Add. Summarization

pull/2/head
benjas 4 years ago
parent d79dfa2eda
commit 9ebc5726e1

@ -24,4 +24,64 @@ A story about the Logistic regression
**我们想要解决的:**
1. 怎么解决极小距离带来的+1和-1的天壤之别
2. 怎么让最终的预测式子连续可微
2. 怎么让最终的预测式子连续可微
### 逻辑斯蒂回归
Logistic regression
![1618844224722](assets/1618844224722.png)
![1618844241748](assets/1618844241748.png)
![1618844289114](assets/1618844289114.png)
> 连续可微
>
> 可输出概率
**参数估计:**
由上面的式子可知里面参数只有w和xx为已知的特征也就是更新w即可
逻辑斯蒂回归模型学习时对于给定的训练数据集T={(x1,y1), (x2,y2), ...,(xn,yn)},可以应用极大似然估计法估计模型参数,从而得到逻辑斯蒂回归模型。
设:![1618849843275](assets/1618849843275.png)
> Y=1和Y=0相加时为1所以当Y=1=π(x)那么Y=0就等于1-π(x)
似然函数为
![1618849856107](assets/1618849856107.png)
> 当前的条件做连乘变换成log则是相加
对数似然函数为
![1618849880623](assets/1618849880623.png)
对L(w)求极大值得到w的估计值
**似然函数对w求导**
![1618850290883](assets/1618850290883.png)
![1618850302122](assets/1618850302122.png)
![1618850312660](assets/1618850312660.png)
### 总结
Summarization
1. 逻辑斯蒂以输出概率的形式解决了极小距离带来的+1和-1的天壤之别同时概率也可作为模型输出的置信程度。
2. 逻辑斯蒂使得了最终的模型函数连续可微,训练目标与预测目标达成一致。
3. 逻辑斯蒂采用了较大似然估计来估计参数。

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Loading…
Cancel
Save