diff --git a/深度学习入门/assets/1609473546489.png b/深度学习入门/assets/1609473546489.png new file mode 100644 index 0000000..d35eb28 Binary files /dev/null and b/深度学习入门/assets/1609473546489.png differ diff --git a/深度学习入门/assets/1609473880971.png b/深度学习入门/assets/1609473880971.png new file mode 100644 index 0000000..15685a4 Binary files /dev/null and b/深度学习入门/assets/1609473880971.png differ diff --git a/深度学习入门/assets/1609473996445.png b/深度学习入门/assets/1609473996445.png new file mode 100644 index 0000000..90a63cf Binary files /dev/null and b/深度学习入门/assets/1609473996445.png differ diff --git a/深度学习入门/assets/1609474064534.png b/深度学习入门/assets/1609474064534.png new file mode 100644 index 0000000..1fceb4a Binary files /dev/null and b/深度学习入门/assets/1609474064534.png differ diff --git a/深度学习入门/assets/1609474157691.png b/深度学习入门/assets/1609474157691.png new file mode 100644 index 0000000..637e9c9 Binary files /dev/null and b/深度学习入门/assets/1609474157691.png differ diff --git a/深度学习入门/assets/1609474174914.png b/深度学习入门/assets/1609474174914.png new file mode 100644 index 0000000..2794c9c Binary files /dev/null and b/深度学习入门/assets/1609474174914.png differ diff --git a/深度学习入门/assets/1609474327116.png b/深度学习入门/assets/1609474327116.png new file mode 100644 index 0000000..80a00be Binary files /dev/null and b/深度学习入门/assets/1609474327116.png differ diff --git a/深度学习入门/第四章——递归神经网络与词向量原理解读.md b/深度学习入门/第四章——递归神经网络与词向量原理解读.md index b0aaaca..9e2a4d5 100644 --- a/深度学习入门/第四章——递归神经网络与词向量原理解读.md +++ b/深度学习入门/第四章——递归神经网络与词向量原理解读.md @@ -30,3 +30,39 @@ RNN的问题在于,每一次的h只考虑前一个,当h到最后的时候, ![1609470919296](assets/1609470919296.png) + + +#### 词向量Word2Vec模型通俗解释 + +先考虑第一个问题:如何将文本向量化 + +比如描述一个人,只用身高或体重,还是综合各项指标?如下 + +![1609473546489](assets/1609473546489.png) + +只要有了向量,就可以用不同的方法来计算相似度。如下 + +![1609473880971](assets/1609473880971.png) + +通常,数据的维度越高,能提供的信息也就越多,从而计算结果的可靠性就更值得信赖了。如下 + +![1609473996445](assets/1609473996445.png) + +如何描述语言的特征呢?通常都在词的层面上构建特征。Word2Vec就是把词转成向量: + +![1609474064534](assets/1609474064534.png) + +假设现在已经拿到一份训练好的词向量,其中每个词都表示50维的向量: + +![1609474157691](assets/1609474157691.png) + +如果在热度图中显示,结果如下: + +![1609474174914](assets/1609474174914.png) + +从结果中可以发现,相似的词在特征表达中比较相似,也就是说明词的特征是有实际意义的! + +![1609474327116](assets/1609474327116.png) + +> 如上图的男人和男孩有相当部分的区域颜色是相似的,只是有的浅了点,有的深了点。同样的地方,对比水,它们之间相差的就非常远,颜色基本没有关联。 +