데이터베이스가 질의 언어를 사용하여 데이터를 저장하고 쿼리하는 매우 효율적인 방법을 제공하지만, 데이터 처리의 가장 유연한 방법은 데이터를 조작하기 위해 자신만의 프로그램을 작성하는 것입니다. 대부분의 경우 데이터베이스 쿼리를 수행하는 것이 더 효과적인 방법입니다. 그러나 더 복잡한 데이터 처리가 필요한 경우 SQL을 사용하여 쉽게 처리할 수 없습니다.
데이터 처리는 어떤 프로그래밍 언어로도 프로그래밍이 가능하지만, 데이터 작업에 있어서 더 유용한 언어가 있습니다. 데이터 과학자는 일반적으로 다음 언어 중 하나를 선호합니다:
* **[Python(파이썬)](https://www.python.org/)** 은 범용 프로그래밍 언어로 간단하기 때문에 초보자를 위한 최고의 선택지 중 하나입니다. 파이썬(python)에는 ZIP 아카이브에서 데이터를 추출하거나 그림을 흑백으로 변환하는 것과 같은 실제 문제를 해결하는 데 도움이 되는 많은 추가 라이브러리가 존재합니다. 게다가, 데이터 과학 외에도 파이썬은 웹 개발에도 많이 사용됩니다.
* **[R(알)](https://www.r-project.org/)** 은 통계 데이터 처리를 염두에 두고 개발된 전통적인 도구 상자입니다. 또한 대규모 라이브러리 저장소(CRAN)를 포함하고 있어 데이터 처리에 적합합니다. 그러나, R은 범용 프로그래밍 언어가 아니며 데이터 과학 영역 밖에서는 거의 사용되지 않습니다.
* **[Julia(줄리아)](https://julialang.org/)** 데이터 과학을 위해 특별히 개발된 또 다른 언어이다. 이것은 파이썬보다 더 나은 성능을 제공하기 위한 것으로 과학 실험을 위한 훌륭한 도구입니다.
이 과정에서는 간단한 데이터 처리를 위해 파이썬을 사용하는 것에 초점을 맞출 것입니다. 사전에 파이썬에 익숙해질 필요가 있습니다. 파이썬에 대해 더 자세히 살펴보고 싶다면 다음 리소스 중 하나를 참조할 수 있습니다:
* [Turtle Graphics와 Fractal로 Python을 재미있게 배우기](https://github.com/shwars/pycourse) - GitHub 기반 Python 프로그래밍에 대한 빠른 소개 과정
* [Python으로 첫 걸음 내딛기](https://docs.microsoft.com/en-us/learn/paths/python-first-steps/?WT.mc_id=academic-31812-dmitryso) - [Microsoft 학습](http://learn.microsoft.com/?WT.mc_id=academic-31812-dmitryso)으로 이동하기
데이터는 다양한 형태로 나타날 수 있습니다. 이 과정에서 우리는 세 가지 형태의 데이터를 고려할 것입니다. - **표로 나타낸 데이터(tabular data)**, **텍스트(text)** and **이미지(images)**.
모든 관련 라이브러리에 대한 전체 개요를 제공하는 대신 데이터 처리의 몇 가지 예를 중점적으로 살펴보겠습니다. 이를 통해 무엇이 가능한지에 대한 주요 아이디어를 얻을 수 있으며, 필요할 때 문제에 대한 해결책을 찾을 수 있는 방도를 파악할 수 있습니다.
> **유용한 Tip**. 방법을 모르는 데이터에 대해 특정 작업을 수행해야 할 경우 인터넷에서 검색해 보십시오. [스택오버플로우](https://stackoverflow.com/)는 일반적으로 많은 일반적인 작업을 위해 다양한 파이썬의 유용한 코드 샘플을 가지고 있습니다.
이전에 관계형 데이터베이스에 대해 이야기할 때 이미 표 형식의 데이터를 다뤘습니다. 데이터가 많고 다양한 테이블이 연결된 경우 SQL을 사용하여 작업하는 것이 좋습니다. 그러나, 데이터 테이블을 가질 때 많은 경우들이 있으며, 우리는 분포, 값들 사이의 상관관계 등과 같이 데이터 자체에 대한 조금의 **이해**나 **통찰력**을 얻을 필요가 있습니다. 데이터 과학에서는 원본 데이터의 일부 변환을 수행한 후 시각화를 수행해야 하는 경우가 많습니다. 이 두 단계는 파이썬을 사용하면 쉽게 수행할 수 있습니다.
파이썬에는 표 형식의 데이터를 처리하는 데 도움이 되는 두 가지 가장 유용한 라이브러리가 있습니다:
* **[Pandas](https://pandas.pydata.org/)** 를 사용하면 관계형 테이블과 유사한 이른바 **데이터 프레임**을 조작할 수 있습니다. 명명된 컬럼을 가질 수 있으며 일반적으로 행,열 및 데이터 프레임에 대해 다양한 작업을 수행할 수 있습니다.
