#coding=utf-8 """ Author: Aigege Code: https://github.com/AiIsBetter """ # date 2021.08.01 import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import KFold import lightgbm as lgb from utils import reduce_mem_usage,reduce_mem_usage_parallel import os import gc import warnings import time warnings.filterwarnings("ignore") def slice_id_change(x): hour = x * 5 / 60 hour = np.floor(hour) hour += 8 if hour >= 24: hour = hour - 24 return hour # 评估指标 def MAPE(true, pred): diff = np.abs(np.array(pred) - np.array(true)) return np.mean(diff / true) # 自定义lgb评估指标 def lgb_score_mape(train_data,preds): labels = train_data diff = np.abs(np.array(preds) - np.array(labels)) result = np.mean(diff / labels) return 'mape',result, False head_columns = ['order_id', 'ata', 'distance', 'simple_eta', 'driver_id','slice_id'] result = [] result_time_weight = [] result_dis_weight = [] count = 0 df = [] nrows=None root_path = '../data/giscup_2021/' data_list = ['20200818', '20200819', '20200820', '20200821', '20200822', '20200823', '20200824', '20200825', '20200826', '20200827', '20200828', '20200829', '20200830', '20200831'] #######################################本地验证####################################### for name in os.listdir(root_path+'train/'): data_time = name.split('.')[0] if data_time not in data_list: continue train = pd.read_csv(root_path+'train/{}'.format(name),sep= ';;',header=None,nrows=nrows) feature_cross = pd.read_csv(root_path+'feature/train/cross_fea_order_id_level_{}.csv'.format(data_time),nrows=nrows) feature_link = pd.read_csv(root_path+'feature/train/link_fea_order_id_level_{}.csv'.format(data_time),nrows=nrows) feature_head = pd.read_csv(root_path+'feature/train/head_link_{}.csv'.format(data_time),nrows=nrows) feature_sqe = pd.read_csv(root_path + 'feature/train/{}.csv'.format(data_time),nrows=nrows) feature_cross['order_id'] = feature_cross['order_id'].astype(str) feature_link['order_id'] = feature_link['order_id'].astype(str) feature_head['order_id'] = feature_head['order_id'].astype(str) feature_sqe['order_id'] = feature_sqe['order_id'].astype(str) print("开始处理", data_time) # train.columns = ['head','link','cross'] # train['head'] = train['head'].apply(lambda x:x.split(' ')) train_head = pd.DataFrame(train[0].str.split(' ').tolist(),columns = ['order_id', 'ata', 'distance','simple_eta', 'driver_id', 'slice_id']) train_head['order_id'] = train_head['order_id'].astype(str) train_head['ata'] = train_head['ata'].astype(float) train_head['distance'] = train_head['distance'].astype(float) train_head['simple_eta'] = train_head['simple_eta'].astype(float) train_head['driver_id'] = train_head['driver_id'].astype(int) train_head['slice_id'] = train_head['slice_id'].astype(int) train_head['date_time'] = int(data_time) train_head = train_head.merge(feature_cross,on='order_id',how='left') train_head = train_head.merge(feature_link,on='order_id',how='left') feature_head = feature_head.drop(['ata', 'distance', 'simple_eta', 'driver_id', 'slice_id', 'index', 'date_time', 'link_count', 'link_time_sum', 'link_ratio_sum', 'date_time_dt', 'weekday', 'hour', 'weather', 'hightemp', 'lowtemp', 'len_tmp', 'link_time_mean', 'link_time_std'], axis=1) feature_sqe = feature_sqe.drop(['pre_arrival_status', 'arrive_slice_id', 'slice_id'], axis=1) train_head = train_head.merge(feature_sqe, on='order_id', how='left') train_head = train_head.merge(feature_head, on='order_id', how='left') print('merge finish!') train_head = reduce_mem_usage_parallel(train_head,28) df.append(train_head.drop('order_id',axis=1)) del train gc.collect() count +=1 df = pd.concat(df,axis=0) test = pd.read_csv(root_path+'20200901_test.txt',sep= ';;',header=None,nrows=nrows) test_head = pd.DataFrame(test[0].str.split(' ').tolist(),columns = ['order_id', 'ata', 'distance','simple_eta', 'driver_id', 'slice_id']) test_head['order_id'] = test_head['order_id'].astype(str) test_head['ata'] = test_head['ata'].astype(float) test_head['distance'] = test_head['distance'].astype(float) test_head['simple_eta'] = test_head['simple_eta'].astype(float) test_head['driver_id'] = test_head['driver_id'].astype(int) test_head['slice_id'] = test_head['slice_id'].astype(int) feature_cross = pd.read_csv(root_path + 