#coding=utf-8 """ Author: Aigege Code: https://github.com/AiIsBetter """ # date 2021.08.01 import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import KFold import lightgbm as lgb from utils import reduce_mem_usage,reduce_mem_usage_parallel,lgb_score_mape,MAPE import gc import warnings import os,random,pickle import optuna warnings.filterwarnings("ignore") def slice_id_change(x): hour = x * 5 / 60 hour = np.floor(hour) hour += 8 if hour >= 24: hour = hour - 24 return hour def optuna_print(tr_x, tr_y, te_x,te_y): def objective(trial,tr_x, tr_y, te_x,te_y): dtrain = lgb.Dataset(tr_x, label=tr_y) dvalid = lgb.Dataset(te_x, label=te_y) param = { "objective": "regression", "metric": "mape", "verbosity": -1, "boosting_type": "gbdt", 'min_split_gain': 0, 'random_state':2021, 'max_bin':trial.suggest_int('max_bin',63,250), 'subsample_for_bin': trial.suggest_int('subsample_for_bin', 40000, 300000), "lambda_l1": trial.suggest_loguniform("lambda_l1", 1e-8, 10.0), "lambda_l2": trial.suggest_loguniform("lambda_l2", 1e-8, 10.0), "num_leaves": trial.suggest_int("num_leaves", 2, 256), "feature_fraction": trial.suggest_uniform("feature_fraction", 0.4, 1.0), "bagging_fraction": trial.suggest_uniform("bagging_fraction", 0.4, 1.0), "bagging_freq": trial.suggest_int("bagging_freq", 1, 7), "min_child_samples": trial.suggest_int("min_child_samples", 5, 100), } # Add a callback for pruning. pruning_callback = optuna.integration.LightGBMPruningCallback(trial, "mape") gbm = lgb.train( param, dtrain, valid_sets=[dvalid], verbose_eval=False, callbacks=[pruning_callback] ) preds = gbm.predict(te_x) pred_labels = np.rint(preds) mape = MAPE(te_y, pred_labels) return mape study = optuna.create_study( pruner=optuna.pruners.MedianPruner(n_warmup_steps=10), direction="minimize" ) study.optimize(lambda trial: objective(trial, tr_x, tr_y, te_x, te_y), n_trials=100) print("Number of finished trials: {}".format(len(study.trials))) print("Best trial:") trial = study.best_trial print(" Value: {}".format(trial.value)) print(" Params: ") for key, value in trial.params.items(): print(" {}: {}".format(key, value)) head_columns = ['order_id', 'ata', 'distance', 'simple_eta', 'driver_id','slice_id'] result = [] result_time_weight = [] result_dis_weight = [] count = 0 df = [] nrows=None root_path = '../data/giscup_2021/' data_list = ['20200818', '20200819', '20200820', '20200821', '20200822', '20200823', '20200824', '20200825', '20200826', '20200827', '20200828', '20200829', '20200830', '20200831'] for name in os.listdir(root_path+'train/'): data_time = name.split('.')[0] if data_time not in data_list: continue train = pd.read_csv(root_path+'train/{}'.format(name),sep= ';;',header=None,nrows=nrows) feature_cross = pd.read_csv(root_path+'feature/train/cross_fea_order_id_level_{}.csv'.format(data_time),nrows=nrows) feature_link = pd.read_csv(root_path+'feature/train/link_fea_order_id_level_{}.csv'.format(data_time),nrows=nrows) feature_head = pd.read_csv(root_path+'feature/train/head_link_{}.csv'.format(data_time),nrows=nrows) feature_sqe = pd.read_csv(root_path + 'feature/train/{}.csv'.format(data_time),nrows=nrows) feature_cross['order_id'] = feature_cross['order_id'].astype(str) feature_link['order_id'] = feature_link['order_id'].astype(str) feature_head['order_id'] = feature_head['order_id'].astype(str) feature_sqe['order_id'] = feature_sqe['order_id'].astype(str) print("开始处理", data_time) # train.columns = ['head','link','cross'] # train['head'] = train['head'].apply(lambda x:x.split(' ')) train_head = pd.DataFrame(train[0].str.split(' ').tolist(),columns = ['order_id', 'ata', 'distance','simple_eta', 'driver_id', 'slice_id']) train_head['order_id'] = train_head['order_id'].astype(str) train_head['ata'] = train_head['ata'].astype(float) train_head['distance'] = train_head['distance'].astype(float) train_head['simple_eta'] = train_head['simple_eta'].astype(float) train_head['driver_id'] = train_head['driver_id'].astype(int) train_head['slice_id'] = train_head['slice_id'].astype(int) train_head['date_time'] = int(data_time) train_head = train_head.merge(feature_cross,on='order_id',how='left') train_head = train_head.merge(feature_link,on='order_id',how='left') feature_head = feature_head.drop(['ata', 'distance', 'simple_eta', 'driver_id', 'slice_id', 'index', 'date_time', 'link_count', 