* **[Numpy](https://numpy.org/)** 는 **tensors(텐서)** 작업을 위한 라이브러리 입니다. (예: 다차원 **배열**). 배열은 동일한 기본 유형의 값을 가지며 데이터 프레임보다 간단하지만, 더 많은 수학적 연산을 제공하고 오버헤드를 덜 발생시킵니다.
**시리즈(Series)** 은 리스트 또는 numpy 배열과 유사한 일련의 값들입니다. 주요 차이점은 시리즈에도 **색인**이 있고 시리즈에 대해 작업할 때(예: 추가) 인덱스가 고려된다는 것입니다. 인덱스는 정수 행 번호만큼 단순할 수도 있고(목록 또는 배열에서 시리즈를 생성할 때 기본적으로 사용되는 인덱스) 날짜 간격과 같은 복잡한 구조를 가질 수도 있습니다.
> **주의** 지금까지 우리는 `total_control+control_control_control` 이라는 간단한 구문을 사용하지 않고 있습니다. 그랬다면 결과 시리즈에서 많은 `NaN` (*숫자가 아님*) 값을 받았을 것입니다. 이는 `additional_items` 시리즈의 일부 인덱스 포인트에 누락된 값이 있고 항목에 `Nan`을 추가하면 `NaN`이 되기 때문입니다. 따라서 추가하는 동안 'fill_value' 매개변수를 지정해야 합니다.
**특정 컬럼 선택(Column selection)**. `df['A']`를 작성하여 개별 열을 선택할 수 있습니다. 이 작업은 시리즈를 반환합니다. 또한 `df[['B','A']]`를 작성하여 열의 하위 집합을 다른 DataFrame으로 선택할 수 있습니다. 그러면 다른 DataFrame이 반환됩니다.
> **주의**: 필터링이 작동하는 방식은 다음과 같습니다. 표현식 `df['A']<5`는 원래 시리즈 `df['A']`의 각 요소에 대해 표현식이 `True`인지 아니면 `False`인지를 나타내는 `부울(Boolean)` 시리즈를 반환합니다. 부울 계열이 인덱스로 사용되면 DataFrame에서 행의 하위 집합을 반환합니다. 따라서 임의의 Python 부울 표현식을 사용할 수 없습니다. 예를 들어 `df[df['A']>5 및 df['A']<7]`를 작성하는 것은 잘못된 것입니다. 대신, 부울 계열에 특수 `&` 연산을 사용하여 `df[(df['A']>5) & (df['A']<7)]`로 작성해야 합니다(*여기서 대괄호가 중요합니다*).
**그룹화(Grouping)** 는 종종 Excel의 *피벗 테이블*과 유사한 결과를 얻는 데 사용됩니다. 주어진 `LenB` 수에 대해 `A` 열의 평균 값을 계산하려고 한다고 가정합니다. 그런 다음 `LenB`로 DataFrame을 그룹화하고 `mean`을 호출할 수 있습니다:
우리는 Python 객체에서 시리즈 및 DataFrame을 구성하는 것이 얼마나 쉬운지 보았습니다. 그러나 데이터는 일반적으로 텍스트 파일 또는 Excel 표의 형태로 제공됩니다. 운 좋게도 Pandas는 디스크에서 데이터를 로드하는 간단한 방법을 제공합니다. 예를 들어 CSV 파일을 읽는 것은 다음과 같이 간단합니다:
데이터 과학자는 종종 데이터를 탐색해야 하므로 시각화할 수 있는 것이 중요합니다. DataFrame이 클 때 처음 몇 행을 인쇄하여 모든 작업을 올바르게 수행하고 있는지 확인하려는 경우가 많습니다. 이것은 `df.head()`를 호출하여 수행할 수 있습니다. Jupyter Notebook에서 실행하는 경우 DataFrame을 멋진 표 형식으로 인쇄합니다.
또한 일부 열을 시각화하기 위해 'plot' 함수를 사용하는 것을 보았습니다. `plot`은 많은 작업에 매우 유용하고 `kind=` 매개변수를 통해 다양한 그래프 유형을 지원하지만, 항상 원시 `matplotlib` 라이브러리를 사용하여 더 복잡한 것을 그릴 수 있습니다. 데이터 시각화는 별도의 강의에서 자세히 다룰 것입니다.
우리가 초점을 맞출 첫 번째 문제는 COVID-19의 전염병 확산 모델링입니다. 이를 위해 [존 홉킨스 대학](https://jhu.edu/)의 [시스템 과학 및 엔지니어링 센터](https://systems.jhu.edu/)(CSSE)에서 제공하는 여러 국가의 감염자 수 데이터를 사용합니다. 이 [GitHub 레포지토리](https://github.com/CSSEGISandData/COVID-19)에서 데이터 세트를 사용할 수 있습니다.
이 도전과제에서 우리는 COVID 팬데믹이라는 주제를 계속해서 다룰 것이며 해당 주제에 대한 과학 논문을 처리하는 데 집중할 것입니다. 메타데이터 및 초록과 함께 사용할 수 있는 COVID에 대한 7000개 이상의(작성 당시) 논문이 포함된 [CORD-19 데이터 세트](https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge)가 있습니다(이 중 약 절반에 대해 전체 텍스트도 제공됨).
