diff --git a/机器学习竞赛实战_优胜解决方案/京东用户购买意向预测/.ipynb_checkpoints/4-模型预测及评估-checkpoint.ipynb b/机器学习竞赛实战_优胜解决方案/京东用户购买意向预测/.ipynb_checkpoints/4-模型预测及评估-checkpoint.ipynb new file mode 100644 index 0000000..4686da3 --- /dev/null +++ b/机器学习竞赛实战_优胜解决方案/京东用户购买意向预测/.ipynb_checkpoints/4-模型预测及评估-checkpoint.ipynb @@ -0,0 +1,1055 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import lightgbm as lgb # 模型\n", + "import pandas as pd # 数据处理包\n", + "import numpy as np # 数据处理包\n", + "from sklearn import metrics # 混淆矩阵\n", + "from sklearn.model_selection import StratifiedKFold, GridSearchCV, train_test_split # 分层五折验证包、寻找最优参函数、切分数据\n", + "from sklearn.metrics import accuracy_score, roc_curve, auc, confusion_matrix # 准确率、roc计算、auc计算、混淆矩阵\n", + "import matplotlib.pyplot as plt # 图形处理包\n", + "import itertools # 处理混淆矩阵\n", + "import gc # 处理缓存,有兴趣的可以搜搜怎么使用\n", + "import warnings # 忽略普通警告,不打印太多东西\n", + "warnings.filterwarnings('ignore')\n", + "plt.rcParams['font.sans-serif']=['SimHei'] # 让图形可以显示中文\n", + "plt.rcParams['axes.unicode_minus']=False" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
user_idsku_idcateaction_before_3_1.0_xaction_before_3_2.0_xaction_before_3_3.0_xaction_before_3_4.0_xaction_before_3_5.0_xaction_before_3_6.0_xaction_before_3_1.0_y...cate_action_5_meancate_action_6_meanhas_bad_commentbad_comment_ratecomment_num_0comment_num_1comment_num_2comment_num_3comment_num_4label
0202633.012564.08.01.00.00.00.00.02.01.0...20.8666675167.61.00.02600.00.00.00.01.01.0
1218498.0149854.08.04.00.00.00.00.04.02.0...20.8666675167.61.00.04030.00.00.00.01.01.0
2221842.075877.08.03.00.00.00.00.05.079.0...20.8666675167.61.00.02450.00.00.00.01.01.0
3222886.0154636.08.020.01.00.00.00.026.010.0...20.8666675167.61.00.02080.00.00.00.01.01.0
4235240.038222.08.030.01.00.00.00.028.055.0...20.8666675167.61.00.01660.00.00.00.01.01.0
\n", + "