'feature/test/cross_fea_order_id_level_{}.csv'.format('20200901'),nrows=nrows) feature_link = pd.read_csv(root_path + 'feature/test/link_fea_order_id_level_{}.csv'.format('20200901'), nrows=nrows) feature_head = pd.read_csv(root_path + 'feature/test/head_link_{}.csv'.format('20200901'),nrows=nrows) feature_sqe = pd.read_csv(root_path + 'feature/test/{}.csv'.format('20200901'),nrows=nrows) test_head['date_time'] = 20200901 feature_cross['order_id'] = feature_cross['order_id'].astype(str) feature_link['order_id'] = feature_link['order_id'].astype(str) feature_head['order_id'] = feature_head['order_id'].astype(str) feature_sqe['order_id'] = feature_sqe['order_id'].astype(str) test_head = test_head.merge(feature_cross, on='order_id', how='left') test_head = test_head.merge(feature_link,on='order_id',how='left') feature_head = feature_head.drop(['ata', 'distance', 'simple_eta', 'driver_id', 'slice_id', 'index', 'date_time', 'link_count', 'link_time_sum', 'link_ratio_sum', 'date_time_dt', 'weekday', 'hour', 'weather', 'hightemp', 'lowtemp', 'len_tmp', 'link_time_mean', 'link_time_std'], axis=1) feature_sqe = feature_sqe.drop(['pre_arrival_status', 'arrive_slice_id', 'slice_id'], axis=1) test_head = test_head.merge(feature_sqe, on='order_id', how='left') test_head = test_head.merge(feature_head, on='order_id', how='left') test_head = reduce_mem_usage_parallel(test_head,28) del feature_cross,feature_link gc.collect() X_train = df.drop('ata',axis=1) y_train = df['ata'] X_test = test_head.drop(['order_id','ata'],axis=1) folds = 5 skf = KFold(n_splits=folds, shuffle=True, random_state=2021) train_mean = np.zeros(shape=[1,folds]) test_predict = np.zeros(shape=[X_test.shape[0], folds],dtype=float) k_fold_mape = [] feature_importance_df = pd.DataFrame() # Display/plot feature importance def display_importances(feature_importance_df_): feature_importance_df_.to_csv('feature_importances.csv',index=False) cols = feature_importance_df_[["feature", "importance"]].groupby("feature").mean().sort_values(by="importance", ascending=False)[:100].index best_features = feature_importance_df_.loc[feature_importance_df_.feature.isin(cols)] best_features = best_features.groupby('feature',as_index = False)['importance'].mean() best_features = best_features.sort_values(by = 'importance',ascending=False) plt.figure(figsize=(8, 10)) sns.barplot(x="importance", y="feature", data=best_features.sort_values(by="importance", ascending=False)) plt.title('LightGBM Features (avg over folds)') plt.tight_layout() plt.savefig('feature_importances.jpg') # plt.show() scores = 0 threshold = 0 print('start training......') print('训练集维度:',X_train.shape) print('测试集维度:',X_test.shape) for i, (trn_idx, val_idx) in enumerate(skf.split(X_train, y_train)): clf = lgb.LGBMRegressor( boosting_type='gbdt', objective='regression', n_estimators=10000, learning_rate=0.1, num_leaves=170, max_bin=63, max_depth=-1, random_state = 2021, subsample_for_bin=200000, feature_fraction=0.84, bagging_fraction=0.86, bagging_freq=7, min_child_samples=89, lambda_l1=0.006237830242067111, lambda_l2=2.016472023736186e-05, metric=None, n_jobs = 30, # device='gpu' ) clf.fit(X_train.iloc[trn_idx], y_train.iloc[trn_idx], eval_set=[(X_train.iloc[trn_idx], y_train.iloc[trn_idx]) , (X_train.iloc[val_idx], y_train.iloc[val_idx])], eval_metric=lambda y_true, y_pred:[lgb_score_mape(y_true, y_pred)], verbose=100, early_stopping_rounds=100) fold_importance_df = pd.DataFrame() fold_importance_df["feature"] = X_train.columns fold_importance_df["importance"] = clf.feature_importances_ fold_importance_df["fold"] = i + 1 feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0) print('predicting') val_predict = clf.predict(X_train.iloc[val_idx], num_iteration=clf.best_iteration_) test_predict[:,i] = clf.predict(X_test, num_iteration=clf.best_iteration_) k_fold_mape.append(MAPE(y_train.iloc[val_idx],val_predict)) print("kfold_{}_mape_score:{} ".format(i, k_fold_mape[i])) print('Train set kfold {} mean mape:'.format(i), np.mean(k_fold_mape)) display_importances(feature_importance_df) test_head['result'] = np.mean(test_predict,axis=1) test_head['id'] = test_head['order_id'] test_head[['id','result']].to_csv('submission.csv',index=False)