diff --git a/notebook_必备数学基础/方差分析/.ipynb_checkpoints/Python方差分析实例-checkpoint.ipynb b/notebook_必备数学基础/方差分析/.ipynb_checkpoints/Python方差分析实例-checkpoint.ipynb
new file mode 100644
index 0000000..2fd6442
--- /dev/null
+++ b/notebook_必备数学基础/方差分析/.ipynb_checkpoints/Python方差分析实例-checkpoint.ipynb
@@ -0,0 +1,6 @@
+{
+ "cells": [],
+ "metadata": {},
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebook_必备数学基础/方差分析/.ipynb_checkpoints/方差分析-checkpoint.ipynb b/notebook_必备数学基础/方差分析/.ipynb_checkpoints/方差分析-checkpoint.ipynb
index c5b0a17..28bddff 100644
--- a/notebook_必备数学基础/方差分析/.ipynb_checkpoints/方差分析-checkpoint.ipynb
+++ b/notebook_必备数学基础/方差分析/.ipynb_checkpoints/方差分析-checkpoint.ipynb
@@ -250,11 +250,11 @@
"**实例:**\n",
"\n",
"在评价某药物耐受性及安全性的期临床试验中,对符合纳入标准的30名健康自愿者随机分为3组每组10名,各组注射剂量分别为0.5U、1U、2U,观察48小时部分凝血活酶时间(s)试问不同剂量的部分凝血活酶时间有无不同?\n",
- "20201122181401.png\n",
+ "\n",
"\n",
"提出假设:H0:μ1=μ2=μ3; H1:μ1,p2,μ3不全相同,显著水平a=0.05\n",
"\n",
- "20201122181607.png\n",
+ "\n",
"\n",
"F0.05(2,26)=2.52, F>F0.05(2,26), P<0.05\n",
"拒绝H0。三种不同剂量48小时部分凝血活酶时间不全相同。\n",
@@ -268,8 +268,137 @@
"\n",
"**LSD方法**\n",
"\n",
- "对k组中的两组的平均数进行比较,当两组样本容量分别为ni,nj都为时,有\n"
+ "对k组中的两组的平均数进行比较,当两组样本容量分别为ni,nj都为时,有\n",
+ "\n",
+ "\n",
+ "\n",
+ "则认为μ1与μ2有显著差异,\n",
+ "否则认为它们之间没有显著差异\n",
+ "\n",
+ "**实例:颜色对销售额的影响**\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "依据上面结果可得出影响效果\n",
+ "\n"
]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 多因素方差分析\n",
+ "
\n",
+ " - 无交互效应的多因素方差分析\n",
+ "
- 有交互效应的多因素方差分析\n",
+ "
\n",
+ "\n",
+ "**主效应与交互效应**\n",
+ "\n",
+ " - 主效应( main effect):各个因素对观测变量的单独影响称为主效应\n",
+ "
- 交互效应( interaction effect):各个因素不同水平的搭配所产生的新的影响称为交互效应\n",
+ "
\n",
+ "\n",
+ "**双因素方差分析的类型**\n",
+ "\n",
+ " - 双因素方差分析中因素A和B对结果的影响相互独立时称为无交互效应的双因素方差分析\n",
+ "
- 如果除了A和B对结果的单独影响外还存在交互效应,这时的双因素方差分析称为有交互效应的双因素方差分析\n",
+ "
\n",
+ "\n",
+ "**无交互效应的双因素方差分析模型**\n",
+ "\n",
+ "离差平方和的分解\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "**有交互效应的双因素方差分析模型**\n",
+ "\n",
+ "离差平方和的分解\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "**双因素方差分析的步骤**\n",
+ "\n",
+ "**提出假设**\n",
+ "\n",
+ "要说明因素A有无显著影响,就是检验如下假设:\n",
+ "\n",
+ " Ho:因素A不同水平下观测变量的总体均值无显著差异。\n",
+ "\n",
+ " H1:因素A不同水平下观测变量的总体均值存在显著差异。\n",
+ "\n",
+ "要说明因素B有无显著影响,就是检验如下假设\n",
+ " Ho:因素B不同水平下观测变量的总体均值无显著差异\n",
+ " \n",
+ " H1:因素B不同水平下观测变量的总体均值存在显著差异。\n",
+ "\n",
+ "在有交互效应的双因素方差中,要说明两个因素的交互效应是否显著,还要检验第三组零假设和备择假设\n",
+ "\n",
+ " Ho:因素A和因素B的交互效应对观测变量的总体均值无显著差异。\n",
+ " \n",
+ " H1:因素A和因素B的交互效应对观测变量的总体均值存在显著差异。\n",
+ "\n",
+ "**构造统计量**\n",
+ "\n",
+ "在原假设成立的情况下,三个统计量分别服从自由度为(r-1,rs(m-1))、(s-1,rs(m-1))、(r-1)(s-1)rs(m-1)的F分布\n",
+ "\n",
+ "\n",
+ "利用原假设和样本数据分别计算3个F统计量的值和其对应的p值对比p值和α,结合原假设作出推断。若p\n",
+ "\n",
+ "提出假设对行因素提出的假设为:\n",
+ "\n",
+ " HO: μ1=μ2=...=μi=...=μk(μi为第个水平的均值)H1:μi(i=1,2,…,k)不全相等\n",