5 rows × 237 columns

\n", + "
" + ], + "text/plain": [ + " user_id sku_id cate action_before_3_1.0_x action_before_3_2.0_x \\\n", + "0 202633.0 12564.0 8.0 1.0 0.0 \n", + "1 218498.0 149854.0 8.0 4.0 0.0 \n", + "2 221842.0 75877.0 8.0 3.0 0.0 \n", + "3 222886.0 154636.0 8.0 20.0 1.0 \n", + "4 235240.0 38222.0 8.0 30.0 1.0 \n", + "\n", + " action_before_3_3.0_x action_before_3_4.0_x action_before_3_5.0_x \\\n", + "0 0.0 0.0 0.0 \n", + "1 0.0 0.0 0.0 \n", + "2 0.0 0.0 0.0 \n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "\n", + " action_before_3_6.0_x action_before_3_1.0_y ... cate_action_5_mean \\\n", + "0 2.0 1.0 ... 20.866667 \n", + "1 4.0 2.0 ... 20.866667 \n", + "2 5.0 79.0 ... 20.866667 \n", + "3 26.0 10.0 ... 20.866667 \n", + "4 28.0 55.0 ... 20.866667 \n", + "\n", + " cate_action_6_mean has_bad_comment bad_comment_rate comment_num_0 \\\n", + "0 5167.6 1.0 0.0260 0.0 \n", + "1 5167.6 1.0 0.0403 0.0 \n", + "2 5167.6 1.0 0.0245 0.0 \n", + "3 5167.6 1.0 0.0208 0.0 \n", + "4 5167.6 1.0 0.0166 0.0 \n", + "\n", + " comment_num_1 comment_num_2 comment_num_3 comment_num_4 label \n", + "0 0.0 0.0 0.0 1.0 1.0 \n", + "1 0.0 0.0 0.0 1.0 1.0 \n", + "2 0.0 0.0 0.0 1.0 1.0 \n", + "3 0.0 0.0 0.0 1.0 1.0 \n", + "4 0.0 0.0 0.0 1.0 1.0 \n", + "\n", + "[5 rows x 237 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = pd.read_csv('data/train_set.csv') # 读取训练数据\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
user_idsku_idcateaction_before_3_1.0_xaction_before_3_2.0_xaction_before_3_3.0_xaction_before_3_4.0_xaction_before_3_5.0_xaction_before_3_6.0_xaction_before_3_1.0_y...cate_action_4_meancate_action_5_meancate_action_6_meanhas_bad_commentbad_comment_ratecomment_num_0comment_num_1comment_num_2comment_num_3comment_num_4
0202633.012564.08.01.00.00.00.00.02.01.0...8.420.8666675167.61.00.02600.00.00.00.01.0
1218498.0149854.08.04.00.00.00.00.04.02.0...8.420.8666675167.61.00.04030.00.00.00.01.0
2221842.075877.08.03.00.00.00.00.05.079.0...8.420.8666675167.61.00.02450.00.00.00.01.0
3222886.0154636.08.020.01.00.00.00.026.010.0...8.420.8666675167.61.00.02080.00.00.00.01.0
4235240.038222.08.030.01.00.00.00.028.055.0...8.420.8666675167.61.00.01660.00.00.00.01.0
\n", + "

5 rows × 236 columns

\n", + "
" + ], + "text/plain": [ + " user_id sku_id cate action_before_3_1.0_x action_before_3_2.0_x \\\n", + "0 202633.0 12564.0 8.0 1.0 0.0 \n", + "1 218498.0 149854.0 8.0 4.0 0.0 \n", + "2 221842.0 75877.0 8.0 3.0 0.0 \n", + "3 222886.0 154636.0 8.0 20.0 1.0 \n", + "4 235240.0 38222.0 8.0 30.0 1.0 \n", + "\n", + " action_before_3_3.0_x action_before_3_4.0_x action_before_3_5.0_x \\\n", + "0 0.0 0.0 0.0 \n", + "1 0.0 0.0 0.0 \n", + "2 0.0 0.0 0.0 \n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "\n", + " action_before_3_6.0_x action_before_3_1.0_y ... cate_action_4_mean \\\n", + "0 2.0 1.0 ... 8.4 \n", + "1 4.0 2.0 ... 8.4 \n", + "2 5.0 79.0 ... 8.4 \n", + "3 26.0 10.0 ... 8.4 \n", + "4 28.0 55.0 ... 8.4 \n", + "\n", + " cate_action_5_mean cate_action_6_mean has_bad_comment bad_comment_rate \\\n", + "0 20.866667 5167.6 1.0 0.0260 \n", + "1 20.866667 5167.6 1.0 0.0403 \n", + "2 20.866667 5167.6 1.0 0.0245 \n", + "3 20.866667 5167.6 1.0 0.0208 \n", + "4 20.866667 5167.6 1.0 0.0166 \n", + "\n", + " comment_num_0 comment_num_1 comment_num_2 comment_num_3 comment_num_4 \n", + "0 0.0 0.0 0.0 0.0 1.0 \n", + "1 0.0 0.0 0.0 0.0 1.0 \n", + "2 0.0 0.0 0.0 0.0 1.0 \n", + "3 0.0 0.0 0.0 0.0 1.0 \n", + "4 0.0 0.0 0.0 0.0 1.0 \n", + "\n", + "[5 rows x 236 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_x = data.loc[:,data.columns != 'label'] # 将训练数据集分成特征和标签\n", + "train_y = data.loc[:,data.columns == 'label']\n", + "train_x.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
label
01.0
11.0
21.0
31.0
41.0
\n", + "
" + ], + "text/plain": [ + " label\n", + "0 1.0\n", + "1 1.0\n", + "2 1.0\n", + "3 1.0\n", + "4 1.0" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_y.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cateaction_before_3_1.0_xaction_before_3_2.0_xaction_before_3_3.0_xaction_before_3_4.0_xaction_before_3_5.0_xaction_before_3_6.0_xaction_before_3_1.0_yaction_before_3_2.0_yaction_before_3_3.0_y...cate_action_4_meancate_action_5_meancate_action_6_meanhas_bad_commentbad_comment_ratecomment_num_0comment_num_1comment_num_2comment_num_3comment_num_4
08.01.00.00.00.00.02.01.00.00.0...8.420.8666675167.61.00.02600.00.00.00.01.0
18.04.00.00.00.00.04.02.00.00.0...8.420.8666675167.61.00.04030.00.00.00.01.0
28.03.00.00.00.00.05.079.00.00.0...8.420.8666675167.61.00.02450.00.00.00.01.0
38.020.01.00.00.00.026.010.00.00.0...8.420.8666675167.61.00.02080.00.00.00.01.0
48.030.01.00.00.00.028.055.00.00.0...8.420.8666675167.61.00.01660.00.00.00.01.0
\n", + "

