b/translations/zh-MO/USAGE.md
@@ -1,12 +1,3 @@
-
# 使用指南
本指南提供了使用「初學者的數據科學」課程的範例和常見工作流程。
diff --git a/translations/mo/docs/_sidebar.md b/translations/zh-MO/docs/_sidebar.md
similarity index 90%
rename from translations/mo/docs/_sidebar.md
rename to translations/zh-MO/docs/_sidebar.md
index 12c63e54..e978a7dc 100644
--- a/translations/mo/docs/_sidebar.md
+++ b/translations/zh-MO/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- 介紹
- [定義資料科學](../1-Introduction/01-defining-data-science/README.md)
- [資料科學的倫理](../1-Introduction/02-ethics/README.md)
diff --git a/translations/mo/examples/README.md b/translations/zh-MO/examples/README.md
similarity index 95%
rename from translations/mo/examples/README.md
rename to translations/zh-MO/examples/README.md
index 99f4a0e3..624bcfab 100644
--- a/translations/mo/examples/README.md
+++ b/translations/zh-MO/examples/README.md
@@ -1,12 +1,3 @@
-
# 初學者友善的資料科學範例
歡迎來到範例目錄!這個簡單且附有詳細註解的範例集合,旨在幫助您開始學習資料科學,即使您是完全的新手也沒問題。
diff --git a/translations/mo/for-teachers.md b/translations/zh-MO/for-teachers.md
similarity index 94%
rename from translations/mo/for-teachers.md
rename to translations/zh-MO/for-teachers.md
index e3784738..d28ebedd 100644
--- a/translations/mo/for-teachers.md
+++ b/translations/zh-MO/for-teachers.md
@@ -1,12 +1,3 @@
-
## 給教育工作者
想在您的課堂上使用這份課程嗎?請隨意使用!
diff --git a/translations/mo/quiz-app/README.md b/translations/zh-MO/quiz-app/README.md
similarity index 95%
rename from translations/mo/quiz-app/README.md
rename to translations/zh-MO/quiz-app/README.md
index 44d7a0bb..cd08fc81 100644
--- a/translations/mo/quiz-app/README.md
+++ b/translations/zh-MO/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# 測驗
這些測驗是數據科學課程的課前和課後測驗,課程網址為:https://aka.ms/datascience-beginners
diff --git a/translations/mo/sketchnotes/README.md b/translations/zh-MO/sketchnotes/README.md
similarity index 51%
rename from translations/mo/sketchnotes/README.md
rename to translations/zh-MO/sketchnotes/README.md
index 8334424b..e6c898ee 100644
--- a/translations/mo/sketchnotes/README.md
+++ b/translations/zh-MO/sketchnotes/README.md
@@ -1,19 +1,10 @@
-
在這裡找到所有的手繪筆記!
## 致謝
Nitya Narasimhan,藝術家
-
+
---
diff --git a/translations/zh-TW/.co-op-translator.json b/translations/zh-TW/.co-op-translator.json
new file mode 100644
index 00000000..b1a76bf3
--- /dev/null
+++ b/translations/zh-TW/.co-op-translator.json
@@ -0,0 +1,422 @@
+{
+ "1-Introduction/01-defining-data-science/README.md": {
+ "original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
+ "translation_date": "2025-10-25T18:41:02+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/README.md",
+ "language_code": "zh-TW"
+ },
+ "1-Introduction/01-defining-data-science/assignment.md": {
+ "original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
+ "translation_date": "2025-08-25T16:56:10+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "1-Introduction/01-defining-data-science/solution/assignment.md": {
+ "original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
+ "translation_date": "2025-08-25T16:57:11+00:00",
+ "source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "1-Introduction/02-ethics/README.md": {
+ "original_hash": "58860ce9a4b8a564003d2752f7c72851",
+ "translation_date": "2025-10-03T16:09:59+00:00",
+ "source_file": "1-Introduction/02-ethics/README.md",
+ "language_code": "zh-TW"
+ },
+ "1-Introduction/02-ethics/assignment.md": {
+ "original_hash": "b588c0fc73014f52520c666efc3e0cc3",
+ "translation_date": "2025-08-25T16:49:23+00:00",
+ "source_file": "1-Introduction/02-ethics/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "1-Introduction/03-defining-data/README.md": {
+ "original_hash": "12339119c0165da569a93ddba05f9339",
+ "translation_date": "2025-09-05T11:56:40+00:00",
+ "source_file": "1-Introduction/03-defining-data/README.md",
+ "language_code": "zh-TW"
+ },
+ "1-Introduction/03-defining-data/assignment.md": {
+ "original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
+ "translation_date": "2025-08-25T17:01:08+00:00",
+ "source_file": "1-Introduction/03-defining-data/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "1-Introduction/04-stats-and-probability/README.md": {
+ "original_hash": "ce95884566a74db72572cd51f0cb25ad",
+ "translation_date": "2025-09-06T13:07:57+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/README.md",
+ "language_code": "zh-TW"
+ },
+ "1-Introduction/04-stats-and-probability/assignment.md": {
+ "original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
+ "translation_date": "2025-08-25T17:10:29+00:00",
+ "source_file": "1-Introduction/04-stats-and-probability/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "1-Introduction/README.md": {
+ "original_hash": "696a8474a01054281704cbfb09148949",
+ "translation_date": "2025-08-25T16:38:06+00:00",
+ "source_file": "1-Introduction/README.md",
+ "language_code": "zh-TW"
+ },
+ "2-Working-With-Data/05-relational-databases/README.md": {
+ "original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
+ "translation_date": "2025-12-19T10:48:40+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/README.md",
+ "language_code": "zh-TW"
+ },
+ "2-Working-With-Data/05-relational-databases/assignment.md": {
+ "original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
+ "translation_date": "2025-10-24T09:53:26+00:00",
+ "source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "2-Working-With-Data/06-non-relational/README.md": {
+ "original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
+ "translation_date": "2025-09-05T11:44:44+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/README.md",
+ "language_code": "zh-TW"
+ },
+ "2-Working-With-Data/06-non-relational/assignment.md": {
+ "original_hash": "f824bfdb8b12d33293913f76f5c787c5",
+ "translation_date": "2025-08-25T16:36:17+00:00",
+ "source_file": "2-Working-With-Data/06-non-relational/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "2-Working-With-Data/07-python/README.md": {
+ "original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
+ "translation_date": "2025-09-06T15:29:13+00:00",
+ "source_file": "2-Working-With-Data/07-python/README.md",
+ "language_code": "zh-TW"
+ },
+ "2-Working-With-Data/07-python/assignment.md": {
+ "original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
+ "translation_date": "2025-08-25T16:31:12+00:00",
+ "source_file": "2-Working-With-Data/07-python/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "2-Working-With-Data/08-data-preparation/README.md": {
+ "original_hash": "1b560955ff39a2bcf2a049fce474a951",
+ "translation_date": "2025-09-05T11:46:51+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/README.md",
+ "language_code": "zh-TW"
+ },
+ "2-Working-With-Data/08-data-preparation/assignment.md": {
+ "original_hash": "f9d5a7275e046223fa6474477674b810",
+ "translation_date": "2025-08-25T16:23:39+00:00",
+ "source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "2-Working-With-Data/README.md": {
+ "original_hash": "abc3309ab41bc5a7846f70ee1a055838",
+ "translation_date": "2025-08-25T16:12:36+00:00",
+ "source_file": "2-Working-With-Data/README.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/09-visualization-quantities/README.md": {
+ "original_hash": "a49d78e32e280c410f04e5f2a2068e77",
+ "translation_date": "2025-09-05T11:51:12+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/09-visualization-quantities/assignment.md": {
+ "original_hash": "ad163c4fda72c8278280b61cad317ff4",
+ "translation_date": "2025-08-25T18:39:22+00:00",
+ "source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/10-visualization-distributions/README.md": {
+ "original_hash": "80a20467e046d312809d008395051fc7",
+ "translation_date": "2025-09-05T11:52:50+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/10-visualization-distributions/assignment.md": {
+ "original_hash": "40eeb9b9f94009c537c7811f9f27f037",
+ "translation_date": "2025-08-25T18:07:56+00:00",
+ "source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/11-visualization-proportions/README.md": {
+ "original_hash": "42119bcc97bee88254e381156d770f3c",
+ "translation_date": "2025-09-05T11:50:02+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/11-visualization-proportions/assignment.md": {
+ "original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
+ "translation_date": "2025-08-25T18:43:07+00:00",
+ "source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/12-visualization-relationships/README.md": {
+ "original_hash": "0764fd4077f3f04a1d968ec371227744",
+ "translation_date": "2025-09-06T11:30:44+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/12-visualization-relationships/assignment.md": {
+ "original_hash": "680419753c086eef51be86607c623945",
+ "translation_date": "2025-08-25T18:12:14+00:00",
+ "source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/README.md": {
+ "original_hash": "cfb068050337a36e348debaa502a24fa",
+ "translation_date": "2025-09-05T11:51:44+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
+ "original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
+ "translation_date": "2025-08-25T18:02:45+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-25T18:04:06+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
+ "original_hash": "5c51a54dd89075a7a362890117b7ed9e",
+ "translation_date": "2025-08-25T18:03:27+00:00",
+ "source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/README.md": {
+ "original_hash": "22acf28f518a4769ea14fa42f4734b9f",
+ "translation_date": "2025-08-25T18:21:59+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
+ "original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
+ "translation_date": "2025-08-25T18:25:56+00:00",
+ "source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/README.md": {
+ "original_hash": "ea67c0c40808fd723594de6896c37ccf",
+ "translation_date": "2025-08-25T18:13:08+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
+ "original_hash": "a233d542512136c4dd29aad38ca0175f",
+ "translation_date": "2025-08-25T18:16:05+00:00",
+ "source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/R/11-visualization-proportions/README.md": {
+ "original_hash": "47028abaaafa2bcb1079702d20569066",
+ "translation_date": "2025-08-25T18:30:54+00:00",
+ "source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/R/12-visualization-relationships/README.md": {
+ "original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
+ "translation_date": "2025-08-25T18:17:09+00:00",
+ "source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
+ "original_hash": "b4039f1c76548d144a0aee0bf28304ec",
+ "translation_date": "2025-08-25T18:27:04+00:00",
+ "source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
+ "language_code": "zh-TW"
+ },
+ "3-Data-Visualization/README.md": {
+ "original_hash": "1441550a0d789796b2821e04f7f4cc94",
+ "translation_date": "2025-08-25T17:57:08+00:00",
+ "source_file": "3-Data-Visualization/README.md",
+ "language_code": "zh-TW"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/README.md": {
+ "original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
+ "translation_date": "2025-09-06T20:31:52+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
+ "language_code": "zh-TW"
+ },
+ "4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
+ "original_hash": "564445c39ad29a491abcb9356fc4d47d",
+ "translation_date": "2025-08-25T17:44:43+00:00",
+ "source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/README.md": {
+ "original_hash": "661dad02c3ac239644d34c1eb51e76f8",
+ "translation_date": "2025-09-06T20:31:37+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
+ "language_code": "zh-TW"
+ },
+ "4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
+ "original_hash": "fcc7547171f4530f159676dd73ed772e",
+ "translation_date": "2025-08-25T17:47:50+00:00",
+ "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "4-Data-Science-Lifecycle/16-communication/README.md": {
+ "original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
+ "translation_date": "2025-09-06T20:32:14+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
+ "language_code": "zh-TW"
+ },
+ "4-Data-Science-Lifecycle/16-communication/assignment.md": {
+ "original_hash": "8980d7efd101c82d6d6ffc3458214120",
+ "translation_date": "2025-08-25T17:56:17+00:00",
+ "source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "4-Data-Science-Lifecycle/README.md": {
+ "original_hash": "dd173fd30fc039a7a299898920680723",
+ "translation_date": "2025-08-25T17:40:50+00:00",
+ "source_file": "4-Data-Science-Lifecycle/README.md",
+ "language_code": "zh-TW"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/README.md": {
+ "original_hash": "5f8e7cdefa096664ae86f795be571580",
+ "translation_date": "2025-09-05T11:43:34+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
+ "language_code": "zh-TW"
+ },
+ "5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
+ "original_hash": "96f3696153d9ed54b19a1bb65438c104",
+ "translation_date": "2025-08-25T17:31:33+00:00",
+ "source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/README.md": {
+ "original_hash": "bd4da10766c64fce4294a98f6479dfb0",
+ "translation_date": "2025-09-05T11:42:24+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
+ "language_code": "zh-TW"
+ },
+ "5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
+ "original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
+ "translation_date": "2025-08-25T17:26:57+00:00",
+ "source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/README.md": {
+ "original_hash": "472d3fab1c5be50f387336e7a686dbe1",
+ "translation_date": "2025-09-05T11:44:00+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
+ "language_code": "zh-TW"
+ },
+ "5-Data-Science-In-Cloud/19-Azure/assignment.md": {
+ "original_hash": "386efdbc19786951341f6956247ee990",
+ "translation_date": "2025-08-25T17:38:23+00:00",
+ "source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "5-Data-Science-In-Cloud/README.md": {
+ "original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
+ "translation_date": "2025-08-25T17:19:23+00:00",
+ "source_file": "5-Data-Science-In-Cloud/README.md",
+ "language_code": "zh-TW"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
+ "original_hash": "0f67a4139454816631526779a456b734",
+ "translation_date": "2025-09-06T18:18:34+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
+ "language_code": "zh-TW"
+ },
+ "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
+ "original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
