diff --git a/机器学习算法理论及应用/第二章——手写线性回归算法/LinearRegression/MultivariateLinearRegression.py b/机器学习算法理论及应用/第二章——手写线性回归算法/LinearRegression/MultivariateLinearRegression.py index 1a0f16b..f491fd3 100644 --- a/机器学习算法理论及应用/第二章——手写线性回归算法/LinearRegression/MultivariateLinearRegression.py +++ b/机器学习算法理论及应用/第二章——手写线性回归算法/LinearRegression/MultivariateLinearRegression.py @@ -16,8 +16,11 @@ test_data = data.drop(train_data.index) input_param_name_1 = 'Economy..GDP.per.Capita.' input_param_name_2 = 'Freedom' output_param_name = 'Happiness.Score' - +# 双特征的loss为:0.08517538069974877 x_train = train_data[[input_param_name_1, input_param_name_2]].values +# 全特征的loss为:0.0019415807477718364 +# feat_list = list(train_data.columns.drop(['Happiness.Score','Country'])) +# x_train = train_data[feat_list].values y_train = train_data[[output_param_name]].values x_test = test_data[[input_param_name_1, input_param_name_2]].values