5 rows × 234 columns

\n", + "
" + ], + "text/plain": [ + " cate action_before_3_1.0_x action_before_3_2.0_x action_before_3_3.0_x \\\n", + "0 8.0 1.0 0.0 0.0 \n", + "1 8.0 4.0 0.0 0.0 \n", + "2 8.0 3.0 0.0 0.0 \n", + "3 8.0 20.0 1.0 0.0 \n", + "4 8.0 30.0 1.0 0.0 \n", + "\n", + " action_before_3_4.0_x action_before_3_5.0_x action_before_3_6.0_x \\\n", + "0 0.0 0.0 2.0 \n", + "1 0.0 0.0 4.0 \n", + "2 0.0 0.0 5.0 \n", + "3 0.0 0.0 26.0 \n", + "4 0.0 0.0 28.0 \n", + "\n", + " action_before_3_1.0_y action_before_3_2.0_y action_before_3_3.0_y ... \\\n", + "0 1.0 0.0 0.0 ... \n", + "1 2.0 0.0 0.0 ... \n", + "2 79.0 0.0 0.0 ... \n", + "3 10.0 0.0 0.0 ... \n", + "4 55.0 0.0 0.0 ... \n", + "\n", + " cate_action_4_mean cate_action_5_mean cate_action_6_mean \\\n", + "0 8.4 20.866667 5167.6 \n", + "1 8.4 20.866667 5167.6 \n", + "2 8.4 20.866667 5167.6 \n", + "3 8.4 20.866667 5167.6 \n", + "4 8.4 20.866667 5167.6 \n", + "\n", + " has_bad_comment bad_comment_rate comment_num_0 comment_num_1 \\\n", + "0 1.0 0.0260 0.0 0.0 \n", + "1 1.0 0.0403 0.0 0.0 \n", + "2 1.0 0.0245 0.0 0.0 \n", + "3 1.0 0.0208 0.0 0.0 \n", + "4 1.0 0.0166 0.0 0.0 \n", + "\n", + " comment_num_2 comment_num_3 comment_num_4 \n", + "0 0.0 0.0 1.0 \n", + "1 0.0 0.0 1.0 \n", + "2 0.0 0.0 1.0 \n", + "3 0.0 0.0 1.0 \n", + "4 0.0 0.0 1.0 \n", + "\n", + "[5 rows x 234 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "del train_x['user_id']\n", + "del train_x['sku_id']\n", + "\n", + "train_x.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(14619, 234)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_x.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
user_idsku_idcateaction_before_3_1.0_xaction_before_3_2.0_xaction_before_3_3.0_xaction_before_3_4.0_xaction_before_3_5.0_xaction_before_3_6.0_xaction_before_3_1.0_y...cate_action_4_meancate_action_5_meancate_action_6_meanhas_bad_commentbad_comment_ratecomment_num_0comment_num_1comment_num_2comment_num_3comment_num_4
0200005.067444.04.02.00.00.00.00.03.026.0...73.400000169.36666748251.01.00.08210.00.00.00.01.0
1200005.072967.04.026.01.00.01.00.030.02.0...73.400000169.36666748251.01.00.01960.00.00.00.01.0
2200007.026229.09.02.00.00.00.00.02.012.0...20.76666756.70000012937.71.00.01980.00.00.00.01.0
3200007.063315.09.04.00.00.00.00.03.010.0...20.76666756.70000012937.71.00.04760.00.00.00.01.0
4200007.0126404.09.04.00.00.00.00.03.010.0...20.76666756.70000012937.70.00.00000.00.00.00.01.0
\n", + "