+ "translation_date": "2025-08-25T17:18:12+00:00",
+ "source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
+ "language_code": "zh-TW"
+ },
+ "6-Data-Science-In-Wild/README.md": {
+ "original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
+ "translation_date": "2025-08-25T17:11:59+00:00",
+ "source_file": "6-Data-Science-In-Wild/README.md",
+ "language_code": "zh-TW"
+ },
+ "AGENTS.md": {
+ "original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
+ "translation_date": "2025-10-03T11:07:53+00:00",
+ "source_file": "AGENTS.md",
+ "language_code": "zh-TW"
+ },
+ "CODE_OF_CONDUCT.md": {
+ "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
+ "translation_date": "2025-08-25T16:10:11+00:00",
+ "source_file": "CODE_OF_CONDUCT.md",
+ "language_code": "zh-TW"
+ },
+ "CONTRIBUTING.md": {
+ "original_hash": "10f86fb29b5407088445ac803b3d0ed1",
+ "translation_date": "2025-10-03T13:34:27+00:00",
+ "source_file": "CONTRIBUTING.md",
+ "language_code": "zh-TW"
+ },
+ "INSTALLATION.md": {
+ "original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
+ "translation_date": "2025-10-03T15:16:49+00:00",
+ "source_file": "INSTALLATION.md",
+ "language_code": "zh-TW"
+ },
+ "README.md": {
+ "original_hash": "8ec92ecfeb14923af733851239552146",
+ "translation_date": "2026-01-30T01:19:54+00:00",
+ "source_file": "README.md",
+ "language_code": "zh-TW"
+ },
+ "SECURITY.md": {
+ "original_hash": "0d575483100c332b2dbaefef915bb3c4",
+ "translation_date": "2025-08-25T16:10:51+00:00",
+ "source_file": "SECURITY.md",
+ "language_code": "zh-TW"
+ },
+ "SUPPORT.md": {
+ "original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
+ "translation_date": "2025-08-25T16:08:12+00:00",
+ "source_file": "SUPPORT.md",
+ "language_code": "zh-TW"
+ },
+ "TROUBLESHOOTING.md": {
+ "original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
+ "translation_date": "2025-10-03T15:33:09+00:00",
+ "source_file": "TROUBLESHOOTING.md",
+ "language_code": "zh-TW"
+ },
+ "USAGE.md": {
+ "original_hash": "f546349678757508d69ce9e1d2688446",
+ "translation_date": "2025-10-03T14:56:08+00:00",
+ "source_file": "USAGE.md",
+ "language_code": "zh-TW"
+ },
+ "docs/_sidebar.md": {
+ "original_hash": "3767555b3cc28a2865c79202f4374204",
+ "translation_date": "2025-08-25T16:37:06+00:00",
+ "source_file": "docs/_sidebar.md",
+ "language_code": "zh-TW"
+ },
+ "examples/README.md": {
+ "original_hash": "9bef7fd96c8f262339933117d9b3e342",
+ "translation_date": "2025-10-03T12:58:06+00:00",
+ "source_file": "examples/README.md",
+ "language_code": "zh-TW"
+ },
+ "for-teachers.md": {
+ "original_hash": "f7440be10c17a8a9262713af3d2818a9",
+ "translation_date": "2025-09-06T19:53:32+00:00",
+ "source_file": "for-teachers.md",
+ "language_code": "zh-TW"
+ },
+ "quiz-app/README.md": {
+ "original_hash": "e92c33ea498915a13c9aec162616db18",
+ "translation_date": "2025-08-25T17:39:20+00:00",
+ "source_file": "quiz-app/README.md",
+ "language_code": "zh-TW"
+ },
+ "sketchnotes/README.md": {
+ "original_hash": "3a848466cb63aff1a93411affb152c2a",
+ "translation_date": "2025-08-25T17:11:25+00:00",
+ "source_file": "sketchnotes/README.md",
+ "language_code": "zh-TW"
+ }
+}
\ No newline at end of file
diff --git a/translations/tw/1-Introduction/01-defining-data-science/README.md b/translations/zh-TW/1-Introduction/01-defining-data-science/README.md
similarity index 95%
rename from translations/tw/1-Introduction/01-defining-data-science/README.md
rename to translations/zh-TW/1-Introduction/01-defining-data-science/README.md
index fc996387..3186ea80 100644
--- a/translations/tw/1-Introduction/01-defining-data-science/README.md
+++ b/translations/zh-TW/1-Introduction/01-defining-data-science/README.md
@@ -1,12 +1,3 @@
-
# 定義資料科學
|  繪製的手繪筆記](../../sketchnotes/01-Definitions.png) |
@@ -15,7 +6,7 @@ CO_OP_TRANSLATOR_METADATA:
---
-[](https://youtu.be/beZ7Mb_oz9I)
+[](https://youtu.be/beZ7Mb_oz9I)
## [課前測驗](https://ff-quizzes.netlify.app/en/ds/quiz/0)
@@ -153,7 +144,7 @@ CO_OP_TRANSLATOR_METADATA:
在這次挑戰中,我們將嘗試通過分析文本來找出與資料科學領域相關的概念。我們將選取一篇關於資料科學的維基百科文章,下載並處理文本,然後建立一個像這樣的文字雲:
-
+
請訪問 [`notebook.ipynb`](../../../../1-Introduction/01-defining-data-science/notebook.ipynb ':ignore') 閱讀程式碼。您也可以執行程式碼,並即時查看它如何進行所有的資料轉換。
diff --git a/translations/tw/1-Introduction/01-defining-data-science/assignment.md b/translations/zh-TW/1-Introduction/01-defining-data-science/assignment.md
similarity index 88%
rename from translations/tw/1-Introduction/01-defining-data-science/assignment.md
rename to translations/zh-TW/1-Introduction/01-defining-data-science/assignment.md
index 171ec51d..56656108 100644
--- a/translations/tw/1-Introduction/01-defining-data-science/assignment.md
+++ b/translations/zh-TW/1-Introduction/01-defining-data-science/assignment.md
@@ -1,12 +1,3 @@
-
# 作業:數據科學場景
在這份首次作業中,我們希望你思考一些現實生活中的流程或問題,涵蓋不同的問題領域,並考慮如何使用數據科學流程來改進它們。請思考以下問題:
diff --git a/translations/tw/1-Introduction/01-defining-data-science/notebook.ipynb b/translations/zh-TW/1-Introduction/01-defining-data-science/notebook.ipynb
similarity index 100%
rename from translations/tw/1-Introduction/01-defining-data-science/notebook.ipynb
rename to translations/zh-TW/1-Introduction/01-defining-data-science/notebook.ipynb
diff --git a/translations/tw/1-Introduction/01-defining-data-science/solution/assignment.md b/translations/zh-TW/1-Introduction/01-defining-data-science/solution/assignment.md
similarity index 91%
rename from translations/tw/1-Introduction/01-defining-data-science/solution/assignment.md
rename to translations/zh-TW/1-Introduction/01-defining-data-science/solution/assignment.md
index 9c1cc4c3..52134bfa 100644
--- a/translations/tw/1-Introduction/01-defining-data-science/solution/assignment.md
+++ b/translations/zh-TW/1-Introduction/01-defining-data-science/solution/assignment.md
@@ -1,12 +1,3 @@
-
# 作業:數據科學情境
在這次的作業中,我們希望你思考一些現實生活中的流程或問題,涵蓋不同的問題領域,並考慮如何利用數據科學流程來改進它們。請思考以下問題:
diff --git a/translations/tw/1-Introduction/01-defining-data-science/solution/notebook.ipynb b/translations/zh-TW/1-Introduction/01-defining-data-science/solution/notebook.ipynb
similarity index 100%
rename from translations/tw/1-Introduction/01-defining-data-science/solution/notebook.ipynb
rename to translations/zh-TW/1-Introduction/01-defining-data-science/solution/notebook.ipynb
diff --git a/translations/tw/1-Introduction/02-ethics/README.md b/translations/zh-TW/1-Introduction/02-ethics/README.md
similarity index 98%
rename from translations/tw/1-Introduction/02-ethics/README.md
rename to translations/zh-TW/1-Introduction/02-ethics/README.md
index 8836e190..632461d4 100644
--- a/translations/tw/1-Introduction/02-ethics/README.md
+++ b/translations/zh-TW/1-Introduction/02-ethics/README.md
@@ -1,12 +1,3 @@
-
# 資料倫理概論
| 繪製的速寫筆記](../../sketchnotes/02-Ethics.png)|
diff --git a/translations/tw/1-Introduction/02-ethics/assignment.md b/translations/zh-TW/1-Introduction/02-ethics/assignment.md
similarity index 90%
rename from translations/tw/1-Introduction/02-ethics/assignment.md
rename to translations/zh-TW/1-Introduction/02-ethics/assignment.md
index e556d1f8..02c8bbd9 100644
--- a/translations/tw/1-Introduction/02-ethics/assignment.md
+++ b/translations/zh-TW/1-Introduction/02-ethics/assignment.md
@@ -1,12 +1,3 @@
-
## 撰寫數據倫理案例研究
## 指導說明
diff --git a/translations/tw/1-Introduction/03-defining-data/README.md b/translations/zh-TW/1-Introduction/03-defining-data/README.md
similarity index 96%
rename from translations/tw/1-Introduction/03-defining-data/README.md
rename to translations/zh-TW/1-Introduction/03-defining-data/README.md
index 1609eae0..c26ba352 100644
--- a/translations/tw/1-Introduction/03-defining-data/README.md
+++ b/translations/zh-TW/1-Introduction/03-defining-data/README.md
@@ -1,12 +1,3 @@
-
# 定義資料
| ](../../sketchnotes/03-DefiningData.png)|
diff --git a/translations/tw/1-Introduction/03-defining-data/assignment.md b/translations/zh-TW/1-Introduction/03-defining-data/assignment.md
similarity index 88%
rename from translations/tw/1-Introduction/03-defining-data/assignment.md
rename to translations/zh-TW/1-Introduction/03-defining-data/assignment.md
index 53856866..fb8a3474 100644
--- a/translations/tw/1-Introduction/03-defining-data/assignment.md
+++ b/translations/zh-TW/1-Introduction/03-defining-data/assignment.md
@@ -1,12 +1,3 @@
-
# 資料集分類
## 指示
diff --git a/translations/tw/1-Introduction/04-stats-and-probability/README.md b/translations/zh-TW/1-Introduction/04-stats-and-probability/README.md
similarity index 94%
rename from translations/tw/1-Introduction/04-stats-and-probability/README.md
rename to translations/zh-TW/1-Introduction/04-stats-and-probability/README.md
index 65ed2a69..de21d768 100644
--- a/translations/tw/1-Introduction/04-stats-and-probability/README.md
+++ b/translations/zh-TW/1-Introduction/04-stats-and-probability/README.md
@@ -1,12 +1,3 @@
-
# 統計與機率簡介
| 繪製的手繪筆記](../../sketchnotes/04-Statistics-Probability.png)|
@@ -15,7 +6,7 @@ CO_OP_TRANSLATOR_METADATA:
統計學與機率論是數學中高度相關的兩個領域,對於數據科學來說尤為重要。即使在缺乏深厚數學知識的情況下也可以操作數據,但了解一些基本概念仍然是有益的。在這裡,我們將提供一個簡短的介紹,幫助您入門。
-[](https://youtu.be/Z5Zy85g4Yjw)
+[](https://youtu.be/Z5Zy85g4Yjw)
## [課前測驗](https://ff-quizzes.netlify.app/en/ds/quiz/6)
@@ -39,7 +30,7 @@ CO_OP_TRANSLATOR_METADATA:
我們只能討論變數落在某個值區間內的機率,例如 P(t1≤X2)。在這種情況下,機率分佈由 **機率密度函數** p(x) 描述,其滿足以下公式:
-![P(t_1\le X
+
在這裡,我們還計算了 **四分位距** IQR=Q3-Q1,以及所謂的 **異常值**——即落在 [Q1-1.5*IQR, Q3+1.5*IQR] 範圍之外的值。
@@ -82,11 +73,11 @@ CO_OP_TRANSLATOR_METADATA:
以下是顯示我們數據的平均值、中位數和四分位數的箱型圖:
-
+
由於我們的數據包含不同球員 **角色** 的信息,我們還可以按角色繪製箱型圖——這將幫助我們了解參數值在不同角色之間的差異。這次我們將考慮身高:
-
+
這張圖表表明,平均而言,一壘手的身高高於二壘手的身高。在本課程的後面部分,我們將學習如何更正式地檢驗這一假設,以及如何證明我們的數據在統計上具有顯著性。
@@ -94,7 +85,7 @@ CO_OP_TRANSLATOR_METADATA:
為了了解我們數據的分佈,我們可以繪製一個稱為 **直方圖** 的圖表。X 軸包含若干不同的體重區間(即 **箱**),而 Y 軸顯示隨機變數樣本落在給定區間內的次數。
-
+
從這個直方圖中可以看出,所有值都集中在某個平均體重附近,距離該體重越遠,該值出現的次數越少。也就是說,棒球運動員的體重與平均體重差異很大的可能性非常小。體重的方差顯示了體重與平均值可能的差異程度。
@@ -111,7 +102,7 @@ samples = np.random.normal(mean,std,1000)
如果我們繪製生成樣本的直方圖,我們將看到與上圖非常相似的圖像。如果我們增加樣本數量和箱數,我們可以生成更接近理想的正態分佈圖像:
-
+
*平均值=0 和標準差=1 的正態分佈*
@@ -233,7 +224,7 @@ array([[1. , 0.52959196],
在我們的情況下,值 0.53 表明體重和身高之間存在一定的相關性。我們還可以繪製一個值對另一個值的散點圖,以直觀地查看關係:
-
+
> 更多關於相關性和協方差的示例可以在 [附帶的筆記本](notebook.ipynb) 中找到。
diff --git a/translations/tw/1-Introduction/04-stats-and-probability/assignment.ipynb b/translations/zh-TW/1-Introduction/04-stats-and-probability/assignment.ipynb
similarity index 100%
rename from translations/tw/1-Introduction/04-stats-and-probability/assignment.ipynb
rename to translations/zh-TW/1-Introduction/04-stats-and-probability/assignment.ipynb
diff --git a/translations/tw/1-Introduction/04-stats-and-probability/assignment.md b/translations/zh-TW/1-Introduction/04-stats-and-probability/assignment.md
similarity index 87%
rename from translations/tw/1-Introduction/04-stats-and-probability/assignment.md
rename to translations/zh-TW/1-Introduction/04-stats-and-probability/assignment.md
index a6427c35..47660221 100644
--- a/translations/tw/1-Introduction/04-stats-and-probability/assignment.md
+++ b/translations/zh-TW/1-Introduction/04-stats-and-probability/assignment.md
@@ -1,12 +1,3 @@
-
# 小型糖尿病研究
在這次作業中,我們將使用一個小型糖尿病患者的數據集,該數據集來源於[此處](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)。
diff --git a/translations/tw/1-Introduction/04-stats-and-probability/notebook.ipynb b/translations/zh-TW/1-Introduction/04-stats-and-probability/notebook.ipynb
similarity index 100%
rename from translations/tw/1-Introduction/04-stats-and-probability/notebook.ipynb
rename to translations/zh-TW/1-Introduction/04-stats-and-probability/notebook.ipynb
diff --git a/translations/tw/1-Introduction/04-stats-and-probability/solution/assignment.ipynb b/translations/zh-TW/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
similarity index 100%
rename from translations/tw/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
rename to translations/zh-TW/1-Introduction/04-stats-and-probability/solution/assignment.ipynb
diff --git a/translations/tw/1-Introduction/README.md b/translations/zh-TW/1-Introduction/README.md
similarity index 79%
rename from translations/tw/1-Introduction/README.md
rename to translations/zh-TW/1-Introduction/README.md
index 63c5315e..2c763ee3 100644
--- a/translations/tw/1-Introduction/README.md
+++ b/translations/zh-TW/1-Introduction/README.md
@@ -1,15 +1,6 @@
-
# 資料科學入門
-
+
> 照片由 Stephen Dawson 提供,來自 Unsplash
在這些課程中,您將了解資料科學的定義,並學習作為資料科學家必須考慮的倫理問題。您還將學習資料的定義,並簡單了解統計與機率,這些是資料科學的核心學術領域。
diff --git a/translations/tw/2-Working-With-Data/05-relational-databases/README.md b/translations/zh-TW/2-Working-With-Data/05-relational-databases/README.md
similarity index 97%
rename from translations/tw/2-Working-With-Data/05-relational-databases/README.md
rename to translations/zh-TW/2-Working-With-Data/05-relational-databases/README.md
index affa15cb..db3f7821 100644
--- a/translations/tw/2-Working-With-Data/05-relational-databases/README.md
+++ b/translations/zh-TW/2-Working-With-Data/05-relational-databases/README.md
@@ -1,12 +1,3 @@
-
# 使用資料:關聯式資料庫
| ](../../sketchnotes/05-RelationalData.png)|
diff --git a/translations/tw/2-Working-With-Data/05-relational-databases/assignment.md b/translations/zh-TW/2-Working-With-Data/05-relational-databases/assignment.md
similarity index 93%
rename from translations/tw/2-Working-With-Data/05-relational-databases/assignment.md
rename to translations/zh-TW/2-Working-With-Data/05-relational-databases/assignment.md
index 057e7f7c..bda5460b 100644
--- a/translations/tw/2-Working-With-Data/05-relational-databases/assignment.md
+++ b/translations/zh-TW/2-Working-With-Data/05-relational-databases/assignment.md
@@ -1,12 +1,3 @@
-
# 顯示機場數據
您已獲得一個基於 [SQLite](https://sqlite.org/index.html) 的 [資料庫](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db),其中包含有關機場的資訊。以下是該資料庫的結構。您將使用 [SQLite 擴展](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) 在 [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) 中顯示不同城市的機場資訊。
diff --git a/translations/tw/2-Working-With-Data/06-non-relational/README.md b/translations/zh-TW/2-Working-With-Data/06-non-relational/README.md
similarity index 97%
rename from translations/tw/2-Working-With-Data/06-non-relational/README.md
rename to translations/zh-TW/2-Working-With-Data/06-non-relational/README.md
index 41211239..7e7bac9f 100644
--- a/translations/tw/2-Working-With-Data/06-non-relational/README.md
+++ b/translations/zh-TW/2-Working-With-Data/06-non-relational/README.md
@@ -1,12 +1,3 @@
-
# 使用資料:非關聯式資料
| 繪製的速記筆記](../../sketchnotes/06-NoSQL.png)|