+ "\n",
+ "对列因素提出的假设为:\n",
+ "\n",
+ " HO: H1=μ1=μ2=...=μj=...=μr(mj为第j个水平的均值)H1:μj(j=1,2,...,r)不全相等\n",
+ " \n",
+ "**计算各平方和**\n",
+ "\n",
+ "\n",
+ "**计算均方**\n",
+ "\n",
+ "误差平方和除以相应的自由度\n",
+ "\n",
+ " - 总离差平方和SST的自由度为kr-1\n",
+ "
- 行因素的离差平方和SSR的自由度为k-1\n",
+ "
- 列因素的离差平方和SSc的自由度为r-1\n",
+ "
- 随机误差平方和SSE的自由度为(k-1)x(-1)\n",
+ "
\n",
+ "\n",
+ "**计算检验统计量(F)**\n",
+ "\n",
+ "计算检验统计量(F)\n",
+ "\n",
+ "\n",
+ "检验列因素的统计量\n",
+ "\n",
+ "\n",
+ "\n",
+ "FA=18.10777>Fα=34903,拒绝原假设H0,说明彩电的品牌对销售量有显著影响\n",
+ "\n",
+ "FB=2.100846\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " E | \n",
+ " I | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 5 | \n",
+ " 5 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 5 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 5 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 5 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ ""
+ ],
+ "text/plain": [
+ " E I S\n",
+ "0 5 5 5\n",
+ "1 5 4 5\n",
+ "2 5 3 4\n",
+ "3 5 2 3\n",
+ "4 5 1 2"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# 呷哺呷哺2因素:环境等级,食材等级\n",
+ "from scipy import stats\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "from statsmodels.formula.api import ols\n",
+ "from statsmodels.stats.anova import anova_lm\n",
+ "\n",
+ "\n",
+ "environmental = [5,5,5,5,5,4,4,4,4,4,3,3,3,3,3,2,2,2,2,2,1,1,1,1,1]\n",
+ "ingredients = [5,4,3,2,1,5,4,3,2,1,5,4,3,2,1,5,4,3,2,1,5,4,3,2,1]\n",
+ "score = [5,5,4,3,2,5,4,4,3,2,4,4,3,3,2,4,3,2,2,2,3,3,3,2,1]\n",
+ "\n",
+ "data = {'E':environmental, 'I':ingredients, 'S':score}\n",
+ "df = pd.DataFrame(data)\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "符号意义:\n",
+ "\n",
+ "(~)隔离因变量和自变量(左边因变量,右边自变量)\n",
+ "
(+)分隔各个自变量\n",
+ "
(:)表示两个自变量交互影响"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " df sum_sq mean_sq F PR(>F)\n",
+ "E 1.0 7.22 7.220000 54.539568 2.896351e-07\n",
+ "I 1.0 18.00 18.000000 135.971223 1.233581e-10\n",
+ "E:I 1.0 0.64 0.640000 4.834532 3.924030e-02\n",
+ "Residual 21.0 2.78 0.132381 NaN NaN\n"
+ ]
+ }
+ ],
+ "source": [
+ "formula = 'S~E+I+E:I' #指定公式\n",
+ "\n",
+ "model = ols(formula, df).fit()\n",
+ "results = anova_lm(model)\n",
+ "print(results)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "P值很小,拒绝原假设,F值越大。\n",
+ "\n",
+ "表示该因素对结果影响越大,分别是E和I\n",
+ "\n",
+ "E:I行的P值表示交互情况,小于0.05,之间并无交互"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/notebook_必备数学基础/方差分析/方差分析.ipynb b/notebook_必备数学基础/方差分析/方差分析.ipynb
index b47f575..28bddff 100644
--- a/notebook_必备数学基础/方差分析/方差分析.ipynb
+++ b/notebook_必备数学基础/方差分析/方差分析.ipynb
@@ -382,13 +382,14 @@
"**计算检验统计量(F)**\n",
"\n",
"计算检验统计量(F)\n",
- "\n",
+ "\n",
"\n",
"检验列因素的统计量\n",
"\n",
- "\n",
+ "\n",
"\n",
"FA=18.10777>Fα=34903,拒绝原假设H0,说明彩电的品牌对销售量有显著影响\n",
+ "\n",
"FB=2.100846