5 rows × 236 columns

\n", + "
" + ], + "text/plain": [ + " user_id sku_id cate action_before_3_1.0_x action_before_3_2.0_x \\\n", + "0 200005.0 67444.0 4.0 2.0 0.0 \n", + "1 200005.0 72967.0 4.0 26.0 1.0 \n", + "2 200007.0 26229.0 9.0 2.0 0.0 \n", + "3 200007.0 63315.0 9.0 4.0 0.0 \n", + "4 200007.0 126404.0 9.0 4.0 0.0 \n", + "\n", + " action_before_3_3.0_x action_before_3_4.0_x action_before_3_5.0_x \\\n", + "0 0.0 0.0 0.0 \n", + "1 0.0 1.0 0.0 \n", + "2 0.0 0.0 0.0 \n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "\n", + " action_before_3_6.0_x action_before_3_1.0_y ... cate_action_4_mean \\\n", + "0 3.0 26.0 ... 73.400000 \n", + "1 30.0 2.0 ... 73.400000 \n", + "2 2.0 12.0 ... 20.766667 \n", + "3 3.0 10.0 ... 20.766667 \n", + "4 3.0 10.0 ... 20.766667 \n", + "\n", + " cate_action_5_mean cate_action_6_mean has_bad_comment bad_comment_rate \\\n", + "0 169.366667 48251.0 1.0 0.0821 \n", + "1 169.366667 48251.0 1.0 0.0196 \n", + "2 56.700000 12937.7 1.0 0.0198 \n", + "3 56.700000 12937.7 1.0 0.0476 \n", + "4 56.700000 12937.7 0.0 0.0000 \n", + "\n", + " comment_num_0 comment_num_1 comment_num_2 comment_num_3 comment_num_4 \n", + "0 0.0 0.0 0.0 0.0 1.0 \n", + "1 0.0 0.0 0.0 0.0 1.0 \n", + "2 0.0 0.0 0.0 0.0 1.0 \n", + "3 0.0 0.0 0.0 0.0 1.0 \n", + "4 0.0 0.0 0.0 0.0 1.0 \n", + "\n", + "[5 rows x 236 columns]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = pd.read_csv('data/val_set.csv') # 读取验证数据\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "val_x = data.loc[:,data.columns != 'label'] # 将验证数据集分成特征和标签\n", + "val_y = data.loc[:,data.columns == 'label']\n", + "val_x.head()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}