diff --git a/translations/tw/2-Working-With-Data/06-non-relational/assignment.md b/translations/zh-TW/2-Working-With-Data/06-non-relational/assignment.md
similarity index 81%
rename from translations/tw/2-Working-With-Data/06-non-relational/assignment.md
rename to translations/zh-TW/2-Working-With-Data/06-non-relational/assignment.md
index 4f67903a..fc90cfc6 100644
--- a/translations/tw/2-Working-With-Data/06-non-relational/assignment.md
+++ b/translations/zh-TW/2-Working-With-Data/06-non-relational/assignment.md
@@ -1,12 +1,3 @@
-
# 蘇打水利潤
## 說明
diff --git a/translations/tw/2-Working-With-Data/07-python/R/notebook.ipynb b/translations/zh-TW/2-Working-With-Data/07-python/R/notebook.ipynb
similarity index 100%
rename from translations/tw/2-Working-With-Data/07-python/R/notebook.ipynb
rename to translations/zh-TW/2-Working-With-Data/07-python/R/notebook.ipynb
diff --git a/translations/tw/2-Working-With-Data/07-python/README.md b/translations/zh-TW/2-Working-With-Data/07-python/README.md
similarity index 94%
rename from translations/tw/2-Working-With-Data/07-python/README.md
rename to translations/zh-TW/2-Working-With-Data/07-python/README.md
index 029750d2..dcb13aea 100644
--- a/translations/tw/2-Working-With-Data/07-python/README.md
+++ b/translations/zh-TW/2-Working-With-Data/07-python/README.md
@@ -1,19 +1,10 @@
-
# 使用數據:Python 和 Pandas 庫
|  繪製的速記圖](../../sketchnotes/07-WorkWithPython.png) |
| :-------------------------------------------------------------------------------------------------------: |
| 使用 Python - _由 [@nitya](https://twitter.com/nitya) 繪製的速記圖_ |
-[](https://youtu.be/dZjWOGbsN4Y)
+[](https://youtu.be/dZjWOGbsN4Y)
雖然資料庫提供了非常高效的方式來存儲數據並使用查詢語言進行查詢,但最靈活的數據處理方式是編寫自己的程式來操作數據。在許多情況下,使用資料庫查詢可能更有效。然而,在某些需要更複雜數據處理的情況下,使用 SQL 可能不容易完成。
@@ -73,7 +64,7 @@ print(f"Length of index is {len(idx)}")
items_sold = pd.Series(np.random.randint(25,50,size=len(idx)),index=idx)
items_sold.plot()
```
-
+
假設每週我們都會為朋友舉辦派對,並額外拿出 10 盒冰淇淋。我們可以創建另一個以週為索引的 Series 來展示這一點:
```python
@@ -84,7 +75,7 @@ additional_items = pd.Series(10,index=pd.date_range(start_date,end_date,freq="W"
total_items = items_sold.add(additional_items,fill_value=0)
total_items.plot()
```
-
+
> **注意**:我們並未使用簡單語法 `total_items+additional_items`。如果使用該語法,我們會在結果 Series 中得到許多 `NaN`(*非數值*)值。這是因為在 `additional_items` Series 的某些索引點缺少值,而將 `NaN` 與任何值相加會得到 `NaN`。因此,我們需要在相加時指定 `fill_value` 參數。
@@ -93,7 +84,7 @@ total_items.plot()
monthly = total_items.resample("1M").mean()
ax = monthly.plot(kind='bar')
```
-
+
### DataFrame
@@ -219,7 +210,7 @@ df = pd.read_csv('file.csv')
由於我們想展示如何處理數據,我們邀請你打開 [`notebook-covidspread.ipynb`](notebook-covidspread.ipynb) 並從頭到尾閱讀它。你還可以執行單元格,並完成我們在最後為你留下的一些挑戰。
-
+
> 如果你不知道如何在 Jupyter Notebook 中運行代碼,請查看 [這篇文章](https://soshnikov.com/education/how-to-execute-notebooks-from-github/)。
@@ -241,7 +232,7 @@ df = pd.read_csv('file.csv')
打開 [`notebook-papers.ipynb`](notebook-papers.ipynb) 並從頭到尾閱讀它。你還可以執行單元格,並完成我們在最後為你留下的一些挑戰。
-
+
## 處理圖像數據
diff --git a/translations/tw/2-Working-With-Data/07-python/assignment.md b/translations/zh-TW/2-Working-With-Data/07-python/assignment.md
similarity index 89%
rename from translations/tw/2-Working-With-Data/07-python/assignment.md
rename to translations/zh-TW/2-Working-With-Data/07-python/assignment.md
index 96b39691..4d12b4c5 100644
--- a/translations/tw/2-Working-With-Data/07-python/assignment.md
+++ b/translations/zh-TW/2-Working-With-Data/07-python/assignment.md
@@ -1,12 +1,3 @@
-
# 使用 Python 進行數據處理的作業
在這份作業中,我們將要求您詳細說明我們在挑戰中開始開發的代碼。作業分為兩部分:
diff --git a/translations/tw/2-Working-With-Data/07-python/notebook-covidspread.ipynb b/translations/zh-TW/2-Working-With-Data/07-python/notebook-covidspread.ipynb
similarity index 100%
rename from translations/tw/2-Working-With-Data/07-python/notebook-covidspread.ipynb
rename to translations/zh-TW/2-Working-With-Data/07-python/notebook-covidspread.ipynb
diff --git a/translations/tw/2-Working-With-Data/07-python/notebook-papers.ipynb b/translations/zh-TW/2-Working-With-Data/07-python/notebook-papers.ipynb
similarity index 100%
rename from translations/tw/2-Working-With-Data/07-python/notebook-papers.ipynb
rename to translations/zh-TW/2-Working-With-Data/07-python/notebook-papers.ipynb
diff --git a/translations/tw/2-Working-With-Data/07-python/notebook.ipynb b/translations/zh-TW/2-Working-With-Data/07-python/notebook.ipynb
similarity index 100%
rename from translations/tw/2-Working-With-Data/07-python/notebook.ipynb
rename to translations/zh-TW/2-Working-With-Data/07-python/notebook.ipynb
diff --git a/translations/tw/2-Working-With-Data/08-data-preparation/README.md b/translations/zh-TW/2-Working-With-Data/08-data-preparation/README.md
similarity index 98%
rename from translations/tw/2-Working-With-Data/08-data-preparation/README.md
rename to translations/zh-TW/2-Working-With-Data/08-data-preparation/README.md
index dd27f397..85f4b32b 100644
--- a/translations/tw/2-Working-With-Data/08-data-preparation/README.md
+++ b/translations/zh-TW/2-Working-With-Data/08-data-preparation/README.md
@@ -1,12 +1,3 @@
-
# 資料處理:資料準備
| ](../../sketchnotes/08-DataPreparation.png)|
diff --git a/translations/tw/2-Working-With-Data/08-data-preparation/assignment.ipynb b/translations/zh-TW/2-Working-With-Data/08-data-preparation/assignment.ipynb
similarity index 100%
rename from translations/tw/2-Working-With-Data/08-data-preparation/assignment.ipynb
rename to translations/zh-TW/2-Working-With-Data/08-data-preparation/assignment.ipynb
diff --git a/translations/tw/2-Working-With-Data/08-data-preparation/assignment.md b/translations/zh-TW/2-Working-With-Data/08-data-preparation/assignment.md
similarity index 82%
rename from translations/tw/2-Working-With-Data/08-data-preparation/assignment.md
rename to translations/zh-TW/2-Working-With-Data/08-data-preparation/assignment.md
index e04ca92c..8c0f3cd3 100644
--- a/translations/tw/2-Working-With-Data/08-data-preparation/assignment.md
+++ b/translations/zh-TW/2-Working-With-Data/08-data-preparation/assignment.md
@@ -1,12 +1,3 @@
-
# 評估表單中的數據
一位客戶正在測試一個[小型表單](../../../../2-Working-With-Data/08-data-preparation/index.html),以收集一些關於其客戶群的基本數據。他們將測試結果交給你,請你驗證所收集的數據。你可以在瀏覽器中打開 `index.html` 頁面來查看該表單。
diff --git a/translations/tw/2-Working-With-Data/08-data-preparation/notebook.ipynb b/translations/zh-TW/2-Working-With-Data/08-data-preparation/notebook.ipynb
similarity index 100%
rename from translations/tw/2-Working-With-Data/08-data-preparation/notebook.ipynb
rename to translations/zh-TW/2-Working-With-Data/08-data-preparation/notebook.ipynb
diff --git a/translations/tw/2-Working-With-Data/README.md b/translations/zh-TW/2-Working-With-Data/README.md
similarity index 80%
rename from translations/tw/2-Working-With-Data/README.md
rename to translations/zh-TW/2-Working-With-Data/README.md
index 29f20550..2231adab 100644
--- a/translations/tw/2-Working-With-Data/README.md
+++ b/translations/zh-TW/2-Working-With-Data/README.md
@@ -1,15 +1,6 @@
-
# 使用數據
-
+
> 圖片由 Alexander Sinn 提供,來自 Unsplash
在這些課程中,您將學習一些管理、操作和應用數據的方法。您將了解關聯式和非關聯式數據庫,以及數據如何存儲在其中。您還將學習使用 Python 管理數據的基礎知識,並探索使用 Python 管理和挖掘數據的多種方式。
diff --git a/translations/tw/3-Data-Visualization/09-visualization-quantities/README.md b/translations/zh-TW/3-Data-Visualization/09-visualization-quantities/README.md
similarity index 97%
rename from translations/tw/3-Data-Visualization/09-visualization-quantities/README.md
rename to translations/zh-TW/3-Data-Visualization/09-visualization-quantities/README.md
index 50ab2153..704f2570 100644
--- a/translations/tw/3-Data-Visualization/09-visualization-quantities/README.md
+++ b/translations/zh-TW/3-Data-Visualization/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# 視覺化數量
| 繪製的手繪筆記](../../sketchnotes/09-Visualizing-Quantities.png)|
diff --git a/translations/tw/3-Data-Visualization/09-visualization-quantities/assignment.md b/translations/zh-TW/3-Data-Visualization/09-visualization-quantities/assignment.md
similarity index 78%
rename from translations/tw/3-Data-Visualization/09-visualization-quantities/assignment.md
rename to translations/zh-TW/3-Data-Visualization/09-visualization-quantities/assignment.md
index 07a8f90a..d0536f40 100644
--- a/translations/tw/3-Data-Visualization/09-visualization-quantities/assignment.md
+++ b/translations/zh-TW/3-Data-Visualization/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# 折線圖、散點圖與長條圖
## 課程指導
diff --git a/translations/tw/3-Data-Visualization/09-visualization-quantities/notebook.ipynb b/translations/zh-TW/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
similarity index 100%
rename from translations/tw/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
rename to translations/zh-TW/3-Data-Visualization/09-visualization-quantities/notebook.ipynb
diff --git a/translations/tw/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb b/translations/zh-TW/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
similarity index 100%
rename from translations/tw/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
rename to translations/zh-TW/3-Data-Visualization/09-visualization-quantities/solution/notebook.ipynb
diff --git a/translations/tw/3-Data-Visualization/10-visualization-distributions/README.md b/translations/zh-TW/3-Data-Visualization/10-visualization-distributions/README.md
similarity index 97%
rename from translations/tw/3-Data-Visualization/10-visualization-distributions/README.md
rename to translations/zh-TW/3-Data-Visualization/10-visualization-distributions/README.md
index 9e5555b0..3c6ecb77 100644
--- a/translations/tw/3-Data-Visualization/10-visualization-distributions/README.md
+++ b/translations/zh-TW/3-Data-Visualization/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# 視覺化分佈
| 繪製的手繪筆記](../../sketchnotes/10-Visualizing-Distributions.png)|
diff --git a/translations/tw/3-Data-Visualization/10-visualization-distributions/assignment.md b/translations/zh-TW/3-Data-Visualization/10-visualization-distributions/assignment.md
similarity index 79%
rename from translations/tw/3-Data-Visualization/10-visualization-distributions/assignment.md
rename to translations/zh-TW/3-Data-Visualization/10-visualization-distributions/assignment.md
index 8ca9ecdd..84b9dd68 100644
--- a/translations/tw/3-Data-Visualization/10-visualization-distributions/assignment.md
+++ b/translations/zh-TW/3-Data-Visualization/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# 運用你的技能
## 指導說明
diff --git a/translations/tw/3-Data-Visualization/10-visualization-distributions/notebook.ipynb b/translations/zh-TW/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
similarity index 100%
rename from translations/tw/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
rename to translations/zh-TW/3-Data-Visualization/10-visualization-distributions/notebook.ipynb
diff --git a/translations/tw/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb b/translations/zh-TW/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
similarity index 100%
rename from translations/tw/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
rename to translations/zh-TW/3-Data-Visualization/10-visualization-distributions/solution/notebook.ipynb
diff --git a/translations/tw/3-Data-Visualization/11-visualization-proportions/README.md b/translations/zh-TW/3-Data-Visualization/11-visualization-proportions/README.md
similarity index 97%
rename from translations/tw/3-Data-Visualization/11-visualization-proportions/README.md
rename to translations/zh-TW/3-Data-Visualization/11-visualization-proportions/README.md
index 6a6ab79c..657f9fdd 100644
--- a/translations/tw/3-Data-Visualization/11-visualization-proportions/README.md
+++ b/translations/zh-TW/3-Data-Visualization/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# 視覺化比例
| 繪製的手繪筆記](../../sketchnotes/11-Visualizing-Proportions.png)|
diff --git a/translations/tw/3-Data-Visualization/11-visualization-proportions/assignment.md b/translations/zh-TW/3-Data-Visualization/11-visualization-proportions/assignment.md
similarity index 80%
rename from translations/tw/3-Data-Visualization/11-visualization-proportions/assignment.md
rename to translations/zh-TW/3-Data-Visualization/11-visualization-proportions/assignment.md
index 008f17a5..507cecd1 100644
--- a/translations/tw/3-Data-Visualization/11-visualization-proportions/assignment.md
+++ b/translations/zh-TW/3-Data-Visualization/11-visualization-proportions/assignment.md
@@ -1,12 +1,3 @@
-
# 在 Excel 中嘗試
## 說明
diff --git a/translations/tw/3-Data-Visualization/11-visualization-proportions/notebook.ipynb b/translations/zh-TW/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
similarity index 100%
rename from translations/tw/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
rename to translations/zh-TW/3-Data-Visualization/11-visualization-proportions/notebook.ipynb
diff --git a/translations/tw/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb b/translations/zh-TW/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
similarity index 100%
rename from translations/tw/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
rename to translations/zh-TW/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb
diff --git a/translations/tw/3-Data-Visualization/12-visualization-relationships/README.md b/translations/zh-TW/3-Data-Visualization/12-visualization-relationships/README.md
similarity index 89%
rename from translations/tw/3-Data-Visualization/12-visualization-relationships/README.md
rename to translations/zh-TW/3-Data-Visualization/12-visualization-relationships/README.md
index 0ae172b0..fb9c3b2b 100644
--- a/translations/tw/3-Data-Visualization/12-visualization-relationships/README.md
+++ b/translations/zh-TW/3-Data-Visualization/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# 視覺化關係:關於蜂蜜 🍯
| 繪製的手繪筆記](../../sketchnotes/12-Visualizing-Relationships.png)|
@@ -51,7 +42,7 @@ honey.head()
```python
sns.relplot(x="priceperlb", y="state", data=honey, height=15, aspect=.5);
```
-
+
接下來,使用蜂蜜色調展示價格如何隨年份演變。您可以通過添加 'hue' 參數來顯示年份的變化:
@@ -60,7 +51,7 @@ sns.relplot(x="priceperlb", y="state", data=honey, height=15, aspect=.5);
```python
sns.relplot(x="priceperlb", y="state", hue="year", palette="YlOrBr", data=honey, height=15, aspect=.5);
```
-
+
通過這種色彩方案的改變,您可以清楚地看到蜂蜜每磅價格在多年來的明顯增長趨勢。事實上,如果您查看數據中的樣本集(例如選擇亞利桑那州),您可以看到價格逐年上漲的模式,僅有少數例外:
@@ -89,7 +80,7 @@ sns.relplot(x="priceperlb", y="state", size="year", data=honey, height=15, aspec
```
您可以看到點的大小逐漸增大。
-
+
這是否是一個簡單的供需問題?由於氣候變化和蜂群崩潰等因素,是否每年可供購買的蜂蜜減少,因此價格上漲?
