{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[1. , 0.99717624],\n", " [0.99717624, 1. ]])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ss1 = pd.read_csv('sub_wifi_sensor_post.csv').sort_values(by='site_path_timestamp').reset_index(drop=True)\n", "ss2 = pd.read_csv('submission_ym.csv').sort_values(by='site_path_timestamp').reset_index(drop=True)\n", "np.corrcoef([ss1.x,ss2.x])\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "ss = ss1.copy()\n", "ss['x'] = ss1['x']*0.5+ss2['x']*0.5\n", "ss['y'] = ss1['y']*0.5+ss2['y']*0.5" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "ss.to_csv('final.csv',index=False)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 4 }