|
|
|
@ -32,7 +32,7 @@ class LinearRegression:
|
|
|
|
|
|
|
|
|
|
def train(self, alpha, num_iterations=500):
|
|
|
|
|
"""
|
|
|
|
|
训练模块,执行梯度下降
|
|
|
|
|
训练模块,执行梯度下降得到theta值和损失值loss
|
|
|
|
|
|
|
|
|
|
alpha: 学习率
|
|
|
|
|
num_iterations: 迭代次数
|
|
|
|
@ -46,10 +46,12 @@ class LinearRegression:
|
|
|
|
|
|
|
|
|
|
alpha: 学习率
|
|
|
|
|
num_iterations: 迭代次数
|
|
|
|
|
|
|
|
|
|
:return: 返回损失值 loss
|
|
|
|
|
"""
|
|
|
|
|
cost_history = []
|
|
|
|
|
cost_history = [] # 收集每次的损失值
|
|
|
|
|
for _ in range(num_iterations): # 开始迭代
|
|
|
|
|
self.gradient_step(alpha)
|
|
|
|
|
self.gradient_step(alpha) # 每次更新theta
|
|
|
|
|
cost_history.append(self.cost_function(self.data, self.labels))
|
|
|
|
|
return cost_history
|
|
|
|
|
|
|
|
|
@ -68,6 +70,15 @@ class LinearRegression:
|
|
|
|
|
theta = theta - alpha * (1/num_examples)*(np.dot(delta.T, self.data)).T
|
|
|
|
|
self.theta = theta # 计算完theta后更新当前theta
|
|
|
|
|
|
|
|
|
|
def cost_function(self, data, labels):
|
|
|
|
|
"""
|
|
|
|
|
损失计算方法,计算平均的损失而不是每个数据的损失值
|
|
|
|
|
"""
|
|
|
|
|
num_examples = data.shape[0]
|
|
|
|
|
delta = LinearRegression.hypothesis(data, self.theta) - labels # 预测值-真实值 得到残差
|
|
|
|
|
cost = np.dot(delta, delta.T) # 损失值
|
|
|
|
|
return cost[0][0]
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def hypothesis(data, theta):
|
|
|
|
|
"""
|
|
|
|
@ -79,3 +90,25 @@ class LinearRegression:
|
|
|
|
|
"""
|
|
|
|
|
predictions = np.dot(data, theta)
|
|
|
|
|
return predictions
|
|
|
|
|
|
|
|
|
|
def get_cost(self, data, labels):
|
|
|
|
|
"""
|
|
|
|
|
得到当前损失
|
|
|
|
|
"""
|
|
|
|
|
data_processed = prepare_for_training.prepare_for_training(data,
|
|
|
|
|
self.polynomial_degree,
|
|
|
|
|
self.sinusoid_degree,
|
|
|
|
|
self.normalize_data)[0]
|
|
|
|
|
return self.cost_function(data_processed, labels)
|
|
|
|
|
|
|
|
|
|
def predict(self, data):
|
|
|
|
|
"""
|
|
|
|
|
用训练的参数模型,预测得到回归值的结果
|
|
|
|
|
"""
|
|
|
|
|
data_processed = prepare_for_training.prepare_for_training(data,
|
|
|
|
|
self.polynomial_degree,
|
|
|
|
|
self.sinusoid_degree,
|
|
|
|
|
self.normalize_data)[0]
|
|
|
|
|
predictions = LinearRegression.hypothesis(data_processed, self.theta)
|
|
|
|
|
|
|
|
|
|
return predictions
|
|
|
|
|