@@ -104,7 +95,7 @@ sns.relplot(x="year", y="priceperlb", kind="line", data=honey);
```
答案:是的,但在 2003 年左右有一些例外:
-
+
✅ 由於 Seaborn 將數據聚合到一條線上,它通過繪製均值和均值周圍的 95% 置信區間來顯示「每個 x 值的多個測量值」。[來源](https://seaborn.pydata.org/tutorial/relational.html)。這種耗時的行為可以通過添加 `ci=None` 禁用。
@@ -114,7 +105,7 @@ sns.relplot(x="year", y="priceperlb", kind="line", data=honey);
sns.relplot(x="year", y="totalprod", kind="line", data=honey);
```
-
+
答案:並不完全。如果您查看總產量,實際上在那一年似乎有所增加,儘管總體而言蜂蜜的生產量在這些年中呈下降趨勢。
@@ -139,7 +130,7 @@ sns.relplot(
```
在此視覺化中,您可以比較逐年每群蜂的產量和蜂群數量,並將列的包裹設置為 3:
-
+
對於這個數據集,逐年和逐州的蜂群數量及其產量並沒有特別突出的地方。是否有其他方式來尋找這兩個變數之間的相關性?
@@ -162,7 +153,7 @@ sns.despine(right=False)
plt.ylabel('colony yield')
ax.figure.legend();
```
-
+
雖然在 2003 年左右沒有明顯的異常,但這讓我們可以以一個稍微樂觀的結論結束本課:儘管蜂群數量總體上在下降,但蜂群數量正在穩定,即使每群蜂的產量在減少。
diff --git a/translations/tw/3-Data-Visualization/12-visualization-relationships/assignment.md b/translations/zh-TW/3-Data-Visualization/12-visualization-relationships/assignment.md
similarity index 84%
rename from translations/tw/3-Data-Visualization/12-visualization-relationships/assignment.md
rename to translations/zh-TW/3-Data-Visualization/12-visualization-relationships/assignment.md
index 2ce4efd6..7c20a8fc 100644
--- a/translations/tw/3-Data-Visualization/12-visualization-relationships/assignment.md
+++ b/translations/zh-TW/3-Data-Visualization/12-visualization-relationships/assignment.md
@@ -1,12 +1,3 @@
-
# 探索蜂巢
## 說明
diff --git a/translations/tw/3-Data-Visualization/12-visualization-relationships/notebook.ipynb b/translations/zh-TW/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
similarity index 100%
rename from translations/tw/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
rename to translations/zh-TW/3-Data-Visualization/12-visualization-relationships/notebook.ipynb
diff --git a/translations/tw/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb b/translations/zh-TW/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
similarity index 100%
rename from translations/tw/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
rename to translations/zh-TW/3-Data-Visualization/12-visualization-relationships/solution/notebook.ipynb
diff --git a/translations/tw/3-Data-Visualization/13-meaningful-visualizations/README.md b/translations/zh-TW/3-Data-Visualization/13-meaningful-visualizations/README.md
similarity index 97%
rename from translations/tw/3-Data-Visualization/13-meaningful-visualizations/README.md
rename to translations/zh-TW/3-Data-Visualization/13-meaningful-visualizations/README.md
index b26ec6fb..15510c28 100644
--- a/translations/tw/3-Data-Visualization/13-meaningful-visualizations/README.md
+++ b/translations/zh-TW/3-Data-Visualization/13-meaningful-visualizations/README.md
@@ -1,12 +1,3 @@
-
# 製作有意義的視覺化圖表
| 繪製的手繪筆記](../../sketchnotes/13-MeaningfulViz.png)|
diff --git a/translations/tw/3-Data-Visualization/13-meaningful-visualizations/assignment.md b/translations/zh-TW/3-Data-Visualization/13-meaningful-visualizations/assignment.md
similarity index 80%
rename from translations/tw/3-Data-Visualization/13-meaningful-visualizations/assignment.md
rename to translations/zh-TW/3-Data-Visualization/13-meaningful-visualizations/assignment.md
index 78dd58db..c01a68e5 100644
--- a/translations/tw/3-Data-Visualization/13-meaningful-visualizations/assignment.md
+++ b/translations/zh-TW/3-Data-Visualization/13-meaningful-visualizations/assignment.md
@@ -1,12 +1,3 @@
-
# 建立自己的自訂視覺化
## 指導說明
diff --git a/translations/tw/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb b/translations/zh-TW/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
similarity index 100%
rename from translations/tw/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
rename to translations/zh-TW/3-Data-Visualization/13-meaningful-visualizations/correlation-analysis.ipynb
diff --git a/translations/tw/3-Data-Visualization/13-meaningful-visualizations/solution/README.md b/translations/zh-TW/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
similarity index 75%
rename from translations/tw/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
rename to translations/zh-TW/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
index fbcbf8f5..1df11466 100644
--- a/translations/tw/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
+++ b/translations/zh-TW/3-Data-Visualization/13-meaningful-visualizations/solution/README.md
@@ -1,12 +1,3 @@
-
# 危險關係數據可視化項目
開始之前,請確保您的電腦上已安裝 NPM 和 Node。安裝依賴項(npm install),然後在本地運行項目(npm run serve):
diff --git a/translations/tw/3-Data-Visualization/13-meaningful-visualizations/starter/README.md b/translations/zh-TW/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
similarity index 75%
rename from translations/tw/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
rename to translations/zh-TW/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
index d9352959..c8814203 100644
--- a/translations/tw/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
+++ b/translations/zh-TW/3-Data-Visualization/13-meaningful-visualizations/starter/README.md
@@ -1,12 +1,3 @@
-
# 危險關係數據可視化項目
開始之前,請確保您的機器上已安裝 NPM 和 Node。安裝依賴項(npm install),然後在本地運行項目(npm run serve):
diff --git a/translations/tw/3-Data-Visualization/R/09-visualization-quantities/README.md b/translations/zh-TW/3-Data-Visualization/R/09-visualization-quantities/README.md
similarity index 90%
rename from translations/tw/3-Data-Visualization/R/09-visualization-quantities/README.md
rename to translations/zh-TW/3-Data-Visualization/R/09-visualization-quantities/README.md
index 743279e5..0130d56b 100644
--- a/translations/tw/3-Data-Visualization/R/09-visualization-quantities/README.md
+++ b/translations/zh-TW/3-Data-Visualization/R/09-visualization-quantities/README.md
@@ -1,12 +1,3 @@
-
# 視覺化數量
| 繪製的手繪筆記](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|
@@ -67,7 +58,7 @@ ggplot(data=birds, aes(x=Name, y=MaxWingspan,group=1)) +
```
在這裡,您安裝了 `ggplot2` 套件,然後使用 `library("ggplot2")` 命令將其導入工作空間。要在 ggplot 中繪製任何圖表,使用 `ggplot()` 函數並指定數據集、x 和 y 變量作為屬性。在此情況下,我們使用 `geom_line()` 函數,因為我們的目標是繪製折線圖。
-
+
您立即注意到什麼?似乎至少有一個異常值——那是一個相當大的翼展!2000+ 公分的翼展超過 20 公尺——明尼蘇達州有翼龍在漫遊嗎?讓我們調查一下。
@@ -85,7 +76,7 @@ ggplot(data=birds, aes(x=Name, y=MaxWingspan,group=1)) +
```
我們在 `theme` 中指定角度,並分別在 `xlab()` 和 `ylab()` 中指定 x 和 y 軸標籤。`ggtitle()` 為圖表/圖形命名。
-
+
即使將標籤旋轉設置為 45 度,仍然有太多標籤無法閱讀。讓我們嘗試另一種策略:僅標記那些異常值並在圖表內設置標籤。您可以使用散點圖來為標籤留出更多空間:
@@ -101,7 +92,7 @@ ggplot(data=birds, aes(x=Name, y=MaxWingspan,group=1)) +
您發現了什麼?
-
+
## 篩選數據
@@ -120,7 +111,7 @@ ggplot(data=birds_filtered, aes(x=Name, y=MaxWingspan,group=1)) +
```
我們創建了一個新的數據框 `birds_filtered`,然後繪製了一個散點圖。通過篩選掉異常值,您的數據現在更加一致且易於理解。
-
+
現在我們至少在翼展方面有了一個更乾淨的數據集,讓我們進一步了解這些鳥類。
@@ -163,7 +154,7 @@ birds_filtered %>% group_by(Category) %>%
```
在以下代碼片段中,我們安裝了 [dplyr](https://www.rdocumentation.org/packages/dplyr/versions/0.7.8) 和 [lubridate](https://www.rdocumentation.org/packages/lubridate/versions/1.8.0) 套件,以幫助操作和分組數據以繪製堆疊條形圖。首先,您按鳥類的 `Category` 分組數據,然後總結 `MinLength`、`MaxLength`、`MinBodyMass`、`MaxBodyMass`、`MinWingspan`、`MaxWingspan` 列。接著,使用 `ggplot2` 套件繪製條形圖並指定不同類別的顏色和標籤。
-
+
然而,這個條形圖因為有太多未分組的數據而難以閱讀。您需要選擇要繪製的數據,因此讓我們看看基於鳥類類別的鳥類長度。
@@ -178,7 +169,7 @@ ggplot(birds_count,aes(Category,n))+geom_bar(stat="identity")+coord_flip()
```
您首先計算 `Category` 列中的唯一值,然後將它們排序到新的數據框 `birds_count` 中。這些排序後的數據在相同層次中進行分級,以便按排序方式繪製。使用 `ggplot2`,您接著繪製條形圖。`coord_flip()` 繪製水平條形圖。
-
+
此條形圖清楚地顯示了每個類別中鳥類的數量。一眼就能看出,在這個地區,鴨/鵝/水禽類別的鳥類數量最多。明尼蘇達州是“萬湖之地”,所以這並不令人驚訝!
@@ -201,7 +192,7 @@ ggplot(birds_grouped,aes(Category,MaxLength))+geom_bar(stat="identity")+coord_fl
```
我們按 `Category` 分組 `birds_filtered` 數據,然後繪製條形圖。
-
+
這裡沒有什麼令人驚訝的:蜂鳥的最大長度比鵜鶘或鵝要小得多。當數據符合邏輯時,這是件好事!
@@ -213,7 +204,7 @@ ggplot(data=birds_grouped, aes(x=Category)) +
geom_bar(aes(y=MinLength), stat="identity", position="identity", fill='orange')+
coord_flip()
```
-
+
## 🚀 挑戰
diff --git a/translations/tw/3-Data-Visualization/R/09-visualization-quantities/assignment.md b/translations/zh-TW/3-Data-Visualization/R/09-visualization-quantities/assignment.md
similarity index 75%
rename from translations/tw/3-Data-Visualization/R/09-visualization-quantities/assignment.md
rename to translations/zh-TW/3-Data-Visualization/R/09-visualization-quantities/assignment.md
index 56cf29bc..f6a02422 100644
--- a/translations/tw/3-Data-Visualization/R/09-visualization-quantities/assignment.md
+++ b/translations/zh-TW/3-Data-Visualization/R/09-visualization-quantities/assignment.md
@@ -1,12 +1,3 @@
-
# 折線圖、散點圖與長條圖
## 說明
diff --git a/translations/tw/3-Data-Visualization/R/10-visualization-distributions/README.md b/translations/zh-TW/3-Data-Visualization/R/10-visualization-distributions/README.md
similarity index 84%
rename from translations/tw/3-Data-Visualization/R/10-visualization-distributions/README.md
rename to translations/zh-TW/3-Data-Visualization/R/10-visualization-distributions/README.md
index db080055..4c933389 100644
--- a/translations/tw/3-Data-Visualization/R/10-visualization-distributions/README.md
+++ b/translations/zh-TW/3-Data-Visualization/R/10-visualization-distributions/README.md
@@ -1,12 +1,3 @@
-
# 視覺化分佈
| 繪製的手繪筆記 ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|
@@ -45,7 +36,7 @@ ggplot(data=birds_filtered, aes(x=Order, y=MaxLength,group=1)) +
geom_point() +
ggtitle("Max Length per order") + coord_flip()
```
-
+
這提供了每個鳥類目身體長度的一般分佈概覽,但這並不是顯示真實分佈的最佳方式。這項任務通常通過創建直方圖來完成。
## 使用直方圖
@@ -56,7 +47,7 @@ ggplot(data=birds_filtered, aes(x=Order, y=MaxLength,group=1)) +
ggplot(data = birds_filtered, aes(x = MaxBodyMass)) +
geom_histogram(bins=10)+ylab('Frequency')
```
-
+
如你所見,這個數據集中大多數的 400 多種鳥類的最大體重都在 2000 以下。通過將 `bins` 參數更改為更高的數字,例如 30,可以獲得更多的數據洞察:
@@ -64,7 +55,7 @@ ggplot(data = birds_filtered, aes(x = MaxBodyMass)) +
ggplot(data = birds_filtered, aes(x = MaxBodyMass)) + geom_histogram(bins=30)+ylab('Frequency')
```
-
+
此圖表以更細緻的方式顯示了分佈。通過確保僅選擇特定範圍內的數據,可以創建一個不那麼偏向左側的圖表:
@@ -76,7 +67,7 @@ ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_histogram(bins=30)+ylab('Frequency')
```
-
+
✅ 嘗試其他篩選條件和數據點。要查看數據的完整分佈,移除 `['MaxBodyMass']` 篩選條件以顯示帶標籤的分佈。
@@ -90,7 +81,7 @@ ggplot(data=birds_filtered_1, aes(x=MaxBodyMass, y=MaxLength) ) +
```
看起來這兩個元素沿著預期的軸有一個預期的相關性,其中有一個特別強的匯聚點:
-
+
直方圖對於數值數據默認效果很好。如果你需要根據文本數據查看分佈該怎麼辦?
## 使用文本數據探索數據集的分佈
@@ -121,7 +112,7 @@ ggplot(data=birds_filtered_1, aes(x = MinWingspan, fill = ConservationStatus)) +
scale_fill_manual(name="Conservation Status",values=c("red","green","blue","pink"),labels=c("Endangered","Near Threathened","Vulnerable","Least Concern"))
```
-
+
最小翼展與保育狀況之間似乎沒有明顯的相關性。使用此方法測試數據集的其他元素。你也可以嘗試不同的篩選條件。你發現了任何相關性嗎?
@@ -135,7 +126,7 @@ ggplot(data=birds_filtered_1, aes(x = MinWingspan, fill = ConservationStatus)) +
ggplot(data = birds_filtered_1, aes(x = MinWingspan)) +
geom_density()
```
-
+
你可以看到,這個圖表反映了之前的最小翼展數據,只是稍微平滑了一些。如果你想重新訪問第二個圖表中那條鋸齒狀的 MaxBodyMass 線,可以通過這種方法非常好地將其平滑化:
@@ -143,7 +134,7 @@ ggplot(data = birds_filtered_1, aes(x = MinWingspan)) +
ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_density()
```
-
+
如果你想要一條平滑但不過於平滑的線,可以編輯 `adjust` 參數:
@@ -151,7 +142,7 @@ ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
geom_density(adjust = 1/5)
```
-
+
✅ 閱讀此類圖表可用的參數並進行實驗!