'link_time_sum', 'link_ratio_sum', 'date_time_dt', 'weekday', 'hour', 'weather', 'hightemp', 'lowtemp', 'len_tmp', 'link_time_mean', 'link_time_std'], axis=1) feature_sqe = feature_sqe.drop(['pre_arrival_status', 'arrive_slice_id', 'slice_id'], axis=1) train_head = train_head.merge(feature_sqe, on='order_id', how='left') train_head = train_head.merge(feature_head, on='order_id', how='left') print('merge finish!') train_head = reduce_mem_usage_parallel(train_head,28) df.append(train_head.drop('order_id',axis=1)) del train gc.collect() count +=1 df = pd.concat(df,axis=0) test = pd.read_csv(root_path+'20200901_test.txt',sep= ';;',header=None,nrows=nrows) test_head = pd.DataFrame(test[0].str.split(' ').tolist(),columns = ['order_id', 'ata', 'distance','simple_eta', 'driver_id', 'slice_id']) test_head['order_id'] = test_head['order_id'].astype(str) test_head['ata'] = test_head['ata'].astype(float) test_head['distance'] = test_head['distance'].astype(float) test_head['simple_eta'] = test_head['simple_eta'].astype(float) test_head['driver_id'] = test_head['driver_id'].astype(int) test_head['slice_id'] = test_head['slice_id'].astype(int) feature_cross = pd.read_csv(root_path + 'feature/test/cross_fea_order_id_level_{}.csv'.format('20200901'),nrows=nrows) feature_link = pd.read_csv(root_path + 'feature/test/link_fea_order_id_level_{}.csv'.format('20200901'), nrows=nrows) feature_head = pd.read_csv(root_path + 'feature/test/head_link_{}.csv'.format('20200901'),nrows=nrows) feature_sqe = pd.read_csv(root_path + 'feature/test/{}.csv'.format('20200901'),nrows=nrows) test_head['date_time'] = 20200901 feature_cross['order_id'] = feature_cross['order_id'].astype(str) feature_link['order_id'] = feature_link['order_id'].astype(str) feature_head['order_id'] = feature_head['order_id'].astype(str) feature_sqe['order_id'] = feature_sqe['order_id'].astype(str) test_head = test_head.merge(feature_cross, on='order_id', how='left') test_head = test_head.merge(feature_link,on='order_id',how='left') feature_head = feature_head.drop(['ata', 'distance', 'simple_eta', 'driver_id', 'slice_id', 'index', 'date_time', 'link_count', 'link_time_sum', 'link_ratio_sum', 'date_time_dt', 'weekday', 'hour', 'weather', 'hightemp', 'lowtemp', 'len_tmp', 'link_time_mean', 'link_time_std'], axis=1) feature_sqe = feature_sqe.drop(['pre_arrival_status', 'arrive_slice_id', 'slice_id'], axis=1) test_head = test_head.merge(feature_sqe, on='order_id', how='left') test_head = test_head.merge(feature_head, on='order_id', how='left') test_head = reduce_mem_usage_parallel(test_head,28) del feature_cross,feature_link gc.collect() X_train = df.drop('ata',axis=1) y_train = df['ata'] X_test = test_head.drop(['order_id','ata'],axis=1) #调参 #tr_x, te_x,tr_y,te_y = train_test_split(X_train,y_train,test_size=0.2,random_state=2021) #optuna_print(tr_x, tr_y, te_x,te_y) #del tr_x, te_x,tr_y,te_y #gc.collect() folds = 5 skf = KFold(n_splits=folds, shuffle=True, random_state=2021) train_mean = np.zeros(shape=[1,folds]) test_predict = np.zeros(shape=[X_test.shape[0], folds],dtype=float) k_fold_mape = [] feature_importance_df = pd.DataFrame() # Display/plot feature importance def display_importances(feature_importance_df_): feature_importance_df_.to_csv('feature_importances.csv',index=False) cols = feature_importance_df_[["feature", "importance"]].groupby("feature").mean().sort_values(by="importance", ascending=False)[:100].index best_features = feature_importance_df_.loc[feature_importance_df_.feature.isin(cols)] best_features = best_features.groupby('feature',as_index = False)['importance'].mean() best_features = best_features.sort_values(by = 'importance',ascending=False) plt.figure(figsize=(8, 10)) sns.barplot(x="importance", y="feature", data=best_features.sort_values(by="importance", ascending=False)) plt.title('LightGBM Features (avg over folds)') plt.tight_layout() plt.savefig('feature_importances.jpg') # plt.show() #use single model feature importance as best_feature_importances feature_importance_df_ = pd.read_csv('best_feature_importances.csv') cols = feature_importance_df_[["feature", "importance"]].groupby("feature").mean().sort_values(by="importance", ascending=False).index best_features = feature_importance_df_.loc[feature_importance_df_.feature.isin(cols)] best_features = best_features.groupby('feature',as_index = False)['importance'].mean() best_features = best_features.sort_values(by = 'importance',ascending=False) data=best_features.sort_values(by="importance", ascending=False) feature_select = list(data['feature'].values) feature_cols = feature_select random_seed = list(range(2021)) max_depth = [4,4,4,4,5,5,5,5,6,6,6,6,7,7,7] lambd1 = np.arange(0, 1, 0.0001) lambd2 = np.arange(0, 1, 0.0001) bagging_fraction = [i / 1000.0 for i in range(700, 800)] feature_fraction = [i / 1000.0 for i in range(700, 800)] min_child_weight = [i / 100.0 for i in range(150, 250)] n_feature = [i / 100.0 for i in range(1, 32,2)] max_bin = list(range(130, 240)) subsample_for_bin = list(range(50000, 220000,10000)) bagging_freq = [1,2,3,4,5,6,7,8,9,10,1,2,3,4,5] num_leaves = list(range(130, 250)) random.shuffle(random_seed) random.shuffle(max_depth) random.shuffle(lambd1) random.shuffle(lambd2) random.shuffle(bagging_fraction) random.shuffle(feature_fraction) random.shuffle(min_child_weight) random.shuffle(max_bin) random.shuffle(subsample_for_bin) random.shuffle(bagging_freq) random.shuffle(num_leaves) random.shuffle(n_feature) with open('params.pkl', 'wb') as f: pickle.dump((random_seed, max_depth, lambd1,lambd2, bagging_fraction, feature_fraction, min_child_weight, max_bin,subsample_for_bin,bagging_freq,num_leaves,n_feature), f) for iter in range(15): print('max_depth:',max_depth[iter],'random_seed:',random_seed[iter],'feature_fraction:',feature_fraction[iter], 'bagging_fraction:',bagging_fraction[iter],'min_child_weight:',min_child_weight[iter], 'lambd1:',lambd1[iter],'lambd2:',lambd2[iter],'max_bin:',max_bin[iter],'num_leaves:',num_leaves[iter] ,'subsample_for_bin:',subsample_for_bin[iter],'bagging_freq:',bagging_freq[iter],'n_feature:',n_feature[iter]) nround = 5000 for iter in range(15): if max_depth[iter]==4: nround = 10000 elif max_depth[iter]==5: nround = 8000 elif max_depth[iter]==6: nround = 6000 elif max_depth[iter] == 7: nround = 5000 X_train_r = X_train[feature_cols[:int(len(feature_cols)*0.7)]+ feature_cols[int(len(feature_cols)*0.7):int(len(feature_cols)*0.7)+int(len(feature_cols)*n_feature[iter])]] X_test_r = X_test[feature_cols[:int(len(feature_cols) * 0.7)] + feature_cols[int(len(feature_cols) * 0.7):int(len(feature_cols) * 0.7) + int( len(feature_cols) * n_feature[iter])]] scores = 0 threshold = 0 print('start training......') print('训练集维度:',X_train_r.shape) print('测试集维度:',X_test_r.shape) for i, (trn_idx, val_idx) in enumerate(skf.split(X_train_r, y_train)): clf = lgb.LGBMRegressor( boosting_type='gbdt', objective='regression', n_estimators=nround, learning_rate=0.08, num_leaves=num_leaves[iter], max_bin=max_bin[iter], max_depth=max_depth[iter], random_state=random_seed[iter], subsample_for_bin=subsample_for_bin[iter], feature_fraction=feature_fraction[iter], bagging_fraction=bagging_fraction[iter], bagging_freq=bagging_freq[iter], min_child_weight=min_child_weight[iter], lambda_l1=lambd1[iter], lambda_l2=lambd2[iter], metric=None, n_jobs=30, device='gpu' ) clf.fit(X_train_r.iloc[trn_idx], y_train.iloc[trn_idx], eval_set=[(X_train_r.iloc[trn_idx], y_train.iloc[trn_idx]), (X_train_r.iloc[val_idx], y_train.iloc[val_idx])],eval_metric='mape',verbose=100, early_stopping_rounds=200) print('predicting') val_predict = clf.predict(X_train_r.iloc[val_idx], num_iteration=clf.best_iteration_) test_predict[:,i] = clf.predict(X_test_r, num_iteration=clf.best_iteration_) k_fold_mape.append(MAPE(y_train.iloc[val_idx],val_predict)) print("kfold_{}_mape_score:{} ".format(i, k_fold_mape[i])) print('Train set kfold {} mean mape:'.format(i), np.mean(k_fold_mape)) #display_importances(feature_importance_df) test_head['result'] = np.mean(test_predict,axis=1) test_head['id'] = test_head['order_id'] test_head[['id','result']].to_csv('random_result/submission_{}.csv'.format(iter),index=False) del X_train_r,X_test_r gc.collect() #merge count = 0 result = 1 for name in os.listdir('random_result/'): tmp = pd.read_csv('random_result/'+name) if count == 0: result = tmp[['id']] tmp = tmp.rename(columns={'result':'result{}'.format(count)}) result = result.merge(tmp,on='id',how='left') count += 1 result['result'] = result.drop('id',axis=1).sum(axis=1) result['result'] = result['result']/count result[['id','result']].to_csv('submission_merge.csv',index=False)