[건강 인지 서비스를 위한 텍스트 분석](https://docs.microsoft.com/azure/cognitive-services/text-analytics/how-tos/text-analytics-for-health/?WT.mc_id=academic-31812-dmitryso)를 사용하여 이 데이터 세트를 분석하는 전체 예는 이 블로그 게시물에 설명되어 있습니다. 우리는 이 분석의 단순화된 버전에 대해 논의할 것입니다.
> **주의**: 우리는 더이상 데이터 세트의 복사본을 이 리포지토리의 일부로 제공하지 않습니다. 먼저 [Kaggle의 데이터세트](https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge)에서 [`metadata.csv`](https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge?select=metadata.csv) 파일을 다운로드해야 할 수도 있습니다. Kaggle에 가입해야 할 수 있습니다. [여기](https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/historical_releases.html)에서 등록 없이 데이터 세트를 다운로드할 수도 있지만 여기에는 메타데이터 파일 외에 모든 전체 텍스트가 포함됩니다.
* **이미지 분류(Image Classification)** 는 이미지를 미리 정의된 클래스 중 하나로 분류하는 데 도움이 됩니다. [Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-31812-dmitryso)과 같은 서비스를 사용하여 자신의 이미지 분류기를 쉽게 훈련할 수 있습니다.
* **물체 검출** 은 이미지에서 다른 물체를 감지합니다. [컴퓨터 비전(Computer vision)](https://azure.microsoft.com/services/cognitive-services/computer-vision/?WT.mc_id=academic-31812-dmitryso)과 같은 서비스는 여러 일반 개체를 감지할 수 있으며 [커스텀 비전(Custom Vision)](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-31812-dmitryso) 모델을 훈련하여 관심 있는 특정 개체를 감지할 수 있습니다.
* **얼굴 인식** 은 연령, 성별 및 감정 감지를 포함합니다. 이것은 [Face API](https://azure.microsoft.com/services/cognitive-services/face/?WT.mc_id=academic-31812-dmitryso)를 통해 수행할 수 있습니다.
이러한 모든 클라우드 서비스는 [Python SDK](https://docs.microsoft.com/samples/azure-samples/cognitive-services-python-sdk-samples/cognitive-services-python-sdk-samples/?WT.mc_id=academic-31812-dmitryso)를 사용하여 호출할 수 있으므로, 데이터 탐색 워크플로에 쉽게 통합할 수 있습니다.
다음은 이미지 데이터 소스에서 데이터를 탐색하는 몇 가지 예입니다:
* 블로그 게시물 중 [코딩 없이 데이터 과학을 배우는 방법](https://soshnikov.com/azure/how-to-learn-data-science-without-coding/)에서 우리는 인스타그램 사진을 살펴보고 사람들이 사진에 더 많은 좋아요를 주는 이유를 이해하려고 합니다. 먼저 [컴퓨터 비전(Computer vision)](https://azure.microsoft.com/services/cognitive-services/computer-vision/?WT.mc_id=academic-31812-dmitryso)을 사용하여 사진에서 최대한 많은 정보를 추출한 다음 [Azure Machine Learning AutoML](https://docs.microsoft.com/azure/machine-learning/concept-automated-ml/?WT.mc_id=academic-31812-dmitryso)을 사용하여 해석 가능한 모델을 빌드합니다.
* [얼굴 연구 워크숍(Facial Studies Workshop)](https://github.com/CloudAdvocacy/FaceStudies)에서는 사람들을 행복하게 만드는 요소를 이해하고자, 이벤트에서 사진에 있는 사람들의 감정을 추출하기 위해 [Face API](https://azure.microsoft.com/services/cognitive-services/face/?WT.mc_id=academic-31812-dmitryso)를 사용합니다.
이미 정형 데이터이든 비정형 데이터이든 관계없이 Python을 사용하여 데이터 처리 및 이해와 관련된 모든 단계를 수행할 수 있습니다. 아마도 가장 유연한 데이터 처리 방법일 것이며, 이것이 대부분의 데이터 과학자들이 Python을 기본 도구로 사용하는 이유입니다. 데이터 과학 여정에 대해 진지하게 생각하고 있다면 Python을 깊이 있게 배우는 것이 좋습니다!
* [Wes McKinney. 데이터 분석을 위한 Python: Pandas, NumPy 및 IPython을 사용한 데이터 논쟁(Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython)](https://www.amazon.com/gp/product/1491957662)
* [거북이 그래픽과 도형으로 재미있는 방식으로 파이썬 배우기(Learn Python in a Fun Way with Turtle Graphics and Fractals)](https://github.com/shwars/pycourse)
* [파이썬으로 첫걸음(Take your First Steps with Python)](https://docs.microsoft.com/learn/paths/python-first-steps/?WT.mc_id=academic-31812-dmitryso): 관련 강의 [Microsoft 강의](http://learn.microsoft.com/?WT.mc_id=academic-31812-dmitryso)