@@ -161,7 +152,7 @@ ggplot(data = birds_filtered_1, aes(x = MaxBodyMass)) +
ggplot(data=birds_filtered_1,aes(x = MaxBodyMass, fill = Order)) +
geom_density(alpha=0.5)
```
-
+
## 🚀 挑戰
diff --git a/translations/tw/3-Data-Visualization/R/10-visualization-distributions/assignment.md b/translations/zh-TW/3-Data-Visualization/R/10-visualization-distributions/assignment.md
similarity index 79%
rename from translations/tw/3-Data-Visualization/R/10-visualization-distributions/assignment.md
rename to translations/zh-TW/3-Data-Visualization/R/10-visualization-distributions/assignment.md
index 68dda5d8..2c086f29 100644
--- a/translations/tw/3-Data-Visualization/R/10-visualization-distributions/assignment.md
+++ b/translations/zh-TW/3-Data-Visualization/R/10-visualization-distributions/assignment.md
@@ -1,12 +1,3 @@
-
# 運用你的技能
## 指示
diff --git a/translations/tw/3-Data-Visualization/R/11-visualization-proportions/README.md b/translations/zh-TW/3-Data-Visualization/R/11-visualization-proportions/README.md
similarity index 93%
rename from translations/tw/3-Data-Visualization/R/11-visualization-proportions/README.md
rename to translations/zh-TW/3-Data-Visualization/R/11-visualization-proportions/README.md
index cfc7dddd..3617a3a4 100644
--- a/translations/tw/3-Data-Visualization/R/11-visualization-proportions/README.md
+++ b/translations/zh-TW/3-Data-Visualization/R/11-visualization-proportions/README.md
@@ -1,12 +1,3 @@
-
# 視覺化比例
| 繪製的速記筆記](../../../sketchnotes/11-Visualizing-Proportions.png)|
@@ -93,7 +84,7 @@ pie(grouped$count,grouped$class, main="Edible?")
```
瞧,一個圓餅圖展示了根據這兩類蘑菇的比例數據。在這裡,正確的標籤順序非常重要,因此請務必確認標籤數組的構建順序!
-
+
## 甜甜圈圖!
@@ -128,7 +119,7 @@ library(webr)
PieDonut(habitat, aes(habitat, count=count))
```
-
+
此代碼使用了兩個庫 - ggplot2 和 webr。使用 webr 庫的 PieDonut 函數,我們可以輕鬆創建甜甜圈圖!
@@ -166,7 +157,7 @@ waffle((cap_color$count/10), rows = 7, title = "Waffle Chart")+scale_fill_manual
使用華夫圖,你可以清楚地看到此蘑菇數據集中菌蓋顏色的比例。有趣的是,有許多綠色菌蓋的蘑菇!
-
+
在本課程中,你學到了三種視覺化比例的方法。首先,你需要將數據分組到分類中,然後決定哪種方式最適合顯示數據 - 圓餅圖、甜甜圈圖或華夫圖。這些方法都很有趣,並能讓用戶快速了解數據集。
diff --git a/translations/tw/3-Data-Visualization/R/12-visualization-relationships/README.md b/translations/zh-TW/3-Data-Visualization/R/12-visualization-relationships/README.md
similarity index 88%
rename from translations/tw/3-Data-Visualization/R/12-visualization-relationships/README.md
rename to translations/zh-TW/3-Data-Visualization/R/12-visualization-relationships/README.md
index 71f79f03..c9c06f65 100644
--- a/translations/tw/3-Data-Visualization/R/12-visualization-relationships/README.md
+++ b/translations/zh-TW/3-Data-Visualization/R/12-visualization-relationships/README.md
@@ -1,12 +1,3 @@
-
# 視覺化關係:關於蜂蜜 🍯
| ](../../../sketchnotes/12-Visualizing-Relationships.png)|
@@ -51,7 +42,7 @@ library(ggplot2)
ggplot(honey, aes(x = priceperlb, y = state)) +
geom_point(colour = "blue")
```
-
+
接下來,使用蜂蜜色彩方案展示價格如何隨年份演變。您可以通過添加 `scale_color_gradientn` 參數來展示年份的變化:
@@ -61,7 +52,7 @@ ggplot(honey, aes(x = priceperlb, y = state)) +
ggplot(honey, aes(x = priceperlb, y = state, color=year)) +
geom_point()+scale_color_gradientn(colours = colorspace::heat_hcl(7))
```
-
+
使用這種色彩方案,您可以清楚地看到蜂蜜每磅價格在多年來的明顯增長趨勢。事實上,如果您查看數據中的樣本集(例如選擇亞利桑那州),您可以看到價格逐年上漲的模式,只有少數例外:
@@ -92,7 +83,7 @@ ggplot(honey, aes(x = priceperlb, y = state)) +
```
您可以看到點的大小逐漸增大。
-
+
這是否是一個簡單的供需問題?由於氣候變化和蜂群崩壞等因素,是否每年可供購買的蜂蜜減少,導致價格上漲?
@@ -107,7 +98,7 @@ qplot(honey$year,honey$priceperlb, geom='smooth', span =0.5, xlab = "year",ylab
```
答案:是的,但在2003年左右有一些例外:
-
+
問題:那麼在2003年,我們是否也能看到蜂蜜供應的激增?如果您查看每年的總產量呢?
@@ -115,7 +106,7 @@ qplot(honey$year,honey$priceperlb, geom='smooth', span =0.5, xlab = "year",ylab
qplot(honey$year,honey$totalprod, geom='smooth', span =0.5, xlab = "year",ylab = "totalprod")
```
-
+
答案:並不完全。如果您查看總產量,實際上在那一年似乎有所增加,儘管總的來說蜂蜜的生產量在這些年中呈下降趨勢。
@@ -135,7 +126,7 @@ ggplot(honey, aes(x=yieldpercol, y = numcol,group = 1)) +
```
在這個視覺化中,您可以比較每年的每群產量和蜂群數量,並將列的分面設置為3:
-
+
對於這個數據集,關於蜂群數量和每群產量,年份與州之間並沒有特別突出的地方。是否有其他方式可以找到這兩個變數之間的相關性?
@@ -152,7 +143,7 @@ plot(honey$year, honey$yieldpercol, pch = 17, col = 3,
axis(side = 4, at = pretty(range(y2)))
mtext("colony yield", side = 4, line = 3)
```
-
+
雖然在2003年沒有明顯的異常,但這讓我們可以以一個稍微樂觀的結論結束這節課:儘管蜂群數量總體上在下降,但蜂群數量正在穩定,即使每群產量在減少。
diff --git a/translations/tw/3-Data-Visualization/R/13-meaningful-vizualizations/README.md b/translations/zh-TW/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
similarity index 88%
rename from translations/tw/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
rename to translations/zh-TW/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
index 169fdfdf..d2004fa6 100644
--- a/translations/tw/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
+++ b/translations/zh-TW/3-Data-Visualization/R/13-meaningful-vizualizations/README.md
@@ -1,12 +1,3 @@
-
# 製作有意義的視覺化圖表
| 繪製的手繪筆記 ](../../../sketchnotes/13-MeaningfulViz.png)|
@@ -47,25 +38,25 @@ CO_OP_TRANSLATOR_METADATA:
即使數據科學家謹慎地為數據選擇了正確的圖表類型,數據仍然可能以某種方式被展示來證明某個觀點,往往以犧牲數據本身為代價。有許多關於誤導性圖表和信息圖的例子!
-[](https://www.youtube.com/watch?v=oX74Nge8Wkw "圖表如何說謊")
+[](https://www.youtube.com/watch?v=oX74Nge8Wkw "圖表如何說謊")
> 🎥 點擊上方圖片觀看關於誤導性圖表的會議演講
這張圖表反轉了 X 軸,根據日期顯示了與事實相反的內容:
-
+
[這張圖表](https://media.firstcoastnews.com/assets/WTLV/images/170ae16f-4643-438f-b689-50d66ca6a8d8/170ae16f-4643-438f-b689-50d66ca6a8d8_1140x641.jpg) 更加誤導,因為視線被吸引到右側,讓人得出結論:隨著時間推移,各縣的 COVID 病例數量下降了。事實上,如果仔細查看日期,你會發現它們被重新排列以製造這種誤導性的下降趨勢。
-
+
這個臭名昭著的例子使用了顏色和反轉的 Y 軸來誤導:與其得出槍支友好立法通過後槍支死亡人數激增的結論,事實上視線被誤導以為情況正好相反:
-
+
這張奇怪的圖表展示了比例如何被操縱,效果令人啼笑皆非:
-
+
比較無法比較的事物是另一種陰險的手段。有一個[精彩的網站](https://tylervigen.com/spurious-correlations)專門展示「虛假的相關性」,顯示像緬因州離婚率與人造黃油消耗量這樣的「事實」。Reddit 上也有一個群組收集了[數據的醜陋用法](https://www.reddit.com/r/dataisugly/top/?t=all)。
@@ -100,13 +91,13 @@ CO_OP_TRANSLATOR_METADATA:
如果你的數據在 X 軸上是文本且冗長,可以將文本傾斜以提高可讀性。[plot3D](https://cran.r-project.org/web/packages/plot3D/index.html) 提供了 3D 繪圖功能,如果你的數據支持的話,可以使用它來製作更高級的數據視覺化。
-
+
## 動畫和 3D 圖表展示
當今一些最好的數據視覺化是動畫化的。Shirley Wu 使用 D3 創作了許多令人驚嘆的作品,例如「[電影之花](http://bl.ocks.org/sxywu/raw/d612c6c653fb8b4d7ff3d422be164a5d/)」,每朵花都是一部電影的視覺化。另一個例子是《衛報》的「Bussed Out」,這是一個結合了 Greensock 和 D3 的互動體驗,並採用滾動敘事的文章格式,展示了紐約市如何通過將無家可歸者送出城市來處理這一問題。
-
+
> 「Bussed Out: How America Moves its Homeless」來自[衛報](https://www.theguardian.com/us-news/ng-interactive/2017/dec/20/bussed-out-america-moves-homeless-people-country-study)。視覺化由 Nadieh Bremer 和 Shirley Wu 創作。
@@ -116,7 +107,7 @@ CO_OP_TRANSLATOR_METADATA:
你將完成一個網頁應用,展示這個社交網絡的動畫化視圖。它使用了一個基於 Vue.js 和 D3 的庫來創建[網絡視覺化](https://github.com/emiliorizzo/vue-d3-network)。應用運行時,你可以在屏幕上拖動節點來重新排列數據。
-
+
## 專案:使用 D3.js 構建一個展示網絡的圖表
diff --git a/translations/tw/3-Data-Visualization/README.md b/translations/zh-TW/3-Data-Visualization/README.md
similarity index 92%
rename from translations/tw/3-Data-Visualization/README.md
rename to translations/zh-TW/3-Data-Visualization/README.md
index a145811d..4e1ec6f8 100644
--- a/translations/tw/3-Data-Visualization/README.md
+++ b/translations/zh-TW/3-Data-Visualization/README.md
@@ -1,15 +1,6 @@
-
# 視覺化
-
+
> 照片由 Jenna Lee 提供,來自 Unsplash
視覺化數據是數據科學家最重要的任務之一。一張圖片勝過千言萬語,視覺化可以幫助你識別數據中的各種有趣部分,例如尖峰、異常值、分組、趨勢等等,這些都能幫助你理解數據背後的故事。
diff --git a/translations/tw/4-Data-Science-Lifecycle/14-Introduction/README.md b/translations/zh-TW/4-Data-Science-Lifecycle/14-Introduction/README.md
similarity index 93%
rename from translations/tw/4-Data-Science-Lifecycle/14-Introduction/README.md
rename to translations/zh-TW/4-Data-Science-Lifecycle/14-Introduction/README.md
index 8544fb2d..7cec506f 100644
--- a/translations/tw/4-Data-Science-Lifecycle/14-Introduction/README.md
+++ b/translations/zh-TW/4-Data-Science-Lifecycle/14-Introduction/README.md
@@ -1,12 +1,3 @@
-
# 資料科學生命週期介紹
| ](../../sketchnotes/14-DataScience-Lifecycle.png)|
@@ -25,7 +16,7 @@ CO_OP_TRANSLATOR_METADATA:
本課程將重點放在生命週期的三個部分:資料捕捉、資料處理和資料維護。
-
+
> 圖片來源:[Berkeley School of Information](https://ischoolonline.berkeley.edu/data-science/what-is-data-science/)
## 資料捕捉
@@ -98,7 +89,7 @@ CO_OP_TRANSLATOR_METADATA:
|團隊資料科學過程 (TDSP)|跨行業標準資料挖掘過程 (CRISP-DM)|
|--|--|
-| |  |
+| |  |
| 圖片來源:[Microsoft](https://docs.microsoft.comazure/architecture/data-science-process/lifecycle) | 圖片來源:[Data Science Process Alliance](https://www.datascience-pm.com/crisp-dm-2/) |
## [課後測驗](https://ff-quizzes.netlify.app/en/ds/quiz/27)
diff --git a/translations/tw/4-Data-Science-Lifecycle/14-Introduction/assignment.md b/translations/zh-TW/4-Data-Science-Lifecycle/14-Introduction/assignment.md
similarity index 87%
rename from translations/tw/4-Data-Science-Lifecycle/14-Introduction/assignment.md
rename to translations/zh-TW/4-Data-Science-Lifecycle/14-Introduction/assignment.md
index 91e78bec..632cc28d 100644
--- a/translations/tw/4-Data-Science-Lifecycle/14-Introduction/assignment.md
+++ b/translations/zh-TW/4-Data-Science-Lifecycle/14-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# 評估數據集
一位客戶向您的團隊尋求幫助,調查紐約市計程車乘客的季節性消費習慣。
diff --git a/translations/tw/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb b/translations/zh-TW/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
similarity index 100%
rename from translations/tw/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
rename to translations/zh-TW/4-Data-Science-Lifecycle/14-Introduction/notebook.ipynb
diff --git a/translations/tw/4-Data-Science-Lifecycle/15-analyzing/README.md b/translations/zh-TW/4-Data-Science-Lifecycle/15-analyzing/README.md
similarity index 95%
rename from translations/tw/4-Data-Science-Lifecycle/15-analyzing/README.md
rename to translations/zh-TW/4-Data-Science-Lifecycle/15-analyzing/README.md
index bb09cb7f..1f3da96d 100644
--- a/translations/tw/4-Data-Science-Lifecycle/15-analyzing/README.md
+++ b/translations/zh-TW/4-Data-Science-Lifecycle/15-analyzing/README.md
@@ -1,12 +1,3 @@
-
# 數據科學生命周期:分析
| ](../../sketchnotes/15-Analyzing.png)|
diff --git a/translations/tw/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb b/translations/zh-TW/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
similarity index 100%
rename from translations/tw/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
rename to translations/zh-TW/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb
diff --git a/translations/tw/4-Data-Science-Lifecycle/15-analyzing/assignment.md b/translations/zh-TW/4-Data-Science-Lifecycle/15-analyzing/assignment.md
similarity index 88%
rename from translations/tw/4-Data-Science-Lifecycle/15-analyzing/assignment.md
rename to translations/zh-TW/4-Data-Science-Lifecycle/15-analyzing/assignment.md
index 1e72c541..75a02def 100644
--- a/translations/tw/4-Data-Science-Lifecycle/15-analyzing/assignment.md
+++ b/translations/zh-TW/4-Data-Science-Lifecycle/15-analyzing/assignment.md
@@ -1,12 +1,3 @@
-
# 探索答案
這是上一課[作業](../14-Introduction/assignment.md)的延續,我們之前簡單瀏覽了數據集。現在,我們將更深入地研究這些數據。
diff --git a/translations/tw/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb b/translations/zh-TW/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
similarity index 100%
rename from translations/tw/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
rename to translations/zh-TW/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb
diff --git a/translations/tw/4-Data-Science-Lifecycle/16-communication/README.md b/translations/zh-TW/4-Data-Science-Lifecycle/16-communication/README.md
similarity index 98%
rename from translations/tw/4-Data-Science-Lifecycle/16-communication/README.md
rename to translations/zh-TW/4-Data-Science-Lifecycle/16-communication/README.md
index d9fbab80..0159232b 100644
--- a/translations/tw/4-Data-Science-Lifecycle/16-communication/README.md
+++ b/translations/zh-TW/4-Data-Science-Lifecycle/16-communication/README.md
@@ -1,12 +1,3 @@
-
# 數據科學生命周期:溝通
|](../../sketchnotes/16-Communicating.png)|
diff --git a/translations/tw/4-Data-Science-Lifecycle/16-communication/assignment.md b/translations/zh-TW/4-Data-Science-Lifecycle/16-communication/assignment.md
similarity index 80%
rename from translations/tw/4-Data-Science-Lifecycle/16-communication/assignment.md
rename to translations/zh-TW/4-Data-Science-Lifecycle/16-communication/assignment.md
index 425ada5f..59e15327 100644
--- a/translations/tw/4-Data-Science-Lifecycle/16-communication/assignment.md
+++ b/translations/zh-TW/4-Data-Science-Lifecycle/16-communication/assignment.md
@@ -1,12 +1,3 @@
-
# 講述一個故事
## 說明
diff --git a/translations/tw/4-Data-Science-Lifecycle/README.md b/translations/zh-TW/4-Data-Science-Lifecycle/README.md
similarity index 74%
rename from translations/tw/4-Data-Science-Lifecycle/README.md
