diff --git a/assets/image-20240424171227926.png b/assets/image-20240424171227926.png new file mode 100644 index 0000000..b99b316 Binary files /dev/null and b/assets/image-20240424171227926.png differ diff --git a/人人都能看懂的Transformer/第一章——Transformer网络架构.md b/人人都能看懂的Transformer/第一章——Transformer网络架构.md index d9984b9..0305c8b 100644 --- a/人人都能看懂的Transformer/第一章——Transformer网络架构.md +++ b/人人都能看懂的Transformer/第一章——Transformer网络架构.md @@ -98,7 +98,7 @@ 将语义关系学习里输出的矩阵,加上残差(输入语义关系学习)前的向量,再进行值的统一缩放,大部分情况下是缩放到[-1,1]区间。 -数值缩放 +![数值缩放](../assets/image-20240424171227926.png) Add & Norm的过程可以理解为相同位置元素相加,再做层归一化(Layer Normalization),即如果残差连接的A矩阵是3维的,多头注意力输出的B矩阵也会是3维的,而且两者一定是同Size,即A矩阵是(None, 4, 768),B矩阵肯定也是(None, 4, 768),两者同位置的如`A[i][j][k]=0.1`,`B[i][j][k]=0.2`,则相加是0.3,再去进行归一化。层归一化后面我们会详解。