diff --git a/机器学习竞赛实战_优胜解决方案/快手短视频用户活跃度分析/.ipynb_checkpoints/快手用户活跃预测-checkpoint.ipynb b/机器学习竞赛实战_优胜解决方案/快手短视频用户活跃度分析/.ipynb_checkpoints/快手用户活跃预测-checkpoint.ipynb index f665094..e420f6b 100644 --- a/机器学习竞赛实战_优胜解决方案/快手短视频用户活跃度分析/.ipynb_checkpoints/快手用户活跃预测-checkpoint.ipynb +++ b/机器学习竞赛实战_优胜解决方案/快手短视频用户活跃度分析/.ipynb_checkpoints/快手用户活跃预测-checkpoint.ipynb @@ -49225,6 +49225,8 @@ } ], "source": [ + "# tf.get_variable创建新的tensorflow变量\n", + "# tf.placeholder在神经网络构建graph的时候在模型中的占位,此时没有把数据传入模型,只会分配必要的内存。运行模型的时候通过feed_dict()函数向占位符喂入数据。\n", "n_features = 12\n", "n_hu = 8\n", "with tf.variable_scope('train'): # tf.variable_scope用来指定变量的作用域\n", @@ -49233,7 +49235,7 @@ " lr = tf.placeholder(tf.float32, [], name='learning_rate') # 定义学习率\n", " \n", " # 隐藏层到输出层的参数W, b,n_hu隐藏单元的个数\n", - " W_out = tf.get_variable('W_out', [n_hu, 1]) \n", + " W_out = tf.get_variable('W_out', [n_hu, 1])\n", " b_out = tf.get_variable('b_out', [1])\n", " \n", " # x(batch_size, seq_length, n_features)\n",