rename to translations/zh-TW/4-Data-Science-Lifecycle/README.md
index 5bdd1c25..c152a6fc 100644
--- a/translations/tw/4-Data-Science-Lifecycle/README.md
+++ b/translations/zh-TW/4-Data-Science-Lifecycle/README.md
@@ -1,15 +1,6 @@
-
# 數據科學生命週期
-
+
> 圖片由 Headway 提供,來自 Unsplash
在這些課程中,您將探索數據科學生命週期的一些方面,包括數據的分析和溝通。
diff --git a/translations/tw/5-Data-Science-In-Cloud/17-Introduction/README.md b/translations/zh-TW/5-Data-Science-In-Cloud/17-Introduction/README.md
similarity index 96%
rename from translations/tw/5-Data-Science-In-Cloud/17-Introduction/README.md
rename to translations/zh-TW/5-Data-Science-In-Cloud/17-Introduction/README.md
index b759cefd..ccc8758a 100644
--- a/translations/tw/5-Data-Science-In-Cloud/17-Introduction/README.md
+++ b/translations/zh-TW/5-Data-Science-In-Cloud/17-Introduction/README.md
@@ -1,12 +1,3 @@
-
# 雲端中的資料科學介紹
| ](../../sketchnotes/17-DataScience-Cloud.png)|
diff --git a/translations/tw/5-Data-Science-In-Cloud/17-Introduction/assignment.md b/translations/zh-TW/5-Data-Science-In-Cloud/17-Introduction/assignment.md
similarity index 78%
rename from translations/tw/5-Data-Science-In-Cloud/17-Introduction/assignment.md
rename to translations/zh-TW/5-Data-Science-In-Cloud/17-Introduction/assignment.md
index 48fdf9d9..305cb780 100644
--- a/translations/tw/5-Data-Science-In-Cloud/17-Introduction/assignment.md
+++ b/translations/zh-TW/5-Data-Science-In-Cloud/17-Introduction/assignment.md
@@ -1,12 +1,3 @@
-
# 市場調查
## 說明
diff --git a/translations/tw/5-Data-Science-In-Cloud/18-Low-Code/README.md b/translations/zh-TW/5-Data-Science-In-Cloud/18-Low-Code/README.md
similarity index 98%
rename from translations/tw/5-Data-Science-In-Cloud/18-Low-Code/README.md
rename to translations/zh-TW/5-Data-Science-In-Cloud/18-Low-Code/README.md
index d2913912..3d84076a 100644
--- a/translations/tw/5-Data-Science-In-Cloud/18-Low-Code/README.md
+++ b/translations/zh-TW/5-Data-Science-In-Cloud/18-Low-Code/README.md
@@ -1,12 +1,3 @@
-
# 雲端中的數據科學:「低代碼/無代碼」方式
| 繪製的手繪筆記](../../sketchnotes/18-DataScience-Cloud.png)|
diff --git a/translations/tw/5-Data-Science-In-Cloud/18-Low-Code/assignment.md b/translations/zh-TW/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
similarity index 84%
rename from translations/tw/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
rename to translations/zh-TW/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
index 3c12e984..031b2cc0 100644
--- a/translations/tw/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
+++ b/translations/zh-TW/5-Data-Science-In-Cloud/18-Low-Code/assignment.md
@@ -1,12 +1,3 @@
-
# 在 Azure ML 上進行低代碼/無代碼的數據科學專案
## 指導說明
diff --git a/translations/tw/5-Data-Science-In-Cloud/19-Azure/README.md b/translations/zh-TW/5-Data-Science-In-Cloud/19-Azure/README.md
similarity index 98%
rename from translations/tw/5-Data-Science-In-Cloud/19-Azure/README.md
rename to translations/zh-TW/5-Data-Science-In-Cloud/19-Azure/README.md
index 46cb3e3f..572b5477 100644
--- a/translations/tw/5-Data-Science-In-Cloud/19-Azure/README.md
+++ b/translations/zh-TW/5-Data-Science-In-Cloud/19-Azure/README.md
@@ -1,12 +1,3 @@
-
# 雲端中的數據科學:使用 "Azure ML SDK"
| ](../../sketchnotes/19-DataScience-Cloud.png)|
diff --git a/translations/tw/5-Data-Science-In-Cloud/19-Azure/assignment.md b/translations/zh-TW/5-Data-Science-In-Cloud/19-Azure/assignment.md
similarity index 85%
rename from translations/tw/5-Data-Science-In-Cloud/19-Azure/assignment.md
rename to translations/zh-TW/5-Data-Science-In-Cloud/19-Azure/assignment.md
index 41c247a2..b524d429 100644
--- a/translations/tw/5-Data-Science-In-Cloud/19-Azure/assignment.md
+++ b/translations/zh-TW/5-Data-Science-In-Cloud/19-Azure/assignment.md
@@ -1,12 +1,3 @@
-
# 使用 Azure ML SDK 的數據科學專案
## 指示
diff --git a/translations/tw/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb b/translations/zh-TW/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
similarity index 100%
rename from translations/tw/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
rename to translations/zh-TW/5-Data-Science-In-Cloud/19-Azure/notebook.ipynb
diff --git a/translations/zh/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb b/translations/zh-TW/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
similarity index 100%
rename from translations/zh/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
rename to translations/zh-TW/5-Data-Science-In-Cloud/19-Azure/solution/notebook.ipynb
diff --git a/translations/tw/5-Data-Science-In-Cloud/README.md b/translations/zh-TW/5-Data-Science-In-Cloud/README.md
similarity index 78%
rename from translations/tw/5-Data-Science-In-Cloud/README.md
rename to translations/zh-TW/5-Data-Science-In-Cloud/README.md
index 91270b72..7fe31bcc 100644
--- a/translations/tw/5-Data-Science-In-Cloud/README.md
+++ b/translations/zh-TW/5-Data-Science-In-Cloud/README.md
@@ -1,21 +1,12 @@
-
# 雲端中的數據科學
-
+
> 照片由 [Jelleke Vanooteghem](https://unsplash.com/@ilumire) 提供,來自 [Unsplash](https://unsplash.com/s/photos/cloud?orientation=landscape)
在處理大數據的數據科學時,雲端可以帶來革命性的改變。在接下來的三節課中,我們將了解什麼是雲端以及它為什麼如此有用。我們還將探索一個心臟衰竭數據集,並建立一個模型來幫助評估某人患心臟衰竭的可能性。我們將利用雲端的強大功能來訓練、部署並以兩種不同的方式使用模型。一種方式是僅使用用戶界面,以低代碼/無代碼的方式進行;另一種方式是使用 Azure 機器學習軟件開發工具包 (Azure ML SDK)。
-
+
### 主題
diff --git a/translations/tw/6-Data-Science-In-Wild/20-Real-World-Examples/README.md b/translations/zh-TW/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
similarity index 97%
rename from translations/tw/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
rename to translations/zh-TW/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
index 95df6996..d6ecafe5 100644
--- a/translations/tw/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
+++ b/translations/zh-TW/6-Data-Science-In-Wild/20-Real-World-Examples/README.md
@@ -1,12 +1,3 @@
-
# 數據科學在現實世界中的應用
|  ](../../sketchnotes/20-DataScience-RealWorld.png) |
@@ -41,7 +32,7 @@ CO_OP_TRANSLATOR_METADATA:
* [醫療保健中的數據科學](https://data-flair.training/blogs/data-science-in-healthcare/) - 強調應用如醫學影像(例如 MRI、X光、CT掃描)、基因組學(DNA測序)、藥物開發(風險評估、成功預測)、預測分析(患者護理和供應物流)、疾病追蹤和預防等。
- 圖片來源:[Data Flair: 6 Amazing Data Science Applications ](https://data-flair.training/blogs/data-science-applications/)
+ 圖片來源:[Data Flair: 6 Amazing Data Science Applications ](https://data-flair.training/blogs/data-science-applications/)
該圖展示了其他領域和應用數據科學技術的例子。想探索其他應用嗎?查看下面的[回顧與自學](../../../../6-Data-Science-In-Wild/20-Real-World-Examples)部分。
diff --git a/translations/tw/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md b/translations/zh-TW/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
similarity index 86%
rename from translations/tw/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
rename to translations/zh-TW/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
index 8f99bc17..bfeab4ab 100644
--- a/translations/tw/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
+++ b/translations/zh-TW/6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md
@@ -1,12 +1,3 @@
-
# 探索行星電腦數據集
## 說明
@@ -22,7 +13,7 @@ Explorer界面(如下圖所示)允許您選擇數據集(從提供的選項
2. 探索數據集[目錄](https://planetarycomputer.microsoft.com/catalog)——了解每個數據集的用途。
3. 使用Explorer——選擇一個感興趣的數據集,選擇相關的查詢和渲染選項。
-
+
`您的任務:`
現在研究瀏覽器中渲染的可視化,並回答以下問題:
diff --git a/translations/tw/6-Data-Science-In-Wild/README.md b/translations/zh-TW/6-Data-Science-In-Wild/README.md
similarity index 71%
rename from translations/tw/6-Data-Science-In-Wild/README.md
rename to translations/zh-TW/6-Data-Science-In-Wild/README.md
index 7c117a84..899472a4 100644
--- a/translations/tw/6-Data-Science-In-Wild/README.md
+++ b/translations/zh-TW/6-Data-Science-In-Wild/README.md
@@ -1,12 +1,3 @@
-
# 野外數據科學
數據科學在各行各業中的實際應用。
diff --git a/translations/tw/AGENTS.md b/translations/zh-TW/AGENTS.md
similarity index 97%
rename from translations/tw/AGENTS.md
rename to translations/zh-TW/AGENTS.md
index 1c02531e..2f67b1a2 100644
--- a/translations/tw/AGENTS.md
+++ b/translations/zh-TW/AGENTS.md
@@ -1,12 +1,3 @@
-
# AGENTS.md
## 專案概述
diff --git a/translations/tw/CODE_OF_CONDUCT.md b/translations/zh-TW/CODE_OF_CONDUCT.md
similarity index 77%
rename from translations/tw/CODE_OF_CONDUCT.md
rename to translations/zh-TW/CODE_OF_CONDUCT.md
index 4a5c31e3..f0a659ef 100644
--- a/translations/tw/CODE_OF_CONDUCT.md
+++ b/translations/zh-TW/CODE_OF_CONDUCT.md
@@ -1,12 +1,3 @@
-
# Microsoft 開源行為準則
此專案已採用 [Microsoft 開源行為準則](https://opensource.microsoft.com/codeofconduct/)。
diff --git a/translations/tw/CONTRIBUTING.md b/translations/zh-TW/CONTRIBUTING.md
similarity index 96%
rename from translations/tw/CONTRIBUTING.md
rename to translations/zh-TW/CONTRIBUTING.md
index 89e653a0..6b6baacc 100644
--- a/translations/tw/CONTRIBUTING.md
+++ b/translations/zh-TW/CONTRIBUTING.md
@@ -1,12 +1,3 @@
-
# 貢獻《初學者的數據科學》
感謝您對《初學者的數據科學》課程的貢獻興趣!我們歡迎社群的貢獻。
@@ -311,7 +302,7 @@ def calculate_mean(data):
import pandas as pd
```
````
-- 為圖片添加替代文字:``
+- 為圖片添加替代文字:``
- 保持合理的行長度(約 80-100 字元)
### Python
diff --git a/translations/tw/INSTALLATION.md b/translations/zh-TW/INSTALLATION.md
similarity index 96%
rename from translations/tw/INSTALLATION.md
rename to translations/zh-TW/INSTALLATION.md
index defbff94..60f329c9 100644
--- a/translations/tw/INSTALLATION.md
+++ b/translations/zh-TW/INSTALLATION.md
@@ -1,12 +1,3 @@
-
# 安裝指南
本指南將幫助您設置環境,以使用《初學者的數據科學》課程。
diff --git a/translations/zh-TW/README.md b/translations/zh-TW/README.md
new file mode 100644
index 00000000..badb1c64
--- /dev/null
+++ b/translations/zh-TW/README.md
@@ -0,0 +1,254 @@
+# 初學者資料科學課程大綱
+
+[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
+
+[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
+[](http://makeapullrequest.com)
+
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
+[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
+
+
+[](https://discord.gg/nTYy5BXMWG)
+
+[](https://aka.ms/foundry/forum)
+
+微軟 Azure 雲端倡導者很高興提供一個為期 10 週、共 20 節的資料科學課程。每堂課包含課前和課後測驗、完成課程的書面指南、解答以及作業。我們採用以專案為基礎的教學法,讓你在實作中學習,這是一種讓新技能穩固吸收的有效方式。
+
+**衷心感謝我們的作者們:** [Jasmine Greenaway](https://www.twitter.com/paladique)、[Dmitry Soshnikov](http://soshnikov.com)、[Nitya Narasimhan](https://twitter.com/nitya)、[Jalen McGee](https://twitter.com/JalenMcG)、[Jen Looper](https://twitter.com/jenlooper)、[Maud Levy](https://twitter.com/maudstweets)、[Tiffany Souterre](https://twitter.com/TiffanySouterre)、[Christopher Harrison](https://www.twitter.com/geektrainer)。
+
+**🙏 特別感謝 🙏 我們的 [Microsoft 學生大使](https://studentambassadors.microsoft.com/) 作者、審查員與內容貢獻者,** 主要包括 Aaryan Arora、[Aditya Garg](https://github.com/AdityaGarg00)、[Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/)、[Ankita Singh](https://www.linkedin.com/in/ankitasingh007)、[Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/)、[Arpita Das](https://www.linkedin.com/in/arpitadas01/)、ChhailBihari Dubey、[Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor)、[Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb)、[Majd Safi](https://www.linkedin.com/in/majd-s/)、[Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/)、[Miguel Correa](https://www.linkedin.com/in/miguelmque/)、[Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119)、[Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum)、[Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/)、[Rohit Yadav](https://www.linkedin.com/in/rty2423)、Samridhi Sharma、[Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)、[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/)、[Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/)、Yogendrasingh Pawar、[Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/)、[Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
+
+||
+|:---:|
+| 初學者資料科學 - _圖解筆記由 [@nitya](https://twitter.com/nitya) 製作_ |
+
+### 🌐 多語系支援
+
+#### 透過 GitHub Action 支援(自動且隨時更新)
+
+
+[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](./README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](../id/README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
+
+> **偏好本機複製?**
+
+> 本儲存庫包含超過 50 種語言翻譯,會大幅增加下載大小。若要在沒有翻譯的情況下複製,請使用稀疏檢出:
+> ```bash
+> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
+> cd Data-Science-For-Beginners
+> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
+> ```
+> 這樣你會以更快的速度獲得完成課程所需的一切。
+
+
+**如果你希望支援其他翻譯語言,清單列於[這裡](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
+
+#### 加入我們的社群
+[](https://discord.gg/nTYy5BXMWG)
+
+我們持續進行 Discord 上的 AI 學習系列,詳情請參閱並加入 [Learn with AI Series](https://aka.ms/learnwithai/discord),活動期間為 2025 年 9 月 18 日至 30 日。你將獲得使用 GitHub Copilot 進行資料科學的技巧與秘訣。
+
+
+
+# 你是學生嗎?
