diff --git a/机器学习竞赛实战_优胜解决方案/京东用户购买意向预测/数据清洗.ipynb b/机器学习竞赛实战_优胜解决方案/京东用户购买意向预测/数据清洗.ipynb index 918be19..3d4b56e 100644 --- a/机器学习竞赛实战_优胜解决方案/京东用户购买意向预测/数据清洗.ipynb +++ b/机器学习竞赛实战_优胜解决方案/京东用户购买意向预测/数据清洗.ipynb @@ -128,6 +128,271 @@ "3. 数据集切分" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 数据集完整性验证\n", + "首先检查JData_User中的用户和JData_Dction中的用户是否一致,保证行为数据中锁产生的行为均由用户数据中的用户产生。\n", + "\n", + "思路:利用pd.Merge连接sku和Action中的sku,观测Action中的数据是否减少Example:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " sku data\n", + "0 a 1\n", + "1 a 1\n", + "2 c 3\n" + ] + } + ], + "source": [ + "# 测试方法\n", + "import pandas as pd\n", + "df1 = pd.DataFrame({'sku':['a','a','e','c'], 'data':[1,1,2,3]})\n", + "df2 = pd.DataFrame({'sku':['a','b','c']})\n", + "print(pd.merge(df1,df2))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "结果只会打印两者共有的部分" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Is action of Feb. from User file? True\n", + "Is action of Mar. from User file? True\n", + "Is action of Apr. from User file? True\n" + ] + } + ], + "source": [ + "#数据集验证\n", + "def user_action_check():\n", + " df_user = pd.read_csv('data/JData_User.csv',encoding='gbk')\n", + " df_sku = df_user.loc[:,'user_id'].to_frame()\n", + " df_month2 = pd.read_csv('data/JData_Action_201602.csv',encoding='gbk')\n", + " # pd.merge(df_sku,df_month2) 会以user_id字段为基准取两个df的交集 不是取并集,这样才能证明 action中的userid 都在df_user里面\n", + " print ('Is action of Feb. from User file? ', len(df_month2) == len(pd.merge(df_sku,df_month2))) \n", + " df_month3 = pd.read_csv('data/JData_Action_201603.csv',encoding='gbk')\n", + " print ('Is action of Mar. from User file? ', len(df_month3) == len(pd.merge(df_sku,df_month3)))\n", + " df_month4 = pd.read_csv('data/JData_Action_201604.csv',encoding='gbk')\n", + " print ('Is action of Apr. from User file? ', len(df_month4) == len(pd.merge(df_sku,df_month4)))\n", + "\n", + "user_action_check() " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "结论:User数据集中的用户和交互行为数据集中的用户完全一致\n", + "\n", + "根据merge前后的数据量对,能保障Action中的用户ID是User中的ID的子集" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 检查是否有重复记录\n", + "除去各个数据文件中完全重复的记录,可能解释是重复数据是有意义的,比如用户同时购买多件商品,同时添加多个数量的商品到购物车等…" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "#重复数据\n", + "def deduplicate(filepath, filename, newpath):\n", + " df_file = pd.read_csv(filepath,encoding='gbk') \n", + " before = df_file.shape[0]\n", + " df_file.drop_duplicates(inplace=True) # 列相同认为是重复 inplace=True表示在原来的DataFrame上删除重复项4\n", + " after = df_file.shape[0]\n", + " n_dup = before-after # 查看前后差值\n", + " print ('Number of duplicate records for ' + filename + ' is: ' + str(n_dup))\n", + " if n_dup != 0:\n", + " df_file.to_csv(newpath, index=None)\n", + " else:\n", + " print ('Number duplicate records in ' + filename)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of duplicate records for Feb. action is: 2756093\n", + "Number of duplicate records for Mar. action is: 7085038\n", + "Number of duplicate records for Feb. action is: 3672710\n", + "Number of duplicate records for Comment is: 0\n", + "Number duplicate records in Comment\n", + "Number of duplicate records for Product is: 0\n", + "Number duplicate records in Product\n", + "Number of duplicate records for User is: 0\n", + "Number duplicate records in User\n" + ] + } + ], + "source": [ + "deduplicate('data/JData_Action_201602.csv', 'Feb. action', 'data/JData_Action_201602_dedup.csv')\n", + "deduplicate('data/JData_Action_201603.csv', 'Mar. action', 'data/JData_Action_201603_dedup.csv')\n", + "deduplicate('data/JData_Action_201604.csv', 'Feb. action', 'data/JData_Action_201604_dedup.csv')\n", + "deduplicate('data/JData_Comment.csv', 'Comment', 'data/JData_Comment_dedup.csv')\n", + "deduplicate('data/JData_Product.csv', 'Product', 'data/JData_Product_dedup.csv')\n", + "deduplicate('data/JData_User.csv', 'User', 'data/JData_User_dedup.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + " | user_id | \n", + "sku_id | \n", + "time | \n", + "model_id | \n", + "cate | \n", + "brand | \n", + "
---|---|---|---|---|---|---|
type | \n", + "\n", + " | \n", + " | \n", + " | \n", + " | \n", + " | \n", + " |
1 | \n", + "2176378 | \n", + "2176378 | \n", + "2176378 | \n", + "0 | \n", + "2176378 | \n", + "2176378 | \n", + "
2 | \n", + "636 | \n", + "636 | \n", + "636 | \n", + "0 | \n", + "636 | \n", + "636 | \n", + "
3 | \n", + "1464 | \n", + "1464 | \n", + "1464 | \n", + "0 | \n", + "1464 | \n", + "1464 | \n", + "
4 | \n", + "37 | \n", + "37 | \n", + "37 | \n", + "0 | \n", + "37 | \n", + "37 | \n", + "
5 | \n", + "1981 | \n", + "1981 | \n", + "1981 | \n", + "0 | \n", + "1981 | \n", + "1981 | \n", + "
6 | \n", + "575597 | \n", + "575597 | \n", + "575597 | \n", + "545054 | \n", + "575597 | \n", + "575597 | \n", + "