diff --git a/机器学习竞赛实战_优胜解决方案/智慧城市-道路通行时间预测/.ipynb_checkpoints/道路通行时间预测-checkpoint.ipynb b/机器学习竞赛实战_优胜解决方案/智慧城市-道路通行时间预测/.ipynb_checkpoints/道路通行时间预测-checkpoint.ipynb
new file mode 100644
index 0000000..2fd6442
--- /dev/null
+++ b/机器学习竞赛实战_优胜解决方案/智慧城市-道路通行时间预测/.ipynb_checkpoints/道路通行时间预测-checkpoint.ipynb
@@ -0,0 +1,6 @@
+{
+ "cells": [],
+ "metadata": {},
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/机器学习竞赛实战_优胜解决方案/智慧城市-道路通行时间预测/道路通行时间预测.ipynb b/机器学习竞赛实战_优胜解决方案/智慧城市-道路通行时间预测/道路通行时间预测.ipynb
new file mode 100644
index 0000000..bfa7f57
--- /dev/null
+++ b/机器学习竞赛实战_优胜解决方案/智慧城市-道路通行时间预测/道路通行时间预测.ipynb
@@ -0,0 +1,374 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 数据展示"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "from scipy.interpolate import UnivariateSpline\n",
+ "from sklearn import linear_model\n",
+ "import xgboost as xgb\n",
+ "# from ultis import *"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "道路通行时间:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " link_ID | \n",
+ " date | \n",
+ " time_interval | \n",
+ " travel_time | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 4377906283422600514 | \n",
+ " 2017-05-06 | \n",
+ " [2017-05-06 11:04:00,2017-05-06 11:06:00) | \n",
+ " 3.0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 3377906289434510514 | \n",
+ " 2017-05-06 | \n",
+ " [2017-05-06 10:42:00,2017-05-06 10:44:00) | \n",
+ " 1.0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3377906285934510514 | \n",
+ " 2017-05-06 | \n",
+ " [2017-05-06 11:56:00,2017-05-06 11:58:00) | \n",
+ " 35.2 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 3377906285934510514 | \n",
+ " 2017-05-06 | \n",
+ " [2017-05-06 17:46:00,2017-05-06 17:48:00) | \n",
+ " 26.2 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 3377906287934510514 | \n",
+ " 2017-05-06 | \n",
+ " [2017-05-06 10:52:00,2017-05-06 10:54:00) | \n",
+ " 10.4 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " link_ID date time_interval \\\n",
+ "0 4377906283422600514 2017-05-06 [2017-05-06 11:04:00,2017-05-06 11:06:00) \n",
+ "1 3377906289434510514 2017-05-06 [2017-05-06 10:42:00,2017-05-06 10:44:00) \n",
+ "2 3377906285934510514 2017-05-06 [2017-05-06 11:56:00,2017-05-06 11:58:00) \n",
+ "3 3377906285934510514 2017-05-06 [2017-05-06 17:46:00,2017-05-06 17:48:00) \n",
+ "4 3377906287934510514 2017-05-06 [2017-05-06 10:52:00,2017-05-06 10:54:00) \n",
+ "\n",
+ " travel_time \n",
+ "0 3.0 \n",
+ "1 1.0 \n",
+ "2 35.2 \n",
+ "3 26.2 \n",
+ "4 10.4 "
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.read_csv('new_gy_contest_traveltime_training_data_second.txt',delimiter=';',dtype={'link_ID':object})\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "time_interval时间间隔,两分钟为单位\n",
+ "\n",
+ "travel_time平均通行时间"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "道理长宽情况:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " link_ID | \n",
+ " length | \n",
+ " width | \n",
+ " link_class | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 4377906289869500514 | \n",
+ " 57 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 4377906284594800514 | \n",
+ " 247 | \n",
+ " 9 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 4377906289425800514 | \n",
+ " 194 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4377906284525800514 | \n",
+ " 839 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4377906284422600514 | \n",
+ " 55 | \n",
+ " 12 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " link_ID length width link_class\n",
+ "0 4377906289869500514 57 3 1\n",
+ "1 4377906284594800514 247 9 1\n",
+ "2 4377906289425800514 194 3 1\n",
+ "3 4377906284525800514 839 3 1\n",
+ "4 4377906284422600514 55 12 1"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "link_df = pd.read_csv('gy_contest_link_info.txt',delimiter=';',dtype={'link_ID':object})\n",
+ "link_df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "length长度 width宽度 link_class类别"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "道路之间连接情况:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " link_ID | \n",
+ " in_links | \n",
+ " out_links | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 4377906289869500514 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 4377906284594800514 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 4377906289425800514 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4377906284525800514 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4377906284422600514 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " link_ID in_links out_links\n",
+ "0 4377906289869500514 1 1\n",
+ "1 4377906284594800514 1 1\n",
+ "2 4377906289425800514 1 1\n",
+ "3 4377906284525800514 1 1\n",
+ "4 4377906284422600514 2 1"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "link_tops = pd.read_csv('gy_contest_link_top_update.txt',delimiter=',',dtype={'link_ID':object})\n",
+ "link_tops.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 任务:预测未来一个月平均通行结果,每两分钟一次\n",
+ "回归任务\n",
+ "\n",
+ "构建时间序列,基于前几天或者前几十天的数据预测"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}