+
+請使用以下資源開始:
+
+- [學生中心頁面](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) 在這頁你可以找到初學者資源、學生套件,甚至有方式取得免費認證憑證。這是一個你應該收藏並常回訪的網頁,因為我們至少每月更新一次內容。
+- [Microsoft Learn 學生大使](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) 加入全球學生大使社群,這可能是你進入微軟的門路。
+
+# 入門指南
+
+## 📚 文件資源
+
+- **[安裝指南](INSTALLATION.md)** - 初學者逐步安裝說明
+- **[使用指南](USAGE.md)** - 範例與常見工作流程
+- **[故障排除](TROUBLESHOOTING.md)** - 常見問題解決方案
+- **[貢獻指南](CONTRIBUTING.md)** - 如何為此專案做出貢獻
+- **[教師專用](for-teachers.md)** - 教學指引和課堂資源
+
+## 👨🎓 對學生
+
+> **完全初學者**:對資料科學不熟悉?從我們的[初學者範例](examples/README.md)開始吧!這些簡單且註解完整的範例,能幫助你先了解基礎,再投入完整課程。
+> **[學生](https://aka.ms/student-page)**:想自行使用本課程,請將整個儲存庫 fork 一份,自行完成課程活動,從課前測驗開始。然後閱讀課程內容,完成後續練習。嘗試理解課程內容自行建立專案,不要直接複製解答程式碼;不過這些程式碼會放在每個以專案為導向課程的 /solutions 目錄下。另一個想法是與朋友組成學習小組,一起研讀課程內容。進一步學習,建議參考 [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)。
+
+**快速開始:**
+1. 參考[安裝指南](INSTALLATION.md)設定你的開發環境
+2. 閱讀[使用指南](USAGE.md)了解如何操作課程內容
+3. 從第一課開始,依序完成各課
+4. 加入我們的[Discord 社群](https://aka.ms/ds4beginners/discord)尋求支援
+
+## 👩🏫 對教師
+
+> **教師們**:我們在[此處](for-teachers.md)提供了一些使用本課程的建議。歡迎你在[討論論壇](https://github.com/microsoft/Data-Science-For-Beginners/discussions)提供回饋!
+## 認識團隊
+
+[](https://youtu.be/8mzavjQSMM4 "宣傳影片")
+
+**Gif 製作者** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
+
+> 🎥 點擊上方圖片觀看關於此專案及創作者的影片!
+
+## 教學法
+
+我們在建構此課程時選擇了兩個教學原則:確保它是以專案為基礎,並包括頻繁的小測驗。到本系列結束時,學生將學會資料科學的基本原理,包括倫理概念、資料準備、不同的資料處理方式、資料視覺化、資料分析、資料科學的實際案例等。
+
+此外,課前的低壓測驗能設定學生學習主題的意圖,而課後的第二次測驗則確保進一步的記憶鞏固。此課程設計靈活且有趣,可全部或部分學習。專案由簡入深,隨著10週週期的結束逐漸變得複雜。
+
+> 請參閱我們的[行為準則](CODE_OF_CONDUCT.md)、[貢獻指南](CONTRIBUTING.md)、[翻譯指南](TRANSLATIONS.md)。我們歡迎您的建設性回饋!
+
+## 每堂課包含:
+
+- 可選擇的手繪筆記
+- 可選擇的補充影片
+- 課前暖身小測驗
+- 書面課程內容
+- 以專案為基礎的課程,包含如何逐步構建專案的指南
+- 知識檢查
+- 挑戰任務
+- 補充閱讀
+- 作業
+- [課後小測驗](https://ff-quizzes.netlify.app/en/)
+
+> **關於測驗的說明**:所有測驗存放於 Quiz-App 資料夾中,共40個小測驗,每個含三個問題。它們從課程內部連結,但該測驗應用也可以在本地執行或部署到 Azure;請參考 `quiz-app` 資料夾中的指示。正逐步進行在地化。
+
+## 🎓 初學者友善範例
+
+**資料科學新手?** 我們建立了一個特別的[範例目錄](examples/README.md),提供簡單且詳細註解的程式碼,幫助你快速上手:
+
+- 🌟 **Hello World** - 你的第一個資料科學程式
+- 📂 **載入資料** - 學習讀取與探索資料集
+- 📊 **簡單分析** - 計算統計與尋找模式
+- 📈 **基本視覺化** - 製作圖表
+- 🔬 **真實專案** - 完整流程從頭到尾
+
+每個範例皆附詳細註解說明每一步,適合完全初學者!
+
+👉 **[從範例開始學習](examples/README.md)** 👈
+
+## 課程列表
+
+
+||
+|:---:|
+| 初學資料科學:路線圖 - _手繪筆記由 [@nitya](https://twitter.com/nitya) 製作_ |
+
+
+| 課程編號 | 主題 | 課程群組 | 學習目標 | 連結課程 | 作者 |
+| :-------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
+| 01 | 定義資料科學 | [介紹](1-Introduction/README.md) | 了解資料科學的基本概念及其與人工智慧、機器學習和大數據的關係。 | [課程](1-Introduction/01-defining-data-science/README.md) [影片](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
+| 02 | 資料科學倫理 | [介紹](1-Introduction/README.md) | 資料倫理的概念、挑戰與架構。 | [課程](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
+| 03 | 定義資料 | [介紹](1-Introduction/README.md) | 資料如何分類及常見來源。 | [課程](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 04 | 統計與機率入門 | [介紹](1-Introduction/README.md) | 運用機率與統計的數學技術理解資料。 | [課程](1-Introduction/04-stats-and-probability/README.md) [影片](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
+| 05 | 處理關聯型資料 | [處理資料](2-Working-With-Data/README.md) | 介紹關聯型資料及使用結構化查詢語言(SQL,讀作「see-quell」)探索與分析關聯資料的基礎。 | [課程](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) |
+| 06 | 處理 NoSQL 資料 | [處理資料](2-Working-With-Data/README.md) | 介紹非關聯資料及其類型,及探索與分析文件型資料庫的基礎。 | [課程](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 07 | 使用 Python | [處理資料](2-Working-With-Data/README.md) | 使用 Python 與 Pandas 等函式庫進行資料探索的基礎。建議具備 Python 程式設計基礎。 | [課程](2-Working-With-Data/07-python/README.md) [影片](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
+| 08 | 資料準備 | [處理資料](2-Working-With-Data/README.md) | 資料清理與轉換技術,應對缺失、不準確或不完整資料的挑戰。 | [課程](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
+| 09 | 數量視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 學習用 Matplotlib 來視覺化鳥類資料 🦆 | [課程](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 10 | 資料分布視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 視覺化區間內的觀測與趨勢。 | [課程](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 11 | 比例視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 視覺化離散與分組百分比。 | [課程](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 12 | 關係視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 視覺化資料集及其變數間的連結與關聯。 | [課程](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 13 | 有意義的視覺化 | [資料視覺化](3-Data-Visualization/README.md) | 製作具價值且有助於有效問題解決與洞察的視覺化技術與指導。 | [課程](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
+| 14 | 資料科學生命週期入門 | [生命週期](4-Data-Science-Lifecycle/README.md) | 介紹資料科學生命週期及其第一步:獲取與萃取資料。 | [課程](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 15 | 資料分析 | [生命週期](4-Data-Science-Lifecycle/README.md) | 資料科學生命週期中專注於資料分析技術的階段。 | [課程](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) |
+| 16 | 溝通 | [生命週期](4-Data-Science-Lifecycle/README.md) | 資料科學生命週期中著重於以便於決策者理解的方式呈現資料洞察的階段。 | [課程](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) |
+| 17 | 雲端中的資料科學 | [雲端資料](5-Data-Science-In-Cloud/README.md) | 系列課程介紹雲端資料科學及其優點。 | [課程](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
+| 18 | 雲端中的資料科學 | [雲端資料](5-Data-Science-In-Cloud/README.md) | 使用低代碼工具訓練模型。 |[課程](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
+| 19 | 雲端中的資料科學 | [雲端資料](5-Data-Science-In-Cloud/README.md) | 使用 Azure Machine Learning Studio 部署模型。 | [課程](5-Data-Science-In-Cloud/19-Azure/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
+| 20 | 實務中的資料科學 | [實務應用](6-Data-Science-In-Wild/README.md) | 實務中由資料科學驅動的專案。 | [課程](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
+
+## GitHub Codespaces
+
+請依照以下步驟打開此範例於 Codespace:
+1. 點擊 Code 下拉選單,選擇「Open with Codespaces」。
+2. 在窗格底部選擇「+ New codespace」。
+更多資訊請參考 [GitHub 文件](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace)。
+
+## VSCode 遠端容器
+
+請依照下列步驟使用 VS Code Remote - Containers 擴充套件,在你的本機和 VSCode 中於容器中開啟此倉庫:
+
+1. 若是首次使用開發容器,請確保你的系統已符合前置需求(例如安裝 Docker),詳見[入門文件](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)。
+
+使用此倉庫時,可以選擇在隔離的 Docker 卷中開啟:
+
+**注意**:底層會使用 Remote-Containers 的 **Clone Repository in Container Volume...** 指令,將原始碼克隆到 Docker 卷,而非本地檔案系統。[卷](https://docs.docker.com/storage/volumes/) 是持續保存容器資料的首選方式。
+
+或是開啟本地克隆或下載的倉庫版本:
+
+- 將此倉庫克隆到本地檔案系統。
+- 按 F1 鍵並選擇 **Remote-Containers: Open Folder in Container...** 指令。
+- 選擇剛克隆的資料夾,等待容器啟動後即可開始使用。
+
+## 離線使用
+
+可用 [Docsify](https://docsify.js.org/#/) 離線運行此文件。請 fork 此倉庫,[在本機安裝 Docsify](https://docsify.js.org/#/quickstart),然後於此倉庫根目錄輸入 `docsify serve`。網站將於本地主機的 3000 埠執行:`localhost:3000`。
+
+> 注意,筆記本無法經由 Docsify 渲染,需時請另行在 VS Code 中使用 Python 核心運行。
+
+## 其他課程
+
+我們團隊也製作其他課程!歡迎查看:
+
+
+### LangChain
+[](https://aka.ms/langchain4j-for-beginners)
+[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
+
+---
+
+### Azure / Edge / MCP / Agents
+[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### 生成式 AI 系列
+[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
+[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
+[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
+[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### 核心學習
+[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
+[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
+
+---
+
+### Copilot 系列
+[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
+[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
+
+
+## 獲取幫助
+
+**遇到問題嗎?** 查看我們的[故障排除指南](TROUBLESHOOTING.md),獲得常見問題的解決方案。
+
+如果您卡住或對建立 AI 應用有任何疑問,請加入學習者及資深開發人員的 MCP 討論社群。這是一個支持性強的社群,歡迎提問且自由分享知識。
+
+[](https://discord.gg/nTYy5BXMWG)
+
+如果您在開發過程中有產品反饋或錯誤,請訪問:
+
+[](https://aka.ms/foundry/forum)
+
+---
+
+
+**免責聲明**:
+本文件係使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 所翻譯而成。雖然我們致力於確保翻譯的準確性,但請注意自動翻譯可能包含錯誤或不準確之處。原始語言版本應視為權威且具法律效力的文件。對於關鍵資訊,建議聘請專業人工翻譯。我們不對因使用本翻譯內容而產生的任何誤解或誤譯負責。
+
\ No newline at end of file
diff --git a/translations/tw/SECURITY.md b/translations/zh-TW/SECURITY.md
similarity index 92%
rename from translations/tw/SECURITY.md
rename to translations/zh-TW/SECURITY.md
index a27958c7..c5bfa49e 100644
--- a/translations/tw/SECURITY.md
+++ b/translations/zh-TW/SECURITY.md
@@ -1,12 +1,3 @@
-
## 安全性
Microsoft 非常重視我們軟體產品和服務的安全性,包括透過我們的 GitHub 組織管理的所有原始碼庫,這些組織包括 [Microsoft](https://github.com/Microsoft)、[Azure](https://github.com/Azure)、[DotNet](https://github.com/dotnet)、[AspNet](https://github.com/aspnet)、[Xamarin](https://github.com/xamarin) 以及 [我們的 GitHub 組織](https://opensource.microsoft.com/)。
diff --git a/translations/tw/SUPPORT.md b/translations/zh-TW/SUPPORT.md
similarity index 79%
rename from translations/tw/SUPPORT.md
rename to translations/zh-TW/SUPPORT.md
index 81aa1a20..f21779ef 100644
--- a/translations/tw/SUPPORT.md
+++ b/translations/zh-TW/SUPPORT.md
@@ -1,12 +1,3 @@
-
# 支援
## 如何提交問題並獲得協助
diff --git a/translations/tw/TROUBLESHOOTING.md b/translations/zh-TW/TROUBLESHOOTING.md
similarity index 98%
rename from translations/tw/TROUBLESHOOTING.md
rename to translations/zh-TW/TROUBLESHOOTING.md
index 857d76c6..63d9cd6e 100644
--- a/translations/tw/TROUBLESHOOTING.md
+++ b/translations/zh-TW/TROUBLESHOOTING.md
@@ -1,12 +1,3 @@
-
# 疑難排解指南
本指南提供了解決在使用《初學者的數據科學》課程時可能遇到的常見問題的方法。
diff --git a/translations/tw/USAGE.md b/translations/zh-TW/USAGE.md
similarity index 97%
rename from translations/tw/USAGE.md
rename to translations/zh-TW/USAGE.md
index fe005a42..b9e88337 100644
--- a/translations/tw/USAGE.md
+++ b/translations/zh-TW/USAGE.md
@@ -1,12 +1,3 @@
-
# 使用指南
本指南提供了使用「初學者的數據科學」課程的範例和常見工作流程。
diff --git a/translations/tw/docs/_sidebar.md b/translations/zh-TW/docs/_sidebar.md
similarity index 89%
rename from translations/tw/docs/_sidebar.md
rename to translations/zh-TW/docs/_sidebar.md
index fd966079..801e4042 100644
--- a/translations/tw/docs/_sidebar.md
+++ b/translations/zh-TW/docs/_sidebar.md
@@ -1,12 +1,3 @@
-
- 介紹
- [定義數據科學](../1-Introduction/01-defining-data-science/README.md)
- [數據科學的倫理](../1-Introduction/02-ethics/README.md)
diff --git a/translations/tw/examples/README.md b/translations/zh-TW/examples/README.md
similarity index 95%
rename from translations/tw/examples/README.md
rename to translations/zh-TW/examples/README.md
index 6596c220..32f8ccee 100644
--- a/translations/tw/examples/README.md
+++ b/translations/zh-TW/examples/README.md
@@ -1,12 +1,3 @@
-
# 初學者友善的資料科學範例
歡迎來到範例目錄!這些簡單且有詳細註解的範例旨在幫助您開始學習資料科學,即使您是完全的初學者。
diff --git a/translations/tw/for-teachers.md b/translations/zh-TW/for-teachers.md
similarity index 94%
rename from translations/tw/for-teachers.md
rename to translations/zh-TW/for-teachers.md
index 988398c9..c545862e 100644
--- a/translations/tw/for-teachers.md
+++ b/translations/zh-TW/for-teachers.md
@@ -1,12 +1,3 @@
-
## 給教育工作者
想在課堂上使用這份課程嗎?請隨意使用!
diff --git a/translations/tw/quiz-app/README.md b/translations/zh-TW/quiz-app/README.md
similarity index 95%
rename from translations/tw/quiz-app/README.md
rename to translations/zh-TW/quiz-app/README.md
index 5cee8d20..ef290be5 100644
--- a/translations/tw/quiz-app/README.md
+++ b/translations/zh-TW/quiz-app/README.md
@@ -1,12 +1,3 @@
-
# 測驗
這些測驗是數據科學課程的課前和課後測驗,課程網址為:https://aka.ms/datascience-beginners
diff --git a/translations/tw/sketchnotes/README.md b/translations/zh-TW/sketchnotes/README.md
similarity index 56%
rename from translations/tw/sketchnotes/README.md
rename to translations/zh-TW/sketchnotes/README.md
index 59dd21fe..f40ae400 100644
--- a/translations/tw/sketchnotes/README.md
+++ b/translations/zh-TW/sketchnotes/README.md
@@ -1,19 +1,10 @@
-
在這裡可以找到所有的手繪筆記!
## 致謝
Nitya Narasimhan,藝術家
-
+
**免責聲明**:
本文件使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。雖然我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於關鍵資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋不承擔責任。
\ No newline at end of file
diff --git a/translations/zh/README.md b/translations/zh/README.md
deleted file mode 100644
index 2a1b4d7b..00000000
--- a/translations/zh/README.md
+++ /dev/null
@@ -1,263 +0,0 @@
-
-# 面向初学者的数据科学课程
-
-[](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
-
-[](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
-[](http://makeapullrequest.com)
-
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
-[](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
-
-
-[](https://discord.gg/nTYy5BXMWG)
-
-[](https://aka.ms/foundry/forum)
-
-微软 Azure 云推广者很高兴提供一个为期 10 周、共 20 课的数据科学课程。每节课包括课前和课后测验、完成课程的书面指导、解决方案和作业。我们的项目驱动教学法使你在构建的过程中学习,这是一种经证实的新技能“扎根”的方法。
-
-**衷心感谢我们的作者:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer)。
-
-**🙏 特别感谢 🙏 我们的 [Microsoft 学生大使](https://studentambassadors.microsoft.com/) 作者、审稿人和内容贡献者,** 尤其是 Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
-[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
-
-||
-|:---:|
-| 面向初学者的数据科学 - _由 [@nitya](https://twitter.com/nitya) 绘制的手绘笔记_ |
-
-### 🌐 多语言支持
-
-#### 通过 GitHub Action 支持(自动且始终最新)
-
-
-[阿拉伯语](../ar/README.md) | [孟加拉语](../bn/README.md) | [保加利亚语](../bg/README.md) | [缅甸语(缅甸)](../my/README.md) | [中文(简体)](./README.md) | [中文(繁体,香港)](../hk/README.md) | [中文(繁体,澳门)](../mo/README.md) | [中文(繁体,台湾)](../tw/README.md) | [克罗地亚语](../hr/README.md) | [捷克语](../cs/README.md) | [丹麦语](../da/README.md) | [荷兰语](../nl/README.md) | [爱沙尼亚语](../et/README.md) | [芬兰语](../fi/README.md) | [法语](../fr/README.md) | [德语](../de/README.md) | [希腊语](../el/README.md) | [希伯来语](../he/README.md) | [印地语](../hi/README.md) | [匈牙利语](../hu/README.md) | [印度尼西亚语](../id/README.md) | [意大利语](../it/README.md) | [日语](../ja/README.md) | [卡纳达语](../kn/README.md) | [韩语](../ko/README.md) | [立陶宛语](../lt/README.md) | [马来语](../ms/README.md) | [马拉雅拉姆语](../ml/README.md) | [马拉地语](../mr/README.md) | [尼泊尔语](../ne/README.md) | [尼日利亚皮钦语](../pcm/README.md) | [挪威语](../no/README.md) | [波斯语(法尔西语)](../fa/README.md) | [波兰语](../pl/README.md) | [葡萄牙语(巴西)](../br/README.md) | [葡萄牙语(葡萄牙)](../pt/README.md) | [旁遮普语(古鲁姆奇)](../pa/README.md) | [罗马尼亚语](../ro/README.md) | [俄语](../ru/README.md) | [塞尔维亚语(西里尔字母)](../sr/README.md) | [斯洛伐克语](../sk/README.md) | [斯洛文尼亚语](../sl/README.md) | [西班牙语](../es/README.md) | [斯瓦希里语](../sw/README.md) | [瑞典语](../sv/README.md) | [塔加洛语(菲律宾语)](../tl/README.md) | [泰米尔语](../ta/README.md) | [泰卢固语](../te/README.md) | [泰语](../th/README.md) | [土耳其语](../tr/README.md) | [乌克兰语](../uk/README.md) | [乌尔都语](../ur/README.md) | [越南语](../vi/README.md)
-
-> **更喜欢本地克隆?**
-
-> 此仓库包括 50 多种语言翻译,显著增加下载大小。要克隆时不包含翻译,请使用稀疏检出:
-> ```bash
-> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
-> cd Data-Science-For-Beginners
-> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images'
-> ```
-> 这样你就能获得完成课程所需的一切,下载速度更快。
-
-
-**如果您希望支持额外的翻译语言,详情见 [这里](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
-
-#### 加入我们的社区
-[](https://discord.gg/nTYy5BXMWG)
-
-我们正在进行 Discord AI 学习系列,了解详情并加入我们,[AI 学习系列](https://aka.ms/learnwithai/discord),时间为 2025 年 9 月 18 日至 30 日。你将获得使用 GitHub Copilot 进行数据科学的技巧和窍门。
-
-
-
-# 你是学生吗?
-
-使用以下资源开始:
-
-- [学生中心页面](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) 本页面包含初学者资源、学生包,甚至还有获取免费证书凭证的方法。建议将此页面加入书签并定期查看,因为我们至少每月更新内容。
-- [微软学习学生大使](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) 加入全球学生大使社区,这或许是你进入微软的途径。
-
-# 开始
-
-## 📚 文档
-
-- **[安装指南](INSTALLATION.md)** - 面向初学者的逐步设置说明
-- **[使用指南](USAGE.md)** - 示例和常用工作流程
-- **[故障排除](TROUBLESHOOTING.md)** - 常见问题解决方案
-- **[贡献指南](CONTRIBUTING.md)** - 如何为此项目贡献代码
-- **[教师专用](for-teachers.md)** - 教学指导和课堂资源
-
-## 👨🎓 针对学生
-> **完全初学者**:刚接触数据科学?请从我们[适合初学者的示例](examples/README.md)开始!这些简单且注释详细的示例将帮助你在深入课程前理解基础概念。
-> **[学生](https://aka.ms/student-page)**:如要自行使用此课程,请fork整个仓库并自行完成练习,从课前测验开始。然后阅读课程内容并完成其他活动。尝试通过理解课程来创建项目,而非仅仅复制解决方案代码;不过,每个项目导向课程的 /solutions 文件夹中均提供了解决方案代码。另一种方式是与朋友组成学习小组,共同学习内容。欲进一步学习,推荐使用 [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum)。
-
-**快速开始:**
-1. 查阅 [安装指南](INSTALLATION.md) 设置开发环境
-2. 查看 [使用指南](USAGE.md) 学习如何使用课程
-3. 从第 1 课开始,按顺序完成
-4. 加入我们的 [Discord 社区](https://aka.ms/ds4beginners/discord) 寻求帮助
-
-## 👩🏫 针对教师
-
-> **教师朋友们**:我们提供了 [一些建议](for-teachers.md) 来帮助你使用本课程。欢迎在我们的[讨论论坛](https://github.com/microsoft/Data-Science-For-Beginners/discussions)反馈意见!
-
-## 团队介绍
-[](https://youtu.be/8mzavjQSMM4 "Promo video")
-
-**动图来自** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
-
-> 🎥 点击上方图片观看关于该项目及其创建者的视频!
-
-## 教学理念
-
-我们在构建此课程时选择了两个教学原则:确保课程以项目为基础,并且包含频繁的测验。在本系列课程结束时,学生将学会数据科学的基本原理,包括伦理概念、数据准备、不同的数据处理方式、数据可视化、数据分析、数据科学的真实案例等。
-
-另外,课前的低风险测验可以帮助学生设定学习主题的意向,而课后的第二次测验则有助于巩固知识。该课程设计灵活且有趣,可以全部学习或部分学习。项目从小型开始,到10周课程末变得越来越复杂。
-
-> 查阅我们的[行为准则](CODE_OF_CONDUCT.md)、[贡献指南](CONTRIBUTING.md)和[翻译指南](TRANSLATIONS.md)。我们欢迎您的建设性反馈!
-
-## 每节课程包含:
-
-- 可选的手绘笔记
-- 可选的补充视频
-- 课前热身测验
-- 文字课程
-- 对于项目课程,提供逐步构建项目的指南
-- 知识点检测
-- 挑战任务
-- 补充阅读材料
-- 作业
-- [课后测验](https://ff-quizzes.netlify.app/en/)
-
-> **关于测验的说明**:所有测验都存放在 Quiz-App 文件夹中,共40个测验,每个测验三道题。测验链接嵌入课程,但测验应用也可以本地运行或部署到 Azure;请参照 `quiz-app` 文件夹中的说明。这些测验正在逐步完成本地化。
-
-## 🎓 适合初学者的示例
-
-**刚接触数据科学?** 我们专门创建了一个[示例目录](examples/README.md),其中包含简单且注释详尽的代码,帮助你快速入门:
-
-- 🌟 **Hello World** - 你的第一个数据科学程序
-- 📂 **加载数据** - 学习如何读取和探索数据集
-- 📊 **简单分析** - 计算统计数据并发现模式
-- 📈 **基础可视化** - 创建图表和图形
-- 🔬 **真实项目** - 从头到尾的完整工作流程
-
-每个示例均附有详细注释,讲解每一步,非常适合完全初学者!
-
-👉 **[从示例开始](examples/README.md)** 👈
-
-## 课程列表
-
-
-||
-|:---:|
-| 初学者数据科学路线图 - _手绘笔记来自 [@nitya](https://twitter.com/nitya)_ |
-
-
-| 课程编号 | 主题 | 课程分组 | 学习目标 | 课程链接 | 作者 |
-| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
-| 01 | 定义数据科学 | [介绍](1-Introduction/README.md) | 学习数据科学的基本概念及其与人工智能、机器学习和大数据的关联。 | [课程](1-Introduction/01-defining-data-science/README.md) [视频](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
-| 02 | 数据科学伦理 | [介绍](1-Introduction/README.md) | 数据伦理的概念、挑战与框架。 | [课程](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
-| 03 | 定义数据 | [介绍](1-Introduction/README.md) | 数据的分类及其常见来源。 | [课程](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 04 | 统计与概率入门 | [介绍](1-Introduction/README.md) | 使用概率与统计的数学技术理解数据。 | [课程](1-Introduction/04-stats-and-probability/README.md) [视频](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
-| 05 | 关系数据处理 | [数据操作](2-Working-With-Data/README.md) | 关系数据入门,使用结构化查询语言(SQL)探索和分析关系数据基础。 | [课程](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
-| 06 | 非SQL数据处理 | [数据操作](2-Working-With-Data/README.md) | 非关系数据介绍、各种类型及文档数据库的探索和分析基础。 | [课程](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
-| 07 | Python数据操作 | [数据操作](2-Working-With-Data/README.md) | 使用Python和Pandas等库进行数据探索的基础,推荐具备基础Python编程知识。 | [课程](2-Working-With-Data/07-python/README.md) [视频](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
-| 08 | 数据准备 | [数据操作](2-Working-With-Data/README.md) | 数据清洗和转换技术,处理缺失、不准确或不完整数据的挑战。 | [课程](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
-| 09 | 数量可视化 | [数据可视化](3-Data-Visualization/README.md) | 学习使用 Matplotlib 可视化鸟类数据 🦆 | [课程](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 10 | 数据分布可视化 | [数据可视化](3-Data-Visualization/README.md) | 可视化区间内的观测与趋势。 | [课程](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 11 | 比例可视化 | [数据可视化](3-Data-Visualization/README.md) | 离散和分组百分比的可视化。 | [课程](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 12 | 关系可视化 | [数据可视化](3-Data-Visualization/README.md) | 可视化数据集及变量间的连接和相关性。 | [课程](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 13 | 有意义的可视化 | [数据可视化](3-Data-Visualization/README.md) | 制作有价值的可视化技术与指导,有效支持问题解决与洞察。 | [课程](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
-| 14 | 数据科学生命周期介绍 | [生命周期](4-Data-Science-Lifecycle/README.md) | 数据科学生命周期介绍及其首个步骤:数据获取与提取。 | [课程](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
-| 15 | 数据分析 | [生命周期](4-Data-Science-Lifecycle/README.md) | 数据科学生命周期中分析数据的技术。 | [课程](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
-| 16 | 结果沟通 | [生命周期](4-Data-Science-Lifecycle/README.md) | 数据科学生命周期中将数据洞察以便决策者易于理解的方式呈现。 | [课程](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
-| 17 | 云端数据科学 | [云端数据](5-Data-Science-In-Cloud/README.md) | 介绍云端数据科学及其优势。 | [课程](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
-| 18 | 云端低代码模型训练 | [云端数据](5-Data-Science-In-Cloud/README.md) | 使用低代码工具训练模型。 |[课程](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
-| 19 | Azure机器学习模型部署 | [云端数据](5-Data-Science-In-Cloud/README.md) | 使用 Azure 机器学习工作室部署模型。 | [课程](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) 和 [Maud](https://twitter.com/maudstweets) |
-| 20 | 真实世界中的数据科学 | [实践应用](6-Data-Science-In-Wild/README.md) | 真实世界的数据科学项目实例。 | [课程](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
-
-## GitHub Codespaces
-
-按以下步骤在 Codespace 中打开此示例:
-1. 点击 Code 下拉菜单,选择“Open with Codespaces”选项。
-2. 在面板底部选择“+ New codespace”。
-更多信息请查阅 [GitHub 文档](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace)。
-
-## VSCode 远程容器
-
-使用本地机器和 VSCode 通过 VS Code Remote - Containers 扩展打开此仓库的容器,步骤如下:
-
-1. 如果是首次使用开发容器,请确保系统满足先决条件(例如安装了 Docker),详情参见 [入门文档](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started)。
-
-使用此仓库时,您可以选择在隔离的 Docker 卷中打开仓库:
-
-**注意**:底层将使用 Remote-Containers 的 **Clone Repository in Container Volume...** 命令在 Docker 卷中克隆源代码,而非本地文件系统。[卷](https://docs.docker.com/storage/volumes/) 是持久化容器数据的首选方式。
-
-或者打开本地克隆或下载的仓库版本:
-
-- 将仓库克隆到本地文件系统。
-- 按 F1,选择 **Remote-Containers: Open Folder in Container...** 命令。
-- 选择克隆的文件夹,等待容器启动,然后开始使用。
-
-## 离线访问
-
-您可以使用 [Docsify](https://docsify.js.org/#/) 离线运行本文档。Fork 此仓库,在本地安装 Docsify([安装指南](https://docsify.js.org/#/quickstart)),然后在仓库根目录输入 `docsify serve`。网站将通过本地的 3000 端口提供服务:`localhost:3000`。
-
-> 注意,笔记本文件不会通过 Docsify 渲染,当你需要运行笔记本时,请在 VS Code 中使用 Python 内核单独操作。
-
-## 其他课程
-
-我们的团队还出品其他课程!请查看:
-
-
-### LangChain
-[](https://aka.ms/langchain4j-for-beginners)
-[](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin)
-
----
-
-### Azure / Edge / MCP / Agents
-[](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst)
-
----
-
-### 生成式 AI 系列
-[](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst)
-[-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst)
-[-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst)
-[-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst)
-
----
-
-### 核心学习
-[](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung)
-[](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst)
-
----
-
-### Copilot 系列
-[](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst)
-[](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst)
-
-
-## 获取帮助
-
-**遇到问题?** 查看我们的[故障排除指南](TROUBLESHOOTING.md)以获取常见问题的解决方案。
-
-如果遇到困难或对构建 AI 应用有任何疑问,欢迎加入学习者及有经验开发者的讨论社区,交流 MCP 相关内容。这里是一个支持性强的社区,欢迎提问并自由分享知识。
-
-[](https://discord.gg/nTYy5BXMWG)
-
-如果有产品反馈或在构建过程中遇到错误,请访问:
-
-[](https://aka.ms/foundry/forum)
-
----
-
-
-**免责声明**:
-本文件使用 AI 翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们力求准确,但请注意,自动翻译可能包含错误或不准确之处。请以原文(母语版本)为权威来源。对于重要信息,建议使用专业人工翻译。对于因使用本翻译而产生的任何误解或误读,我们不承担任何责任。
-
\ No newline at end of file